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I. INTRODUCTION 

A. Historical Background 

Some of the earliest results in the theory of abstract 

spaces and abstract distances were the contributions of Fréchet 

and Menger. Fréchet1s book [ 8 ], Les espaces abstraits, ap

peared in 1928 and is a classical treatise on neighborhood 

spaces, limit spaces, topological spaces, and metric spaces. 

Menger's paper [ 19 ], "Untersuchungen uber allgemeine Metrik", 

appeared in the same year and contains an extensive treatment 

of distance geometry. In [ 18 ], Menger investigates the 

class of semi-metric spaces from a metric viewpoint. Among 

more recent contributions to the theory of abstract spaces in 

which non-real abstract distances are defined, we should men

tion the following: (i) the work of Blumenthal and Ellis in 

metric lattices and "autometrized" Boolean algebras (see [ 3 ] 

for these references); (ii) the work of Penning in Boolean 

metric spaces [21 ] ; (ill) the work of Menger, Wald, Schwelzer, 

and Sklar in statistical metric spaces (see [ 22 ] for these 

references). 

One of the major research problems in point-set topology 

in the first half of this century has been the metrization 

problem. This problem involves the finding of a set of neces

sary and sufficient conditions on a topological space <S,9> 
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for the existence of a metric p, defined on S x S, such that 

P generates J (see Definitions 1.1, 1.4, and 1.7)• Urysohn 

obtained a partial solution to this problem in 1925, when he 

showed that a sufficient condition for <S,$> to be metrizable 

is that <S,J> be a regular T̂ -space which has a countable base 

(see Definition 1.2). However, the requirement that <S,J> 

have a countable base is not necessary, as the example of the 

real numbers with the discrete topology shows. The metriza-

tion problem has since been completely solved as a result of 

the contributions of Urysohn, Alexandroff, Chittenden, R. L. 

Moore, Prink, Uagata, Bing, and Smirnov (see [l4] for these 

references). 

The semi-metrication problem, with which we shall be con

cerned in this dissertation, may be stated as follows: Find a 

set of necessary and sufficient conditions on a topological 

space <S,7> for the existence of a semi-metric p, defined on 

S x S, such that p generates 7 (see Definitions 1.5 and 1.7). 

Early investigations on this problem were made by Wilson 

[25]. Recent contributions to the theory of semi-metric 

spaces have been made by F. B. Jones [ 5 ], McAuley ( [ 5 ] , 

£ 17 3 ) > Brown [ 5 ], Boyd [4], Cedar [6 ] , and Heath 

[ii]. 

In Part B of this introduction, we list some basic defi

nitions and quote some known results on semi-metric spaces. 

In Chapter II, we present a metric characterization of the 
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class of semi-metric spaces, using the notion of a topological 

space being a-metrizable (see Definition 2.1). In Chapter III, 

we present a topological characterization of the class of 

semi-metrizable topological spaces similar to the characteri

zation of the class of metrizable topological spaces in terms 

of a K-basis, given by Hall and Spencer in [10 ]. However, 

we use the notation of Davis 3• Also included in Chapter 

III is a discussion of continuity of semi-metrics, the cardi

nality of non-totally disconnected semi-metric spaces, the 

question of the openness of semi-metric spheres, and some 

examples. In Chapter IV, we point out sufficient conditions 

for a semi-metrizable space to be (i) an 1-space, (ii) a de

velopable space, (iii) a Moore space, and (iv) a metrizable 

space. 

B. Some Basic Definitions and Known Results 

Definition 1.1: let U- be a function which assigns to each 

x c S a family of subsets of S satisfying: (i) if U e %%., 

then x e U; (ii) if U c &-x and V c then U n V c 

(iii) if U c and U c V, then V e (iv) if II e IX x, 

then there exists V c #6% such that V c u and V e tC ̂  for 

every y e V. The family jT of all sets U such that U e %x 

whenever x e U is a topology for S and <S,CT> is called a 

topological space. The members of tT are the open sets of the 

space. Moreover, for each x e S, is the neighborhood 
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system of x ( |_ 14 J , p. 5 6 ) .  

Définition 1.2: If <S,%f> is a topological space, then a 

family ̂ 3 of subsets of S is a base for the topology J if and 

only if is a subfamily of J and for each x e S, and each 

neighborhood of x, there exists V e <73 such that x e V c u 

([14], p. 46). 

Definition 1.5: If <S,is a topological space, then ̂ 3 is 

a local base at x if and only if Jfb is a subfamily of such 

that for each U e there exists V e fb such that x e V c u 

([14], p. 50). 

Definition 1.4: <S,P> is a metric set if and only if p is a 

non-negative, real-valued function, defined on S x S, and 

satisfying for all x,y,z e S the following properties: (i) 

p(x,y) = 0 if and only if x = y; (ii) P(x,y) = P(y,x); and 

(iii) p(x,z) < P(x,y) + P(y,z). The mapping P is called a 

metric for S ([ 10 ], pp. 59-60). 

Definition 1.5: <S,P> is a semi-metric set if and only if P 

is a non-negative, real-valued function, defined on S x S, and 

satisfying for all x,y e S properties (!) and (ii) of Defini

tion 1.4. The mapping P is called a semi-metric for S ([23], 

p. 98). 

Definition 1.6: If <S,P> is a semi-metric (metric) set, then 



the set Sp(p;r) = {x e S jp(p,x) < r} is called the P-sphere 

about p of radius r, r > 0. The set Tp(p;r) = {x e S|p(p,x) 

< r} is called the closed p-sphere about p of radius r, r > 0 

([14 ], p. 119). 

Definition 1.7: If <S,P> is a semi-metrie (metric) set, then 

P is said to generate a topology for S if and only if for each 

x e S, Ii. assigns to x the collection ̂  x of all subsets U of 

S such that U contains a p-sphere about x and % satisfies 

(i) - (iv) of Definition 1.1. The family 0 of all U c s such 

that II e H whenever x c U is a topology for S, and <S,P> is 

called a semi-metric (metric) space. 

Remark 1.1: Conditions (i) - (iii) are always satisfied by 

in any semi-metric set <S,P>. If <S,P> is a semi-metric 

(metric) space, then for each p e S, the collection {Sp(p;r)| 

r > 0} of P-spheres about p is a local base at p. 

Theorem 1.1 ([10 ], p. 60): If <S,P> is a metric set, then 

<S,P> is a metric space. 

Theorem 1.2: If <S,P> is a semi-metric set, then <S,P> is not 

necessarily a semi-metrie space. 

Proof: Let d be the usual metric for the set R of all 

real numbers. Define a semi-metric P for R as follows: 

p(x,y) = d(x,y) if x and y are both rational or both irrational 

p(x,y) = l/d(x,y) if x is rational and y irrational (or vice-
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versa). It is then easy to see that H cannot satisfy condi

tion (iv) of Definition 1.1. Thus, <R,P> is not a semi-metric 

space. 

Remark 1.2: If <S,P> is a semi-metric (metric) space, then: 

(i) p is a limit point of E c s if and only if inf {p(p,x)| 

x c E) = 0; (ii) B c S is closed if and only if E1 c E, where 

E1 is the set of limit points of E; (iii) E c g is open if and 

only if its complement C(E) is closed; (iv) lim pn = p if 
n—>00 

00 

and only if lim p(pn,p) = 0, where {pn} is any infinite 
n—>oo n=l 

sequence of points of S. 

Remark 1.3: Even if <S,P> be only a semi-metric set, proper

ties (i) - (iv) are still useful for our purposes, as Theorem 

1.13, Corollary 1.2, and Corollary 1.3 indicate. This moti

vates our next definition. 

Definition 1.8: If <S,P> is a semi-metric set, then: (i) p 

is a p-limit point of E c S if and only if inf {p(p,x)|x e E) 

= 0; (ii) E c S is P-closed if and only if E* c E, where E! is 

the set of P-limit points of E; (iii) E c S is p-open if and 

only if its complement 0(E) is P-closed; (iv) P-lim Pn = P 
n—>oo 

00 

if and only if lim p(p_,p) = 0, where {p-} is any infinite 
n—>00 n=l 

sequence of points of S. 
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Definition 1.9: A topological space <S,3> is semi-metrizable 

(metrizable) if and only if there is a semi-metric (metric) P 

•which is defined on S x S and generates 3 • 

Theorem 1.3 (Wilson Ç 25 ] ) : If <S/]> is a T̂ -space satisfy

ing the first axiom of countability, if for each x e S the 

collection (V̂ (x)(i e I+} is a local base at x, and if for 

every n e I+ there exists m(n) e I+ such that m increases in

definitely with n and the relation Vn(a) f) Yn(b) ̂  0 implies 

b e Vm(a) and a e Vm(b), then <S,3> is semi-metrizable. 

