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ABSTRACT

Although coalgebras have primarily been used to model various structures in theoretical

computer science, it has been observed that they may also model mathematical structures.

For example, there is a natural way to turn graphs into coalgebras obtained from the finite

powerset functor. There is also a natural way to turn topological spaces into coalgebras for

the filter functor. We observe that when coalgebras are used to model these mathematical

structures, standard coalgebraic notion of a homomorphism is too strict. In this thesis, we

propose a relaxation of the condition for the definition of a homomorphism and we show that

our weak version induces the proper level homomorphisms between mathematical structures.

Based on this appropriate relaxation of the concept of coalgebra homomorphism, we demon-

strate the finite completeness and non-cocompleteness of the category of locally finite graphs

(including loops) and graph homomorphisms by using existing results from the theory of coal-

gebras. We also prove the equivalence between the usual category of topological spaces and

the category of coalgebras obtained from topological spaces. Because of our relaxation, we

gains and loses some aspects of coalgebras properties. We illustrate it by giving an example of

complete category of all coalgebras for the powerset functor having a simple construction with

our relaxation. We give another example of noncocomplete category of all coalgebras for the

powerset functor with our relaxation.
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CHAPTER 1. Introduction

In universal algebra, it sometimes happens that we still get an interesting map even though

we relax the condition of homomorphism. Here is an example. Let Io denote the open unit

interval (0, 1). According to [13], an algebra (B, Io) of type Io → {2} is a barycentric algebra

if and only if it satisfies the indentities

1. xxp = x (idempotence)

2. xyp = yxp′ (skew-commutativity), and

3. xypzq = xyz(q/(p′q′)) (p′q′)′ (skew-associativity),

for p, q in I0, where p is a binary operation and p′ = 1 − p. For example, convex sets (C, I0)

as subalgebras of the reduct (E, I0) of an affine space (E,R), where xyr = x(1 − r) + yr, are

barycentric algebras. If f : (C, I0) → (R, I0) is a homomorphism between two barycentric

algebras, then

(x(1− r) + yr)f = xf (1− r) + yfr.

If we replace the equality by the inequality ≤, then we obtain a convex function. Similarly,

with the inequality ≥, we obtain a concave function.

Join semilattices (H, Io) = (H,∨) with xyp = x ∨ y are other examples of barycentric

algebras. If f : (H1,∨)→ (H2,∨) is a homomorphism between two semilattices, then

(x ∨ y)f = xf ∨ yf .

If we replace the equality by the inequality ≥, then we obtain an order-preserving map, which

is still an interesting map.
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Now let’s turn to coalgebras. Coalgebras have two aspects: as the dual of algebras; and as

a common framework for many structures in theoretical computer science, including automata,

transition systems, and object oriented systems. As the dual of algebras, it would be natural

to expect the relaxation of the homomorphism concept to give nice behavior as in the case of

barycentric algebras.

Let us be more specific. Although coalgebras have primarily been used to model various

structures in theoretical computer science, it has been observed that they may also model

mathematical structures. The main idea is the following: A certain packet of information is

associated with each state or element. The structure map of the coalgebra then assigns the

packet of information to each state or element of the system being considered. For example,

in a locally finite graph G, the neighborhood of x is associated with each vertex x of G. By

using the finite powerset functor, an undirected graph can be turned into a graphic coalgebra

where the structure map describes the neighborhood for each vertex. In a topological space

X, the set of all open sets containing x is associated with each point x of X. It is known that

a topological space can be modeled as a topological coalgebra using the filter functor [7].

This thesis adopts the coalgebraic point of view for the study of graph theory and topolog-

ical spaces. Chapter 2 reviews basic notions of category theory and the standard background

for coalgebra, including the naive homomorphism concept. The subsequent Chapter 3 intro-

duces coalgebraic view of mathematical structures. In Section 3.1, the powerset functor and

the filter functor are introduced. In Section 3.2, we express locally finite graphs allowing loops

in coalgebraic language. Also, we observe that the standard coalgebraic notion of a homomor-

phism is too strict: coalgebra homomorphisms turn out to be full rather than general graph

homomorphisms. Because of this strictness, we do not have a simple construction for graph

products. In Section 3.3, we express topological spaces as coalgebras for the filter functor. Re-

calling that naive coalgebra homomorphisms are too strict in this context, since they only yield

open continuous maps [7], we observe that there can be no equivalence between the category

Top of continuous maps and the category Tp of naive coalgebra homomorphisms between

topological spaces.
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Chapter 4 suggests two kinds of relaxations of the condition for the definition of homomor-

phism. One is called a lower morphism which is a map preserving information. The other is

called an upper morphism reflecting the information. The class of all lower (or upper) homo-

morphisms forms a category in which each coproduct exists. To formalize the key properties

of this category, we introduce the concept of a weakly closed class of maps which satisfy what

the class of all lower (or upper) homomorphisms do.

Section 4.2 introduces weak coquasivarieties. A weak coquasivarity is an interesting sub-

class of the category of a weakly closed class since it inherits categorical completeness under

an assumption about the existence of surjective-injective factorizations. The category Set−−→P

of all coalgebras for the powerset functor P, with the lower morphisms, forms the topic of

Section 4.4. It is known (see [6]) that the category SetP of all coalgebras for the powerset

functor, with standard homomorphisms, does not have a terminal coalgebra, and so is not

complete. The category Set−−→P is shown to be bicomplete in which every limit and colimit is

constructed exactly as in the underlying category of sets. Moreover, the category Set−−→P has

the surjective-injective factorization property and its weak coquasivarities are also complete.

Section 4.5 gives an example of noncocomplete category Set←−−P of all coalgebras for the powerset

functor, with upper morphisms.

With the upper morphisms introduced in Section 4.1, we study the category Set−−→N of all

coalgebras for the finite powerset functor in Section 5.1. The category is shown to be finitely

complete (Theorem 5.1.5). Moreover, the category Set−−→N does have the factorization property

required to guarantee that its finite completeness is inherited by its weak coquasivarieties

(Proposition 5.1.6). It is shown that the category Set−−→N is non-complete (Theorem 5.1.8).

Section 5.2 shows that lower morphism between graphic coalgebras has a proper level of

power, corresponding an edge-preserving map (Theorem 5.2.2). As an example of the merit

of the coalgebraic point of view, we demonstrate the finite completeness (Corollary 5.2.6)

of the category Gph
−−−→

of locally finite graphs including loops by showing that the class G of

graphic coalgebras forms a weak coquasivariety (Proposition 5.2.5). Subsection 5.2.3 shows

non-cocompleteness of the category Gph
−−−→

.
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The category Set←−−F of all coalgebras for the filter functor, with the upper morphisms in-

troduced in Section 4.1, forms the topic of Section 6.1. The category is shown to be complete

(Theorem 6.1.5), in contrast to the corresponding category SetF of standard homomorphisms

(Proposition 3.1.6). Moreover, the category Set←−−F of upper morphisms does have the factor-

ization property required to guarantee that its completeness is inherited by its weak coquasi-

varieties (Proposition 6.1.7).

Section 6.2 shows that upper morphisms are the correct coalgebra homomorphisms for

topological coalgebras, coinciding with continuous maps (Theorem 6.2.1). Thus the category

Tp
←−

of upper morphisms between topological coalgebras turns out to be bicomplete, since it

is equivalent to the usual bicomplete category Top of continuous maps between topological

spaces (Proposition 6.2.3). Despite the completeness, it transpires in Section 6.3 that the class

T of topological coalgebras does not have the closure properties over Set←−−F required for weak

coquasivarieties.

For notations used in this thesis, readers are referred to [14]. In particular, mappings are

generally placed on the right of their arguments, either in line xf or as a superfix xf . These

conventions help to minimize the number of brackets and follow the arrows in diagrams since

text is read from left to right.
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CHAPTER 2. Coagebra fundamentals

In this chapter we will introduce the concept of a coalgebra and their basic properties.

2.1 Algebras and the concept of a coalgebra

Definition 2.1.1. A type is a function τ : Ω → N. The domain Ω of the type τ is called its

operator domain, and the elements of Ω are called operators.

Definition 2.1.2. Given a type τ : Ω→ N, a τ -algebra or an algebra (A,Ω) of type τ is defined

to be a set A equipped with an operation ω : Aωτ → A corresponding to each operator ω of

the domain Ω of τ .

For a given algebra (A,Ω) of type τ , the operations of Ω may be combined into a single

map
∑

ω∈Ω

ω :
∑

ω∈Ω

Aωτ → A ,

using the disjoint sum operator. If we write AF instead of
∑

ω∈Ω

Aωτ , then the algebra (A,Ω)

can be described by a pair (A,α), where α : AF → A is the map
∑

ω∈Ω

ω. A coalgebra is the

dual notion of an algebra (A,α) of type τ . That is, a coalgebra is a pair (A,α), where A is a

set and α : A→ AF is a map. This rather blurred notion of a coalgebra can be formalized by

category theory.

2.2 Categories

This section provides basic notions of category theory needed in the theory of coalgebras.

For more details, readers are referred to [10].
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Definition 2.2.1. A category C is a pair (Ob(C),Mor(C)) where Ob(C) is a class of objects

and Mor(C)) is a class of morphisms. There are two functions assigning objects to a morphism:

the domain d0 : Mor(C) → Ob(C) and the codomain d1 : Mor(C) → Ob(C). The class of all

morphisms with domain x and codomain y is denoted by C(x, y). For each object a ∈ Ob(C),

there is an identity morphism ida ∈ C(a, a). Finally, for any two morphisms f and g with

fd1 = gd0, there is a composition fg ∈ C(fd0, gd1). It satisfies the following two laws:

1. Associate law : ∀x, y, z, t ∈ Ob(C), ∀f ∈ C(x, y), ∀g ∈ C(y, z), ∀h ∈ C(z, t), (fg)h =

f(gh)

2. Identity law : ∀x, y ∈ Ob(C), ∀f ∈ C(x, y), idxf = fidy = f .

The following three examples of category will be used in this thesis.

• Set: The category of sets, where Ob(Set) is the class of all sets, and Ob(Set) is the class

of all mappings between sets.

• Graph: The category of graphs, where Ob(Graph) is the class of all undirected locally

finite graphs including loops, and Mor(Graph) is the class of all edge-preserving maps.

• Top: The category of topological spaces, where Ob(Top) is the class of all topological

spaces, and Mor(Top) is the class of all continuous function.

A morphism f is called an isomorphism if it has left and right inverses in Mor(C).

Definition 2.2.2. A category B is said to be a subcategory of the category C if

1. Ob(B) ⊆Ob(C) and Mor(B) ⊆Mor(C);

2. The domain, codomain, and compositions of B are restrictions of C;

3. Every B-identity is a C-identity.

A subcategory B of a category C is said to be a full subcategory if for all x, y ∈ Ob(B),

B(x, y) = C(x, y).
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Definition 2.2.3. Let D and C be categories. A functor F : D→ C consists of two functions,

an object part F : Ob(D) → Ob(C) and a morphism part F : Mor(D) → Mor(C), with the

following properties:

1. If f ∈ D(x, y), then fF ∈ C(xF, yF );

2. ∀x ∈ Ob(D), idF
x = idxF ;

3. For any composable pair f, g ∈ Mor(D), (fg)F = fF gF .

A functor F from C to itself is called an endofunctor. Let C be a category and let D be a

diagram in C, that is D is a collection (Di)i∈I of objects and a collection (fk)k∈K of morphisms

between the objects of (Di).

Definition 2.2.4. Given a diagram D, a cone over D will be a single object L together with

morphisms πi : L → Di for each i ∈ I, so that for every morphism fk : Di → Dj , we have

πifk = πj. A cone (L, (πi)) is called the limit of D if for every other cone (L′, (π′i)) over D,

there is a unique morphism τ : L′ → L so that π′i = τπi for every i ∈ I.

