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Abstract 

Informed debate on agricultural nonpoint pollution requires evaluation of regional 

water quality in relation to management practices. It is prohibitive, in terms of cost and 

time, to run the site-specific process models for regional policy analysis. Therefore, a 

simplified and robust technique-metamodeling-is suggested to evaluate regional water 

quality. Data from an experimentally designed simulation of complex surface water and 

groundwater process models, PRZM and STREAM, are used to develop statistically 

validated metamodels. The estimated metamodels were integrated with a regional 

agricultural economic decision making model to evaluate the surface water and 

groundwater loadings of 16 major corn and sorghum herbicides. Spatial probability 

distributions are derived for herbicide concentrations exceeding the toxicity-weighted 

benchmark from the EPA. We estimate that 1.2 percent of the regional soils will lead to 

groundwater detection of atrazine exceeding 0.12 )'g/L, which compares well with the 

findings of the EPA's groundwater monitoring survey. We find no-till practices to 

significantly reduce the surface water concentration of atrazine and other herbicides with 

less impact on groundwater contamination suggesting indirect gains to soil conservation 

policies. But we also note that an atrazine ban could lead to increased soil erosion, even 

with the conservation compliance provisions fully incorporated. 



Metamodels and Nonpoint Pollution Policy in Agriculture 

1. Introduction 

Control of nonpoint pollution from agricultural practices and source reduction of 

agricultural pollutants for water quality protection are increasingly debated policy goals. 

These debates must be based on informed evaluations of groundwater leaching and surface 

runoff of agricultural chemicals from soils in relation to policies under consideration, 

agri-management practices, and hydro-geological factors. Although complex simulation 

models have been used by government and industry to evaluate fate and transport of 

chemicals, such evaluations are economical and practical for site- and target-specific 

problems only. Use of these simulation models for regional analysis, however, is time 

consuming and generally prohibitive. Therefore, a simplified tool to assess regional 

nonpoint pollution is useful and necessary, especially given declining natural resource 

research budgets and time constraints (Day and Ruttan 1991 ). Metamodels and response 

surface methods offer a natural option. 

Metamodeling is a statistical method used to abstract away from unneeded detail for 

regional analysis by approximating outcomes of a complex simulation model through 

statistically validated parametric forms. The simplification provided by metamodels allows 

us to evaluate the consequences of alternative regional or site-specific policies without the 

need for additional simulations. If the complex simulation model is a tool to approximate 

the underlying real-life system, the analytic metamodel attempts to approximate and aid in 

the interpretation of the simulation model and ultimately the real-life system. Blanning 

(1975) and Kleijnen (1979) recommend analytic metamodels for simulation experiments; 

Lawless et al. ( 1971) propose their use for sensitivity analysis. Empirical application of 

metamodels in industrial, computer, and management fields is documented in Kleijnen 
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(1987). To our knowledge, use of metamodels in agri-ecological systems simulation and, 

particularly, the simulation of real processes describing the fate and transport of 

agricultural chemicals, is fairly new (see Bouzaher 1991 ). 

This paper discusses metamodeling in an agri-ecological economic system with 

specific reference to evaluating nonpoint pollution from agricultural chemicals. Our focus 

is to identify, estimate, and validate regression metamodels of multimedia simulation 

responses-surface water and groundwater concentrations. We generated these 

concentrations from process model simulations calibrated on a sample of soils in a study 

area comprising the Corn Belt and Lake States in the United States. We find simple 

nonlinear exponential functions to adequately explain and predict the simulation model 

responses. We validated the estimated metamodels using standard validation tests and 

procedures. We used the estimated metamodels to predict the surface water and 

groundwater chemical concentrations by interpolating to the population of soils in each 

county in the study area for the baseline regime of herbicide application. Th: · ..:;eline is 

determined by the agricultural decision model (RAMS-see Bouzaher et al. 1990) in the 

Comprehensive Environmental Economic Policy Evaluation System (CEEPES). 1 We 

compared our estimate for the spatial distribution of groundwater concentration of 

atrazine with that of the EPA's actual groundwater monitoring survey of community water 

systems and rural domestic wells (EPA 1990). Our estimate of 1.2 percent of the soils in 

the region contributing to an atrazine detection level exceeding the survey's minimum 

reporting limit of 0.12 l'g/L (ppb) is bounded by the monitoring estimate of 0.7 percent in 

rural wells and 1.7 percent in community water systems. 

We derived cumulative spatial probability distributions for surface water and 

groundwater concentrations of atrazine under conventional- and no-till practices. Some of 

our results are: 
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1. The probability of exceeding the toxicity-weighted benchmark for human exposure 
from atrazine, as suggested by the EPA, is relatively larger for surface runoff than 
groundwater. For instance, the probability of exceedance for atrazine was as high as 
50 percent in surface water compared with less than l percent in groundwater. 

