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ABSTRACT 

The basic-helix-loop-helix PAS (bHLH-PAS) proteins are a family of transcription factors 

that mediate diverse processes, including cellular adaptations to environmental signals and 

developmental cell fate decisions. The C. elegans genome encodes 5 bHLH-P AS proteins. 

They are AHR-1, HIF-1, AHA-1, C15C8.2/CKY-1 and T01D3.2. The AHA-1 protein is the 

C.elegans ortholog of the mammalian aryl hydrocarbon receptor nuclear translocator 

(ARNT). AHA-1 can dimerize with multiple bHLH-PAS members such as AHR-1 and HIF-

1, and the complexes have important functions. Although ahr-1, hif-1 double loss-of-function 

mutants are viable, animals homozygous for null mutations in aha-1 arrest development as 

young larvae. This data indicates that AHA-1 has other functions in addition to its functions 

in ahr-1 and hif-1 signaling. In this dissertation, I continue the analysis of AHA-1. I 

confirmed that aha-I loss-of-function animals arrest at first or second larval stage with small 

body size and cuticle defects. The aha-I-defective worms do no have obvious feeding defects 

prior to arrestment. AHA-1 can form DNA-binding complexes when expressed in vitro. 

AHA-1 is also expressed in germ-line cells in addition to most somatic cells. C15C8.2/CKY-

1 is another bHLH-PAS protein in C.elegans. It has been shown that CKY-1 is mainly 

expressed in the worm's feeding organ-pharynx and the chimeric gene cky-l:aha-1 can 

rescue aha-I loss-of-function phenotype. By RNAi experiment, I show that RNAi-treated 

worms showed obvious delays in development and some of them had cuticle defects. 

Expression of AHA-1 from two other promoters, myo-2 and T01D3.2 didn't rescue the larval 

arrest phenotype of aha-1- defective worms. We predict that CKY-1 has essential functions 

in C.elegans development. 
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CHAPTERl 

General Introduction 

During development, the individual cells of any living organism need to sense 

environmental and developmental signals and make appropriate responses, such as initiating 

cellular division, differentiation, proliferation, or apoptosis. There are many ways to perform 

such tasks. Among them, changing the activity of transcription factors and, therefore, altering 

gene expression is one essential and effective method. The bHLH-PAS proteins are a family 

of transcription factors that contains a basic-helix-loop-helix motif and a PAS domain. These 

proteins control a series of important processes such as toxin metabolism, response to 

hypoxia and circadian rhythms. In this dissertation, I continue the analysis of the bHLH-PAS 

proteins in a powerful genetic system, the nematode Caenorhabditis elegans. I characterize 

the essential functions of AHA-1, a bHLH-PAS protein. I also assess the requirement for 

Cl5C8.2/CKY-l, another bHLH-PAS protein and an AHA-1 dimerization partner, during 

C.elegans development. 

LITERATURE REVIEW 

The model organism Caenorhabditis elegans 

C.elegans is a small, rapidly growing soil nematode found commonly in many parts 

of the world. It is almost invisible to the naked eye, and is commonly viewed under a 

microscope. The food source for C.elegans is OPSO, a bacteria, so it can be conveniently 

maintained in the laboratory. Adults are transparent and about Imm in length. The worms 

can be propagated on agar plates with a bacteria lawn. C.elegans has two sexes, 
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hermaphrodite and male. Males arise spontaneously in hermaphrodite populations with a 

very low frequency (-11500). Hermaphrodites can produce both oocytes and sperm and self 

fertilize, while males only produce sperm and need to mate with hermaphrodites for 

proliferation. The life cycle for C.elegans is about 3 days under optimal conditions. After 

embryogenesis, newly hatched larvae grow quickly through a series of four molts to become 

adult animals. This short life cycle makes C.elegans a good model for genetic analysis 

(Wood et al. 1988). 

C.elegans is a simple organism. The adult hermaphrodite has only 959 somatic 

cells, and the adult male has only 1031 somatic cells. The complete anatomy of C.elegans is 

known with the help of electron microscope (White et al. 1976). The location and 

characteristics of all somatic cells in the adult hermaphrodite and male, and the complete cell 

lineage have been well studied and are all clear by now (Sulston & Horvitz 1977; Sulston et 

al. 1983). 

C.elegans is a good model for both forward and reverse genetic analysis. Chemical 

mutagens such as ethylmethanesulfonate (EMS) induce mutations at a high frequency. In 

some strains, transposons are mobile. Transposon insertion is also an effective method to 

create mutations in C.elegans. Once the mutant is isolated, it can be frozen and stored in 

liquid nitrogen for years and still keep its appropriate phenotype after thawing and recovery 

(Epstein et al. 1995). 

Sequencing of the C.elegans genome was essentially complete by 1998. At that time, 

C.elegans was the only multicellular organism for which the sequence was known. It was 

completed in Nov 2002 (WormBase News and Notes). The 97-megabase sequence predicts 

over 19,000 genes (The C.elegans Sequence consortium, 1998). Over 17300 genes have been 
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shown to encode mRNAs, as determined by open-reading-frame sequence tags (Reboul et al. 

2001). There are several internet resource sites. Wormbase is one powerful resource for 

C.elegans genomic information (Stein et al. 2001). Knowing the genomic sequence of 

C.elegans is only the first step. The next challenge is to determine exactly what all of these 

genes do in terms of the development and physiological functioning of the organism. Large-

scale double-stranded RNA interference (RN Ai) and microarray experiments are two 

important ways to assign functions to specific genes. 

RNAi is the process by which double-stranded RNA (dsRNA) induces the homology-

dependent degradation of cognate mRNA. This phenomenon was first discovered in 

C.elegans by Fire and his colleagues in 1998 (Fire et al. 1998). At that time, people already 

knew that both sense RNA and antisense RNA could suppress specific gene expression in 

worms (Guo et al. 1995). It was surprising to find that dsRNA was at least tenfold more 

potent as a silencing trigger than were sense or antisense alone. From then on, double-

stranded RNA interference became a valuable and powerful tool in the analysis of gene 

function in C.elegans. There are 3 ways to introduce dsRNA into worms: injection, soaking 

and feeding. Introduction by injection is injecting dsRNA into the gonad of hermaphrodites 

(Fire et al. 1998). Soaking requires soaking worms in buffer containing dsRNA (Tabara et al. 

1998). Through RNAi-by-soaking, 2500 genes were analyzed and 27% of them showed 

detectable phenotypes (Maeda et al. 2001). Worms can also be fed with bacteria expressing 

dsRNA (Timmons et al. 1998). Large-scale functional genomic analysis by feeding RNAi 

was performed. A RNAi library of 16757 bacteria clones was constructed, representing 

-86% o f the 19427 predicted genes in C.elegans. Mutant phenotypes were observed for 

1722 genes. (Karnath et al. 2003). 
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To determine the efficiency of the screen, Karnath and his colleagues assessed their 

ability to identify correctly the known loss-of-function phenotypes for previously studied 

loci. They detected RNAi phenotypes for 63.5% of 323 detectable loci. 92% of the detected 

RNAi phenotypes were similar to the known mutant phenotypes. They found that RNAi is 

more effective for analyzing genes that can cause embryonic or larval lethality and sterility 

than genes involved in post-embryonic development. 77 .9% of the known genes with lethal 

phenotype were detected by RNAi. Less than half (42.2%) of the genes that have post-

embryonic functions have RNAi phenotype (Karnath et al. 2003). Also, genes involved in 

neuronal functions are more resistant to RNAi than other cell types (Tavemarakis et al. 2000, 

Timmons et al., 2001). Thus, the worm strain that has RNAi phenotypes for genes with post-

embryonic functions or neuronal functions was needed. Through studying the mechanism of 

RNAi, researchers found that RNA directed RNA polymerase plays an essential role in this 

process (Sijen et al. 2001). Since only a few trigger dsRNA molecules are sufficient to 

inactivate a continuously transcribed target mRNA for long periods of time, there must be 

some amplification processes involved. It turns out that dsRNA is cleaved into small 

fragments of 21-23 nucleotides (siRNA) (Zamore et al. 2000), and can serve as primers and 

initiate the RNA-directed RNA polymerase chain reaction to amplify the interference 

(Lipardi et al. 2001). Loss of the putative RNA-directed RNA polymerase encoded by the 

rrf-3 gene makes C.elegans hypersensitive to RNAi. This hypersensitive strain is especially 

effective for genes that have post-embryonic phenotypes and the genes that are involved in 

neuronal function. Of the 80 dsRNAs analyzed, there were 26 that induced phenotypes in a 

wild type genetic background. There were additional 23 in rrf-3 mutant background. For 
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post-embryonic phenotypes, there were 4 detected in wild type, while 18 were detected in 

mutant worms (Simmer et al. 2002). 

basic helix-loop-helix-PAS (bHLH-PAS) proteins 

The family of transcription factors that contain bHLH and PAS motifs controls a 

variety of developmental and physiological events. The term PAS is an acronym derived 

from the three first identified proteins in this family: PER (the product of the Drosophila 

Period gene), ARNT (mammalian Aryl hydrocarbon receptor nuclear translocator) and SIM 

(the product of Drosophila single-minded gene). The PAS domain is a multi-functional 

interaction domain found in a broad range of organisms, from bacteria to human. The family 

of PAS-containing proteins is proposed to mediate many important processes (Crews et al., 

1999; Gu et al., 2000). 

