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INTRODUCTION 

The interpretation of da ta from nondestructive evaluation (NDE) techniques is a 
tedious and time-consuming manual process that is subject to such random variables as 
sc an quality, and inspector expertise and fatigue. The authors are researching methods to 
automatically recognize defects in ultrasonic images of aircraft structures. A typical wing 
skin image with an annotated defect is shown in Figure 1. Our ultimate goal is to reduce 
total fabrication time and improve inspection reliability. 

NEURAL NETWORKS 

Artificial neural networks are computational devices whose structure or behavior 
resembles biological systems. These devices are gaining much attention because of their 
ability to solve problems that have proven difficult for previous techniques, such as object 
classification, and signal and image processing. Neural networks are characterized by 
many relatively simple, highly-interconnected, processing elements (nodes). Because 
application "knowledge" is distributed to all node connections, neural networks degrade 
gracefully in the presence of noise or intermittent node failures. Also, training algorithms 
allow networks to "leam" the desired performance from examples, reducing the need to 
acquire and code expert knowledge. 
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Fig. 1. Typical Ultrasonic C-Scan with Labeled Defect 
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Currently, most networks are simulated in software on general purpose computers. 
However, simple node operations and high parallelism are well-suited for direct hardware 
implementation. Several high-speed neural chips are becorning available that will 
dramatically reduce the computation time for neural network techniques. 

A detailed discussion of neural network algorithms is beyond the scope of this 
paper, but reference [1] contains an excellent chronology of important research, and [2] 
details the algorithms required for a full understanding of our implementation. 

In recent years, neural network techniques have been applied to a variety of NDE 
problems (see, for instance [3]). In a seerningly unrelated domain, in 1990, R.H. Silverman 
and A.S. Noetzel described their medical application of neural networks to diagnose eye 
tumors from ultrasonograms [4]. The striking similarity between tumor diagnosis and 
defect recognition, led us to develop very sirnilar techniques for our NDE application. Our 
version of their architecture is shown in Figure 2. This network locates tumors by sliding 
the input image frame over the image and, at each step, labeling the center pixel with the 
(thresholded) network output. 

The network is trained by presenting an original image and adjusting the weights to 
match the corresponding pixel in a manually segmented binary image. In the target image, 
white pixels indicate the absence of a defect, and black pixels indicate the presence of a 
defect at the corresponding location in the original image. Silverman and Noetzel reported 
successful tumor diagnosis using neural network techniques. 

Our own experimentation with this network has produced sirnilar results for defect 
location. Figure 3 shows two sets of images. The first colurnn contains original images. 
The second column shows manually created target images with defect pixels highlighted. 
The third column shows the network's image segmentation. 

Figure 4 shows two images that were not part of the training set and the network's 
corresponding segmentation. Both large and small defects are correctly located in these 
images. (The contours in the top left image are actual geometric structures and, as correctly 
indicated by the network, do not represent defects.) 

The most significant difference between our implementation and that of Silverman 
and Noetzel, is that their computer was an IBM 3090-600E supercomputer. Since our goal 
is to deliver a relatively low-cost system to a shop floor environment, we have constrained 
our studies to a Macintosh IIx desktop computer with high-speed coprocessors. In this 
case, the network algorithms were implemented on eight MIMD parallel processors 
plugged into the Macintosh NuBus (INMOS T800 Transputers with 4MB each on two 
Levco Translink boards). Parasoft's Express parallel development environment and the 
Logical Systems C compiler were used to program the transputers, and MPW C was used 
on the Macintosh. Despite the special hardware, training the network on eight images for 

718 

811npul 
UnitS+Blas 

2 Hlddon Lay .... 

12 Unit. per Hlddon 
Layer Induding Blas 

Single Outpul Unh (( 
(Cent ... Pixel Is ' l. Not • Oel""') • 

Fig. 2. Defect Location Neural Network Architecture 
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230 presentations takes nearly sixteen hours. This is not seen as a particular problem, 
however, because once a network is trained (overnight) it can be used indefinitely to 
segment images by retrieving network weights from disko Segmentation (forward feeds 
through the network) is performed in parallel by assigning each processor to an independent 
region and requires only seven seconds for a 64 x 64 image. We feel that our 
hardware/software configuration is a cost-effective solution because of its adequate speed 
performance and relatively low price tag (approximately $11,000 or about two orders of 
magnitude less than the price of a supercomputer). 

