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CHAPTER I. INTRODUCTION 

Many time series encountered In practice are well-approximated by 

the representation 

r 
Y» = E X..3. +P., t " 1, 2, ... (1.1) 

where the {x^^} are fixed sequences and the {P^} Is a time series with 

2 
mean zero. For example, we might have 1, X^g ° X^g = t . 

The X^^ might also be random functions of time, for example, a 

stationary time series. If X^^ Is random, we shall investigate the 

behavior of the estimators conditional on a particular realization of 

Xj.^. Thus, all Xj.j, shall be treated as fixed functions of time. It 

is assumed that {P^.} is Independent of {X^^}. We also consider the 

case in which {P^} is a seasonal autoregressive process satisfying 

«j't-jk + 

where {e^} is a sequence of uncorrelated (0,0%) random variables and 

k is the seasonal period. The values of k that are commonly used are 

1, 4, 12 corresponding to yearly, quarterly and monthly observations. 

Given a realization {Y^; t • 1, 2, ..., nk} of nk 

observations, the least squares procedure is commonly used to estimate 

the parameters of the seasonal autoregressive process. Under the 

assumption of normality the method of maximum likelihood is appealing, 

but is difficult to compute in all but the simplest case of a first-
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order seasonal autoregresslve process with known means. 

The asymptotic properties of the least squares estimators depend 

upon (i) the properties of the {e^.} sequence, (ii) the roots of the 

characteristic equation 

m^ - a^m^ ... - = 0, 

(iii) the initial conditions Yq, Y_j, ..., and (iv) the 

properties of In this study, the asymptotic properties of the 

least squares estimators are examined under a wide variety of 

assumptions. 

In the majority of the situations, the least squares estimators are 

consistent and asymptotically normal, but are biased in small samples. 

In econometric work, small sample sizes ranging from 5 to 20 years are 

frequently encountered. For such samples the bias in the least squares 

estimators of the autoregressive coefficients is appreciable in 

magnitude. 

Consider the p-th order stationary autoregressive process with 

period k = 1 which satisfies the stochastic difference equation 

- "0 + 'j\-i + s (1-3) 

(1.4) 



where y is the mean of the time series {y^.} and {e^} is a sequence 

of Independent (0,0%) random variables. Note that 

P -1 
a- •» y(l- E a.) . The least squares estimator of 

j-1 ^ 

(X » (Oj,a2 Op)' Is obtained by regressing - Y on 

Vl " V2 • •••' Vp •" ^here Y - n"^ Y^. In this 

study, approximate expressions for the bias in the least squares 

estimator of a that Is due to replacing y by Y are derived. Using 

the approximate expressions for the bias, modifications of the least 

squares estimator are proposed. This method of bias correction is 

extended to the model given in (1.1) for the case k = 1. The method Is 

particularly suitable for the case where the are polynomials in 

time. Estimators are also given for the stationary p-th order seasonal 

model. 

Two Monte Carlo studies examining the small sample properties of 

various estimators of the parameters of second-order autoregresslve 

processes are considered. A second-order autoregresslve process with 

constant mean, and a second-order autoregresslve process with mean 

function linear in time are considered. Generally speaking, the 

modified estimators performed better than the least squares estimator. 



CHAPTER II. THE ASYMPTOTIC PROPERTIES 
OF THE LEAST SQUARES ESTIMATOR OF THE PARAMETER 

OF THE FIRST-ORDER AUTOREGRESSIVE MODEL 

Literature Review 

A casual Inspection of many economic time series leads one to 

conclude that the observations are not Independent. In recent years, 

autoregresslve moving average processes have been proposed for modeling 

economic data. See Box and Jenkins (1976), Box, Hlllmer and Tlao 

(1976), Fuller (1976), Jenkins and Watts (1968), and Parzen and Pagano 

(1977). With the advent of the computer, the autoregresslve moving 

average schemes are widely accepted as a reliable method for estimating 

and predicting the behavior of a real process. 

Yule (1927), Walker (1931), and Slutsky (1937) first formulated the 

concept of autoregresslve moving average schemes. In 1938, Wold (1954) 

obtained a general representation for time series. Since then, a 

considerable body of literature in the area of time series dealing with 

the parameter estimation and the order determination of time series 

models has appeared. More recently, Jenkins and Watts (1968), and Box 

and Jenkins (1976) extended the autoregresslve moving average processes 

to Include seasonal time series. 

Most of the results in time series deal with stationary 

processes. A stochastic process defined on T is said to be (weakly) 

stationary if its first and second moments exist and 

(I) E {Yj.} = y, 

(II) E {(Y^-M)(Y^.^j^-y)} -Y(h), 
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for all t, t + h in T. The autocorrelation function of {Y^} is 

defined as 

P(h)-^ • (2-1) 

Much of the early work in time series was concerned with estimating 

the autocorrelations and in deriving tests of the hypothesis of 

Independence. 

Many processes that occur in practice can be well-approximated by 

the autoregressive process of order p satisfying the stochastic 

difference equation 

- Z t 3 + S a Y + e (2.3) 
1=1 1 j=l J J 

t = p + 1, p + 2, ..., n, where the {e^.} are uncorrelated (0, 0%) 

random variables and Y^, Yg, ..., Y^ are initial conditions. It is 

assumed f 0. Let mg, ...» m^ be the roots of the 

characteristic equation 

- a^m^ ^ - ... - " 0. (2.4) 

The parameters of the model and the variance of e^ are to be estimated 
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from an observed sequence , Yg, •••» Y^. The sampling theory 

approach to the estimation problem of an autoregresslve process has 

generally been analogous to the treatment of univariate regression 

model. The ordinary least squares procedure provides the best linear 

unbiased estimators in the classical linear regression model. The 

assumptions of the Gauss-Markov theorem are not met In the 

autoregresslve case since lagged values of the dependent variables are 

not distributed Independently of the error term for all lags. Under the 

assumption of normal errors, the conditional maximum likelihood 

estimators, conditonal on Yj, Yg, ..., Y^, of the autoregresslve 

parameters are the least squares estimators. Several other 

asymptotically equivalent estimators are considered in the next chapter. 

Mann and Wald (1943) considered estimation of the parameters of the 

model (2.3) with the restricted to a constant and the roots of 

(2.4) less than one in absolute value. Assuming {e^} to be a sequence 

of normal independent (0,0%) random variables, they established that 

the asymptotic distribution of the least squares estimator is normal. 

White (1958) obtained the limiting joint moment generating function 

of the numerator and the denominator of the least squares estimator of 

aJ for the case p • 1 and no - variables. The moment generating 

function had three forms, according as the root of the characteristic 

equation was less than one, equal to one, or greater than one in 

absolute value. 

Anderson (1959) extended Mann and Wald's result to the case where 

{e^} are assumed to be independent (0, random variables with 



7 

bounded (2+6)-th moments, for some 6 > 0. He also studied the case 

when at least one of the roots of the characteristic equation is greater 

than one in absolute value. 

Rao (1961), Venkataraman (1967, 1968, and 1973), Narasimham (1969), 

and Stlgum (1974) have studied estimation of the model when at least one 

of the roots of the characteristic equation is greater than one in 

absolute value. 

The limiting behavior of the least squares estimator for a model 

with fixed ^ - variables and roots of the characteristic equation less 

than one in absolute value has been investigated by several authors. 

Among the first to consider the statistical properties of this model 

were workers at the Cowles Commission; see Anderson and Rubin (1950), 

Koopmans, Rubin, and Lelpnlk (1950), and Rubin (1950). Hannan (1965), 

Amemiya and Fuller (1967), Hatanaka (1974), and Fuller (1976) studied 

the situation in which there are nonlinear restrictions on the 

parameters arising from the specification of autocorrelated errors and 

lagged dependent variables in the equation. Hannan and Heyde (1972), 

Hannan and Nicholls (1972), Reinsel (1976), Fuller (1976), Anderson and 

Taylor (1979), Crowder (1980), and Fuller, Hasza, and Goebel (1981) 

considered estimation of model (2.3) with the roots of (2.4) less than 

one in absolute value. 

Fuller, Hasza, and Goebel assumed that {e^} are Independent 

(0,0%) random variables with bounded (2+6)-th moments. Crowder 

considered the case where {e^} is a sequence of martingale 

differences. An extension of the results of Fuller, Hasza and Goebel 
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for the stationary case with {e^} a martingale difference sequence and 

the results of Crowder (1980) are presented In Appendix B. 

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979) 

considered the estimation of equation (2.3) assuming one of the roots of 

the characteristic equation to be one and permitted the set to 

Include the constant function and time. Hasza (1977) discussed the 

estimation of equation (2.3) with one of the roots of the characteristic 

equation greater than one In absolute value. Hasza permitted a set 

{i|iti} composed of polynomial function of time to enter the equation. 

Fuller, Hasza, and Goebel (1981) established the limiting 

distributions of the least squares estimators of the parameters of (2.2) 

for cases In which the largest root Is less than one, equal to one, and 

greater than one In absolute value, assuming {e^} to be a sequence of 

Independent (0,0%) random variables with bounded (2+6)-th moments. 

They established that, 

(a) If all the roots of the characteristic equation are less than 

one in absolute value, then the limiting distribution of the 

least squares estimator is normal under mild regularity 

conditions, 

(b) if one of the roots of the characteristic equation Is one and 

the others are less than one in absolute value, then the 

limiting distribution depends upon the nature of the set 

{i|/ti} and upon the parameters in the model, 

(c) if one of the roots of (2.4) is greater than one in absolute 

value and the remaining roots are less than one in absolute 



9 

value, the least squares estimators normalized by the square 

roots of the sums of squares of the explanatory variables are 

normal if and only if the e^ are normal independent random 

variables. 

Asymptotic Properties Of The Least Squares Estimator 

For The Case p = 1 And 1 

In this section, we establish the limiting distribution of the 

least squares estimator under the assumption that {e^} is a sequence 

of martingale differences. It is proven that the limiting distribution 

is the same as that obtained by Dickey (1976) under the assumption that 

{e^} is a sequence of independent random variables. 

Consider the following three models : 

(I) Yfc •= P Vl ®t» t « 1, 2, ... (2.5) 

?0 " 0' 

(II) Yj. = y + p Yj._j + e^, t = 1, 2, ... (2.6) 

Yq = 0, 

and, 

(ill) Yj. = y + 3t + p Y^_i + e^, t = 1, 2, ... (2.7) 

Yq = 0. 

We assume n observations Yj, Yg, . ., Y^ are available. Define 

the (n - 1) dimensional vectors. 

i  = (1,  1 ,  . . . ,  1) ' ,  

t " (1 - J, 2 - -J, ..., n - 1 - j)', 
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- (?2' "^3' •••' V' 

and, 

%t-l - (?!' ?2 Vl>'-

B, - Xc-i' % - a. Ît-1>' % • <A' i' %t-i) 

Define, 

p - (s; Si)"' b; (2-8) 

P„ -dJCSiSj)''ujï^. (2-9) 

and. 

K - ̂3(^3 ̂ 3)"^ <2.10) 

where d^ = (0,1)' and d^ - (0, 0, 1)'. 

The statistics analogous to the regression t statistics for the 

test of the hypothesis that p = 1 are 

T = (p - l)(S|j Cj)"^^2 , (2.11) 

\ ° (% -1)(S|2 (2-12) 

- (P^ - 1)(S|3 Cg)"^^ (2.13) 
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where S|j^ is the appropriate regression residual mean square, 

lY' {I - 4(0^ %)-' %) YJ (2.14) 

and Is the lower-right element of (U^ Uj^) ^. 

Assume {e^} Is a sequence of random variables satisfying, 

ECe^l Fj.-1^ " ® a.e., (2.15) 

E(e2 I = @2 > 0 a.e., (2.16) 

and, 

E(eJ) < » . (2.17) 

where Is the a-fleld generated by (e^, e^, ..., e^). A sequence 

{e^} satisfying (2.15), (2.16), and (2.17) is considered. Some of the 

properties of {e^} are established in the following Lemma. 

Lemma 2.1. Assume {e^} Is a sequence of random variables satisfying 

conditions (2.15), (2.16), and (2.17). Then, 

Cov(ej., Bj) = 0 for t # j, 

Cov(e2, e|) = 0 for t # j, 

and 

-1 " 
n~ Z e^ + o2 a.s. . 

t"l 
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Proof. We have 

E(ej.) - E{E(e^ | F^_j)} - 0, 

and, 

E(e2) " E{E(e2 | 

Therefore, for h > 0 

- EjECS; I F;)} 

° «S+h I 

- I ^+h-l' I Fell 

" 0,  

and, 

Cov(e2, . E(e2 - o" 

- :|M4+h I Vh-1> I F;)' -

" E(e^) - 0** 

-  0 .  

since |e|} Is a sequence of uncorrelated random variables with 

E(e|*) < «9, using Theorem 5.1.2 of Chung (1974, p. 100), we get 

n ^ Z 6% + 0% a.s. • 

t-1 

Following the approach used by Dickey (1976), we obtain the 

following theorem. This theorem Is a representation of the error In the 

estimator In terms of a transformation of the original variables. 
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Theorem 2.1. Assume {e^} satisfies (2.15), (2.16), and (2.17). Let 

Yt " Vl + ̂ t t - 1, 2, ... 

t " 0. 

and let p, p^, and p^ be defined by (2.8), (2.9), and (2.10). 

Assume without loss of generality that = 1. Then, 

n(p-l) « (2r^)"l (t2-1) + Op(n~^^2), 

n(p -1) - (2r -2W2)"^ (tM-2T W ) + 0^(n" ),  
y n n n n n p 

and 

n(p^-l) - [2(r^-W2-3V2)]-^ [(t^_2W^)(T^_6V^)_1] + Op(n" ), 

where 

-2 " , 

_o n-1 

" JE, Am z;*' 
t"l 

n-V2 
^n - " ' Vl 

= Z a._ Z. + 0^(n"^^2 ), 
1=1 in In p 

"n • %t-l 
t-2 

n-1 1/ 
•/, "i. =1. + °p(°' 
1 = 1 
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V " (n ^2 g (n-j)(j-l) e. 

" j-1 ^ 

X :i. =1* + 
1=1 

Aim - '/ssecZ [ J, 

5„ • «m- ̂ 2. Vl.n>' - Sn tn-

m^^(n) - (l,t)-th element of 

= 2(2n-l)"^^2 Co8[(4n-2)"l (2t-l)(2i-l)n], 

§n " (Si' ®2 Vl^'' 

am - Cov(T^, Z^). 

bin = Cov(W^, Z^), 

and, 

gin - Cov(V^, Z^). 

Proof. See Dickey (1976). For example, 

1 Vi \ 
n(p-l) = n( 1 ) 

t!a 



15 

VI S 

, n t-1 
n"^ E ( Z e.) e. 

t"2 j-1 ^ 

(2n)-l[( Z e. )2 - Ê e^] 
t-1 c t-1 c 

(2n) 
- 1  

n 
Z 
t-1 

e? ] 

n 

By Lemma 2.1, 

n ^ Z - 1 + 0 (n ^ ). 
i-f.1 ^ P 

Also, 

''n • 

<Vl + 
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Therefore, 

•-n.'A^Vou-V^,. n(p p 
n 

Also, 

-2 " 9 

^ ®n ~n 

where, 

n-1 n-2 n-3 .. « 1 ̂  

n-2 n—2 n-3 • • • 1 
n-3 n-3 n-3 ••• 1 K K %n' 

Ajj = dlagCXj^, Xgn' ^n-l,n^' 

are the eigenvalues of and consists of the eigenvectors 

of A*. 

Therefore, 

X ^in- D i=»l 

The following results will be used in the derivation of the 

limiting distribution of (T^, W^, V^, T^). 

Lemma 2.2. Suppose i = 1,2,...,n-1; n = 1,2,...} is a 
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triangular array of random variables. Suppose 

E(Z^^) = 0, V(Z^^) " a^, and Cov(Z^^, Zj^) - 0 for i f j. Let 

{w^: 1 = 1,2,...} be a sequence of real numbers and let 

{w^^: i = l,2,...,n-l; n • 1,2,...} be a triangular array of real 

numbers. If 

2 «2 < », 
1=1 

n <*> 

11m S w? = 2 w? 
n-H» 1=1 1-1 

and, 

11m = Wj^, 
n-H» 

then. 

/. "in ̂ In • /. "l ̂ in + V"' 
1-1 1=1 

Proof. Let Z w? » A > 0. 
1=1 

Define 

""in 

In n-1 If 

1 

Then, as n-n». 
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A ^^2 = (say). 

n-1 
We will show that E (n^-n^_)^ converges to zero as n tends to 

t-1 
Infinity. Note, 

n-1 

i!i 

and 

00 

z n? •  1. 
1-1 

For M > 0, 

M M M M 

/ ,  " î n  -  / ,  i  2  / ,  
t"l t=l t"l t"l 

For a given e > 0, choose M large such that 

ï. n2 < e. 
t=WH-l 

For this choice of M, choose N such that for n > N > M 

M o 

z < I- . 
t=l 

This Is possible because as n + ». Then, for n > N 
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M 

Z nf > 1 - e, 
t-1 

M 
2 <V4e2, 

t""l 

and, 

M 
Z 
t=l 

M 
2[ Z 

t-1 

M 
Z 
t-1 

< 2 e 

Therefore, for n > N 

M 
Z n2 > 1 - 3 e, 
t-1 

and. 

It follows that, for n > N 

n-1 
Z 

t-1 t-1 

n-1 
z 

t-M+1 

M n-1 n-1 
z tif 
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< V4 + 2 e + 6 e , 

and 

n-1 
11m Z )2 = 0. 
n-Ko fl 

Because 

n-1 n-1 n-1 

« \nhn - "t \n' ' 
t=l t=l t«»l 

+ 0 as n + m, 

we have 

\n ̂ta - /, \ \n + °p<"' 
L"1 C=i 

Since, 

-1 
A Z w^ +1 as n + 0», 

t-1 

we get 

X »In hu - "i 'l. + V"- 0 
1=1 1"1 

Dickey (1976) obtained the following result which Is used In 
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deriving the limiting distributions. 

Lemma 2.3. Let a^^, b^^, g^^^ and be as defined in Theorem 

2.1. Then, 

n~^ - yZ = 0(n~^), 

lim a = a = 2 , 
n+" " 1 ^ 

lim b. = b = 2 y?, 
n-Ko 

lim g = g, = 2^/2 y3, 
n-H» 

T. a2 = 1, 
1=1 

1 

and 

ih ®1 " 30 • 

where 

- (-1)^"^^ / Yf , 
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and 

= 4[(2i-l)ïï] 

Proof. See Dickey (1976). • 

Using Lemma 2.2 and Lemma 2.3, we obtain 

" n - /  +  ( 2 - 1 9 )  
1=1 

and 

'n • X Si ^in + <2.20) 
i=l 

Also, 

% 'i. ' I n  

and, because 

: I X hn-'P h X I -'\n - i I 1=1 1=1 

as n + ", 
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we get 

r = 
n 

( 2 . 2 1 )  

The limiting distribution of Is obtained In the following 

Lemma 2.4. Let {e^} be a sequence of random variables satisfying the 

conditions (2.15), (2.16), and (2.17). Let be a (n-1) by (n-1) 

orthogonal matlx with 

lira sup I m. (n) I = 0 for each fixed 1 , 
n-x» l<t<n-l 

where m^^(n) Is the (l,t)-th element of M^. Then for a fixed k, 

lemma 

N(0, a2 I^), 

where 

and 

ên ° ̂®1' ®2' ®n-l^'* 

Proof. Let be an arbitrary vector such that g' g = 1. Consider 
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W„ • S' Z.(k) 

k n-1 
= Z n, Z m. (n) e 
1=1 ^ t-1 ^ 

n-1 k 
" Z e Z n, m, (n) 

t»l 1=1 

n-1 

° :i 

k 
where » e^ Z^_^^ m^^(n) = e^ d^.^. We apply Theorem A.8 to 

obtain the result. Note that 

E[Xtn I Vl' - 0 »•'•• 

Glx|n I Vll • "In 

and 

=5n • /, 4. 
L = i 

n-1 k 
0% z { Z n, m. (n)}2 

t-1 1-1 

a2 E n2 

1-1 

a2. 
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since is orthogonal. Therefore, 

C - SIX,. I ffl' 
U"1 

" 8^ a.8. 
nn 

It follows that 

C  c  ̂  ' •  

and the first condition of Theorem A.8 is established. To verify the 

second condition of Theorem A.8, consider 

»nn X ^ 
t=l 

I(|*tdtnl > ^ 
t«i 

< a sup E[e2 I(|e d I > e a)], 
l<t<n-l ^ ^ 

n-1 
since Z d^ = 1. Now, 

t=l 

sup E[e2 I(je d I > e a)] 
l<t<n-l ' c cm 

< sup {E(ep} ̂ 2{p(|e d I >e o)} 
l<t<n-l * 
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.up (rV^ E[|eJ2d| I}''2 

< L ^2e ^ sup Id I 
KtCn-l 

< L ^2 e"^ 2 I I sup I m^^(n) 

—>• 0 as n •»• " . 