The known bHLH-PAS proteins perform their functions by forming heterodimeric 

DNA-binding complexes. One partner of the heterodimer is constantly expressed while the 

other partner's expression is precisely regulated by developmental or environmental signals 

(Crews 1998). The PAS domain is used for protein dimerization and ligand binding (Huang 

et al. 1993; Reisz-Porszasz et al. 1994). The PAS domain is about 260-310 amino acids and 

contains two well-conserved repeats: PASA and PASB. Each repeat is about 50 amino acid 

in length (Nambu et al. 1991; Crews et al. 1988). The helix-loop-helix domain is located near 

the N-terminus and promotes dimerization. The basic domain is the DNA binding domain. 

Each basic domain in a dimer binds its own half site in a sequence-specific manner (Murre et 

al. 1994). 
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The bHLH-PAS proteins are a family of transcription factors that can alter gene 

expression to adapt to environmental and developmental changes. The most well understood 

pathways are the aryl hydrocarbon receptor pathway and the hypoxia response pathway. 

Aryl hydrocarbon receptor pathway 

The mammalian aryl hydrocarbon receptor (AHR) is a ligand-activated transcription 

factor. It mediates many of the carcinogenic and teratogenic effects of certain environmental 

pollutants. In the absence of ligand, AHR is found in the cytoplasm complexed to 90 kDa 

heat shock protein (Hsp90) and AHR interaction factor. Association with these proteins is a 

prerequisite state for AHR's activation (Perdew GH et al. 1988; Carver LA et al. 1994; Denis 

Met al. 1998; Carver LA et al. 1997,1998). The endogenous ligands for AHR aren't known. 

However, an AHR- activating compound was successfully identified from porcine lung 

recently (Song Jet al. 2002). Certain harmful chemicals, such as 2,3,7 ,8-tetrachlorodibenzo-

p-dixon (TCDD) and benzopyrene, are AHR-activating ligands (Birnbaum et al. 1994; Bock 

et al. 1994). Upon binding ligand, AHR translocates to the nucleus, dissociates from Hsp90, 

and forms a heterodimer with the aryl hydrocarbon receptor translocator (ARNT) (Hankinson 

et al. 1995; Swanson et al. 1993). The complex then binds DNA elements called xenobiotic 

response elements (XRE) of target genes and changes genes transcription (Mclane KE et al. 

1994; Shen ES et al. 1992). The consensus XRE sequence is TNGCGTG. AHR binds to the 

TNGC half site, and ARNT binds to the GCG half site (Swanson et al. 1995; Bacsi et al. 

1995). The target genes of AHR:ARNT complex include genes encoding xenobiotic 

metabolizing enzymes (XME). The up-regulation of such enzymes can increase metabolism 
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of certain insulting chemicals and decrease their biological half-life (Fujisawa-Sehara et al. 

1987; Lusska et al. 1993). 

Besides its function in toxin metabolism, AHR also has an important role in 

development. ahr-defective mice strains have been developed by three independent 

laboratories. Although there are some phenotypic differences, these mice commonly show 

defects in liver growth and development (Fernandez-Salguero et al. 1995; Schmidt et al. 

1996). Researchers found that AHR plays a role in the resolution of fetal vascular structures 

during development. The smaller hepatocyte size is the result of massive portosystemic 

shunting in null animals (Lahvis et al. 2000). As expected, ahr null mice exhibit decreased 

constitutive expression of XMEs in response to exposure to dioxins (Mimura et al. 1997). 

C.elegans AHR-1 and AHA-1 are orthologs of mammalian AHR and ARNT. These 

two proteins are encoded by the ahr-1 and aha-I genes respectively, and they share 

biochemical properties with their mammalian cognates. AHR-1 binds Hsp90 in vitro, and 

AHR-1 and AHA-1 can interact to bind XRE sequences specifically (Powell-Coffman et al. 

1998). In C.elegans, AHR-1 is expressed in a subset of neurons. Animals lacking ahr-1 

functions show specific defects in neuronal differentiation. (Qin and Powell-Coffman 

submitted, 2003) 

The AHR homolog in Drosophila is the gene product of spineless-aristapedia (ss). 

The ARNT homolog in Drosophila is the gene product of tango (tgo). Ss and Tgo can form 

heterodimers in vitro, and the complexes cause transcriptional activation of reporters 

containing mammalian AHR:ARNT binding sites (Emmons et al. 1999). This indicates that 

Ss:Tgo heterodimers are very similar to AHR: ARNT heterodimers in DNA-binding 

specificity and transcriptional activation ability. Null mutants of ss are viable and show some 
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defective phenotypes: The distal region of the leg is deleted, and sensory bristles are reduced 

in size. The most striking mutant phenotype is a transformation of distal antenna into distal 

leg. These effects suggest that Ss plays a role in specifying distal antenna} identity (Duncan 

et al. 1998). 

The function of the bHLH-PAS protein in hypoxia response 

Oxygen homeostasis is essential for many living organisms, from bacteria to 

mammals. Oxygen deprivation endangers the survival of animals, because it is required for 

the oxidative phosphorylation, which generates ATP. Many diseases that are common causes 

of mortality, such as heart disease, cancer and cerebrovascular disease, are related to oxygen 

homeostasis (Semenza et al. 2000). Hypoxia inducible factor 1 (HIF-1) mediates cellular and 

systemic homeostatic responses to reduced oxygen availability. HIF-1 contains two subunits: 

HIF-1 alpha and HIF-1 beta. Both of them are bHLH-PAS proteins (Wang et al. 1995). HIF-

1 beta is another name for the aryl hydrocarbon receptor nucleus translocator (ARNT). HIF-1 

beta is constantly expressed in most somatic cells under hypoxia or normoxia, while the level 

of HIF-1 alpha is precisely regulated by the cellular oxygen level (Wang et al. 1995). Under 

normoxic conditions, the Von Rippel-Lindau tumor suppressor protein (pVHL) binds 

directly to the alpha subunit and targets its ubiquitination and proteosomal degradation 

(Huang et al. 1998). Thus the steady-state levels of HIF-1 alpha are low, and relatively little 

transcription complex is formed (Salceda et al. 1997). Under hypoxic conditions, the 

ubiquitin-proteasome pathway is inhibited, and HIF-1 alpha translocates into the nucleus and 

forms heterodimers with ARNT (Sutter et al. 2000). The complex then binds to the core 

DNA sequence A/(G)CGTG, this sequence is known as hypoxia response element (HRE). 
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Thus, target genes expression is altered (Semenza et al. 1992; Ho et al. 1995). The products 

of some target genes, such as EPO, VEGF, promote oxygen delivery. Some other target 

genes have functions in switching metabolism to low oxygen consumption. 

The oxygen sensor that responds to HIF-1 activation has been sought for a long 

time. One breakthrough was the identification of an oxygen-dependent degradation (ODD) 

domain within HIF-1 alpha that controls its degradation by the ubiquitin-proteasome 

pathway. The ODD domain is located in the central region of HIF-1 but does not overlap 

with the PAS domain (Huang et al. 1998). Comparison of the available ODD sequences of 

human and mouse HIF-alpha proteins revealed a domain of 15 amino acids with strong 

sequence conservation between all the members. Selective alanine substitutions of 8 amino 

acids (561-568) stabilized the protein in normoxic conditions (Srinivas et al. 1999). An 

alanine scan of this region showed that Leu562 and Pro564 were essential for specific 

binding to p VHL. The interaction between human p VHL and the ODD domain of the HIF-1 

alpha subunit requires hydroxylation of the proline residue (P564) by a prolyl-4-hydroxylase 

(Jaakkola et al. 2001). Since the process of hydroxylation requires oxygen as a co-substrate 

and iron as a co-factor, the HIF-1-prolyl-hydroxylase (PH) is proposed to function as a 

cellular oxygen sensor (Ivan et al. 2001). 

In C.elegans, a similar complex to mammalian HIF-1 mediates the response to 

hypoxia. This complex consists of HIF-1 and AHA-1, which are the C.elegans homologs of 

HIF-1 alpha and HIF-1 beta respectively. This suggests that the mechanism of hypoxia 

signaling be likely conserved among metazoans (Jiang et al. 2001). The enzyme and the 

putative oxygen sensor that hydroxylates a proline within the ODD domain were first 

identified in C.elegans (Epstein et al. 2001). It is encoded by egl-9 gene, and egl-9 mutants 
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show striking up-regulation of HIF-1 levels in C.elegans. This enzyme is well conserved 

between species. Using egl-9 sequence to search human genomic databases, three 

mammalian homologs designated "prolyl hydroxylase containing" (PH) 1, 2 and 3 were 

identified (Epstein et al. 2001; Bruick et al. 2001). 

Besides HIF-1 stability, the activation of HIF-1 may also be important to hypoxic 

response. There are two transcription activity domains in HIF-1 alpha. One overlaps with the 

ODD domain, and the second is near the c-terminus (Pugh et al. 1997). Phosphorylation of 

HIF alpha may regulate its transcriptional activity (Wang et al. 1995; Salceda et al. 1997). 

Recruitment of general transcriptional co-activators including CBP/p300, SRC-1 or TIF2 had 

been shown to potentiate HIF-1 alpha transcriptional activity (Ema et al. 1999; Carrero et al. 

2000; Gu et al. 2001). 

HIF-1 plays an important role in embryonic vascularization. Early mammalian 

embryonic development proceeds under reduced oxygen levels. HIF-1 alpha null mutant 

mice arrest and die at day 11 of gestation with neural tube defects, cardiovascular 

malformations, and marked cell death within the cephalic mesenchyme (Iyer et al. 1998; 

Ryan et al. 1998). HIF-1 alpha is also required for efficient tumor formation. Angiogenesis is 

a crucial step in tumor growth and progression. HIF-1 regulates angiogenesis by controlling 

the expression of vascular endothelial cell growth factor (VEGF). Thus, the study of HIF-1 

and hypoxia-response pathway has important meaning for anticancer study. 