2. No-till agricultural practices significantly reduce the surface-water loadings of atrazine 
and other herbicides relative to conventional tillage. For instance, the concentration of 
atrazine dropped from about 144 ppb under conventional tillage to about 18 ppb under 
no-till. 

We also examined the implications of an atrazine ban' on soil erosion and loadings of 

substitute herbicides. We find that this policy will lead to more soil erosion, even with the 

conservation compliance provisions fully incorporated. 

2. Metamodeling in an Agri-Ecological Economic System 

Major advances in computer technology have made it possible to develop and 

simulate complex real processes using mathematical models. A variety of mathematical 

models are available to simulate pesticide movement in the saturated and unsaturated soil 

zones. See Wagenet and Hutson (1991) for a description and review of pesticide transport 

and transformation modeling systems. Although simulation models are analogs of real 

processes, their direct application to analysis of regional nonpoint pollution policy is 

limited by the expense and time required to conduct additional simulations for each new 

policy scenario. A policy scenario with an integrated system of models requires a mutually 

consistent combination of policy, environmental, agri-chemical, management, and 

technological parameters and behavioral equations. Therefore, it is impractical to simulate 

each and every possible combination of these factors, especially in a system requiring both 

timely integration of diverse process models and integration of outcomes over a 

distribution of diverse input sets. A simplified tool will ease the computational burden 

while capturing the key process characteristics. Statistically validated metamodels are 

analytical tools capable of addressing both of these difficulties. 

A metamodel is a regression model explaining the input-output relationship of the 

complex simulation model, which is a computer model structure to mimic the underlying 
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real-life process. Let g be the unknown function which characterizes the underlying real 

phenomena relating the response y to the input vector v: 

y = g(v) (l) 

Most simulation models mimic outcomes for a variety of possible response variables, and 

specification of the response of interest may not be a trivial matter. 

A simulation experiment is a set of executions of the simulation model intended to 

approximate the values of y associated with a specified set of input vectors. The output of 

a simulation experiment is a dataset consisting of specified input vectors and their 

associated responses, as determined by the simulation model. Choice of the number and 

values of input vectors for which the simulation model will be executed is the subject of 

experimental design. For statistical purposes, it would be preferable to experiment with 

the real life system rather than a simulation model of the system. In that case we would 

have a statistical model of the system rather than a metamodel. This approach is not 

adopted because it would mean incurring the cost and delay of waiting, in this case for 30 

years of weather to present itself to the real life system. It would also mean tolerating the 

real environmental damage associated with some experimental input vectors. 

Given the output of a simulation experiment, we can specify an analytic metamodel 

with relatively few inputs, x, through x,. Let the metamodel explaining the simulated 

outcome be represented as: 

y = f(x,, x,, ... , x,, u), (2) 

where u is the stochastic disturbance term. We can use standard statistical and econometric 

procedures to identify and estimate the function f describing the metamodel. Because of 

their simple and precise representation of the complex system, simulation practitioners are 

favoring metamodels for purposes such as validation, sensitivity analysis, estimation of 
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interactions among inputs, control, and optimization, without the need for additional 

simulation runs (Kleijnen 1987). 

The multimedia system we use was configured to simulate the fate and transport of 

herbicides in the major corn and sorghum growing regions of the United States. This 

regional application is part of an overall CEEPES configuration to evaluate the set of 

herbicide strategies applicable to corn and sorghum production. Figure 1 illustrates that 

the core of the multimedia fate and transport component is the Risk of Unsaturated/ 

Saturated Transport and Transformation of Chemical Concentrations (RUSTIC) system 

developed by Dean et al. (1989). RUSTIC links the Vadose Zone Flow and Transport 

(V ADOFT) model with the Pesticide Root Zone Model (PRZM) to trace the pesticide 

movement in the saturated and unsaturated zones. These two models can also be linked to 

an aquifer model called Saturated Zone Flow and Transport Model (SAFTMOD) in 

RUSTIC. PRZM is a one-dimensional, dynamic, compartmental model that can simulate 

chemical movement ; ,ne unsaturated root zone. Chemical, soil, and plant characteristics, 

tillage and management practices, and local hydro-meteorological conditions are this 

model's major parameters. V ADOFT performs one-dimensional transient or steady-state 

simulations of water flow and solute transport in the saturated zone. See Dean et al. ( 1989) 

for a detailed description of these models. 

Soil parameters for PRZM and V ADOFT were automatically generated with the Data 

Base Analyzer and Estimator (DBAPE) soil database (Imhoff et al. 1990). Given RUSTIC 

runoff loadings, the Surface Transport and Agricultural Runoff of Pesticides for Exposure 

Assessment (STREAM) model (Donigian et al. 1986) is used to simulate surface water 

concentrations. Because they are edge-of -field loadings, STREAM estimates are 

considered to be accurate within an order of magnitude and typically overestimate actual 

concentrations (Donigian et al. 1992). The basic RUSTIC and STREAM configurations for 
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this simulation experiment are described in Gassman et al. (1991 ). Note that direct linkage 

of RUSTIC and STREAM could not have been accomplished without metamodels. 