Colimits are defined dually to limits by reversing arrows. To be precise, a cocone over D

is a single object S together with morphisms εi : Di → S for each i ∈ I, so that for every

morphism fk : Dj → Di, we have fkεi = εj . A cocone (S, (εi)) is called the colimit of D if for

every other cocone (S′, (ε′i)) over D, there is a unique morphism τ : S → S′ so that ε′i = εiτ

for every i ∈ I. Some examples of limits and colimits are presented below:

• Let D be a diagram with a class of objects and no morphisms between them. Then, a

limit of D, if it exists, is called a product of D. Dually, a colimit of D, if it exists, is

called a coproduct of D.

• Let D be a diagram with object set x, y, z and two morphisms f ∈ C(x, z) and g ∈

C(y, z). Then, a limit of D, if it exists, is called a pullback of f and g. The dual notion

is called a pushout.
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• An object 1 is called a terminal object if for every object X, there is exactly one morphism

from X to 1. Note that a terminal object is the limit of the empty set. The dual notion

is called an initial object.

Definition 2.2.5. A category is called complete if every limit exists. Dually, a category is

cocomplete if every colimit exists. If a category is complete and cocomplete, then the category

is said to be bicomplete.

Theorem 2.2.6. [10] A given category C is complete if and only if C has products and

pullbacks. Dually, C is cocomplete if and only if C has coproducts and pushouts.

Definition 2.2.7. If a given diagram D is finite, i.e. D is a collection of finite number of

objects and finite number of morphisms, then the limit of D is called a finite limit. A category

is called finitely complete if every finite limit exists.

Theorem 2.2.8. [10] A given category C is finitely complete if and only if C has finite

products and pullbacks.

2.3 Coalgebras and their properties

Let F : Set→ Set be an endofunctor.

Definition 2.3.1. An F -coalgebra is a pair (X,α) consisting of a set X and a map α : X →

XF . X is called the base set (or state set) and α is the structure map on X.

X

XF

α
?

Definition 2.3.2. Let (X,α) and (Y, β) be F -coalgebras. An F -homomorphism from (X,α)

to (Y, β) is a map f : X → Y for which the following diagram commutes:

X
f

- Y

XF

α
?

fF
- Y F

β
?
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It is known that the class of all F -homomorphisms forms a category which we shall denote

by SetF .

Definition 2.3.3. An F -coalgebra (S,αS) is called a subcoalgebra (or substructure) of (X,αX )

if S ⊆ X and the canonical inclusion map ι : S →֒ X is an F -homomorphism. We write

(S,αS) ≤ (X,αX)

if (S,αS) is a subcoalgebra of (X,αX ).

The functor U : SetF → Set, defined by (X,α)U = X and fU = f for (X,α) ∈ Ob(SetF )

and f ∈ Mor(SetF ), is called the underlying set functor. We say that the limit of a diagram

D is preserved by the underlying set functor if ((L,α)U, (πU
i )) is a limit of DU in Set, where

D is a diagram in SetF and ((L,α), (πi)) is a limit of D in SetF .

Theorem 2.3.4. [1] Every colimit exists in SetF and is preserved by the underlying set

functor.

An F -coalgebra is called a terminal coalgebra if it is a terminal object in SetF .

Theorem 2.3.5. [6] If (P, π) is a terminal coalgebra, then the structure map π is an isomor-

phism in SetF .

A coalgebra (Y, αY ) is called an F -homomorphic image of a coalgebra (X,αX ) if there

exists a surjective F -homomorphism f : X → Y .

Definition 2.3.6. Let K be a class of F -coalgebras. We define the following classes:

1. H(K) : the class of all F -homomorphic images of objects from K,

2. S(K) : the class of all F -coalgebras which are isomorphic to subcoalgebras of objects

from K,

3. Σ(K) : the class of all F -coalgebras which are isomorphic to coproducts of objects from

K.

A class K is called closed under H, S, or Σ, provided that H(K) ⊆ K, S(K) ⊆ K, or Σ(K) ⊆ K.
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Definition 2.3.7. A co-variety is a class K of coalgebras which is closed under H, S, and Σ.

A co-quasivariety is a class closed under H and Σ.

Proposition 2.3.8. [8] If SetF is complete, then so is every co-quasivariety of SetF .

Definition 2.3.9. F is called bounded if there is a cardinality κ so that for each F -coalgebra

(X,α) and any x ∈ X, there exists a subcoalgebra (Ux, β) ≤ (X,α) of cardinality at most κ

with x ∈ Ux.

Theorem 2.3.10. [6], [8] If the functor F is bounded, then SetF is complete.
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CHAPTER 3. Coalgebraic view of mathematical sturctures

This chapter introduces the coalgebraic point of view for the study of graph theory and

topological spaces. In each case, it will be shown that naive coalgebra homomorphisms are too

strict.

3.1 The powerset functor and the filter functor

3.1.1 The powerset functor

In this thesis, we denote the covariant powerset functor on the category Set by P. It is

defined as follows:

1. For a given set X, the set XP is the set of all subsets of X.

2. For a given map f ∈ Set(X,Y ), the map fP ∈ Set(XP, Y P) is given by UfP = Uf for

U ∈ XP.

The finite powerset functor, denoted by N , is defined in the same manner except that XN is

the set of all finite subsets of X. The finite powerset functor is very interesting because N is

bounded and an N -coalgebra is just an image-finite transition system, where from every state

there are only finitely many possible transitions into the next state [8]. Furthermore, for a

given locally finite graph, each vertex determines a finite set whose elements are adjacent to

the vertex. So we can turn a given locally finite graph into an N -coalgebra.

Proposition 3.1.1. The category SetN is bicomplete.
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3.1.2 The filter functor

Definition 3.1.2. [7] Let X be a set. A collection H of subsets of X is called downward

directed if for U , V ∈ H, there always exists W ∈ H with W ⊆ U ∩V . A nonempty downward

directed collection H is called a filter on X if V ⊇ U ∈ H always implies V ∈ H.

Given a nonempty downward directed set H ⊆ 2X ,

↑ H = {U ⊆ X | ∃U ′ ∈ H such that U ′ ⊆ U}

is the filter generated by H. We denote the set of all filters on X by XF . The assignment F

may be made into a functor F : Set → Set, called the filter functor, by defining it on a map

f : X → Y as HfF := ↑ (Hf), where H stands for an arbitrary filter on X [6], [7].

Proposition 3.1.3. [7] A map f : (X,α) → (Y, β) is an F-homomorphism if and only if for

all x ∈ X and all V ⊆ Y ,

V ∈ xfβ ⇔ f−1(V ) ∈ xα .

Proposition 3.1.4. [7] A subset S ⊆ X is an F-subcoalgebra of (X,α) if and only if S ∈ sα

for each s ∈ S.

Lemma 3.1.5. For a given set X, there is no bijection α : X → XF .

Proof. When X is empty, this is easy to prove. Assume that X is not empty. Then for distinct

A, B ∈ XP,

↑ {A} 6=↑ {B}.

Therefore, there are at least 2|X| filters. By Cantor’s Theorem, there is no bijection α : X →

XF .

By Lemma 3.1.5 and Theorem 2.3.5, we obtain the following.

Proposition 3.1.6. The category SetF is not complete. In particular, there is no final F-

coalgebra.
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3.2 Graphic coalgebras with homomorphisms

In this section, we will see how to turn undirected locally finite graphs into coalgebras

obtained from the finite powerset functor. We also show that the standard coalgebraic notion

of a homomorphism is too strict.

3.2.1 Graphic coalgebras

Definition 3.2.1. A N -coalgebra (X,α) is called graphic if

∀x, y ∈ X, x ∈ yα iff y ∈ xα.

We denote the class of all graphic N -coalgebras by G. We can easily see that a graphic

N -coalgebra (X,α) induces an undirected locally finite graph G(X,α) including loops such that

V (G(X,α)) = X and for given x ∈ X, the set of neighbors of x is xα. Also, an undirected locally

finite graph can be turned into the graphic N -coalgebra where the structure map is defined

by the set of neighborhood for each point. In this sense, we may call a graphic N -coalgebra a

graph.

Lemma 3.2.2. An N -homomorphism preserves loops.

Proof. Let f : (X,α) → (Y, β) be an N -homomorphism on G. If x ∈ X has a loop, then

x ∈ xα. Since xαfN = xfβ, xf ∈ xfβ. Therefore xf has a loop.

From the above Lemma 3.2.2, the preimage of a N -coalgebra with no loops in G under

N -homomorphisms has no loops. Let ϕ : X → Y be a map. Then ϕ = ϕ̃ι, where ϕ̃ : X → Xϕ

is the corestriction of ϕ to its image defined by xϕ̃ = xϕ for x ∈ X, and ι : Xϕ →֒ Y is the

natural inclusion. According to [6], every P-homomorphism ϕ : (X,α) → (Y, β) in SetP has a

unique coalgebra structure γ on Xϕ so that both ϕ̃ and ι are P-homomorphisms. Indeed, for

a given xϕ ∈ Xϕ, xϕγ is defined by xϕβ. The coalgebra (Xϕ, γ) is called the image of ϕ.

Proposition 3.2.3. Let f be an N -homomorphism from (X,α) to (Y, β) on G. Then f is

a full graph homomorphism for induced graphs, i.e. f preserves edges and every edge in the

image is induced by some edge in the preimage.
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Proof. If x′ ∈ xα, then x′f ∈ xfβ. So f preserves edges. Let y′ ∈ xfβ where x ∈ X.

Since xαfN = xfβ, there is a vertex x′ ∈ xα such that x′fN = y′. Hence f is a full graph

homomorphism.

AlthoughN -coalgebras give a natural way to express graphs, the concept ofN -homomorphism

is too strict since we usually define graph homomorphisms as edge-preserving maps. Because

of this strictness, we obtain the following property which does not hold within usual edge-

preserving maps.

Proposition 3.2.4. Let (X,α) ∈ G be connected and (Y, β) ∈ G. Let f : X → Y be an

N -homomorphism. Then (Xf, β|Xf ) is a connected component of (Y, β), i.e. f preserves

connected components. In particular, if (Y, β) is connected, then f is surjective.

We denote the graphic N -coalgebra whose graph structure is

0 1

by 2 = ({0, 1}, α2). By combining Lemma 3.2.2, Lemma 3.2.3, and Proposition 3.2.4, we obtain

the following result.

Proposition 3.2.5. Let (X,α) ∈ G and let f : (X,α) → 2 be an N -homomorphism. Then

(X,α) is a nontrivial bipartite graph.

Proof. By Proposition 3.2.4, f is surjective. By Lemmas 3.2.2 and 3.2.3, (X,α) is nontrivial

and has no loop. Now, it is enough to show that (X,α) has no odd cycles. Suppose that

it has an odd cycle with distinct vertices (v1, . . . , v2n+1). Without loss of generality, we may

assume that v1f = 1. Since {v2, v2n+1} ⊆ v1α, {v2, v2n+1}f
N ⊆ v1αf

N = v1fα2 = {0}. So,

v2f = v2n+1f = 0. By continuing this process, we have vn+1f = vn+2f . However, since

vn+1 ∈ vn+2α, vn+1f 6= vn+2f which is a contradiction. Therefore, (X,α) is a bipartite

graph.

3.2.2 Completeness

We denote the full subcategory of SetN with the object class G by Gph. In this subsection,

we show the completeness of Gph. Note that SetN is complete by Theorem 2.3.10 since N
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is bounded by ω. In order to show that Gph is complete, it is enough to prove that G is a

co-quasivariety by Proposition 2.3.8, without mentioning the existence of limits. This is one

of the advantages of the coalgebraic point of view.

Proposition 3.2.6. G forms a co-variety.

Proof. (i) G is closed under H;

Let f : (X,α) → (Y, β) be a surjective N -homomorphism where (X,α) ∈ G. We need

to show that (Y, β) is graphic. For given a′, b′ ∈ Y , suppose that a′ ∈ b′β. Since f

is surjective, ∃b ∈ X such that bf = b′. Since f is an N -homomorphism, bαfN = b′β.

Since a′ ∈ b′β = bαfN , ∃a ∈ bα such that af = a′. Since af = a′, aαfN = a′β. Since

(X,α) ∈ G and a ∈ bα, b ∈ aα. Therefore bf = b′ ∈ a′β. Hence (Y, β) ∈ G.

