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INTRODUCTION 

Various forms of abstract differentiation have been developed as a general­

ization of differential calculus. They use such algebraic structures as rings of 

polynomials or differential groupoids (see [RSI]). The structures used in this 

paper are modes and modals, which are relatively new. These are convenient 

media for study because Euclidean spaces naturally possess a mode structure, 

and the various extensions of the reals form modals. 

The well-developed theory of real subgradients is the groundwork for our 

study. We interpret supporting hyperplanes as mode homomorphisms and 

formulate results from convex analysis in this algebraic setting. 

The first two chapters are a review of classical convexity and universal al­

gebra. Most proofs are omitted, but can be found in the supporting texts. 

The equivalence of lower-semicontinuity and closedness for convex functions is 

particularly noteworthy. In Chapter 3 we exhibit a Galois connection between 

convex subsets and the functions that choose a hyperplane for each normal 

vector. The fourth chapter puts the results of Chapter 3 into modal-theoretic 

terms. Semilattices and distributive lattices are examined in Chapter 5 as an 

example to determine a course of action and deal with possible complications 

in defining subgradients for algebraically convex functions. In Chapter 6 we 

present the major result of defining a subgradient for convex functions from 

modes into completely distributive modals. The final chapter describes the 

present situation in research. 
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CHAPTER 1; TRADITIONAL CONVEXITY 

This chapter reviews the theory of subgradients for convex functions of 

Euclidean spaces and clarifies the definitions to be used in the rest of the 

paper. 

Notation 1.1. Let N = {0,1,2,...}, N+ = {1,2,3,...}, 1= [0,1], T = (0,1), 

E = (—oo,-foo), K"*"" = (—oo,-foo], = [—oo,-t-oo), R = [—oo,+00], Q be 

the set of rational numbers, and for n € N, let R" be the Euclidean space of 

dimension n with the standard inner product and topology. 

Definition 1.1. For sets A and B, let be the set of functions from A to 

B. The graph of / € B^ is the set 

gr/ = { { x , x f )  I X 6 A}, 

and when (B, <) is a poset, the epigraph of / is 

epi/ = {(z,!/) 11 e A, xf < y Çi B}. 

Definition 1.2. Let A be a set and (B, <) a partially ordered set. The 

pointwise order on B^ is the partial order defined by: 

/i < /2 in B^ <=#» Vx G A, x f i  < g X / 2 .  

We can partially order the product A x B also, by: 

(a,6) a = a'and 6 <g6'. 

Fact 1.1. Let /i, €B^, where B is a poset. Then 

/i < /2 epi/i Depi/g. 

Proof: Let/i,/2€B^. Then 

h < f2 <=> Vx G A, x/i < x/2 4=^ 

Vx e A, [y < x/i 2/ < x/2 ] epi/iDepi/2. • 

Definition 1.3. Given a set X, for a function / : X —> IR, the finitary graph 

and finitary epigraph of / are defined to be 

= {(x, x/) I X € X, xf 6 R} and 

e pim/ = {(^5 y) I a; € X, xf <y e M}, respectively. 
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Thus g v ^ f  =  g r f  n (M" x R) and e p i ^ f  = epi/ D (R" x R), If i m f  Ç R, then 

gr/ = gr#/. 

Definition 1.4. For a convex set X Ç R", a function / : X ^ R is convex 

(called "real-convex" when needed for clarity) iff it satisfies the property 

(CXm) Vz, !/ e X, VA e r, [z(l - A) + - A) + !//A. 

A function / : X —> R"^ is convex iff it satisfies the same inequality, where any 

expression involving infinity equals infinity. (See Example 2.10 for a precise 

definition.) We can write A € 1° as a function of two variables by 

A: (R+~)2 ^R+~; (x,y) h-. (1 - A)x + Ay. 

If X is not the whole space R", then / can be extended to a new function 

A : R" -, R^; z ^ 
L +00, X ^ X. 

Fact 1.2. If / is convex, then /g is convex: 

X, y € dom/ => x f e V f e X  = x f y f X  >  xyA/ = xyA/e, and 

{x,y} 0 dom/ {+00} € {xfe,yfe} => xf^yf^\ = +00 > xyA/g. 

Thus we can consider convex functions to be defined everywhere. Note that 

gr^/e = gr®/, and epi^fe = epi^f. 

Example 1.1. Both |x| and e® are finite convex functions. 

The extensions of two convex functions are shown in the following examples. 

These functions, along with those in Example 1.6, are continuous, but each is 

different in an important way. In Example 1.2, the epigraph is closed, but not 

in Example 1.3. See Example 1.7 for more on this. 

Example 1.2. For xf = —v/x, x/e = I ~ See Figure 1.1. 
^ I +00, X < 0. 

Example 1.3. Define / : (0, +00) —>• R by x/ := —\/x. Then its extension is 

, r J - \/x, X > 0 
given by x/g = < See Figure 1.1. 

+00, X < 0. 
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Figure 1.1. Graphs of functions in Examples 1.2 and 1.3. 

Fact 1.3. Convexity of a function is equivalent to convexity (as a set) of its 

finitary epigraph. ([BP], Prop. 1.2, p.85.) First we would like to restrict our 

attention to "proper" convex functions. 

Definition 1.5. A function / : X —> Y is •proper iff /(X) Ç E"*"" and / ̂  +00. 

(cf. [BP], p.84.) 

Definition 1.6. For a set C Ç X x Y and a point x € X, define the set 

Cx := {y 6 Y I (x,y) € C}, the cylinder of C at x. 

Fact 1.4. A nonempty convex set C Ç is the finitary epigraph of a 

proper convex function if and only if 

i. G is an upset ((x,y) € C, y < y' € E => (x, y') € C), 

ii. C is cylindrically bounded below (for x G E", Cx is bounded below in M), 

and 

iii. C is cylindrically closed (for x € E", Cx is closed in the standard topology 

on M). 

