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ABSTRACT 

 

This thesis presents an automated method for assessing conceptual designs with respect 

to manufacturing and supply chain, using geometric data mining and machine learning 

algorithms. It is important for designers to understand how design decisions will impact 

downstream manufacturing and sourcing. Many critical decisions are made during conceptual 

design that impact production cost even before detailed design is finalized; however, the effects 

of these decisions are not known until later. Design for manufacturing and design for supply 

chain are methods that provide feedback to the user in a way that enables proactive design 

changes. 

A conceptual design is largely defined by the geometry found in CAD files. In this 

work, feature-free geometric algorithms were used to extract meaningful manufacturability 

metrics from 3D models, which were classified as either castings or machined parts. The 

developed metrics serve as useful attributes for a machine learning model that can help select 

the manufacturing process of a conceptual design. A classification accuracy of 86% was 

achieved using a random forest algorithm, which is comparable to other approaches in the 

literature, while only using geometry as input. The work in this thesis provides methods for 

using geometry to evaluate a design for manufacturability and supply chain, enabling proactive 

design decisions early during new product development. 
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CHAPTER 1: INTRODUCTION  
 

Research Motivation 

Design decisions made during new product development significantly impact the 

downstream manufacturing systems and supply chains and therefore limit the profitability of 

the manufacturing systems that produce the designs. The complete details of a new product is 

provided in a Technical Data Package referred to as the TDP (Figure 1), which is defined as 

“a technical description of an item adequate for supporting an acquisition strategy, production, 

engineering, and logistics support [1].” New product development starts with conceptual 

design, where the general part geometry and schema of a design is determined. However, many 

details in the technical data package, such as quality assurance provisions and geometric 

dimensioning and tolerancing (GD&T) are still unknown. After conceptual design, detailed 

design seeks to fill out the TDP, resulting in all the information necessary to bring a design to 

fruition.   

 

 

 

 

After the TDP is complete, firms will manufacture, distribute, and sell the product 

(Figure 2). It has been shown that only 20% of the avoidable cost of the product is due to 

decisions made by production engineering and 30% of the cost is due to detailed design. 

However, 50% of the avoidable cost in a product is due to design schemes, such as those 

Technical Data Package (TDP)

Design Geometry Material Specs GD&T Callouts

Testing 
Requirements

Quality Assurance 
Provisions Packaging Details

... ...

Figure 1. Design information included in the technical data package. 
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determined during conceptual design [2]. The ability to predict how a design will impact 

manufacturing and the supply chain would enable proactive decisions early during new product 

development; however, it is not clearly understood how early design decisions impact 

downstream production activities [3].  

 

 

  

Traditionally, the downstream activity of manufacturing alone was of primary concern. If there 

was difficulty in manufacturing, engineering change requests would be considered; however, 

engineering change requests are costly and can disrupt other parts of the manufacturing system. 

The practice of design for manufacture (DFM) and design for assembly (DFA) arose as a 

method of measuring the manufacturability of a design [4], defined as the ease at which a 

design can be produced using a given manufacturing process. DFM enabled designers to make 

proactive decisions to increase manufacturability, which became a consideration in addition to 

performance (Figure 3). The 

methods of DFM and DFA can be 

generalized to design for “X” 

(DFX), which also includes design 

for quality, reliability, 

maintenance, environment, and 

life cycle cost, to name a few [3].  

 

Design for 
Performance

Manufacture
Distribute 
and Sell

Design for 
Manufacture

Figure 3. Product lifecycle including design for manufacture. 
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Distribute 
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Figure 2. Product development cycle. 
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As product complexity rose, firms started to outsource fabrication to suppliers that 

specialize in certain manufacturing processes (Figure 4). Instead of manufacturing each 

individual part, firms source parts through complex global supply chains. Different designs 

yield different prices, 

lead times, and quality 

acceptance rates from 

suppliers in the supply 

chain. It is expected that 

some of these supply chain impacts are a result of the design of the product being sourced [5]. 

Supply chain management is now a more critical downstream activity.  Design decisions affect 

the sourceability of a design (Figure 5), which is a general term that is defined as the ease at 

which a product can be 

sourced from a given 

supply chain, with 

respect to lead time, 

quality, cost, 

environmental impact, 

and more.  

Design for supply chain (DFSC) is a relatively new method of measuring the 

sourceability of a design during product development, and providing feedback that enables 

proactive design decisions that improve aspects of supply chain management [6]. For example, 

if a design is identified early as requiring a forging manufacturing process, economic 

considerations around the forging industry may drive the design towards a different 

Design 
Manufacture

Distribute 
and Sell

Out Source

Assembly 
and 

Integration

Figure 4. Product development cycle with outsourcing. 

Sourceability

Manufacturability

Lead Time

Cost

Risk

Quality

Social Impact

... ...

Figure 5. Elements of the sourceability of a design. 
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manufacturing process. A small supply base, long lead times, or poor quality records may all 

drive early conceptual design decisions towards another manufacturing process. Product 

performance, manufacturability, and supply chain management are all concerns the designer 

must consider when making decisions (Figure 6). It is important to note that sourceability is 

not independent from manufacturability. Indeed, the ease at which a part can be manufactured 

is just as important to the external suppliers as it is to firms that design and fabricate their own 

parts. However, manufacturability issues may hide in the form of increased prices, longer lead 

times, and quality defects that are passed on from the supplier to the buyer.  

 

 

 

 

 

 

 

 

 

The relationship between design and sourceability is complex, due to the many facets 

of a supply chain. There are many ways to measure sourceability [7], and there are many ways 

to characterize a design. Companies have enterprise databases containing information on both 

the TDP of designs (product data management, PDM) and on supply chain impact (enterprise 

resource planning, ERP). These databases contain many data points that can be fed to machine 

 

Design for 
Performance 

Manufacture
Distribute 
and Sell

Out Source

Assembly 
and 

Integration

Design for 
Supply Chain

Design for 
Manufacture

Figure 6. Product development cycle with design for supply chain. 
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learning algorithms to provide designers with a better understanding of how decisions impact 

sourcing and manufacture of a design, enabling improved DFSC (Figure 7).  

Both ERP and PDM databases contain a wide variety of information used in many 

business functions. While it is difficult to understand the ease at which a design can be 

produced through manufacturing or supply chain, data in ERP and PDM databases may 

provide useful information for designers. The problem is the lack of automated methods that 

allow designers to evaluate the supply chain and manufacturing impacts early during 

conceptual design. The objective of this thesis is to develop a data-driven method to automate 

design for manufacturing and supply chain. To achieve this goal, two sub-objectives need to 

be addressed. First, quantitative methods of assessing a design will be developed. This includes 

both measures of the geometry of a design, in addition to measures of supply chain suitability 

(sourceability). Second, the relationship between design and supply chain will be examined 

using statistical methods. Machine learning algorithms help provide an understanding of which 

design metrics have meaningful downstream impacts and serve as tools for evaluating new 

Figure 7. The connection between the TDP of a design and sourceability. 
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designs. By completing these objectives, this will lead to automated methods that enable 

optimal engineering designs with respect to supply chain and manufacturing. 