Theorem 1.4 (McAuley Ç 17 ] ) : A necessary and sufficient con

dition that a topological space <S,9> be semi-metrizable is 

that there exists a sequence such that (a) for each 

i c I+, is a collection of open subsets of S; (b) if p is 

a point and R is any open set containing p, then there exists 

an n e I+ such that Hn contains exactly one element g(p) 

associated with p such that R O g(p) CD {p}; (c) if n e I+ 

and {gj_(PjL) is a sequence such that for each i, ĝ (Pj_) 

belongs to and is associated with p1 , then L_J (P< 3 has 
n 1 ici* 1 

no limit point in S - LJ , g< (p< ). 
ici 

Theorem 1.5 (Cedar [6 ] ) : A Hausdorff space <S,3> is semi-

metrizable if and only if for every x e S, there exist se

quences {Un(x) and (Sn(x) of neighborhoods of x such 
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that (Un(x)|n c I+} is a nested local base at x, and for each 

n e I+ and x,y e S, Sn(x) c Un(x) and y e Sn(x) implies that 

x e Un(y). 

Theorem 1.6 (Heath [ 113)! A necessary and sufficient condi

tion that a topological space <S/J> be semi-metrizable is that 

there exists a collection of open sets, (gn(x)|x e S, n e I+}, 

such that (1) for each x c S, (gn(x) is a nonincreasing 

sequence which forms a local base for O at x, and (2) if 

y « S and {xn}£̂  is any sequence of points of S such that, 

for each m, y e gm(xm), then converges to y. 

Definition 1.10: <S,'3> is hereditarily separable if and only 

if each subset of S contains a countable dense subset ([23], 

p. 48). 

Theorem 1.7 (McAuley [ 5 ] ) : A necessary and sufficient con

dition that a subset M of a semi-metric space <S,P> be heredi

tarily separable is that each uncountable subset of M have a 

limit point in S. 

Theorem 1.8 (McAuley [ 5] ): Every hereditarily separable 

subset M of a semi-metric space <S,P> has the Lindelof prop

erty. 

Theorem 1.9 (McAuley [5 ]) : If M is a closed and countably 

compact subset of a semi-metric space <S,P>, then M is compact. 



9 

Corollary 1.1; A semi-metric space <S,P> is compact if and 

only if it is countably compact. 

Definition 1.11: A sequence {pn}̂ 1 of points of a semi-

metric space <S,P> is a Cauchy sequence if and only if 

lim P(pi,pj = 0 ([3], p. 8). 
i , 3->oo 

Remark 1.4: One can construct simple examples to show that 

in a semi-metric space the Cauchy criterion is neither a nec

essary nor a sufficient condition for an infinite sequence of 

points of the space to have a limit point in the space. (See 

C3 ], PP. 8-9). 

Definition 1.12: A semi-metrizable space <S rr3> is weakly 

(strongly) complete if and only if there exists a distance 

function P such that (i) P generates U , and (ii) if 

is a monotonie descending sequence of non-empty, closed sub

sets of S such that, for each i e I+, there exists a l/i-

sphere about a point Pj_ in Mj_ (in S) which contains M̂ , then 

O % 4 0 ([5], p. 59). 
i=l 

Theorem 1.10 (McAuley Ç17 ] ) : A necessary and sufficient 

condition that a semi-metric space <S,P> be weakly complete is 

that every Cauchy sequence of points of S have a limit point 

in S. 

Theorem 1.11 (McAuley [ 17 ] ) : Every hereditarily separable 
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and strongly complete semi-metric space <S,P> is perfectly 

separable (i.e., has a countable base). 

Theorem 1.12 (McAuley £ 17 ] ) : A countably compact Hausdorff 

space is semi-metrizable if and only if it is metrizable. 

Definition 1/13: Let <S,P> be a semi-metric set and p, q c S. 

If for any sequence (p_}°\ of points of S such that P-lim pn 
Dr"L n->oo 

= p, we have that lim P(q,pn) = P(q,p), then P is continuous 
n->oo 

in its second variable at p. If the above statement holds for 

each p e S, then P is continuous in its second variable. If 

for any sequences (PiĴ Li and of points of S such that 

P-lim pn = p and p-lim qn = q, we have lim p(qn,pn) = p(q,p), 
n->oo n->oo n->oo 

then P is continuous at <q,p>. If P is continuous at every 

<q,p> e S x S, then P is continuous on S % S ( £ 3 ], p. 9)• 

Remark 1.5: If <S,P> is a semi-metric set and P is continuous 

in its second variable, then P is also continuous in its first 

variable, due to the symmetry of P. Also, if P is continuous 

on S x S, then P is continuous in each variable separately. 

Theorem 1.13: If <S,P> is a semi-metrie set and if P is con

tinuous in its second variable, then Sp(p;r) is p-open for 

each p e S and r > 0. 

Proof: Let q be a p-limit point of C{Sp(p;r)}. For each 

n c I+, there exists qn e C{Sp(p;r)} such that 
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0 < P(q, q ) < l/n. Hence, P-lim q = q since lim P(q,qn) = 0. 
n->0D n->GD 

Since qn c 0{Sp(p;r)}, we have P(p,qn) > r for all n e I+. 

Since p is continuous in its second variable, we have that 

lim P(p,qn) = P(p,q) > r. Hence, q e 0{Sp(p;r)}. By Défini-
21->oo 

tion 1.8, C{Sp(p;r)} is P-closed and thus Sp(p;r) is p-open. 

Corollary 1.2: If <S,P> is a semi-metric space and if P is 

continuous in its second variable, then Sp(p;r) is open for 

each p e S and each r > 0. 

Corollary 1.5: If <S,P> is a semi-metric set and if P is 

continuous in its second variable, then <S,P> is a semi-metric 

space. 

Proof: For each x e S, is the family of all subsets 

U of S each of which contains a p-sphere about x. By Remark 

1.1, ti satisfies conditions (i), (ii), (iii) of Definition 

1.1. That & also satisfies Condition (iv) is an immediate 

consequence of the fact that each p-sphere is p-open. 

Theorem 1.14 (Brown [ 5 1 ) : If <S,P> is a semi-metric space 

and if p is continuous in its second variable, then <S,P> is 

collect!onwise normal (see Definition in Chapter III). 

Theorem 1.15 (Brown [ 5%] ) : A semi-metrizable space <S,5f> is 

metrizable if and only if there exists a semi-metric P which 

generates Cf and is continuous on S x S. 
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II. A-MBTR1ZABLB SPACES 

Definition 2.1; A topological space <S,Cf> is a-metrizable if 

and only if there exists a metric P, defined on S x S, and a 

real number a > 0 such that for each p e S, the collection 

(Sp(P;r)|r > a) of p-spheres about p constitutes a local base 

at p. p is called an a-metrie for <S,0>. 

The next two theorems are immediate consequences of 

Definitions 1.7 and 2.1. 

Theorem 2.1: A topological space <S,Cf> is metrizable if and 

only if it is 0-metrizable. 

Theorem 2.2; If <S,Cf> is an a-metri zable space and Acs, 

then A, considered as a subspace of <S,(T> with the relative 

topology, is a-metrizable. 

Theorem 2.3: Let <Si,3̂ > and <Sg,̂ g> be homeomorphic topo

logical spaces. If <S-j_,̂ q_> is a-metri zable, then <Sg,Jg> 

a-metrizable. Thus, a-metrizability is a topological property. 

Proof: Let h be a homeomorphism of Ŝ  onto Sg, and let 

p̂  be an a-metric for Let p e Sg and let G c 7g 

contain p. There exists a unique q e S^ such that p = h(q). 