(ii) G is closed under S;

Let (A,α) be a subcoalgebra of (B,β) with the natural inclusion map ι : A → B and

assume that (B,β) ∈ G. For each a ∈ A,

aα = aαιN = aιβ = aβ. (3.1)

Now, for given a, b ∈ A, assume that a ∈ bα. By the above (3.1), a ∈ bβ. Since

(B,β) ∈ G, b ∈ aβ. Again, by (3.1), b ∈ aα. Therefore (A,α) ∈ G.

(iii) G is closed under Σ;

Let (X,α) be the sum of {(Xi, αi)}i∈I , where for each i ∈ I, (Xi, αi) ∈ G. Note that

X is the disjoint union of {Xi}i∈I with the insertion maps ιi’s. For given x, y ∈ X, if

x ∈ yα, then ∃i ∈ I such that y ∈ Xi. Since yα = yαi, x ∈ Xi. Therefore y ∈ xα. Hence

(X,α) ∈ G.

Corollary 3.2.7. Gph is complete.

Since SetN is complete, every product exists. However, it seems there is no simple con-

struction for the products of N -coalgebras. For example, let C2 be the graphic N -coalgebra
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whose corresponding graph is the complete graph on {0, 1}. Then, the product C2 × C2 in

SetN is infinite [8]. What if we restrict our concern to the subcategory Gph? Since Gph is

complete, every product exists. However, for given graphic N -coalgebras (X,α) and (Y, β),

the product of them in Gph could be different from the product in SetN . We show that the

product C2 × C2 in Gph is infinite and there is still no simple construction for the products.

Lemma 3.2.8. Let (P, γ) denote the product C2 × C2 in Gph with homomorphisms ηi :

(P, γ) → C2, i = 1, 2. Let (G,β) be a graphic coalgebra. Let f, g : (G,β) → C2 be two

N -homomorphisms. Let (f, g) : (G,β) → (P, γ) denote the unique N -homomorphism so that

(f, g)η1 = f and (f, g)η2 = g. Then, for given a, b ∈ G, if af 6= bf or ag 6= bg, then

a(f, g) 6= b(f, g).

Proof. Suppose a(f, g) = b(f, g). Then, af = a(f, g)η1 = b(f, g)η1 = bf . Similarly, ag = bg.

This is a contradiction to our assumption.

By Lemma 3.2.8, af = bf and ag = bg is necessary for a(f, g) = b(f, g).

Theorem 3.2.9. The product C2 × C2 in Gph is infinite.

Proof. Let (G,β) ∈ G be the graphic coalgebra whose graph structure is the infinite ladder

graph displayed as follows:

1 3 5 7 · · ·

2 4 6 8 · · ·

Define f : G→ {0, 1} by

nf =





0, if n ≡ 1 or 2 mod 4;

1, otherwise.

Define g : G→ {0, 1} by

ng =





0, if n ≡ 0, 1, 3 or 6 mod 8;

1, otherwise.

Then it can readily be seen that f and g are N -homomorphisms from (G,β) to C2. So there

is a unique N -homomorphism (f, g) : (G,β) → (P, γ) such that (f, g)η1 = f and (f, g)η2 = g.
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We will show that (f, g) is injective. By Lemma 3.2.8, it is possible a priori that 2(f, g) =

5(f, g). Since 3f 6= 6f , 6f 6= 7f , and 3g 6= 7g, |5β(f, g)N | = |{3, 6, 7}(f, g)N | = 3. Similarly,

|2β(f, g)N | = 2. Since 5β(f, g)N = 5(f, g)γ and 2β(f, g) = 2(f, g)γ, 2(f, g) 6= 5(f, g). Similarly,

1(f, g) 6= 6(f, g). Now assume that n(f, g) = m(f, g) for some n and m with 1 < n < m. We

assume that n is odd. By the definition of f and g,

|n(f, g)γ| = |nβ(f, g)N | = |{n − 2, n+ 1, n + 2}(f, g)N | = 3.

Also, |mβ(f, g)N | = 3. Since (n − 2)f = (m − 2)f and (n − 2)g = (m − 2)g, we must have

(n− 2)(f, g) = (m− 2)(f, g). Therefore 1(f, g) = m′(f, g) for some m′ > 1. However,

|1β(f, g)N | = |1(f, g)γ| = 2 6= 3 = |m′(f, g)γ| = |m′β(f, g)N |.

This is a contradiction to 1(f, g) = m′(f, g). The case where n is even can be treated similarly.

Therefore (f, g) is injective and C2 × C2 in Gph is infinite.

3.3 Topological coalgebras with homomorphisms

There is a natural way to turn topological spaces into coalgebras for the filter functor.

However, naive coalgebra homomorphisms correspond to open continuous maps. Let (X, τ) be

a topological space. For a given x ∈ X, let Uτ (x) denote the filter generated by the set of all

open sets containing x.

Definition 3.3.1. [7] An F-coalgebra (X,α) is called topological if there exists a topology τ

on X so that for all x ∈ X, xα = Uτ (x).

A given topological space (X, τ) yields a topological F-coalgebra (X,Uτ ). We denote the

class of all topological F-coalgebras by T , and write Tp for the full subcategory of SetF with

object class T . Let Top denote the (usual) category of topological spaces, where the object

class is the class of all topological spaces, and the morphism class is the class of all continuous

maps.

By Proposition 3.1.3 and 3.1.4, we obtain the following proposition.
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Proposition 3.3.2. [7] Let (X, τX) and (Y, τY ) be topological spaces. Then a map f :

(X,UτX
) → (Y,UτY

) is an F-homomorphism if and only if f is continuous and open. A

subset S of X is a subcoalgebra if and only if it is open.

Proposition 3.3.3. [7] An F-coalgebra (X,α) is topological if and only if for every x ∈ X

and U ⊆ X we have

U ∈ xα⇒ ∃S ≤ X such that x ∈ S ⊆ U .

Proposition 3.3.4. [7] T forms a co-variety over SetF .

Although F-coalgebras give a natural way to express topological spaces, the concept of

F-homomorphism is too strict, since we usually define homomorphisms of topological spaces

as continuous maps. Indeed, we have the following non-equivalence between Tp and Top.

Proposition 3.3.5. There is no equivalence G : Tp→ Top.

Proof. Let (X = {∗}, τX ) be a topological space with τX = {∅,X}, and let (Y, τY ) be a topo-

logical space with |Y | ≥ 2 and τY = {∅, Y }. Proposition 3.3.2 gives Tp((X,UτX
), (Y,UτY

)) =

∅. Now suppose that there is an equivalence G : Tp → Top. Then G is full, faithful,

and dense. If |Top((A, τA), (B, τB))| = 0 for some topological spaces (A, τA) and (B, τB),

then A 6= ∅ and B = ∅. Therefore (Y,UτY
)G = (∅, {∅}) for any topological space (Y, τY )

with |Y | ≥ 2 and τY = {∅, Y }. Now let (Y1 = {1, 2}, τY1
) be a topological space with

τY1
= {∅, Y1}, and let (Y2 = {a, b, c, d}, τY2

) be a topological space with τY2
= {∅, Y2}. Then

|Tp((Y1, UτY1
), (Y2, UτY2

))| = 0 but |Top((Y1, UτY1
)G, (Y2, UτY2

)G)| = 1, which is a contradic-

tion. Therefore there is no equivalence G : Tp→ Top.
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CHAPTER 4. Weak homomorphisms

4.1 Weak homomorphisms of coalgebras

Let T : Set → Set be an endofunctor on the category of sets, such that for a given set

X, the image XT is a set of sets. Suppose further that for a given map f : X → Y and for

given A,B ∈ XT , the containment A ⊆ B implies AfT ⊆ BfT . Then the endofunctor T is

described as monotonic. For example, T could be the covariant powerset functor or the filter

functor. Note that monotonic endofunctors are examples of “functors with order” as described

in [12].

Definition 4.1.1. Let (X,α) and (Y, β) be T -coalgebras for a monotonic endofunctor T . Then

a lower T -morphism from (X,α) to (Y, β) is a map f : X → Y such that for each x ∈ X, we

have the inclusion xαfT ⊆ xfβ. Similarly, an upper T -morphism from (X,α) to (Y, β) is a

map f : X → Y such that for each x ∈ X, the inclusion xαfT ⊇ xfβ holds.

In transition systems, if one wants maps only preserve transitions, then we need a lower

T -morphism concept. Indeed, the idea of lower T -morphisms between transition systems was

introduced in [5]. If we recall that a structure map of a coalgebra assigns the packet of informa-

tion to each state of the system being considered, then we may regard a lower T -morphism as a

map preserving the information. Likewise, an upper T -morphism could be considered as a map

reflecting the information. This way of interpretation makes us to expect that edge-preserving

maps might be described as lower morphisms and continuous maps between topological spaces

might be described as upper morphisms. Indeed, it is shown that lower morphisms between

graphic coalgebras agree with the edge-preserving maps of graphs in Chapter 5. Likewise,

upper morphisms between topological coalgebras agree with the correct homomorphisms of
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topological spaces, namely continuous maps, see Chapter 6.

Since T is a functor, the identity map is always a lower and upper T -morphism.

Lemma 4.1.2. The composition of two lower (resp. upper) T -morphisms is again a lower

(resp. upper) T -morphism.

Proof. Let (X,αX ), (Y, αY ), and (Z,αZ ) be T -coalgebras. Let f : X → Y and g : Y → Z be

lower T -morphisms. For given x ∈ X, since f is a lower T -morphism, xαXf
T ⊆ xfαY . Since

g is a lower T -morphism, xfαY g
T ⊆ xfgαZ . So

xαX(fg)T = xαXf
TgT ⊆ xfαY g

T ⊆ xfgαZ .

Therefore fg is a lower T -morphism.

X
f

- Y
g

- Z

XT

αX

?

fT
- Y T

αY

?

gT
- ZT

αZ

?

For the case of upper morphisms, we may just change the direction of the inclusions in the

above proof.

From the previous observation and the above Lemma 4.1.2, the class of all T -coalgebras

forms a category denoted by Set−−→T (resp. Set←−−T ) with lower (resp. upper) morphisms.

Proposition 4.1.3. For every family (Xi, αi)i∈I of T -coalgebras, there exists a sum
∑

i∈I(Xi, αi)

in Set−−→T (resp. Set←−−T ). The sum is preserved by the underlying set functor and its structure

map αΣ is given by xiαΣ = xiαiι
T
i for xi ∈ Xi, where ιi : Xi →

∑
Xi is the insertion map.

Proof. Let (Y, αY ) be a T -coalgebra and let ϕi : Xi → Y be a lower T -morphism. Then there
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is a unique map ψ :
∑
Xi → Y in Set with ιiψ = ϕi.

Xi

ιi
-

∑

i∈I

Xi

Y
� ψ

ϕ
i -

XiT

αi

? ιTi - (
∑

i∈I

Xi)T

αΣ

?

Y T

αY

?� ψ
T

ϕ T
i -

Since ϕT
i = ιTi ψ

T ,

αiϕ
T
i = αiι

T
i ψ

T = ιiαΣψ
T .

Since ϕi is a lower morphism, for given x ∈ Xi,

xαiϕ
T
i ⊆ xϕiαY = xιiψαY .

So, for given i ∈ I and x ∈ Xi, xιiαΣψ
T ⊆ xιiψαY . Therefore ψ is a lower T -morphism. For

the case of upper morphisms, we may just change the direction of the inclusions in the above

proof.

Note that each insertion map ιi is a T -homomorphism. To formalize the key properties

of the categories Set−−→T and Set←−−T (and other, similar categories), we introduce the following

concept.

Definition 4.1.4. Let F be an endofunctor on the category of sets. A classW of maps between

the underlying sets of F -coalgebras is said to be weakly closed if the following conditions are

satisfied:

(a) W contains the class of all F -homomorphisms;

(b) W forms a category in which each coproduct exists;

(c) Each coproduct in W is preserved by the underlying set functor.