Thesis Organization 

Chapter two of this thesis consists of a literature review in the areas of design for 

manufacturing, design for supply chain, and geometric analysis related to manufacturing. 

Chapter three consists of a journal article presenting a method for automated manufacturing 

process selection, written by Michael Hoefer with guidance and revisions from Matthew Frank. 

Chapter four includes final conclusions and a discussion of future research activities.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter contains a review of literature related to automated design for 

manufacture, design for supply chain, and geometric analysis. 

Automated Design for Manufacture 

Studies have shown that up to 80% of avoidable cost in a production system is due to 

decisions made during the design stage, and especially during conceptual design [1]. Once 

design decisions have been finalized, it is costly to retroactively change the design by using 

engineering change requests (ECR). In addition, ECRs can lead to unintended consequences 

in different parts of the product, as the decisions made for one part of the design are used as 

input for design of other parts.  The field of design for manufacture (DFM) arose as a method 

for ensuring designs can be manufactured at a low cost. DFM generally consists of predicting 

the manufacturability of a design, which has been defined as the ease at which a part can be 

produced using a given manufacturing process. Using DFM feedback, designers seek to make 

design changes that improve the manufacturability, reducing downstream manufacturing cost 

and design changes.  

There are two documented types of DFM analysis, plan-based and rule-based [2]. Plan-

based methods first generate a process plan, and then evaluate the effectiveness of the 

generated plan. Rule-based methods, on the other hand, use rules to eliminate candidate 

manufacturing processes. An example of rule-based analysis is the fast-heuristics process 

filtering approach [3].  

Many of the traditional DFM methods have focused on analyzing detailed designs, and 

tend to require a significant amount of user input. For example, Pro-DFM software uses various 

criteria and applies a penalty factor to a baseline cost, resulting in an estimate of product cost 
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based on procurement, fabrication, and inventory cost [4]. The required inputs are likely 

unknown until after the detailed design stage. Similarly, the specific tolerances required by the 

ProMod software are also intended for detailed design [13]. However, by the time detailed 

design has begun, much of the general schema of the design has been determined. As shown 

in [1], the schema of the design can be accountable for up to 50% of the avoidable cost. 

Therefore, it is important to make decisions that improve the conceptual design before detailed 

design is finalized. 

Performance requirements often command the attention of designers, driving a need to 

reduce the amount of time and human intervention required for DFM methods. There have 

been multiple attempts at automating DFM analysis. Many automated methods seek to directly 

analyze CAD models, without requiring a significant amount of user input. There are two main 

analysis approaches; feature-based and feature-free. Feature-based approaches seek to identify 

features from a model and perform analysis on those features, such as a plane or extrusion [5, 

6]. While some methods automatically extract features from the CAD file [7, 8], others rely on 

user input to represent features [9]. Feature-free methods work directly on solid or surface 

based representations of the features. While features provide useful information, feature-free 

methods are able to handle any arbitrary geometry without the difficulty of feature 

identification. Prior feature-free DFM methods tend to focus on a single manufacturing 

process, such as machining [10 - 12]. The data-driven methods in this thesis are feature-free, 

and can be used for analysis in a variety of ways depending on the available data. 
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Design for Supply Chain 

Global competition and rising product complexity has encouraged firms to specialize 

in certain manufacturing processes and core competencies. As a result, many firms outsource 

fabrication of piece parts to external suppliers. These firms focus on assembly and high level 

systems integration as their core competency. This necessitated the rise of complex, global 

supply chains to produce products like aircraft, automobiles, and consumer electronics. While 

firms that design and fabricate parts only need to consider the manufacturability of a design 

for production, firms that design and purchase parts need to consider the impact of the design 

on the supply chain. To this extent, it is important to understand the sourceability of a design, 

which has been defined as the ease at which a firm can procure a quality part in the desired 

quantity within the desired amount of time at a reasonable price [14]. By understanding how a 

design impacts downstream supply chain activities, designers can make proactive decisions to 

reduce cost, shorten lead time, and improve quality. The practice of design for supply chain 

(DFSC) is concerned with making these decisions to ensure the product is easily sourced. 

While DSFC is a relatively new field, multiple companies have implemented DFSC 

practices and seen significant financial savings. Hewlett-Packard created a six-part DFSC 

toolkit, involving logistics enhancement, commonality and reuse, and postponed 

differentiation. Use of DFSC has provided an estimated savings of over $100 million as of 

2006 [15]. A firm in the fashion industry also found success in DFSC by utilizing cross 

functional design teams that communicate across multiple facets of operations, resulting in 

designs that could be produced at a lower cost [16]. Despite the potential benefits, relatively 

few DFSC tools have been developed.  
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Recent methods focus on high level configurations of the bill of materials (BOM) of a 

product. In that sense, DFSC is applied to the assembly as whole, rather than looking at the 

geometry of individual piece parts. One tool focuses on design for assembly (DFA) and 

calculates a DFA index for each possible BOM from a variety of options. The highest scoring 

BOMs are then evaluated using a supply chain index [17]. This can help designers in selecting 

which part alternatives to include in an assembly. Another approach focused on the risk in the 

supply chain [18]. This study involved an industry survey to identify the most important risk 

factors, and the development of a mixed integer programming model to help select between 

different design alternatives.  

Similar to manufacturability, there are multiple ways to measure the sourceability of a 

design. Multiple supply chain metrics have been defined in order to measure sourcing and 

procurement performance. Prior research has focused on metrics such as delivery, cost, 

inventory, and logistics, aligned with customer satisfaction. These metrics have been grouped 

as strategic, tactical, or operational [19]. Another study conducted an industry survey that 

identified lead time, quality, and social and environmental metrics as the most important for 

design for supply chain [20]. Different companies will benefit from focusing on metrics that 

are important to their specific product configuration and supply chain. For example, an 

aerospace firm that requires a highly specialized forging process may be concerned about 

supplier capacity metrics, to ensure suppliers will be able to meet production demand. On the 

other hand, a firm that specializes in consumer electronics may be more interested in 

environmental or social metrics, given the dependence of that industry on customer sentiment.  

One important aspect in design for supply chain and design for manufacture is the 

manufacturing process used to produce the designed part. The geometry of a design will often 
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dictate which manufacturing process can be used to produce the part. For example, a part with 

internal hollow cavities cannot be easily produced via machining, because the part will have 

surfaces that are inaccessible to a machine tool. In addition, some manufacturing processes are 

better suited to certain geometries due to economic or environmental concerns. For example, 

a part consisting of thin metal sections, such as a simple box, could be creating using 

machining. However, this would require a significant amount of material to be removed from 

a solid billet, resulting in costly machine time, tool wear, and material use. The part would 

likely be produced more effectively as a weldment, by fabricating individual plates and 

welding the pieces together at the end. For the same part, casting may be entirely infeasible 

due to the thin sections of the walls. 

Understanding which process will be used to produce a part can provide insights into 

the possible cost, lead time, and quality the part will yield when it is fabricated. For example, 

parts that are cast generally have a poorer surface finish than those that are machined.  