3. Experimental Design and Procedure 

Soils selected for the RUSTIC simulations were chosen from a total of 2076 PI 

(prime agricultural land) and P4 (irrigated agricultural land) soils. A stratified, self

weighted random sample of soils was drawn where soils were randomly chosen within each 

stratum with sampling probability proportional to the percentage used. The soil selection 

was also based on ability to support corn and sorghum. In all, 180 soils from 16 states 

(strata) were chosen for the RUSTIC simulations. Sixteen herbicides used in corn and 

sorghum production were selected. Assuming that chemical use is independent of soil 

type, each of the 16 chemicals was applied to the 180 soils. The simulations were 

performed separately for conventional-, reduced-, and no-till cultivation practices. 

Herbicide application timings were simulated for early preplan!, preplan! incorporated, 

preemerge, and postemerge. 

Many groundwater studies have indicated a relationship between well depth and 

pesticide loadings. The groundwater table up to 15 meters below the soil surface is the 

most vulnerable to chemical contamination (Detroy et al. 1988). Therefore, the pesticide 

concentrations in the solute phase were estimated for 1.2 and 15 meters for each RUSTIC 

simulation.' The simulation was performed dynamically for each day over a 30-year 

period. Weather data (real 1950-79 data) were used for one weather station in each state 

from the RUSTIC weather database (Imhoff et al. 1990). A total of 7518 simulation runs 

were performed and the average (chronic) groundwater concentrations at 1.2 and 15 meters 

were recorded for each. The runoff loadings from these ysimulations were used as 

STREAM input to estimate the peak (acute) surface water concentration of herbicides. 
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4. Regression Metamodeling 

In the metamodeling literature the most commonly used models are the general linear 

and nonlinear ones often referred to as "regression metamodels.' A regression metamodel 

based on simulated data in place of real-life observations will have "better information • 

for the econometric analysis because of the controls imparted by the experimental design 

and simulation. In this section, we present the results of a rigorous search to identify a 

regression model that best explains the data from the complex process models. 

4.1 The Data 

Multimedia responses from 7518 simulation runs comprise the sample data for the 

dependent variables in the regression metamodels. Table I presents the descriptive 

statistics, moments, and distributional characteristics of the simulation responses. 

Preliminary analysis of the data showed large variability in concentrations from one soil to 

another, which highlights the need for a spatial dimension, and from one management 

practice to another within a soil. In 90 percent of the observations, herbicide 

concentrations in groundwater were less than I ppb. Twenty percent of the concentrations 

at 1.2 meters and nearly 50 percent the concentrations at 15 meters were zero. The 

distributions, in general, were nonnormal and positively skewed (to the right). The sample 

mean of surface water concentrations was 242 ppb with a standard deviation of 269. The 

data for the regressors were mostly represented by the simulation inputs. Soil 

characteristics-organic matter, water retention capacity, bulk density, sand and clay 

proportions, and soil depth-were obtained from DBAPE, and pesticide characteristics

decay rate, Henry's law constant, and soil sorption coefficient (K,)--were obtained from 

Wauchop and Goss (1990). See Carse! and Jones (1990) for a description of these databases 

and their applicability to regional studies. 
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4.2 The Models 

We first fitted a simple linear model using an ordinary least squares (OLS) procedure. 

Let Y be an n x I vector of observations of the simulated response. X be a known, full

rank n x p matrix of observations on the explanatory variables, and B be a p x l vector of 

unknown, fixed parameters. The simple linear regression model is 

Y = XB + u, E(u,) = 0, E(u,)' = .r,, and cov(u,,u,) = 0. 

Given that the response variable is nonnormal with heterogenous (nonconstant) 

variance, the parameter vector ~ = (X rxt' X ry and the corresponding predictions 

(3) 

Y = X~ are inefficient (in the minimum variance sense). We examined the studentized 

residual' plots for any patterns indicating heterogeneity of variance. These plots for the 

linear model (3) exhibited a clear wedge-shaped pattern, violating the classical assumption 

of homogeneity of variance. Therefore, we used a standard variance-stabilizing 

tra •• sformation on the data, and fitted the linear model in the transformed space. A 

variance-stabilizing transformation for Y, (i" element of Y) can be found by either using 

the general form for a power transformation, y~, proposed by Box and Cox (!964),' or by 

using a procedure similar to the one proposed by Lin and Vonesh (1989). The latter 

consists of estimating the power coefficient >. by fitting an OLS model to each element in 

the sequence (Y\ >. = t, t, ... , }, and examining the residuals from the regression. We 

restricted >. to be less than one because the original data had a wide range (i.e. Y ~ I Y _ » 