ARNT is an important bHLH-PAS protein 

The aryl hydrocarbon nuclear translocator protein (ARNT) is a founding 

member of the bHLH-PAS family. ARNT is a well-conserved protein between species. 
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The Drosophila ARNT hornolog is called Tango. Its bHLH and PAS domains are 92% 

and 53% identical to its mammalian hornologs, respectively (Sonnenfeld et al. 1997). 

The C.elegans ARNT hornolog is called AHA-1. Its bHLH and PAS domains are 84% 

and 41 % identical to its mammalian hornologs, respectively (Powell-Coffman et al. 

1998). ARNT and its hornologs are common dirnerization partners for multiple 

bHLH-PAS proteins. The dimers have specific cellular or developmental functions. 

ARNT family proteins can form heterodirners with the aryl hydrocarbon receptor 

(AHR), HIF-lalpha, and mammalian single-minded hornolog Sirnl. The 

corresponding complexes mediate toxin metabolism, hypoxia response and neuronal 

development respectively (Hankinson et al. 1995;Wang et al. 1995; Probst et al. 

1997). Co- irnrnunoprecipitation and HPLC molecular mass assays showed that 

ARNT also forms hornodirners in vitro(Sogawa et al.1995). No in vivo function for 

ARNT hornodirner has been reported. 

Drosophila Tgo is able to interact with the AHR hornolog Spineless-aristapedia 

(Ss), Single-minded (Sim), and Trachealess (Trh). The corresponding complexes 

regulate distal antenna! identity, CNS rnidline development, and tracheal development 

respectively (Emmons et al.1999; Margaret et al. 1997; Sonnenfeld et al. 1997). Tgo can 

also interact with the Drosophila HIF-lalpha hornolog Similar (Sirna) in vitro (Lavista-

Llanos et al. 2002). 

In C.elegans, AHA-1 had been shown to interact with AHR-1 and HIF-1. The 

corresponding complexes mediate neuronal development and hypoxia response (Qin and 

Powell-Coffman submitted; Jiang et al. 2001). In hif-J loss-of-function animals, AHA-1 
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is not efficiently nuclear localized in intestinal cells (Jiang et al. 2001). Thus, in this cell 

type, AHA-1 nuclear localization is dependent on its dimerization partner HIF-1. 

What's already known about C.elegans AHA-1 

To understand the function of AHA-1 in C.elegans development, aha-I deletion 

mutations were generated. aha-I(iaOI) homozygous mutants arrest their development as 

young larvae and the penetrance is 100%. Most of the worms arrest at first or second larval 

stage. The remainder arrest before adulthood. The arrested worms have feeding defects. The 

longer the time of arrest, the severer the phenotype. 35% (n=94) of the terminally arrested 

larvae had a "stuffed" pharynx 3-4 days after hatching. In these animals, bacteria food was 

visibly lodged in the pharynx (Jiang 2002). 

To test if aha-I mutant phenotype can be rescued by aha-I genomic sequence, a 

DNA construct containing the aha-I genomic sequence was injected into the gonad of aha-

I(iaOJ) heterozygous worms. The aha-I (iaOJ) homozygous loss-of-function progeny 

carrying the extrachromosomal array of aha-I genomic sequence can develop to adults and 

give rise to progeny. However, this strain grows slower than wild-type worms (Jiang 2002). 

A former graduate student in the lab, Huaqi Jiang, proposed that AHA-1 might 

execute its essential developmental function with another bHLH-PAS protein, 

C 15C8.2/CKY-l. He generated cky-I: gfp transgenic worms, this reporter is expressed in a 

subset of pharyngeal cells, including muscle cells, g2 gland cell, hypodermal cell, marginal 

cells and pharyngeal-intestinal valve cells. In order to test whether AHA-1 can form 

heterodimers with CKY-1 in vitro, he performed the electrophoretic mobility shift assays. 

When CKY-1 and AHA-1 were incubated together, they bound labeled probe that contained 
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the sequence 5'-TGCGTG, thereby decreased the mobility of the probe. Formation of the 

DNA-binding complex requires both AHA-1 and CKY-1 because neither CKY-1 nor AHA 

alone can bind to the probe to alter its mobility. Also, this DNA binding is sequence specific. 

To test whether expression of AHA-1 only in the pharynx could rescue the aha-1 loss-

of-function phenotype, a chimeric gene was generated. The cky-1 promoter was fused to the 

aha-1 coding region, in order to direct the expression of AHA-1 in the pharynx. This 

construct could rescue the larval arrest aha-l(iaOJ) phenotype (Jiang 2002). 

DISSERTATION ORGANIZATION 

The C.elegans genome encodes 5 bfilH-PAS proteins, which are AHR-1, IIlF-1, 

AHA-1, CKY-1 and T01D3.2. In my research, I focus on the analysis of AHA-1 and CKY-1. 

Chapter I is the literature review. First, I introduce the genetic model organism-

C.elegans, including the general description, the genome, and the important approach used 

for genomic functional assay---RNAi. Then I describe the bfilH-PAS transcription factors, 

including their structure and function, the two well-studied pathways: aryl hydrocarbon 

receptor (AHR) pathway and hypoxia pathway. Finally I describe the importance of the 

ARNT protein and the experiments of this project done by a former graduate student in the 

lab. 

In chapter II, I describe the ARNT and its Drosophila and C.elegans homolog in 

detail. I list the results of my experiments, which include the phenotype of aha-1 mutant, the 

ink feeding assay of the rescued aha-1 mutants, the gel mobility shift assays of AHA-1 and 

AHA-1 immunolocalization data. Finally I discuss the results. 
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In chapter III, I give an introduction of another bHLH-PAS protein-CKY-1. I 

explain that the nematode pharynx, Drosophila dorsal vessel and vertebrate heart are 

evolutionary conserved. Then I describe the RNAi data of cky-1, the rescue data of two 

chimeric genes and the antibody staining data of cky-l:aha-1 rescued worms. Finally I 

discuss the results. 

Chapter IV is the general conclusion. I summarize the results of my experiments. 
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Figure 1. Structure of the three founding members of bHLH-PAS proteins. Shown are PER, 

Drosophila Period protein; ARNT, mammalian aryl hydrocarbon receptor nuclear 

translocator; SIM, Drosophila single-minded protein. The bHLH and the PAS domain are 

indicated in the figure. The percentage of identities of PER and SIM in the bHLH and PAS 

domain, as compared with ARNT, are indicated. 
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bHLH PAS ---
ARNT 

Tgo 
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Figure 2. Structure of ARNT bHLH-PAS protein subfamily. Shown are ARNT, 

mammalian aryl hydrocarbon receptor nuclear translocator (ARNT); Tgo, Drosophila 

Tango protein; AHA-1, C. elegans AHA-1 protein. The conserved basic-helix-loop-

helix (bHLH) domains are represented by black boxes. The Per-Amt-Sim (PAS) 

domains are indicated by gray boxes, which contain two imperfect repeats called PAS 

core domains, A and B. The percentage of identities of Tgo and AHA-1 in the bHLH and 

PAS domain, as compared with ARNT, are indicated. 
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CHAPTER2 

AHA-1 plays an essential role in C.elegans development. 

ABSTRACT 

To understand the essential functions of aha-I, I further characterized the aha-I-

defective phenotype and the AHA-1 expression pattern. I confirmed that aha-I loss-of-

function animals arrest at first or second larval stage with small body size and cuticle defects. 

In a prior study, terminally arrested aha-I-defective worms were shown to have feeding 

defects. Here, I demonstrate that the arrest phenotype occurs prior to these defects. When 

AHA-1 is expressed in vitro, it can bind DNA containing two ARNT half sites. It was shown 

before that AHA-1 is expressed in most, if not all, somatic cells. Here, I show that it is also 

expressed in the germline cells. 

INTRODUCTION 

Sensing and adapting to environmental stress and developmental signals is essential 

for the survival of any living organism. In many cases, this process involves changing gene 

expression. bHLH-PAS proteins are a family of transcription factors that mediate diverse 

processes including cellular division, differentiation, proliferation, and apoptosis (Jin et al. 

2001; Kolluri et al 1999; Brusselmans et al 2001). The aryl hydrocarbon receptor nuclear 

translocator (ARNT) is a founding member of the bHLH-PAS family. ARNT can dimerize 

with multiple bHLH-PAS proteins. The mammalian AHR:ARNT complex is the most 

studied dimer of this family. This complex controls metabolism of some toxins. AHR is a 

ligand-activated receptor. Some man-made contaminants such as TCDD can activate AHR. 
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The activated AHR then translocates to the nucleus and dimerizes with ARNT. The 

heterodimer binds specifically to the xenobiotic response elements (XRE) of target genes 

such as CYPlAl, and regulates gene expression (Hankinson et al. 1995). ARNT can also 

form heterodimers with hypoxia inducible factor l(HIF-1), and the corresponding complexes 

mediate response to hypoxia (Wang et al. 1995). HIF-1 is also a bHLH-PAS protein, and the 

HIF-l:ARNT complex is required for embryonic vascularization and tumor formation (Ryan 

et al. 1998). Homozygous Arnt-/- knockout mice are not viable. Usually these mice die in 

utero between 9.5 and 10.5 days of gestation. Many defects were detected. The lethality is 

due to defective placental vascularization. This is related to ARNT's known role in hypoxic 

induction of angiogenesis (Maltepe et al. 1997). 