Manufacturing process selection is a relatively well developed field that focuses on analyzing 

geometry and production requirements, among others, to select the most economical process 

for fabrication [21].  Simple methods of process selection involve picking a process from a 

grid based on production quantity and desired material. However, this method ignores the 

geometric constraints inherent to manufacturing processes.   

While the geometry of a design can yield useful information, it can be difficult to 

extract data from the models. Geometric analysis is a field that focuses on collecting useful 

data from a 3D model.  A significant amount of geometric analysis has been used for the 

purposes of clustering parts for group technology (GT). GT seeks to group similar parts for 

batch manufacturing, reducing the production cost of each piece. Automated methods have 
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been developed to analyze the features of a STEP file and automatically assign an Optiz GT 

code for part retrieval and design reuse [22]. In addition, software has been written that can 

analyze an assembly based on mating geometries of piece parts [23]. Geometric analysis is 

often performed on surface based or solid models. One example is the use of curvature based 

measures to classify parts in the National Design Repository, using support vector machines 

(SVM) and k-nearest-neighbors (KNN) [24]. SVM and KNN are both methods for 

classification using machine learning. Other machine learning methods have been utilized for 

geometric data, including the use of learning logic [25]. The methods in this thesis utilize 

decision trees and random forest for classification of 3D models based on manufacturing 

constraints. 
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CHAPTER 3: AUTOMATED MANUFACTURING PROCESS SELECTION DURING 
CONCEPTUAL DESIGN 

  

A paper submitted to the ASME Journal of Mechanical Design 

Michael J. Hoefer and Matthew C. Frank 

 
 

Abstract 

This paper presents a method for automated manufacturing process selection during 

conceptual design.  It is helpful to know which manufacturing processes can produce a design 

at an early stage, when the overall design can be changed for less cost. Early during new 

product development, geometric dimensions and tolerances may not yet be specified, but a 

general 3D model is often under development. Algorithms are presented to interrogate 3D 

models to calculate machining based manufacturability metrics. These algorithms are used on 

a dataset of 86 CAD models classified as machined or cast-then-machined. The metrics, such 

as visibility, reachability, and setup orientations, seek to characterize a part’s manufacturability 

using machining domain knowledge. These metrics serve as inputs to machine learning 

models, which are used to classify parts by manufacturing process with 86% accuracy. Some 

of the incorrectly classified parts were instances that had robust designs capable of being 

manufactured using machining or casting. The results of the machine learning models indicate 

that the machining metrics can be used to provide process selection feedback during conceptual 

design.  
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1. Introduction 

Increasing competition has put pressure on firms to reduce time to market and lower 

product cost. Understanding which manufacturing process will be used to produce a design is 

a critical step in the design process. Selecting an appropriate manufacturing process early 

during conceptual design results in parts that are more manufacturable [1]. Engineers are able 

to tailor a design towards a specific manufacturing process early on, which reduces 

manufacturing issues and downstream change requests. Traditionally, process selection has 

relied on human analysis and wisdom [2]. However, methods that rely on human intuition 

require prior training and are subject to error. It is necessary to develop systematic and 

objective methods for selecting a manufacturing process based on only a conceptual design.  

Conceptual design is the first stage in new product development, and involves 

determining the general scheme of the solution [3]. It has been shown that up to 50% of the 

avoidable cost of a product is determined in the conceptual design stage [4]. Conceptual 

designs often include CAD drawings [3], but do not contain all the details necessary (technical 

data package) to produce the design. Conceptual designs are improved in an iterative process 

consisting of synthesis, analysis, and evaluation. Once a conceptual design is finalized, details 

are added until the schematics are ready for production. Detailed design then adds final details, 

such as those resulting from geometric dimensioning and tolerancing (GD&T). During detailed 

design, the manufacturing process has likely been selected, and designs are tailored for the 

specific process. Therefore, process selection is critical during conceptual design to avoid 

detailing a design for an inappropriate process. 

This paper focuses on selecting between two common manufacturing processes, 

casting and machining. Apart from sheet metal forming, casting and machining processes are 
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used to create the vast majority of metal production parts. The machining process has a high 

dimensional capability and leaves the material properties relatively unchanged [5]. However, 

since a machine tool must make contact with every surface of the finished geometry, the 

machining process is relatively inefficient for manufacturing large quantities of parts. The 

casting process is generally faster than machining (after tooling is created) and can be scaled 

to achieve production runs of large quantities. While there are a variety of casting processes 

with different capabilities, most tend to have lower dimensional accuracy and a rougher surface 

finish compared to machining. This leads to the use of casting to achieve near-net shape 

geometry for high quantity production runs, and the use of machining on critical features to 

meet the dimensional specifications [6]. These parts are deemed cast-then-machined. 

Selecting between pure machining and a cast-then-machined approach involves 

multiple considerations. Production quantity and material both play a significant role in 

effective process selection [7]. 

For example, some materials 

are better suited for machining, 

while others are better for 

casting.  Lead time may also be 

an important factor. Most all 

cast parts often require custom tooling (patterns) to be created before parts can be produced, 

whereas machining tends to require less custom fixturing, resulting in a shorter lead time if 

only one or a few parts are needed. While production requirements need to be considered, the 

geometry of the design often dictates which process will be most capable of creating the part 

due to manufacturing constraints. For example, a part with easily accessible flat surfaces 

Figure 1. Example parts; a) A part with curved surfaces suitable for 
casting, b) A part with many flat surfaces, suitable for machining. 

a) b) 
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(Figure 1a) would be a stronger candidate for the machining process. On the other hand, 

geometry with many curved surfaces may lend itself for casting (Figure 1b) Casting tends to 

be better suited for designs that contain curved surfaces or other non-prismatic features.  

This paper presents an automated method for assisting in manufacturing process 

selection between machined and cast-then-machined parts. Process selection using material 

and production quantity is a relatively well developed field of research. However, using data 

driven geometric analysis for process selection during conceptual design is an undeveloped 

research area. In this paper, geometric analysis is used to generate machining-focused 

manufacturability metrics that serve as useful measures for process selection. After selecting 

the most useful metrics, machine learning algorithms are used to create predictive models that 

aid in process selection during conceptual design.  

2. Related Work 

Simple methods of process selection involve picking a process from a grid based on 

production quantity and desired material [7]. However, several software-assisted methods have 

been developed for various aspects of design for manufacturing and process selection [8, 9]. 

Many involve methods with varying degrees of process planning or production rules [10, 11].  

Most process selection efforts involve gathering a significant amount of information about the 

design, such as surface finish, tolerances, production rate, and time-to-market. The resulting 

tools rely on user input to provide process suggestions. MAMPS is a process selection support 

system that allows users to enter information such as part wall thickness, tolerances, and 

production volume and receive a compatibility score for three manufacturing processes [12]. 

PROSEL is system that aids in net-shape process selection from user input, and allows the user 

to select a general part shape complexity level for analysis [13]. A web-based advisory, system, 
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WebMCSS, utilizes a database of process knowledge to provide information to users [14]. A 

faceted classification system was developed that allows designers to explore aspects of 

different processes [15]. The Manufacturing Advisory Surface (MAS) is a similar system that 

allows users to query processes with certain characteristics [16].    