Since open sets are preserved by h-1, h""̂ (G) s 0̂  and contains 

q. Hence, there exists c > a such that Sp̂ (q;c) c h~̂ (G) and 

therefore h(Sp̂ (q;c)) c G. Define a metric Pg on Sg x Sg as 
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follows: P2(x,y) = P^h"*1^),h~1(y)). Since h is "onto", 

h(Sp̂ (q;c)) = {h(x) e S2|x e Ŝ  and P̂ (q,x) < c) = {h(x) e S2| 

x s Si and P2(p,.h(x) ) < c} = Sp2(p;c) c Q. Thus, {Sp2(p;r) | 

r > a] is a local base at p and <S2,'̂ 2> is a-metri zable. 

Theorem 2.4: If <S,7> is a-metrizable, then <S,3> satisfies 

the first axiom of countability (i.e., has a countable base 

at each point). 

Proof: Let P be an a-metric for <S,̂ >. Let p e S and U 

be any neighborhood of p. There exists r > a such that 

Sp(p;r) c u. There exists k e I+ such that a < a + l/k < r. 

Thus, Sp(p;a+l/k) c u, and {Sp(p;a+l/n)|n e I+} is a local 

base at p. 

Definition 2.2: A topological space <S,J> is: (i) a TQ-space 

if and only if for each pair of points of S, there exists for 

at least one of them a neighborhood which does not contain the 

other; (ii) a T̂ -space if and only if for each pair of points 

of S, there exists a neighborhood of each which does not con

tain the other; (iii) a T2-space (Hausdorff space) if and only 

if for each pair of points of S, there exists a neighborhood 

of each such that the intersection of the two neighborhoods is 

empty ([23 ], pp. 38, 72). 

Remark 2.1: Every semi-metric space is easily seen to be a 

T̂ -space. However, a semi-metric space may not be a Hausdorff 
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space. Such an example is given in Chapter 111. "Se give now 

an example of a topological space which is a-metrizable, but 

which fails to be a TQ-space. 

Example 2.1: Let S = {x,y,z}. Let J be the topology for S 

consisting of the following open sets: 0, S, {x,z}, {y}. 

<S,3> is not a T̂ -space since neither x nor z is contained in 

any open set which does not contain both x and z. Define a 

metric p on S x S as follows: P(x,y) = P(y,x) = 2; P(y,z) = 

P(z,y) = 2; P(x, z) = P(z,x) = 1. Let a = 1. Sp(x;r) = 

Sp(z;r) = {x, z], if a < r < 2, and Sp(x;r) = Sp(z;r) = S, if 

r > 2. Sp(y;r) = {y}, if a < r < 2, and Sp(y;r) = S, if 

r > 2. Thus, <S,?> is a-metrizable by Definition 2.1. 

Remark 2.2: Every a-metrizable T-Q-space is a T̂ -space because 

of the symmetry of a-metries. 

Definition 2.3: An a-metric P for a topological space <S,0> 

is a bounded a-metric for <S,7> if and only if there exists a 

real number M > 0 such that P(x,y) < M for all <x,y> e S x S. 

Theorem 2.5: Every a-metrizable space <S,3> has a bounded a-

metric. 

Proof: Let P be an a-metric for <S,3>. Define a real-

valued function p̂  on S x S as follows: P]_(x,y) = P(x,y)« 

(1 + P(x,y))-1 < 1 for every <x,y> c S x S. P% is easily seen 

to be a metric which generates the same topology for S as P 
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does, since 3p(p;r-} = Sp (p;r/(l4-r)} for every r > 0 and each 

p € S (see Hio], pp. 88-89). Hence, for each p e S, the 

collection {Sp̂ (p;r/(l+r))|r > a} is a local base at p. From 

Definitions 2.1 and 2.3, we have that P]_ is a bounded a-metric 

for <S,3>. 

Theorem 2.6: A Tg-space <S,(7> is a-metrizable if and only if 

it is semi-metrizable. 

Proof: Suppose <S,1> is an a-metrizable Tg-space. Let 

P be an a-metric for <S,*3>. Define a real-valued function d 

on S x S as follows: d(x,y) = 0 if and only if x = y; d(x,y) 

= P(x,y) - a if x / y. Since <S,3> is a T-̂ -space, P(x,y) > a 

if x / y. Thus, d(x,y) > 0 if x ̂  y. Also, d(x,y) = d(y,x) 

since P(x,y) = P(y,x). Hence, d is a semi-metric defined on 

S x S. For each p e S and every r > a, we have S&(p;r-a) = 

Sp(p;r). Thus, for each p e S, the collection {Sd(p;r)|r > 0} 

is a local base at p, so that d generates 0 according to 

Definition 1.7. Hence, <S,3> is semi-metrizable by Definition 

1.9. 

Conversely, suppose <S,3> is semi-metrizable. There 

exists a bounded semi-metric d for <S,9> such that d generates 

ri. Let a = sup (d(x,y) - d(x, z) - d(z,y)|x,y,z e S}. Clear

ly, 0 < a < od , and a > 0 unless d metrizes <S,<7>. Define a 

metric P on S x S as follows: P(x,y) = 0 if and only if 

x = y; P(x,y) = d(x,y) + a, if x ̂  y. Clearly, P(x,y) = 

p(y,x) > 0 since d(x,y) = d(y,x) > 0, and p(x,y) > a if x / y. 
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The triangle inequality is immediately satisfied by P if the 

three points are not all distinct, since P is positive defi

nite. If x,y,z e S are all distinct, then P(x,y) = d(x,y) + 

a < d(x, z) + d(z,y) + 2a = P(x,z) + p(z,y). Since Sp(p;r+a) = 

Ŝ (p;r) for each p e S and every r > 0, the collection 

{Sp(p;r)|r > a} is a local base at p for each p e S. Thus, 

<S,0> is a-metrizable by Definition 2.1. 

Corollary 2.1: Every subspace of a semi-metrizable space is 

semi-metri zable. 

Corollary 2.2: Semi-metrizability is a topological property. 

Corollary 2.5: Every semi-metrizable space satisfies the 

first axiom of countability. 

It might appear that there is a unique a-metric for each 

a-metrizable space, since a was chosen to be the least upper 

bound of the deficiency in the triangle inequality in the 

proof of Theorem 2.6. However, this is not the case. For any 

a-metrizable TQ-space <S,3>, one can find a sequence 

of non-negative numbers with limit zero and a corresponding 

sequence of a-metric s for <S,K> with limit p, where 

P(x,y) * 0 for all <x,y> e S x S. Thus, in a semi-metric 

space, one can make the deficiency in the triangle inequality 

arbitrarily small, but only with a simultaneous loss of topo

logical structure as one passes from the discrete topology on 
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S at one extreme to the indiscrete topology on S at the other 

extreme. 

Theorem 2.7: A Tq-space <S,3> is a-metrizable if and only if 

there exists a sequence of metrics, defined on S x S, 

and a nonincreasing sequence of non-negative numbers 

such that lim ak = 0 and such that: (i) for each k e I+, Pk 
k->oo 

generates the discrete topology on S (i.e., every subset of S 

is open with respect to Pk); (ii) for each k e I+ and each 

p e S, the collection {Sp̂ (p;r) |r > ak} is a local base at p 

for Cf ; (iii) P = lim Pv exists and is a pseudo-metric which 
k->m 

generates the indiscrete topology on S (i.e., 0 and S are the 

only two open subsets of S with respect to P). 

Proof: The sufficiency of these conditions for a-metriz-

ability is trivial in view of Definition 2.1. For each 

k e I+, Pk is an a-metric for <S,U>. 

Suppose now that <S/3> is an a-metrizable Tg-space. 

<S,'3> is semi-metrizable by Theorem 2.6. Let d be any semi-

metric for <S,0> such that d generates T . For k = 1,2, —, 

let dk(x,y) = k"1 • d(x,y) • (l+d(x,y))_1 < l/k for every 

<x,y> c S x S. For p e S and every r > 0, we have Ŝ (p;r) = 

Sdfc(p;r'(k+kr)"1). Thus, for each k e I+, dk generates ̂  . 