The decision to utilize MIMD processors necessitated several changes to the basic 
backpropagation algorithm. Each processor is dedicated to training a comrnon network 
architecture over a particular training image. Conceptually, a single master network is 
trained by considering weight changes computed from each of the training images. 

First, the weights of the master network are randomly initialized and broadcast to all 
processors to begin training. Periodically, the processors rendezvous, combine their 
weights into the master network, copy the master network weights into local memory, and 
then resume training on their particular image. The weight vectors from the various 
processors are combined by accumulating the delta weightterms that result from standard 
batch-mode backpropagation training on each processor and adding the sum to the previous 
master network weights. That is, 

. 1 . + "" A [k] WH = Wl ~lJ.wi (1) 

k 

where wi is the master network weight vector (including alllayers) for batch i, and L1wfk] 

is the delta weight vector from processor k. After each rendezvous, wi+ 1 is broadcast to all 
processors and L1w[k] is reset to zero before training is resumed. By combining the weights 
in this manner, the virtual master network leams the characteristics of defects in all of the 
training images simultaneously. 

We also took several minor liberties with Silverman and Noetzel's approach. First, 
we trained on 8 original images rather than 10. This was an arbitrary choice reflecting the 
number of parallel processors and our training policy. Second, we used 12 nodes in each 
hidden layer in order to improve segmentation performance. (We are still experimenting 
with alternative architectures.) Third, we used 64 x 64 (rather than 128 x 128) pixel 
training images, simply to reduce the training time. 

Silverman and Noetzel used smaller, neighborhood averaged, images to compensate 
for varying tumor size in the training images. We were unable to get network convergence 
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with this approach, so we trained only on full sized images. Images with defects of 
different sizes were inc1uded to introduce size invariance. 

Our last modification was in batch size schedule. Because of our other training 
policy changes, we found it most convenient to use a constant batch size of one raster (56 
patterns) per image per weight update. 

Our neural network results, so far, have been very encouraging. Most of our effort 
has been focused on "shoehorning" the problem into the Macintosh. In our future research 
we hope to explore more significant modifications to the basic approach. For instance, in 
order to properly disposition parts that contain defects, the defects must be analyzed with 
respect to overall structural integrity. Usually, this is done by applying heuristic 
accept/reject criteria based on the inherent characteristics (i.e., type, size, shape, texture, 
location relative to part features, etc.) of each defect Image moment analysis is useful for 
determining defect dimensions. However, there are few established techniques for 
determination of other defect characteristics. 

Since different types of defects are treated in different ways, located defects need to 
be classified by type (i.e., void, porosity, crack, etc.) in order to determine the correct 
rework action. Also, identifying defect types can often lead to a better understanding of 
how the fabrication process can be improved. For these reasons, the basic algorithm needs 
to be augmented to recognize and label defect c1asses. Silverman and Noetzel introduced a 
second processing step that uses other networks to classify tumors that were located by the 
above technique. A straight-forward modification of the current algorithm would allow for 
an output for each defect c1ass (and one for "good"), rather than the current single network 
output. Our experiences with defect c1assification are still preliminary at this point, but 
should be the subject of a future paper. 

MARKOV RANDOM FIELDS 

Concurrently with our neural network research, we have been investigating 
statistical image analysis techniques. Most medical and military image processing 
applications require the high reliability and provable correctness offered by the field of 
information theory which has evolved since the 1940s [5]. Consequently, a vast body of 
techniques for maximum likelihood estimation have been developed. 

Markov Random Fields (MRFs) were first proposed for applications in statistical 
physics [6]. MRFs arise from Bayesian techniques, and are a higher-dimensional 
generalization of Markov stochastic processes (or Markov chains). Markov processes have 
been successfully used to model communication channels and noise. A Markov process is 
one whose future behavior is dependent only on its current state and not on its past 
behavior. That is, 

p(xn+l1xn,xn-l, ... ,Xl) = p(xn+l1xn) (2) 

MRFs extend this locality to non-causal processes in higher dimensions. Two 
dimensional MRFs are typically used for texture modeling in image processing 
applications. Given an image X with pixels Xij, the relationship in (2) becomes 

P(Xijl{y EX: y"# Xij}) = P(xijIN(xij)) (3) 

where N(xij) is the set of neighboring pixels of Xij (exc1uding Xij). The nearest-neighbor 
neighborhood ofxij is {xi-l,j, xi+l,j, Xi,j-l. Xi,j+ll. The actual size and structure of the 
neighborhood chosen is dependent on the texture of the objects to be modeled. 