0) and their variance increased with the magnitude of the observation. Transformations 

with>. < I, called contracting transformations, reduce the gap between the smallest and the 

largest observation, thus making the data more homogenous. Estimated regression for the 

transformed data should have an error structure that is normally distributed with constant 

variance. 
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The optimum .A obtained for the groundwater data was 'AI and for the surface water 

data was zero implying a logarithmic transformation.' Using the optimum power 

transformation we estimated the linear model (3) for the transformed data. The regression 

with the transformed data gave a higher R-square and well-behaved residuals compared to 

the regression with the untransformed data. But the predictions from the regression model 

for the transformed data were poor, with only 54 percent correlation between the actual 

and the predicted data, and the standard errors of individual and mean predictions were 

very large. Also, in the groundwater model 25 percent of the predictions were negative 

because the actual groundwater concentrations were close to zero (75 percent of the 

observations were less than 0.1 ). 

Due to the poor predictability of the regression model for the transformed data, we 

tried a class of generalized least squares models, namely, the weighted least squares (WLS) 

model using appropriately derived weights. Given the variance-stabilizing transformation 

Y"", we can use Bartlett's (1947) procedure to relate the variance ol th<: .sponse variai.,ie in 

the original and transformed spaces and get an approximate weight w, for WLS analysis. 

Suppose the variances in the original and transformed spaces are related as, 

(4) 

where I is the identity matrix. Since Var(y,) = kp> is assumed, we have k,"' (XB)2('·'1• 

Therefore, the weight w, s 1/lk, is equal to (XB)'·' such that the variance of the weighted 

observation (w,y,) is finite and constant. Using the weights w, we fitted a WLS model to 

the data, resulting in a best linear unbiased estimator ~ = (X'WX)"1 X'WY. Intuitively, in 

WLS analysis, responses with a high standard error are assigned a lower weight. While 

residual diagnostics were greatly improved by using WLS, predictions were still poor, with 

only 50 percent correlation between the actual and predicted data. The failure of these 
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linear models to adequately predict the response variable naturally led us to fit a nonlinear 

model using nonlinear least squares (NLS). 

Sometimes, variance heterogeneity may be introduced by specifying a linear model 

where the actual underlying structure is a nonlinear one. Such instances are common in 

models for chemical, biological, and kinetic processes (Box and Hill 1974). Therefore, we 

fitted a nonlinear model of the form 

z, = f(x,;8 ) + <,. E(<,) = 0, E(<,)'= a', and cov(<,.<,) = 0, 

where f is the nonlinear expectation function, < is the random disturbance term and 9 is 

the unknown parameter vector to be estimated. A desirable estimate of 8, denoted by , 

has optimal large sample properties; i.e., 8 is asymptotically normally distributed with 

mean 8, and variance a'[E(8f(x~8)/88)(8f(x~8)/88)T]"1 • Because our objective is to 

find a model with theoretical as well as empirical justification and better predictive 

ability we chose the simple exponential model 

f(x,; 6)=exp(X9), 

(5) 

(6) 

and used SAS's Gauss-Newton algorithm to solve for the optimal parameter vector. The 

exponential model is a satisfactory representation for several reasons: (I) the optimal 

power transformation parameter); was small for both surface water and groundwater; (2) 

the original (untransformed) data have a positively skewed distribution; and (3) other 

studies that evaluated the groundwater pollution potential of pesticides (Jury et al. 1987 

and Khan and Liang 1989) used an exponential model. 

5. The Resu Its 

Table 2 summarizes the results from the nonlinear fit and gives the parameter 

estimates of the nonlinear model for (transformed) average groundwater concentration at 

1.2 and 15 meters and peak concentration in surface runoff. We relied mainly on theory in 
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identifying a parsimonious specification. Care was taken to avoid significant 

multicollinearity among the regressors. Collinearity between linear and quadratic 

regressors was reduced by centering the variables.' The adjusted R2 was more than 80 

percent in all three fitted equations. The correlations between the actual and the predicted 

concentrations in surface water and groundwater were roughly between 70 and 95 percent. 

Figure 2 shows the distribution of actual and predicted concentrations for both surface 

water and groundwater. 

The coefficients of the continuous regressors (other than the 0,1 type dummy 

variables) were all different from zero at the 5 percent level of significance and their signs 

were consistent with theory. The interaction term between bulk density and sorption 

coefficient (BD • KoJ, generally referred to as the retardation factor (Khan and Liang 

1989), is expected to have a negative impact on chemical concentration. The estimated 

coefficient of this regressor (BD • K~l is negative and significant. The estimated 

coefficient for decay is significant with a negative sign for groundwater and a positive 

sign for surface water because fast decay implies less leaching and more runoff potential. 