Proof: Note that the finitary epigraph of every proper convex function satisfies 

all three conditions. For a set C satisfying conditions (i), (ii), and (iii), define 

a function / : E" —> E"^; x/ := infCx- By properties (ii) and (iii), / 

is well-defined and the infimum is actually a minimum. If Cx is nonempty, 

(x, x/) € C. So C = epiig/ by the upset property. By Fact 1.3, / is convex, • 
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Definition 1.7. Given a topological space (X, T), a function / : X —is 

lower-semicontinuous iff for every t 6 M, the set {x € X | x/ > is open in 

X. ([BP], Prop. 1.3 i. and ii., p.87.) 

Fact 1.5. Let S be the standard topology on M, and S' be the topology on M 

with basis consisting of the set of intervals {(t, +oo) | t 6 E}. Let (X, T) be a 

topological space and / : X —> E. Then / : (X, T) (R, S) is lower-semicon-

tinuous if and only if / : (X, T) —>• (E, S') is continuous. 

Fact 1.6. For a topological space X, a function / : X —» E"*^ is lower-semi-

continuous if and only if 

Vxo 6 X, x o f  = liminf x f .  
X — * X o  

This is often used as the definition of lower-semicontinuity. ([BP], Def. 1.2, 

p.86.) 

Example 1.4. We could define the characteristic function of a subset A of a 

set X as 

/A : X E; x/A = I ^ ^ 
I 0, X ^ A. 

For such a definition, characteristic functions of open sets in a subspace X of 

E" are lower-semicontinuous, although they are not convex. 

Example 1.5. Let us, however, define the characteristic function of A Ç X 

by 

L -foe, X ^ A. 

Then for X = E" characteristic functions of convex sets are convex, and 

characteristic functions of closed sets are lower-semicontinuous. Therefore the 

characteristic function of a closed convex set is "closed" by Fact 1.7 below. 

Definition 1.8. For a convex function / ; E" —» E"*^, the closure of / is the 

function 
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cl/ : R" —> x H-> liminf y/ ([BP] p. 89, eq. 1.8). 
y—«-x 

A convex function / is closed iff cl/ = /. 

Example 1.6. The extensions of the functions —\/x and — log z are closed. 

In spite of this, —\/x is not sub difFerenti able at 0, and the domain of — log a; is 

not a closed interval. See Figures 4.1 and 1.2. Note how the supporting lines 

of — log X approach the asymptote x = 0. 

Figure 1.2. Graph and some tangent lines of — logx. 

Example 1.7. The function / defined in Example 1.3 is convex and continu­

ous, but its extension is not lower-semicontinuous (or closed), since 

liminf x/g = 0 ^ +oo = 0fe-
x~<-0 + 

Example 1.8. The function r/ : R x [0, -foe) —> R defined by 

(r,s)fif = 
s > 0  

0, (r,s) = (0,0) 

is lower-semicontinuous since 

1. gf is continuous when s > 0, and 

2. for 5 approaching 0, we have 

Vr ^ 0, lim = -l-oo = (r, 0)(7e, and 
s—t-O 

liminf = 0 = (0,0)g. 
(r,3)^(0,0) " 



7 

Figure 1.3. Two views of the function g in Example 1.8. 

The behavior of g near the origin can be seen in Figure 1.3. Note how the 

graph itself becomes closed if we add the ray above (0,0,0). The epigraph is 

closed and thus ge. is also closed, by Fact 1.7 below. 

Fact 1.7. A proper convex function / : K" —+ is closed 4=^ / is lower-

semicontinuous <==> epi^f is closed. ([BP], Prop 1.3, p.87 & §1.3, p.88.) Thus 

for a proper convex function /, clf is lower-seraicontinuous. 

Example 1.9. Although the convex function g in Example 1.8 is not contin­

uous at (0,0), it is lower-semicontinuous there, as is its extension ge. Thus, ge 

is closed. 

Fact 1.8. A proper function is convex and lower-semicontinuous if and only if 

it is the supremum of a family of affine continuous functions. ([BP], Cor. 1.6, 

p.99.) 

Definition 1.9. A hyperplane of is an affine subspace p of codimension 

one. We call p vertical iff it satisfies: 

3x € M" • {x} x R C  p ,  

and nonvertical iff it contains exactly one point (x, y) for each x € M". 
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Definition 1.10. A normal vector to a hyperplane p of is a vector 

u € lying in £ = the line in which is perpendicular to every line 

in p. (This line p-^ is known in linear algebra as the orthogonal complement 

to p in A unit normal vector u has norm 1. The regular normal vector 

to a nonvertical hyperplane y = a • x + 6 in. is (a, —1). The n-vector a 

will be called the projected normal vector of the hyperplane y = a • x + 6. 

Example 1.10. The hyperplane 2xi + 3x2 — 6y = 12 in has unit normal 

vectors d:(y, y, —y), regular normal vector (|,|,—1), and projected normal 

vector (^, ̂ ). Note the uniqueness of the regular and projected normal vectors. 
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CHAPTER 2: CONVEXITY IN UNIVERSAL ALGEBRA; 

MODES AND MODALS 

In this chapter we introduce the terms from universal algebra needed to 

generalize from classical convexity to modal theory and show how the Euclidean 

spaces and their extensions fit into the theory of modes and modals. 

Definition 2.1. An operation on a set A is a function 

w  :  A "  A ;  ( a i , . . . ,  a „ )  c i  . . .  a „ a >  

for some nonnegative integer n = wr, called the arity of w. An algebra 

A = (A, Î2) is a set A along with a set Q of basic operations on A. Those 

operations that can be built up from the basic operations are called derived 

operations. The map r : 0 —> N is the type of A. An algebra of the form 

(A,f2) is also called an Q-algebra. An algebra (A,fi') is a reduct of (A,f2) iff 

Q! Ç fi, and a subset A' of A is a subalgehra of A (written (A', f2) < (A, Q), or 

briefly, A' < A) iff 

V w  G  0 ,  V o i ,  •  • .  1  O w r  G  A ' ,  Q i . . .  €  A ' .  

Definition 2.2. For an algebra (A, 0), let AS denote the set of nonempty 

subalgebras of A, and ASg, denote the set of all subalgebras of A. For algebras 

(A, fi) and (B, fi) of the same type, define 

Hom(A,B) := {/i: A—>B | VwgO, Vzi,.. .,a;wr € A, xi.. .Xfjr'^h = Xih... x^^rhoj]^ 

the set of Çî-homomorphisms (or just homomorphisms) from A to B. 

Definition 2.3. For a given type r : ^ N, define (f2) to be the category 

whose objects are all of the fi-algebras of type r and whose morphisms are all 

fi-homomorphisms between these algebras. That this forms a category is easy 

to check. 