Rather than a complete technical discussion [7,8], for the purposes of this paper it 
will suffice to describe MRF image segmentation on an intuitive level. For instance, 
consider a random image that resembles a black and white checkerboard. If a particular 
pixel's neighbors are all black, then, with high probability, the pixel is white. Similar 
statements can be made of pixels that form images of carpeting, wood grain, or any other 
object that possesses a periodic texture. In order to use this approach for image 
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segmentation, detailed stochastic models are derived (either analytically or empirically) for 
each object's characteristic texture. 

The configuration of a particular pixel is defined by the values of the pixels 
contained in its neighborhood. For our purposes, a model consists of conditional 
probabilities which denote the likelihood that any configuration occurs for each possible 
image object. Segmentation amounts to answering the question "Which object is the 
current configuration most likely to represent?" for each pixel. 

Building such a model can be a significant challenge and two techniques have 
traditionally been used. The parametric approach "guesses" the form of appropriate 
distributions (i.e., exponential, gaussian, etc.), and then uses maximum likelihood 
techniques to estimate their parameters. This technique can produce poor results if actual 
distributions are not c10sely modeled by the chosen distributions. Still, this is the preferred 
modeling method if the generating process is well understood. 

The nonparametric approach makes rio assumptions about the nature of pixel 
distributions. Rather, apriori conditional probabilities are computed directly by counting 
the frequency of occurrence of configurations for each object to be modeled. This 
technique requires large amounts of training data and is subject to the same pattern 
coverage issues as neural networks. Also, this algorithm has time complexity that is 
exponential in the size of the neighborhood. 

A "semiparametric" modeling method was recently proposed [9] which treats the 
unk..'1own distributions as a weighted sum of gaussian component densities. The 
distdbution parameters and weights are estimated using maximum likelihood techniques. 
This hybrid method overcomes many of the weaknesses inherent in either of the previous 
two approaches. 

Regardless of the modeling technique, once a detailed model is formulated for each 
potential image object (and its conditional probabilities are known), a segmentation can be 
computed using Bayesian hypothesis testing by labeling each pixel according to the 
following algorithm. 

for each pixel {i,j} 
label {i,j} as Objectk such that 

Pk(xijIN(xij)) = MAX{Pn(xijIN(xij))} (4) 
n 

Unfortunately, this segmentation alone often does not correctly label ambiguous 
pixels. In such cases, higher-level constraints can be placed on the segmented image. 
Miller and Roysam [10] have developed a unified hierarchical segmentation approach that 
incorporates regular grammars to specify constraints on the segmented image. 

MRF techniques show great promise and are theoretically rigorous in a way that 
neural networks are not. We are currently implementing some of these techniques in order 
to compare their performance with our neural network results. In the remainder of this 
paper we compare our preliminary impressions of MRF techniques to our neural network 
experiences. 

COMPARISON 

Now that both technologies have been introduced, let us turn to their relative merits. 
There are fundamental differences in the theory of each field. Neural network research is 
motivated by adesire to understand biological systems, such as the human visual system. 
Images are analyzed by mathematical abstractions of biological neurons. On the other 
hand, the information theory framework that is the basis of MRF algorithms, treats images 
as signals (ideal segmentations) being "transmitted" over a noisy channel. Thus, it draws 
on all of the optimal detection and estimation results of the last fifty years. 

Despite these philosophical differences, both fields share the following beneficial 
characteristics. Both technologies yield algorithms that are intrinsically parallel. In the 
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case of neural networks, each node can be implemented by aseparate physical processor 
because the computation of functions of inner products can proceed independently at each 
node. In the case of MRFs, the locality characteristics of Markov processes and regular 
grarnmars result in algorithms that can be executed independently for each pixel in the 
image [11]. Therefore, both technologies will scale to larger processor arrays. 

Secondly, algorithms from both schools can improve their performance over time. 
Of course, leaming is one of the well-researched and highly-publicized benefits of neural 
networks. Recall that the performance of an MRF algorithm is strictly dependent on 
detailed stochastic models. If these models are allowed to be periodically updated during 
system operation, MRF algorithms can be designed to improve their performance even in 
the presence of non-stationary random processes, similar to adaptive Kaiman filters [12]. 

Lastly, both schools are active fields of research, and we can expect important new 
results in the coming years. 