For each k c I+, let ak = sup {dk(x,y) - dk(x, z) - dk(z,y)( 

x,y, z c S). Clearly, 0 < ak < l/k and ak+i £ ak for each 

k e I+. Hence, is a nonincreasing sequence of non-
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negative numbers such that lim a, = O. For each k g I+ and 
k->oo 

each <x,y> e S x S, let Pk(x,y) = 0 if and only if x = y and 

P%(x,y) = dk(x,y) + ak if s / y. By an argument identical 

with that used in the proof of Theorem 2.6, Pk is a metric 

which is defined on S x S for each k e I+. 

For each k e I+ and each p e S, Sp̂ (p;r) = {p} if 

0 < r < ak. Thus, for each k e I+, Pk generates the discrete 

topology on S. For each k e I+ and each p e S, Sp̂ (p;r) = 

Sd̂ (p;r-ak) if r > ak. By Remark 1.1, the collection 

(Ŝ k(p;r-ak)|r > ak) is a local base at p. Hence, the collec

tion {Sp̂ (p;r)|r > ak} is a local base at p. Finally, 

lim Pk(x,y) = lim (dk(x,y) + ak) = 0 for every <x,y> e S x S. 
k->oo k->oo 

If we let P(x,y) = lim Pk(x,y) = 0 for every <x,y> e S x S, 
k->oo 

then p is a pseudo-metric which generates the indiscrete topol

ogy on S. 

Corollary 2.4: A Tg-space <S,0> is semi-metrizable if and only 

if there exists a sequence of metrics, defined on 

S x S, and a nonincreasing sequence {ak}̂ L-̂  of non-negative 

numbers such that lim av = 0 and such that (i) - (iii) of 
k->oo 

Theorem 2.7 hold. 

Example 2.2 ( (% 10 ], p. 65): let S = {<x,y>|x,y e R and 

y > 0} and 1 = {<x,0>|x e R}. let d be the usual metric for 

Ê  and Ŝ (p;r) be the d-sphere about p of radius r > 0. For 

each p e S and each r > 0, we define a neighborhood Ur(p) as 
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follows: Ur(p) = Sà(p;r) n S if p e S-L; u"r(p) = (Sà(p;r) fi 

(S-Ii) ) U {p} if p e Ii. It is easily seen that the collection 

{Ur(p)}p e S, r > 0} of subsets of S generates a topology U 

for S. 

If p,q e S are distinct points, then d(p,q) = 3r > 0 for 

some r > 0. Since r = 1/3 d(p,q), we have that Ur(p) f\ Ur(Q.) 

= 0. Thus, <S,3> is a Hausdorff space. Indeed, Ur(p) fl Ur(q) 

= 0, and <S,*J> actually possesses a separation property 

stronger than Hausdorff separation. However, <S,'j> is not 

regular. Consider p = <0,0> and the set L-{p} which is closed. 

There do not exist two disjoint open subsets of S containing 

p and L-{p), respectively. Moreover, <S/J> is not metrizable 

since it is not regular. 

Each point p e S has a countable local base consisting of 

the collection {Ur(p) (r > 0 and rational}. Thus, <S,'J> sat

isfies the first axiom of countability. <S,*3> is not perfectly 

separable, however. If it were perfectly separable, then the 

subspace consisting of L with the relative topology would also 

be perfectly separable. This is impossible since the relative 

topology induced on I by 7 is the discrete topology -which 

does not possess a countable base. <S,0> is separable. Let 

H = {<x,y> c S|x,y are rational, y > 0}. H is countable and 

dense in S, so that <S/3> is separable. However, <S,U> is not 

hereditarily separable since the subspace L with the relative 

topology induced by 3 (i.e., the discrete topology) is not 
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separable. If L were separable, it would have to be perfectly 

separable since it is metrizable. This is impossible. 

Finally, we show that <S/J> is a-metrizable. For 

<p,q> e S x S, define : p(p,q) = 0 if and only if p = q; 

P(p,q) = d(p,q) + 1/2 if p « or q t 1; P(p,q) = d(p,q) + 1 if 

p,q e L. Clearly, P is a metric since d is a metric. If 

p ë L, then Sp(p;r) = Ur_i/2(p) for a11 T > V2. If P c L, 

then Sp(p;r) = ur-l/2̂ p̂  for all r such that 1/2 < r < 1 and 

Sp(p;r) = ttr-1//2(p) u Co. e S|d(p,q) < r-1} for all r > 1. For 

each p e S, the collection {Sp(p;r)|r > 1/2} of p-spheres 

about p is a local base at p. Therefore, from Definition 2.1, 

we have that <S/3> is a-metrizable and hence semi-metrizable. 

Moreover, one can show that <S,"d> is locally metrizable (i.e., 

each point of S has a neighborhood which, considered as a sub-

space of <S,'7>, is metrizable). 
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III. SEMI-METRIZABLE SPACES 

Lemma 5.1: Let <S,1> be a T̂ -space and let {%|i e I+} be a 

countable family of functions which assign to each x e S a 

subset Nĵ x) of S such that: 

(i) for each x e S, the collection {̂ (x) |i e I"1*} is a 

local base at x; 

(ii) for each i e I+, x e %(y) implies y e 3Jj_(x); 

(iii) for m,n e I+, there exists at least one k e I+ such 

that for all x e S, Nk(x) c Nm(x) f) Nn(x). 

Then there exists a countable family {N̂ |i c I+} of functions 

which assign to each x e S a subset N̂ (x) of S and satisfying 

(i), (ii), and 

(iii)1 for each x e S and m,n e I+, Nm(x) c Nn(x) if m > n. 

Conversely, any such family {N̂ Ji e I+}, satisfying (i), (ii), 

and (iii)1, satisfies (iii) also. 

Proof: Define {%ji e I+} as follows : for i = 

1,2,"", %+1 = Nk where k is the first positive integer such 

that $Tk(x) c Û (x)/1 Ni+1(x) for all x c S (the existence of 

such a k being guaranteed by (iii)). Clearly, Sj_(x) c Ê (x) 

and %+1(x) c Ê (x) for every x e S and each i e I+. Hence, 

{$T̂  |i « I+} satisfies (iii)1. Moreover, the collection 

{%|i e I+} satisfies (i) and (ii), since the collection 

|i e I+} does. 

Conversely, suppose {%|i e I+} satisfies (i), (ii), and 
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(iii)1. If we let k = max (m,n) for each, pair of positive 

integers m and n, then (iii) ' implies that Nk(x) = Nm(x) fl Nn(x) 

for each x e S. Hence, {%|i e I+} satisfies (iii) also. 

Theorem 5.1: Let <S,1> be a T̂ -space. A necessary and suffi

cient condition that <S,*3> be semi-metrizable is that there 

exist a family {Nj_|i e I+} of functions which assign to each 

x c S a subset Nj_(x) of S such that conditions (i) - (iii) of 

Lemma 3.1 are satisfied. 

Proof: (Necessity). Let p be any admissible semi-metric 

for <S,K> and let Nj_(x) = {y e S|p(x,y) < l/i} for every i e I+ 

and each x e S. For each x e S, (N̂ (x)|i e I+} is a countable 

local base at x such that Nm(x) c Nn(x) if m > n. Moreover, 

x e N̂ (y) implies P(y,x) = P(x,y) < l/i. Thus, y e %(x) and 

{N̂  |i e I+} satisfies (i), (ii), and (iii)'. By Lemma 5.1, 

{Njji e I+} also satisfies (iii), which completes the proof 

of the necessity. 

(Sufficiency). Let {Nj_|i e I+} be any family of functions 

satisfying (i) - (iii). By Lemma 5.1, there exists a family 

{N* |i e I+} of functions satisfying (i), (ii), and (iii)'. 

Since <S,1> is a T-,-space, /H N» (x) = {x} for each x c S. 
x icl+ 

Define a semi-metric p on S x S as follows: P(x,y) = 0 if 

x = y; P(x,y) = sup {l/i|y 7 N̂ (x), i e I+} if x / y. Clearly, 

p(x,y) > 0 for all <x,y> e S x S, and P(x,y) = 0 if and only 

if x = y in view of our definition and the fact that 
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f I, N." (x) = {x} for each x c S. Finally, p(y,x) = sup {l/li 
ici 1 

x ï N (̂y), i e I+} = sup (l/i|y ï ̂(x), i e I+3 = P(z,y) 

since x c N̂ (y) if and only if y e (̂x) by (ii). Thus, P is 

a semi-metric defined on S x S. For each x e S and each 

i e I+, Sp(x;l/i) = {y e S|p(x,y) < 1/i} = N̂ (x). Since 

{N̂ (x)|i c I+} is a local base at x for each x e S, we con

clude that p generates D and <S/7> is semi-metrizable by 

Definition 1.9. 