If W is weakly closed, then a member of W is called a weak F -homomorphism. The corre-

sponding category is called a weak category of F -coalgebras, and denoted by W.
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Assume that we have a weak category W. Then subcoalgebras, covarieties and coqua-

sivarieties under weak F -homomorphisms are defined as in Section 2.3 simply replacing F -

homomorphisms with weak F -homomorphisms. We write

(S,αS) ≤w (X,αX )

if (S,αS) is a subcoalgebra of (X,αX ) over W.

Theorem 4.1.5. For a monotonic endofunctor T on the category of sets, the class of all lower

(resp. upper) T -morphisms is weakly closed.

4.2 Weak coquasivarieties

Let W be a weak category of F -coalgebras and let K be a subclass of F -coalgebras. We

denote the full subcategory of W with the object class K by K. In particualr, we denote the

full subcategory of Set−−→T (resp. Set←−−T ) with the object class K by K−→ (resp. K←−).

Definition 4.2.1. Let W be a weak category of F -coalgebras and let K be a subclass of

F -coalgebras. A weak coquasivariety of K is a subclass L of K closed under Σ over K, and

such that for a given surjective morphism f : (X,αX ) ։ (Y, αY ) over K with (X,αX) ∈ L,

there is a structure map α on Y with the following properties:

(a) (Y, α) ∈ L ;

(b) (Y, α) ≤w (Y, αY ) ;

(c) f : (X,αX )→ (Y, α) is a morphism over K.

Note that a coquasivariety is a weak coquasivariety. In Section 5.2.2, it is shown that G is

not closed under lower P-morphic images but G forms a weak coquasivariety in the category

Set−−→P .

Let ϕ : X → Y be a map. We say that ϕ SI-factors through Z if there is a surjective map

f : X ։ Z and an injective map g : Z  Y such that ϕ = fg. If ϕ SI-factors through Z,

then ϕ is also said to be SI-factorizable by Z. One natural way to SI-factorize ϕ is to take

ϕ = ϕ̃ι, where ϕ̃ is the corestriction of ϕ to its image, and ι is the natural inclusion.



23

Definition 4.2.2. Let W be a weak category of F -coalgebras and let K be a subclass of F -

coalgebras. Let ϕ : (X,αX)→ (Y, αY ) be a weak F -homomorphism over K. Then ϕ is said to

be weakly SI-factorizable over K if for any set Z, and for a given SI-factorization f : X ։ Z

and g : Z  Y with fg = ϕ, there is a structure map α on Z such that (Z,α) ∈ K and

both f : (X,αX ) ։ (Z,α) and g : (Z,α)  (Y, αY ) are weak F -homomorphisms over K. The

full subcategory K is called weakly SI-factorizable if every weak F -homomorphism over K is

weakly SI-factorizable over K.

Suppose that W is a weakly SI-factorizable weak category. Then W is a weak coquasiva-

riety of itself.

Lemma 4.2.3. Let W be a weak category of F -coalgebras and let K be a subclass of F -

coalgebras such that K is weakly SI-factorizable. Let L be a weak coquasivariety of K. Let

f : (X,αX ) → (Y, αY ) be a weak homomorphism over K with (X,αX ) ∈ L. Then there is a

structure map α on Xf such that f̃ : (X,αX) → (Xf,α) is a weak homomorphism over K,

(Xf,α) ∈ L, and (Xf,α) ≤w (Y, αY ).

Proof. Since K is weakly SI-factorizable, there is a structure map α′ onXf such that (Xf,α′) ∈

K, f̃ : (X,αX ) ։ (Xf,α′) is a weak homomorphism over K, and (Xf,α′) ≤w (Y, αY ). Since

L is a weak coquasivariety of K, there is a structure map α on Xf such that f̃ : (X,αX ) →

(Xf,α) is a weak homomorphism over K, (Xf,α) ∈ L, and (Xf,α) ≤w (Xf,α′) ≤w (Y, αY ).

Proposition 4.2.4. Let W be a weak category of F -coalgebras and let K be a subclass of

F -coalgebras such that K is weakly SI-factorizable. Let L be a weak coquasivariety of K.

Then the union of a family of subcoalgebras in L of (X,αX ) ∈ K is a subcoalgebra in L of

(X,αX ).

Proof. Since L is a weak coquasivariety, for a given family (Si, αi)i∈I in L of subcoalgebras

of (X,αX) ∈ K, there exists a sum
∑

i∈I(Si, αi) in L, which is preserved by the underlying

set functor with the insertion map ei : Si →
∑

i∈I Si. Since for each i ∈ I, the inclusion

map ιi : Si → X is a weak F -homomorphism, there exists a unique weak F -homomorphism
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ψ :
∑

i∈I Si → X such that eiψ = ιi. Since K is weakly SI-factorizable, there is a structure map

α on (
∑

i∈I Si)ψ such that ((
∑

i∈I Si)ψ,α) ∈ L and ((
∑

i∈I Si)ψ,α) ≤w (X,αX ) by Lemma

4.2.3. Since (
∑

i∈I Si)ψ =
⋃
Si, (

⋃
Si, α) ∈ L and (

⋃
Si, α) ≤w (X,αX ).

From the proof of Proposition 4.2.4, we obtain the following.

Corollary 4.2.5. Let W be a weak category of F -coalgebras and let K be a subclass of F -

coalgebras such that K is weakly SI-factorizable. Let (Si, αi)i∈I be a family of subcoalgebras

in L of (X,αX ) ∈ K. Then (Si, αi) ≤w (
⋃
Si, α) where α is the structure map on

⋃
Si as in

the proof of Proposition 4.2.4.

Theorem 4.2.6. Let W be a weak category of F -coalgebras and let K be a subclass of F -

coalgebras such that K is weakly SI-factorizable. If K is complete, then so is every weak

coquasivariety of K. Similarly, if K is finitely complete, then so is every weak coquasivariety

of K.

Proof. Let L be a weak co-quasivariety of K. Let I be a small category and let D : I → L be a

functor. Then since K is complete, we have the limit ((L,α), (ηi)i∈I) in K. Let ((L′, α′), (η′i)i∈I)

be a cone of D in L. Then there is a unique weak homomorphism τ : (L′, α′) → (L,α)

such that there is a structure map β′ on L′τ such that τ̃ : (L′, α′) → (L′τ, β′) is a weak

homomorphism, (L′τ, β′) ∈ L, and (L′τ, β′) ≤w (L,α) by Lemma 4.2.3. By Proposition 4.2.4,

we have (S, β) ∈ L, the union of all subcoalgebras in L of (L,α). So, the inclusion map

ι : (L′τ, β′) →֒ (S, β) is a weak homomorphism. Therefore τ̃ ι : (L′, α′) → (S, β) is the unique

weak homomorphism such that (S, β) is the limit in L.

4.3 Weak congruences

Definition 4.3.1. A weak congruence on an F -coalgebra (X,αX) is defined as the kernel of a

weak F -homomorphism ϕ : (X,αX )→ (Y, αY ) for some F -coalgebra (Y, αY ).

Lemma 4.3.2. Assume that a weak category W is weakly SI-factorizable. For an equivalence

relation θ on an F -coalgebra (X,αX), θ is a weak congruence if and only if there is a structure

map αθ on Xθ for which the natural projection (nat θ) : X → Xθ is a weak F -homomorphism.
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Proof. The ‘if’ part is clear. Suppose θ is a weak congruence. Then there is a weak F -

homomorphism ϕ : (X,αX ) → (Y, αY ) for some F -coalgebra (Y, αY ) with kerϕ = θ. Since

W is weakly SI-factorizable, there is a structure map on Xϕ such that ϕ̃ : X ։ Xϕ is a

weak F -homomorphism. Note that ker ϕ̃ = θ. Since ϕ̃ is surjective, ϕ̃ can be SI-factorized

as (nat θ)ϕ̃ where ϕ̃ : Xθ → Xϕ is the bijection defined by xθϕ̃ = aϕ̃ for xθ ∈ Xθ. Since W

is weakly SI-factorizable, there is a structure map αθ on Xθ for which the natural projection

(nat θ : X → Xθ) is a weak F -homomorphism.

The set of all weak congruences on a F -coalgebra (X,αX) is ordered by set inclusion.

Proposition 4.3.3. Assume that a weak category W is weakly SI-factorizable and cocom-

plete, with every colimit is preserved by the underlying set functor. Let (θi)i∈I be a nonempty

family of weak congruences on (X,αX). Then the supremum of the (θi)i∈I exists, and is given

as the transitive closure of their union.

Proof. Let Φ denote the transitive closure of
⋃

i∈I θi. Then Φ is the smallest equivalence

relation containing all the θi. For each i ∈ I, since θi is a weak congruence, there is a structure

map on Xθi such that (nat θi) : X → Xθi is a weak F -homomorphism by Lemma 4.3.2. Since

W is cocomplete, we can form the pushout ((P,α), ψi) of all nat θi.

Xθi

X

na
t θ i -

P

ψ
i

-

Xθj
ψ j

-
nat θ

j

-

Since (nat θi)ψi is a weak F -homomorphism, it suffices to show that

ker ((nat θi)ψi) = Φ.

Since the pushout is preserved by the underlying set functor, P = (Σi∈IX
θi)θ where θ is

the smallest equivalence relation including (xθi , xθj ) for any i, j ∈ I, and ψi is the natural

projection. For any j ∈ I, if (x, y) ∈ θj , then (xθi)θ = (xθj )θ = (yθj )θ = (yθi)θ. So
⋃

i∈I θi ⊆

ker ((nat θi)ψi) and hence Φ ⊆ ker ((nat θi)ψi). Now let (x, y) ∈ ker ((nat θi)ψi). Then there
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exists a finite sequence {x1, . . . , xn} on X such that (x, x1) ∈ θi, (xk, xk+1) ∈ θik for some

θik ∈ (θi)i∈I where k = 1, . . . , n− 1, and (xn, y) ∈ θi. Therefore (x, y) ∈ Φ.

4.4 Lower P-morphisms

In this section, it will be shown that the category of lower P-morphisms is bicomplete.

Lemma 4.4.1. If a colimit exists in Set−−→P , then it is preserved by the underlying set functor.

Similarly, if a limit exists in Set−−→P , then it is preserved by the underlying set functor.

Proof. Let I be a small category and let D : I → Set−−→P be a functor. Let U : Set−−→P → Set

denote the underlying set functor and for each i ∈ I, let (Di, αi) denote iD. Assume that a

colimit ((S, β), (εi)i∈I) of D exists in Set−−→P . Let (S′, (ε′i)i∈I) be a cocone of DU . We define a

structure map β′ on S′ by xβ′ = S′ for each x ∈ S′. Then, for any i ∈ I, since for any d ∈ Di,

dαiε
′
i
P ⊆ S′ = dε′iβ

′, ε′i is a lower P-morphism. So, ((S′, β′), (ε′i)i∈I) is a cocone of D and there

exists a unique lower P-morphism τ : S → S′ such that ε′i = εiτ . Therefore (S, (εi)i∈I) is the

colimit of DU in Set.

Now assume that a limit ((L,α), (ηi)i∈I) of D exists in Set−−→P . Let (L′, (η′i)i∈I) be a cone of

DU . We define a structure map α′ on L′ by xα′ = ∅ for each x ∈ L′. Then, for any i ∈ I,

since for any x ∈ L′, xα′η′i
P = ∅ ⊆ xη′iαi, η

′
i is a lower P-morphism. So, ((L′, α′), (η′i)i∈I)

is a cone of D and there exists a unique lower P-morphism τ : L′ → L such that η′i = τηi.

Therefore (L, (ηi)i∈I) is the limit of DU in Set.

4.4.1 Completeness

By Theorem 2.3.5, the terminal coalgebra does not exist in SetP . However, the terminal

coalgebra exists in Set−−→P . In this subsection, we show that Set−−→P is complete, and that the

limits are preserved by the underlying set functor.

For a given family (Xi)i∈I of sets, let
∏

i∈I Xi denote the set

{f : I →
⋃

i∈I Xi | ∀i ∈ I, if ∈ Xi}.
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A choice function f ∈
∏

i∈I Xi is written by
∏

i∈I xi if for each i ∈ I, if = xi. It is well-

known that (
∏

i∈I Xi, (πi)i∈I) is the product of (Xi)i∈I in Set, where each projection map

πi :
∏
Xi → Xi is given by fπi = if .