Definition 2.4. A category of f2-algebras is called plural iff 

fir Ç {n € N I n > 1}. (cf.[RS2], Prop. 235.) 
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Definition 2.5. An operation w € fZ is idempotent iff Vx € A, 

(I) X .. .xui = x, 

commutative iff Vii,..., x^r € A, VI < i j < wr, 

3/2 • • • «Tj • • • X ^  • • • X f j j Y ^  3/1 • • • Xj_XyX2^2^ • • • X j ^ ' y X ^ X •  X ^  

and associative iff or = 2 and Vx, y, 2 € A, 

(A) (xyu>)2Lû = x{yzu)u}. 

The equations (I), (C), and (A) are identities because they hold for all 

possible choices of arguments. (cf.[RS2], p.13.) An identity is regular iff the 

sets of arguments on both sides of the equality are identical. 

Example 2.1. In the ring (Z2 x Zg, +, •), both operations + and • are commu­

t a t i v e  a n d  a s s o c i a t i v e ,  a n d  •  i s  i d e m p o t e n t ,  s i n c e  i n  Z 2 ,  1 - 1  =  1  a n d  0 - 0  =  0 .  

Definition 2.6. An algebra (A, 0) is idempotent or commutative iff every 

w € 0 is, and entropie iff Vw,w' € 0, VI < * < wr, VI < j < w'r, Vx,j € A, 

(E) X%2 . . . X .  .  .  X ^ i O i O  —  X j j  .  .  .  X\^i.  .  .  Xi^j'\ .  .  >  ^ *  

Definition 2.7. A mode is an idempotent, entropie algebra, (cf. [RS2], p.14.) 

Example 2.2. The group (Z2 x %, -) is a mode, since { x y ) { z w )  =  { x z ) { y w )  

holds by commutativity and associativity. 

Example 2.3. Differential groupoids are defined to be modes (G,+) of type 

{(*, 2)} satisfying the additional identity x *(y * z) = x *y. (cf. [RSI], p.284.) 

Example 2.4. Notice that the functions A, defined in Definition 1.4, are op­

erations on R. Thus (M, 1°) is an algebra, one of our most important examples 

of modes. 

Proof: Clearly, Vp, g € 1°, Vw, x, y, 2 € M, 

x x p  = X and 

x y p w z p q  = [x(l -  p )  +  p y ] { l  -  q )  +  [w(l - p) + p z ] q  

=  [ x ( l  - q )  +  ç i u ] ( l  - p )  +  [ y ( l  -  9 )  +  q z ] p  
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= xw^jzq^p. 

So (K, 1°) is a mode. • 

Actually, we have by extension, applying p componentwise in the product. 

Lemma 2.1. For every tz € N, (E", 1°) is a mode. 

Definition 2.8. A subalgebra (S,f2) of a mode (M, fi) is called a submode. 

Note 2.1. The idempotence condition gives us that one-element subsets of 

modes are submodes. See Example 2.5. 

Example 2.5. Let O be a set of basic operations for some mode M. Let 

X = {a;} be any one-element set. If we define for each w E 0, 

w : X; (x,. . .  , x )  x ,  

then (X, 0) is a mode. 

Example 2.6. The submodes of are exactly the convex subsets of 

R". ([RS5], Ex. 5.1.) 

Proposition 2.1. The set MS of nonempty submodes of a mode (M, fi) itself 

forms a mode (MS, 0) where the operation w € 0 acts on MS by: 

V S i , . . . ,  S w r  G  MS, S i . . .  S w r W  : =  {si. . .  . S w r ^  I Si €  S , ' } .  ( [ R S 2 ] ,  p p . 1 3 - 1 4 . )  

Proof: We must show that is a set of operations on MS, and that (MS, f2) 

is idempotent and entropie. 

1. Let u} Ç: Q, and Si,..., Swr € MS. Then 

Vw' € 0, VI < j < w'r, Vsij... € Si... Swr^t;, with Sij € S,, 

511 • • • ^wTl^ • • • 1 T ' • • 'j'LO . • • 

which is back in Si ... S^rW. Thus Si ... S^r^ € MS, and lo : (MS)'^'' —> MS. 

2. Let S € MS and u) £ Q,. Then 

V s  €  S ,  s  =  s  . . .  S  Ç  S  . . .  S w ,  a n d  

S  <  M  = >  S  . . .  S w  Ç  S .  

S o  S  . . .  S o ;  =  S ,  a n d  i d e m p o t e n c e  i s  s h o w n .  
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3. Finally, let w, w' € Su,..., S^ri, • • • i Sw'ri, - • •, Swrw'r € MS. Then 

s Ç Six  '  * *  S t4 ; r l^  '  •  '  Sl t t^ 'T*  •  •  •  j -WW ^  ̂  — COT, \/l ^ J ^ W T, 

35jj Ç S;j • 5 — 511 • • . 5^j7-iCc? . • • ^OJOJ , 

which by entropicity of M is 

5 — 511 • • • 5(^7"X • • • W Ç S11 ' • • S1• • • S^^^l • . • Sti^ru^'î"^ 

SO SJI • • • ST^RIW • • • SIT4;'7" . • . STJRW'R^^ ^ SU • • • J'CO . . . ST^J-I • • • SCJ^UJ* 

and similarly for the reverse containment. So MS is entropie. • 

Definition 2.9. A variety is a class of algebras that contains all subalgebras, 

products, and homomorphic images of its members. 

Lemma 2.2. (BirkhofF's Theorem) A class K of algebras is a variety 

there is a set of identities such that K is the class of all algebras satisfying 

those identities. ([BS], Def. 11.7, Thm. 11.9, p.75.) 

Lemma 2.3. A product of modes with the same type is again a mode of the 

same type. 

Proof: Modes are characterized as satisfying the identities (I) and (E), so 

they form a variety. Therefore, products of modes are modes. 

Note 2.2. For modes (A, Q) and (B, f2), an operation w E 0 acts on A x B by 

w : (A X B)'^'" —> A X B; (oi, 6i )... (a^r, 6wr) (ai . .. a^rW, 6i... 6wr<^)-

([RS2], p.6.) •  

Example 2.7. We get the mode (R" xR, 1°) as a product of the modes (R", 1°) 

and (IR, 1°) by Lemma 2.3. 

Definition 2.10. Recall that a aemilattice is an algebra (S, *) with a single 

binary operation that is idempotent, commutative, and associative. 