The higher the sand percentage the greater the seepage, implying positive impact on 

groundwater, which is what our results show. 

Qualitative variables were represented in the nonlinear model by 0-1 dummy 

variables. The dummy variables for tillage practice were all different from zero at the 5 · 

percent level of significance. These coefficients measure the difference in leaching/ 

runoff potential of reduced- and no-till practices relative to conventional tillage. 

Intuitively, no-till, which causes less soil erosion, should allow more leaching and hence 

less runoff than conventional till. The coefficient on no-till, which shows a positive 

impact on groundwater and a negative impact on surface water, clearly support the theory. 

The estimated equation also captures the differences between hydrologic groups and 

timing of application through 0,1 regressors. Fifteen dummy variables were included to 



12 

represent the 16 different weather stations in the simulation of the study area. Most of 

these coefficients were significantly different from zero, highlighting the importance of 

climate in determining chemical concentration levels. A dummy variable was included to 

capture the difference in the leaching/runoff potential of sorghum. This coefficient was 

significant with a positive sign for groundwater, implying that herbicide leaching is more 

severe in sorghum than in corn. 

6. Validation 

Validating the simulation metamodels is important because they are two steps away 

from the underlying real processes. We have greater confidence in the empirical 

metamodels, their estimated parameters, and predictions if they are statistically validated 

before being integrated into the unified modeling system. The standard validation 

methods (Snee 1977) include ( l) validation of the estimated metamodel with new data; (2) 

cross-validation (split-half validation) in which the original data set is randomly split into 

two halves, a model is fit for each half separately, and the fit models are used to predict 

the other half of the data; and (3) comparison of empirical results with those from other 

simulations and monitoring surveys. Validation with new data and cross-validation are the 

two widely accepted methods in the literature (Marquardt and Snee 1975; McCarthy 1976; 

Berk 1984; Friedman and Friedman 1985). We briefly outline these three methods and 

present the results from the validation tests. 

6.1 Validation with New Data 

In the absence of any limitations to obtaining new data the best approach to validate 

the predictive power of a regression metamodel is to evaluate its ability to predict the new 

data. Models explaining time-series data can use natural time split to get the validation 

sample (new data), and those explaining cross-sectional data can use the data on new 

respondents or sample points as a validation sample. In our case, we utilized the structural 
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make-up of the data set, namely the hydrologic conditions and management practices, to 

split the data into original and validation samples. Specifically, we used 3264 observations 

of conventional tillage, hydrologic groups A, B, and 0, and timing of application (EPP, 

PPI, and POST) as our original sample. The validation data consisted of four different 

samples representing reduced-till (640 observations), no-till (1218), hydrologic group C 

( 1539), and preemergent application timing (1637). 

Table 3 shows the validation results of the estimated metamodel with the new data. 

The two important validation statistics shown in this table are the mean squared error 

(MSE) and the R '. The ratio of original MSE to validation MSE is less than 2 and the 

validation R' is close to the original (model) R' for all validation samples, except for the 

no-till sample in the surface-water model and the hydrologic group C sample in the 

groundwater model. These results suggest good predictive ability of the estimated 

metamodels. 

The small validation R' for the no-till sample (0.22) may be explained by the fact 

that no-till practice has a strong negative impact on surface water concentrations, 

suggesting the possibility of a significant difference in the distance between these two 

samples. Berk ( 1984) examines this issue of the relationship between the validation error 

and the distance between the validation sample and the original sample and suggests 

performing a hypothetical test, the Chow (1960) test, comparing the residual sums of 

squares from the two submodels with that of the full model. We performed this classical 

Chow test for the null hypothesis and found that the mean distance between these two 

samples is not significant. The test gave an F value of 41.6, rejecting the null hypothesis, 

which explains the low validation R'. As long as we recognize the structural shift between 

conventional- and no-till cultivation practices in our empirical metamodel, we can be fully 

assured of the model's predictive validity. 
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6.2 Cross- Validation 

Validation with new data seems most appealing, but in those instances where 

obtaining new data is either expensive or impossible, cross-validation offers a natural 

alternative. Stone (1974) and Snee (1977) provide a good review and discussion of cross

validation and alternative data splitting methods. According to Snee, cross-validation by 

data splitting is a method to test the in-use prediction accuracy of the model and simulate 

the complete or partial replication of the study. For purposes of cross-validation or split

half validation, we split the data randomly into two approximately equal halves. The first 

subset, ss I, was used to estimate the model, while the second subset, ss2, was used to 

measure the predictive ability of the model, and vice-versa. The cross-validation results, 

which are shown in Table 4, demonstrate good predictive accuracy of the estimated 

metamodels. We also compared the sign and magnitude of the estimated coefficients from 

the two split-half models. In the groundwater metamodel the signs of all the coefficients 

were the same in both samples, and the estimated coefficients were comparab:e in their 

magnitude. In the surface water metamodel, only 2 out of 31 coefficients had unmatching 

signs. These two coefficients, however, were not significantly different from zero in both 

models. 