Therefore, the second condition of Theorem A.8 is satisfied and 

n-1 , 
E X. N(0,a2). • 

t-1 

Since for m^^(n) of Theorem 2.1, 

I I ^ 2(2n-l)~ ̂  

we get 

sup |m. (n) j —*• 0 as n + * . 
l<t<n-l 

Therefore, for a fixed k 

V «8. Ik' 

where are defined in Theorem 2.1. 

Now we obtain the limiting distribution of (T^, W^, V^, T^). 
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Theorem 2.2. Let {^±]±mi & sequence of normal Independent (0,1) 

random variables. Let n* - (T , W_, V_, T ) where T , V , W , 
~Ti n n' n n n n* n 

and are defined In Theorem 2.1. Let g/ = ( T, W, V, T), where 

T " E a, Z , 
1-1 ^ 

W = Z b. Z. , 
1-1 ^ 1 

V - 2 g Z , 
1-1 1 

r = z Y? Zf, 
1=1 ^ 

and a^, b^, g^, are defined In Lemma 2.3. Then, 

Proof. Using (2.18), 

n-1 

»i ^in + °p"> 

n-1 

Note 

V( 

n-1 
E 

l-k+l 
Vln' 

n-1 
Z 

l-k+l 
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< Z a2, 

1-k+l 

converges to zero uniformly in n. From Lemma 2.3, 

k . k 
2 a. Z, —>• Z a. Z. as n + <». 

i-1 ^ i=l ^ 1 

Now, 

k T 
Z a. Z. —+ T as k + ». 

1=1 ^ 1 

Therefore, using Lemma Â.1 and Theorem Â.7, we get 

T T 
n 

Similarly, 

Un ̂  3 • 0 

Corollary 2.1. Let {y^} satisfy (2.5) with p • 1. Let {e^} be a 

sequence of random variables satisfying the conditions (2.15), (2.16), 

and (2.17). Let p, p^, p^ be defined by (2.8), (2.9), and (2.10), 

respectively and let T, T^, be defined by (2.11), (2.12), and 

(2.13), respectively. Then, 
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n(p-l) —^ Vo r ^(T^-1), 

n(p^-l) V2 (R-W2)"^ [(T2-1) - 2TW], 

and 

T l/2r~^^2 [x2_i], 

V2(r-w2)~^/2 [(T2-1) - 2TW]. 

Let {Y^} satisfy (2.6) with p «• 1. Then 

n(p^-l) V2 (r-w2-3v2)~^ [(T-2W)(T-ÔV) - 1], 

and 

V2 (r-w2-3v2)~^''2 [(T-2W)(T-6V) - 1]. 

Proof. The proof Is an Immediate consequence of Theorem 2*2 because the 

denominator quadratic forms In p, p^, p^ are continuous functions of 

]1 that have probability 1 of being positive. Under the model (2.5), 

v-l ^ S| = (n-2)-' E (Y -p Y )2 
t=2 

v-1 * (n-2) Z [e - (p-1) Y ]2 
t=2 

(n-2) ̂  [ Z e^ - (p-1) Z Y , e ] 
t=2 t-2 
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(n-2) 
-1 

n 

t=l 

>2+0 (n ^). 

n 

(n-3)"l [e;-(yQ-y_i) - (Py-l)(yt_i-y_i) 

(n-3)"^ [ Z e2 -(p -1) L 
t.2 

n 
+ (n-l)(y_,-yo)2 + 2 Z e (y_,-yQ)] 

A V t=2 

(n-3)"l Z e2 + 0(n"b, 
t-2 ^ P 

where 

y = YQ - Pp y-r 

"0-^ jz 

^ t=2 

Similarly under (2.6), 
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= (n-4) ̂  E 6% + 0 (n . • 
t"2 P 

A A 

Note that the limiting distribution of and are obtained 

under the assumption that the constant term y is zero. Likewise, the 

limiting distributions of and are derived under the assumption 

that the coefficient for time, 3, is zero. If y ît 0 in (2.6) or 

g 0 in (2.7), then the limiting distributions of and are 

normal. 

Extensions of Corollary 2.1 to p-th order case are presented in the 

Appendix B. 
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CHAPTER III. AN ADJUSTMENT FOR BIAS IN ESTIMATING THE 
PARAMETERS OF AN AUTOREGRESSIVE PROCESS DUE TO 

ESTIMATING CONSTANT MEAN 

The methods of maximum likelihood and least squares estimation are 

commonly used to construct estimators for the parameters of a stationary 

normal first-order autoregresslve process with mean zero. If the mean 

Is unknown, there Is no closed analytical form for the maximum 

likelihood estimator. The complexity of the likelihood equations 

Increases with the order of the process, while the least squares 

estimation procedure easily extends to higher order processes. The 

large sample properties of the least squares estimators have received 

considerable attention. Several authors considered the small sample 

properties of the least squares estimator for the parameter of the 

first-order autoregresslve process. However, the small sample 

properties of the least squares estimators have received very little 

attention in the case of Iilgher order process. 

Marlott and Pope (1954), Barnard et al. (1962), Copas (1966), 

Thornber (1967), Orcutt and Winokur (1969), Salem (1971), Mln (1975), 

Sawa (1978), De Gooljer (1980), Ansley and Newbold (1980), Bora-Senta 

and Kounlas (1980) and Lee (1981) proposed several estimators of Oj 

for the first-order autoregresslve process. These authors also compared 

the small sample properties of the various estimators through Monte 

Carlo studies. See Lee (1981) for details. 

Salem (1971) extended the method of Marlott and Pope (1954) to 

obtain expressions for the approximate biases of the least squares 

estimators of a second order stationary autoregresslve process. Bora-
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Senta and Kounias (1980) considered an iterative method of moments 

procedure as an alternative to the least squares estimation procedure 

for higher order procedures. Lee (1981) extended Salem's (1971) methods 

to stationary second-order seasonal autoregressive processes. 

Consider the stationary p-th order autoregressive process {Y^} 

which satisfies the stochastic difference equation 

?t - "O + "l^t-1 + ••• + Vt-P + ®t (3.1) 

where {e^} is a sequence of independent (0,0%) random variables. 

Assume that the roots of the characteristic equation, 

m^ - a^m^ ^ = 0, are less than unity in modulus. 

Multiplying equation (3.1) by (Y^_^^p) for h > 0 and taking the 

P -1 
expectation of both sides, where y = «^(1 - Z a^) , one obtains à 

j=l 
system of equations relating the autocovariances to the coefficients of 

the model. The equations corresponding to h=l, 2, ...,p are 

N (3.2) 

where 

2 = («1' *2' *p)'' 

Y(0) Yd) 

Yd) Y(0) 

: 
\^Y(P-1) Y(p-2) 

Y(P-I)\ 

Y(P-2) 

Y(0) 
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and 

N = [Yd), Y(2), Y(P)]'. 

This system of p simultaneous equations Is known as the Yule-Walker 

equations. See Yule (1926), Walker (1931). Levlnson (1947) and Durbln 

(1960) give a recursive procedure for obtaining the Yule-Walker 

estimates of a p-th order autoregresslon. 

The least squares estimator of a Is given by 

* * -1 " 
S = H N. (3.3) 

where 

jg - (n-p)~^ 
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N - (n-p)-^ 

Z(Y*_.-Y_)(Y»-Yn) 
t-p p t 'OJ 

= (n-p) -1 E Y, 
t-i' 

and all the summations are over t » pfl, P+-2, n. 

Burg (1967, 1968) suggested a method of estimating the 

autoregresslve parameters based on the Levlnson (1947) - Durbln (1960) 

procedure used In computing the Yule-Walker estimates. Âutoregresslons 

of Increasing order are fit in a stepwise fashion. Denote the estimate 

of the j-th coefficient obtained by fitting an autoregresslon of order 

p by ®j(p)» the estimate of by S^. The recursion begins 

with 
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' I 
'l(l) " n n 

when the mean Is known and is equal to zero. At the p-th stage, define 

the residuals from a p-th order autoregression by 

»j(p) ?t-j' » 

p-1 

~ jfj (*j(p-l) ~ *P(P) *p-j,(p-l)) " ̂p(p) ̂ t-p' 

Similarly the backward residuals are 

p-1 

^t(p) \ '^j(p-l) " ®p(p) ®p-j,(p-l)^ *t+j 

- Vp) "^t+p' t - 1, 2, ..., n-p. 

The coefficient at the p-th stage is chosen to minimize the sum of 

squares 
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giving 

n 

^ t.^+l*t(P-l) Vp,(p-1) 
J O c 
p(p) n-p n 

The other coefficients are updated by 

^j(p) " ̂j(p-i) " VP) VJ(P-I)' ^ •••' 

and the updated estimate of Is 

- Vi" - i(p)'' 

When the mean Is unknown, Y^. - Y is substituted for Y^ and the 

recursion proceeds as before. See Burg (1975), Ulrych and Bishop 

(1975), Jones (1978), and Robinson and Silvia (1980). 

Box and Jenkins (1976) proposed a method that gives the approximate 

maximum likelihood estimators in the case of normally distributed 

errors. The estimators a^, a^, ..., minimize the sum of squares 
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S(g) = z [e ]2, 

t"-j 

where [e^.] = \ " «q " °l\-l " " Vt-p* ^ P+2 n, 

and [Cp], [Cp ..., [e_j] are formed from 

[ej = Yt " "O " "iVl - ' - Vt-P' C = p, p-1, .... -j, 

\ = «0 + «l?t+l + + *p?ttp' t < 0' 

Recursive algorithms such as Marquardt's (1963) algorithm are used to 

perform the Iterations. 

The various estimators considered are asymptotically equivalent, 

but behave differently In small samples. It is well-known that the 

estimation methods are biased in finite samples although the exact 

distributions of the estimators are not known. In the case of first-

order autoregressive process, a number of methods have been proposed to 

reduce the bias in the estimate of See Lee (1981). 

Quenouille (1949) suggested a method of removing the bias in the 

least squares estimators of autoregressive parameters. Assuming the 

"*"X 
bias is proportional to n , the method consists of dividing the 

series into halves and estimating the autoregressive parameters using 

the whole series and each half separately. An estimator of a unbiased 

to order n is obtained as 

a a 2 a* - V2 (a' + a ") 
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where a' and a" are the least squares estimator of  a  for the first 

and second halves, respectively. 

Salem (1971) obtained the moments of the least squares estimator 

* -1 
a up to terms of order n for a second-order stationary 

* * 
autoregresslve process. The means of and otg are 

E(a* ] = - (n-2) ̂  (l+a^) + 0(n~^), 

and 

E[o* ] = «2 - (n-2) ̂  (l+Mg) + 0(n ^). 

* * 
A linear transformation of and that Is nearly unbiased Is 

constructed based upon the above expressions. 

<*2(8) = [a2(n-2)+l](n-3) \ «g G(-l,l-2(n-2) ̂ ) 

= 1 , o„ > 1 - 2(n-2) ̂  

* 
-1 « a„ < -1. 

*2 

* 

*2 
and 

a^(S) = o* + (n-2)~^ (1+02(8)) . (3.4) 

Bora-Senta and Kounlas (1980) recently proposed a method for 

parameter estimation of an autoregresslve model with unknown constant 
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mean. The authors propose an iterative procedure using modified 

estimators of the autocorrelations 

where 

t"l 

'h -

and 

A_ „ 1 - «jPi - «gPg - •" - Vp 

Yq (1 - *1 - *2 - ••• " 

(3.6) 

The iteration proceeds as follows: 

i) As a first approximation ^ - r^, h = 1, 2, ..., p. 

11) Using Pjj 1 » h = 1 to p, compute the Yule-Walker type 

estimates a, , , a_ a 
1,1 6*1 Pjl 

ill) Calculate A/Yq from (3.6) using the estimates Pjj j» 

h = 1 to p. 

iv) Obtain second approximations g» h = 1 to p, using 

A/Yq in (3.5). 

v) Check the conditions for stationarlty. If violated, take the 

previous estimates. 

vl) If not violated, continue until the sum of squares 
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^1 - j, <°h.l+l - %,!>' 

is less than a quantity e. 

Lee (1981) also considered a modified least squares estimator which 

corrects for the bias in autocovariances. Let 

Y(0) = (n-p) ̂  S (Y - Y)2, 
t=p+l 

and 

V = Var(Y). 

Lee suggested the estimator 

« = N, 

where, 

H = H + V J J', 

N - N + V J, 

J = (1, 1, D' 

A A ^ 

and V is the estimator of V obtained by substituting Y(0) and a 

for Y(0) and o, respectively. 
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Fuller and Hasza (1981) established that the least squares 

estimators for normal autoregresslve parameters are Intograble. Using 

Taylor's Theorem, Lee (1981) obtained, for the least squares estimator 

E(ot*) = a + E{-H"^ (Aa-d) + h"^ (Aa-d)} + 0(n'2) (3.7) 

where A « H - H and d = N - N. 

* 
The bias in a arises from two sources. The first source of bias 

is Inherent in estimating the product of the inverse of H and the 

vector N. The second source of bias results from estimating the mean 

* 
when the true mean is unknown. The approximate bias in a arising 

from estimating the mean is given by E{-H ^ (M-d)} and is evaluated in 

the following theorem. 

Theorem 3.1. Let {y^} be a stationary time series satisfying the 

stochastic difference equation 

- «0 + + «f ".8) 

where the {e^} are Independent normal (0,0%) random variables and 

*P 
the roots of the characteristic equation, m^ - a^m^ ^ - ... - a = 0, 

* 
are less than unity in modulus. Let the least squares estimator a be 

defined by (3.3). Then, 



43 

E(Aa-d) (1, 1 1)' + 0(n"2), (3.9) 

(n-p)(l - E a.) 
1-1 ^ 

where A = H - H and d " N - N. "W  ̂ «v N# 

Proof. Let Y(h) be the autocovarlance function of {Y^}. Using 

Theorem A.9, 

00 

Var(Y.) = (n-p) 2 Y(h) + 0(n ). (3.10) 

h"-" 

For a stationary p-th order autoregresslve process, 

o P -o 
E Y(h) = o2(l - Z a ) (3.11) 

h»-» 1=1 

Using Theorem A.10, 

= E[(n-p)-l ^ Z^^(Yt_i-Yi)(Y^_j-Yj)] 

Y(j-l) - V(Yq) + 0(N"2) 

- h^j ^ + 0(n"2). (3.12) 

(n-p)(l- Z a. )2 

1-1 

and 

.-1 " 
E[N.] = E[(n-p) Z (Y _ -Y,)(Y.-Y_)] 

t-p+1 ^ ̂  ^ " 
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- Yd) - V(Yq) + 0(N"2) 

= ^ + 0(n~^) (3.13) 

(n-p)(l - Z a,)2 
1=1 

where h^j and h^j are (l,j)-th elements of jg and H, and 

A A 

and are the i-th elements of N and N respectively. 

Therefore, 

E(M-d) . E[H - H]a - ElN - N] 

_ «2 
J J'a 

(n-p)(l - Z a,)2 
i-1 

(n-p)(l - £ a.)2 

i-1 

J + 0(n"2) 

- J + 0(n"2), 
P 

(n-p)(l - S a.) 
i=l 

where J = (l,l,...l)', J' a = E and all the summations are over 

i " 1, 2j ...J p. Q 
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Using (3.9) the least squares estimators can be modified to correct 

for the bias arising from estimating the unknown mean. The following 

modification Is suggested. 

(1) Regress on Y^_^, Yt_2> with an intercept to 

obtain the least squares estimator of (Oq, , ...» a^), 

The least squares estimator of a » (o^iOg a^)', is 

where H and N are given by (3.3). 

A 
(11) Obtain an estimator of  The residual mean square 

error of the above regression Is a consistent estimator of 

02. 

(ill) Construct the new estimator 

S - H  N  ( 3 . 1 4 )  

where 

N - N +  ^  ( 1 ,  1  1 ) ' .  

(n-p)(l - E o*) 

1-1 

If p = 1, the estimator reduces to 
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°1 " ®1 ^ [(n-1) Y(0) (l-Oj)] ^ Cf2 

= o* + (n-1) ̂  <1 + a^). 

The estimator (3.14) is relatively easy to construct and, hence, is of 

practical importance. We shall study the estimator and its extensions 

to the case of alternative mean functions. The Monte Carlo study of 

Chapter V demonstrates that the mean square error of estimator (3.14) is 

smaller than that of the least squares estimator for a wide range of 

parameter values. 

Theorem 3.1 also suggests that it is possible to isolate the effect 

of estimating the mean by transforming model (3.1). For p > 2, 

consider the following reparametrizatlon of model (3.1). Let 

where 

6 = (6j, 6g, ..., 6p)' 

- «2' •••' *p)' 

for some nonsingular matrix C. For p = 1, 
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- «0 + 

and = a^. Note, by (3.15) for p > 2, 

Yt =• «0 + (61+5%) Yj._j + (63-62) Y^._2 + ... (3.16) 

+ '  Vp-i'  -  V t -v  *  s-

Comparing (3.16) with (3.1), we get 

"1 ° (^1 + *^2^ 

Oj = 6j+i - 6j, j = 2, 3 p-1, 

and 

«P - - «P-

Therefore, 

6, = Z a,. (3.17) 
^ 4 = 1 J j=l 

Define, 

Pt " ̂t -

M = 0^(1-6^"^, 

_ -1 * 
P = n Z P. , 

t=l 
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:t " - Vi' 

-  -1  
Y - n E Y. , 

t=l 

and 

"t = - ? 

- P. (3.18) 

Note that {p^,} is a stationary p-th order autoregresslve process 

with mean zero. Also, satisfies 

\ = GlWt-l + 1=2 *1 Zt-1+1 + Yt' if P>2 

= ^i\-i + \ » if p - 1 

(3.19) 

where 

_ «1 P *1 

®t - ® ^n - J2 ̂  Vl+1' 
if p > 2 

- G + Pn if p (3.20) 

and 

— —1 
e = n 

n 
Z 

t"l 
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* 
The least squares estimator o 

obtained by regressing on 

p > 2 and on If p » 1. 

Is 

of 2 " (*!' Gg, 6p)' Is 

Vl '  ••• '  Vp+1 
The error In the fitted equation 

(3.21) 

where 

D . (n-p)-l E B; B 
t=pfl 

St " ^"t-1' Vi Vp+i^ 

w 
t-1 

If p > 2 

If p = 1 

and 

M = (n-p)"l E B' V . 

t-pfl 

* 
The approximate bias In S arising from estimating the mean Is 

established In the following theorem. 

Theorem 3.2. Let {y^} be a stationary time series satisfying the 

stochastic difference equation 

\ • °o + + ••• + »p\-p + S-
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where the (e^.} are Independent normal (0, o^) random variables and 

the roots of the characteristic equation, m^ - a^m^ ^ - ... - = 0, 

are less than unity In modulus. Let M be given by (3.21). Then, 

E(M) = 

— -1 " — -1 " 
Proof. Let P, =• n 2 P^ , and Y, = n Z . For 

^ t-p+1 ^ t-p+1 

p = 1, by Theorem 3.1, 

( (n-p)(l-6^)' )» if p > 2 

® + 0(n , If p = 1 
(n-p)(l-ôj) 

(3.22) 

G(B) - • 

For p > 2, 

E[ Z W_I V ] 
t-p+I ^ ^ 

n 
E[ Z (Y._,-Y) v.] 

t=p+l ^ ^ 

n _ n _ _ 
El Z (Yr_,-Y,) v^] + E[ Z (Y.-Y) vj 

t=p+l ^ ^ ^ t=p+l ^ 

+ El(P,-P) Z V.] 
t"p+l 
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n 
= El E (P _ -P )(e -e)] 

t-p+1 ^ ̂  ^ 

t-1 

+ 0(n"l) 

n _ . 
- - E[ E P e.] + 0(n"^) 

t-p+1 

_1 n n _i 
= - n E[ E E P.e ] + 0(n 

t-p+1 j-p+1 

, n n , 
= - n E[ E E P e ] + 0(n 

t-p+1 j-t ^ 

- - 0% n 
t-p+1 j-t 

.1 li U 
- *2 n E E w. + 0(n ) 

t-p+1 j-0 

-1 

n-p-1 
- 0% n E w. (n-j) + 0(n ) 

j-0 J 

where P = E w.e . and w. satisfy the p-th order difference 
j-0 J J 

equations 
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Wj - - *pWj_p "0» d - 1.2 

with Wj = 0 for j < 0, and Wq » 1. Since the roots of the 

characteristic equation are less than one, 

and 

Z w. » 0(n ). 
j=»n 

Therefore, 

n <» , 

El S , V.J - - ( S w.) *2 + 0(n 
t=p+l ^ j=0 J 

= - (1 - 6^) ̂  0^+ o(n ^), 

N o w  f o r  j  =  1 ,  2 ,  . p - 1 ,  

n __ , 
= - E[ Z Z e] + 0(n~^) 

t-p+1 J 

• - - 'p-j+.) 