A join semilattice has the order defined by x <^y x * y = y, and 

a meet semilattice has the order x <^y <=> x *y = x. An algebra (S, V, A) 

is a lattice iff (S, V) and (S, A) are semilattices and the partial orders and 

<. coincide. 
— A 
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Definition 2.11. A chain in a semilattice (S, *) is a set W Ç S such that for 

any two elements x, y € W, either x < y or y < x. 

Fact 2.1. Chains are lattices, where for x  <  y ,  x  A y  : =  x  and x  V  y  : =  y .  

Example 2.8. Semilattices, and in particular chains, such as (K, max), are 

modes. 

Proof; A semilattice (S, *) is clearly idempotent, and entropicity follows from 

the identity (a; * y) * (2 * to) = {x * z)*(y * w), which uses commutativity and 

associativity. • 

Definition 2.12. Let X be a subset of a poset (S, <). A lower hound (resp. 

upper bound) of X is an element y € S satisfying x Ç X => y < x (resp. 

y > x). Let Y be the set of lower bounds (resp. upper bounds) of X. The 

greatest lower bound (resp. least xipper bound) of X, if it exists, is that y' € Y 

satisfying 

y € Y => y < y' (resp. y > y'). 

Example 2.9. In a meet semilattice (S, A), the set X = zg} has greatest 

lower bound xi A X2, and the set X = {.TI, ... ,Xn} has greatest lower bound 

y = ((... ((xi A X2) A .T3) A ... ) A Xn). Since the meet operation is associative, 

we can leave off the parentheses, and write y = /\ X. Similarly, the least upper 

bound of a finite subset X of a join semilattice S is written \/ X. 

Definition 2.13. Given an ordered set S, if for every X Ç S, the greatest 

lower bound (resp. least upper bound) of X exists, we again write /\ X (resp. 

Y X), and call S a complete meet (resp. join) semilattice. 

Definition 2.14. For sets A and B, and an operation w on B, we can define 

Lo : (B^)'^'" -> B^; (/i,... ,/wr) ^ (z w. xfi ... i/wrw). 

Proposition 2.2. For modes (A,f2) and (B,f2) of the same type, the set of 

homomorphisms H = (Hom(A, B), fi) is a mode. 
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Proof: Idempotence and entropicity are inherited from the codomain: 

Vw, w' € VI < i < wr, VI < i < w'r, Vh, hij G H, Vx 6 A, 

x{hhu}) = xhxhuj = xh, and 

3/^ ^ 

xh'Y'^ *  •  •  3 7 / ^ w r l •  •  •  X'pLOiiO 

— xhw . . .  xh\^jj>• . .  Xhuj-i •  •  •  ^Lo uj 

— x^hw • • > -pUJ • • • Lo^* 

So all we need to show is that every w € is an operation on H. We have 

Vw,w'e f2, Vxi, . . . ,Zwr € A, V^i, . . . , /luj'r € H, 

• • • X^-pUJ^^hi . « . JXfjj! fLO ^ 

— (^1 • • • • . > X ^ O J  

— (^1^1 • • • Xf^^h^LO^ • • • • • • X[f^-liomomorplusinsj 

— (^1^1 • • * Xyh^i) • • * ^w*[cntropicjty in B] 

— X\{^Jl/\ • • • JXi^t^UJ ^ • * • h^^^j-LO . 

Thus /ii ... huiir<^' 6 H. • 

There is a particular construction, that of Plonka sums, that conveniently 

gives us the modes and (R_^,I°), and a new mode (R, 1°). 

Definition 2.15. We can think of a meet semilattice (S, A) as a category 

(S) where the objects are the elements of S and the set of morphisms is 

{(i —> s) I i < 5}. If (fi) is plural, S can be made into an f2-algebra by 

defining, for each w € fi, 

(jj : S'^'" —> S; (si,..., Suit-) Si A ... A -

A similar construction works for a join semilattice. Let G : (S) —> (fi) be a 

contravariant functor. Define SG := JJsG (which is the disjoint union |J s G )  
s€S s€S 

and make it into an il-algebra by defining: 

Vw € 0, Vsi, . . . , S uit  € S, and t  =  S i  A  . . .  A  € S, 

w :  S i G  X • • • X Si^rG tG\ {xi, . . . , X^^r) Si )G . . . X^^r(i —> ^wr)Gw. 
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Then (SG, 0) is the Pionka sum of the O-algebras sG over the semilattice (S, A) 

by the functor G. The algebras sG for s € S are called the fibers of SG. 

Lemma 2.4. A Pionka sum satifies the regular identities satisfied by each of 

its fibers. ([RS2], Prop. 238, p.34.) 

Example 2.10. Let S={0,1} and (S, A) be the meet semilattice with OAl = 0. 

Consider R, {—oo} € (1°). (Each A € 1° is the identity on {—oo}. See Example 

2.5.) Define the functor 

G : (S) —>• (1°); 0 t—> M, 1 t—> ^—oo}, (0 —> 1) (IR —y {—oo}). 

Then the resulting Pionka sum = R Ù{—oo} is again a mode. Similarly, we 

get the mode = ]RÙ{+oo}, where (+oo).rA =+00 for any A € 1°, x 6 

Example 2.11. Now take S = {0 < 1 < 2}. For the modes E, {-00}, {4-00} € 

(1°), define a functor G : (S) —> (1°) by 

0 > 1 E > {—00} 

0 > 2 E > {+00}. 

Then (E, 1°) = E_^ [J{+oo} is a mode. Anytime +00 is an argument of A, the 

image is +00, and whenever -00 is an argument and +00 is not, the image is -00. 

Example 2.12. For a plural mode (M, 0), MS0 = MSÙ{0}. Note that 

0 is an Q-algebra (and a mode) where any w G 0 is the empty function 

u} ; 0^^ 0. Let S = {0 < 1} as above. The functor 

G : (S) (0); 0 MS, 1 {0}, (0 -> 1) (MS {0}) 

gives us the mode (MSg, rZ) by the Pionka sum construction. 