We give now some examples in order to demonstrate the 

usefulness of Theorem 3.1 in determining whether or not a 

topological space <S,0> is semi-metrizable. 

Example 3.1 ( [ 23 ], pp. 90-91): Let S = {<x,y>|x,y are real, 

y > 0} and let L = {<x,0>|x is real}. Define a system 33 of 

neighborhoods of points of S as follows: (!) if p c L, Nr(p) 

consists of p together with all points interior to a circle of 

radius r, centered above L and tangent to L at p; (ii) if 

p c S-L, Hr(p) consists of those points of S which are inte

rior to a circle of radius r with center at p. It can easily 

be seen that the topological space <S/7> thus generated is a 

regular Tg-space which satisfies the first axiom of counta-

bility but is not normal. 

For each p e S, the collection (Gr̂ Cp) |G-̂ CP) = 5i/i(p) > 

i c I+} is a local base at p such that Gm(p) c G%(p) if m > n. 
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Hence, the family {Ĝ  ji e I+} of functions satisfies (i} and 

(iii)' of Lemma 3.1. However, (Ĝ |i e I+} does not satisfy 

(ii) since the members of (ft are not symmetric. Making use of 

the symmetry of the Euclidean metric, we alter (B to get a 

symmetric base $ 1 as follows : (i) if p c L, #̂ (p) consists 

of those points of S which are in Nr(p) and interior to the 

circle with center at p and radius r; (ii) if p e S-L, N̂ (p) 

consists of those points of S which are interior to the circle 

with center at p and radius r and which are also in the com

plement of the rays (-00 ,x' ] and £x",oo) of L, where x1, x" 

are the points of tangency of the two circles of radius r, 

passing through p and tangent to L. If p = <x,y> c S-L and 

q c Np(p)fl L, then p c Np(q) since, as q varies from x' to x", 

N̂ (q) varies from Np(x') to U-J.(x") and p will always lie on 

the same chord of Ĥ (q). Thus, the members of <f?> ' are sym

metric. 

If p = <x,y> e S-L, then B̂ (p) = Nr(p) for all r < y. If 

p e L and Hr(p) e $, then p c r̂/2(P) c (̂p) c ®r(P) 

definition of $1. Hence, ' is equivalent to <f3 . For each 

p c S and each i c I+, let Ĝ  = ̂ /̂ (p) • For each p e S, the 

collection (Ĝ (p)|i c I+) is a local base at p such that 

GjJjtp) c Ĝ (p) if m > n, and such that p c G|(q) if q e Ĝ (p) 

for every i e I+ and p,q e S. Thus, <S,3> is semi-metrizable, 

using the semi-metric of Theorem 3.1. 
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Example 3.2 ( [ 14 J, p. 59): Let 5 be the set of all points 

of the real line. Define a neighborhood base <B as follows: 

for p e S and every i e I+, N^(p) = [ p,p + l/i). If q e 

(p, p + l/i), then q e B̂ (p) and p c N̂ (q). Hence, the mem

bers of (/B are not symmetric. Let # ' = {̂ (p) |p e S, i c I+} 

be any neighborhood base equivalent to and satisfying Con

dition (iii)' of Lemma 3.1. There exists k c I+ and an un

countable subset A of S such that U^(p) c U]_(p) for each p e A. 

Since this space is hereditarily separable, A has a limit 

point pQ "from the right" (i.e., with respect to the topology 

generated by ) by Theorem 1.7. Thus, there exists q e A 

such that p0 < q and q c %(Pg). However, U%.(q) c ]&i(q) and 

p0 7 N]_(q) since p0 < q. Thus, p0 7 Uk(q), so that the mem

bers of <R>1 do not satisfy Condition (ii) of Lemma 3.1. 

Therefore, this space is not semi-metrizable by Theorem 3.1, 

although it is normal, hereditarily separable, LindelSf, para-

compact, and satisfies the first axiom of countability. 

Theorem 3.2: If <S,̂ f> is a semi-metrizable space, then there 

exists an admissible semi-metric P on <S/J> such that the 

cardinality, 5, of the distance set, D = {r|p(x,y) = r for 

some <x,y> «Sx S}, is at most$c0. 

Proof: Since <S,3> is semi-metrizable, there exists a 

family {%|i e I+} of functions which assign to each x e S a 

subset Nj_(x) of S such that Conditions (i) - (iii) of Lemma 
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3.1 are satisfied. The semi-metric ?, defined in the proof of 

Theorem 3.1, is admissible on <S,D>, and its distance set D is 

a subset of (0)U {l/iji e I+). Hence, D < %Q. Moreover, if 

S is non-degenerate, then we have 2 < ÏÏ < £0. 

It is possible that the existence of a semi-metric with 

a countable distance set could be useful in the construction 

of induction proofs in a semi-metrizable space. However, with 

the introduction of such a semi-metric on a non-totally-

disconnected space, we lose all continuity of the semi-metric. 

This fact is substantiated in the corollary which follows. 

Corollary 3.1: If <S/3> is a non-totally-disconnected semi-

metrizable space, then there exists an admissible semi-metric 

p on <S,r3> which fails to be continuous in either of its vari

ables. 

Proof: Since <S/3> is semi-metrizable, the semi-metric 

p of Theorem 3.1 is admissible on <S/j>. Suppose P were con

tinuous in its second variable. Let A be any connected subset 

of S such that A 2» 2 (such exists since <S/3> is not totally 

disconnected). Let a c A and define a continuous function f 

mapping S into {0}u {l/i|i e I+} as follows: f(x) = P(a,x) 

for every x e S. Thus, f(a) = 0 and f(b) = P(a,b) > 0 for 

b c A, b 4 a. Hence, f(A) is not connected since no subset of 

{0}U{l/i|i e I+) of cardinality two or greater is connected 

under the usual topology for the reals. However, f(A) must be 

connected since f is continuous and A is connected. Contra-
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diction. Hence, P cannot "be continuous in its second variable 

(nor in its first variable, because of the symmetry of P). 

Remark 3.1: If P is an admissible semi-metric on <S,7> and P 

is continuous on S x S, then P is not necessarily a metric 

although <S,£7> is me tri zable (see Theorem 1.15). 

Proof: Let S = [0,1 ] with the usual topology 13 . 

P (x,y) = (y-x)2 is an admissible semi-metric on <S,Tf> which is 

continuous on S x S. It is not a metric, however, since the 

triangle inequality is not satisfied. Let x = 0, y = 1, and 

z = 1/2. P(x,z) = P(z,y) = 1/4 and P(x,y) = 1. Thus, P(x,z) 

+ P(z,y) = 1/2 < 1 = P(x,y). 

Definition 3.1: If P is an admissible semi-metric on <S,*J>, 

then P satisfies the "local triangle inequality" if and only 

if for each x c S and for every e > 0 there exists ô(x) > 0 

such that if p(x,y) < 6 and P(y,z) < 6, then P(x,z) < e 

(Niemytzki [ 20 ] ). 

Remark 3.2: If p is an admissible semi-metric on <S,3> and P 

is continuous on S x S, then P satisfies the "local triangle 

inequali ty". 

Proof: Let x e S and e > 0. Since P is continuous on 

S x S, there exists &(x) > 0 such that if P(x,y) < ô and 

p(z,y) < 6, then P(x,z) < e. Thus, P satisfies the "local 

triangle inequality". 

Definition 3.2: A collection of point sets is discrete if and 
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only if the closures of these sets are mutually exclusive and 

each subcollection of these closures has a closed uni on (Bing 

[2])-

Definition 3.3: <S,rJ> is collectionwise normal if and only if 

for each discrete collection X of subsets of S, there exists 

a collection Y of mutually exclusive open sets covering X* 

(the union of the members of X) such that no member of Y in

tersects two members of X (Bing [2]). 