O(n-l), 
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00 

since Z I w. I is finite. Therefore, for p > 2, 
j=0 ^ 

0)' + 0(n"b • 

The approach used in proving Theorem 3.2 is different from that of 

Theorem 3.1, but the results of Theorem 3.1 and 3.2 are equivalent. We 

will use the approach of Theorem 3.2 to extend the result for the p-th 

order autoregressive process with E(Y^) a polynomial in t. 

Theorem 3.2 also makes it possible to establish whether or not the 

roots of the process associated with the modified estimator are less 

than one in absolute value. If one of the roots of the characteristic 

equation is one, then 6^ = 1. This fact is established in the 

following lemma. 

Lemma 3.1. Consider the polynomial, 

f(m) = m^ - a^m^ ^ -

P 
Then E a = 1 if and only if f(l) - 0 

1=1 

P 
Proof. The result is immediate because f(l) = 1 - Z . Q 

1=1 

Lemma 3.1 and Theorem 3.2 suggest the following method of 

correcting for the bias due to estimating the mean 
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Obtain the least squares estimator S , for 

6 = («Sj, 6g, 6p)', by regressing 

W. = Y» - Y on W. , , Z. Z. .,. Obtain the modified 
t t t-1 t-1 t-p+1 

least squares estimator, 

£ = 2 t , if 6^ < 1 

D"^ + (D")"^ (1 - 6j,0,0,...,0)'], if 6* > 1 

(3.23) 

where 

* ^_i 
i = D A, 

D = (n-p)-^ E B' B , 

t-iH-1 

ST " ^^T-1' ^T-1' ^T-P+1^' P > 2 

W^_p if p = 1, 

.-1 " 
A - (n-p) E B' W , 

t-p+1 

"-1 
and D" is the upper left element of D . 

Use the mean square error of the regression in (a) as an 

A 
estimator of a^. 
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(c) Obtain the modified estimates as 

a = - E(M)] (3.24) 

where 

Ê(M) « (gj, 0, 0 0)', If p > 2 

" gj , If P = 1, 

and 

gj = - (D')"l(l - 6*) If 8* > 1 or 

If [(n-p)(l-0j)]"^02 D" > (1 - 6j), 

^ — 1 
= - [(n-p)(l - 6^)] otherwise. 

(d) The estimate of a Is defined by a = C ^ % where C Is 

defined In (3.15). 

The estimators defined by (3.23) and (3.24) have the property that 

0^ < 1 and 6^ < 1. Similar modifications can be Introduced to 

guarantee that the smallest root Is greater than or equal to negative 

one by requiring 
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P 1 
E (-1)1 a < 1. 

i-1 

The procedure can be extended to check for all roots, but the method 

outlined In (3.23) and (3.24) should be sufficient for most practical 

situations. 

Let ra^t ..., be the roots of f(m) = 0. Assume 

ffij • 1 and < 1 for 1 = 2, 3, ...» p. Also assume that 

Oq = 0. Dickey and Fuller (1979) derived the limiting distribution of 

the t-statistic, 

Ô*-l 6*-l 

_V-1 V, ' 
[V(6j)] [(n-p)"' D"a2] '2 

A_J A 

where D" is the (l,l)-th element of D . and D is defined in 

(3.23). The percentiles of the distribution of the t-statistic are 

given in Table 8.5.2 of Fuller (1976) for different sample sizes. If 

Oq * 0 then the limiting distribution of is standard normal. 

To extend the bias adjustment method to the case in which 

6^ e[-l, 1], several possibilities beyond that of (3.24) exist. One is 

to use the tables as follows. 

(i) Construct 

^ lv(ô*)] 

the regression t-statistic for 6^. If T is greater than 
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'* /s/ 
the median "^^(50)» (about -1.5), set 6^(7^) = 1 

by adding (D")"^ (1-6^) to (n-p)~^ W^._j W^. 

(li) If < the 0.01 tabular value, "^^(01)' "^y (about 

-3.5), then use the stationary adjustment given in (3.24). 

(iii) Make the adjustment continuous in 

V Vol) ' \ ' Vso)-

One method of obtaining a continuous adjustment is to make the 

adjustment cubic in T^. The cubic adjustment is selected so that the 

adjustment does not have a large effect on moderately sized values of 

6 J. Let 

|(%) =5"^ (& + F) <3.25) 

where 

f = (fj, 0, 0, ..., 0)', if P > 2 

fj > if P = 1, 

£j - [(n-p)(l-6*)l"' a2, If < tp(oi) 

V0I)''X- Vol))'-

" %(01) < < %(50) 



58 

= (D")"l(l - 6*) 
" % > %(50)' 

a = [(n-p)(l - 6j)] ^ a2 

and 

b = (D") ̂  (1 - 6^) - a. 

The above method of adjusting for bias arising from estimating the 

mean extends Immediately to a seasonal p-th order autoregresslve process 

with unknown seasonal means. 

Consider the stationary p-th order seasonal process {Y^.} which 

satisfies the stochastic difference equation 

k-1 P 

" ifo j!i "j 
t " 1,2 nk 

(3.26) 

where 

6 
it 

1 1 =» (t-1) mod k 

0 otherwise 

{e^} Is a sequence of Independent (0,0%) random variables and 

are parameters. Observe that this Is a pk-th order autoregresslve 
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process that is purely seasonal in the sense that it can be written as 

k independent p-th order processes. This model can also be represented 

as 

"ij • «1 + Jj "« + »ij ' 

- *1 + "«"l.J-l! " 'i' + ®lj' ^ " 

j " ,n, 

(3.27) 

where = B^(l - a^)» is the i-th seasonal mean and Y^j 

is the value for the i-th period and j-th year. It is assumed that the 

roots of the polynomial equation. 

- ... - a =0, (3.28) m 

lie inside the unit circle. 

Consider the following reparametrization of the model (3.26). For 

p > 2, let 

"ij - «1 + - Bl' + ««+. h.J-„ + 'Id 

where = Y^j - Y^ and 6^, ..., 6^ are linear combinations 

of «2» ..., oip. Estimate jS = (6^, ..., 6^)* by regressing 

ij - 'ij - "i. "" "i,j-l' Zi,j-1 ^i,j-pfl' w,, » Yĵ j - Y, on W 

-1 ^n 
Y ̂ = n Y^j is the least squares estimator of If 
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p=l, then ôj " and the least squares estimator of 6^^ is obtained 

by regressing W^j on Let 

6* - D"^ I (3.30) 

where 

1 k-1 n 
D . [k(n-p)] Z Z BÎ B , 

1-0 j-p+1 J 

_1 k-1 n 
t " [k(n-p)j E Z B' W , 

1=0 j-pfl ^ J 

and 

By - ,j-l' ^l,J-p+l'' K P > 2 

"l.J-l ' " P - !• 

The error in the fitted regression equation is 

a* - 6 - M (3.31) 

where 

k-1 n 
M = [k(n-p)]" Z Z B! v , 

i»0 j-p+1 
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'ij ®ij " ®1. " n ^In n ^l.n-A+R P > 2 

®ij " ®1." n ^in' 
if p = 1, 

-1  
n 

e. = n Z e.., 

j-1 ^ 

and 

- "ij - h-

Since the roots of (3.28) are assumed to be less than unity in 

absolute value, the roots of the polynomial equation, 

m? - of ^ - ... - Op = 0, lie inside the unit circle. Therefore, 

for each fixed i, is a stationary p-th order autoregressive 

process with mean zero. Using Theorem 3.2, an approximate expression 

for the mean of M is obtained in the following theorem. 

Theorem 3.3. Consider a stationary p-th order seasonal autoregressive 

process {y^.} given by (3.26). Then, 

E(M) - ( (nZ%)(i_g ) » 0, 0 0)' + 0(n"2), if p > 2 

+ 0(n-2) 
(n-p)(l-6j) " ' , if p-1, 

where M is defined following (3.31). 
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Proof. We have 

A _j k—1 n 
E(M) = [k(n-p)] Z 2 E[Bl v .] 

1=0 j-iH-1 

1 k-1 , n 
= ^ Z El(n-p)"^ Z B' V..] . 

1=0 j-p+1 ^ ̂  

For p > 2, 

E(M) - k"' I ( - ) . 0, 0. .... 0)'J + 0(n"2) 

° < - • °> 0 + 0(n-2) , 

and for p = 1, 

-1 o2 -2 
E(M) = k [ - (n-p)(l-6p ] + ) 

+ 0(n-2). 
(n-p)(l-6j) 

It follows from Theorem 3.3 that a method of correcting for the bias due 

A 
to estimating the mean is to first construct & using (3.30) and then 

obtain the new estimator 

3 = - Ê(M)] (3.32) 
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where E(M) is defined In (3.24). 

To extend the method to the case in which 6^ = 1, we consider the 

following procedure. 

A 
(I) Obtain 6 and 0^ as before, 

(II) III the construction of 6, add f to & where 

(f^# 0* •••» 0)*» if p > 2 

fj , if P = 1, 

(3.33) 

and, 

\k ̂ ^wk(Ol) 

" ® ^ ' %k(50)~ '^iik(Ol)^ '"^lik " %k(01)^ ' 

"  V ( 0 1 ) ^  V  ^  V (50) 

^ ^ " V^V(50)' 

a = [(n-p)(l - 6j)] ^ gZ 

b " (D") ̂  (1 - 6^) - a 

V - -1). 

V(6*) = [k(n-p)] ^ D" a2. 
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and l8 the a - percentile of the t-statlstlc, x^j^. Fuller and 

Hasza have tabulated the percentiles of the statistic for k » 1, 

4, and 12. 

For autoregresslve processes that contain seasonal means, but that 

are not pure seasonal in the sense of (3.26), a slightly different 

method of adjustment for bias is required. 
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CHAPTER IV. BIAS ADJUSTMENT FOR THE LEAST SQUARES ESTIMATORS 
OF A p-TH ORDER AUTOREGRESSIVE PROCESS WITH A 

NONCONSTANT MEAN 

The mean of a stationary p-th order autoregresslve process is 

constant, but the mean of an observed time series is often a function of 

time, other than the constant function. In many situations, we are able 

to specify the mean of a time series to be a simple function of time. 

Mean functions that often appear in practice are low order polynomials 

in t or trignometric polynomials in t. 

Consider the model 

6 + P^ (4.1) 

where 

St " (Xtl' Xt2 Xtr)' 

P 
E 

j=l 
^ "j Ft-j + ®t' 

and {e^} is a sequence of Independent (0,0%) random variables. It 

is assumed that the roots of the polynomial equation, 

m^ - a^m^ ^ - ... - = 0, are less than unity in modulus. The 

elements are assumed to be fixed functions of time. Given a 

sample of n observations, the ordinary least squares estimator of g, 

is given by 
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i = (X' X'x (4.2) 

where X - (Xj, X', ..., %)' and 2 - (Y^, Yg, ..., Yj. 

The large sample behavior of g Is given In the following theorem 

and Is taken from Fuller (1976). 

Theorem 4.1. Let the model (4.1) hold. Assume X^ Is fixed and that 

the roots of the characteristic equation m^ - ot^m^ ^ = 0, 

are less than unity In modulus. Assume the e^ are Independent 

(0,0%) random variables with distributions F^(e) such that 

(4.3) 

(4.4) 

(4.5) 

11m sup / e2 dF (e) = 0. 
6-H» t le > 6 

Assume that {x^^} satisfies 

n 
11m Z X2 » 00, 1 • 1,2,...,r; 
n+o» t=l 

X2 

11m "0, 1 = 1,2 

and 

11m 

I £ 

n-h 
Z X 

t=l tl \+h,i 

xL Z X2 } ̂ 2̂ 

®hlj ° ̂-hlj 

t"l t=l 
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h = 0; 1, 2) •••> flnd *##, r# (4#6) 

Assume that X* X Is positive definite for all n > r and that A. 
fsj ^ /vQ 

defined by 

li® C ' èo (4.7) 
n-*-" 

Is a nonslngular matrix, where the diagonal matrix 

jD = diag{( Z X2 ) , ( 2 X2 ) ̂  ( Z Xg 
" t=l t-1 t-1 " 

(4.8) 

Let B be nonslngular, where the (i,j)-th element of B is 

'« " hL ?p(h) (*-9) 

and 

Yp(h) . Cov(P^, Pt+h). 

Then 

Sn (i - ê> N(0, A"^ B A-1). 

Proof. See Fuller (1976). • 

The assumptions of the above theorem are satisfied by polynomial 

functions of time if they are suitably transformed. See Fuller, Hasza, 
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and Goebel (1981). 

* 
The least squares estimator a of ot Is obtained by regressing 

on W^_p. We use an approach similar 

* 
to that used in Chapter III to adjust for the bias in a that is due 

to the estimation of j|. 

It is assumed that there exist constants {c^: m = 0, 1, .q} 

such that 

Cm = 0. (4.10) 
m=0 

c. St+m - 0-
m=0 

CQ = 1, 

and r < q. Note that for a stationary p-th order autoregresslve 

process, with constant mean we have, 

Xj.= 1, r = 1, q = 1, and Cj = -1. 

Consider a p-th order autoregresslve process with 

= Xt & 

~ (1» t; •••» t ) ̂ « 

For this process, q = r and since the r-th difference of is 0, 

the constants C^ are given by 
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C . (-1)* ( I ), m - 0, 1 
m m 

Consider the model (4.1). Define 

° J. 

(4.12) 

For p > q, consider a reparametrlzatlon of the model (4.1) given by 

- 2; a + - %-l ê) 
1=1 

where 6 = (6^, 6^ 6^)' » C(Op «g, ..., o^)' for some 

nonslngular matrix C. If p < q then take ô = o. For p > q, the 

relation between a and j5 Is derived below. From (4.13), 

''t ' ifi 'i i4+i + "t 

i!l 'i I_q+1 Jo '  ̂ 

I j-L 
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q q (j+q)op 

• i!. 'i ' j:. 'M .4. 

p (j+q)op 

' .:j 

q (j+q)op 
= ('j + ,4. «i) '.-j 

p (j+q)op 

' ifj 

- jl 'j "t-J + 't. 

where jop = inln(j,p). Therefore, 

(j+q)op 

(j+q)op 
- jj W« ' j >" »•'=> 

For p > q 

p q q (j+q)op p (j+q)op 

"j • j!, 'j ' j:. 

E 6. + E 6, Z C . (4.16) 
j=l ^ j=l ^ m"0 
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For p < q, Z o. = Z 6 . 
j-1 ^ j-1 J 

Since {p^} la a stationary p-th order autoregresslve process 

" j  v r  » •  

where {wj} satisfies the p-th order difference equation 

Wj - «1 - ... - Op Wj_p " 0, j = 1,2 (4 

Wj = 0 if j < 0, and Wq » 1. 

From (4.13), for p > q, 

"t = \ « 

h<-\-± - 4-1 ê) 
1=1 

il Vi + 't-i+q + S + «t'ê-i' 

- j, «i 
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where 

't • - «t - /, «1 
1"1 

= (say). 

For p < q, 

"t • "t - *t ê 

4(M) + «i(Vi - 4-i ê> + 't 

? «1 Vi + \ - % - \ 
1=1 1-1 

Let p = mln(p,q). Then 

"t = "t-1 + l(p>q) • ^t-i+q + \ 

where 

- 'it> 

" «£ -}, h a). 
1=1 

and 
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'(P>q) " "• " I" 1 

" 1, If p > q. 

* 
The ordinary least squares estimator 6 of 6 is 

6*= [(n-p)"l E F; F ]"M(n-p)"^ S F: WJ, (4.20) 
t=p+l ^ t=p+l 

and the error in the estimator is 

6*- 6 = l(n-p) ^ E F' F ] ^ [(n-p) V E F' v ] 
t-p+1 ^ t-p+1 ^ ^ 

where 

-t " (^t-l'^t-2'''''^t-q'Zt-l'''''^t-p+q)' P > q 

(Wt-l'*t-2 Wt-p) ' if p < q. 

The following theorem gives the expected values of the elements of the 

vector ^t=p+l St \-

Theorem 4.2. Let {y^} be a stochastic process satisfying 

%t - 8t & + Pf 

where {P^} is a stationary p-th order autoregressive process 

satisfying 
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Assume {e^} is a sequence of Independent (0,0%) random variables. 

Assume that the roots of the polynomial equation. 

nf - of ^ - ... - a • 0, 

lie Inside the unit circle. It is also assumed that there exists 

{C : m " 0,1,...,q} such that (4.10) and (4.11) hold. Then 

E[ E W V ] - - Z X (X' X)-! X' w a2 
t-p+1 ^ ^ ^ t=p+l 

- - il 

(4.21) 

and for p > q, 

n p (n-j)oq 

Z E[Z V ] - - E Z 
t=«p+l j"p+l-q m-p+1 

n n-j 
- Z Z 
j =»n-q+l m"( p+l-j )vO 
: ^ VNj+m - h fj-s-

(4.22) 

for 1 " 1, 2, ..., q; s - 1, 2, ..., p-q, where Is given by 

(4.19), P - (Pj, Pg, ..., Pjj)'. X is given by (4.2), pvj - max(p,j), 
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Wj Is given by (4.18), 

M] - gj (X' %)-! X', 

r - E(P P') - (Fj, Fg, ..., r^), 

~1 " (Yp(i-l)' Yp(i-2) Yp(l-n))', 

Yp(j) - Cov(P^, P^_j), 

and 

St - <Vt' Vt Vt^'* 

Proof. For a fixed 1 ( - 1, 2, p), consider 

E[ E W V ] . E EIW (e -d )] 
t=p+l ^ ^ ^ t-p+1 C 1 t t 

We have 

L "t-i nJ - , 
t=p+l t«p+l 

- - Z E[x (ji-ê) e ] 
t-p+i ^ ̂  ^ 
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since Is independent of e^. Therefore, 

E[ Z W e J o - E E[X (X' X)"^ X' P e ] 
t-p+1 t-p+1 

-- Z X (X'X)-l X» w a2 

t-p+1 

where 

= a"^ E(P e^) 

= <Vt' Vt' " ' Vt^' 

Now, 

Consider for a fixed Z, 

n-l 

• z zKPj - XjCx' %)-' J' J) x,.j+i(x' %)-!%' PI 
jop+l-l J J J 

n-l . 

^ ^1_A+i(X' X' E(P P.) 
j=p+l-l J * J 

n-l 
- Z X X)-l X' E(Pg') X (X'X)-l a' 
j=p+l-i J 
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n 

Therefore, 

~"t 

. l/~' • '« - X Ht-1>-
t=p+l A"! 

where Is the t-th row of M. Let us now consider, for a fixed 

8, assuming p > q, 

since Z^_g Is Independent of e^. Consider for a fixed Z, 

El Ï z,., x,.j(k)i 
t»p+l 

Note, 

til Jo "«'«-.-v. 
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q n-m 

• Jo 

n (n-j)oq 

' J.pil-,'i-= B.(A-j)vO -J-""™ 

p (n-j)oq 

» z Pj_g " Z 
j»p+l-q m«p+l-j 

n n-j 

q 
since Z C X.. , - 0. Therefore, 

n-O "-J-*™-' 

t=p+i 

p (n-j)oq _i 

..A-j ~ 

p (n-j)oq 

" j.A-, 

 ̂]J,+1 m.(p+Lj),0 

and 
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n p (n-j)oq q 

A t-p+1 j=p+l-q m-p+l-j 

n n-j 
E Z 

j"n-q+l m«"(p+l-j)vO 

• 

The elements of ®l^t"p+l ~t are expressed as linear 

combinations of M! r„ and Ml w.. Suppose there exists a finite 

real number L such that 

sup IX^CX' X)-l X|| < % . (4.24) 
l<l<n 

Under the assumption (4.24), we obtain the order of the elements of 

E[ ^t=p+l ~t the following theorem. 

Theorem 4.3. Let {y^} be a stochastic process satisfying the 

conditions of Theorem 4.2. Assume (4.24) Is satisfied. Then 

n-l 

+ 
j/' j.A.i'4+i-r »j> - ~«'i 

+ 0(n"l) 
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0(1), for i - l,2,...,p, 

where M = X(X' X)~^ X' and (I - M)^ is the j-th column of (I - M), 

and for p > q, 

n , 
E[ Z Z V J - 0(n~ ), 8- 1 ,  2 ,  . . . ,  p - q .  
top+i ^ ^ ^ 

Proof. Note, 

|Ky I • I I 

< I & %)"' *11 ''z I jj (X' x)-' xj I 

Also, 

til-®" • t.Li A 

.i. I 

n-p-1 n~i 
E w Z 

A-O * t-p+1 
" ' (4-25) 
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Therefore, 

which Is finite. Therefore, 

^ %t_i 2t " 0(1) 
t-p+i 

Now consider 

%-i " ~ 

jJL 
n-i 
Z M' m - M) 

j=p+l-i ^ ^ 

n-1 

+ -  s p  -  » ' j  

n p-1 

: Hj 1(1 - B)j - z M; r(i - M) 
j-i J J j"i J J 

n 
Z  M j r ( i - M )  

j-n-i+1 J J 

n-1 

+ . Wj) r(i - M) 
j"p+l-l 
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Since (J - M) M' = 0, we have 

Z (I - M) M' - 0. 
j-1 J J 

Therefore, 

n 
E M' r(I - M) - tr[r Z (I -

j-1 J J j-1 J J 

0 .  (4.26) 

Also, 

|Mj 1(1 - Mj) I = I tY(j-i) - Y(i-8)] I 

(L + L^) n 

< 2 Z I Y(h) I. . (4.27) 
n h-0 

Therefore, 

P-1 _i 
E M' r(I - M) - 0(n ^), 

j"l ^ ^ 

and 

Z M' r(I - M) - 0(n"^). 
j-n+l-i ^ ^ 

J 

From (4.21) it follows that 
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"s (Mi+i- sj) la - g)j 
j-p+l-i J J 

- - 2 02 

t=p+l 

+1 JX 
+ 0(n"b 

0(1). 