Proposition 4.4.2. For every family (Xi, αi)i∈I of P-coalgebras, there exists a product of

(Xi, αi)i∈I in Set−−→P , which is preserved by the underlying set functor. If I = ∅, then the

product is the terminal coalgebra ({∗}, α) with ∗α = {∗}. If I 6= ∅, then its structure map α

is given by (
∏

i∈I xi)α =
∏

i∈I(xiαi), i.e. each projection map πi is a P-homomorphism.

Proof. It is easy to check that ({∗}, α) is the terminal coalgebra. Suppose I 6= ∅. Let (Y, αY )

be a P-coalgebra. For each i ∈ I, let ϕi : Y → Xi be a lower P-morphism. Then there is a

unique map ψ : Y →
∏
Xi in Set with ψπi = ϕi.

∏
Xi

πi
- Xi

Y
ϕ i

-
�

ψ

(
∏

Xi)P

α

?

πPi - XiP

αi

?

Y P

αY

? ϕ
P
i

-
�

ψ P

For given y ∈ Y , since ψπi = ϕi, yψ =
∏

(yϕi). So, yψα =
∏

(yϕiαi). Let
∏
bi ∈ yαY ψ

P

be given. Then it is enough to show that ∀i ∈ I, bi ∈ yϕiαi. Note that bi ∈ yαY ψ
PπPi =

yαY (ψπi)
P . Since

yαY (ψπi)
P = yαY ϕ

P
i (P is a functor and ψπi = ϕi)

⊆ yϕiαi (ϕi is a lower P-morphism),

bi ∈ yϕiαi. Therefore ψ is a lower P-morphism.

Proposition 4.4.3. Let f : (X,αX ) → (Z,αZ) and g : (Y, αY ) → (Z,αZ) be two lower P-

morphisms. Then there exists a pullback ((P,αP ), (πX , πY )) in Set−−→P which is preserved by the

underlying set functor, i.e. P = {(x, y) ∈ X×Y | xf = yg}, and πX and πY are the projection

maps. Its structure map αP is given by (x, y)αP = P
⋂

[(xαX)× (yαY )]
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Proof. Let (L,αL) be a P-coalgebra and qX : L→ X and qY : L→ Y be lower P-morphisms

such that qXf = qY g. Let P = {(x, y) ∈ X × Y | xf = yg}. Then there is a unique map

τ : L→ P in Set with τπX = qX and τπY = qY .

L

P
πX

-

τ

-

X

q
X

-

LP

�

α
L

Y

πY

? g
-

q
Y

-

Z

f

?

PP
πPX

-

�

α P

τ P

-

XP

�

α
X

q P
X

-

Y P

πPY
?

gP
-

�

α Y

q PY

-

ZP

fP

?�

α
Z

For given l ∈ L, since τπX = qX and τπY = qY , lτ = (lqX , lqY ). So,

lταP = P
⋂

[(lqXαX)× (lqY αY )] .

Let (a, b) ∈ lαLτ
P be given. Then a ∈ lαLτ

PπPX and b ∈ lαLτ
PπPY . Since

lαLτ
PπPX = lαLq

P
X (P is a functor and τπX = qX)

⊆ lqXαX (qX is a lower P-morphism),

a ∈ lqXαX . Similarly, b ∈ lqY αY . Therefore τ is a lower P-morphism.

By Proposition 4.4.2 and 4.4.3, we obtain the following.

Theorem 4.4.4. Set−−→P is complete.

Proposition 4.4.5. Set−−→P (resp. Set←−−P) is weakly SI-factorizable.

Proof. Let ϕ : (X,αX) → (Y, αY ) be a lower P-morphism. For a given set Z, let f : X ։ Z

and g : Z  Y be a SI-factorization with fg = ϕ. For a given z ∈ Z, we define a structure
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map α on Z by

zα =
⋃

xf=z

xαXf
P .

Then it is easy to see that both f : (X,αX ) ։ (Z,α) and g : (Z,α)  (Y, αY ) are lower

P-morphisms. The case of upper P-morphisms can be done by defining a structure map α on

Z by

zα =
⋂

xf=z

xαXf
P .

By Theorem 4.2.6 and Proposition 4.4.5, we obtain the following.

Corollary 4.4.6. Every weak coquasivariety of Set−−→P is complete.

4.4.2 Cocompleteness

In this subsection, we show that Set−−→P is cocomplete. By Proposition 4.1.3, every sum

exists in Set−−→P . So, for the cocompleteness, it suffices to show the existence of every pushout.

Lemma 4.4.7. Let f : (X,αX ) → (Y, αY ) and g : (X,αX) → (Z,αZ) be two lower P-

morphisms. Assume that a pushout ((P, β), (pY , pZ)) exists. Then the natural projection

nat θ : (Y +Z,αΣ)→ ((Y +Z)θ, β) is a lower P-morphism, where θ is the smallest equivalence

relation on Y + Z containing all pairs (xf, xg) with x ∈ X.

Proof. Since the pushout is preserved by the underlying set functor according to Lemma 4.4.1,

P = (Y + Z)θ, where θ is the smallest equivalence relation on Y + Z containing all pairs

(xf, xg) with x ∈ X. Furthermore, pY = ιY (nat θ) and pZ = ιZ(nat θ), where ιY and ιZ are

the insertion maps into the coproduct, and nat θ is the natural projection. Note that pY and

pZ are lower P-morphisms. By Proposition 4.1.3, ιY and ιZ are P-homomorphisms. For given

y ∈ Y ,

Y
ιY

- Y + Z
nat θ

- (Y + Z)θ

Y P

αY

?

ιPY

- (Y + Z)P

αΣ

?

(nat θ)P
- (Y + Z)θP

β
?
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yαΣ(nat θ)P = yιY αΣ(nat θ)P

= yαY ι
P
Y (nat θ)P (ιY is a P-homomorphism)

⊆ yιY (nat θ)β (pY = ιY (nat θ) is a lower P-morphism)

= y(nat θ)β.

Similarly, for given z ∈ Z, zαΣ(nat θ)P ⊆ z(nat θ)β. Therefore nat θ is a lower P-morphism.

By Lemma 4.4.7, it is natural to study the structure maps on Aθ such that nat θ is a lower

P-morphism. Indeed, for an arbitrary equivalence relation θ on A, we can give a structure on

Aθ so that nat θ is a lower P-morphism as follows.

Definition 4.4.8. Let (A,α) be a P-coalgebra and let θ be an equivalence relation on A. We

define a P-coalgebra (Aθ, αθ) by

aθαθ =
⋃

(a,b)∈θ

bα(nat θ).

It is easy to see that αθ is well-defined.

Proposition 4.4.9. Let (A,α) be a P-coalgebra and let θ be an equivalence relation on A.

Then, for each aθ ∈ Aθ, aθαθ is the smallest subset of Aθ so that nat θ is a lower P-morphism.

Proof.

A
nat θ

-- Aθ

AP

α
?

(nat θ)P
- AθP

αθ
?

Let a ∈ A be given. Note that

a(nat θ)αθ = aθαθ =
⋃

(a,b)∈θ

bα(nat θ).

Since aα(nat θ)P ⊆
⋃

(a,b)∈θ bα(nat θ), nat θ is a lower P-morphism. Now suppose that nat θ

is a lower P-morphism with a structure map β on Aθ. Then, for given aθ ∈ Aθ and for any

b ∈ aθ,

bα(nat θ)P ⊆ b(nat θ)β = a(nat θ)β = aθβ.
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Thus aθαθ ⊆ a
θβ.

Corollary 4.4.10. In Set−−→P , every equivalence relation on (A,α) is a weak congruence.

Proposition 4.4.11. Let f : (X,αX) → (Y, αY ) and g : (X,αX) → (Z,αZ) be two lower

P-morphisms. Then the pushout ((P,αP ), (pY , pZ)) of f and g exists in Set−−→P and is preserved

by the underlying set functor, i.e. P = (Y + Z)θ, pY = ιY (nat θ), and pZ = ιZ(nat θ), where

θ is the smallest equivalence relation on Y + Z containing all pairs (xf, xg) with x ∈ X. The

structure map αP is αθ.

Proof. Let qY : Y → L and qZ : Z → L be lower P-morphisms such that fqY = gqZ . Then

there is a unique map τ : (Y + Z)θ → L such that pY τ = qY and pZτ = qZ . Let αΣ be the

structure map of the sum of (Y, αY ) and (Z,αZ) as in Proposition 4.1.3. Then αΣ is the sum

of αY and αZ . Let aθ ∈ (Y + Z)θ. W.l.o.g., we may assume that a ∈ Y . Let b ∈ aθ. If b ∈ Y ,

then

bαΣ(nat θ)τP = bαΣp
P
Y τ

P

= bαY q
P
Y

⊆ bqY αL (qY is a lower P-morphism)

= aqY αL = aθταL.

X
f

- Y

Z

g
? pZ

- (Y + Z)θ

pY
?

XP
fP

-

�

α X

Y P
�

α Y

L

q
Y

-

τ
-qZ -

ZP

gP

? pPZ-

�

α Z

(Y + Z)θP

pPY
?�

α θ

LP

�

α
L

q P
Y

-

τ P

-
qP
Z

-
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If b ∈ Z, then

bαΣ(nat θ)τP = bαΣp
P
Zτ

P

= bαZq
P
Z

⊆ bqZαL (qZ is a lower P-morphism)

= aqY αL = aθταL.

Since aθαθ =
⋃

(a,b)∈θ bαΣ(nat θ), τ is a lower P-morphism.

By Proposition 4.1.3 and 4.4.11, we obtain the following.

Theorem 4.4.12. Set−−→P is cocomplete.

4.5 Upper P-morphisms

In Section 4.4, we have observed that Set−−→P is bicomplete although SetP is not complete.

This is an example of the advantage obtained by weak homomorphisms. When it comes to

upper P-morphisms, the situation is reversed. By Theorem 2.3.4, SetP is cocomplete. In this

section, we show that Set←−−P is not cocomplete.

Lemma 4.5.1. If a colimit exists in Set←−−P , then it is preserved by the underlying set functor.

Proof. Let I be a small category and let D : I → Set←−−P be a functor. Let (Di, αi) denote iD.

Assume that a colimit ((S, β), (εi)i∈I) of D exists in Set←−−P . Let (S′, (ε′i)i∈I) be a cocone of DU .

We define a structure map β′ on S′ by xβ′ = ∅ for each x ∈ S′. Then, for any i ∈ I, since for

any d ∈ Di, dαiε
′
i
P ⊇ ∅ = dε′iβ

′, ε′i is an upper P-morphism. So, ((S′, β′), (ε′i)i∈I) is a cocone

of D and there exists a unique upper P-morphism τ : S → S′ such that ε′i = εiτ . Therefore

(S, (εi)i∈I) is the colimit of DU in Set.

Lemma 4.5.2. Let f : (X,αX ) → (Y, αY ) and g : (X,αX ) → (Z,αZ) be two upper P-

morphisms. Assume that a pushout ((P, β), (pY , pZ)) exists. Then the natural projection

nat θ : (Y +Z,αΣ)→ ((Y +Z)θ, β) is an upper P-morphism, where θ is the smallest equivalence

relation on Y + Z containing all pairs (xf, xg) with x ∈ X.
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Proof. Reverse the direction of inclusions in Lemma 4.4.7.

Definition 4.5.3. Let (A,α) be a P-coalgebra and let θ be an equivalence relation on A. We

define a P-coalgebra (Aθ, αu,θ) by

aθαu,θ =
⋂

(a,b)∈θ

bα(nat θ).

It is easy to see that αu,θ is well-defined.

Proposition 4.5.4. Let (A,α) be a P-coalgebra and let θ be an equivalence relation on A.

Then, for each aθ ∈ Aθ, aθαu,θ is the largest subset of Aθ so that nat θ is an upper P-morphism.

Proof.

A
nat θ

-- Aθ

AP

α
?

(nat θ)P
- AθP

αu,θ
?