Other efforts seek to estimate the manufacturing cost as a basis for process selection 

[17 - 20]. Machine learning has been used to estimate the manufacturing cost of individual jet 

engine components, based on a combination of design, materials, and economics [21]. Task-

based methods have been used for later stage detailed process selection [22], and specifically 

for aluminum castings [23].  These methods tend to require a significant amount of manual 

input from the designer or do not include the analysis of CAD models whatsoever. 

Additional utility in process selection can arise from direct analysis of part geometry. 

Physical parts have been measured for attributes, such as surface roughness, that were used to 

evaluate process chains involving additive manufacturing [24].  Other efforts focus on 

automated group technology (GT), which analyzes CAD geometry and finds natural grouping 

of parts [25].  STEP files can be automatically assigned an Optiz GT code, which involves 

traversing a decision tree to assign digits of the code [26]. GT is only one application of 

similarity assessment, which has been used for search, exploration, and retrieval of shapes 

during design [27, 28]. This has been attempted both for assemblies [29 - 31] and piece parts 

[32 - 36]. Other efforts focus on clustering CAD models based on features [37], or using 

hierarchical methods [38].   

Most similar to the work of this paper are efforts to classify or evaluate parts in the 

National Design Repository. These efforts use general shape descriptors [39, 40], invariants 

[41], or scale-space decomposition [42]. The method in this paper uses domain knowledge of 
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the machining process to generate slice-based and facet-based metrics, which contrasts with 

prior work that use general descriptors for classification. While previous efforts have used k-

nearest neighbor (KNN), support vector machines [6], or learning logic [43], this paper uses 

decision trees and random forests.   

3. Automated Process Selection 

3.1 Solution Overview 

The method presented in the paper consists of two main efforts. First, each part is 

characterized using three groups of metrics; aggregate geometry (such as volume and surface 

area), slice-based 

machining metrics, and 

facet-based orientation 

metrics. Second, these 

metrics, along with an 

assigned manufacturing 

process classification, are 

used as inputs to machine 

learning algorithms. The result of the machine learning algorithms is a model that predicts the 

classification of a new design, assisting in process selection. The process flow is shown in 

Figure 2. In this paper, the metrics are collected from a dataset of 86 parts from the National 

Design Repository [44] that are classified as either machined or cast-then-machined. Section 

3.2 provides detailed descriptions of how the metrics are calculated, as well as the expected 

impact on process selection. Section 3.3 presents the machine learning algorithms used to 

generate the predictive model.  

Figure 2. Composition of the model for predicting manufacturing process. 
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A CAD model is used as input when calculating the metrics in this work. There are two 

main categories of CAD file types: feature-based and feature-free. Feature-based models 

consist of discrete features controlled by parameters. Feature-based file formats tend to be 

proprietary in nature, and analysis is more complex as many types of features must be 

considered. Feature-free models, on the other hand, are surface-based representations 

consisting of polygons, such as triangles, or facets. The STL file format is a non-proprietary 

feature-free format that consists of a facet-based approximation of the surface of the geometry. 

The metrics presented in this paper are generated from algorithms that operate on STL files, 

which enables the algorithms to analyze any arbitrary geometry.  

3.2 Metrics 

The metrics used in this approach can be categorized into three groups. The first group 

consists of general measures of geometry, such as volume or surface area. The second group 

of metrics is based on manufacturing constraints of machining, using a slice-based method. 

The last group includes facet orientation and setup complexity metrics.  

Before calculating the metrics, each CAD model was scaled such that the longest 

dimension along the X, Y, or Z primary axis was equal to 10 inches. This was to ensure that 

the size of the parts was relatively similar, and that differences in metric values were due to 

geometry rather than size. The first group of metrics to be discussed include general measures 

of geometry, such as volume or surface area and is presented in the following section on 

Aggregate Geometry Metrics. 
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3.2.1 Aggregate Geometry Metrics 

Volume to Surface Area Ratio 

The volume to surface area ratio is used as a measure of geometric complexity. A high 

ratio indicates a solid model with few features, while a low ratio indicates that the surface is 

complex relative to the volume and may contain thin sections.  It is expected that machined 

parts will have a relatively low volume to surface area ratio, as significant portions of material 

are likely machined away from a block or cylinder of material.  

Bounding Box Volume to Part Volume Ratio (Buy-to-Fly ratio) 

The ratio of the volume of the bounding box to the volume of the part is colloquially 

known as the buy-to-fly ratio. This references the aerospace industry, in which a block of 

material is bought and the part is machined out and flown on an aircraft. The buy-to-fly ratio 

indicates how much material must be removed from a solid block of metal to create the part. 

It is expected that machined parts will have a higher buy-to-fly ratio, as there is significant cost 

associated with removing large volumes of material via machining. Designs with a low buy-

to-fly ratio are expected to be classified as cast parts.  

Bounding Box Surface Area to Part Surface Area Ratio 

Similar to the buy-to-fly ratio, the surface area ratio is the ratio between the surface 

area of the bounding box of the part to the surface area of the part itself. Parts with many 

complex features will have a large increase in surface area compared to the rectangular prism 

of material from which the part would be machined.  
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Ratio of Longest to Shortest Dimension 

The ratio between the longest and shortest dimension of a model is an indicator of how 

oblong the part is. Since cast parts require directional solidification to avoid voids in the final 

part, it is unlikely that extremely oblong parts will be classified as cast parts.  

Facet Count to Surface Area Ratio 

The facet count/volume ratio is another proxy for geometric complexity. When most 

commercially available CAD programs convert a model into an STL file, the parameters 

include a chordal deviation, which represents the permissible error from the true geometry. 

Flat surfaces, common in machined parts, can be perfectly represented with a low number of 

facets. Complex curved geometry, on the other hand, will require many facets to represent the 

true geometry and stay under the required deviation.  
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3.2.2 Slice-Based Machining Metrics 

In processes such 

as additive manufacturing, 

process planning is 

simplified by slicing the 3D 

geometry of an STL file 

into a series of 2D slices.  A 

similar method is used in 

this paper for calculating 

the visibility, reachability, 

and tool accessibility 

metrics. This method is 

derived from the analysis used in ANA, a system for automated manufacturability analysis 

[45].  First, a 3D model is sliced along each of the principle axes, resulting in three arrays of 

consistently spaced 2D slices (Figure 4b). Each slice consists of one or more closed polygonal 

chains of line segments. Manufacturability analysis is performed on each segment in a chain, 

resulting in numeric values for each segment (Figure 4c). Lastly, the segment values are 

mapped back to their original facets, resulting in a numeric score for each facet (Figure 4d). 

As each facet is assigned a single value based on a series of individual segments, facets with 

large areas may receive inaccurate scores. Therefore, each part is re-tessellated using the 

midpoint method of facet subdivision and a maximum facet edge length of 0.5 inches (12.5 

mm).  