Definition 2.16. In an algebra (A, V, 0) with join-semilattice reduct (A, V), 

an operation w G 0 distributes over the operation V iif 

VI < i < WT, V.Ti,..., Zwr.a:; € A, 

(ID ) X]_..,(XJV X^)... X — (.T^...XJ...X )V (^1 >> » X J > T ' ^ UJT^ ). 
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In the case that (A, \/) is a complete semilattice, we say w E O distributes 

completely over \/ iE VI < j < uit, Vxi,..., € A, VX Ç A, 

) XI  ê  , , XJ — I  ^J4" 1 * * • ~ ~  \ J • • • X XX • • • Xu^iA^ I X E • 

Definition 2.17. A modal is an algebra (D, V, fi) with join-semilattice 

reduct (D, V) and mode redact (D,fi) such that the operations in distribute 

over V. 

Definition 2.18. A modal (D, V,n) is completely distributive iff (D, V) is 

complete and every operation w in 0 satisfies property (CD). 

Example 2.13. A distributive lattice (D, V, A) = (D, V, {A}) is a modal, with 

= {A}, since meet distributes over join. 

Proposition 2.4. The algebra (R, max,I°) is a modal and (K, sup,I°) is a 

completely distributive modal. 

Proof: First note that (R, max) and (E, sup) are join semilattices, and R is 

complete. Next, we have 

Vx 6 R, VY Ç R . 1 < |Y| < +00, Vp € 1°, 

x(max Y)£ =x(l —  p )  +  ( m a x Y ) p  

= max{x(l -  p )  +  Ï J P  \  y  e  Y }  

~max{xijp I y € Y}, 

and similarly for (max Y)xp, so p distributes over max. Also, supremum is the 

same for |Y| < +oo, even if Y contains an infinite element. Finally, consider 

X € R, |Y| = +00, sup in place of max above. 

1. If X = 4-00 then both sides are -foe. 

2. If X < +00 and one side is +00, there must be a sequence {j/n} Ç Y with 

lim î/n = +00. Continuity of ^ w xyp has both sides being +00. 
n—f+oo — 
3. If X < +00 and sup Y < +00, then both sides are finite when both x and 

sup Y are finite, and —00 when either x or sup Y is —00. • 

Definition 2.19. A map between partially ordered sets (S, < g )  and (D,<j^) 

i s  m o n o t o n e  i f f  V x ,  ? /  €  S ,  x  < ^ y  = >  x f  < q Î / / -
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Lemma 2.5. (Monotonicity Lemma) For a modal (D,V,f2), every w € ft is 

monotone as a map, w : <) (D, <). This means 

^ Xur y y \, -lUior G D, (Vi € Xj ^ yj) )• 

xi... ZwrW < Hi... ̂ wrW. ([RS2], Prop. 315, p.58.) • 

Recall how in the Euclidean space case a function / : (K", 1°) sup, 1°) 

is convex iff it satisfies property (CX®). (See p.2.) Note that the domain is a 

mode and the codomain is a modal. The generalization of this property is the 

following: 

Definition 2.20. A mode (M, ft) and a modal (D, V, ft) are called compatible 

iff the modes (M, ft) and (D,ft) have the same type. Let (M, ft) be a mode 

and (D, V,ft) be a compatible modal. Let / : M —> D. We say / is D,-convex, 

or just convex^ iff for every w 6 ft, and every xi,...,rc„ G M, we have 

(CX) %!... XnUJ^f <^Xif . . . 

We call / concave iff it satisfies the reverse inequality. Let Conv(M, D) be the 

set of all convex functions from M to D. 

Example 2.14. A function whose logarithm is real-convex is called "log-

convex" in the literature ([RV], p.18). Precisely, a function / : R —> M"'" is 

log-convex iff it satisfies 

Vp e r, (2(1 - p )  +  I j p ) f  <  x f ^ ~ P y f P .  

If we define, for p  6 1°, the maps p  :  (K"^)^ M"*"; ( x , y )  x ^ ~ P y P ,  then 

(lR''',max,p)pgio is a modal, and the log-convex functions are exactly the ele­

ments of Conv((IR,p)pgio, (R+, \/,p)pçio ). The test functions (i.e., mode-reduct 

homomorphisms) are the exponential functions 

Example 2.15. Call a function / : R"*" —* M exponentially-convex'\Wii satisfies 

V p  €  r ,  <  x f { l  - p )  +  y f p .  

This is equivalent to t g  =  e'/ being real-convex. (Use x  =  e ^ , y  =  e*.) Now / is 

exponentially-convex iff / G Conv((]K+,p)j,gio, (M, V,p)pgio ). The mode-reduct 

homomorphisms here are the log functions c log x + d. 
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Proof: A typical homomorphism h  must satisfy ( x ^ ~ P y P ) h  =  x h ( l  —  p )  +  

yhp for every p € 1°. Let x = 1. We then have: y^h = l/i(l — p) + yhp. 

Differentiating, this becomes: (yP)h'pyP~^ = yh'p, i.e., {y^)h'y^~^ = yh'. This 

is {y^h')yP = (yh')y. This is solved by zh = clog z + d, d = Ih, c = Ih'. • 

Example 2.16. Yet another kind of convexity is sometimes called "quasi-

convexity" ([BP], p.84). Let X Ç R" be convex. A function / : X —> R is 

quasi-convex iff for every a € K, the set := {x € X | xf < or} is convex. By 

[RV], p.230, this condition is equivalent to the condition: 

So quasi convex functions are the elements of Conv((]R,p)pgio, (R, V, Vp)pgio ). 

The codomain has the I°—join semilattice structure analogous to Definition 

2.15 (x Vp y = a: V y = max{x, y}). 

Proposition 2.5. For a mode (M, 12) and a compatible modal (D,V,f2), 

(Conv((M, 0), (D, V, 0)), V, 0) is a modal. 

Proof: Again we only need C = Conv(M, D) to be closed under the operations. 

We have 

Vw,w' € fi, Vxi,...,xwr G A, V/i,...,/w'r € C, 

(xi . . . ZwrW)(/i V /%) 

= (xi . . . X^r^)fi V (xi . . . XwrW)/2 

<  (Xi/i .  .  .  X w r y i W ) V ( X i / 2  •  •  •  I f i  convex] 

Vx, y 6 X, Vp € r, (x(l - p )  +  y p ) f  <  x f  V y f .  

= (a-'l/l V X1/2) . . . (Xwr/l V Xwr/2)w 

= ®i(/i V /a)... x^rifi V /z)^, 

[(D) in D] 

so /i V /a € C, and 

(xj . . . X u j - L J ^ ^ f \  . . . ) 

—  ( x  1  ,  .  .  X f  1  .  .  .  ( x i  .  .  .  