Since, 

L 
!% I SjX, I < ; hSo I ?(h) I 
J 

and since E[ 2? Z. v. ] is a linear combination of fixed number 
j=p+l t-8 t 

of Mj I&, we get 

n . 
E[ S Z. v.] - 0(n"i). • 
t-p+1 ^ 

For p > q, we observe that the bias in the right hand side of the 

equation associated with ^q+2» ^p) arising from estimating 

_2 A A A 

the mean function is of order n and that in (6^, 6^, ..., 5^) is 

of order n (The order of the bias in the right hand side is the 

order of the bias for the sample covariance and is the order of the bias 
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for 6^.) 

We will evaluate the bias for the special case where the mean 

function Is a polynomial In t. Consider, 

0 < 1(1) < 1(2) < ... < l(r) are Integers. If l(j) = j-1, for j = 1, 

2, ..., r, then the mean function of Is a polynomial of degree 

r - 1. For the choice of In (4.28), the mean function Is a 

polynomial of degree l(r) with some of the coefficients of the 

polynomial restricted to be zero. 

Let q = l(r) + 1. Note the q-th difference of Is zero. With 

C = (-1)™ ( 9 ), the conditions (4.10) and (4.11) are satisfied, 
m m 

Since 

ECYf) = Se 6 (4.28) 

where X^ = (t 

Z t 
t=l 

n i(j)+l 

l(j)+l 

we have 

1(&)+1(8)+1 

1(%)+I(s)+1 
l(A)+l(s))^ 

(4.29) 

and 

^l(A)+l(s)+l •*" ° ( ̂l(&)+l(s)+2 
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where (X' and (X/X)*^ are (A,s)-th elements of X'X and 

(X' X) \ respectively and are fixed constants. Because 

Z (X' X), (X' X)** - 1. 
S"1 

we have 

r C. 

\ K.HilsHi - 1 + '). (4.30) 
8*i 

The approximate bias expressions for polynomial trends are evaluated In 

the following theorem. 

Theorem 4.4. Let {Y^} be a stochastic process satisfying the 

conditions of Theorem 4.2. Assume X^ Is given by (4.28). Then, 

n ~ _i 
E[ T. W , V ] = - r 0% ( Z w.) + 0(n ), 1 " 1,2,...,p, 
t-pfl ^ ^ ^ j-O J 

and for p > q, 

n 
El  ̂ Z V ] = 0(n ), s - l,2,...,p-q. 
t-p+1 ^ ® 

Proof. We will first verify that X^ satisfies the conditions of 

Theorem 4.3. We need to compute 
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' '«j i 
i Z ( A )i(j) 2 C ( I )!(*) + 0(n"^), 

" j.l " m=l * 

Therefore, 

I "«» I < n 
^ y 8 

r r 
with L =• 1 + Z Z I C. I. By Theorem 4.3, for p > q, 

j=l m=l ^ 

n , 
E[ Z Z v.] - 0(n 1). 
t=p+l 

(4.31) 

From (4.25), 

n n-p-1 n-A 

° (t-O 

+ 0(n"l) 

£-0 ^ j-1 n=l ° t-p+1 ni(j)+l(m) 

+ 0(n"l) 
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For s * i(j), 

A-O ^ j-1 m-1 ° t-p+1 

+ 0(n"^) 

i h r a h  "  4 I 0  *  t - S + I  

+ 0(n~b 

r r C n-p-1 l(j) ( 
Z Z Z w. Z 5_ 

j=l m-1 ^ A-0 ^ s-0 j^i(j)+l(m) 

n-A 
Z 

t=p+l 
s + O(n-l) 

J J fjH "T -A 
j»l m-l " li-0 n^<J )+'•(") 

l(j), l(j) , 

8„0 ® 8 + l(m) + 1 

+ 0(n~^). 
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< Ti "J < 
£=0 

since, 

Z"! 
I & I I < 

we have for s ^ i(j), 

n-l I „J (i0(n-'). 
A • X ' U &=0 

Therefore, 

n 5 ; Cjm "« 

" J=1 Jl ll-O l(l)+l(m)+l 

+ 0(n"') 

J J (1 . i)i(j)+l(n)+l 

j=l m=l l(j)+i(m)+l A"0 ^ " 

+ 0(n~b 

r r C. n-p-1 , 

j!i .1. ,fo + o'» > 

<i„V 
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Using (4.30) we get, 

^ %t_d %t = r Z w + 0(n"b. 
t=p+l A-O * 

Now consider, for a fixed h, 

, r r G,m si(*)[(j+h)l(") -

"s,j+h - Ms,j " n „i(m)+i(£) 

+ 0(n"2) 

r 
I 

Z'l 

r 
Z 

m"l 
Ï 

i(m)-l 
Z ( 
t«0 

i(m) 
t 

)  ( A )  
/ h \l(m)-
n 

+ 0(n"^) 

0(n"2). 

Therefore, for a fixed h, 

.<rL i I < ^ 

for some finite real number L. Therefore, for a fixed i and X,, 
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I % - Sj' X(i - Mj) I 
j"P+l 

I j-Z-i- "'.j' 

n , 
[Y(j+i-&-8) - Z M . Y(m-8)] j 

m-1 

<2(1^ ; l,(j) |. 

j"0 

Therefore, by Theorem 4.3., 

" - -1, 
E[ E W . V ] = - r 0% ( Z w. )+ 0(n ), i = 1,2,...,p, 
t=p+l ^ j=0 J 

and for p > q. 

E[ S Z V ] = 0(n ), s = l,2,...,p-q. 

t-p+1 

Note that 

" P _1 
- r 0% Z w. " - r @2 (1 - Z o.) 

j=0 J j=l J 

If the trend function is a (q-l)-degree polynomial in t, the q-th 

difference of is 0. The constants satisfying (4.10) and 

(4.11) are 
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= (-1)™ ( 2 )' ® " 0,1,...,q. 

Because = 0, by (4.16) we obtain 

P P 
Z a. = Z 6.. 

j-1 ^ 1=1 ^ 

We can Isolate the effect of estimating the mean function by 

transforming the problem. Let 

A® W = Z (-l)j ( ® ) W 
j=0 J t J 

denote the s-th difference of {W^}. Then, 

• .!o 

= A^ W_. 

From (4.19), 

^ \ "t-i + l(p>q) "t-i+q + 

Consider the following reparametrizatlon of the above model. 
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"t - I \ "t-i + '(p>,) + 'f «-a» 

The following theorem establishes the relation between 

(®1» ®2> •••» ®p) and ^2* •••» ^p)* 
P 1 Z P 

S ) 
p/ —- ^ -1' 2' ' p' 

Theorem 4.5. Let 6 «• (6^, 6^, ..., 6 ) and 0 = (0^, 0^, ...,0 ) be 

as defined in (4.19) and (4.32). Then 

p—l 

^ ^ 1-1 ^ (-1)^"^ e 1 . 1.2,...,p 
&=i-i ^ ^ 

and If p > q, then 6^ - 8^ for 1 = q+1, q+2, ..., p. Also, 

P 
Z 6, = 0,. 

1=1 ^ ^ 

Proof. From (4.32), 

p-1 

"t " »? vj-1 

* '(P>q) 

- Ô Î )(-!)' %«} 

+ ... + «t-ï < £} > (-1)'"' % 

^ 
(4.33) 
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Comparing (4.33) with (4.19), we get 

P-1 I i_i 

for i = 1, 2, ..., p and if p > q, then 6^ = 8^ for i = q+1, q+2, 

..., p. Now 

P p-1 
A vi-1 

il - i!i ..L/ I-;''-" 

P~1 0 4_1 

P-I A 0 i 

' A j:. ' j 

= 0 
r • 

The simple least squares estimator of 6 is given by 

0* = [(n-p)-l Z G! G.]"^ [(n-p)"^ Z G! W ] (4.34) 
t=p+l t-p+1 

and the error in the estimator, 

8* - 8 = [(n-p)"^ Z G' G ]'^ [(n-p)~^ Z G' v ] (4.35) 
t=p+l t=p+l 

where 
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S t -  " " " ' V r V i  V , * , ' -  "  p > i  

Using Theorem 4.4, approximate expressions for the elements of 

E[ ^"np+2 Vj.] are obtained In Theorem 4.6. 

Theorem 4.6. Let {y^} be a stochastic process satisfying the 

conditions of Theorem 4.4. Then 

n . , 
E( E G! VJ - (- r a2 (1-0 )"\ 0, 0, .... 0)' + 0(n"^), 
t-p+1 ^ ^ 

Proof. From Theorems 4.4 and 4.5, 

n , , 
EI Z W. , V .  J = - r a2 (1-0, + 0(n~^), 
t=p+l ^ ^ 

E[ Z (A* W ) V  ] . A^{ Z E[W V  ] }  
t=p+l ^ ^ ^ t=p+l ^ ^ ^ 

= 0(n for Z = l,2,...,p-l. 

and If p > q, 

E[ 
n 
S : 

t=p+l 
t-s 

0(n~h, s » l,2,...,p-q. 
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For the choice of In (4.28), the effect of estimating the mean 

function could be Isolated by transforming the problem. From Lemma 3.1, 

we know that 8^ = 1 If and only If there exists a unit root for the 

characteristic equation 

of - a.mf ^ - ... - a = 0. 
1 P 

Using the above results, the following method of adjusting for bias 

In the ordinary least squares estimator Is proposed. 

Step (1). Regress on t^^^\ ..., to get the 

ordinary least squares estimate of £. Define 

"t - ?t - ̂t 

and 

W 
t' 

where q = l(r) + 1. 

Step (11). Regress on G^. 

estimate of 0, 

to get the ordinary least squares 

(4.36) 

where 
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D - (n-p)-l ? G» G^, 

t=p+l 

i = (n-p)"^ Z G' W , 
t-p+1 ^ 

and 

St - «t-i-'Vi Vi-Vi-">Vp4„'' " p><i 

- ("t-i-'Vi Vi>' " p < q-

Obtain the modified least squares estimator. 

8 = D ^ 6 , if 8, < 1 fw fv * ' j[ 

(4.37) 

d"^ [8 + (D")"l (1 - 8*,0,0,...,0)'l, if e* > 1, 

"-1 
where D" is the upper left element of D 

Step (lii). Use the mean square error of the regression in Step (ii) as 

A 
an estimator of 

Step (iv). Obtain the adjusted estimator 

8 = D"^ (4.38) 
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where 

h = (hj, Of Of •••> 0)', 

and 

hj - (D")"^ (1 - 0*) if e* > 1 or 

if [(n-p)(l - ep]"^ rff2 D" > (1 - 8^) 

^ -"1 
=> [(n-p)(l - 0j)] ro^ otherwise. 

Step (v). The estimate of a is obtained using Theorem 4.5, (4.14), 

and (4.15). 

To extend the bias adjustment method to the case in which 

0j e[-l, 1], several possibilities beyond that of (4.38) exist. The 

following method which uses the statistic, 

= I(n-p) ^ D" a^l ^ (0j - 1), 

is suggested. Let 

8(7?) (& + f) (4.39) 

where 

f = (f^, 0, 0, ..., 0)', 
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= a 
' If < \(01) 

-3 
a + blTtOo)" \(01)^ 'S ~ ̂ 7(01)] ' 

^T(Ol) ̂  ^ "^TCSO) 

a + b • " 't > 'T(50) 

a = [(n-p)(l - 0j)] ^ ro2. 

and 

b - (D")"^ (1 - 6*) - a. 

This method of adjusting for bias arising from estimating the mean 

function extends Immediately to the purely seasonal p-th order 

autoregresslve process, with unknown seasonal mean functions. The 

procedure parallels the case of unknown seasonal means described In 

Chapter III and therefore will not be repeated. 
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CHAPTER V. A MONTE CARLO STUDY 

Approximate expressions for the biases of the least squares 

estimators due to estimating the mean function have been derived. The 

magnitude of the biases can be substantial for the moderately small 

samples encountered In practice. It Is Important to empirically 

Investigate the accuracy of the approximate expressions for the bias In 

small samples. Modified least squares estimators with corrections for 

the bias are compared with the least squares estimator In a Monte Carlo 

study to determine the practical value of adjusting for the bias. 

Normal random variables are generated using the GGNML subroutine of 

the IMSL package. All of the computations are performed using double 

precision arithmetic. Standard normal error processes are used 

throughout the study. A second-order autoregresslve process with 

constant mean, and a second-order autoregresslve process with mean 

function linear In time are considered. 

The second-order autoregresslve model with unknown mean has the 

form 

Mean Model 

(5.1) 

(5.2) 

where 
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Og => yd - «2, ~ 

and {e^} Is a sequence of normal (0, 1) variables. The intercept 

is set equal to zero in the Monte Carlo study. There is no loss of 

generality in this choice for the stationary process. For the 

stationary processes, the Initial observations are generated by 

Yj - {Y(0)} ̂^2 e^, (5.3) 

Yg = {y(0)}"^'2 Y(1) ej + [Y(0) - {Y(0)}"^]^^ eg. 

where 

1 - *2 

and 

«1 

For the nonstationary processes, Y^ is set equal to e^ for i=l,2. 

Series lengths of 25 and 50 observations are used in the study. This 

means that 23 and 48 observations are used in the least squares 

regressions. For each sample size, 15 values of (o^, Og)* such that 

the roots of the associated characteristic equation range from -0.8 to 

1.0, are used. The values of (o^, a^) and the roots of the 
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corresponding equation that are used in the study are given in Table 

5.1. 

Table 5.1 The roots of the characteristic equation, 
the parameter values, and the parameters of the 

reparametrized model 

1.0 0.8 
1.0 0.5 

1.0 0.0 

1.0 -0.5 
1.0 -0.8 

0.8 0.5 
0.8 0.1 
0.8 -0.5 

0.8 -0.8 

0.5 0.0 
0.5 -0.5 
0.5 -0.8 

0.1 -0.5 
0.1 -0.8 

-0.5 -0.8 

1.8 -0.80 
1.5 -0.50 

1.0 0.00 
0.5 0.50 
0.2 0.80 
1.3 -0.40 
0.9 -0.08 
0.3 0.40 
0.0 0.64 
0.5 0.00 
0.0 0.25 
-0.3 0.40 
-0.4 0.05 
-0.7 0.08 
-1.3 -0.40 

1.00 0.80 
1.00 0.50 
1.00 0.00 

1.00 -0.50 
1.00 -0.80 
0.90 0.40 
0.82 0.08 
0.70 -0.40 
0.64 -0.64 
0.50 0.00 
0.25 -0.25 
0.10 -0.40 
0.35 -0.05 
-0.62 -0.08 
-1.70 0.40 

For each (a^, o^, n) combination, various point estimates are 

computed uoing the same set of observations. This is repeated for 1,000 

sets of observations. Sample biases and mean square errors for each 

estimator are obtained by averaging over the 1,000 replications. The 

numerical results are reported in the following tables. 

Four estimators are Included In the study. They are, 

(1) the modified least squares estimator o defined in (3.23), 
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(il) the estimator a(S), based on the work of Salem (1971) 

defined in (3.4), 

(ill) the estimator a, defined in (3.24), 

and 

(iv) the estimator O(T ) defined in (3.25). 
^ y 

Consider the reparametrlzatlon of the model (5.2), 

(5.4) 

where 

and 

6 
2 

- a 
2 

The least squares estimator j5 = (6 j, 6 2^' ^ = (6^, Gg)' 

is 

(5.5) 

where 
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G » (n-2) 
-1 

z a (n-2) 
-1 

l n 

? (\.r»<V2-« "t-2 -« 
t=J t"J 

n 
E (Y -Y)(Y_ -Y) 

t»3 

n 
Z (Y - Y)(Y 2 - Y) 
t-3 

and 

-1  
n 

Y = n ^ Z Y . 
t-1 

^ fw 
The estimators j5, and ^(T^) are constructed using (3.23), 

(3.24), and (3.25), respectively. The corresponding estimators of a 

are obtained using 

®1 1 1 *1 
2 •  (  > -  f  J  -1  1 1  4  ' •  (5.6) 

Tables 5.2 and 5.3 contain the empirical bias of various estimators 

of Oj for n = 25 and 50, respectively. For m^ = 1, the modified 

least squares estimator has the largest absolute bias and the 
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Table 5.2 Empirical bias of various estimators of 
for n = 25 

mi m^ «1 *i(S) «1 

1.0 0.8 -0.223 -0.218 -0.217 -0.207 
1.0 0.5 -0.196 -0.174 -0.178 -0.159 
1.0 0.0 -0.162 -0.122 -0.127 -0.097 
1.0 -0.5 -0.148 -0.089 -0.097 -0.057 
1.0 —0.8 -0.133 -0.063 -0.074 -0.025 
0.8 0.5 -0.118 -0.091 -0.096 -0.065 
0.8 0.1 -0.109 -0.071 -0.067 -0.026 
0.8 -0.5 -0.096 -0.041 -0.033 -0.029 
0.8 -0.8 -0.086 -0.023 -0.014 0.053 
0.5 0.0 —0.066 -0.026 -0.019 0.019 
0.5 -0.5 -0.052 -0.003 0.005 0.044 
0.5 -0.8 -0.058 -0.003 0.006 0.047 
0.1 -0.5 -0.027 0.014 0.021 0.029 
0.1 -0.8 -0.011 0.032 0.039 0.044 
-0.5 -0.8 0.030 0.056 0.060 0.060 

Table 5.3 Empirical bias of various estimators of 
for n = 50 

«J -2 «I -iCS) «1 

1.0 0.8 
1.0 0.5 
1.0 0.0 
1.0 -0.5 
1.0 —0.8 
0.8 0.5 
0.8 0.1 
0.8 -0.5 
0.8 -0.8 
0.5 0.0 
0.5 -0.5 
0.5 -0.8 
0.1 -0.5 
0.1 -0.8 

-0.5 -0.8 

-0.105 -0.103 
-0.098 -0.088 
-0.084 -0.064 
-0.076 -0.046 
—0.066 -0.032 
-0.046 -0.033 
-0.036 -0.017 
-0.052 -0.024 
-0.044 -0.012 
-0.028 -0.008 
-0.025 -0.000 
-0.021 0.007 
-0.009 0.012 
-0.014 0.008 
0.016 0.028 

-0.101 -0.097 
-0.088 -0.080 
-0.067 -0.052 
-0.051 -0.031 
-0.038 -0.014 
-0.032 -0.021 
-0.016 -0.002 
-0.022 -0.002 
-0.010 0.015 
-0.006 -0.004 
0.001 0.002 
0.009 0.010 
0.013 0.013 
0.009 0.009 
0.029 0.029 
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modified estimator a^(T^) has the smallest absolute bias. For 

m^ = 1, the bias of a^(S) Is close to that of . When both roots 

are negative, has the smallest bias. When at least one of the 

roots Is positive, the least squares estimator underestimates a^. 

For m^ = 0.8 and m^ positive, a^(T^) has the smallest absolute 

" / V ~ 
bias. Only small differences between the biases of a^(S) and are 

observed. 

Tables 5.4 and 5.5 contain the empirical mean square errors of 

various estimators of for n = 25 and 50, respectively. For 

m^ = 1, has the largest mean square error and a^(T^) has the 

smallest mean square error. For m^ • 0.8 and m^ positive, a^(T^) 

has the smallest mean square error. There are only small differences 

between the mean square errors of a^(S) and The ordering of the 

estimators for based on the absolute bias and on the mean square 

error coincide. This Is because the variance of the estimators Is small 

compared to the bias for most values of m^^ and m^. From the point of 

view of statistical decision theory, Chernoff and Moses (1959, pp. 119-

165) conclude that the average risk Is the best available criterion for 

evaluating the relative performances of various estimators. For a 

uniform weight function, the average risk Is the mean of the mean square 

errors averaged over the values of the parameters considered. For n = 

25, the average mean square errors of , a^(S), and a^(T^) are 

0.063, 0.057, 0.057 and 0.057, respectively. For n » 50, the average 

mean square errors are 0.023, 0.022, 0.022 and 0.021, respectively. 