 

a) b) 

c) 

Figure 4. Slice based machining analysis; a) The original STL model, 
b) 2D slices generated from the model, c) Machining-based 

manufacturability analysis resulting in numeric results for each 
segment in a slice, d) Segment values are mapped back to the original 

surfaces 

d) 
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Visibility 

For a surface to be machined, a tool must at least have a direct line of sight to the 

surface in question. The visibility metric measures the range of angles from which a facet is 

visible with respect to the incident machine tool.  If the surface is not in the direct line of sight 

from any external angle, that surface is not visible, and receives the lowest possible score of 

zero. To simplify the visibility calculation for each facet in a surface model, the slice based 

approach (Figure 5) is used to approximate the visibility range for each facet. Visibility for 

each segment is measured with respect to other segments in the same slice. 

The original 

STL model is used to 

create an array of 

slices along each of 

the principle axes 

(Figure 5b). The 

visibility range is 

calculated for each 

segment with respect 

to its own chain using 

a convex hull 

visibility method [46]. 

The visibility range is calculated as the sum of angles from which the segment is visible with 

respect to the rest of the segments in the slice. In Figure 5c, the visibility score for the single 

a) b) 

c) d) 

Figure 5. The slice based method for visibility analysis; a) The original STL 
file, b) The slices generated from one principle axis, c) The visibility 

calculations for a segment, d) The visibility scores mapped back to the original 
surface 
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segment is θa + θb. This total segment score is mapped back to the original 

facet (Figure 5d). In addition, the range of angles from which the segment is 

visible will be used in setup orientation calculations; (0 to  θb), (θa to 180). As 

multiple segments are generated from a single facet, the worst-case visibility 

score of the segments is assigned as the visibility score for that facet along 

that particular axis, and the intersection of visibility ranges of the segments in 

a facet composes the visibility range for the entire facet. For each facet, the 

angle ranges from which the facet is visible around a certain axis of rotation 

are 1( , )na nbθ θ , 2( , )na nbθ θ … ( , )na nb iθ θ , where n represents the X, Y, or Z principle axis. The 

process is repeated for the remaining two principle axes, and the overall visibility score, Visi, 

for the facet is calculated as the sum of the visibility ranges for each principle axis, shown in 

Equation 1. 

1 1 1
( ) ( ) ( )

i i i

xbi xai ybi yai zbi zaiVisi θ θ θ θ θ θ= − + − + −∑ ∑ ∑     (1) 

The highest possible visibility value for a segment with respect to a single axis is 180 

degrees. Therefore, the highest possible Visi score is 540 degrees, which would represent a 

facet on the convex hull of the 3D model.   

While visibility is necessary for machining, models must also have high visibility for 

metal casting. The casting process involves linear separation of geometry both by removing 

the mold from the pattern and removing the part from the mold. While some casting processes, 

such as investment casting, can handle complex internal geometry, it is likely that cast parts 

will also have high visibility scores; in particular along the parting directions. 

Reachability 

Figure 6. A 
feature that 

requires a long 
tool for 

machining. 
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Machining a surface with a long tool can result in tool deflection and can cause 

dimensional accuracy issues and poor surface finishes [47]. It is therefore useful to characterize 

a surface’s reachability, which represents the length of tool required to machine the surface.  

The reachability length is defined as the shortest visible distance from the surface to the edge 

of the part for a given machining angle. The reachability score can take the value of zero and 

up. A reachability length of zero indicates the facet is on the bounding box of the part. A 

reachability score of infinity means the facet is not visible from any angle, and therefore is not 

reachable with any tool length.  Parts that contain deep features, such as pockets or tall sections 

(Figure 6) will have some surface area with poor reachability (long required tool depth).  

Calculating reachability is again approximated using 2D slices of a surface model 

(Figure 7) [48]. The 

reachability distance is 

calculated for each 

segment by measuring 

the distance from each 

point on a segment to the 

line perpendicular to the 

machining angle that 

first touches the convex 

hull of the slice (Figure 

7c). The reachability 

depth Rj for segment j is 

selected as the longest depth of point Rji from a particular orientation (Equation 2). 

 

S

S

a) b) 

c) d) 

Figure 7. The slice-based method for reachability analysis; a) The original 
STL file, b) Slices generated from one principle axis, c) Reachability 

calculation for a single slice and single angle, d) Reachability scores are 
mapped back to the original facet. 
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1,2

maxj ji
i

R R
∈

=               (2) 

The longest depth across all of a facet’s segments is assigned as the reachability depth 

for that particular facet for a particular angle of approach. The shortest depth across all angles 

is mapped back to the original model (Figure 7d).  

It is expected that machined parts will generally have good (low) required reachability 

depths to avoid tool deflection. Therefore, parts requiring long machine tools will likely be 

classified as cast parts. 
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Tool Accessibility 

Parts that contain small features or sharp corners may not be completely accessible by 

a machine tool without a collision, regardless of visibility or reachability. Tool accessibility 

takes into account the diameter 

of the cutting tool when 

evaluating a surface’s 

machinability. Tool 

accessibility is approximated 

using 2D slices of a surface 

model (Figure 8a and 8b) using 

the C-Space machinability 

analysis for 3-axis flat end 

milling [49].  Within a slice, the 

machinability of individual 

points along a segment is analyzed using the concept of tool space (TS) and obstacle space 

(OS).  Tool space is defined as “the aggregate of all feasible cutter locations to cut a point p 

from an orientation α [49].” The obstacle space for 

obstacle i (Obi) is the region a tool cannot enter 

without gouging the obstacle. Obstacles can exist on 

the same slice as the segment in question (Figure 8c), 

or they can exist on slices adjacent to the slice 

containing the segment in question (Figure 9). 

Obstacles on adjacent slices are considered to be to 

a) b) 

c) 

Figure 8. Slice based tool accessibility analysis; a) The original STL 
model, b) 2D slices generated from the model, c) Tool accessibility 
analysis on a single slice, d) Segment values are mapped back to the 

original surfaces 

 

d) 

Figure 9.Tool space and obstacle space for a 
single segment consisting of points Pij and 

Pij+1. Source: [49] 
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the “left” (Lm) or the “right” (Rn), when traversing along the polygon chain, of the slice in 

question.   For perpendicular machining (end milling), tool space for a particular orientation, 

α, is calculated by subtracting the obstacle space (left, right, and same slice) from the maximum 

possible tool space (MTS), as given in Equation 3. 

( , ) ( , ) ( , )m n
m n

TS MTS OS L OS L OS iα α α= − − −∑ ∑    (3) 

Tool space is calculated for each segment in each slice, and if the tool space is not 

empty with other segments, the segment is considered to be accessible from that particular 

machining orientation (Figure 8c).  The accessibility is calculated for multiple setup 

orientations and a discrete number of tool diameters ranging from .125 inches up to 1 inch, in 

increments of .125. The worst case diameter across all segments in a facet is mapped back to 

the original surface for each machining orientation (Figure 8d). Finally, the largest tool 

diameter across all angles of approach is chosen as the “tool accessibility” metric for each 

facet. 