Merits of Neural Network TechniQues 

A real advantage of the neural network approach is that one need not develop an 
explicit image model. In the case of MRFs, such models require significant study and 
refinement in order to produce reliable systems. Omitting this task allows relatively quick 
starts for image processing applications. Neural networks build their own implicit model 
based on the statistical properties of the training data. Consequently, neural networks seem 
to be the tool of last resort for many problems that have proven difficult for previous 
technologies. The system developers and domain experts need never develop the detailed 
models required by the MRF approach. 

Secondly, there are several commercially available (and reasonably priced) neural 
network tools that facilitate development and validation of algorithms. These are very 
general tools that can be applied in any domain and allow rapid development of neural 
solutions. Some tools will automatically generate source code for the functional mapping 
indicated by a particular (trained) network. These tools enable even novice prograrnmers to 
apply this technology. (To our knowledge, there are few similar tools available for 
development of MRF or Bayesian techniques.) 

As to performance, neural networks are optimal only over the region of support 
indicated by the training data. Therefore, it is vital to the success of any such application 
that great care be given to selecting "appropriate" training, test, and validation pattern sets. 
Some would argue that this effort is nearly as arduous as building the detailed models 
required by the MRF approach. However, in practice, many successful (if not optimal) 
systems are trained on patterns that a domain expert feels are "representative" of the range 
of possible situations that could occur during ron time. 

One disadvantage of neural networks is that their functional performance is largely 
dependent on the chosen architecture, and the quality of the training data and policy. The 
size and topology of a neural network's internal structure determines the complexity of the 
mappings that it is able to leam. Statistical measures of problem complexity have been 
studied and heuristics for the numbers of hidden layers and nodes have been proposed [13], 
but picking a network architecture is still a largely ad hoc process. Typically, experiments 
are performed until acceptable results are found. For any given problem, there is no "best" 
combination of network algorithm and architecture; only ones that produce acceptable 
results. 

Merits of Markov Random Field TechniQues 

In contrast to neural networks, MRF techniques develop detailed stochastic models 
of images and objects. An MRF algorithm's performance is dependent on the accuracy of 
these models. The model development process often has the side-effect of increasing the 
developers' understanding of underlying application concepts. In asense, a neural 
network's biggest strength is also its biggest weakness. For large networks, the approach 
allöws very little insight into the physical phenomena that cause any particular image to be 
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generated. Networks are simply taught to associate a desired output with a particular input, 
and allowed to interpolate between trained points in its input space. If no network can be 
found that performs adequately, the methodology sheds little light on the cause of the 
failure. Development of complete statistical image models is one strength of MRF 
techniques. 

Secondly, MRF techniques are optimal in maximum likelihood sense over fuH range 
of their modeL Neural networks model only their training sets with minimum squared 
error. Therefore, a poor choice of training patterns can severely degrade neural network 
performance. 

One disadvantage of MRF techniques is that there is a danger of being seduced by 
the lure of "optimality." While it is true that Bayesian techniques result in optimal 
estimators, there is no guarantee from the MRF approach that an extensive stochastic model 
is at all valid. In fact, a neural network's intern al model may be just as valid as an explicit 
model derived by rigorous analysis. We feel that this is the primary reason why (ad hoc) 
neural networks have been shown to produce results just as striking as (scientific) MRF 
techniques. 

CONCLUSIONS 

In this report we have discussed two basic image processing technologies and their 
application to nondestructive evaluation (NDE). A neural network based defect location 
technique was described that has yielded some interesting results. This method requires 
further testing and refinement but may prove to be a viable algorithm for NDE image 
analysis. Next, we described our preliminary impressions of Markov Random Field (MRF) 
image segmentation techniques. These methods are much more complicated than neural 
network techniques, but are strong in areas where neural networks are weak. 

Lastly, the relative merits of neural network and MRF techniques were discussed. 
Figure 5 summarizes our comparison of these two promising image processing 
technologies. Because of their information theory framework, a scientific approach favors 
algorithms based on Bayesian methods. Such methods are mathematicaHy rigorous and 
optimal in the sense of being least likely to generate an erroneous interpretation. System 
developers, on the other hand, who know more about manufacturing (for instance) than 
stochastic processes, seem to prefer neural networks. These algorithms are not terribly 
complicated and, because of the existence of commercial shells, can be employed relatively 
quickly. 