Tables 5.6 and 5.7 contain the empirical biases of various 
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Table 5.4 Empirical mean square error multiplied by ten of various 
estimators of for n = 25 

1.0 0.8 0.951 0.905 0.886 0.828 
1.0 0.5 0.883 0.768 0.778 0.696 

1.0 0.0 0.820 0.675 0.687 0.598 
1.0 -0.5 0.784 0.632 0.629 0.557 
1.0 —0.8 0.606 0.472 0.463 0.391 
0.8 0.5 0.627 0.542 0.540 0.483 
0.8 0.1 0.640 0.546 0.542 0.501 
0.8 -0.5 0.572 0.490 0.487 0.509 
0.8 -0.8 0.540 0.480 0.481 0.558 
0.5 0.0 0.534 0.485 0.483 0.516 
0.5 -0.5 0.513 0.488 0.493 0.602 
0.5 -0.8 0.504 0.489 0.498 0.657 
0.1 -0.5 0.507 0.517 0.525 0.566 
0.1 -0.8 0.493 0.528 0.540 0.580 

-0.5 —0.8 0.416 0.469 0.477 0.478 

Table 5.5 Empirical mean square error multiplied by ten, 
of various estimators of for n = 50 

mi m^ «1 «^(S) Oj 

1.0 0.8 
1.0 0.5 
1.0 0.0 
1.0 -0.5 
1.0 -0.8 
0.8 0.5 
0.8 0.1 
0.8 -0.5 
0.8 -0.8 
0.5 0.0 
0.5 -0.5 
0.5 -0.8 
0.1 -0.5 
0.1 -0.8 

-0.5 -0.8 

0.262 0.257 
0.288 0.263 
0.316 0.279 
0.255 0.214 
0.204 0.168 
0.212 0.196 
0.238 0.222 
0.236 0.213 
0.182 0.165 
0.228 0.218 
0.229 0.223 
0.199 0.199 
0.219 0.223 
0.214 0.218 
0.132 0.194 

0.245 0.233 
0.263 0.246 
0.282 0.262 
0.216 0.196 
0.164 0.146 
0.195 0.185 
0.222 0.220 
0.214 0.230 
0.166 0.202 
0.218 0.221 
0.224 0.228 
0.200 0.205 
0.223 0.223 
0.219 0.219 
0.195 0.195 
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Table 5.6 Empirical bias of various estimators of 

«2 for n » 25 

"l °2 °2 "2<S) «2 

1.0 0.8 0.153 0.186 0.169 0.176 
1.0 0.5 0.069 0.102 0.092 0.105 

1.0 0.0 -0.061 -0.015 -0.024 0.003 

1.0 -0.5 -0.173 -0.110 -0.119 -0.081 
1.0 -0.8 -0.230 -0.158 -0.169 -0.120 
0.8 0.5 -0.002 0.025 0.027 0.051 
0.8 0.1 -0.055 -0.016 -0.012 0.028 
0.8 -0.5 -0.147 -0.090 -0.084 0.022 
0.8 -0.8 -0.192 -0.126 -0.119 -0.051 
0.5 0.0 -0.083 -0.041 -0.035 0.004 
0.5 -0.5 -0.120 -0.069 -0.063 -0.023 
0.5 -0.8 -0.139 -0.082 -0.075 -0.034 
0.1 -0.5 -0.088 -0.045 -0.040 -0.032 
0.1 -0.8 -0.084 -0.039 -0.034 -0.029 

-0.5 —0.8 -0.009 0.018 0.021 0.021 

Table 5.7 Empirical bias of various estimators of 

«2 for n = 50 

"l "2 "2 =2(*) °2 «2'%' 

1.0 0.8 0.078 0.089 0.083 0.085 
1.0 0.5 0.037 0.050 0.046 0.052 
1.0 0.0 -0.025 -0.002 -0.007 0.005 
1.0 -0.5 -0.081 -0.049 -0.055 -0.036 
1.0 -0.8 -0.119 -0.082 -0.089 —0.066 
0.8 0.5 -0.006 0.006 0.007 0.019 
0.8 0.1 -0.045 -0.026 -0.025 -0.009 
0.8 -0.5 -0.076 —0.048 —0.046 -0.025 
0.8 -0.8 -0.086 -0.053 -0.051 -0.026 
0.5 0.0 . -0.045 -0.024 -0.024 -0.021 
0.5 -0.5 -0.067 -0.042 -0.041 -0.039 
0.5 -0.8 -0.065 -0.037 -0.036 -0.035 
0.1 -0.5 -0.045 -0.023 -0.022 -0.022 
0.1 -0.8 -0.052 -0.031 -0.030 -0.030 

-0.5 —0.8 -0.004 0.009 0.010 0.010 
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estimators of «g for n = 25 and 50, respectively. Except for 

ffij " 1 and mg positive, underestimates Og. Also for m^ = 1 

and mg positive has the smallest absolute bias. For 

m^ = 1 and mg nonposltlve, has the smallest absolute bias. 

For the parameter values In the stationary region, and 

have smaller absolute biases than Og a^CS), except for 

(m^ « 0.8, mg = 0.5). For n = 50, small differences between the biases 

of OgCS), «2 and are found. For the second order process the 

difference in the bias of and is the same as the difference in 

the bias of and a^. The empirical values of these differences are 

very similar. 

Tables 5.8 and 5.9 contain the empirical mean square error of 

various estimators of Og for n = 25 and 50, respectively. For 

fflj «= 1 and m^ positive, the least squares estimator has the 

smallest mean square error. For the remaining values, ot-(T ) has the i, )j 

smallest mean square error, except for (m^ 0.8, m^ = 0.5) and 

(fflj = -0.8, mg = -0.5). There are small differences between the mean 

square errors of o^CS) and «g for the stationary cases. The 

estimator «g generally has smaller mean square error than that of 

OgCS)" For n " 25, the average mean square errors of 

«2» OgCS), «2 and are 0.057, 0.055, 0.052, and 0.053, 

respectively. For n = 50, the average mean square errors of 

«2» **2 are 0.022, 0.022, 0.021, and 0.021, 

respectively. 
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Table 5.8 Empirical mean square error multiplied by ten 
of various estimators of for n = 25 

mi mg «2 «2(G) «2 

1.0 0.8 
1.0 0.5 

1.0 0.0 
1.0 -0.5 
1.0 -0.8 
0.8 0.5 
0.8 0.1 
0.8 -0.5 
0.8 -0.8 
0.5 0.0 
0.5 -0.5 

0.5 -0.8 
0.1 -0.5 
0.1 -0.8 
-0.5 -0.8 

0.642 0.838 
0.467 0.589 
0.470 0.488 
0.792 0.669 
0.953 0.715 
0.391 0.436 
0.468 0.482 
0.615 0.516 
0.776 0.605 
0.463 0.448 
0.546 0.486 
0.660 0.576 
0.474 0.452 
0.489 0.472 
0.372 0.409 

0.671 0.682 
0.499 0.523 
0.440 0.432 
0.642 0.553 
0.697 0.541 
0.419 0.451 
0.468 0.504 
0.508 0.506 
0.592 0.551 
0.454 0.553 
0.489 0.603 
0.576 0.712 
0.452 0.496 
0.475 0.512 
0.412 0.412 

Table 5.9 Empirical mean square error multiplied by ten 
of various estimators of for n = 50 

mi "*2 

P
 

> 
to

 CM 

1.0 0.8 0.204 0.239 0.205 0.205 
1.0 0.5 0.192 0.216 0.199 0.204 
1.0 0.0 0.220 0.228 0.214 0.214 
1.0 -0.5 0.254 0.224 0.220 0.201 
1.0 -0.8 0.280 0.214 0.216 0.181 
0.8 0.5 0.173 0.181 0.180 0.194 
0.8 0.1 0.210 0.205 0.206 0.222 
0.8 -0.5 0.255 0.228 0.229 0.252 
0.8 -0.8 0.232 0.193 0.193 0.217 
0.5 0.0 0.206 0.200 0.200 0.209 
0.5 -0.5 0.247 0.228 0.228 0.233 
0.5 -0.8 0.239 0.218 0.218 0.222 
0.1 -0.5 0.217 0.211 0.211 0.211 
0.1 -0.8 0.217 0.207 0.207 0.207 
-0.5 -0.8 0.174 0.182 0.182 0.182 
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Tables 5.10 and 5.11 contain the empirical bias of the various 

estimators of 6^ for n = 25 and 50, respectively. Except when both 

roots of the characteristic equation are negative, has the 

smallest absolute bias and 6^ has the largest absolute bias. For 

n «= 25, and 6^(8) = a^(S) ̂ -a^CS), underestimate 6^ except for 

(mj = -0.5, m^ = -0.8). For n » 50, all four estimators considered 

underestimate 6^, except for (m^ • -0.5, m^ » -0.8). Generally, 

6^ has smaller absolute bias than 6^(S). 

Tables 5.12 and 5.13 contain the empirical mean square errors of 

various estimators of ôj for n = 25 and 50, respectively. For 

m^ = 1, ô^(T^) has the smallest mean square error and 6^ has the 

largest mean square error. For m^ = 1, 5^ has smaller mean square 

error than 6^(3). For the remaining values, only small differences 

between the mean square errors of 6^(S) and ôj are found. 

Generally, for the stationary values of the parameters, 6j(S) and 5^ 

have smaller mean square error than 6^ and For n = 25, the 

average mean square error of 6^^, 6^(S), 5^ and 6^(T^) are 0.116, 

0.095, 0.094, and 0.098, respectively. For n « 50, the average mean 

square error of 6^, 6^(8), 6^, and 6^(T^) are 0.040, 0.035, 0.035, 

and 0.035, respectively. 

Tables 5.14 and 5.15 contain the frequencies of various types of 

adjustments made in obtaining 6^, 6^, and ). The estimator 

A * 
6J is obtained by setting 6^ » 1 whenever is greater than one. 

The estimator 6j(t ) is set equal to one whenever the "t-statistic", 

A 
for testing 6^ = 1, is greater than or equal to where 
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Table 5.10 Empirical bias of various estimators 
of 6^ for n = 25 

m. m„ 

1.0 0.8 -0.070 -0.032 -0.048 -0.031 
1.0 0.5 -0.127 -0.072 -0.086 -0.054 
1.0 0.0 -0.223 -0.137 -0.151 -0.094 
1.0 -0.5 -0.321 -0.199 -0.216 -0.138 
1.0 -0.8 -0.363 -0.221 -0.243 -0.145 
0.8 0.5 -0.120 -0.066 -0.064 -0.014 
0.8 0.1 -0.164 -0.087 -0.079 0.002 

0.8 -0.5 -0.243 -0.132 -0.117 -0.007 
0.8 -0.8 -0.278 -0.149 -0.133 0.002 
0.5 0.0 -0.149 -0.067 -0.054 . -0.023 
0.5 -0.5 -0.173 -0.072 -0.058 0.020 
0.5 -0.8 -0.197 -0.085 -0.069 0.013 
0.1 -0.5 -0.115 -0.030 -0.018 -0.003 
0.1 -0.8 -0.095 -0.006 0.005 0.015 
-0.5 -0.8 0.021 0.074 0.081 0.082 

Table 5.11 Empirical bias of various estimators of 
ôj for n = 50 

mi mg 6i 6i(S) 

1.0 0.8 -0.027 -0.014 -0.018 -0.012 
1.0 0.5 -0.061 -0.038 -0.042 -0.028 

1.0 0.0 -0.109 -0.066 -0.074 -0.048 
1.0 —0.5 -0.157 -0.095 -0.106 -0.067 
1.0 -0.8 -0.185 -0.114 -0.127 -0.079 
0.8 0.5 -0.052 -0.027 -0.025 -0.002 
0.8 0.1 -0.080 -0.043 -0.041 -0.011 
0.8 -0.5 -0.128 -0.072 -0.068 -0.027 
0.8 -0.8 -0.130 -0.065 -0.061 -0.011 
0.5 0.0 -0.072 -0.032 -0.030 -0.025 
0.5 -0.5 -0.092 -0.042 -0.039 -0.037 
0.5 -0.8 -0.086 -0.030 -0.027 -0.025 
0.1 -0.5 -0.054 -0.012 -0.010 -0.010 
0.1 -0.8 -0.066 -0.023 -0.021 -0.021 

-0.5 -0.8 0.012 0.037 0.038 0.038 
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Table 5.12 Empirical mean square error multiplied by ten 
of various estimators of 6^ for n » 25 

"l "2 ^1 *l(S) ^ 

1.0 0.8 
1.0 0.5 

1.0 0.0 
1.0 -0.5 
1.0 -0.8 
0.8 0.5 
0.8 0.1 
0.8 -0.5 
0.8 -0.8 
0.5 0.0 
0.5 -0.5 
0.5 -0.8 
0.1 -0.5 
0.1 -0.8 
-0.5 -0.8 

0.105 0.083 
0.282 0.195 
0.795 0.520 
1.709 1.163 
2.123 1.389 
0.314 0.227 
0.609 0.443 
1.280 0.920 
1.800 1.340 
0.796 0.666 
1.223 1.055 
1.736 1.543 
1.369 1.348 
1.588 1.628 
1.468 1.648 

0.069 0.050 
0.178 0.118 
0.498 0.325 
1.110 0.788 
1.335 0.878 
0.216 0.195 
0.426 0.427 
0.898 0.937 
1.311 1.378 
0.681 0.950 
1.066 1.508 
1.554 2.144 
1.363 1.532 
1.652 1.806 
1.670 1.682 

Table 5.13 Empirical mean square error multiplied by ten 
of various estimators of 6^ for n = 50 

m. m_ 

1.0 0.8 
1.0 0.5 
1.0 0.0 
1.0 -0.5 
1.0 -0.8 
0.8 0.5 
0.8 0.1 
0.8 -0.5 
0.8 -0.8 
0.5 0.0 
0.5 -0.5 
0.5 -0.8 
0.1 -0.5 
0.1 —0.8 

-0.5 -0.8 

0.013 0.009 
0.063 0.042 
0.199 0.131 
0.410 0.268 
0.573 0.371 
0.076 0.058 
0.187 0.145 
0.470 0.371 
0.544 0.433 
0.298 0.265 
0.542 0.494 
0.638 0.597 
0.603 0.598 
0.719 0.708 
0.675 0.716 

0.009 0.006 
0.041 0.030 
0.130 0.094 
0.264 0.188 
0.367 0.258 
0.059 0.071 
0.147 0.177 
0.372 0.451 
0.436 0.554 
0.264 0.288 
0.494 0.512 
0.598 0.616 
0.599 0.599 
0.709 0.709 
0.718 0.718 



Table 5.14 Number of replications for which various estimators 
of are set equal to unity for n = 25 

^1 ^1 
«!<%> T 

M ^ %(01) 

1.00 127 285 504 13 
1.00 85 240 490 10 
1.00 61 251 481 6 
1.00 51 275 531 8 
1.00 46 273 513 10 
0.90 14 109 275 25 
0.82 4 70 260 17 
0.70 3 46 203 19 
0.64 2 63 222 16 
0.50 0 6 54 93 
0.25 0 2 19 123 
0.10 0 0 17 164 
-0.35 0 0 1 553 
-0.62 0 0 1 675 
-1.70 0 0 0 991 

Table 5.15 Number of replications for which various estimators 
of 6^ are set equal to unity for n = 50 

^1 ^1 
T 

V ^ ^y(Ol) 

1.00 94 244 495 9 
1.00 54 235 488 12 
1.00 64 244 507 13 
1.00 51 252 507 12 
1.00 52 263 498 12 
0.90 1 17 88 69 
0.82 0 8 55 78 
0.70 0 4 36 99 
0.64 0 5 36 83 
0.50 0 0 1 541 
0.25 0 0 0 704 
0.10 0 0 0 750 

-0.35 0 0 0 999 
-0.62 0 0 0 1000 
-1.70 0 0 0 1000 
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T^(5O) is the median of the approximate distribution of the statistic 

T^. The estimators 6^ and 6^(T^) are the same when Is less 

than or equal to where '^y(oi) the lower 1-percentlle of 

the statistic For 6^ = 1, approximately 50% of the times 

IS set equal to one and approximately 25% of the time 6^ is 

set equal to one. For 6^ less than or equal to 0.7, generally, 6^ 

and are less than one. 

On the basis of this study, one can recommend the use of the 

estimator (o^, Og'" The estimator Is relatively easy to construct and 

Is less biased for parameter sets judged common In economics. Also, the 

average mean square error of (a^, for parameter sets with a 

positive root Is 5 to 10 percent below that of the least squares 

estimator. 

Time Trend Model 

The second-order autoregresslve model with the mean function linear 

In time, has the form 

?t - *6 + + =i?t-i + Vt-2 + S (5.7) 

*0 + *1% + «if?t-i- *0 - ei(t-i)} 

+ °2^V2 - *0 - 9l(t-2)} + ®t (5.8) 



115 

where 

^6 ° 9o(l - «1 - «g) + 9i(*i + Zag), 

= 3j(l - Oj - Og)' 

and {e^} Is a sequence of Independent normal (0, 1) variables. In 

this study, the coefficients and are set equal to zero. For 

processes with the roots of the characteristic equation less than unity 

in absolute value, the initial observations are generated by (5.3). If 

0^ + @2 is equal to one, then la set equal to e^ for i = 1,2. 

Series lengths 25 and 50 observations are considered. For each sample 

size, the 15 values of (a^, a^) given in Table 5.1 are considered. 

For each (a^, a^, n) combination, various point estimates are 

computed using the same set of observations. This is repeated for 1,000 

sets of observations and the sample biases and mean square errors for 

each estimator are obtained by averaging over the replications. 

Three estimators are included in the study. They are 

(i) the modified least squares estimator a, defined in (4.37), 

(ii) the estimator a, defined in (4.38), 

and 

(iii) the estimator ct(T^) defined in (4.39). 

Consider the reparametrization of the model (5.8), 
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- «0 + «l': + «llVr So - + «2(VrV2- »l) + :t 

(5.9) 

where 

"l *'2 

and 

*2 " - =2 " ®2-

The least squares estimator j6 = (6^, 6*)' of & is, 

a* = H-l h, (5.10) 

where 

H (n-2)' 

n 
z: w? 

t=3 

n 
Z 

t=3 

t-1 
t"j 

W 
t-1 

1 

W. ?t - *0 e^t, 
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h = (n-2) -1 

n 
E W, 

t=3 t t-1 

t=3 

and 

I A 

V'I  

n -1 n 
n E 

t=l 
t E 

t=l 
^t 

n n n 
E t E t2 E 

t=l t=l 
—1 

t=l 

The adjusted estimators 6, 6 and 6^T^) are obtained using 

(4.37), (4.38), and (4.39), respectively and the corresponding 

estimators of a are obtained using (5.6). 

Tables 5.16 and 5.17 contain the empirical bias of various 

estimators of for n = 25 and 50, respectively. The adjusted least 

squares estimator has the largest absolute bias, except for 

(m^ = -0.5, m^ = -0.8) and (m^ -= 0.1, = -0.8). For m^ = 1, the 

estimator a^(T^) has smaller absolute bias than a^. For m^ less 

than unity, generally has smaller absolute bias than a^(T^). 

Tables 5.18 and 5.19 contain the empirical mean square error of 

various estimators of Oj^. For m^ = 1, the estimator a^(T^) has the 

smallest mean square error. Also, for m^ = 0.8 and m^ positive, the 

estimator has the smallest mean square error. For m^ less than or 

equal to 0.1, the modified least squares estimator has the smallest 
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Table 5.16 Empirical bias of various estimators 
of for n - 25 

»! «2 "l «1 "I'V' 

1.0 0.8 -0.250 -0.211 -0.196 
1.0 0.5 -0.251 -0.192 -0.169 
1.0 0.0 -0.280 -0.187 -0.148 
1.0 -0.5 -0.278 -0.157 -0.110 
1.0 -0.8 -0.282 -0.140 -0.084 
0.8 0.5 -0.174 -0.113 -0.087 
0.8 0.1 -0.164 -0.081 -0.044 
0.8 -0.5 -0.176 -0.055 -0.003 
0.8 -0.8 -0.200 -0.059 0.005 
0.5 0.0 -0.121 -0.029 0.008 
0.5 -0.5 -0.122 -0.010 0.033 
0.5 -0.8 -0.111 0.014 0.061 
0.1 -0.5 -0.067 0.030 0.044 
0.1 -0.8 -0.046 0.055 0.066 

-0.5 -0.8 0.122 0.192 0.193 

Table 5.17 Empirical bias of various estimators 
of Oj for n " 50 

mi mg «1 «1 «1(7%) 

1.0 -0.8 -0.109 -0.096 -0.090 
1.0 0.5 -0.120 -0.096 -0.085 
1.0 0.0 -0.135 -0.094 -0.077 
1.0 -0.5 -0.156 -0.096 -0.071 
1.0 -0.8 -0.155 -0.085 -0.057 
0.8 0.5 -0.072 -0.044 -0.033 
0.8 0.1 -0.067 -0.028 -0.010 
0.8 -0.5 -0.069 -0.011 0.014 
0.8 -0.8 -0.087 -0.018 0.011 
0.5 0.0 -0.049 -0.007 -0.000 
0.5 -0.5 -0.057 -0.005 -0.000 
0.5 -0.8 -0.055 0.004 0.009 
0.1 -0.5 -0.032 0.012 0.013 
0.1 -0.8 -0.027 0.020 0.020 
-0.5 -0.8 0.023 0.050 0.050 
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Table 5.18 Empirical mean square error multiplied by ten 
of various estimators of for n « 25 

"l "2 °1 "l 

1.0 0.8 1.098 0.855 0.767 
1.0 0.5 1.175 0.857 0.751 
1.0 0.0 1.450 0.964 0.810 
1.0 -0.5 1.443 0.897 0.758 
1.0 -0.8 1.327 0.734 0.584 
0.8 0.5 0.889 0.651 0.580 
0.8 0.1 0.908 0.663 0.612 
0.8 -0.5 0.891 0.610 0.597 
0.8 -0.8 0.886 0.553 0.559 
0.5 0.0 0.745 0.591 0.617 
0.5 -0.5 0.683 0.558 0.653 
0.5 -0.8 0.621 0.558 0.719 
0.1 -0.5 0.529 0.539 0.610 
0.1 -0.8 0.462 0.540 0.616 

-0.5 -0.8 0.566 0.865 0.882 

Table 5.19 Empirical mean square error multiplied by ten 
of various estimators of for n = 50 

1.0 0.8 0.277 0.234 0.217 
1.0 0.5 0.371 0.302 0.277 
1.0 0.0 0.463 0.350 0.313 
1.0 -0.5 0.476 0.319 0.273 
1.0 -0.8 0.431 0.260 0.219 
0.8 0.5 0.257 0.213 0.200 
0.8 0.1 0.281 0.231 0.226 
0.8 -0.5 0.300 0.250 0.267 
0.8 -0.8 0.274 0.209 0.236 
0.5 0.0 0.274 0.244 0.250 
0.5 -0.5 0.256 0.225 0.236 
0.5 -0.8 0.245 0.225 0.242 
0.1 -0.5 0.236 0.236 0.237 
0.1 -0.8 0.228 0.240 0.240 
0.5 -0.8 0.177 0.211 0.211 
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mean square error. For the remaining values, has the smallest mean 

square error. For n = 25, the average mean square errors of 

Oj, Qj and a^(T^) are, 0.094, 0.071, and 0.068, respectively. For 

n = 50, the average mean square errors of , and are 

0.031, 0.025, and 0.025, respectively. 