The Drosophila ortholog of ARNT is called Tango (Tgo ). The Drosophila single-

minded (sim) and trachealess (trh) genes both encode bHLH-PAS proteins. These two 

proteins control the development of the central nervous system (CNS) midline cell lineage 

and tracheal tubules respectively (Nambu et al. 1991; Wilk et al. 1996). Yeast two-hybrid 

and co-immunoprecipitation experiments showed that Tgo can interact with Sim and Trh 

individually in vitro. Also, tgo loss-of-function mutations showed CNS midline and tracheal 

defects (Sonnenfeld et al. 1997). These data support a model in which Sim and Trh may 

function as heterodimers with Tgo. The Drosophila AHR homolog is encoded by spineless-

aristapedia ( ss ), which plays a role in specifying distal antenna! identity (Duncan et al. 

1998). tgo-mutant somatic clones showed antenna}, leg, and bristle defects that were almost 

identical to those caused by loss-of-function mutations in ss. Yeast two-hybrid assays 

indicated that Ss and Tgo proteins interact directly. These data support a model in which Ss 

functions as heterodimers with Tgo (Emmons et al. 1999). 
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ARNT2 and ARNT3 are also bHLH-PAS proteins. Murine ARNT2 is expressed in 

the brain and kidney (Hirose et al. 1996). It is similar but distinct from ARNT. ARNT2 

polypeptide carries a characteristic basic helix-loop-helix (bHLH)/PAS motif in its N-

terminal region with close similarity (81 % identity) to that of mouse ARNT and has an 

overall sequence identity of 57% with ARNT. ARNT2 can interact with AHR and mouse 

Sim as efficiently as ARNT in vitro. The complex can recognize and bind a specific DNA 

sequence (Hirose et al. 1996). ARNT2 can also form functional HIF complexes in neurons, 

and the complexes play an integral role in hypoxia responses in CNS (Maltepe et al. 2000). 

Homozygous Amt2 knockout mice survive up to birth with thymic defects. ARNT2 controls 

the development of the secretory neurons at the later or final stages of differentiation (Wines 

et al. 1998). ARNT3 is also called brain muscle ARNT-like protein 1 (BMAL) or MOP3. It 

is mainly expressed in the brain and muscle, and it forms heterodimers with Clock, a bHLH-

PAS protein, to regulate circadian rhythms (Ikeda et al., 1997; Takahata et al. 2000). 

The C.elegans ortholog of ARNT is called AHA-1. The C.elegans genome encodes 5 

bHLH-PAS proteins. They are AHR-1, HIF-1, AHA-1, C15C8.2/CKY-1 and T01D3.2 (Jiang 

et, al. 2001). It has been shown that AHA-1 can interact with C.elegans AHR-1 in vitro and 

form complexes that bind specifically to the xenobiotic response elements (Powell-Coffman 

et al. 1998). Also, AHA-1 can bind HIF-1 in vitro. HIF-1 is the C.elegans ortholog of 

mammalian HIF-1 alpha. The corresponding complex is proposed to mediate responses to 

hypoxia (Jiang et al., 2001). A former graduate student in the lab, Huaqi Jiang, demonstrated 

that animals carrying loss-of-function mutations in both ahr-land hif-1 are viable, but the 

aha-1 null mutants are larvae lethal (Jiang 2002). This suggests that in addition to its 

functions in ahr-1 and hif-1 signaling pathways, aha-1 may have other functions. Here, I 
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further characterize the aha-I loss-of-function mutant phenotype. aha-I-defective animals 

have small body sizes, pale intestines and cuticle defects. In a previous study, terminally 

arrested aha-I null mutants were shown to have feeding defects (Jiang 2002). Here, I show 

that null mutant worms feed normally before arrest. Also, I demonstrate that AHA-1 can 

form DNA binding complexes in vitro, and the DNA recognition sequence has two ARNT 

half sites. Antibody staining data shows that AHA-1 is expressed in germline cells in 

addition to most somatic cells. 

MATERIALS AND METHODS 

Worm strains 

Worm strains used in this experiment are described below: wild type, Bristol N2; 

ZG7:aha-I(ia01)/lin-ll(n566) I. 

In addition, I created ZG109, which is aha-I(iaOI)/aha-I(iaOI) animals carrying the 

rescuing extrachromosomal array of pHJ28 (aha-I genomic sequence), PD4251 (myo-3:gfp) 

and pRF4 (Mello et al. 1991). 

All the strains were grown under standard conditions (Wood et al. 1988) and fed with 

bacteria OP50. 

Ink feeding assay 

The ink-feeding assay was modified from the methods originally described by Avery 

and Horvitz in 1990. The worm strain used for this experiment is ZG 109, which is the 

rescued aha-I/aha-I homozygous loss-of-function mutants carrying extrachromosomal array 

of pHJ28 (aha-I genomic sequence), PD4251 (myo-3:gfp, expressing gfp only in the body 
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wall muscle) and pRF4. Synchronized worms were grown on 2X peptone plates with bacteria 

OP50. When most of the worms were adults and there were enough eggs on the plates, adults 

and larvae were washed away from the plates with M9 buffer (Wood et al. 1998). Plates were 

washed two additional times to make sure that only eggs were left on the plates. The plates 

were incubated at 20°C to allow the eggs to hatch. Eighteen hrs later, plates were washed 

with M9 buffer, and newly hatched larvae were collected into a 15ml centrifuge tube. After 

two washes, larvae were spun down. All but 500 µJ of supernatant was removed and worms 

were transferred to a 1.5-ml microcentrifuge tube. 500µ.1 S basal buffer (Wood et al. 1988) 

and 20µ.l SOX concentrated bacteria were added, the tube was rotated at 20°C for 15 minutes. 

India ink (1:100) was added. After 15 minutes of rotation, worms were quickly paralyzed by 

adding sodium azide to final concentration at 0.05%. The number of worms that had ink 

particles in their gut was counted, using a Nikon E800 microscope. 

AHA-1 antibody staining 

The AHA-I-specific monoclonal antibody 10H8 (Jiang et al., 2001) was used for in 

situ staining. Immunostaining protocol was modified from the method described by Finney in 

1991. The concentration of the witches brew was 0.5X instead of lX. The fixed worms were 

incubated in 1 ml 1 % BME/Tris-Triton overnight at 37°C rotating. The concentration of the 

primary antibody 10H8 was 1: 100. The concentration of the secondary antibody (rhodamine 

donkey anti mouse, bought from Jackson Lab) was 1 :250. The image was photographed 

using a Spot RT camera (Roche Dignosis) on a Nikon E800 microscope. 
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Gel mobility shift assay 

AHA-1 was expressed from the expression construct pJ343 in rabbit reticulocyte 

lysates (Promega TNT system). The gel mobility shift assays were performed as described 

(Powell-Coffman et al.1998). The AHA-1 wild type probe was: 5'-

TCGACAAAGGTCACGTGATTGTGG, annealed to 5'-

TCGACCACAATCACGTGACCTTTG. The AHA mutl competitor was 5'-

TCGACAAAGGTCATATGATTGTGG, annealed to 5'-

TCGACCACAATCATATGACCTTTG. Another competitor, AHA-lmut2, was 5'-

TCGACAAAGGTCACATGATTGTGG, annealed to 5'-

TCGACCACAATCATGTGACCTTTG. The wild type and mutant probes were 

radioactively labeled by using DNA polymerase I Klenow and [_-32P] dCTP. For supershift 

assays, l_l of rabbit anti-AHA-1 polyclonal antibody (Jiang 2002) or 10H8 was added to the 

reaction mix. 4El0 is a negative control monoclonal antibody, which recognizes AHR-1. 

aha-I mutant phenotype observation. 

The worm strain used for phenotypic analysis was ZG7 aha-1(iaOl)llinl1 (n566). 

ZG7 worms were raised on 2x peptone plates (Wood et al. 1988). When there were enough 

eggs on the plates, worms were washed away from the plates with M9 buffer. The plates 

were washed 2 additional times to make sure only eggs were left on the plates. The plates 

were incubated at 20°C for 1 hour. Then the plates were washed with M9 to collect the newly 

hatched larvae. The larvae were transferred to a new plate with OP50 and incubated at 20°C. 

after 18 hrs, the arrested worms were observed under Nikon E800 microscope. 
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RESULTS 

aha-1 mutant phenotype assay 

A former student in the lab, Huaqi Jiang, generated two deletion alleles of aha-I, 

aha-I(iaOJ) and aha-I(ia02). Both of them are predicted to be strong loss-of-function alleles 

(Jiang 2002). In order to better understand the AHA-1 function, I analyzed the aha-I (iaOJ) 

loss-of-function mutant phenotype. Homozygous aha-I(iaOJ) animals arrest as young larvae. 

The strain was kept as aha-I(ia01)/linll(n566) heterozygotes (Jiang 2002). One hour after 

hatching, 11.4% (n=272) of the progeny of aha-I(ia01)/lin-ll(n566) worms had cuticle 

defects. It was noted that there were creases in their cuticles. The body sizes of the worms 

that had cuticle defects were smaller than the normal worms. When newly hatched N2 were 

used for analysis as a control, no worm with cuticle defects was observed (n=133). Eighteen 

hrs after hatching, some aha- I ( iaO I )llin-I I ( n566) progeny were clearly smaller than the 

others. 74.1 % (n=58) of the small worms had cuticle defects (Figure lB). After arrest, the 

aha-I-defective worms had pale intestine and small body size as compared to their wild type 

siblings (Figure lA). No obvious defects in the pharynx were detected at this stage. 