6.3 Validation with Monitorin& Surveys 

This would be the ideal method of validation provided we had adequate monitoring 

data and the process models are adequately validated. Given the limited information on 

surface water and groundwater monitoring in a wide geographical area, we elected to 

perform approximate validation tests with the EPA's groundwater monitoring Survey 

estimates. Some of these results are shown in Table 5. Atrazine and simazine are the two 

herbicides that were detected at reasonably high percentage rates in the EPA's survey. 

The estimates predicted using the metamodels, shown in Table 5, indicate the same trend. 

The EPA estimates that atrazine is present, at or above 0.12 1'&/L (survey minimum 
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reporting limit), in about 1.7 percent of community water systems and 0.7 percent of rural 

domestic wells. Our estimation indicates that 1.2 percent of the soils in the region 

contribute to the groundwater detection limit of atrazine at or above 0.12 l'g/L, which is 

clearly bounded by the EPA's estimates. At a minimum, we can state that the trends from 

our results are consistent with actual monitoring data. 

7. Herbicide Policy Application 

Statistically validated metamodels for predicting regional agricultural nonpoint 

pollution enhance the scope of evaluating alternative agricultural chemical policies. By 

integrating the metamodels with the agricultural economic decision making model, which 

allows for substitution between herbicides and between weed control management 

strategies, chemical and nonchemical, we can evaluate the consequences of water quality 

policies regulating or restricting the use of herbicides. In this section we briefly discuss 

the optimization model, the integration of the fate and transport models with the 

agricultural decision making model, and the results from a herbicide policy of banning 

atrazine in corn and sorghum production in the study area. Atrazine is the second most 

commonly detected herbicide in surface water and groundwater, forcing the EPA to 

reevaluate its ecological-economic tradeoffs. To illustrate the application of metamodels, 

we present results pertaining to the consequences of an atrazine ban policy on surface 

water and groundwater loadings. 

Assume the agricultural production is represented by a joint production process 

where the two outputs, crop and pollution, are separable. The agricultural production and 

the nonpoint pollution process can be represented by the following expressions: 

q = f(x), and (7) 

z = g(O,, ~. o). (8) 
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Expression (7) represents farm outputs (q) as a function of inputs (x). The production 

technology f is assumed to follow the standard regularity conditions, including strict 

concavity. The damage function g translates the level of polluting inputs and practices 

employed in the production process into the amount of chemical concentrations in surface 

water and groundwater (z), via the physical and chemical characteristics (11,) of the 

polluting inputs, the soil characteristics (41), and the meteorologic conditions (6). 

For the empirical analysis we used an optimization model specified for a 

representative farm defined at the watershed level [producing area (PA)) and the nonpoint 

damage functions (metamodels). We used the basic agricultural economic decision making 

model (RAMS) of the integrated CEEPES system. RAMS is a regional, short-run profit

maximizing model that assumes a risk-neutral and competitive producer managing a 

multioutput-farm firm defined at the producing area level. A major feature of RAMS is 

that it has a weed control subsector, which defines the weed control and herbicide 

application activities, and provides the important linkage with the chemical policy space 

(Bouzaher et al. 1990). 

The information on yield loss and cost trade-off from alternative weed control 

strategies and the relative herbicide substitution is inputted into RAMS through the WISH 

(weather impact simulation of herbicide) simulator (Bouzaher et al. 1992). A weed control 

strategy captures both the management and the technological aspects of weed control. A 

weed contra! strategy is made up of a primary herbicide treatment and a secondary 

herbicide treatment that will be applied only if the primary treatment fails due to 

weather-related reasons. The choice of alternative weed control strategies determines the 

rate of substitution between herbicides and also the substitution between chemical and 

mechanical weed control. The estimated fate and transport metamodels, which are proxies 

for social damage functions, and the RAMS model were exogenously' linked to determine 
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the concentration of atrazine and other herbicides used in corn and sorghum production 

under different tillage practices. 

Given the baseline estimates of RAMS, we determined the chemical concentrations 

for the complete distribution of soils in each of the counties in the study area. Figure 3 

illustrates the cumulative spatial probability distribution of atrazine under conventional

and no-till practices. Comparing our estimates with the toxicity weighted benchmarks 

[Maximum Contaminant Level (MCL)] for chronic and acute exposure levels of atrazine in 

drinking water, 3 ppb and 100 ppb, we estimate that the probability of exceeding the 

benchmark is higher for surface runoff than for groundwater. The probability that the 

concentration in surface runoff will exceed the benchmark is reduced from 51 percent 

under conventional-till to 10 percent under no-till practice. In general, a similar result 

holds for other herbicides (see Figure 4). Figure 4 shows the differential impacts of tillage 

on actual herbicide loadings in surface water in the Corn Belt region. As for groundwater, 

the probability of .ecdance is only 0.2 percent, regardless of tillage. 