Neural Networks Markov Random Flelds 
Motivation Neurophysiology Information Theory 
Parallel Aigorithms Yes Yes 
Adaptive Solutlons Yes Yes 
Research Actlvlty Dates to mid '50s, most On and off since '40s 

active since mid '80s 
Easeof Use Builds implicit models by Requires rigorous human 

training analysis 
Explicit Model No, relies on training data Yes, often results in better 

understanding of processes 
Commerclal Tools Several Few 

Optimal Functlonal Not necessarily Yes 
Performance 

Valid Models Yes, if one can be found Not necessarily 
at all 

Fig. 5. Neural Network and Markov Random Field Comparison 
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The choice between these two technologies must ultimately be based on the reasons 
for building an image analysis system. Manufacturing applications that must be 
implemented with minimal effort may benefit directly from neural networks. If the goal is 
to fully understand an imaging system, and segment images with a minimum probability of 
error, then MRF algorithms should be investigated. For example, most military and 
medical applications require this level of reliability. 

A number of hybrid approaches have been developed to combine the strengths of 
both technologies [9, 14,15]. One approach, that we are considering, imposes hierarchical 
constraints on neural network segmentations. This approach takes advantage of neural 
network strengths in low-level model building, while providing a probabilistic mechanism 
for incorporating heuristic constraints. 

ACKNOWLEDGEMENTS 

The authors would like to thank Mark Reighard and Rick Rodgers of McDonnell 
Douglas for their direction and comments on this paper. We also appreciate the guidance of 
Mike Miller and Joseph O'Sullivan of the Electronic Systems and Signals Research 
Laboratory at Washington University in St. Louis. 

REFERENCES 

1. Neurocomputing: Foundations of Research. J.A. Anderson and E. Rosenfeld eds., 
MIT Press, 1988. 

2. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 
D.E. Rummelhart and J.L. McClelland eds., Vol. 1, MIT Press, 1988. 

3. Review of Progress in Ouantitative Nondestructive Evaluation. 0.0. Thompson and 
D.E. Chimenti eds., Vol. 9A, pp. 625-704, Plenum Press, 1990. 

4. Silverman, R.H. and AS. Noetzel, "Image Processing and Pattern Recognition in 
Ultrasonograms by Back-propagation," Neural Networks, Vol. 3, No. 5, pp. 593-603, 
Pergamon Press, 1990. 

5. Hamming, R.W., Coding and Information Theory. Prentice-Hall, 1986. 
6. Kinderman, Rand J.L. Snell, Markov Random Fields and Their Applications. 

American Mathematical Society, 1980. 
7. Cross, G.R., and AK. Jain, "Markov Random Field Texture Models," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 5, No. 1, pp. 25-39, 
January 1983. 

8. Geman, S. and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the 
Bayesian Restoration of Images," IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 6, No. 6, pp. 721-741, November 1984. 

9. Tdl.ven, H.G.C., "A Neural Network Approach to Statistical Pattern Classification by 
"Semiparametric" Estimation of Probability Density Functions", IEEE Transactions 
on Neural Networks, Vol. 2, No. 3, pp. 366-377, May 1991. 

10. Miller, M.I. and B. Roysam, "A Unified Approach for Hierarchical Imaging Based on 
Joint Hypothesis Testing and Parameter Estimation," Proceedings of ICASSP-89, 
Vol. 4, pp. 1779-1782, IEEE Acoustics, Speech, and Signal Processing Societies, 
Glasgow, Scotland, May 1989. 

11. Miller, M.I., B. Roysam, K.R. Smith, and J.A O'Sullivan, "Representing and 
Computing Regular Languages on Massively Parallel Networks," IEEE Transactions 
on Neural Networks, Vol. 2, No. 1, pp. 56-72, January 1991. 

12. KirIin, RL. and A Moghaddamjoo, "Adaptive KaIman Filtering for Systems with 
Unknown Step Inputs and Non-Gaussian Measurement Errors," IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 2, pp. 252-263, April 
1986. 

13. Baum, E.B., and D. HaussIer, "What Size Net Gives Valid Generalization?," Neural 
Computation, Vol. 1, PP. 151-160, MIT Press, 1989. 

14. D.F. Specht, "Probabilistic Neural Networks," Neural Networks, Vol. 3, No. 1, pp. 
109-118, Pergamon Press, 1990. 

15. Perlovsky, L.I., and M.M. McManus, "Maximum Likelihood Neural Networks for 
Sensor Fusion and Adaptive Classification," Neural Networks, Vol. 4, No. 1, pp. 89-
102, Pergamon Press, 1991. 

724 