— • • • (-^l/w'r • • • ^uiT fLj' 

— ) • • • ('^'wr/l • • • ^u>r fui' )^ 

— ®l(/l • • • ) • • • ^wr(.fl • • • jfw'r^ 

[/,• convex] 

[(E) in D] 

SO /i . . . fui'r^' G C also. • 
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Corollary 2.1. The algebra (Conv((lR",I°),(R, max,I°)),max, 1°) is a modal. 

There is a more general algebraic structure that will be useful in the next 

chapter. 

Definition 2.21. An algebra (A, <, fi) is an ordered mode iff (A, Çl) is a mode, 

(A, <) is a poset, and every a; € is monotone. 

Example 2.16. All modals are ordered modes, with the join semilattice 

order, and all modes can be considered as ordered modes with the trivial order 

X <y «4=^ X — y. 

Example 2.17. For a compatible mode M and modal D, since the mode 

Hom((M, fi), (D, fi)) is a subset of the ordered mode Conv(M, D) it is also a 

(non-trivial) ordered mode. 
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CHAPTER 3: A GALOIS CORRESPONDENCE 

IN EUCLIDEAN SPACES 

In this chapter an order-theoretic approach to the concept of subgradient 

lines of convex functions is presented. We will exhibit a Galois correspondence 

between the finitary epigraphs of convex functions and those sections of an 

order-theoretic "bundle" that (conveniently) give subgradient hyperplanes. 

The functions considered here have a Euclidean space for a domain and some 

extension of the reals as codomain. We are concentrating on the mode and 

poset structures of the Euclidean spaces, to be able to generalize the present 

results to arbitrary modes and mo dais. 

Notation 3.1. For discussion purposes, let n € N. The algebras (M, max, 1°), 

(E,sup, 1°), (E"*"®", sup, 1°), and (E",I°) were introduced in Chapter 2. Here 

we define some more modes and ordered modes. Let 

L := M" X E and L := E" x E. 

These can be ordered in the last component as in Definition 1.2, and form 

1°-modes as products of I°-modes. The function 

TT : L —» E"; (a, 6) t-> a 

makes L into a "bundle" of the fibers L^ ;= 7r~^{a}. Define 

r := {cr : E" —+ L I CTTT = idg» } 

to be the set of "sections" of TT, ordered pointwise as a subset of (L)®". Let 

H := Hom((E",I°),(E,I°)), 

the set of I°-homomorphisms (or afiine functions) from E"^ to E and 

H := HÙ(Rx{-oo})Û(Ex{+oo}) = Hom((E", 1°), (1,T)). 

Both H and H have the ordered mode structure inherited from the modal 

(Conv((E", r), (1, V, r)), V, 1°). The sets 

P := {{(x, y) \ y — a x 4- 6} | a € E", 5 € E} 

= {non-vertical hyperplanes in E""^^}, and 

P := PÙ{{(x, -co) I X € E"}}Ù{{(x, +oo) | x € E"}} 

form ordered modes, as follows. Identify an element of P by its equation. Order 
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P and P by £i < £2 iff no point in £1 lies above any point in £2 (in K" xR), so 

for every £ 6 P, (y = —00) < E < {xj = +00); and for A € 1° define 

A : (P)^ P; ((y = a • X + 6), (î/ = a' • X + h ' ) )  i-> (y = aa'A • x + 66'A). 

We will first show that (L, <,I°), (H, <,I°), and (P,<,I°) are isomorphic. 

This is not coincidental. We can think of an element (a, 6) € L as the projected 

normal vector a and intercept h of the hyperplane (y = a • x + 6) 6 P, which 

is the graph of the I°-homomorphism (x 1-^ a • x + &) € H. 

Lemma 3.1. For 6 P, £ < £•' if and only if £ and £' are parallel and Z has 

smaller intercept. In other words, 

(y = a x + 6) < (y = a'-x + h') a = a' and b < b'. 

Proof: Note that for c ^ 0, c x takes on every real value. Thus if (a' — a)-x 

is bounded from below, a' — a must be 0. Now 

(y = a-x + 6) < (y = a'-x + 6') «4=^ a-x + 6 < a'-x + 6' 

4=^ 6 — 6' < (a' — a)-x 

<=> a' = a and b' > b. • 

Definition 3.1. For q G N"*", a convex combination in K' is a vector (ci,..., Cq) 
? 

satisfying c, = 1 and VI < z < g, c, > 0. 
»=i 

The following lemma shows that all convex combinations are derivable from 

the basic operations (1°), and thus are also preserved by I°-homomorphisms. 

Lemma 3.2. Let € H and q € Then 

Vci , . . .  , c ,  €  M" '"  •  ^C;  =  1 ,  Vx( ' )  G E" ,  (^QX^ 'A A =  ^C; (x( ' ) / i ) .  
i=l \:=1 / i=l 

If we let c = (ci,..., Cy), this can be written 
x(^) ... = x(^) A.... x(^) A.Ç. 

Proof: Let q € N"*". For q = I, the lemma is trivial. So assume q > 2. Let 

c  = (ci,..., c,) be a convex combination in R*. Define c '  =  . . . ,  

which is again a convex combination, but in For q = 2, defining 

A = C2 6 1° gives the operation £ = A. For q > 2, we can define ç : (R")' —»• R" 
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recursively by 

:= + (1 — • 

Proposition 3.1. The functions 

// : (L, <, r) -* (H, <, r); (a, 6) w (x w a-x + b) and 

p  :  ( L ,  < ,  r )  ( P ,  < ,  r ) ;  ( a ,  b )  { ( x ,  y ) \ y  =  a - x  +  b }  

are isomorphisms of ordered modes. Thus (L, <,1°) = (P, <,I°) = (H, <,I°), 

and also(P,<,r)^(H,<,I°). 

Proof: Clearly fi and p are 1-1, and p is onto. What must be shown is that fx 

maps into H and is onto. Preservation of the order and the mode operations 

will then follow. For (a, b) € L, let k = (a, b)^, and let A € 1°. Then 

x k z k X  = (a-x + b ) ( l  — A) + (a-z + b ) X  

= a'x(l — A) 4" 6(1 — A) a zA -t- bX 

= a'(x(l — A) -j- zA) "t" 6(1 — A -f- A) 

= a-(xzA) + b 

=  x z X k ,  

so € H. Therefore : L —» H. 