Ink feeding assay 

Since the arrested worms usually have pale intestines, which are also seen in starving 

worms, it is reasonable to predict that these worms may suffer from feeding defects. One 

main reason that causes feeding defects is abnormalities in either the structure or the function 

of the pharynx. The pharynx is a neuromuscular organ in the anterior of the worm, and it is 

used for ingesting and concentrating food by its pumping movement. In order to analyze the 

pharynx of aha-I(iaOI) worms, a former graduate student in the lab, Huaqi Jiang, observed 
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the structure of the aha-I ( iaO I) mutant pharynx. There was no obvious abnormality detected 

in the arrested worms. He also performed an ink feeding assay to determine whether aha-

I ( iaO I) worms have defects in the pharyngeal functions. After feeding worms with foods of 

bacteria mixed with ink, over 97% of wild type first and second stage larvae had ink particles 

in their intestines. In contrast, 24 hrs after hatching, less than 50% of the aha-I ( iaOI) worms 

contained ink particles in their intestines. In these assays, aha-I(iaOI) homozygotes were 

distinguished from their phenotypically wild type siblings using morphological criteria. The 

aha-I(iaOJ) worms had already arrested development at the time of assays. 35% (n=94) of 

the terminally arrested larvae had ink particles clogged in the gut lumen 3-4 days after 

hatching (Jiang 2002). 

The data above shows that arrested aha-I mutants have feeding defects. However, it 

is not clear whether arrest is due to starvation. To address this, it was important to assay 

feeding prior to arrest. This required that aha-I-defective animals could be distinguished 

from their wild-type siblings. In order to solve this problem, I generated a strain in which 

aha-I(iaOI) worms were rescued with an array containing aha-I genomic sequence and 

marked with the PD4251, a myo-3:gfp marker, which is expressed in body wall muscles. 

pHJ28, which contains aha-I genomic sequence, PD4251 and pRF4 were co-injected into the 

gonad of aha-I ( iaO I )II in I I worms. Progeny that were homozygous aha-I ( iaO I )/aha-I ( iaO I) 

carrying the rescuing extrachromosomal array were recovered. In this strain, I could 

distinguish the aha-I-defective worms that don't express GFP from the rescued worms before 

they arrest development. The timing used in ink feeding assays was 7-11 hours after 

hatching. At this time point, the worms haven't arrested development. After feeding worms 

with bacteria mixed with ink for 15 minutes, 91.1 % (n=158) of the worms without the 
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extrachromosomal array contained ink particles in their intestine. 98.8% (n=239) of the 

worms that carry the extrachromosomal array had ink particles in their intestine. Using two-

sample t-test to compare the two numbers, there is significant difference between them 

(P<0.05). But, since the difference is relatively small, it can not account for the 100% larval 

arrest phenotype. 

Antibody staining 

Previously in Dr. Powell-Coffman lab, it was detected that AHA-1 is broadly and 

constantly expressed in most, if not all, somatic cells, including hypodermal cells, intestinal 

cells, pharynx cells and neurons. In some cell types, the efficient nuclear localization of 

AHA-1 depends on its dimerization partner HIF-1 (Jiang et al. 2001). I further characterized 

that besides in somatic cells (Figure 2), AHA-1 is also expressed in germline cells. The 

newly hatched worms have a gonadal primordium consisting of 4 cells: two precursors of the 

somatic gonad, Zl and Z4, and two precursors of the germ-line tissue, Z2 and Z3. The 

hermaphrodite adult reproductive system consists of two tubular ovotestes, one anterior and 

one posterior. The ovotestes are joined centrally by two spermathecae on both sides and a 

uterus in the center. The uterus opens mid-ventrally to the exterior via the vulva (Figure 3A). 

The somatic distal tip cells are located at the distal end of each arm. The germ-line nuclei of 

the distal arm include mitotic nuclei most distally and meiotic nuclei more proximally 

(Figure 3B). The images in figure 3 C&D show the anterior arm of the gonad of hif-1 mutant 

worms. AHA-1 is co-localized with DAPI in both mitotically and meiotically dividing cells. 

The co-localization with DAPI occurs at all stages of germline development. 
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AHA-1 can form homodimers in vitro 

To test whether AHA-1 can form a DNA binding complex in vitro, I expressed 

AHA-1 in rabbit reticulocyte lysates and performed electrophoretic mobility shift assays 

(EMSA). ARNT binds the DNA half site 5' GTG (Basci et al. 1995). AHA-1 can bind this 

same sequence (Powell-Coffman et al. 1998). Thus, a homodimer was predicted to bind 5'-

CACGTG. I assayed AHA-1 binding to a probe containing this sequence. The experiment 

was repeated for more than 30 times. A representative result is shown in figure 4. The 

complex could bind to radioactively labeled DNA, causing reduced mobility in a non-

denaturing gel (lane 3). The complex was progressively competed away by the addition of 

lOX, SOX and 200X unlabeled wild type probe (lane 4,5,6). To assess the specificity of this 

complex, two mutant competitors were assayed: mutl has mutations in both half sites and 

mut2 has a mutation only in one half site. The two mutant oligos did not compete for binding 

to AHA-1 (lane 7, 8). Since mutation in one half site abolishes binding, this data supports the 

model that AHA-1 binds this sequence as a dimer. Adding AHA-1 specific monoclonal 

antibody to the reaction caused the complex to run slower (line 9). Adding AHA-1 specific 

polyclonal antibody generated several supershift bands (line 10). There is no supershift when 

control antibody 4E10, which binds specifically to AHR, was added into the reaction (line 

11). The positions of probe and supershift (SS) are shown by arrow. 
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DISCUSSION 

AHA-1 has essential function 

Prior analysis of the aha-I-defective phenotype indicated that terminally arrested 

aha-I loss-of-function mutant larvae had feeding defects (Jiang 2002). There are two 

possibilities to explain this finding. One is that aha-I has an essential function in the 

pharynx. When this gene is knocked out, worms can not feed normally and eventually arrest 

due to starvation. The other possibility is that aha-I has other essential functions in C.elegans 

development, and developmental arrest was not caused by feeding defects. After arrest, the 

worm is too sick to eat. In order to further test these two models, I generated a strain in which 

the larval arrest phenotype is rescued by aha-I genomic sequence. The rescued worms also 

carry a GFP marker. With the help of the GFP marker, I could distinguish the mutant worms 

from the wild type worms before the developmental arrest. After feeding worms with 

bacteria mixed with ink for 15 minutes, 91.1 % (n=158) of the worms without the 

extrachromosomal array contained ink particles in their intestine. 98.8% (n=239) of the 

rescued worms had ink particles in their intestine. Although by two sample t-test, the two 

numbers are different (p<0.05), but the differences can not fully account for the 100% larval 

arrest phenotype. I conclude that the mutant worms do not have obvious feeding defects 

before arrest. 

Cuticle defects in aha-1 defective-larvae 

The aha-I-defective worms arrest at Ll or L2 stage. I observed the newly hatched 

worms and arrested Ll larvae. One hour after hatching, some worms have cuticle defects. It 

is reasonable to predict these worms are aha-I(iaOJ) homozygotes because of two reasons: 
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1). The wild type control worms do not show the cuticle defects phenotype. 2). Eighteen hrs 

after hatching, the aha-l(iaOJ) animals have arrested, are smaller than their siblings, and 

have similar cuticle defects. The cuticle is an exoskeleton that is synthesized by the 

underlying epithelial tissue, called the hypodermis. The cuticle consists predominantly of 

small collagen-like proteins that are extensively crosslinked. The C.elegans genome encodes 

over 150 collagen genes. The cuticular collagen genes are subject to strict spatial and 

temporal modes of regulation. During the life cycle, a cuticle is synthesized five times. Once 

in the embryo before hatching, and then at the end of each of the four larval stages before 

molting (Johnstone IL, 1994). Since the newly hatched aha-l(iaOJ) mutants have cuticle 

defects, it is possible that AHA-1 may regulate some essential collagen genes. Loss-of-

function mutations in aha-I cause the misexpression of some collagen genes. Thus, the 

worms show cuticle defects. 

AHA-1 can binds DNA as homodimers 

AHA-1 can form homodimers in vitro. In 1995, Sogawa and his colleagues showed by 

co-immunoprecipitation and HPLC molecular mass assay that ARNT could form 

homodimers. This complex can bind the E box core sequence 5' CACGTG in an adenovirus 

major late promoter. Also, they showed that ARNT homodimers have 

transcription-enhancing activity in vitro (Sogawa et al. 1995). In 2001, Huffman and his 

colleagues synthesized a 56-amino acid peptide that contained the bHLH domain of ARNT. 

In the absence of DNA, the ARNT-bHLH peptide was shown to form homodimers in lower 

ionic strength buffers, as evidenced by dynamic light scattering analysis. The complex can 
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bind E-box DNA with high specificity and affinity. At this time, no in vivo targets of ARNT 

homodimers have been identified. 