M. Brown states in [ 5 ] that it is not known whether or 

not every collectionwise normal semi-metric space possesses a 

semi-metric which is continuous in each variable separately. 

This question is answered in the negative by the next theorem. 

Theorem 3.3: There exists a collectionwise normal semi-metric 

space which does not possess an admissible semi-metric which 

is continuous in each variable separately. 

Proof: In [il ], R. W. Heath gives an example of a 

regular semi-metric space which is normal, paracompact, hered

itarily separable, locally connected, and weakly complete, but 

for which there is no semi-metric under which all spheres are 

open. Since it is paracompact, it is collectionwise normal 

by a result of McAuley [16 ]. The space consists of the 

points in E2 with a topological base consisting of (!) all 

open discs that either do not intersect the x-axis or are 



29 

centered on rational points of the x-axis and (ii) all "bow-

tie" regions centered on irrational points of the x-axis 

(i.e., for each irrational x and each e > 0, every set of the 

form {y| |x-y| + a(x,y) < e}, where a(x,y) is the smallest 

non-negative angle (in radians) formed by the x-axis and a 

line containing x and y). 

Let p be any admissible semi-metric for the space de

scribed in the preceding paragraph. Suppose P is continuous 

in each variable separately. -By Corollary 1.2, we conclude 

that all P-spheres are open, since P is continuous in its 

second variable. However, this contradicts the result of 

Heath. Hence, this space does not possess any admissible 

semi-metric which is continuous in each variable separately. 

Every known example of a normal semi-metric space is also 

collectionwise normal. One of the most interesting unsolved 

problems in the theory of semi-metric spaces is whether or not 

every normal semi-metric space is collectionwise normal (Brown 

£ 5 j). If this question could be settled in the affirmative, 

then it would follow that every normal Moore space (see Defi

nition 4.3) is metrizable. 

One well-known theorem in topology states that every non-

degenerate, connected metric space must be uncountable. This 

is false if metric is replaced by semi-metric. Our next 

theorem substantiates this assertion. 
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Theorem 3.4: There exists a countable, connected Î -space 

•which is semi-metrizable. 

Proof: Let S = {pi,p2> * * " »Pn> * * * } » where Pj_  ̂p̂  if 

i ̂  j. The collection 1 of open sets consists of 0 and all 

subsets K of S such that S-K is finite. Each two non-empty 

members of have a non-empty intersection. Hence, <S,Cf> is 

a connected topological space which is not Hausdorff. For 

each p e S, S-{p} is open so that £p) is closed. Hence, <S,3> 

is a T̂ -space. Define a sequence {Ĝ  )i e I+) of open cover

ings of S as follows: Gj = S; Ĝ  = {S-{p2» — jP̂ LS-ÎP̂ Pj, 

"",Pi},"",S-(Pi,-",Pi_i}} for i > 2. We show that | 

i c I+} is a development for <S,3> (see Definition 4.2). Let 

p c S and Vp be any open set containing p. There exists a 

unique k e I+ such that p = pk. Since S-Vp is finite, there 

exists j e I+ such that j > k and p̂  c Vp for all i > j. 

Since p = Pv and k < j, the star of Ĝ  with respect to p (see 

Definition 4.2) consists of the single set {pi,}U(S-U {p*)). 
j i=l 

Now pk c Vp since pk = p, and S- U {p13 c Vp by choice of j. 

Thus, the star of Gj with respect to p is a subset of Yp, and 

{Gjji e I+) is a development for <S,3>. It follows from 

Theorem 4.2 that <S/]> is semi-metrizable. 

The question arises as to whether or not there exists a 

countable, connected Hausdorff space which is semi-metrizable. 

Attempts to settle this question have proved to be a source of 

frustration to the author. We give a brief discussion of two 
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known examples of countable, connected Hausdorff spaces which 

were studied in an effort to resolve this problem. 

Bing gave in 1 ] an example of a countable,- connected 

Hausdorff space <S/J>, where S is the set of "rational" points 

in the upper half-plane with neighborhoods defined as follows: 

if p = <a,b> and e > 0, then Ne(p) = {p)U {<r,0>| either |r -

(a + b//3)| < e or |r - (a - b//3)| < «}. For each i e I+ and 

p e S, let Gĵ p) = « The collection {G-jJi e I+} satis

fies Conditions (i) and (iii)1 of Lemma 3.1. It does not 

satisfy Condition (ii), however. For let p = <a,b>, b > 0, 

and q = <r0,0> c G1(p). G1(q) = {<r,0>| |r-rQ| < e) so that 

p ? Gj_(q). Thus, the difficulty encountered in this example 

was in trying to construct an equivalent neighborhood system 

whose members were symmetric. 

Golomb gave in [ 9 ] a connected topology for the set I+ 

of positive integers with a base consisting of arithmetic pro

gressions {ax+b}, where a and b are relatively prime members, 

of I+. Condition (i) of Lemma 3.1 can be easily satisfied. 

In an attempt to satisfy Conditions (ii) and (iii), the space 

was modified to a consideration of the set I* of non-zero 

integers with a base consisting of doubly infinite progressions 

(ax+b) (i.e., x ranges over all the integers) with a and b 

relatively prime where a e I+ and bel*. Unfortunately, it 

was not possible to verify that Conditions (ii) and (iii) hold. 

By experimentation, it was discovered that an admissible 

semi-metric P for the space given in the proof of Theorem 3.4 
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can "be defined as follows: P (p̂ ,p.j ) = 0 if and only if i = J ; 

PtP̂ .Pj) = (ij)-1 if i ̂  j. However, we note that P is com

pletely discontinuous as the next theorem shows. 

Theorem 3.5: If <S/J> is a semi-metrizable space, if P is any 

admissible semi-metric for <8,?> which is continuous in its 

second variable, and if A is any non-degenerate connected sub

set of S, then A is uncountable. 

Proof: The restriction of p to A, denoted by P|A,  is an 

admissible semi-metric on A, considered as a subspace of <S/3> 

with the relative topology. Also, P|A is continuous in its 

second variable. Let a,b * A with a / b. The function f (x) 

= p(a,x) is continuous and maps A into a connected subset of 

the reals under the usual topology. Moreover, f(a) = 0 and 

f(b) = p(a,b) = r > 0. Hence, f(A) must contain the interval 

[o,r], so that f(A) = c. Hence, A is uncountable, since if 

A were countable, then f(A) would be countable. 

Corollary 3.2: If <S,jf> is a non-degenerate, connected met-

rizable space, then S is uncountable. 

Corollary 3.3: If <S/3> is a non-degenerate, connected semi-

metrizable space, and if p is any admissible semi-metric for 

<S/2> which is continuous in its second variable, then D = c. 

Proof: S is uncountable by Theorem 3.5. Let f(x) = P(â x) 

for each x « S, where a c S is arbitrary, but fixed. If b c S, 

b / a, then f(b) = p(a,b) = r > 0 and f(a) = 0. Hence, 
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Ho, r 3 c f (S) cDc {reals}, so that D = c. 

Remark 3.3: Every connected, regular semi-metrizable space is 

uncountable. 

Proof: Let <S/3> be any countable, regular semi-metriza

ble space. Thus, <S/3> is a countable, regular Tj-space which 

satisfies the first axiom of countability. Thus, <S,H> has a 

countable base and is metrizable. However, it cannot be con

nected, since every connected.metrizable space is uncountable 

by Corollary 3.2. Thus, every connected, regular semi-metric 

space must be uncountable. 

As mentioned previously, Heath gives in [il ] an example 

of a semi-metric space for which there exists no admissible 

semi-metrie under which all spheres are open. This example 

provides a negative answer to a question raised by Brown in 

[] 5 ], as to whether or not a general semi-metrizable space 

can always be semi-metrized so that all spheres are open. 

Corollary 1.2 implies that if a semi-metric space has a semi-

metric p which is continuous in its second variable, then all 

p-spheres are open. The converse is false, however, as Exam

ples 2.2 and 3.1 show (neither space being collectionwise 

normal, since neither is normal). Corollary 4.2 asserts that 

if <S/3> is a developable T̂ -space (see Definition 4.2), then 

there exists an admissible semi-metric on <S/3> under which 
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all spheres are open. 