While difficult-to-access features may be a challenge for casting processes, it is likely 

that parts with poor accessibility will not be classified as machined. While small holes will 

have low values for tool accessibility, the surfaces that comprise the holes will likely be a small 

percentage of the surface area of the model, resulting in a relatively low impact on the weighted 

metrics for tool accessibility. 

Tool Length to Diameter Ratio 

The ratio between the tool length and diameter has been shown to have a significant 

impact on surface roughness of the part [47]. The reachability depth metric serves as a 

surrogate for tool length, and the tool accessibility diameter metric serves as a surrogate for 

tool diameter. Therefore, a feasible tool length to diameter ratio is calculated for each facet by 
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dividing the reachability depth by the tool diameter. For this study, the longest tool length is 

10 inches and the smallest tool diameter is 0.125 inches, meaning the largest possible value for 

length to diameter ratio is 80.   

Number of Axes and Number of Rotations 

A significant cost factor in machining is the number 

of physical setups and orientations that are required to 

machine a part (Figure 10). In general, the goal is to limit the 

number of setups to as few as possible. With the increase of 

four and five axis machining, parts with complex setup 

requirements may not need to be manually re-aligned, but 

there is an increased burden on the CNC programmer to 

avoid tool collisions. Using the visibility ranges calculated for each facet in the Visibility 

section, a greedy heuristic algorithm based on surface area is used to solve the set covering 

problem to estimate the minimum number of setups required to machine the entire surface of 

the part [46].  

 

 

 

Figure 10. The main block model 
which requires many setups to 

machine every facet. 
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For each facet, the angle ranges from which the facet is visible around a certain axis of 

rotation are 1( , )ca cbθ θ , 2( , )ca cbθ θ … ( , )ca cb iθ θ , where c represents either the X, Y, or Z principle 

axis. The array of visibility ranges for each facet (Figure 11a) is covered by the array of angles 

( 1 2, ,...,c c ckθ θ θ ) from each axis (Axisc) of rotation (Figure 11b), such that every facet is visible 

from at least one angle selected in the axis and angle array.   

The number of axes required and number of rotations (angles) for each axis are captured 

as metrics for the model. Additional required visibility orientations can be costly for both 

machined and cast parts, as cast parts require directional separation of the part from the mold. 

However, the chosen angles for casting may not align with the three principle axes, given the 

variety of curved surfaces and complex features.  

 

 

 

 

 

 

 

 

Figure 11. Visibility set cover problem; a) The array of n facets containing the visible angles for each axis of 
rotation. b) The completed set cover of selected axes and angles. 

a) b) 
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3.2.3 Facet-Based Orientation Metrics 

Angle Between Facet and Machine Tool 

Previous calculations assign each facet to an axis of rotation, and an angle from that 

axis that results in the highest scoring tool accessibility (largest tool diameter).  Each facet on 

a surface has a unit normal vector, which is perpendicular to 

the facet and faces away from the solid model (Figure 12). 

The tool accessibility orientation angle is calculated for each 

facet. A preferred facet orientation for machining would allow 

for either end milling or face milling. Face milling would 

require the angle between the facet normal and the machine tool to be zero, while end milling 

requires an angle of 90 degrees. Deviations from zero or 90 may require ball milling to shape 

the surface in traditional three axis milling, resulting in additional cost. For that reason, the 

angles are transformed into Anglet (Equation 4) so that deviations from 0 or 90 degrees are 

penalized; 

45tAngle Angle= −       (4) 

where Anglet is the transformed angle ranging from zero to 45 degrees. A value of 45 

indicates the facet is aligned with the machine tool such that end milling or face milling is 

possible. It is therefore expected that machined parts will have more facets with angles closer 

to 45 degrees, as opposed to cast parts, which are more likely to have curved surfaces that 

would require ball milling. In addition, the deviation is likely larger for cast parts, given how 

curved surfaces have a wide degree of variability in facet orientation. Machined parts often 

consist of flat planar surfaces, which will lower the standard deviation for machined parts.  

 

Figure 12. A tessellated model 
indicating the unit normal vectors. 
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Deviation Angle 

As many features of machined parts are aligned with the principle Cartesian axes, the 

deviation of the facet normal from the axes is another useful measure. Surfaces ideal for 

machining will have an angle of 0, 90, or 180 degrees with respect to one of the principle axes. 

Values of 0 or 180 would indicate the surface is perpendicular to common machine tool setups, 

leading towards face or slab milling. A value of 90 degrees indicates the surface is parallel to 

common machine tool setups, which is preferred for end milling. Deviations from these three 

angles indicate the facet would require costly ball milling from standard machining 

orientations. Similar to the angle between facet and machine tool, the deviation angle is 

normalized to the range of (0, 45) degrees using Equation 5, and the maximum of the three 

axes is selected as the deviation angle for the facet. 

, ,

max 90 45fn
n x y z

DeviationAngle A
∈

= − −    (5) 

In Equation 5 Afn is the angle between the facet normal and the n principle axis, n being 

X, Y, or Z.  The deviation angle metric helps to characterize the facet’s orientation with respect 

to standard machining orientations, which will likely help discriminate between cast and 

machined models. 
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3.2.4 Metrics Overview 

Table 1 provides an overview of the metrics presented in this section. Metrics with a 

per-facet frequency will be calculated as the surface area weighted mean, standard deviation, 

and quantiles. 

Table 1. Metrics calculated for each model. 

Type Metric Units Range Frequency 

Aggregate 
Geometry Metrics 

Volume to Surface 
Area Inches 0 – infinity Per model 

Buy-to-Fly Ratio Unit-less 1 – infinity Per model 

Surface Area Ratio Unit-less 1 – infinity Per Model 

Side length ratio 
(longest/shortest) Unit-less 0 - 1 Per model 

Facet Count to 
Surface Area Facets/Square Inch 0 - infinity Per model 

Slice-Based 
Machining Metrics 

 

Visibility Score Degrees 0-540 Per facet 

Reachability Depth Inches 0-Infinity Per facet 

Maximum Tool 
Diameter Inches 0-1 Per facet 

Tool 
Length/Diameter Unit-less 1-80 Per facet 

Required Number 
Axes Count 1-Infinity Per model 

Required Number 
Rotations Count 2-Infinity Per model 

Facet-Based 
Orientation Metrics 

Tool Accessibility 
Orientation Angle Degrees 0 to 45 Per facet 

Deviation Angle Degrees 0 to 45 Per facet 

 

Algorithms implemented in C++ were used to analyze the geometry of the 86 models 

classified by manufacturing process (49 machined, 37 cast) in the National Design Repository. 
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R scripts were used for statistical analysis.  The per-facet metrics result in a distribution of 

scores for each model. These distributions are summarized using the weighted mean, variance, 

and 0th (minimum), 25th, 50th (median), 75th, and 100th (maximum) percentiles. In calculating 

these summary statistics, each facet’s value is weighted by its surface area to accommodate 

variation in facet size. Prior work has shown a statistical difference in many of these metrics 

between the machined and cast group, using an unpaired t-test [50]. 