AHA-1 is the dimerization partner of multiple bHLH-PAS proteins 

In C.elegans, there are five bHLH-PAS proteins. They are AHR-1, HIF-1, AHA-1, 

CKY-1 and T01D3.2. AHA-1 was shown to be the dimerization partner of AHR-1, HIF-1 

and CKY-1 in vitro (figure 5). AHA-1 can interact with AHR-1 in vitro and the complexes 

mediate neuronal development. AHA-1 can form DNA-binding heterodimers with HIF-1 in 

vitro. The complexes have functions in responses to hypoxia. AHA-1 can also interact with 

CKY-1 in vitro and the complexes were predicted to have pharyngeal functions. In addition 

to dimerize with other protein, AHA-1 can form DNA-binding homodimers. The in vivo 

functions of the homodimers are unknown yet. The in vitro expression of T01D3.2 is not 

successful, so whether AHA-1 can form DNA-binding complexes with T01D3.2 or whether 

the complexes have any in vivo functions are not clear yet. 
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Figure I 
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Figure 2 
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FIGURE LEGENDS 

Figure 1. aha-I loss-of-function phenotypes. 

A. 18 hrs after hatching, aha-I-defective animal is smaller than its wild type sibling. 

B. 74.1 % (n=58) of aha-I-defective worms have cuticle defects at Ll stage. 

Figure 2. Immunolocalization of AHA-1 in wild type worm using the monoclonal antibody 

10H8. 

A. AHA-1 is present in the nuclei of most somatic cells. A second stage larva is shown 

here. The anterior is at top right. 

B. DAPI staining of A. 

Figure 3. Immunolocalization of AHA-1 in the germline of hif-1 loss-of-function worm 

using the monoclonal antibody 10H8. 

A. The structure of the gonad of adult hermaphrodite. The ovary, anterior 

spermathecae (a. sp), posterior spermathecae (p. sp), uterus and vulva are indicated 

in the diagram. The anterior is to the left. The dorsal is up. The four diagrams are in 

the same direction. 

B. Spatial organization of adult gonad. The distal tip cells, mitotic region, meiotic 

region (pachytene), gamete-forming region are indicated in the diagram. Regions 

are demarcated by dashed lines. 
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C. AHA-1 is present in the nuclei of germ-line cells. The anterior arm of an adult 

hermaphrodite gonad is shown here. The mitotic region and meiotic region are 

indicated in the images. 

D. DAPI staining of C. 

Figure 4. AHA-1 can form homodimer in vitro. 

AHA-1 was expressed in rabbit reticulocyte lysates (Promega TNT system) and incubated 

with labeled AHA-1 wild type probe (lane 3). Wild type and mutant unlabeled competitor 

were added in some reaction as showed in picture. To create supershift, 1 ul of AHA-1 

specific monoclonal antibody 10H8 (M) or polyclonal antibody (P) were added, 4E10 (C), 

which is a monoclonal antibody recognizes AHR, was added as a control. This reaction 

mixes were analyzed by nondenaturing polyacrylamide gels. Arrows indicate supershift (SS) 

and probe (Probe) respectively. 

Figure 5. AHA-1 is the dimerization partner of multiple bHLH-PAS proteins. 

AHA-1 can dimerize with AHR-1, HIF, or CKY-1 in vitro. The function of each complex is 

indicated in the figure. The question marks indicates the facts that whether AHA-1 can 

interact with T01D3.2 and whether the corresponding complex has in vivo functions, whether 

AHA-1 homodimer has in vivo functions, are unknown. 
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CHAPTER3 

Characterization of C15C8.2/CKY-1, a pharyngeally expressed 

bHLH-PAS Protein in C.elegans 

ABSTRACT 

The C.elegans genome encodes five proteins that contain basic-helix-loop-helix and 

PAS motifs. They are AHR-1, HIF-1, AHA-1, CKY-1 and T01D3.2. The AHA-1 bHLH-

PAS protein has been shown to interact with three other family members, AHR-1, HIF-1 and 

C15C8.2/CKY-l. Although ahr-I and hif-I loss-of-function double mutants are viable, 

animals lacking aha-I functions arrest during larval development. A former student in the 

lab, Huaqi Jiang, showed that CKY-1 is mainly expressed in the pharynx of C.elegans. CKY-

1 can form DNA-binding complexes with AHA-1 in vitro, and a cky-I:aha-I chimeric gene 

can rescue aha-I loss-of-function phenotype. Here, I extend those studies. I show that 

treatment of worms with cky-I RNAi results in larval arrest and cuticle defects. Expression 

of AHA-1 from two other promoters, myo-2 or TOID3.2, didn't rescue the larval arrest 

phenotype of aha-I ( iaOI) null mutants. The AHA-1 antibody staining of the cky-I :aha-I 

rescued worms confirmed the CKY -1 expression pattern. 

INTRODUCTION 

C15C8.2/CKY-1 is a bHLH-PAS protein. Analysis of a GFP reporter construct 

indicated that CKY-1 :GFP was expressed in all pharyngeal muscle cells, g2 gland cells, 

epithelial cells, marginal cells and pharyngeal-intestinal valve cells. CKY-1 :GFP expression 

was not detectable in any of the pharyngeal neurons or in the g 1 gland cells. 5-10 cells 
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immediately outside of the pharynx also expressed CKY-l:GFP (Jiang 2002). The pharynx is 

the worm's feeding organ. It contracts rhythmically and pumps bacterial food into the 

intestine (Avery et al 1993). The C.elegans pharynx, Drosophila dorsal vessel and vertebrate 

heart are proposed to arise from a common ancestral structure, despite great differences in 

morphology. The vertebrate heart is a pulsatile organ that can pump blood throughout the 

body. The circulatory system of Drosophila is open. The hemolymph is pumped throughout 

the body by the dorsal vessel, which is also a pulsatile organ. There is more evidence to 

support this model at the molecular level. ceh-22 is a C.elegans gene that is expressed in the 

muscle cells of the pharynx. CEH-22 activates gene expression in pharyngeal muscle cells 

and is required for normal pharyngeal development (Okkema et al. 1993, 1997). tinman is a 

Drosophila gene that is expressed in visceral mesoderm and the heart. It has been shown that 

the function of tinman is required for visceral muscle and heart development (Bodmer R. et 

al 1994). In vertebrates, there are six tinman homologs. nkx2.5 is the most highly conserved 

among diverse vertebrate species and has been shown to be essential for myogenic and 

morphogenetic differentiation of the mammalian heart (Evans et al. 1999, Harvey 1996). The 

three genes mentioned above, ceh22, tinman and nkx2.5, all belong to the same family: NK-2 

homeobox genes. Also, the fact that zebra fish nkx2.5 can efficiently rescue a ceh-22 mutant 

when expressed in pharyngeal muscle indicates that nkx2.5 and ceh-22 provide a single 

conserved molecular function. All the data above suggests that an evolutionarily conserved 

mechanism underlies heart development in vertebrate and insects and pharyngeal 

development in nematodes (Haun et al. 1998). 
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MATERIALS AND METHODS 

Worm Strains 

Worm strains used in this experiment are described below: wild type, Bristol N2; 

ZG7 aha-l(ia01)/lin-ll(n566) I; ZG62 aha-l(iaOJ)/ aha-l(iaOJ) pHJ32 ExlO (Jiang 2002); 

ZG 113 aha-l(iaOl)I linl l(n566) pHJ36 Exl; ZGl 14 aha-l(iaOJ)I linl l(n566) pHJ36 Ex22; 

ZG115 aha-l(iaOl)I linll(n566) pHJ36 Ex28; ZG116 aha-l(iaOJ)I linll(n566) pHJ38 Ex2; 

ZG117 aha-l(iaOJ)I linll(n566) pHJ38 Ex3; RNAi hypersensitive strain, NL2099, rrf-

3(pk1426) II 

All the strains were grown under standard conditions (Wood et al. 1988) and fed with 

bacteria OP50. The DNA constructs for rescue assay were co-injected with pRF4 (Mello et 

al. 1991). 

Prepare bacteria express dsRNA of cky-1 

cky-1 cDNA is about 2.2kb in length. A 1.3kb Sacl/EcoRI fragment near the 5' end 

was cloned into the Sacl/EcoRI site of pPSK79 (a plasmid that has T7 promoters flanking the 

poly linker and can express double strand RNA in the presence of IPTG) to create the plasmid 

pSWOl. Then pSWOl was transformed into the bacteria strain BL21DE3. 

Northern blot 

To determine whether the RNAi treatment reduced the level of endogenous cky-1 

RNA, Northern blots were performed. The Northern blot was probed with a 3' end fragment 

of the cky-1 cDNA (0.8kb EcoRI/ Xbal fragment) that did not overlap with the sequence in 

pSWOl. Bacteria that expressed ds cky-1 from pSWOl were incubated at 37°C for 6-8 hrs, 
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and then the bacteria were seeded on 2x peptone plates. The plates were placed at room 

temperate overnight. Then N2 synchronized young larvae were transferred to the plates and 

incubated at 20°C. When most of the worms were adults and had enough eggs, the adults 

were treated with alkaline hypochlorite solution and eggs were collected (Sulston and 

Hodgkin, 1988). RNA was extracted from the embryos using TRIZOL based method 

(Burdine et al 1996). RNA blot was performed (Hirose et al 1996). 