Tables 5.20 and 5.21 contain the empirical bias of various 

estimators of «g. For m^ = 1, mg positive and for m^ and mg both 

negative, the modified least squares estimator has the smallest 

absolute bias. For m^ = 1 and m^ nonposltlve, has the 

smallest absolute bias. Generally, has smaller bias than 

Tables 5.22 and 5.23 contain the empirical mean square errors of 

the various estimators of for n = 25 and 50. For m^ = 1, lOg 

positive and for m^ and mg both negative, «g has the smallest mean 

square error. For m^ = 1 and m^ nonposltlve, has the 

smallest mean square error. For m^ less than or equal to 0.5, otg 

has smaller mean square error than OgCT^). For the remaining values, 

has the smallest mean square error. For n = 25, the average 

mean square errors of and OgCT^) are 0.078, 0.058, and 0.058, 

respectively. For n = 50, the average mean square errors of 

«2» «2' °2 are 0.028, 0.023, and 0.022, respectively. 

Tables 5.24 and 5.25 contain the empirical bias of various 

estimators of ôj for n » 25 and 50, respectively. Except for 

(m^ = -0.5, m2 = -0.8), 5^ and have smaller absolute bias 

~ y V 
than 6^. Generally, has the smallest absolute bias. 
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Table 5.20 Empirical bias of various estimators 
of Og for n " 25 

»2 "2 

1.0 0.8 0.082 0.115 0.125 
1.0 0.5 -0.015 0.033 0.051 

1.0 0.0 -0.158 -0.077 -0.044 
1.0 -0.5 -0.316 -0.196 -0.153 
1.0 -0.8 -0.390 -0.248 -0.192 
0.8 0.5 -0.062 -0.006 0.017 
0.8 0.1 -0.149 -0.068 -0.033 

0.8 -0.5 -0.251 -0.131 -0.078 
0.8 -0.8 -0.283 -0.141 -0.076 
0.5 0.0 -0.143 -0.052 -0.014 
0.5 -0.5 -0.193 -0.081 -0.038 
0.5 -0.8 -0.201 -0.074 -0.027 
0.1 -0.5 -0.130 -0.033 -0.018 
0.1 -0.8 -0.112 -0.010 0.001 

-0.5 -0.8 0.068 0.138 0.139 

Table 5.21 Empirical bias of various estimators 
of for n - 50 

«2 "2 

1.0 0.8 0.046 0.058 0.061 
1.0 0.5 -0.000 0.021 0.029 
1.0 0.0 -0.075 -0.034 -0.018 
1.0 -0.5 -0.155 -0.096 -0.072 
1.0 -0.8 -0.206 -0.135 -0.107 
0.8 0.5 -0.020 0.007 0.019 
0.8 0.1 -0.058 -0.019 -0.002 
0.8 —0.5 -0.119 -0.061 -0.037 
0.8 -0.8 -0.135 —0.066 -0.037 
0.5 0.0 -0.069 -0.026 -0.020 
0.5 -0.5 -0.095 -0.042 -0.037 
0.5 -0.8 -0.098 -0.038 -0.033 
0.1 —0.5 -0.066 -0.020 -0.020 
0.1 -0.8 -0.062 -0.015 -0.015 
-0.5 -0.8 -0.001 0.026 0.026 
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Table 5.22 Empirical mean square error multiplied by ten 
of various estimators of for n = 25 

"2 °2 »2 °2(t?) 

1.0 0.8 0.322 0.407 0.443 

1.0 0.5 0.277 0.328 0.359 

1.0 0.0 0.596 0.469 0.456 

1.0 -0.5 1.423 0.890 0.746 
1.0 -0.8 1.892 1.046 0.803 
0.8 0.5 0.332 0.347 0.374 

0.8 0.1 0.547 0.434 0.432 
0.8 -0.5 1.033 0.658 0.601 
0.8 -0.8 1.220 0.712 0.641 
0.5 0.0 0.589 0.499 0.562 
0.5 -0.5 0.776 0.563 0.643 
0.5 -0.8 0.804 0.552 0.650 

0.1 —0.5 0.598 0.537 0.620 

0.1 -0.8 0.538 0.508 0.583 
-0.5 -0.8 0.477 0.717 0.735 

Table 5.23 Empirical mean square error multiplied by ten 
of various estimators of for n = 50 

m. m_ °'2<S> 

1.0 0.8 0.128 0.141 0.147 
1.0 0.5 0.148 0.159 0.168 
1.0 0.0 0.239 0.205 0.202 
1.0 -0.5 0.429 0.293 0.256 
1.0 -0.8 0.597 0.370 0.305 
0.8 0.5 0.152 0.162 0.173 
0.8 0.1 0.219 0.206 0.218 
0.8 -0.5 0.348 0.264 0.271 
0.8 -0.8 0.360 0.241 0.248 
0.5 0.0 0.241 0.218 0.233 
0.5 —0.5 0.290 0.237 0.251 
0.5 -0.8 0.295 0.234 0.249 
0.1 -0.5 0.257 0.238 0.238 
0.1 -0.8 0.246 0.230 0.231 

-0.5 -0.8 0.168 0.190 0.190 
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Table 5.24 Empirical bias in various estimators 

of ôj for n = 25 

mi "2 3i 

1.0 0.8 -0.169 -0.096 -0.071 
1.0 0.5 -0.266 -0.159 -0.118 

1.0 0.0 -0.438 -0.263 -0.192 
1.0 -0.5 -0.594 -0.353 -0.263 

1.0 -0.8 -0.672 -0.388 -0.276 
0.8 0.5 -0.237 -0.119 —0.070 
0.8 0.1 -0.313 -0.148 -0.077 
0.8 -0.5 -0.427 -0.186 -0.081 
0.8 —0.8 -0.483 -0.200 -0.071 
0.5 0.0 -0.264 -0.081 -0.006 
0.5 -0.5 -0.315 -0.091 -0.005 

0.5 -0.8 -0.312 -0.060 0.034 
0.1 -0.5 -0.197 -0.003 0.026 
0.1 -0.8 -0.158 0.045 0.067 

-0.5 -0.8 0.190 0.330 0.332 

Table 5.25 Empirical bias of various estimators 

of 6 J for n " 50 

mi mg «1 «1 «i(\) 

1.0 0.8 -0.063 -0.038 -0.029 
1.0 0.5 -0.120 -0.075 -0.056 
1.0 0.0 -0.210 -0.128 -0.095 
1.0 -0.5 -0.311 -0.192 -0.143 
1.0 -0.8 -0.361 -0.220 -0.164 
0.8 0.5 -0.092 -0.037 -0.014 
0.8 0.1 -0.126 -0.047 -0.012 
0.8 -0.5 -0.188 -0.072 -0.023 
0.8 -0.8 -0.222 -0.084 -0.026 
0.5 0.0 -0.118 -0.033 -0.020 
0.5 -0.5 -0.152 -0.047 -0.037 
0.5 -0.8 -0.153 -0.034 -0.024 
0.1 -0.5 -0.098 -0.008 -0.007 
0.1 -0.8 -0.089 0.005 0.005 

-0.5 -0.8 0.022 0.076 0.076 
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Tables 5.26 and 5.27 contain the empirical mean square error of 

various estimators of 6^ for n " 25 and 50. Except for . 

(mj = -0.5, m^ = -0.8), 6^ has the largest mean square error. For 

m^ less than or equal to 0.5, 6^ has smaller mean square error than 

For the remaining values, has the smallest mean square 

error. For n = 25, the average mean square errors of 6^, , and 

6^(T^) are 0.229, 0.147, and 0.130, respectively. For n = 50, the 

average mean square errors of 6^, 6^, and are 0.068, 0.047, 

and 0.046, respectively. 

Tables 5.28 and 5.29 contain the frequencies of various types of 

adjustments made in obtaining 6^, 6^, and The estimator 6^ 

A ^ 
is obtained by setting 6^ = 1 whenever 6^ is greater than one. The 

estimator Ô^(T^) is set equal to one whenever the "t-statlstic", 

for testing 6^^ = 1, is greater than or equal to T^(5o)' where 

^T(50) *:he median of the approximate distribution of the statistic 

T^. The estimators and are the same when is less 

than or equal to "^^(01)* where ''^(oi) *^he lower 1-percentile of 

the statistic T^. For 6^ = 1, approximately 50% of the times 

is set equal to one and approximately 15% of the times 6^ is 

set equal to one. Except when m^ = 1, 6^ is always less than or equal 

to one. 

On the basis of this study (a^, a^) can be recommended over the 

least squares estimator. The estimator (a^, o^) Is less biased than 
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Table 5.26 Empirical mean square error multiplied by ten 
of various estimators of 6^ for n = 25 

mi mg 

1.0 0.8 0.382 0.181 0.130 
1.0 0.5 0.916 0.464 0.354 
1.0 0.0 2.371 1.188 0.863 
1.0 -0.5 4.446 2.277 1.699 
1.0 -0.8 5.513 2.633 1.841 
0.8 0.5 0.823 0.415 0.340 
0.8 0.1 1.488 0.783 0.676 
0.8 -0.5 2.718 1.399 1.255 
0.8 -0.8 3.492 1.803 1.670 
0.5 0.0 1.404 0.914 1.089 
0.5 -0.5 2.048 1.368 1.716 
0.5 -0.8 2.302 1.666 2.180 
0.1 -0.5 1.655 1.548 1.856 

0.1 -0.8 1.692 1.784 2.086 
-0.5 -0.8 1.946 3.024 3.092 

Table 5.27 Empirical mean square error multiplied by ten 
of various estimators of 6^ for n » 50 

m. m_ 

1.0 0.8 0.055 0.028 0.021 
1.0 0.5 0.197 0.107 0.083 
1.0 0.0 0.587 0.310 0.234 
1.0 -0.5 1.234 0.646 0.481 
1.0 —0.8 1.668 0.874 0.660 
0.8 0.5 0.151 0.085 0.085 
0.8 0.1 0.299 0.175 0.189 
0.8 -0.5 0.701 0.434 0.482 
0.8 -0.8 0.942 0.571 0.637 
0.5 0.0 0.405 0.299 0.341 
0.5 -0.5 0.682 0.517 0.566 
0.5 -0.8 0.866 0.703 0.767 
0.1 -0.5 0.720 0.683 0.685 
0.1 -0.8 0.818 0.809 0.811 

-0.5 -0.8 0.650 0.762 0.762 
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Table 5.28 Number of replications for which various estimators 
of 6 J are set equal to unity for n = 25 

«1 h \ ' •'•t(oi) 

1.00 1 153 495 14 
1.00 0 150 499 11 
1.00 0 114 487 6 
1.00 1 158 511 9 
1.00 1 136 528 3 
0.90 0 68 376 12 
0.82 0 65 340 15 
0.70 0 56 357 11 
0.64 0 43 353 16 
0.50 0 8 136 48 
0.25 0 2 66 77 
0.10 0 0 70 65 

-0.35 0 0 4 335 
-0.62 0 0 1 430 
-1.70 0 0 0 921 

Table 5.29 Number of replications for which various estimators 
of 5^ are set equal to unity for n » 50 

1.00 1 146 472 8 
1.00 0 130 498 12 
1.00 1 148 521 10 
1.00 1 136 485 10 
1.00 1 140 517 9 
0.90 0 28 231 29 
0.82 0 18 166 26 
0.70 0 13 141 41 
0.64 0 4 115 48 
0.50 0 0 1 304 
0.25 0 0 0 490 
0.10 0 0 0 521 
-0.35 0 0 0 974 
-0.62 0 0 0 992 
-1.70 0 0 0 1000 



127 

the least squares estimator and has mean square errors about 20 percent 

below those of the least squares estimator for parameters deemed 

realistic for economic applications. 
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CHAPTER VI. SUMMARY AND AN EXAMPLE 

The estimation of the parameters of the autoregresslve process Is 

Investigated. A p-th order autoregresslve process defined by 

- Je A + »j<Vj - h-i &) + (S-l) 

where {e^} Is a sequence of uncorrelated (0,0%) random variables, Is 

considered. Given a realization of n observations, the least squares 

estimators of the parameters are obtained by treating (6.1) as a 

regression equation. The asymptotic properties of the least squares 

estimators depend on 

(I) the Initial conditions Yq, Y ..., Y_p_^^, 

(II) the roots of the characteristic equation 

m^ - Qj^m^ ^ - ... - Op =• 0, 

and 

(111) the properties of the {e^.} sequence. 

Assuming that the roots of the characteristic equation lie Inside 

the unit circle, the limiting distribution of the least squares 

estimators are derived In Appendix B. The results are extensions of the 

results given In Fuller, Hasza and Goebel (1981). The basic difference 

Is that Fuller, Hasza and Goebel assumed that {e^} Is a sequence of 

Independent random variables with bounded (2+6)-th moments, whereas we 

assume that {e^} Is a sequence of martingale differences with constant 
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conditional variance and bounded (4+ô)-th moments. 

Dickey (1976) obtained the limiting distribution of n(p-l) , 

where 

\ = P Tt-1 + «t ' 

P = 1, 

;. 1 
J. ' - '  

and {e^} Is a sequence of Independent (0,0%) random variables with 

finite (2+6)-th moments. This result is extended in Chapter II to the 

case where {e^} is a sequence of martingale difference errors with 

constant conditional variance and bounded fourth moments. 

For a p-th order stationary autoregresslve process, various 

estimators are proposed that are asymptotically equivalent. Under a 

wide variety of assumptions the least squares estimator is consistent. 

But in small samples the least squares estimator is seriously biased. 

For the stationary p-th order model, approximate expressions for the 

bias arising from estimating the unknown mean are derived in Chapter 

III. Using the approximate expressions for the bias, two adjustments 

for the least squares estimator are proposed. A Monte Carlo study Is 

conducted to study the small sample behavior of various estimators of a 

second-order autoregresslve process with constant mean. Ordinary least 
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squares, the method suggested by Salem (1971) and the two estimators 

suggested In Chapter III are compared. The absolute bias and the mean 

square errors of the estimator (3.14), proposed In Chapter III, are 

smaller than those of the least squares estimator for a wide range of 

parameter values. For the parameter values in the stationary region, 

only small differences in the mean square error are found between the 

estimator suggested by Salem (1971) and the estimator (3.14). 

Also considered is the p-th order autoregressive process with a 

nonstationary mean function. The model is given by 

Assume the roots of the characteristic equation lie inside the unit 

circle. The ordinary least squares estimator g of g is obtained by 

regressing on The least squares estimator a* of a is 

A A 
obtained by regressing (Y^ - g) on (Y^_^ - X^_j g), 

(Y^_2 - X^_2 g), . (Y^_p - X^_p g). Approximate expressions for the 

bias in a* , arising from estimating g, are derived. Particular 

attention is given to the case. 

P 

- St a + - %c-j ê) + s 

t 
1(2) ,  . . . ,  

where i(j) are integers. Using the approximate expressions for the 

bias in a* , arising from estimating g , two adjustments are 

proposed in Chapter IV. 
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A Monte Carlo study Is conducted to study the small sample behavior 

of various estimators of a second order autoregresslve process given by 

Yt - 60 + Bjt + 6(,- e,(C-l)} + «2IV2- «0- + S 

- f'o * 81' + + Vt-2 + • (G-2) 

where 

0Q = 0Q(1 - «1 - «2) ^l^"l ' 

= 3j(l ~ «1 " «2^ ' 

and {e^} Is a sequence of normal Independent (0,1) variables. The 

least squares estimators 3q and of 0^ and are obtained by 

regressing on an intercept and time. The least squares estimates 

* * 
and «2 of and are obtained by regressing 

(Yt - Bg - *1%) t^t-l - *0 - é^(t-l)} and {Y^_^ - 0q - Sj(t-2)}. 

The least squares estimator (4.37) and the two estimators (4.38) and 

(4.39), suggested in Chapter IV are compared. The Monte Carlo study 

demonstrates that the mean square errors of the estimators suggested in 

Chapter IV are smaller than those of the least squares estimator for a 

wide range of parameter values. Except when both roots of the 

characteristic equation are negative, the absolute biases in the 

estimators proposed In Chapter IV are smaller than those of the ordinary 
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least squares estimator. Generally speaking, the adjusted estimators 

suggested In Chapter IV performed better than the least squares 

estimator. 

Nelson (1973, p.100) lists 80 observations on seasonally adjusted 

U.S. gross national product. The data are quarterly data beginning with 

1947-1. In modeling the data, we have taken logarithms and have 

considered autoregresslve processes. Hasza (1977) concluded that the 

observations are generated by a stationary autoregresslve process with a 

time trending mean and Is of the form (6.2). Various estimators 

proposed In Chapter IV are computed. 

(1) Regressing on time, , Yj._2 and a constant, we get 

where the numbers In parentheses are the standard errors of the 

coefficients. 

(11) The simple least squares estimators of and are 

obtained by regressing on time and a constant. The least squares 

estimate of the mean function of Y^ is 

An Example 

Yj. - 0.6485 + 0.0017t + 1.4475 - 0.5651 Y^.g , 

(0.1941) (0.0005) (0.0943) (0.0931) 

s^ • 1.4566 X 10 ^ (6.3) 

E{YJ.} - 5.4652 + 0.0142t (6.4) 
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Let 

«t ' ?c - E{?cl • 

The least squares estimator of a = (a^, a^)' , is obtained by 

regressing on and W^_2 . The least squares estimate of 

a is 

(a* , a*) - (1.4530, - 0.5701) (6.5) 

and the least squares estimate of ^ is 

(8* , 0*) - (6* , 6*) - (0.8829, 0.5701) 

This sequential fitting gives an estimate for of 

02 = 1.4628 X 10~^ . (6.6) 

Combining (6.4) and (6.5) we obtain 

= 0.6444 + 0.0017t + 1.4530 - 0.5701 Yj._2 

(0.1941) (0.0005) (0.0943) (0.0931) 

0.6444 + 0.0017t + 0.8829 + 0.5701 (Yj._^ - Y^.g), 

(0.1941) (0.0005) (0.0356) (0.0931) 
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where the standard errors are taken from (6.3). 

(ill) Since 0'J < 1 , the estimator 0 defined in (4.38) is 

obtained by adding D ^ h to jB* where 

80 

80 

t«3 

80 

- V2> 

80 

and 

h' = {2[(78) (1 - 8*)]-l a2, o} 

The estimator 

I' - (0.9046, 0.5611) 

and 

a' = (1.4657, -0.5611) 

(iv) The estimator £(T^) defined in (4.39) is obtained using 

adjustment based on the statistic. For this sample, 

- - 3.28 , 
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and the percentiles "^xCOl) ^T(50) approximately - 4.10 and 

-2.435, respectively. Therefore, 6^?^) Is obtained by adding D f 

to 8* , where 

f' = [a + b (1.665)"^ (t^ + 4.10)3, q] , 

a = 2[78(1 - 0*)]"^ 02 , 

b = (D^^) ̂  (1 - 8*) - a , 

and Is the (l,l)-th element of D ^ . The value of the estimator 

I (T^) Is 

0(T^) = (0.9158, 0.5564)' 

and 

a(T^) = (1.4722, -0.5564)' . 