A major implication of these results is that groundwater quality is unimpaired by the 

conservation compliance policy. This result suggests that implementing of conservation 

policy will not lead to any unfavorable trade-offs between soil conservation and 

groundwater quality goals. But this is not the case for the water quality policy of banning 

atrazine. Our preliminary investigation suggests an increase in soil erosion in the Corn 

Belt (an increase of 3.6 percent from the baseline) due to shifts in cultivation practices 

from conservation tillage to conventional tillage (see Table 6). These results are interesting 

in light of a recent debate on compatibility of conservation and water quality policies. 

Table 6 shows the changes in the total soil erosion due to the atrazine ban policy relative to 

the baseline for conventional and conservation tillage in the Corn Belt. Overall, soil 

erosion increased by 3.6 percent despite the conservation compliance provisions. By 

relaxing the provisions, we expect a more significant increase in soil erosion. 
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Another useful set of information generated from this analysis is the area-wide 

probability that the surface water and groundwater concentrations will exceed the 

benchmark. Table 7 shows the spatial probability that the herbicide concentration in 

surface water will exceed the MCL. Atrazine, cynazine, bentazon, and simazine have 

probabilities of exceedance greater than 25 percent in the baseline. The probabilities of 

exceedance of all herbicides, except propachlor, are higher when atrazine is banned. 

Propachlor is a preemergent herbicide mostly used in weed control strategies that includes 

atrazine, which explains the decrease in surface water concentration of propachlor when 

atrazine is banned. For groundwater, at a 15-meter depth, only atrazine exceeded the 

EPA's benchmark with the probability of exceedance equal to less than l percent in the 

baseline. 

8. Conclusion 

Informed debate on nonpoint pollution policy requires evaluation of surface water 

and groundwater quality at the regional level in relation to agri-management practices and 

hydro-geological conditions. It is prohibitive, in terms of cost and time, to run and rerun 

site-specific process models for regional policy analysis. Therefore, a simplified and 

robust tool to evaluate regional water quality using data from process model simulation is 

suggested-metamodels. Metamodeling has enormous potential in integrated agri-ecological 

economic systems designed for policy evaluation. The estimated metamodels were used to 

evaluate the concentration of atrazine in surface water and groundwater. Results compare 

well with a recent EPA groundwater monitoring survey. The overall implication of this 

study is that the metamodeling strategy can support integrated multimedia policy analysis 

in an environment of existing policy interventions with agents who respond to policy 

changes. The present illustration incorporates groundwater and surface water media, 

models relevant to existing policy interventions such as conservation compliance, and 

allows agents to respond to policy changes by altering weed control strategies. Without the 
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method of metamodels, policy analysis would necessarily be less comprehensive, and 

consequently, less adequate to the difficult but important task at hand. 
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Endnotes 

I. CEEPES is an integrated agri-ecological economic system configured to evaluate the 
tradeoffs of alternative policies restricting the use of herbicides, particularly atrazine, in 
corn and sorghum production (Cabe et al. 1991). 

2. Atrazine is a widely used herbicide to control many annual broadleaf weeds and certain 
grasses on cropped and noncropped lands and is also the second most commonly detected 
herbicide in surface water and groundwater (EPA 1990). 

3. Adsorptive properties of the chemicals under study are such that the sediment phase is 
negligible, and was therefore not simulated. 

4. The studentized residuals are the residuals weighted by the respective standard errors, 
ujs,f( 1-hj, where h, is the n" diagonal element of the 'hat' matrix H=X(X'"X)·'XT. 

5. Suppose there exists an unknown power transformation, y~, such that Var(y'J = ul, 

c~ fine: 

y~ = r<Y~-1)/>
\ In y, 

where we can estimate the optimum >. using maximum likelihood estimation. 

6. If>.= 0, we obtain (y~- 1)/>. = 0/0, which is indeterminate. We can, however, use 
L'Hopital's rule to show that in the limit>.- 0, y~ = In y, (see Johnston 1984, pp. 62-64). 

7. This transformation does not change the meaning or fit of the model, but by reducing 
collinearity it tends to stabilize the sampling variance of the estimates. 