Let a ∈ A be given. Note that

a(nat θ)αu,θ = aθαu,θ =
⋂

(a,b)∈θ

bα(nat θ).

Since aα(nat θ)P ⊇
⋂

(a,b)∈θ bα(nat θ), nat θ is an upper P-morphism. Now suppose that nat θ

is an upper P-morphism with a structure map β on Aθ. Then, for given aθ ∈ Aθ and for any

b ∈ aθ,

bα(nat θ)P ⊇ b(nat θ)β = a(nat θ)β = aθβ.

Therefore aθαu,θ ⊇ a
θβ.

Theorem 4.5.5. Set←−−P is not cocomplete.

Proof. One counterexample is enough. Let (X = {x1, x2}, αX) be coalgebra such that x1αX =

{x2} and x2αX = X. Let (Y = {y1, y2}, αY ) and (Z = {z1, z2}, αZ) be coalgebras such that

y1αY = {y2}, y2αY = {y1}, z1αZ = {z2}, and z2αZ = {z2}. Let f : X → Y be a map defined
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by xi = yi for i = 1, 2 and let g : X → Z be a map defined by xi = zi for i = 1, 2. Then f and

g are upper P-morphisms.

z1 z2 �
g

x1 x2
f
- y1 y2

{z2}

αZ
?

{z2}

αZ
?

{x2}

αX
?

{x1, x2}

αX
?

{y2}

αY
?

{y1}

αY
?

yθ
1

p
Z -

yθ
2

�

p Y

{yθ
2}

αu,θ
?

∅

αu,θ

?

Now assume that the pushout ((P,α), (pY , pZ)) of f and g exists in Set←−−P . Then by Lemma

4.5.1, P = (Y +Z)θ, where θ is the smallest equivalence relation on Y +Z containing all pairs

(xf, xg) with x ∈ X. Furthermore, pY = ιY (nat θ) and pZ = ιZ(nat θ). It can be readily

seen that (Y + Z)θ = {yθ
1, y

θ
2}, where yθ

1 = {y1, z1} and yθ
2 = {y2, z2}. Let (L = {0}, αL)

be a P-coalgebra such that 0αL = {0}. Let qY : Y → L and qZ : Z → L be the constant

functions. Then qY and qZ are upper P-morphisms such that fqY = gqZ . There is a unique

upper P-morphism τ : (Y +Z)θ → L such that pY τ = qY and pZτ = qZ . By Lemma 4.5.2 and

Proposition 4.5.4, τ should be an upper P-morphism with structure map αu,θ on (Y + Z)θ.

However,

yθ
2αu,θτ

P = ∅ 6⊇ {0} = yθ
2ταL ,

which is a contradiction. Therefore there is no pushout of f and g in Set←−−P .
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CHAPTER 5. Graphic coalgebras with lower morphisms

In Chapter 3, we have observed that N -homomorphisms between graphic coalgebras are

too strict, and that there is no simple construction for products. There is another aspect of the

strictness of N -homomorphisms. Let (X,α) ∈ G be connected, and let S be a proper subset

of X. Then by Proposition 3.2.4, there is no structure map αS so that (S,αS) ≤ (X,α). This

implies that an induced subgraph may not be a subcoalgebra. These situations can be avoided

by relaxing the condition for the definition of N -homomorphism. In this chapter, we suggest

to use lower morphisms as a relaxation of N -homomorphisms.

5.1 Lower N-morphisms

5.1.1 Finite completeness

In this subsection, we discuss the finite completeness of Set−−→N . With the same proof of

Lemma 4.4.1, we obtain the following.

Lemma 5.1.1. If a limit exists in Set−−→N , then it is preserved by the underlying set functor.

Theorem 5.1.2. Set−−→N is not complete.

Proof. One counterexample is enough. For each natural number n ∈ N, let (Xn = {an, bn, cn}, αn)

be an N -coalgebra such that anαn = {bn, cn} and bnαn = cnαn = {an}. Assume that the prod-

uct ((P,α), (πn)n∈N) exists in Set−−→N . Then by Lemma 5.1.1, P =
∏

n∈N
Xn. Let ({0, 1}, β) be

a graphic N -coalgebra whose graph structure is the following;

0 1

For each n, we define a map fn : {0, 1} → Xn by 0fn = an and 1fn = bn. A function

gn : {0, 1} → Xn is defined by 0gn = an and 1gn = cn. Then both fn and gn are lower
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N -morphisms. Since (P,α) is the product, for each class of functions (hn)n∈N with hn = fn or

gn, there is a unique lower N -morphism from {0, 1} to P . Therefore |(
∏

n∈N
an)α| is infinite,

which is a contradiction.

Proposition 5.1.3. For every family (Xi, αi)i∈I of finite number of N -coalgebras, there exists

a product of (Xi, αi)i∈I in Set−−→N , which is preserved by the underlying set functor. If I = ∅,

then the product is the terminal coalgebra ({∗}, α) with ∗α = {∗}. If I 6= ∅, then its structure

map α is given by (
∏

i∈I xi)α =
∏

i∈I(xiαi). i.e., each projection map πi is aN -homomorphism.

Proposition 5.1.4. Let f : (X,αX ) → (Z,αZ ) and g : (Y, αY ) → (Z,αZ) be two lower N -

morphisms. Then there exists a pullback (P,αP ) in Set−−→N which is preserved by the underlying

set functor. Its structure map αP is given by (x, y)αP = P
⋂

[(xαX)×(yαY )], i.e. the projection

maps πX and πY are N -homomorphisms.

By Proposition 5.1.3 and 5.1.4, we obtain the following.

Theorem 5.1.5. Set−−→N is finitely complete.

Proposition 5.1.6. Set−−→N is weakly SI-factorizable.

Proof. Let ϕ : (X,αX ) → (Y, αY ) be a lower N -morphism. For a given set Z, let f : X ։ Z

and g : Z  Y be a SI-factorization with fg = ϕ. For a given z ∈ Z, we define a structure

map α on Z by

zα =
⋃

xf=z

xαXf
N .

Since ϕ is a lower N -morphism, for each x ∈ X with xf = z, xαXϕ
N ⊆ xϕαY . So

zαgN = (
⋃

xf=z

xαXf
N)gN =

⋃

xf=z

(xαXf
NgN ) =

⋃

xf=z

xαXϕ
N ⊆ xϕαY .

Since g is injective, zα is finite. Now it is easy to see that both f : (X,αX ) ։ (Z,α) and

g : (Z,α)  (Y, αY ) are lower N -morphisms.

By Proposition 5.1.6 and Theorem 4.2.6, we obtain the following.

Corollary 5.1.7. Every weak co-quasivariety of Set−−→N is finitely complete.
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5.1.2 Non-cocompleteness

By Proposition 4.1.3, every sum exists in Set−−→N . So for the cocompleteness, we need to

study the existence of every pushout.

Theorem 5.1.8. Set−−→N is not cocomplete.

Proof. One counterexample is enough. Let (X = {xn | n ∈ N}, αX), (Y = {an, bn | n ∈

N}, αY ), and (Z = {z}, αZ) beN -coalgebras such that xnαX = ∅, anαY = {bn}, bnαY = {an},

and zαZ = ∅. Let f : X → Y be a map defined by xnf = an. Let g be the map from X to Z.

Then f and g are lower N -morphisms. Now assume that the pushout ((P,α), (pY , pZ)) of f and

g exists in Set−−→N . Then since fpY = gpZ , there is an element p ∈ P such that zpZ = p = anpY

for any n ∈ N.

X={ x1

x3

,

,
…}

Z = { z }

      { a1 , a2 , a3 , …

b1 , b2 , b3 , …}

p

pα

=Y

x2 ,

f

g

pZ

pY

{ , …} = P

Since pα is finite, we may let pα = {c1, c2, . . . , ck} for some k ∈ N. Since pY is a lower

N -morphism, bnpY ⊆ pα for any n. Since {bn | n ∈ N} is infinite, there is some i between

1 and k such that |{bn ∈ Y | bnpY = ci}| ≥ 2. Without loss of generality, we may assume

that b1pY = b2pY = ci. Now let (Q = {q, c1, c2, . . . , ck+1}, β) be an N -coalgebra such that

qβ = {c1, . . . , ck+1}, and cjβ = {q} for any j. We define a map qZ : Z → Q by zqZ = q. Let

qY : Y → Q be a map defined by anqY = q for any n, b1qY = ck+1, and bnqY = bnpY for any

n > 1. Then qZ and qY are lower N -morphisms with fqY = gqZ . However there is no map
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τ : P → Q with pY τ = qY , which is a contradiction.

Let f : (X,αX ) → (Y, αY ) and g : (X,αX) → (Z,αZ) be two lower N -morphisms. When

does the pushout of f and g exist? Let θ be the smallest equivalence relation on Y + Z

containing all pairs (xf, xg) with x ∈ X. Assume that there is a structure map β on (Y +Z)θ

with

nat θ : (Y + Z,αΣ)→ ((Y + Z)θ, β)

is a lower N -morphism, i.e. θ is a weak congruence. We define an N -coalgebra ((Y +Z)θ, αθ)

by

xθαθ =
⋃

(x,y)∈θ

yαΣ(nat θ), (5.1)

where nat θ is the natural projection. It is easy to see that αθ is well-defined and

nat θ : (Y + Z,αΣ)→ ((Y + Z)θ, αθ)

is a lower N -morphism.

Proposition 5.1.9. Let f : (X,αX ) → (Y, αY ) and g : (X,αX ) → (Z,αZ) be two lower N -

morphisms. Assume that θ is a weak congruence, where θ is the smallest equivalence relation

on Y + Z containing all pairs (xf, xg) with x ∈ X. Then the pushout ((P,αP ), (pY , pZ)) of

f and g exists in Set−−→N and it is preserved by the underlying set functor, i.e. P = (Y + Z)θ,

pY = ιY (nat θ), and pZ = ιZ(nat θ). The structure map αP is αθ.

5.2 Graphic coalgebras with lower morphisms

We denote the full subcategory of Set−−→N with the object set G by Gph
−−−→

.

5.2.1 Lower N-morphisms on G

By Definition 4.1.1, we obtain the following.

Lemma 5.2.1. A lower N -morphism preserves loops.

Proof. Let f : (X,α)→ (Y, β) be a lower N -morphism on G. If x ∈ X has a loop, then x ∈ xα.

Since xαfN ⊆ xfβ, xf ∈ xfβ. Therefore xf has a loop.
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From the above Lemma 5.2.1, the preimage of a N -coalgebra with no loops in G under a

lower N -morphism has no loops.

Theorem 5.2.2. Let f be a lower N -morphism from (X,α) to (Y, β) on G. Then f is a

graph homomorphism between corresponding graphs, i.e. f preserves edges. Conversely, if

f is a graph homomorphism, then f is a lower N -morphism between corresponding graphic

N -coalgebras.

Proof. If x′ ∈ xα, then x′f ∈ xfβ since xαfN ⊆ xfβ. So f preserves edges. The other

direction is clear.

By Lemma 5.2.2, it is apparent that we have relaxed the homomorphism concept to a

proper level. As a result, Proposition 3.2.4 might not hold in Gph
−−−→

. Also, the inverse image of

2 could be trivial. Indeed, bipartite graphs can be characterized as inverse images of 2. This

is a nice example of the use of the coalgebraic language.

Proposition 5.2.3. Let (X,α) ∈ G. Then (X,α) is a bipartite graph if and only if there is a

lower N -morphism f : X → 2.

Proof. Suppose that (X,α) is a bipartite graph. Then there exists a partition X0 and X1 on

X such that X0 and X1 are independent. We define a function f : X → 2 by xf = 0 for

any x ∈ X0, and xf = 1 for any x ∈ X1. Then for any x ∈ X0, xαf
N = ∅ or {1}. So

xαfN ⊆ xfα2 = 0α2 = {1}. Similarly, if x ∈ X1, then xαfN ⊆ xfα2. Therefore f is a lower

N -morphism. Now suppose that f : X → 2 is a lower N -morphism. By Lemma 5.2.1, (X,α)

has no loop. If for any x ∈ X, xα = ∅, then we are done. If (X,α) is not trivial, then the

proof is same as the proof of Proposition 3.2.5.