Prepare of ds RNA of C15C8.2, T01D3.2 and gfp 

The complementary DNAs for C15C8.2 and T01D3.2 were isolated from an 

embryonic cDNA expression library (Jiang 2002). Each cDNA was amplified by PCR using 

two primers T3: 5'-CGC AAT TAA CCC TCA CAT AAG GG-3' and T7: 5'-GTA ATA 

CGA CTC ACT ATA GGG CG-3'. Then the PCR products were used as templates for in 

vitro transcription of mRNA (Promega riboprobe system kit). RNase-free DNase was added 

to the systems at the end of reaction to remove DNA templates. Then each reaction was 

extracted with phenol/chloroform and chloroform. Each strand of RNA was precipitated by 

isopropanol separately. The RNAs were passed through a centrifuge tube with a 0.22um 

cellulose acetate filter, and the complementary RNA strands were annealed in vitro. The final 

concentration of the dsRNA was between 0.6-0.7ug/ul. The cDNA of gfp was a gift from the 

Andy Norris lab. gfp dsRNA was made by the same protocol as above, the final 

concentration was between 0.6-0.7ug/ul. 
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Micro injection 

Double-stranded RNA was injected into the gonad of young adults (Esptein et al. 

1995). After injection, the worms were allowed to lay eggs for 6-8 hours before progeny 

were scored. Each worm was placed on a separate plate and incubated at 20°C. Every 6-8 

hrs, the injected worms were transferred to a new plate and the eggs it laid were scored. Each 

worm was transferred twice. About 40 hrs after the first transfer, the L4 worms or beyond on 

each plate were scored and then transferred to new plates. The plates were continuously 

screened until there was no L4 worm appeared. 

Antibody staining of the cky-1 :aha-1 rescued worms 

The AHA-I-specific monoclonal antibody 10H8 (Jiang et al., 200I) was used for in 

situ staining. Immunostaining was performed essentially as described by Finney in I990. The 

worm strain used for staining was ZG62: cky-l:aha-1 rescued aha-I mutants. The 

concentration of the witches brew was 0.5X instead of IX. The fixed worms were incubated 

in I ml I% f3ME/tris-triton overnight at 37°C rotating. The concentration of the primary 

antibody 10H8 was I/100, the concentration of the secondary antibody (rhodamine donkey 

anti mouse, bought from Jackson Lab) was 1/250. The image was photographed using a Spot 

RT camera (Roche Dignosis) on a Nikon E800 microscope. 

Constructs used in aha-l(iaOl) rescue assays 

Two constructs were used in aha-l(iaOJ) rescue assays. 

(i) pHJ36 was designed to express AHA-I only in the muscle cells of the 

pharynx. myo-2 is a gene expressed only in C.elegans pharyngeal muscle 
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(Okkame et al.1993). A 4.lkb Apal/Kpnl fragment (containing myo-2 

promoter region) from pPD122.11(Jiang2002) was fused to a 2.7kb 

Apal/Kpnl fragment (containing part of the aha-I genomic sequence) from 

pHJ32 (Jiang 2002) to create pHJ35. Then a 6.6kb Ball/Kpnl fragment from 

pHJ35 was fused to a 2.3kb Sacl/Kpnl fragment (containing the other part of 

aha-I genomic sequence) of pHJ32 to create pHJ36. 

(ii) pHJ38 was designed to express AHA-1 only in two AVH intemeurons in the 

head (Jiang 2002). The T01D3.2 promoter fragment was amplified using 

primers: PASAlOR: CAT GGA TCC ATA AAT ATA TCC TGA GCC ATT 

TCT CAA GTG GTI ATA AGT C and PASA9F: GTG GAG TIT GGA 

TCC TIC GAA TCG. A 10.2kb BamHI fragment (containing the aha-I 

genomic sequence) from pHJ32 was fused to a BamHI fragment of PCR 

product to generate the plasmid pHJ37. Then a 0.8kb Sall fragment 

(containing the T01D3.2 promoter region) of pR14 (Jiang 2002) was fused to 

a 9.5 kb Sall fragment of pHJ37 (containing the aha-I genomic sequence) to 

generate pHJ38. 

Rescue assays 

The worms used for injection were ZG7 aha-I(ia01)/linll(n566). PRF4 (Mello et al, 

1991) was co-injected with the rescue constructs as a marker. Worms that carried stable 

extrachromosomal arrays were screened. Several lines were generated for each injection. For 

each line, healthy rollers were each placed on a separate plate and allowed to lay as many 

eggs as it could. The eggs on each plate were scored. When the eggs hatched and the worms 



58 

grew to L4, each L4 worm was placed on a separate plate. Several days later, the progeny on 

each plate was observed. If all the progeny on the plate were rollers and there were no 

bagging worms (the phenotype of lin-11 homozygous worm), then it was a rescued line. 

RESULTS 

CKY-1 is required for developmental progression 

To test whether cky-1 has a function in C.elegans development, dsRNA mediated 

interference was performed. When wild type worms were used for RNAi treatment, feeding, 

injection and soaking were all tried but there was no detectable difference between the 

experiment group and the control group: GFP RN Ai. The progeny of the treated animals 

were viable, and there were no obvious defects. For feeding RN Ai, in order to test its 

efficiency, northern blots were performed using the RNA extracted from the embryos of 

experiment and control groups. The results showed that there was no detectable difference of 

the cky-1 RNA levels between the two groups. This indicates the RNAi method doesn't work 

for this gene in wild type background. Also aha-l(ia01)/linll(n566) worms were used for 

RNAi treatment based on the model that CKY-1 may form heterodimers with AHA-1 to 

perform its function. The rationale was that when its dimerization partner's dosage decreased, 

a slight decrease of CKY-1 might result in a detectable defect. But the results were same as 

using wild type worms. 

Recently, animals deficient in rrf-3 functions were shown to be more sensitive to 

RNAi than wild type worms (Simmer et al. 2002). When the RNAi hypersensitive worm 

strain was available, RNAi was performed by injection. The progeny of the dscky-1 injected 

worms showed obvious delays in development. The data is summarized in table 1. Three 
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days after egg laying, 94.5 % of hatched larvae (n=636) had developed to fourth larval stage 

(L4) or adults in the dsgfp treated group (control). However, only 24.6% of hatched larvae 

(n=862) of the dscky-1 treated group had grown to L4 or adults by this time point. The 

developmentally delayed worms were not as healthy as wild type. These worms moved 

slowly, and had pale bodies. Some worms eventually developed to adults but were fertile. 

The pharynxes of the arrested worms did not have obvious defects. 64.8% of the slow 

growing worms had cuticle defects when observed under the microscope (n=54) (Figure 1 ). 

The observation time was 48 hrs after egg laying and the worms were about at the L2 stage at 

this time point. This phenotype was not detected in any newly hatched cky-1 RNAi worms 

(n=l09). T01D3.2 is another bHLH-PAS protein encoded by C.elegans genome. To test 

whether this gene has essential functions, RNAi experiments were performed. The growth 

rate of TO 1D3 .2 treated worms was similar to that of the gfp control group, but the embryonic 

lethality was higher. The results of the dscky-1, dsT01D3.2, dsgfp RNAi and uninjected 

worms are summarized in table 1. 

Table 1. dscky-1 RNAi treated worms delay development. 

dsRNA Embryonic L4 or adults at L4 or adults at 
lethality,% Hatched 3 days.% 5 days.% 

dscky-1 484 862 24.6% (n=862) 44.0% (n=862) 
36.0% (n=l346) 

dsgfp 362 636 94.5% (n=636) 95.6% (n=636) 
36.3% (n=998) 

dsT01D3. 500 648 92.9% (n=648) 93.5% (n=648) 
2 43.6% (n=l 148) 

uninjected 360 951 94% (n=951) 95.l % (n=951) 
27.5% (n=l311) 

Note: 3 days is defined as 72 hrs after egg laying. 5 days is defined as 120 hrs after egg 
laying. 
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Antibody staining 

In order to confirm the expression pattern of CKY-1, the 1 OHS monoclonal antibody, 

which recognizes AHA-1 (Jiang et al. 2001), was used to stain the cky-l:aha-1 rescued 

worms. Compared to the wild type staining, in which AHA-1 is expressed in most somatic 

cells, AHA-1 is only expressed in the pharynx of the cky-l:aha-1 rescued worms (Figure 2). 

Rescue assays 

Previous studies demonstrated that aha-1 genomic sequence or cky-1 :aha-1 can rescue 

the aha-l(iaOl) larval arrest phenotype (Jiang 2002). A former graduate student, Huaqi 

Jiang, generated two other aha-1 expression constructs. One was used to test whether 

expressing aha-1 only in pharyngeal muscle cells can rescue the larval arrest phenotype. The 

construct was myo-2: aha-1, in which the promoter of the myo-2 gene was fused to the aha-1 

coding sequence. This construct should express AHA-1 protein only in the pharyngeal 

muscle cells. I did the rescue assay using 3 different lines (table 2). The worms that have 

same strain name in the table were different worms from same line. There was no rescued 

worm detected. The rescue efficiency of the cky-l:aha-1 construct in about 10%. Based on 

the number of worms screened, if pHJ36 can rescue the aha-l(iaOl) loss-of-function 

phenotype and the rescue ratio is 10%, there should be about 12 aha-l(iaOl)I aha-l(iaOJ) 

worms carrying arrays been rescued. The other construct was T01D3.2: aha-1, in which the 

T01D3.2 promoter was fused to the aha-1 coding sequence. This construct was predicted to 

express AHA-1 only in two intemeurons in the head. I didn't detect any rescued worm. The 

results are summarized in Table 2. 
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Table 2. myo-2:aha-1 and T01D3.2:aha-1 rescue assay. 

Construct Expression Strain Transmission # of rescued/ 
name promoter pattern name frequency #of assayed 

adults 
ZG113 52.1% 0/23 

myo-2 Pharynx ZG114 65.0% 0/146 
PHJ36 muscle cells ZG114 37.4% 0/198 

ZG115 49.5% 0/214 
ZG115 52.0% 0/182 

Two ZG115 64.0% 0/32 
PHJ38 T01D3.2 intemeurons ZG115 73.1% 0152 

in head ZG116 94.9% 0139 
Note: # of assayed adults indicates all the worms that could develop to adulthood and give 
rise to progeny. 