8. Using an exogenous social damage function is consistent with the nonpoint pollution 
theory where the firm has no incentive to internalize the negative externalities (surface 
water and groundwater pollution). 
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Table 1. Summary Statistics of Simulation Responses 

Statistics Avg 1.2 mts Avg 15 mts Peak Stream 

Mean (ppb) 3.25 0.087 242 

Std Deviation 11.8 0.5 269 

Skewness 5.1 8.5 2.9 

Range 0-110 0-73 2-2114 

Percent Zeros 20 48 0 

Table 2. Summary of NL Regression Coefficients and Statistics 

Dep. Variable •r Avg 1.2 'IAvg 15 Peak Stream 

Adj R2 0.84 0.84 0.83 

IMSE 0.19 0.11 112 

Mean Pred 3.06 [3.25] 0.077 [.087] 225 [242] 

p( act • Pred) 0.78 0.73 0.91 

NL Regression Coefficients 

Intercept -0.892 -1.239 7.258 

Avgl.2 0.374 

OM*Henry' 123317 -1685.510 

BD*K,., -0.002 -0.001 -0.006 

OM*Decay -8.359 .fJ7379 -0.859 

Decay -19.051 -20.333 6.484 

(Decay)' 142391 -197.149 

Org Mat -1.070 -0.496 

(Org Mat)' 0.222 

Percent Sand 0.003 0.008 

WRC 0529 1.458 

Soil Depth -0.002 -0.001 -0.0004 

D-Sorghum 0.199 0.453 -0.054 

D-Red Till 0.071 0.045 -0.005 

D-No Till 0.101 0.126 -0341 
Notes: All the coeffic1ents are sigllificant at 5 percent level of CI. 
p is the correlation coefficent and D indicates a dummy variable. 
Figures in []are the actual (sample) means. Sample size, N=7,518. 
OM - organic matter, BD - bulk density, and WRC - water retention 
capacity (available water). 
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Table 3. Metamodel Validation with New Data 

New Data• A vg 15 meters Peak Stream 
(Validation R' .85 R' .75 

Sample Size) 
MSE./MSEo R' MSE./MSE" R' 

Reduced Till ( 640) 1.19 .85 1.12 .75 

No Till (1218) 1.75 .79 2.14 .2'1' 

Hy.Group C (1539) 2.19 .51 1.91 .75 

Preemergent (1637) 0.64 .88 1.49 .81 

MSF = Validation Mean Squared Error and MSE0 = Original MSE. 

• Sample size for original model was 3,264, comprising data for 
corn and sorghum: conv-till, hydrologic groups (A,B,D), and timing 
of application (EPP, PPI, and Postemergent). 

' Chow Test (HO: that the mean distance berween the conv- and no-till 
samples is not significant) gave an F value of 41.6, rejecting the 
null hypothesis at 1 percent Cl, which will explain the poor validation R'. 

Table 4. Cross-validation of the Metamodels 

Validation Avg. 15 meters Peak Stream 
Statistics 

ssl ss2 ssl ss2 
(Pre-ss2) (Pre-ssl) (Pre-ss2) (Pre-ss1) 

R Square .83 .85 .83 .83 
(.87) (.88) (.82) (.82) 

MSF/MSEo 0.70 0.84 1.02 1.04 

ss denotes sub sample (split-half sample). N., =3,748 and N..,=3,nO. 
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Table 5. Metamodel Validation with the Groundwater Monitoring Survey Estimates 

% of wells containing NPS Our estimate of 
Non point pollutants in excess of the spatial-prob. 
Pollutant survey' min reporting limit exceeding the 

cws• min shown in 
Rural Wells next column 

Atrazine 0.7 L7 1.2% 

Alachlor <.1 0 0 

Bentazon 0.1 0 0 

Simazine 0.2 1.1 1.2 

' National Pesticide Survey: Summary Results (EPA 1990). 

Table 6. Shifts in Soil Erosion by Tillage in the Com Belt 

Tillage 

Conventional 

Conservation• 

AU 

Soil Erosion 
(mil tons) 

Baseline Atrazine ban 

429.1 452.3 ( + 5.4) 

131.9 128.9 (-2.3) 

561.0 581.2 ( + 3.6) 

' Conservation tillage includes reduced-tin and no-till 

Survey minimum 
reporting limit 

0.12 J.lg/L 

0.50 J.lg/L 

0.25 J.lg/L 

0.38 J.lg/L 

• Community water systems. 
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Table 7. Probability of Exceeding the Benchmarks: Surface Water 

Chemical' Benchmark" Baseline Atrazine ban 
(!'g/L) 

Atrazine 100 .276 

Dicamba 300 .163 .281 

Cyanazine 100 .253 .621 

Bentazon 25 .428 .494 

Metolachlor 100 .020 .038 

Alachlor 100 .030 .038 

Simazine 50 .829 .870 

Propachlor 350 .076 0 

' Of the 16 herbicides, only eigbt had concentrations 
exceeding the EPA's benchmark. 

' These are the EPA's drinking water standards, also referred to 
as tbe "Maximum Contaminant Level" (MCL) for acute toxicity. 
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