We show [J. is onto in three steps. Let € H. 

Case 1. When n = 0, the proposition reduces to the obvious statement 

({0} XE,<, 1°)^({(0^ b ) \ b e R } , < j ° )  =  ({(y =  b ) \ b e R } , < , r). Oi 

Case 2. Consider the case n = 1. Let a + 6 = lA; and —a + b = ( —1)&. Then 

0& = (lfc(—l)fc)^ = 6, the ^-intercept, and a is the slope, i.e., 

V.T € R, xk — ax + b. 

Proof; For x  € (0,1), x k  =  O l x k  =  O k l k ; v  =  6(1 — x) + (a + b)x = ax + b. 

For x>l, a + 6= Ik = = Okxk^ = 6(1 — 7) + xA;(g) = 6 + (xk — 6)(-j). 

S o l v i n g  f o r  a  g i v e s  a  =  ( x k  —  6 ) ( - | - ) ,  i . e . ,  a x  =  x k  —  6 ,  o r  x k  =  a x  +  b .  

For X < 0, we can use A = —x or — j, and —1 in place of 1 above, to get 

xk = ax + b for all x. Og 
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Case 3. Let n € be arbitrary. For 1 < i < n, let be the standard 

basis vector (0,..., 0,1,0,..., 0) € K" where the "1" is in the i'th position. 

L e t  a , -  +  6  =  w i t h  b  =  O k ,  t h e  ^ - i n t e r c e p t .  T h e n  x k  =  a  x  +  b .  

Proof: Now 

b = Ok = ^ p'U- + (-e^'^)k 

= - a,- + 6 + (—e^*^)k , 

which upon solving yields (—= —a,- + b. Thus by the one-dimensional 

case, we have; 

Vc 6 M, VI < I < n, (ce('))A; = ca,- + b. 

Let a = (oi,..., a„) and x = (.ti, ..., x„) = Then 
j=i 

xfc = fc = k 

1 " 1 " 
= — y^(nx,e^'^)A,' = — y^(nx,a,--f-6) 

n 

= ^(.T,ai) + b = ax + 6, 
j=i 

where we use q = n, and for each c, = in Lemma 3.2. Ds 

Note that a is the projected normal vector to the hyperplane y = xk. Thus 

(a, 6)'' = k so [1 is onto. Since the sets 

La \ ({(a, -oo)} U {(a, +oo)}) = {(a, b )  \  b  G  R } ,  

Pa = {(y = a • X + 6) I 6 € K}, and 

Ha = {x 1-^ ax + 6 I 6 € E} 

are the .5order components of L, P, and H respectively, fi and p clearly preserve 

the order. For A € 1° and hi, Ag € H with xhi = ai •x + &i and x/i2 = a2 •x + 62, 

xhih2\ = xA.1xA.2A = (ai • X + bi)(a2 • x + 62)A = (aia2A) • x + 6162A. 

Thus A acts on H as it acts on L, and clearly A acts the same on L and P. 

Therefore ji and p are mode isomorphisms also. Thus, 

p~^l-t : P ^ H; (1/ = a x + 6) w {xk = a x + b )  

is an ordered mode isomorphism and can be extended to the isomorphism 
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p~^IJ. : P —> H by mapping y = —oo to k = —oo and y — +00 to k = +00. 

Also, [1 and p can be extended to the surjections ^ : L —> H and ^ : L —> P by 

mapping any infinite element in L to the corresponding infinite element in the 

codomain. • 

Definition 3.2. For k = (a, b) € L, let 

gr^k := {(x, y) € R" X K I y = a x + b} and 

epijg,k := {(x, y) 6 K" x R | y > a x + b}. 

Note 3.1. We have gv^k = gr^(k^). Also for any a € R", i i  k  =  (a, —00) 6 L 

then epi^k = and gr^A: = 0, and if k = (a, +00) G L then epij^fc = 0 and 

gv^k = 0. 

Lemma 3.3. Let a € R". For S Ç La, let B = {6 e R | (a, 6) 6 S}. Let 

b' = sup B, and k' = (a, b'). Then 
Ï 

(a) k' = sup S, and 

(b) epigA' = niepigA; | k e S}. 

Proof: For (a), clearly, \/k GS, k' > k. Let k" = (a, b"). Then 

V6 e S, k "  > k  => V6 € B, 6" > 6 => b" > 6' => k" > k'. 

Thus k' = sup S. For (b) 

(x,y) € epigA;' <=> y > xk''' <=> \fk € S, y > xk'^ 

<=> VA e S, (x,y) e epigt <=#» (x,y) G | ̂  G S}. • 

Note 3.2. The suprema of the empty subsets of various ordered sets are 

sup 0 = —00, sup 0 = (a, —00), sup 0 = (y = —00), and sup 0 = (x —00). 

Ï La p H 

Definition 3.3. Let ( C ,  Ç) be the set of all convex subsets of R""*"^ ordered 

by inclusion, and define the function 

o; : C —> 'P(L)®"; C 1-^ (cvc : a w G 7r~^{a} | C Ç epi^A;}). 

The image (a&c)^ contains all hyperplanes lying below the set C having 

projected normal vector a. We want to identify the largest such hyperplane (if 

it exists), via the corresponding element of Lg. 
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Lemma 3.4. For every C € C, for each a € IR", supaac exists. 
La 

Proof: Since aac C La, Lemma 3.3 applies. • 

Example 3.1. For the convex set B = {(a;,y) € | < 1}, the 

closed unit ball, we get the line with slope m 6 R tangent to the function 

y = —y/l — as sup(mQ;B). Figure 3.1 shows some of these lines. 

-0.5 

Figure 3.1. Some supporting lines of the unit ball in Example 3.1. 

Definition 3.4. Define the functions 

6 : C —» T; C I-» (6c : a sup[ao;c]), and 

: r —> C; <T I-+ pl{epi]jj(acr) | a € M"}. 

Note 3.3. We can also write aE = epig[\/{(acr)'^ | a € K"}]. 

Example 3.2. Let n=l. Define the set C = {(a:,y) 6 | y > |x|, y > 0}, 

and the function I (-1,0), m=-l 
(1,0), m = l 

(m, —1), m G (—1,1) 

(m, —oo), otherwise. 

Then aE is the epigraph of the function xf = |z|, which is the closure of the 
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set C, and 8c is the function 

m(5c = I 
L (m, -oo), otherwise. 