5.2.2 Finite completeness

In this subsection, we show the completeness of Gph
−−−→

by use of the coalgebraic language.

Note that Set−−→N is finitely complete by Theorem 5.1.5. In order to show that Gph
−−−→

is finitely

complete, it is enough to prove that G is a weak co-quasivariety by Corollary 5.1.7.
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Let ({0, 1, 2}, α) ∈ G with 0α = {1}, 1α = {0, 2}, and 2α = {1}. The graph structure of

({0, 1, 2}, α) is the following:

0 1 2

Let ({0, 1}, β) be the N -coalgebra with 0β = {1} and 1β = ∅. Now, we consider the canonical

inclusion map ι : {0, 1} → {0, 1, 2}. Then, ι becomes a lower morphism and ({0, 1}, β) ≤

({0, 1, 2}, α). However, ({0, 1}, β) 6∈ G. As a result, we have the following lemma.

Lemma 5.2.4. G is not closed under subcoalgebras.

Let (X = {0, 1, 2}, α) ∈ G such that 0α = {1}, 1α = {0}, and 2α = ∅. Let (X,β) ∈ Set−−→N

such that 0β = {1}, 1β = {0, 2}, and 2β = ∅. Then the identity map id : X → X is a

surjective lower N -morphism. However, (X,β) 6∈ G. So G is not a co-quasivariety. Note that

every coproduct exists in Set−−→N by Proposition 4.1.3.

Proposition 5.2.5. G forms a weak coquasivariety over Set−−→N .

Proof. (i) G is closed under Σ;

The proof is same as the proof of Proposition 3.2.6.

(ii) Let f : (X,αX) → (Y, αY ) be a surjective lower N -morphism where (X,αX ) ∈ G. We

define a structure map α on Y by yα =
⋃

xf=y xαXf
N for y ∈ Y . For any x ∈ X,

xαXf
N ⊆

⋃
x′f=xf x

′αXf
N = xfα. So, f : (X,αX ) → (Y, α) is a lower N -morphism.

For any y ∈ Y , yαιN ⊆ yιαY since ∀x ∈ X with xf = y, xαXf
N ⊆ yαY . So (Y, α) ≤w

(Y, αY ). Now suppose that y1 ∈ y2α where y1, y2 ∈ Y . Then y1 ∈ aαXf
N for some

a ∈ X with af = y2. So, ∃b ∈ aαX such that bf = y1. Since (X,αX ) ∈ G, a ∈ bαX . So

y2 = af ∈ bαXf
N . Hence y2 ∈ y1α.

By Corollary 5.1.7, we obtain the following.

Corollary 5.2.6. Gph
−−−→

is finitely complete.
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Recall that although Gph is complete, there is still no simple construction for the products.

However, Set−−→N is finitely complete and we have simple constructions for the finite products and

pullbacks by Proposition 5.1.3 and 5.1.4. Products and pullbacks of graphs were considered

in [9], and they have simple constructions. We obtain an alternative proof using Proposition

5.1.3 and 5.1.4.

Proposition 5.2.7. For every family (Xi, αi)i∈I of finite number of graphic N -coalgebras, the

product (
∏
Xi, α) in Proposition 5.1.3 is also graphic.

Proof. The case I = ∅ is trivial. Suppose that I 6= ∅. Let
∏
xi ∈

∏
Xi and

∏
yi ∈

∏
Xi be

given. We may assume that
∏
xi ∈ (

∏
yi)α. Since (

∏
yi)α = {

∏
ai ∈

∏
Xi|∀i ∈ I, ai ∈ yiαi},

for all i ∈ I, xi ∈ yiαi. Since each (Xi, αi) ∈ G, yi ∈ xiαi. So,
∏
yi ∈ (

∏
xi)α. Hence

(
∏
Xi, α) ∈ G.

By Proposition 5.2.7, the finite product of graphic N -coalgebras is constructed as in Propo-

sition 5.1.3.

Proposition 5.2.8. Let f : (X,αX ) → (Z,αZ) and g : (Y, αY ) → (Z,αZ) be two lower

N -morphisms in G. Then the pullback (P,αP ) in Proposition 5.1.4 is also graphic.

Proof. Suppose that (x′, y′) ∈ (x, y)αP , where (x, y), (x′, y′) ∈ P . Then x′ ∈ xαX and y′ ∈

yαY . Since (X,αX ), (Y, αY ) ∈ G, x ∈ x′ ∈ αX and y ∈ y′ ∈ αY . Therefore (x, y) ∈

(x′, y′)αP .

By Proposition 5.2.8, the pullback of graphic N -coalgebras is constructed as in Proposition

5.1.4.

5.2.3 Non-cocompleteness

It is easy to see that every coproduct exists in Gph
−−−→

from Proposition 4.1.3. Gph
−−−→

is not

cocomplete since the counterexample of Theorem 5.1.8 is considered in the category Gph
−−−→

.
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Lemma 5.2.9. Let (X,α) be a graphic coalgebra and let θ be a weak congruence on X. Then

(Xθ, αθ) is a graphic coalgebra, where αθ is the structure map defined by

xθαθ =
⋃

(x,y)∈θ

yα(nat θ) .

Proof. Suppose that yθ ∈ xθαθ where xθ, yθ ∈ Xθ. Then there is a ∈ xθ such that yθ ∈

aα(nat θ) by the definition of αθ. So b ∈ yθ for some b ∈ aα. Since (X,α) ∈ G, a ∈ bα. So

aθ ∈ bα(nat θ). Hence,

xθ = aθ ∈
⋃

(b,y)∈θ

bα(nat θ) = yθαθ .

By Lemma 5.2.9, we obtain the following.

Proposition 5.2.10. Let f : (X,αX) → (Y, αY ) and g : (X,αX) → (Z,αZ) be two lower

N -morphisms in G. Assume that θ is a weak congruence, where θ is the smallest equivalence

relation on Y + Z containing all pairs (xf, xg) with x ∈ X. Then the pushout of f and g in

Proposition 5.1.9 is also graphic.
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CHAPTER 6. Topological coalgebras with upper morphisms

In this chapter, we will work within the category Set←−−F of all coalgebras for the monotonic

filter functor F , with the upper morphisms as morphisms.

6.1 Upper F-morphisms

Lemma 6.1.1. A map f : (X,α)→ (Y, β) is an upper F-morphism if and only if for all x ∈ X

and all V ⊆ Y ,

V ∈ xfβ ⇒ f−1(V ) ∈ xα.

Proof. f is an upper F-morphism

iff ∀x ∈ X, xα(fF ) ⊇ xfβ

iff ∀x ∈ X,∀V ⊆ Y, [V ∈ xfβ ⇒ ∃U ⊆ X. U ∈ xα, Uf ⊆ V ]

iff ∀x ∈ X,∀V ⊆ Y, [V ∈ xfβ ⇒ ∃U ⊆ X. U ∈ xα, U ⊆ f−1(V )]

iff ∀x ∈ X,∀V ⊆ Y, [V ∈ xfβ ⇒ f−1(V ) ∈ xα].

By using the proof of Proposition 3.1.4, we obtain the following.

Lemma 6.1.2. A subset S ⊆ X is an F -subcoalgebra of (X,α) if S ∈ sα for each s ∈ S.

The following example shows that the converse of Lemma 6.1.2 may not hold. Let ({0, 1}, α)

be the F-coalgebra where 0α = 1α = {{0, 1}}. Let ({0}, β) be the F-coalgebra with 0β =

{{0}}. Now we consider the canonical inclusion map ι : {0} →֒ {0, 1}. Then ι becomes an

upper morphism and ({0}, β) ≤w ({0, 1}, α). However, ({0}, β) 6≤ ({0, 1}, α).
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Note that for given families (Xi)i∈I of sets and (Hi)i∈I , where each Hi is a filter on Xi,

∏̂
Hi :=

{ ∏
Ui

∣∣∣ Ui ∈ Hi, Ui = Xi for all but finitely many i
}

is a filter on
∏
Xi.

Proposition 6.1.3. For a family (Xi, αi)i∈I of F-coalgebras, there exists a product
∏

i∈I(Xi, αi)

in Set←−−F which is preserved by the underlying set functor. If I = ∅, then the product is the

terminal coalgebra ({∗}, α) with ∗α = {{∗}}. If I 6= ∅, then the structure map α is given by

(
∏
xi)α =

∏̂
(xiαi).

Proof. It is easy to check that ({∗}, α) is the terminal coalgebra. Suppose that I 6= ∅. Let

(Y, αY ) be an F-coalgebra and ϕi : Y → Xi be an upper F-morphism. Then there is a unique

map ψ : Y →
∏
Xi in Set with ψπi = ϕi.

∏
Xi

πi
- Xi

Y
ϕ i

-
�

ψ

(
∏

Xi)F

α

?

πFi - XiF

αi

?

Y F

αY

? ϕ
F
i

-
�

ψ F

Let y ∈ Y be given. We want to show that yαY ψ
F ⊇ yψα. Let U ∈ yψα. Then U =

∏
Ui,

where Ui ∈ yϕiαi and Ui 6= Xi for all but finitely many indices i. Clearly
∏
Xi ∈ yαY ψ

F .

Assume that U 6=
∏
Xi. Then there is a positive integer n such that:

In ⊆ I ;

|In| = n ;

∀j ∈ In , Uj 6= Xj ;

∀i ∈ (I r In) , Ui = Xi .
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For each j ∈ In,

yαY ψ
FπFj = yαY ϕ

F
j (F is a functor and ψπj = ϕj)

⊇ yϕjαj (ϕj is an upper F-morphism).

Thus for each j ∈ In, we have Uj ∈ yαY ψ
FπFj . Note that if H is a filter on

∏
Xi, then Hπi is a

filter on Xi. So Uj ∈ yαY ψ
FπFj = yαY ψ

Fπj. Then for each j ∈ In, there exists a Vj ∈ yαY ψ
F

such that Uj = Vjπj. Since U ⊇
⋂

j∈In
Vj ∈ yαY ψ

F , we have U ∈ yαY ψ
F . Therefore ψ is an

upper F-morphism.

Proposition 6.1.4. Consider two upperF-morphisms f : (X,αX)→ (Z,αZ) and g : (Y, αY )→

(Z,αZ). Then there exists a pullback (P,αP ) in Set←−−F which is preserved by the underlying

set functor. Its structure map αP is given by

(x, y)αP =↑ {(U × V ) ∩ P | U ∈ xαX , V ∈ yαY } . (6.1)

Proof. Let P = {(x, y) ∈ X × Y | xf = yg}. We define a structure map αP on P by (6.1).

First, we show that αP is well-defined. Put

S(x,y) := {(U × V ) ∩ P | U ∈ xαX , V ∈ yαY } .

Since P ∈ S(x,y), the set S(x,y) is nonempty. For given W1, W2 ∈ S(x,y), there exist U1,

U2 ∈ xαX and V1, V2 ∈ yαY such that W1 = (U1 × V1) ∩ P and W2 = (U2 × V2) ∩ P . Since

W1 ∩W2 = [(U1 ∩U2)× (V1 ∩ V2)] ∩P ∈ S(x,y), the set S(x,y) is downward directed. Therefore

αP is well-defined. Now let (L,αL) be an F-coalgebra and qX : L → X and qY : L → Y be

upper F-morphisms such that qXf = qY g. Then there is a unique map τ : L→ P in Set with



46

τπX = qX and τπY = qY .

L

P
πX

-

τ

-

X

q
X

-

LF
�

α
L

Y

πY

? g
-

q
Y

-

Z

f

?

PF
πFX

-

�

α P

τ F

-

XF

�

α
X

q F
X

-

Y F

πFY
?

gF
-

�

α Y

q FY

-
ZF

fF

?�

α
Z

For given l ∈ L, since τπX = qX and τπY = qY , we have lτ = (lqX , lqY ). So

lταP =↑ {(U × V ) ∩ P | U ∈ lqXαX , V ∈ lqY αY } .