If the parameter a Is known then the generalized least squares 

estimator (ggg , 3jg) of (g^ , 8^) Is obtained by regressing 

on Aj. and , where 

Vj = {y(0)}" Y, , 
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2̂ °° ^TL ^2 " ̂11 ^1 ' 

" "l Vl ~ °2 V2 ' t - 3,4,..., n, (6.7) 

^11 = P(l) ̂ 22 ' 

dgg " [{1 - p2(l)}Y(0)] G , 

p(L) =• {Y(O)}~^ Y(I) , 

\ = ^11 ' 

^2 ° ̂22 ~ ̂ 11 ' 

\ = 1 - «1 - «2 , t - 3,4,...,n , 

®1 = ^11 ' 

®2 ° ̂ *^22 " *^11 ' 

" t - OjCt-l) - , t - 3,4,...,n , 

and, Y(0) and Y(l) are defined In (5.3). An estimated generalized 

least squares estimator of g Is obtained by regressing on 

and where V^, A^ and B^ are computed using the estimated 



137 

values of a and in (6.7). 

The generalized least squares estimates of and the standard 

errors are, 

(i) = 5.4752 , gjç = 0.0141 , 

(0.0256) (0.0005) 

(il) = 5.4751 , Pjg - 0.0141 , 

(0.0257) (0.0005) 

(ill) = 5.4754 , - 0.0141 , 

(0.0321) (0.0006) 

and 

(iv) = 5.4753 , = 0.0141 , 

(0.0367) (0.0007) 

respectively. 
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APPENDIX A: DEFINITIONS AND PROPERTIES 
OF STATIONARY TIME SERIES 

Some of the properties of stationary time series are presented. We 

begin with some definitions. 

Definition A.1; A time series teT} Is called strictly stationary 

If the joint distribution of (X , X X ) Is the same as that 

1 2 n 
of (X^ X^ ..., Xj. for all possible sets of Indices 

t^, tg t^ and tj + h, tg + h, ..., t^ + h In the Index set T. 

Definition A.2; A time series {x^: teT} Is called (weakly) stationary 

If It has finite second moments and 

a) the expected value of X^ Is a constant for all t, 

b) the covarlance matrix of (X , X X ) Is the same as 
1 2 n 

the covarlance matrix of (X^ X^ ..., X^ for all 

12 n 
nonempty finite sets of Indices t^, t^, ..., t^ and all h 

such that tj, tg, ..., t^, t^ + h, tg + h, ..., t^^ + h are 

contained in the index set. 

For a stationary time series {x^} the covarlnace of 

X^^^ and X^ depends only on the distance, h, and we may write 

Cov(Xj., " Y(h)' 

The function Y(h) is called the autocovarlance function of X^. The 

autocorrelation function of X^ is defined as 
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Theorem A.l; The covarlance function of a real valued stationary time 

series Is an even function of h. That Is, Y(h) = Y(-h). 

Proof. See Fuller (1976, p. 9). D 

r 100 
Definition A.3; The first difference of a sequence Is defined 

by 

Ay^ = - yt_i, t - i, 2, ... 

and the n-th difference is defined by 

=" y^ - y^_^ 

.r ,nv 
S (-1) ( ) yL__, t - n, rri-1, ..., 
r»0 r c r 

where 

(") = ÏL! 
r r!(n-r)1 

are the binomial coefficients. 

Theorem A.2. Let y^ be a polynomial of degree p whose domain is the 

Integers. Then the first difference Ay^ is expressible as a 

polynomial of degree (p - 1) in t and the (p + l)st difference 

y^ is identically zero. 

Proof. See Fuller (1976, p. 43). • 

A linear difference equation of order p is given by 
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" «ift-i + Vt-2 + + Vt-p 

(A.l) 

where the o^, Og# ••*» "p constants, f 0, and r^ is a 

real function of t. The characteristic equation associated with the 

difference equation (A.l) is 

^ ^ - ••• - =» 0. (A.2) 

The solution of a linear difference equation with r^ = 0 can be 

obtained using the roots of the characteristic equation (A.2). The 

solution is a sum of p terms where: 

1. For every real,and distinct root, m, a term of the form bm^ 

is Included. 

2. For every real root of order s (a root repeated s times), a 

term of the form 

(b^ + bgt + ... + bgt®~b 

is Included. 

3. For each pair of unrepeated complex conjugate roots, a term of 

the form ar^Co8(t8+g) is included, where m = r e^^. 

4. For a pair of complex conjugate roots repeated s times, a term 

of the form 
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r [Oj Co8(t0+pp + Ogt CosCtG+gg) 

8-1 
+ ... + (Xgt Co8(t0+6g)] 

is Included. 

The solution to the linear difference equation in (A.l) is 

where the Wj are defined by 

Wg = 1, Wj - 0, j < 0, 

"j ~ °1^J-1 ' - «P Wj-p = 0, d - 1, 2 

T. is the first element of the vector A x_, x_ = (y ,y 
t ~ ~0 ~0 p p~l t 

and, 

hi °2 

1 0 

\° ° 

*p-l 

0 0 

1 0 

Definition A.4. A p-th order autoregressive time series {y^} 

defined by 

" jfj *j *t-j + ®t 
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where 2 0, e^ are uncorrelated (0,0%) random variables, and 

The following two results give an alternative representation for 

the stationary autoregresslve process. 

Theorem A.3. Let the roots of the polynomial equation (A.2) less 

than one In absolute value, where ^ 0, and let the weights 

be defined by the solution of the difference equation 

+ ••• + Vj-P' j " I'Z'" 

subject to the boundary conditions 

Wq •= 1, Wj =• 0 for j < 0. 

Let {e^} be a sequence of uncorrelated (0,0%) random variables. 

Then, 

E w I < ", 
j=0 ^ 

and the mean square limit Wj e^_j , Is a stationary 

process. 

Moreover, satisfies the stochastic difference equation 

"j *t-j + ®t 
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for almost every realization of {e^}. 

Proof. See Fuller (1976, p. 56). • 

Theorem A.4. Let be stationary and satisfy 

"j Vj + ®t' 

where the e^ are uncorrelated (0,0%) random varlalbes and the roots 

of the characteristic polynomial 

^ - ... - = 0, 

are less than one In absolute value. Then, 

®t-j 

for almost every realization of {e^} where Wj are defined in Theorem 

A.3. Moreover, the covariance function of satisfies 

Y(h) =• Y(h-l) + «2 Y(h-2) + ... + Y(h-p), 

Y(h) = Z w.w. . a2, h » 1,2 
j"0 J 

and, 
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E I Y(h) I < " . 
h=-«> 

Proof. See Fuller (1976, p. 58). • 

Theorem A.5. Let {x^}, {wj}, and {ïCh)} be as defined in Theorem 

A.4. Assume the roots of the polynomial equation (A.2) are less than 

one in absolute value. Then, 

Z Y(h) =» ( 2 w.)2 o2 
hs-eo j"0 

P _2 „ 
(1 - Z a ) ̂ a2 . 

j=l ^ 

Proof. By Theorems A.4 and A.5, 

E I Y(h) I < <» and E j w. | < " . 
h=-» j-0 J 

Therefore, 

00 CO 

E Y(h) = 2 E Y(h) + Y(0) 
h»-» h=l 

2 E E w.w.,, + I w? 
h»i j-o J j-0 j 

n <*> 

E {w2 + 2 E w w } a2 
j=0 ^ h=l J ^ 

{ E w.}2 0%. 
j-0 J 
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Let f(m) = ^ - a . Since f(l) is not zero, 

1 - E a. ̂  0. Mote, 
j-1 J 

w. - E a. w._., 1-1,2,..., 
J 1=1 1 J 

with Wj = 0 for j < 0 and Wq » 1. Therefore, 

E w. = Z a. Z w._i 
j=l J 1=1 1 j=l J 

E a, E w. 
1-1 ^ j»0 J 

and, 

P _i 
E w. = (1- E a. ) . • 

j=0 J 1-1 

We now give definitions and results related to order in magnitude 

and order In probability. 

Definition A.5. We say {a^} is of smaller order than {g^} and write 

a = o( |g 1 ) if 11m g ^a -0. We say {a_} is at most of order 
n i°nl «I n I n^ 

n-»* 

{g^} and write a^ - 0( | g^ | ) if there exists a real number M 

such that I g ^ a I < M for all n. 
' n n ' 

Definition A.6. Let {g^} be a sequence of positive real numbers and 

{x^} a sequence of random variables. We say is of smaller order 
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in probability than and write = o^Cg^) if plim g^^ = 0. We 

say X^ is at most of order in probability g^ and write X^ " %^®n^ 

if, for every e > 0, there exists a positive real number such 

that 

l\l ' »€ ' = 

for all n. 

Definition A.7. If {x^} Is a sequence of random variables with 

distribution functions {F^(x)}, then {x^} is said to converge in 

distribution (or in law) to the random variable X with distribution 

function F„(x), and we write X —^ X, if lim F (x) = F„(x) at 
X n n+» 

all X for which F^Xx) is continuous. 

Theorem Â.6. Let (x } and X be random variables such that 
————— "• n' 

plim X^ = X. If g(x) is a continuous function, then the distribution 

of g(X^) converges to the distribution of g(X). 

Proof. See Fuller (1976, p. 195). • 

Theorem A.7. Let {X^} and {Y^j be two sequences of k-dimensional 

random variables and let {A^} be a sequence of k x k random 

matrices. Suppose there exists a random variable X, a fixed vector 

b, and a fixed nonsingular matrix A such that 

Sn ̂  X» Xn 6' and A. Then, 

(1) Sn + %n S + b' 
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(II) % X„ X' b, 

and, 

(III) C %n X-

Proof. See Fuller (1976, p. 199). D 

We now give the definitions and the results relating to martingale 

sequences. 

Definition A.8. A sequence of random variables and a - fields 

{Xj^, F^} is called a martingale if we have for each n: 

(a) F^ is a sub a-field of F^^ and 

X is F measurable; 
n n 

(b) E |X^| < 

(c) - E(X^, I F__), a.e. 
A sequence {e^., F^} is called a martingale difference if 

(a) {F^} is an increasing sequence of o-fields and e^ is F^ 

measurable; 

(b) E |e^| < »; 

(c) E(e^ I F^_j) = 0, a.e. 

Note if {®t' ̂ t^ is a sequence of martingale differences, then 

X = zY 1 e. with F is a martingale. 
n t=l t n 

A version of the martingale central limit theorem is given in the 

following theorem and is taken from Scott (1973). 

Theorem A.8. Let {Z^^: 1 < t < n, n " 1,2,...} denote a triangular 
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array of random variables defined on the probability space ((2, B, P), 

Let S, = . Z., for 1 < k < n, n >1 with S_ = 0 for 
kn t=l tn un 

n > 1. Assume that for 1 < k < n 

where ^ ^ denotes the sigma field generated by 

^In' ®2n' •••' Vl.n* 

«In - I 

Assume 

and 

-2 " 
(11) im £ E[z2^ I(|Z 1 > . -0, 

n+<» j=l •' •' 

for all 

set A. 

e > 0, where 1(A) is the indicator function of the 
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Then, 

S.. «(0,1) 

Proof. See Scott (1973). • 

We now give some of the limiting properties of the estimator for 

the autocovarlances. 

Theorem A.9. A stationary time series with absolutely summable 

covarlance function Is ergodlc for the mean. Furthermore, 

11m n Var{x } = Z Y(h) 
n-foo h=-* 

-1 " 
where x = n EX.. 

Proof. See Fuller (1976, p. 232). D 

Theorem A.10. Let the time series {x^} be defined by 

®t-j 

where the sequence of {wj} Is absolutely summable and the {e^} Is a 

sequence of martingale differences with 

E(e2 I Fj._j) = a2 a.s. , 

E(e^) = na*^ , 
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and is the a-field generated by (e^, e^, e^). Then, for fixed 

h and q, (h > q > 0) 

lira (n-q) Cov(Y(h),Y(q)) 

= (n-3)Y(h)Y(q) + z [Y(p)Y(p-h+q)+Y(p+q)Y(p-h)], 
P=—00 

where 

_i n-h 
Y(h) = (n-h) E X. X. .. . 

t=.l ^ 

Proof. See Fuller (1976, p. 238). • 

Remark. The result given in Fuller (1976) is for {e^} a sequence of 

independent random variables. But the proof extends immediately for the 

martingale differences. 

Theorem A.11. Given fixed h > q > 0 and a time series satisfying 

the assumptions of Theorem A.10, 

E[Y(h)-Y(h)] = - % Y(h) - Var{x } + 0(n ^) 
n n n/ 

and 

lim / Cov{Y(h), Y(q)} " lim (n-q)Cov{Y(h) ,Y(q)}, 
n-H» *•"" / n+m 

where 

^(h) - Z 
t"l 
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and 

X 
n 

Proof. See Fuller (1976, p. 239) • 

Lemma A.l. Let the random variables Z_ with distribution functions 

F^(z) be defined by 

^n = \n + \n 

for k = 1, 2, and n =» 1, 2, ... . Let 

plim D. =» 0 
k-Hx» 

uniformly in n. Let 

n 

S, 
kn 

as n + CO 

and 

Z as k + * 

Then 

Z Z 
n 
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Proof. See Fuller (1976, p. 248). • 

Theorem A.12. Let the time series be defined by 

00 

X - y = E w, e ., t - 1,2 
^ j=0 J t J 

where = 1, |wj| < " and {e^} Is a sequence of (0,0%) 

random variables with 

E(e^ I = 0 a.e. 

E(e2 I F^_^) = a2 a.e. , 

E(eJ) < L < " . 

Then, 

and, 

•» -1/ 

Y(h) = Y(h) + Op(n for fixed h. 

Proof. Note that If E(e^) = ncr'^ then we have from Theorem A. 9 and 

A.10, 
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lim n Varfx } = ( S w.)% 0% 
n-H» j=0 J 

Var{Y(h)} = 0(n 

and, 

E{Y(h)} = Y(h) + 0(n ^). 

The arguments used in the case ECe^) = no"* extend Immediately to the 

case where E(ejj) is bounded. Therefore, 

pllm = y 

and, 

Y(h) •= Y(h) + Op(n ) . • 

Consider a stationary p-th order autoregresslve process {Y^.} 

satisfying 

?t " *0 + "j Vj + 2%, t - 1, 2 , . . . ,  

where {e^} is a sequence of uncorrelated (0, o^) random variables< 

The least squares estimator of (a^, a^, ..., o^) is obtained by 
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regressing on Y^g' •••» \_p with an Intercept. Assume 

that the roots of the characteristic equation 

m^ - E a. of j = 0 

j-1 ^ 

lie Inside the unit circle. 

Assuming {e^} to be a sequence of normal Independent (0, 0%) 

random variables, Mann and Wald (1943) established that the asymptotic 

distribution of the least squares estimator is normal. 

Anderson (1959) extended Mann and Wald's result to the case where 

e^ are assumed to be Independent (0, a^) random variables with 

bounded (2+6) - th moments, for some 6 > 0. 

Hannan and Heyde (1972) considered the case where e^ are assumed 

to satisfy 

E[et I - 0 a.s. , 

E[e2 I a.s. , 

there exists a random variable X, such that 

Pt |e^| > u] < c P [ |x| > u] 

for some c real and E |xj^ < ". 

is the a-field generated by (e^, e^, ..., e^). Under these 

assumptions they established that the limiting distribution of the least 

(1) 

(11) 

and 

(ill) 

where 
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squares estimator is normal. 

We consider the case where the condition (ill) on {e^} is 

replaced by the condition, 

(ill') ECeJ"*"^^) < L < " 

for some v > 0 and L. The following theorem establishes the limiting 

distribution of the least squares estimator for this case. 

Theorem A. 13. Let satisfy 

Tt " *0 + "j Vj + ®t'  ̂" 1.2,..., 

where Yq, Y_^, ..., are initial conditions. Let the roots of 

m^ - Z a. mf ^ = 0 
j=l ^ 

be less than one in absolute value. Let {e^} be a sequence of random 

variables with 

E{et I ° a-e., 

E{e2 I F^_j} = a2 a.e., 

and 

< L < o® for some v > 0 and real L. 
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Assume either 

(I) Yq, Y_^, Y_p^j are fixed, or 

(II) Yq, Y_^, ..., Y_^2 are random variables Independent of 

{e^} with mean a^d - a^) ̂  , and the variance and 

covarlances are given by y(h) where Y(h) is the 

autocovarlance function of a statlnary p-th order 

autoregresslve process with the coefficients 

a = («Q, Oj, ..., Op)'. 

Let 

« " 1  

where 

«t - "t-i w-

Then, 

n (a - %) N(0, r"^ a2) , 

where 

1 " 
r = 11m n 1 E E[X! X^]. 
~ , ~t '"t 

n+oo t^l 

Proof. We have 

(«-«)= (n"^ ? X' X )"1 [n-1 Z X' e ]. 

t-1 ^ t-1 
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n 
The probability of Z being nonsingular converges to one as 

t=l 
n + ». 

Let n be an arbitrary column vector of real numbers such that 

n' n ^ 0. Let 

n- jj. ? X' 
t=l t=l 

where 

^tn - a' % «f 

Note the a - field generated by ^ ^ is 

®t-l,n '^(®i»®2'***'®t-l' YQ,Y_i,''',Y_p+i)' 

We verify the conditions of Theorem A,8. Since Yq, Y ^, ...» Y_p^^ 

are Independent of {e^}, 

KtZt. I Vl.n' - "• 

I S' % ït a 

'In " \ a' % aSt a 
t»l 

®nn = ^ a' E(3t 4) a 
t=l 
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Under the assumption (ii) {Y^} is a stationary p-th order 

autoregressive process and by Theorem A.4, it can be represented as 

Yj. = y + Wj e^_j with |wj| < Therefore, by Theorem A.12, 

1 n 
plim n Z X' X . r. 
jl-X» t=l 

Under the assumption (i), the effect of the initial conditions is 

transient, and 

plim n"^ Z x; Xj. - r . 
t«l 

Therefore, 

We now investigate. 

s-2 
nn }, « l^nl ' ' 

t = i 

t«l 

Note that 

I j/j nil'" 
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Consider 

M I Vi s I'""} ' iVi I'"'") Inl"''"})'''-

since Yj. Is a linear combination of {e^.} with absolutely summable 

weights, E{ < K for some K < ". Therefore, 

E{ |ZJ2+") =0(n""^). 

Therefore, the second condition of Theorem A.8 is satisfied and, 

s.» S' ; a)' 

Some extensions of Theorem A.13 are presented in Appendix B. 

Theorem A.14. If {e^} is a sequence of uncorrelated random variables 

with zero mean and bounded second moments, then 

-1 
n Z e —>• 0 a.s. 

t=l 

Proof. See Chung (1974, p. 103). • 

We establish the order of the difference between two types of least 

squares estimators of the parameters of the stationary p-th order 

autoregresslve process. Let (Y^} satisfy the stochastic difference 

equation 
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?C " =0 + "iVl + ••• + Vt-p + Gf , <A.3) 

2 
where {e^} is a sequence of independent N(0,o ) random variables. 

One form of the least squares estimator a of a = (o^, a ) . 

* A 

a = H N (A.4) 

where H and N are defined in (3.3). This form of the least squares 

estimator is obtained by regressing on Y^g ^t_p with 

* — 
an intercept. Equivalently, a is obtained by regressing Y^ - Yq 

on Y^ ^ - Y^, Y^_2 - "^2' *t-p ~ 

— _i n 
Y, = (n-p) E Y ., 1 - 1,2 . 
^ t=p+l ^ ̂  

An alternative form of the least squares estimator is obtained 

by regressing Y^ - Y on Y^.^ - Y, Y^.g - Y Yj._p - Y where 

Y = n~^ ^t=l^t ' estimator is given by 

ot+ = N+ , (A.5) 

where 

))  ,  
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/ " (N^, Ng, N^)' , 

h^. - (n-p)"^ Z (Y - Y)(Y _ - Y) , 
t=p+l ^ ̂  ^ ̂  

and 

..+ , v-1 " 
1 - (n-p) Z (Yt_2 - Y)(Yt - Y) . N, 

t=p+l 

The following theorem establishes the order in probability of the 

* + 
difference between the estimators a and a . 

Theorem A.15. Assume {Y^} Is stationary and satisfies (A.3). Let 

a and be as defined In (A.4) and (A.5). Then 

a* - a"*" " 0 (n . 
'V ^ P 

Proof. Let h^^ and denote the (l,j)-th element of H and 

1-th element of N , respectively. Note that 

kij • - 'i >"t-j - V 

, n  _ _ _  _ _ _  
= (n-p)"^ Z (Y . - Y + Y - Y.)(Y - Y + Y - Y.) 

f»pfl ^ ̂  1 t j J 

" (n-p)"^ Z (Y_, - Y)(Y - Y) 
t=p+l ^ ^ J 

, n _ _ _ 
+ (n-p) Z (Y - Y.)(Y. . - Y) 

t"pfl J 
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.-1 " 
+ (n-p) Z (Y. . - Y)(Y - Y.) 

t-p+1 ^ 

+ (Y^ - Y)(Yj - Y) 

h^j - (Y^ - Y)(Yj - Y) . 