3.3 Machine Learning for Process Selection 

Once the machining and geometry metrics are compiled for each model, they are used 

as inputs to multiple machine learning algorithms. Previous work in classifying parts by 

manufacturing process have used the k-nearest-neighbor (KNN) and support vector machines 

(SVM) algorithms for classification [6]. This study also uses KNN, but investigates decision 

trees and random forests in predicting manufacturing process.  

Estimated accuracies are provided for each machine learning method, measured by 

splitting the dataset into a training group and testing group, or in the case of random forest, 

using the out-of-bag estimation error. An analysis of a decision tree is provided to determine 

if the branching decisions are congruous with real manufacturing constraints. Models that are 

incorrectly analyzed were visually inspected to gain potential insights. The following sub-

sections detail the motivation for using each machine learning algorithm. 

3.3.1. K-Nearest Neighbor 

The k-nearest neighbor (KNN) classification method is based off the KNN clustering 

method.  To predict the classification of a new model, the KNN classification algorithm 

determines the similarity of the new model to all the existing models. The K most similar 

models are deemed the “neighbors” of the new model, and the most common classification of 
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the neighbors is selected for the prediction of the new model. The attributes were standardized 

to lessen the effect of attributes with large values or skewed distributions. A random 20% 

sample was set aside as the test set, and the remaining 80% served as the “neighbors.” The 

“class” R package was used for KNN classification [51]. The KNN method was chosen 

because cast and machined parts may tend to be designed similarly, and using measures of 

similarity to other parts will likely result in effective classification. 

3.3.3. Decision Trees 

Decision trees are a collection of hierarchical Boolean decision nodes that form a tree 

for predicting the classification of new instances.  Each node contains an attribute and a value 

with which the data is “split” by. The root node attribute is selected for the ability to the best 

ability to split the dataset. The “rpart” R package was used for decision tree classification, 

which evaluates a split based on the altered priors method [52]. An independent accuracy 

estimation of an individual decision tree requires a split between the training and test dataset. 

A random sampling of 20% of the data points were set aside for the accuracy evaluation. Leaf 

nodes are removed (pruned) to avoid overfitting the tree to the training set. Decision trees are 

transparent and can be understood by looking at the nodes in the tree, and may provide insight 

into how parts are classified. In addition, the hierarchical classification process used by 

decision trees is similar to the process used when assigning group technology classifications 

[26], and may be suitable for mimicking how a human would perform process selection.  
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3.3.4. Random Forest 

The random forest is an ensemble method involves the creation of many decision trees 

(a forest). The randomForest package [53] was used to generate the random forest model, based 

on Breiman’s implementation [54]. Each tree is constructed using a random sampling (with 

replacement) of the available instances. A random subset (size mtry, set to four) of attributes 

is evaluated for each split in the tree based on gini impurity. The number of trees grown (ntrees) 

was set to 2000. Once the forest is constructed, new models are run through each tree in the 

forest and the most commonly predicted category is selected for the model. To estimate the 

accuracy of the random forest method, the accuracy of each tree is evaluated for the instances 

that were not used in generating that specific tree; this is considered the out-of-bag error. 

Random forests provide an importance ranking of the attributes based on the decrease in 

accuracy when each specific attribute is randomly permuted. One motivation for using random 

forest is its robustness with respect to correlated variables. The machining based metrics are 

not completely independent, as surfaces that are easy to machine will score well for visibility, 

reachability, and tool accessibility. In addition, individual trees in the forest will serve as 

“experts” for a subset of parts and attributes, simulating a group of manufacturing engineers 

with different expertise voting on which manufacturing process to use. 
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4. Results and Discussion 

The accuracy of each machine learning algorithm is shown in Table 2. 

Table 2. Model accuracies. 

 

 

 

 

 

As shown in Table 2, the overall highest accuracy was the random forest method using 

an ensemble of 2000 trees. The KNN classifier did not achieve accuracy much greater than 

50%, which would be the expected accuracy of a random classifier.  This is congruent with 

previous attempts of classifying this dataset using KNN with curvature descriptors [6].  A 

single decision tree achieved an accuracy of 68%, but this number varied significantly 

depending on the training and test data split. The random forest method, which uses an 

ensemble of decision trees, created a model with an expected accuracy of 86%. The ten most 

important variables in the model 

are shown in Figure 13. The 

importance of each variable was 

calculated by evaluating the 

decrease in out-of-bag accuracy 

when that particular variable 

was randomly permuted during 

prediction.  

Algorithm Accuracy 

KNN 55% 

Decision Tree 68% 

Random Forest 86% 

Figure 13. Variable importance plot for the random forest classification 
model. 
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The most important variable was the minimum tool accessibility orientation angle of a 

part. The distribution, plotted by manufacturing process, is shown in Figure 14. The range in 

tool accessibility orientation angle is from 0 – 45 degrees, with a lower value indicating an 

unusual machining orientation allows for the 

largest tool diameter. Parts classified as castings 

appear to have a lower worst-case machining 

angle than machined parts. This may be due to 

complex curved features that have a non-

standard machining angle. Machined parts, on 

the other hand, generally do not have surfaces 

with extremely low scoring machining orientations. 

The three variables with the next highest importance measures are all derived from the 

Angle Deviation metric. Higher values for these metrics indicate surfaces that are aligned with 

traditional orthogonal machining setup orientations. The probability distribution between 

machined and cast parts is noticeably different (Figure 15).  This can be interpreted to suggest 

that many machined parts have over half of their surface area directly aligned with one of the 

three principle axes. This is congruent with the idea that machined parts are designed using 

right angles with respect to the Cartesian 

coordinate system. 

Figure 14. Probability distribution for minimum 
tool accessibility orientation angle. 

Figure 15. Probability distribution for median angle 
deviation. 



41 
 

The 75% quantile of visibility was 

the fifth most important variable. As seen in 

the histogram (Figure 16), a large 

percentage of machining models have a 75th 

visibility percentile at the maximum value 

of 540 degrees.  A value of 540 for the 75th 

percentile means that at least 25% of the 

surface area of the part is on the 3D convex hull of the part.  Figure 17a shows an example 

machined part with a large amount of surface area having a visibility score of 540 (completely 

shaded green). Figure 17b, on the other hand, shows a cast part where much of the surface area 

scores lower than 540, shaded from yellow to red based on visibility score. Machined parts 

tend to have large flat surfaces that serve as datums and aid in fixturing, which results in a 

considerable portion of the surface area having “desirable” visibility. 

 

 

 

 

 

 

 

Figure 16. Histogram for 75th percentile of visibility. 

Figure 17. Visibility map where highly visible surfaces are shaded 
green and less visible surfaces are shaded red; a) a machined part 

("part 10"), b) a cast part ("cross"). 

a) b) 
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The median reachability depth was another important predictor in the random forest 

classifier, likely for the same reasons that the 75th 

percentile visibility was an important metric. Surfaces 

that have an ideal visibility score of 540, by definition, 

are on the three dimensional convex hull of the part, 

which means those surfaces must also have an ideal 

reachability depth of zero inches. The distribution of 

median reachability depth (Figure 18) indicates that 

most machined parts have a significant amount of their surface area with a reachability depth 

of zero inches. In summary, the attributes driving the accuracy of the random forest model 

appear to be associated with the flat planar surfaces commonly found in machined parts.  