Let W ∈ lταP . Then there exists U ∈ lqXαX and V ∈ lqY αY with (U × V ) ∩ P ⊆ W . It

suffices to show that (U × V ) ∩ P ∈ lαLτ
F . Since qX is an upper F-morphism,

U ∈ lqXαX ⊆ lαLq
F
X = lαLτ

FπFX .

Since lαLτ
F is a filter on P , there exists W1 ∈ lαLτ

F such that W1πX ⊆ U . Similarly, there

exists W2 ∈ lαLτ
F such that W2πY ⊆ V . Since

W1 ∩W2 ⊆ (U × V ) ∩ P ,

we have (U × V ) ∩ P ∈ lαLτ
F . Therefore τ is an upper F-morphism.

By Propositions 6.1.3 and 6.1.4, we obtain the following.

Theorem 6.1.5. Set←−−F is complete.

Lemma 6.1.6. Let g : X  Y be an injective map and let (Gi)i∈I be a class of filters on X.

Then
⋂

i∈I

↑ (Gig) ⊆
x

( ⋂

i∈I

Gig
)
.
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Proof. Since g is injective, Gig is a filter on Xg for each i ∈ I. For a given element U of

⋂
i∈I

x(Gig), there is Vi ∈ Gig such that Vi ⊆ U ∩Xg for each i ∈ I. Since Gig is a filter on

Xg, we have U ∩Xg ∈
⋂

i∈I Gig. Thus U ∈
x (⋂

i∈I Gig
)
.

Proposition 6.1.7. Set←−−F is weakly SI-factorizable.

Proof. Let ϕ : (X,αX )→ (Y, αY ) be an upper F-morphism. For a given set Z, let f : X ։ Z

and g : Z  Y be an SI-factorization with fg = ϕ. For a given z ∈ Z, we define a structure

map α on Z by

zα =
⋂

xf=z

xαXf
F .

Then ∀x ∈ X, xfα ⊆ xαXf
F . Thus f is an upper F-morphism. Now let z ∈ Z. Since ϕ is an

upper F-morphism, for every x ∈ X with xf = z,

zgαY = xfgαY ⊆ xαXϕ
F = xαXf

FgF ...

So zgαY ⊆
⋂

xf=z(xαXf
FgF ) =

⋂
xf=z ↑ (xαXf

Fg). By Lemma 6.1.6,

⋂

xf=z

↑ (xαXf
Fg) ⊆ ↑

[ ⋂

xf=z

(xαXf
Fg)

]

= ↑
[( ⋂

xf=z

xαXf
F

)
g
]

(g is injective)

=
( ⋂

xf=z

xαXf
F

)
gF = zαgF .

Therefore g is an upper F-morphism.

By Theorem 4.2.6, Theorem 6.1.5, and Proposition 6.1.7, we obtain the following.

Corollary 6.1.8. Each weak coquasivariety of Set←−−F is complete.

6.2 Topological coalgebras with upper morphisms

Denote the full subcategory of Set←−−F with the object class T by Tp
←−

. We show that weak

coalgebra homomorphisms coincide with continuous maps. Based on this, we derive the equiv-

alence between Top and Tp
←−

. Here is the main theorem.



48

Theorem 6.2.1. Suppose that (X, τX) and (Y, τY ) are topological spaces. Consider a function

f : X → Y . Then f : (X,UτX
)→ (Y,UτY

) is an upper F-morphism if and only if f : (X, τX)→

(Y, τY ) is continuous.

Proof. Suppose that f : (X, τX) → (Y, τY ) is continuous. Let x ∈ X and let V ⊆ Y . If

V ∈ xfUτY
, then there exists an open set U ∈ τY such that xf ∈ U ⊆ V . Since f is

continuous, x ∈ f−1(U) ∈ τX . Since f−1(U) ⊆ f−1(V ), we have f−1(V ) ∈ xUτX
. Therefore f

is an upper F-morphism by Lemma 6.1.1. Now suppose that f is an upper F-morphism. Let

V ∈ τY . For any x ∈ f−1(V ), there exists Ux ∈ τX such that x ∈ Ux ⊆ f−1(V ) by Lemma

6.1.1. Since f−1(V ) =
⋃

x∈f−1(V ) Ux, we have f−1(V ) ∈ τX . Hence f is continuous.

Corollary 6.2.2. Let (X, τX) be a topological space, with corresponding coalgebra (X,UτX
).

If S is a subset of X, then it is a subcoalgebra.

Proof. Let τS = {S ∩ U | U ∈ τX} be the subspace topology. Then by Theorem 6.2.1,

(S,UτS
) ≤w (X,UτX

).

Theorem 6.2.1 indicates that we have appropriately relaxed the homomorphism concept.

The bicompleteness of Tp
←−

will follow. It is easy to check that

G : Top→ Tp
←−

, (6.2)

defined by (X, τ)G = (X,Uτ ) for (X, τ) ∈ Ob(Top) and fG = f for f ∈ Mor(Top), is a

functor. Indeed G is an equivalence.

Proposition 6.2.3. The functor G : Top→ Tp
←−

of (6.2) provides an equivalence between the

category of continuous maps and the category of upperF-morphisms for topological coalgebras.

Proof. Clearly, G is faithful and dense. By Theorem 6.2.1, G is full. Therefore G is an

equivalence.

Note that Top is bicomplete. By Proposition 6.2.3, we obtain the following.

Corollary 6.2.4. Tp
←−

is bicomplete.
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6.3 Closure properties

Recall that a weak coquasivariety of a complete weak category is again complete. Since

Set←−−F is complete, it is natural to ask whether T forms a weak coquasivariety. First we

consider the closure property under subcoalgebras. Let ({0, 1}, τ) be the topological space

with τ = {∅, {0, 1}}. Then we obtain the F-coalgebra ({0, 1}, Uτ ) ∈ T , with

0Uτ = 1Uτ = {{0, 1}} .

Let ({0, 1}, β) be the F-coalgebra with 0β = {{1}, {0, 1}} and 1β = {{0}, {0, 1}}. Then

({0, 1}, β) ≤w ({0, 1}, Uτ ). However, ({0, 1}, β) 6∈ T . As a result, we obtain the following

proposition.

Proposition 6.3.1. The class T is not closed under subcoalgebras. Hence it does not form a

covariety over Set←−−F .

Consider (X = {1, 2, 3, 4}, Uτ ) ∈ T with the topology

τ = {∅, {1}, {1, 3}, {1, 2, 4}, X} .

Let (Y = {a, b, c}, β) ∈ Set←−−F such that aβ = {{a, c}, Y }, bβ = {{a, b}, Y }, and cβ = {Y }.

Then the function f : X → Y defined by 1f = 2f = a, 3f = b, and 4f = c is a surjective upper

F-morphism. However, (Y, β) 6∈ T . Thus T is not closed under H, and is not a coquasivariety.

Now we define a topology τY on Y by

{V ⊆ Y | V f−1 ∈ τ} = {∅, {a, c}, Y } .

Then it is easy to see that the topology τY is the finest topology so that f becomes a continuous

function. However, (Y,UτY
) 6≤w (Y, β). As a result, we obtain the following proposition.

Proposition 6.3.2. T does not form a weak coquasivariety over Set←−−F .
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CHAPTER 7. Future research problems

7.1 Almost homomorphisms

For given sets A and B, if A ⊆ B and |B \ A| < ∞, then we denote this containment by

A ⊆cofin B. Denote the symmetric difference between A and B by A△B, i.e.

A△B = (A ∪B) \ (A ∩B) .

Let T : Set → Set be a monotonic endofunctor. Then T is said to be a strictly monotonic

endofunctor if for a given map f : X → Y and for given sets A, B ∈ XT , the containment

A ⊆cofin B implies AfT ⊆cofin Bf
T .

Definition 7.1.1. Let (X,α) and (Y, β) be T -coalgebras for a strictly monotonic endofunctor

T : Set → Set. Then an almost T -homomorphism from (X,α) to (Y, β) is a map f : X → Y

such that for each x ∈ X, we have

|xαfT△xfβ| <∞ .

It can be readily seen that the class of all T -coalgebras forms a category denoted by Set←→T

with almost T -homomorphisms. Furthermore, we have the following result.

Theorem 7.1.2. For a strictly monotonic endofunctor T on the category of sets, the class of

all almost T -homomorphisms is weakly closed.

In Chapter 5 and 6, we have seen how lower and upper morphisms work nicely in math-

ematical structures. It would be interesting and worth to find some mathematical structures

in which almost homomorphisms give a nice relationship between the corresponding coalge-

bras. Another interesting question would be an interpretation of almost homomorphisms into

transition systems or automata.
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7.2 Generalization of graph minors

A quasi-order (Q,≤) is a class Q together with a transitive and reflexive relation ≤.

Definition 7.2.1. Let (Q,≤) be a quasi-order and let H be a subclass of Q. Then H is called

hereditary if y ≤ x implies y ∈ H for every x ∈ H. If x ≤ y implies y ∈ H for every x ∈ H,

then H is said to be monotone.

For a given subclass H of a quasi-order (Q,≤), Hc := Q \H .

Proposition 7.2.2. Let H be a subclass of a quasi-order (Q,≤). Then H is hereditary if and

only if Hc is monotone.

Proof. If H = Q, then Hc = ∅ is monotone and H is hereditary. So assume that H is a proper

subclass of Q. Suppose that H is hereditary. Let x ∈ Hc and let x ≤ y. If y 6∈ Hc, then y ∈ H.

Since H is hereditary, x ∈ H, which is a contradiction. Therefore y ∈ Hc and Hc is monotone.

Now assume that Hc is monotone. Let x ∈ H and let y ≤ x. If y 6∈ H, then y ∈ Hc. Since Hc

is monotone, x ∈ Hc, which is a contradiction. Therefore H is hereditary.

Let H be a subclass of a quasi-order (Q,≤). We define

↑ H := {q ∈ Q | ∃x ∈ H � x ≤ q} .

Definition 7.2.3. Let H be a subclass of a quasi-order (Q,≤). A basis for H is a subclass B

of H satisfying ↑ B = H.

It is natural to ask when a given subclass of a quasi-order has a basis.

Proposition 7.2.4. Let H be a subclass of a quasi-order (Q,≤). Then H is monotone if and

only if H has a basis.

Proof. Suppose that H is monotone. Then ↑ H = H. Now suppose that H has a basis B. Let

x ∈ H and let x ≤ y. Then there exists b ∈ B such that b ≤ x ≤ y. By the definition of basis,

y ∈ H. Therefore H is monotone.
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Let H be a subclass of a quasi-order (Q,≤). If H is hereditary, then H can be characterized

by excluding some members of Q by Proposition 7.2.2 and 7.2.4. H is called an antichain if

for any distinct a, b ∈ H, a 6≤ b and a 6≤ b. If H has a basis, then we are interested in finding a

basis as small as possible. In particular, if we have a finite basis B, then B can be reduced to

an antichain basis for H. In 1952, G. Higman gave a necessary and sufficient condition when

a basis can be reduced to a finite basis [11]. We state this result in the rest of this section.

A quasi-order (Q,≤) is a well-quasi-order if for every countable sequence q1, q2, . . . of mem-

bers of Q, there exist 1 ≤ i < j such that qi ≤ qj.

Definition 7.2.5. A quasi-order (Q,≤) is well-founded if and only if there is no infinitely

descending chain.

Theorem 7.2.6. [11] Let (Q,≤) be a quasi-order. Then the following are equivalent.

1. Q is well-quasi-ordered.

2. Q is well-founded and has no infinite antichains.

3. For any subclass H of Q, ↑ H has a finite basis.

In Mathematics, to find a well-quasi-order having nice structure relationship or to determine

if a given quasi-order is well-quasi-ordered have been important but not easy problems. The

minor order on the finite undirected graphs is a good example. It was known that the minor

order is a qusi-order. The statement that the minor order is a well-quasi-order was formulated

as a conjecture by Klaus Wagner in 1937, and was called Wagner’s conjecture until it was

proved by Neil Robertson and Paul D. Seymour, who published its proof in a series of twenty

papers from 1983 to 2004.

As the class of all lower morphisms contains the class of the finite undirected graphs, it

would be an important future research problem to find a generalization of graph minor order

and its purely categorical description.
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