Now, 

— — -1 " -1 
Y. - Y = (n-p) Z Y . - n Z Y 
^ t-p+1 t-1 

1 1 " 
= (n-p)"^ Z Y - n"^ Z Y 

t=p+l-i t=l 

-1 -1 -1 -1 " 
= [(n-p) - n M Z Y - n Z Y - n Z Y 

t=p+l-i t"l t"n-l+l 

1 1 1 1 " 
= p n"\n-p)"-^ Z Y - n~^ Z Y - n"^ Z Y 

t=p+l-l t"l t=n-i+l 

= Op(n b . 

Therefore, 

hy = + Op(n ^) . (A.6) 

Similarly, 
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+ OP(N"^) . (A.7) 

From Fuller and Hasza (1981), It follows that 

S'^ = Op (1) , 

(H"^)"^ = Op(l) , 

and 

g* - g* = - H 1 I (H - H"'') a - (N - N"^) ] 

+ H~^ (H - H+) H"^[(H - H) a - (N - N)] 

+ G-L (H+ - H) H"^T(H - H+) A - (N - N+)] 

+ Op(n-2) 

where H and N are defined in (3.2). Using (A.6) and (A.7), we get 

a* - g* = Op(n~^) • 

Fuller and Hasza (1981) established that for n greater than some 

Nj depending upon j, Elja^|^'^] is finite for j = 1, 2, ... . Using 
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Theorem 5.4.4 of Fuller (1976, p. 208), it can be shown that 

Eta* - a"^] - 0(n"^) . 
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APPENDIX B: ASYMPTOTIC PROPERTIES OF THE 
LEAST SQUARES ESTIMATOR 

Consider the p-th order autoregresslve process with r explanatory 

variables. 

& + X't-i a + G; (B.l) 

where 

ê = (3j, Pg 9^)'' a = («1» «2' *p)'' 

2t-l = <Vl' Vz Vp''- 4 - (*;!' *t2 V>' 

a and g, are parameters to be estimated and jjj^'s are explanatory 

variables. Let 

= a - field of events generated by Yg, ^t-1* 

Assume 

ECCj. I F^_j) = 0 a.s. 

Suppose that observations Yq Y^) are available and 

estimate a and £ by minimizing the sum of squared residuals. The 

equations for the least-squares estimators (j|, a) are 
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^4 
, o/ 

: 4; 

%t-i \i 

where 

X 4 

Xt-i it 

ih» Y' 
*t ~t 
Y 
~t-l 

Y' 
~t-U 

and ail summations are over t = 1, 2 unless otherwise 

indicated. Let = E(Y^), ag - V(e^.), - E[Z 

to = 2cl' Bn - SI*; ttl' Sn = Hn^4i 

(assuming M ^ exists) and D = E[E J. ]. Also, let m and d be 
~n ~n ' —t n n 

the smallest eigenvalues of M and E = V -L M^L', 
~n ~n ~n ~n ~n n 

respectively. Let denote the vector norm 

I it I " ( ^ and be the Euclidean matrix norm 

I °n I " < !•" "O • I '«0> I "t - 4o °t-l 

where X exceeds the largest of the moduli of the roots of the 

characteristic equation, 

nf - a.mf ^ - ... - a = 0. 
1 P 

The main results of Crowder (1980) are summarized in the next three 
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theorems. 

Theorem B.l. The following conditions are sufficient for consistency of 

the least squares estimators (j|, a) , 

(a) c;2 z x^-l (Y 0 as n —^ » 

when c. = d_, and m ; 
n n n n ti 

(b) c"^ Z z? ©2 —». 0 as n + «» when c = d , d /g and m ; 
^ ' n t t  n n  n  n  n  

, n 
(c) c" {v + ( E X z _ )2} —" 0 as n + m 

r=0 

when c^ = d^ and d^/g^^ 

t-1 
(d) either Z {v^_j + ( £ x' —y 0 

or c;Z E T| {'z' X' » 
r=0 

for c = d and d /g , where = E(ejt) 
n ift li n c c 

and 0^^ > E(e2 | is a constant bound for the 

conditional error variance; 

(e) c^^ E(e2 - a|) —0 In mean square as n + « 

when c_ = d and d /g: . 
n n n n 
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(f) A < 1. 

Theorem B.2. Let x for a given unit vector x, and 

write 8^ " E[Z X^], = E[Z e^ Suppose that the conditions of 

Theorem B.l. hold, and that for all x 

E x2 I( |x^| > e 8^) -2+ 0, for all e > 0. 

Then the asymptotic distribution of 

Sn 
r^/2 D 

~n 

ê  l ê '  
1= «r+p (0. I) 

Theorem B.3. The least squares estimators (^, o) are consistent if 

the limits LI to L4 below hold. If L5 also holds, then their 

asymptotic distribution is normal as in Theorem B.2. 

Sn'Sln-^O- S. Bi. 0. 

n« ui E * G' WÎ 0, G E ^ G' E ^ G' WJ 0, 
~n ~n "-In ~n ~n ~n ~n --n ~ln 

Bn' «î. "i 
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L2: C'S2a-^°î S„ C » 

"• S. Ban -2* 0. 

Su Hsa 

"= S;;'H4„-^O. S„ H4„oi 

where 

«m • : «t-i - % %) 4-

%2n = : (%t-i %;-! - 2l%t-i Si-i')' 

«3n h 

and 

H4n = ^ 2t-l ®f 

Fuller, Hasza, and Goebel (1981) studied the model (B.l) under the 

assumption that {e^} is a sequence of independent random variables. 
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They established the limiting distributions of the least squares 

estimators for the situations where the largest root is less than one, 

equal to one, and greater than one In absolute value. Their results for 

the stationary case and the unit root case extend Immediately to the 

situation where e^ are martingale differences. The extensions are 

given in the following theorems. 

Consider the model (B.l). Assume Yq, Y_j, ..., are known 

and fixed. Assume e^ satisfy, 

I - 0 a.s., 

E(e§ I F;_,) a.s, 

and 

< L < " for some v > 0. (B.2) 

The parameters a and g, are fixed unknown constants and are 

fixed functions of time. 

The difference equation (B.l) may be solved to obtain 

?t " Sf + "t' 

p-i t-i 
(B.3) 
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and the Vj are given by 

"3 - "I'j-l - - - °p'j-p - ° 

with Vq = 1 and Vj = 0 for j < 0. Set S_^ = Y_^ for t = 0 

p-1. Note that is fixed and is random. Let 

iBp be the roots of the characteristic equation 

nf - a. ^ - ... - a = 0 
1 P 

and let be the root with the largest absolute value. Assume 

m^ I < 1. Define 

a = 1 if I m^ I = 1, 

= 0 if I m^ I < 1. 

If I m^ I = 1 then consider the reparametrization, 

\ ' ji *ti h + + Vr + S 

(B. 

where a . » m, and the roots of 
p+r 1 

mP-l - „ nP-l-j . 0 

J-1 

are mo, mo, . '2> ™3» •••» ®p' 
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Consider the Gram-Schmidt orthogonallzatlon procedure to 

reparametrlze model (B.l) and the equivalent model (B.4). Given n 

observations (n > p + r), let 

»tln • *tl 

1-1 

"tin - I'tl - J 1 -

1-1 

*tln " ̂  ̂ t+r-1 ®t+r-l-l ^Ijn *tjn' 

1 = r+1, t+2, .rfp-1 

p+r-1 

*t,p+r,n ®t-l ~ ^P+r,jn *tjn' 

where the c^j^ are the multiple regression coefficients obtained by 

the least squares regression of and a ^ on 

X . , j = 1,2,...,1-1 and t » l,2,...,n. The c . . are obtained 
tjn prrjjn 

by the least squares regression of ^ on j = 1,2,...,p+r-l. 

It Is understood that c.. = 0 If . xj - 0. Define 
Ijn t"l tjn 

^tln " ® "^t-1 " ̂t-2 " jfj '^r+l,jn *tjn' 
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r 1-1 

^tin " ® \-i ^t-1-1 ^r+l,jn *tjn ^r+i,r+j ,n \jn' 

i = 2,3 

^tpn ^t-1 ^P+r,jn *tjn ~ ^P+r,j+r,n "tjn* 

Let be the nonslngular transformation matrix defined by (B.5) and 

(B.6) so that 

4n • <\ln' \2n' "tm' "tin V 

~n (*cl' *12 *tr' *t-l ' 

Then, 

"tin " *t,r+l,n ®r+l,rfj,n "t-j ' (*'7) 

where a^j^ Is the (l,j)-th element of A^, and model (B.l) can be 

written as 

"t ' â„ + S- (B-8) 

where 0^ = (0^, gg, a^, a^, a^) A^^. For the stationary 

case the asymptotic distribution of the least squares estimator Is 
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established In the following theorem. 

Theorem B.4. Let model (B.l) hold with | m^ | < 1. Let {e^} be a 

sequence of random variables satisfying (B.2). Considering the 

parametrization in (B.8), define 

t=l t=i 

Should the matrix be singular, the inverse is replaced by the Hoore-

Penrose generalized inverse. Assume 

-1 
lim sup ( Z x2,) x2. =0, i = l,2,...,r 

n-H» l<t<n s-1 
(B.IO) 

and 

n 
lim sup (n + Z x^ ) x^. =0, i = r+1, r+2, ..., r+p. 
n~ KtSn B-l 

Let be the diagonal matrix whose elements are the square roots of 

the diagonal elements of z" , X' X. and define 
° t=l "-tn -tn 

s„ - «tn> C-
t=i 

IL 
Let ' be the symmetric positive definite square root of G^. Then, 

N(0, I) as n + 



181 

Proof. (The proof is very similar to the one used by Fuller, Hasza, and 

Goebel. An outline of the proof is given.) The probability that 

I * 0 converges to one as n Increases. We have 

"  V - 1  - 1  "  
D  ( 0  - 8  )  =  G  D  Z  e ^ .  
~'n ^n ^n ^n . . ̂ tn t t=l 

Consider 

t=i " t-1 ^*t,r+l,n jfj ®r+i,r+j,n "t-j^ 

By the definition of u^ and Theorem A.12, 

_i ^ p 
n Z —*• Y„(j), (B.ll) 

t=l J 

where u^ = 0 for t < 0 and Y^Cj) is the covariance function of a 

stationary autoregresslve process with characteristic equation 

nf - a, mf ^ - ... - a = 0. It follows that [n ^ E" , W^. ] ^ is 
1 p t"l tin 

Op(l). Now, 

s-2 

•  ̂Ji il ji "sJn Vj) 

(B.12) 
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and the right side of this equation converges to zero because 

I e{U u.} I Is bounded by a multiple of xl' '^1 for some 0 < X < 1. 
t "j 

Therefore, for j = 1, 2, p 

( Z }]-^/2 I z w2 1. 
t-1 tj* t-1 

Let 

8n - + n . 
t=l 

%tn " (*tln' *t2n' *t,rfp,n^' 

/o g , , 

-n ^ ^0 r^ l ^ ' 

-1 * 
r ^ « E [ n  Z  ( " t _ l , U t - 2 ' ' ' ' ' " t - p ) '  ( " t - l ' " t - 2 ' ' ' ' ' " t - p ) ) '  

t=l 

Note that II Is well-defined because T Is positive definite and 
^n 

that pllm (G ^ - H = 0. Consider the linear combination 
"^n ~n * n+oo 

® ' -  i l n  

where % Is a vector of arbitrary real numbers such that 

g' Q # 0. Because 

Ji "c ji 
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we can write 

»' - Jr" ' J, " °p"' 

- Snn + 

where 

" t-i 

hn • <8tn + 

Stn • /,"!< ̂  "tin 

'tn " "rti.n °r»i,r+j,n "t-j' 

P (- 1/, ) 

^r+i,n " jfj ^rfj,r+l,n ^r+j' 

and ^ is the (j,i)-th element of ^ . Observe that 

{gj-jj! t » 1,2,... ,n} is fixed and that the are fixed linear 

combinations of {u^.j: j " 1,2,.v.,p} for a particular n. 

Because Yq, Y_j, ..., are fixed, the sigma field 
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generated by Zj^^) is the sigma field generated by 

(e^, eg, ej^). Therefore, 

G(2cn I " 'L = + 'tn>' 

Let 

"L - «L 

and 

E(*tn) " /, [«tn + ̂ (in)] 
t"l t=i 

Using (B.IO) and (B.U), 

C C -> '• 

To apply the results of Scott (1973), it is sufficient to show that 

{Z^^} satisfies the Llndeberg type condition 

C }, « |:t.l ' = %'l —> »• 
t=l 

Note that 

C /, :( |:t.l ' ̂ V» 
t=l 
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By the definitions of H and H ^ " (ij* ij) o^. Now, 

l^tnl'"") - l«tn+\nl' " ' l s r' l  

{EleJ»*:")'/; 1 

<L'/2 22« l|g,,|:+" + (E{|vc.|*+:")) % J 

Since we can write 

P 
V 
tn " jfJ ^tjn "t-j' 

where = 0(n ^ ) it follows that 

- OC-'-/::). Note, 

<r i I'tni- < c.% I«t.l" 

and 
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• " jl 'I 
*2 «2 1. 
t,r+j,n r+j,n 

which tends to zero by (B.IO). It follows that S converges in 
^ nn nn 

distribution to a N(0,1) random variable. The conclusion follows 

because % was arbitrary. • 

For a particular n, the elements of ^ are fixed linear 

combination of the parameters a and g. Therefore, for large samples, 

the above theorem justifies the use of the ordinary regression 

statistics in making inferential statements regarding the parameters of 

the model (B.l). 

Now we consider the case where m, " 1. Consider the model 

(B.l). We consider two caseo of practical interest. ' 

(a) = 1 and 

(b) 5 1, *^2 - t. 

We introduce an additional modification of the parametrization of 

(B.8), letting 

+ -1 n 
VZ " W^ - n Z W - - W 
tpn tpn spn tpn .pn 

for case (a) and 
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"tpn " "tpn - ".pn " 'vm" W' 

for case (b), where W is the sample mean of and b is the 
• pn tpn wn 

least squares coefficient obtained by regressing on 

t - (n+1). This transformation differs from that used in Theorem 

(B.4) because the coefficients of and defining are 

functions of the random variables {"tlt-i* 

Let è(u)n be the matrix whose first r + p - 1 rows are the 

first r + p - 1 rows of and whose last row é(u)r+p ^ is given 

by the above transformation so that 

^tpn ° &(u)r+p,.,n (*tl' *t2' *tr' Vl Vp^'* 

The transformed regression equation is 

^t ^(u)tn ®(u)tn ̂  ®t' 

where 

%(u)tn " &(u)n(*tl' *t2' " ' *tn' Vl' Vp^' 

®(u)tn " (*1' ̂ 2 ^r' "l' "2 V -(u)n* 

The asymptotic distributions of the least squares estimators are 
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given In the following theorem. Proofs of the theorems parallel the 

proofs given by Fuller, Hasza, and Goebel with the modifications used in 

the proof of Theorem B.4 and the results of Chapter XI. 

Theorem B.5. Let model (B.l) hold with m^ = 1 and ny, ..., m^ 

less than one in absolute value, where the m^ are the roots of 

m^ - a^m^ ^ - ... - - 0. Let {e^} satisfy the conditions (B.2). 

Let 

â<u)n - ' j, î(u)tn 1 J, ï(„)tn 

Let be the diagonal matrix whose elements are the square roots 

of the diagonal elements Z &(u)tn ~(u)tn* ^^^t 

-1 , -1 
~(u)n " S(u)tn ~(u)tn &(u)tn 5(u)n' 

^(u)n " ̂ ^(u)n 2(u)n ^®(u)n ®(u)n^' 

1/9 
where is the positive definite square root of Assume 

(B.IO) Is satisfied and 

for 1-2, 3 r with case (a) and for 1 - 3, 4, ..., r with case 
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(b). Assume that for 1 • r + 1, r + 2, r + p, 

_o n 
lim n Z *2 » 0, 
n-Ko t-1 

ll; (n + ' ̂ in Vh.ln " »• 

Then the last element of 6^ converges In distribution to the statistic 

A  A A A  

for case (a) and to for case (b), where and are 

characterized in Chapter II. The limiting distribution of the 

remaining r + p - 1 elements of 6^ is normal with zero mean and 

identity covariance matrix for both cases. 

Proof. Following Fuller, Hasza and Goebel (1981), we have 

t " * t " * 
u = Z Z V. e. - E Z V. e, 
^ 1-1 J-0 ^ 1-1 j-t-1+1 J 

- + Bt , 

* 
where the v^ satisfy the homogeneous difference equation 

\ - ',+iVi - — - V-iVpti • " • 

with the initial conditions Vq • 1 and v^ = 0 , for 1 < 0 . It 

• 00 I ife I 00 I * ) 
follows that ^j=oII ^ " and l^j| < M X for some 

M < " and some 0 < X < 1 . 

+ + 
Let and denote the portions of and B|. that are 
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orthogonal to under (a) and orthogonal to and \))^2 under 

(b). Following Fuller, Hasza and Goebel (1981), we get that 

• V> • 
t"l 

and that 

n » . * n t-1 

for m " 1,2,..., p . By (B.13), the first q elements of the last row 

of G(y)Q converge in probability to zero because 

[sJ.i(A;J„)2]''^ " • For j " 1,2,'.', P"! 

j t-1 * 

^tjn " *t,q+J,n ®q+j,q+i,n ®t-j 

Now we will establish that 

for J " 1,2,..., p-1 . Note that 
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til tfl *t,q+j,n^t 

n j 

^ t"l i-1 ^9+j,q+i,n^;^lQ \ ®t-k^^*t,p+q,n 

Since 

n * . * n t-1 

*t,q+j,n^t^^ ^ t *t,q+j ̂ ^Vh.q+j ,n 

and 

by (B.13) and (B.IO), we get 

I "«-'"'M C"«" 

n 
= I E (W 

t-1 

n 
'+ )2 Ë W2 ]-^/2[ I 
tpn 

t"l 
tjn' t-1 i-1 Vj,q+i,n^Jo ""k^t-k^^n^ 

+ Op(l) . 

Since 
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n ^ Z A " 0 (n ) , 
t-1 ^ P 

[ Z {t -V2(n+1)}^] ̂  Z {t - V2 (n.+l)}A^ " 0 (n ^ ) , 
t-1 t-1 

n t-1 
0_(n ) . 

and 

tl t^i ^ g tn 
Z {t -1/^ (n+1)} I V. e . - 0 (n ) , 

t-1 . k-0 ^ P 

we get 

l"tpAj. 

Vi.^.n j/2 -îW'j, S>' + 

Now consider 

n t-1 * t 
2 ( Z Tk Z e ) 

t-1 k"0 8-1 

n t * n t * t 
Z Z V e2 + Z Z V Z ej^e 

t-1 j-1 c J J t-1 j-l c J k_i K ] 

''J 
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where 

n t ^ 

^ " "J • 

Now 

n t 
Var{ S E 

t-1 j=i J ^ ^ 

n t-1 t+h 

' ̂ t^i Jo ' j-i 't+h-j'jVh,j> 

n t-1 t t+h 
< 2 Z E E 

t-1 h-0 j 

* * 

1 A-l ®A+h,A^ 

n t-1 t t * * 

t-1 h^ j!i ji ̂ t-jVii+h^' 

' ' Ji Z ji 

0(n2) , 

where we have used E{e^e|} - , k * i . Therefore, 

plim[ E (wt „)2 E W2. g (%+ )w ] 

t-1 
tpn 

t-1 
tjn 

t-1 
tpn tjn 
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for j = 1,2,..., p-1 , and the first q + p - 1 coefficients of the 

last row of S(u)n converge in probability to zero. 

By Theorem B.4, the limiting distribution of the vector composed of 

the first q + p - 1 elements of 5u(n) ̂ t"l ^(u)tn®t multivariate 

normal. Also, the last element of ~(u)tn®t 

K.1 vin 
+ Op(I) ,  

+ + + 
where u^ =• A^. + B^. . From the results of Chapter II, the limiting 

distribution of this statistic is that of the x -statistic for case (a) 

A 
and that of for case (b). 0 

Similarly, Theorem 3 of Fuller, Hasza and Goebel can be extended to 

the case where {e^} is a sequence of martingale differences satisfying 

the conditions (B.2) and the proof is not included. 

Theorem B.6. Let model (B.l) hold with m^ = 1 and mg, m^, ..., m^ 

less than one in absolute value. Let {e^} satisfy the conditions in 

(B.2). Assume (B.IO) is satisfied and 

_2 n 
lira n % Xf n+r n " " (B.14) 
N-HX. T-1 

and 

il: ' jl X "Ir+P..'" 1 JÔ ' "•tln't+h.ln ' » 
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Vo 
for 1 = 2, ..r + p - 1. If 5^» âjj» defined in 

Theorem B.4, then 

5.(L - V »(0. J) as n » ». 