5. Conclusions and Future Work 

 While the accuracy of the random forest method was comparable to similarly 

published classifiers, there were a handful of misclassified models as measured using the out-

of-bag predictions. A few of the casting models were classified as machined models. Glass 1 

(Figure 19a) and Glass 2 (Figure 19b) were two cast-then-machined models that were 

incorrectly classified as 

machined parts by the 

random forest model. It 

is apparent that these 

parts have significant 

flat planar surfaces 

found in many of the 

Figure 18. Probability distribution of 
median reachability depth 

Figure 19. Example casting parts misclassified as machined parts; a) 
Glass-1, b) Glass-2. 

a) b) 
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machined parts, which resulted in a high scoring visibility, reachability, tool accessibility, and 

orientation metrics. These metrics likely “tricked” a majority of decision trees into believing 

the parts were indeed machined. The parts appear to be a mold and/or pattern for casting a 

goblet. It is unlikely that the mold/pattern itself would be cast.  This also brings into question 

the integrity of the original dataset. Publications presenting the dataset do not thoroughly 

explain the process of how the manufacturing classifications were assigned, and in future work, 

an expert evaluation may be necessary to validate the assigned classifications.  A potential 

improvement to the dataset would be to isolate the geometry of the cup, which would be a 

suitable candidate for casting.   

Some machined parts were misclassified as 

castings. Assembly Five (Figure 20) consists of a 

significant amount of curved surfaces that resulted in 

lower facet orientation scores, which resulted in the 

confusion by the classifier. MyCami2 (Figure 21), on 

the other hand, 

was composed of many flat surfaces. However, the 45 

degree angle in the part resulted in poor facet orientations 

with respect to standard orthogonal setup orienations, 

contributing towards being misclassified as a casting. In 

both of these cases, it is possible that both machining and 

casting would be a suitable near-net shape process to 

create the design. The curvature of the parts would result 

in directional solidification necessary for casting, and the flat geometry would also be suitable 

Figure 20. Assembly Five, a machined 
part misclassified as a casting. 

Figure 21. The MyCami2 machined part 
misclassified as a casting. 
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for machining. A third “either cast or machined” classification would aid in identifying robust 

designs that can be manufacturing using either process. In addition, future efforts could work 

towards providing an overall measure of manufacturability with respect to manufacturing 

process, rather than the simple binary classification used in this paper. Parts with robust designs 

will possibly score well for both machining and casting processes, and the decision to choose 

casting or machining would be a result of production requirements, rather than geometry.  

Future work will involve using these methods on expanded datasets that include more 

production information, beyond the manufacturing process. For example, relating the 

manufacturability metrics to cost or lead time would provide designers useful feedback early 

in conceptual development. This work focused on process selection using conceptual design 

geometry. As prior methods have noted the important of production quantity and material, it 

is likely that integrating the geometry of the conceptual design with these production 

requirements will provide improved assistance in process selection.  

The work presented in this paper indicates that slice-based and facet-based metrics built 

from machining domain knowledge can serve as useful predictors for process selection for 

CAD models creating during conceptual design. A variety of metrics were presented in three 

categories: aggregate geometry, slice-based machining metrics, and facet-based orientation 

metrics. Multiple classification algorithms were used to train a predictive model, including k-

nearest neighbors, decision trees, and random forest. Using the random forest algorithm, an 

out-of-bag accuracy of 86% was achieved.  The most important geometric indicators measured 

by the random forest were measures of facet orientation both with respect to a machine tool, 

and to the principle axes. This is the first known method to use a collection of manufacturing 

based metrics and machine learning to automatically classify a part by process.  The use of 
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these metrics and methods will assist in process selection during conceptual design, without 

requiring significant user input or expert knowledge.  
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE WORK 

Conclusions 

The contribution of this thesis is the development of an automated method that 

characterizes a conceptual design’s geometry and uses that information to help select a suitable 

manufacturing process. To understand the relationship between a design and manufacturing 

process, algorithms analyze a 3D model to calculate geometry metrics that are associated with 

the machining process. For example, a visibility score is calculated that measures what 

percentage of a model’s surface is visible from a machine tool. The machining metrics are used 

as inputs to a series of machine learning classification algorithms, including k-nearest neighbor 

(KNN), decision trees, and random forest. The accuracy of the machine learning models was 

measured using an independent test set of data, or in the case of random forest, the average 

out-of-bag (OOB) classification error.  The algorithms were executed using machining metrics 

alongside traditional geometry measures such as volume to surface area, and “buy-to-fly” ratio. 

Included in the results is a presentation of which geometry metrics were most useful at 

classifying a part with respect to a manufacturing process.  

An accuracy of up to 86% was observed with a random forest model. It appears the 

significant percentage of flat surface area in machined parts is a driving factor in the 

classification models, as the orientation of the individual facets was the most important 

attribute. There were, however, some misclassified models. For these models, some of the 

designs scored well on the machining metrics but were classified as cast parts. This 

classification error could be the result of a robust design, meaning the design was suitable for 

machining or casting, and/or other factors beyond geometry helped influence the original 

classification. 
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The success of the proposed machining metrics at predicting manufacturing process 

selection suggests that the metrics could provide information for predicting overall supply 

chain impact of a design. DFM based metrics, along with other design requirements, can serve 

as useful inputs to a machine learning model that helps predict supply chain impacts, such as 

cost, quality, and manufacturing process. As firms continue to collect more data about designs, 

manufacturing, and operations, automated knowledge discovery methods are required to 

enable data driven decisions during conceptual design. This thesis has presented a new 

automated method for design for supply chain, which requires characterizing geometry found 

in CAD files and using machine learning to understand how geometry affects sourceability. 

Machining metrics are introduced that can be used to effectively discriminate parts by 

manufacturing process. 

Future Work 

These metrics and methods serve as a groundwork for which future automated design 

for “X” systems can be created. Future systems will be able to include multiple other aspects 

of the product lifecycle, including maintainability, sustainability, safety, and quality. It will be 

important to experiment with these methods using more complete datasets. For example, these 

geometry metrics could be useful predictors of manufacturing cost or lead time when integrated 

with PDM and ERP systems. It is also critical to provide this information to the designer at an 

early stage. To accomplish this, tools will need to be created that provide real-time feedback 

during the iterative process of conceptual design. If designers can receive feedback about how 

their design affects downstream activities like manufacturing and supply chain, they can make 

proactive decisions that seek to optimize more than just product performance. 
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Another future research area is the use of machine learning for automated design for 

manufacturing and sustainability feedback. Data can be captured concerning which surfaces 

are the most difficult to process or result in high levels of defects, and then relationships with 

facet-based metrics can be discovered. This would allow for effective DFM feedback early on 

during conceptual design. In addition, life cycle assessments will yield data about various 

products and their impact on the environment. Similar machine learning methods can be used 

to compare the geometry of new designs with previous designs, to estimate the potential 

environmental impact of a design under development. 
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