A related question concerning closed spheres is the fol

lowing: Can a semi-metrizable space <S/3> always be semi-

metrized by some p so that Sp(p;r) = Tp(p;r) for every r > 0 

and each p « S? The next theorem provides a negative answer 

to this question. 

Theorem 3.6: There exists a semi-metrizable space <S,3> which 

is Hausdorff, separable, developable, and locally metrizable, 

but for which there does not exist any admissible semi-metric 

with respect to which Sp(p;r) c Tp(p;r) for every r > 0 and 

each p e S. 

Proof: The space of Example 2.2 possesses the topologi

cal properties of our theorem. Let P be any admissible semi-

metric for <S,3>. For each x e S, the collection {Sp(x;r)| 

r > 0} of P-spheres about x constitutes a local base at x. 

Let p = <x,0> c L. Clearly, p is not a limit point of L-{p}. 

Hence, there exists e > 0 such that p(p,q) > c for all q e 

L-{p}. How consider the P-sphere Sp(p;e/2). It contains a 

neighborhood Ur(p) for some r > 0. The points q̂  = <x+r,0> 

and q2 = <x-r,0> are in Ur(p), and Ur(p) c Sp(p;c/2). However, 

p(p,q.]_) > e and p(p,q2) > e, so that q^ 7 Tp(p; e/2) and 

q2 c Tp (p; e/2). Hence, Sp(p; e/2) is not a subset of Tp(p; e/2). 

Remark 3.4: If <S,3> is metrizable and p is any admissible 

metric for <S,3>, then Sp(p;r) <= Tp(p;r) for each p e S and 
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every r > 0. 

Proof: If x e Sp(p;r), then for every e > 0, there 

exists q e Sp(p;r) such that P (x, q) < e. Since p(p,q) < r and 

P(p,x) < P(p,q) + P(q,x), we have P(p,x) < r + e for every 

e > 0. Hence, P(p,x) < r and x e Tp(p;r). 

Remark 3.5: There exists a metrizable space <S,3> which does 

not possess any admissible metric p such that Sp(p;r) = 

Tp(p;r) for each p e S and every r > 0. 

Proof: Let <S,3> be the reals with the discrete topology. 

Let p be any admissible metric for <S,3>. If P,q e S, p / q, 

then p(p,q) = r > 0. Since S has the discrete topology, 

Sp(p;r) = Sp(p;r). Thus, q e Tp(p;r), but q ë Sp(p;r). Hence, 

Sp(p;r) ̂  Ip(p;r). 

Definition 3.4: Let <S,P> be a semi-metric space. A mapping 

f of S into itself is a contraction if and only if there 

exists 0 < et < 1 such that P (f (x), f (y) ) < ctp (x,y) for all 

<x,y> c S x S. Every contraction mapping is continuous since 

xn—>x implies f(xn)—>f (x), ( [ 15 ] , p. 43). 

Our final result in this chapter is a partial generaliza

tion of the famous Contraction Mapping Theorem (see [153* 

p. 43). The proof will be omitted since it is so similar to 

the proof in [ 15 ], with the criterion that each point of S 

has a bounded orbit playing the role, for constructing a 
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ûauchy sequence in S, that the triangle inequality plays in 

the proof in [ 15 3 • 

Theorem 3.7: If f is a contraction mapping defined on a 

weakly complete semi-metric space <S,P>, and if each x e S has 

a bounded orbit under f, then f has a unique fixed point 

(i.e., f(x) = x for a unique x e S). 
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IV. 1-SPACES, DEVELOPABLE SPACES, MÛÛEE SPACES, 

AND METRIC SPACES 

Definition 4.1; An L-class or L-space is any set K of ele

ments in which a concept "limit" is defined whereby for each 

p e K and any given sequence {PqI L̂  ̂of elements of K it is 

possible to say whether or not p is a "limit" of this sequence. 

This definition of "limit" must satisfy the following three 

properties; (i) if pn = p for every n e I+, then lim pn = p; 
n->oo 

(ii) if lim pn = a and lim Pn = b, then a = b; (iii) if 
ri->oo n->œ 

lim pn = p and if {n-,.}?-, is any increasing sequence of posi-
n->oo 

tive integers, then lim pn = p ( [ 8 ] , p. 164). 
k->oo k 

Theorem 4.1 ( [ 23 ] , p. 74): If <S,0> is a topological space 

satisfying the first axiom of countability, then property (ii) 

of an L-space is satisfied in <S/3> if and only if <S,K> is 

Hausdorff. 

Proof: The sufficiency is obvious since every Hausdorff 

topological space is an L-space. In order to prove the neces

sity, suppose <S,r5> is any topological space which satisfies 

the first axiom of countability and in which property (ii) of 

an L-space is satisfied. Assume <S,D> is not Hausdorff. Then 

there exists a,b e S such that for all neighborhoods II of a 
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ana Y of b we have Uû 7 £ 0. Since the first axiom of counta

bility is satisfied, there exists a sequence {%}£!]_ °£ neigh

borhoods of a such that for any neighborhood U of a there 

exists n̂ _ e I+ such that Uj_ c u for all i > n̂ . Similarly, 

there exists a sequence of neighborhoods of b such 

that for any neighborhood V of b there exists n2 e I+ such 

that Vj_ c Y for all i > ng. Let n = max (n-̂ ,̂ ). Then c u 

and Y^ c Y for all i > n. For all i e I+, we have ^ 0 

since we are assuming a and b do not possess disjoint neigh

borhoods. Hence, there exists p̂  c Û /) Ŷ  for every i e I+, 

and p. c Un V for all i > n. Thus, lim p1 = a and lim Pj_ 
i->oo i->co 

= b, a contradiction of property (ii). Hence, <S/3> must be 

Hausdorff. 

Corollary 4.1: A necessary and sufficient condition that a 

semi-metrizable space <S,<3> be an L-space is that <S,*J> be 

Hausdorff. 

Proof: Let p be any admissible semi-metric for <S/3>. 

Since P generates , we have lim pi = p if and only if 
i->oo 

lim p(p.,p) =0. If Pi = p for every i e I+, then p(p1?p) 
i-»co 1 

= 0 for every i e I+ and lim P(p<,p) = 0. This implies that 
i->oo 

lim Pi = p, so that property (i) is satisfied. Suppose 
i->a> 

lim Pi = p and {ii.}?.-, is any increasing sequence of positive 
i->oo 1  ̂
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integers. Lim p. = p implies that lim P(p.,p) = 0. Hence, 
i — i — > o o  

lim p(p, ,p) = 0, which implies lim p̂  = p. Thus, proper-
k->œ k k->co k 

ties (i) and (iii) of an L-space are satisfied in <S,̂ >. Cor

ollary 2.3 implies that <S,r3> satisfies the first axiom of 

countability. Hence, by Theorem 4.1, <S,P3> satisfies also 

property (ii) (and thus is an L-space) if and only if <S,̂ )> is 

Hausdorff. 

The spaces of Examples 2.2 and 3.1 are L~spaces. However, 

it is clear that an arbitrary semi-metric set is not neces

sarily an L-space if "limit" is defined as in Definition 1.8. 

In particular, the semi-metric set described in the proof of 

Theorem 1.2 is not an L-space. For, let r-̂ ,r̂  be any two 

rational numbers in the interval (-1,1), and let be 

any increasing sequence of irrational numbers such that ik > 1 

for every k c I+ and lim ik = œ . Since lim d(r̂ ,ik) = co 
k->oo k->oo 

and lim d(rQ,i>) = oo , we have lim p(r-,,i%.) = 0 and 
k->co  ̂ k-»oo 

lim P(rg,ii_) = 0. Thus, P-lim i> = r, and P-lim iv = r0, 
k->oo k->oo k->oo 2 

which violates property (ii) of an L-space since r-j_ / r̂ . 

Definition 4.2: A topological space <S,*3> is developable if 

and only if there exists a sequence of open coverings 

of S such that the following conditions are satisfied: (i) 
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for each i e 1*, Ĝ +]_ is a refinement of (ii) for each 

pcS and each open set U containing p, there exists n = 

n(p,U) c I+ such that G*(p) c u, where G*(p) denotes the union 

of those members of which contain p and is called the star 

of Gn with respect to p. The sequence is called a 

development for <S,*3> (Bing [ 2 }] ). 