DISCUSSION 

cky-1 has essential function in C.elegans development 

The RNAi data indicates that cky-1 has essential functions in C.elegans development. 

In the RNAi experiment, by the end of the third day, there were 94.5% (n=636) of the gfp 

RNAi treated worms grew to L4 stage or beyond. While in the cky-1 RNAi treated group, the 

number was only 24.6% (n=862). cky-1 RNAi treated worms showed obvious delays in 

development. CKY-1 and AHA-1 can form DNA-binding heterodimers in vitro (Jiang 2002). 

This suggests that CKY-1 might also interact with AHA-1 in vivo, and that the complex has 

functions in C.elegans development. The cky-l:aha-1 rescued worms can develop to the 

adult stage and give rise to progeny, but the worms grow slower than wild type. This can be 

explained by two reasons: 

i). Expression of AHA-1 only in the pharynx is not enough for normal growth. AHA-1 is 

also needed in other tissues or pathways during development. 
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ii). Extrachromosomal arrays are not as stable as chromosome. Different cells may get 

different copies of arrays. Mosaic expression in the pharyngeal cells may cause insufficient 

dosage of AHA-1 in some cell types and affect normal functions. 

Cuticle defects 

The slow-growing cky-I RNAi worms were not as healthy as the worms in the control 

group. Generally they had pale intestine and moved slowly. 74% of such slow-growing 

worms had cuticle defects. The newly hatched RNAi treated worms did not have this 

phenotype. The cuticle defects were not like those of the aha-I ( iaO I) worms. The typical 

phenotype of these defects was that there is a small piece of cuticle still attached to the 

worms' mouth. It looks like molting defects. In C.elegans, there are four molts prior to 

adulthood. Each larval stage is characterized by stage-specific cuticle formation, including 

the expression of distinct sets of collagen genes. The heterochronic genes control the timing 

of the developmental events including molting (Ambros V, 2000). These molting defects in 

cky-I RNAi worms maybe related to the heterochronic pathway. It is possible that CKY-1 

interacts with some proteins in the pathway or cky-I controls some target genes that are 

involved in the molting event. So cky-I-defective worms have molting defects. 

Rescue assay 

A DNA construct containing the aha-I genome sequence can rescue the aha-I(iaOJ) 

larval lethality phenotype. But the brood size and growth rate is smaller and slower than the 

wild type. This maybe because the expression pattern of AHA-1 is mosaic, so in some cells, 

the AHA-ldosage is insufficient and therefore the corresponding complexes are not enough 
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for normal functions. Also, in normal growing worms, such as wild type worms or hif-I 

mutants, the AHA-1 is normally expressed in the germline cells (Chapter 2). 

Extrachromosomal arrays are not stable or expressed well in the germline (Miller et al. 

1996). This may affect the cell growth and proliferation. The cky-I: aha-I constructs can also 

rescue the mutant phenotype. This indicates aha-I has essential functions in the pharynx, so 

only recovering its function in pharynx is enough for the viability of the mutant worms. 

T01D3.2 can not rescue the loss-of-function mutant phenotype. T01D3.2 is only expressed in 

two intemeurons, it is unlikely that only expressing AHA-1 in two cells can rescue the arrest 

phenotype. The pHJ36 construct is expressed in the muscle cells of the pharynx. Based on 

the data analyzed, it can not rescue the aha-I (iaOI) loss-of-function phenotype. The 

difference between cky-I and myo-2 is that myo-2 is only expressed in pharyngeal muscle 

cells while cky-I is expressed in g2 gland cell, epithelial cells, marginal cells and pharyngeal-

intestinal valve cells in addition to muscle cells. It has been shown that the kel-I gene, which 

is expressed exclusively in the gl pharynx gland cell, and is proposed to secrete material 

aiding digestion, is essential for larval development. The kel-I mutant has a phenotype 

similar to aha-1 mutant. The pharynx structure is normal but the feeding is inefficient 

(Ohmachi et al. 2001). It is possible that g2 gland cell, epithelial cells, marginal cells and 

pharyngeal-intestinal valve cells also have functions in C.elegans development. Thus, 

without the expression of AHA-1 in these cells, the loss-of-function worms can not be 

rescued. 
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Figure 1 
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Figure 2 
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FIGURE LEGENDS 

Figure 1. Phenotypes of the progeny of dry-1 RNAi-treated worm 

A. The worm is about 44 hrs after egg-laying. It has cuticle defect as indicated by an 

arrow in the picture. 

B. The worm has a cuticle attached to its mouth. This phenotype is like molting 

defects. 

Figure 2. Immunolocalization of AHA-1 in clry-l:aha-1 rescued worm using the monoclonal 

antibody 10H8. 

A. AHA-1 is present only in the nuclei of a subset pharyngeal cells. A second stage 

larva is shown here. The anterior is at the left top. 

B. DAPI staining of A. 
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CHAPTER4 

General Conclusion 

SUMMARY 

The C.elegans genome encodes five basic-helix-loop-helix PAS proteins. They are 

AHR-1, HIF-1, AHA-1, CKY-1 and T01D3.2. In this dissertation, I focus on the study of two 

of them: AHA-1 and CKY-1. The major findings for AHA-1 include: 1) aha-I (iaOI) 

defective animals have small body size and cuticle defects. 2) The larval arrest of aha-I 

(iaOI) loss-of-function mutants is not due to feeding defects. 3) AHA-1 is expressed in the 

germline cells in addition to most somatic cells. 4) AHA-1 can form DNA binding 

complexes in vitro. The findings for CKY-1 include: 1) cky-I is required for C.elegans 

development. 2) cky-I RNAi treated worms have cuticle defects. 3) Expressing AHA-1 in 

pharyngeal muscle cells or two intemeurons in the head can not rescue the larval lethality 

phenotype. 

aha-1 is essential in C.elegans development 

aha-I(iaOJ) loss-of-function mutants are larval lethal. Most of the worms arrest their 

development at Ll or L2 stage (Jiang 2002). I characterized the phenotypes of the arrested 

mutant worms. These worms are obviously smaller than their wild type siblings. Their 

intestine are pale and there are creases in their cuticle. A previous study showed that the 

arrested aha-I loss-of-function mutants have feeding defects. There are bacteria lodged in 

their pharynx (Jiang 2002). Using an experimental strategy that allows me to distinguish the 

aha-I defective mutants from the mutants rescued by aha-I genomic sequence, I determined 
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that worms do not have obvious feeding defects before arrest of development. Previous study 

showed that AHA-1 is expressed in most of the somatic cells include pharyngeal cells, 

intestine cells, hypodermal cells and neurons (Jiang, 2002). I detected that AHA-1 is also 

nuclear enriched in germline cells in both wild type worms and hif-1 defective worms. It has 

been shown that AHA-1 can form DNA-binding complex with AHR-1, HIF-1 and CKY-1 in 

vitro (Powell-Coffman et al. 1998; Jiang et al. 2001; Qin and Powell-Coffman submitted, 

2003). I performed an electrophoretic mobility shift assay and demonstrated that AHA-1 can 

form DNA-binding homodimers in vitro. It is not clear whether AHA-1 homodimers have 

any in vivo functions. 

cky-1 has functions in C.elegans pharynx 

cky-1 double-stranded RNA mediated interference was performed. At first, the worms 

used in this experiments were wild type and aha-I ( iaO 1)llinl1 ( n566 ). Different methods, 

including feeding, soaking and injection, were used to introduce double-stranded RNA into 

worms. Also, different stages of worms, including embryos, Ll larvae, L2 larvae, L3 larvae, 

L4 larvae and adults, were used for RNAi treatment. Each treatment was repeated for at least 

twice. There were no obvious differences between the experiment group and the control 

group (dsgfp RNAi-treated). The negative results indicated that cky-1 is a gene that is 

resistant to RNAi treatment. When RNAi hypersensitive strain (rrf-3) was available, RNAi 

experiments were performed by injection. The progeny of the dscky-1 RNAi-treated worms 

showed obvious delays in development compared to the control group (dsgfp RNAi treated). 

cky-1 RNAi arrested worms had cuticle defects. These data indicated that cky-1 has an 

essential role in C.elegans development. CKY-1 can form DNA-binding complexes with 



72 

AHA-1 in vitro, and the chimeric gene, in which the promoter of cky-1 directs the expression 

of AHA-1, can efficiently rescue the aha-l(iaOJ) mutant phenotype. The rescued worms can 

develop to adults and have progeny (Jiang 2002). The data above indicated that CKY-1 

might interact with AHA-1 in vivo and the complexes regulate some target genes in the 

pharynx. The AHA-1 antibody staining of cky-1 rescued worms showed that cky-1 is 

expressed in pharyngeal cells. Two other constructs, pHJ36 and pHJ38, were generated for 

rescue assays. PHJ36 contained a chimeric gene myo-2:aha-l, in which a myo-2 promoter 

directs the expression of AHA-1 protein. AHA-1 should be expressed only in the pharyngeal 

muscle cells. The other construct pHJ38 contained a chimeric gene TOJD3.2: aha-1, in which 

the T01D3.2 promoter directs the AHA-1 expression. AHA-1 should be expressed only in 

two interneurons in the head. Both of these two constructs could not rescue the aha-I larval 

lethal phenotype. 
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