The spaces of Examples 2.2 and 3.1 are developable. The 

next theorem has been mentioned previously in the literature. 

In particular, it appears in C16 3 without proof. We give a 

simple proof of it, which is based on Theorem 3.1. 

Theorem 4.2: If <S,*3> is a developable T̂ -space, then <S/3> 

is semi-metrizable. 

Proof: Let be a development of <S,1>, where Ĝ  

is an open covering of S and Gj_+}_ is a refinement of Gj_ for 

each i c I+. For each p c S and each i e I+, let Nj_(p) = 

G£(p). For each p c S and each i c I+, (p) is open, and 

l?i+l(p) c ̂(p) since G*+i(p) c G*(p). Given any neighborhood 

U of p, there exists an open neighborhood V of p such that 

V c n. There exists n = n(p,V) c I+ such that p c $Tn(p) c V 

c u. Hence, for each p e S, the collection {Ê (p)|i c I+} is 

a countable local base satisfying Conditions (i) and (iii)' of 

Lemma 3.1. We check to see that Condition (ii) is satisfied 

also. If q c Ki(p), then there exists g c Gi such that 

p, q e g. Hence, g c G*(q) = %(q) and p e %(q). Thus, for 

each i c I+, q * %(p) if and only if p e N̂ (q). Hence, <S,*J> 
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is semi-metrizable by Theorem 3.1. 

Corollary 4.2: If <S,*3> is a developable Tt-space, then there 

exists an admissible semi-metric P on <S/3> such that all p-

spheres are open. (This result was stated by Brown in £ 5U.) 

Proof: By Theorem 4.2, <S,r3> is semi-metrizable with a 

countable, open, local base {Uj_(p) |i e I+} at each p e S sat

isfying (i) - (iii) of Lemma 3.1. Hence, the semi-metric p, 

defined in the proof of Theorem 3.1, is admissible on <S,*3>. 

Moreover, the collection of distinct P-spheres about p coin

cides with the collection (p) |i e I+}. Hence, all p-spheres 

are open. 

Remark 4.1: The converse of Corollary 4.2 is not true. In

deed, McAuley has given in H17U an example of a regular 

semi-metric space which is collectionwise normal, hereditarily 

separable, weakly complete, and has a semi-metric under which 

all spheres are open. It is not developable, however. 

The next two theorems are well-known characterizations of 

the class of developable, semi-metric spaces. They may be 

found in [ 5 ]. 

Theorem 4.3: A semi-metrizable space <S/D> is developable if 

and only if there exists an admissible semi-metric p on <SP> 

such that one of the following conditions is true: (i) for 

each p * S, lim ô(Sp (p;l/i) ) = 0 where £>(Sp (p;l/i) ) = 
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sup [P(x,y)jx,y e Sp(p;l/i)}; (ii) for each p e S, if lim xn 
n->oo 

= lim yn = p, then lim p(xn,yn) = 0; (iii) with respect to 
n->co n->oo 

P, every convergent sequence is a Cauchy sequence. 

Theorem 4.4: A semi-metrizable space <S,1f> is developable if 

and only if it is locally developable (i.e., each point of S 

has a neighborhood which, considered as a subspace of <S,"3>, 

is developable). 

Remark 4.2: Let <S,P> be a semi-metric space, and let N̂ (p) 

denote the p-sphere about p of radius l/i for each p e S and 

every i e I+. Suppose N̂ (p) is open for each p e S and every 

i e I+. If, for each j e I+, there exists k e I"1* such that 

k > 3 and Hk(q) c N̂ (p) for each q e Nk(p), then <S,P> is 

developable, and is a development for <S,P> where Ĝ  

= {̂ (p) |p e S} for each 1 e I+. 

Definition 4.3: A T̂ -space <S/3> is a Moore space if and only 

if it is regular and developable (Jones [ 13 ] ). 

The class of Moore spaces can be characterized as the 

class of topological spaces satisfying Axiom 0 and parts (i) -

(iii) of Axiom 1 of R. L. Moore (see [13]). More recent 

characterizations have been given by G. W. Pickery in [24 ] 

and J. R. Boyd in [4]. L. F. McAuley has shown in [ 17 ] 

that a regular, hereditarily separable, and strongly complete 
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semi-metric space is metrizable (and thus a Moore space). In 

the same paper, McAuley also gives an example of a Moore space 

which is not strongly complete. We give now a characteriza

tion of the class of Moore spaces which is similar to Theorem 

4 of J. R. Boyd in [4]. 

Remark 4.3: A semi-metrizable space <S,̂ J> is a Moore space if 

and only if there exists a sequence of open coverings 

of S and an admissible semi-metric p on <S,"3> such that: (i) 

Sp(p;l/i) = G*(p) for each p e S and each 1 e I+; (ii) if 

p e S and TJ is any open set containing p, there exists n « I+ 

such that Sp (p;l/n) c U. 

R. H. Bing has shown in [ 2 ] that every collectionwise 

normal Moore space is metrizable. Every known example of a 

normal Moore space is also collectionwise normal. It is a 

well-known, unsolved problem as to whether or not every normal 

Moore space is collectionwise normal. P. B. Jones has shown 

in [12] that every separable, normal Moore space is metriza

ble if the continuum hypothesis is true (i.e., if 3̂  = c). 

Jones has also shown in [12] that every normal Moore space 

is completely normal (i.e., each subspace is normal). More 

recently, L. P. McAuley has shown in [ 16 ] that a separable, 

normal Moore space is metrizable if it is pointwise paracom

pact. This result amounts to a slight improvement over Bing's 

result in [2%] which implies that every paracompact Moore 
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space is metrizable. 

As indicated in Chapter I, numerous theorems have been 

proved which characterize the class of metrizable Tj-spaces. 

Consideration of those results is outside the scope of this 

dissertation, and we shall mention only one, which is very 

similar to our semi-metrization theorem (Theorem 3.1). A 

detailed discussion and proof of this result is contained in 

Hall and Spencer [[ 10 ], pp. 113-119. 

Theorem 4.5 ( Ç10 ], P» 118): A T̂ -space <S,3> is metrizable 

if and only if there exists a family {%|i e I+} of functions 

which assign to each x c S a subset (x) of S such that Con

ditions (i) - (Iii) of Lemma 3.1 and one of the following con

ditions are satisfied: (iv) if n c I+ and q e H^-^P) » 

r e Nn+1(q), then r e Hn(p); (iv)' if n c I+, there exists 

m e I+ such that p e Nm(r), q e Ê (r) implies q c Nn(p). 

Proof: Conditions (i), (ii), and (iv) are those for a 

K-basis. Conditions (i), (iii), and (iv)' are those for a 

K̂ -basis. The result of Hall and Spencer essentially states 

that a necessary and sufficient condition that a T̂ -space be 

metrizable is that it have either a K-basis or a K̂ -basis. 

It would be interesting to know if there exists a non-

trivial condition, weaker than (iv) and (iv)1, which together 

with (i), (ii), and (iii) would yield a Moore space (not nec

essarily metrizable). Indeed, this question is essentially 
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equivalent to another unsolved problem in the theory of semi™ 

metric spaces, and stated by Brown in [ 5 ] : "What non-

trivial property can be added to a semi-metric space in order 

to get a Moore space?" It might appear that any collection of 

topological properties which makes a semi-metric space a Moore 

space also makes a Moore space out of any I-̂ -space which sat

isfies the first axiom of countability. The non-validity of 

this conjecture is established by the remark which follows. 

Remark 4.4; If <S,3> is a countably compact, Hausdorff, semi-

metrizable space, then <S/3> is a Moore space, since it is 

metrizable. On the other hand, the space which consists of 

the set 0o of all ordinal numbers less than the first uncount

able ordinal f) with the order topology is locally compact, 

Hausdorff, countably compact, and satisfies the first axiom of 

countability, but it is not compact (see [ 14 p. 163). By 

Corollary 1.1, it is not semi-metrizable. Thus, it is not 

developable by Theorem 4.2. In view of Definition 4.3, it 

follows that the space is not a Moore space. 
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