We thus get 8aE = and 8cE = aE. See Figure 3.2. 

-3 -2 -1 
-1 

-2 

-3 

1 2 3 -3 -2 ^ 

part of ima part of im5c 

Figure 3.2. The set C, and some values of cr and 8c from Ex. 3.2. 

Lemma 3.6. For C € C, for every a E C Ç epi]g(a6c). Thus if for some a, 

a8c = (a, +oo), then C = 0, so that = M" x {-j-oo}. 

Proof: Let a € K", C 6 C. Lemma 3.3(b) gives 

C Ç [^{epigA; I k € a.ac} = epig(supaac) = epig(a6c). • 

Now for the main result of this chapter. 

Theorem 3.1. The pair (8, E) is a Galois connection from (C, Ç) to (F, <). 

Proof: We need to prove the extensivity of 8E and E8 and that E and 8 are 

antitone. 

1. To prove E is antitone, use Lemma 3.3 with S = {(Ti, erg} C F. Then 

<71 < (T2 =^> Va € K", acTi < acrg => Va, epi]g(a(T2) Ç epi]g(acri) => <72 JE7 Ç tJi £/. 

2. To prove 8 is antitone, let a € K", Ci, C2 6 C with Ci Ç C2. Then 

k € aaca C2 Q epig/j ==> Ci Ç epij^/b ==^ k G aaci-
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So aacj Ç aaci, and thus a^Cj = sup(aa;c2) < sup(aaci) = aSc^. Therefore, 

^Ci < ^Ci-

3. The functions 6£/ : C C and : F —> F are extensive: 

a. Let C € C. By Lemma 3.6, for each a 6 K", C Ç epig(a6c). Therefore 

C Ç n{epiffi(a(5c) 1 a € E") = ScE. 

b. Let <T € r. For a 6 R", 

crB Ç epi]g(acr) =4> acr € aa^g =*» au < sup(aa:(y£;) = aS^E-

Thus S^E ^ CT) as required. • 

The resulting Galois correspondence is between maximal sections of the 

projection TT and maximal convex sets. These will be subgradient sets and 

finitary epigraphs of closed convex functions. 
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CHAPTER 4; SUBGRADIENTS IN EUCLIDEAN SPACES 

At this point we present traditional subgradients in an algebraic context 

and relate them to the functions E and 8 from the last chapter. 

Definition 4.1. Let / : E be real-convex. The e f f e c t i v e  d o m a i n  of / 

is the set /~^(1R). Recall epig/ € C, and (E")5epiR/ Q L. Define the functions 

/^ : M" H; a (a^epi,»/)'', and 

à/ : M" -> ?(H); x (imf) H {k e E \ x6 = x(cl/)}. 

Claim 4.1. For a convex function / ; E" —>• E, an image 9/(x) is an element 

of (H,I°)S0, the set of (possibly empty) submodes of the mode (H,I°). 

Proof: Let XQ € E". If 9/(xo) is empty, it is vacuously a submode. So 

assume it is nonempty. Let p 6 1° and h,k Ç. 5/(xo), not necessarily different. 

Now 

x o h  =  X o { c l f )  =  x o k  = >  X o ( h k p )  =  X o h x o k p  =  X Q { c l f ) x o { c \ f ) p  =  x o { d f ) ^  

and 

h , k < f  = : > V x e / ~ ^ ( E ) ,  x { h k p )  =  x h x k p < x f x f p  =  x f  = # »  h k p e d f { x o ) .  

Therefore, 5/(xo) € (H, I°)S0. • 

Definition 4.2. For a convex function / : E" —» E, define the s u b g r a d i e n t  of 

/ to be the function 

a/ : E" (H,r)S0; x ̂ -4 0/(x). 

We call d f { x )  the s  i i b g r a d i e n t  o f  f  a t  x. We will also refer to as the sub-

gradient of / (when speaking of the Galois connection from the last chapter). 

Note that the arguments of (^epi^/ and are projected normal vectors, while 

the arguments of df are the same vectors as the arguments of /. See Example 

4.1. 

Example 4.1. Let / = X(o,i) : E —> E"*^. Then 

5/(0) = { { x  w m x )  I m  € (—oo,0]}, d f {  —  l )  = 0, and 

Vxo € (0,1), df(xQ) = {.X- i-> 0}, while 

0/® =  { x  I—>• 0), 1/^ = (a- t-» X — 1), and Va < 0, a f ^  = (x a x ) .  
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Lemma 4.1. Let f : M." be a proper convex function. For every XQ in 

the interior of df(xo)^ 0. ([BP], Cor. 2.1, p.105.) 

Note 4.1. For any convex function / : R" R"*^, if XQ is not in the closure 

of /~^(R), then df(xo) = 0, since Xo(cl/) = -foo and no elements of H take 

on this value. 

Fact 4.1. A proper convex function / : R" —+ R"*""" has minimum at x if 

and only if there exists a constant function k = c such that k 6 5/(x) and 

xk = xf. A constant function is an affine function with projected normal 

vector a = 0. Thus the existence of a constant function k € df(x) corresponds 

to Rockafellar's notation "0 G 5/(x)." (See [R2], Prop. 5A.) 

Example 4.2. For x f  =  — \ / x ,  a; > 0, 5/(0) = 0, since the supporting line 

at (0,0) is vertical. (See Figure 4.1.) In spite of this, /g : R —> R"^ is closed. 

See Example 1.2. 

-1 

- 2  

Figure 4.1. The function — \ / x  with vertical supporting line. 

Lemma 4.2. If a convex function / : R" —>• R is proper and closed, then 

f  =  Vl/'(K")1-

Proof: By Facts 1.6 and 1.8, / is the supremum of a set K' Ç H of affine 

functions. Now, let k € K', and a = {kf^ ^)tv. Then a^epijj/ € L and 

f  >  (aiepi,/)" > k  f >  V/^CR") > VK' = / => / = V/®(R")- n 

Theorem 4.1. The closed elements of the Galois connection 6 : C V : E 

are exactly the fini tar y epigraphs and subgradients of closed convex functions 
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/ : M" —> K. In other words, 

SaE = cr 4=> there is a closed convex / : E" —> E with a = «^epi,,/) & 

ScE = C 4=:> there is a closed convex / : E" —> E with C = epig/. 

Proof: Let (T € F, and C € C. Now, if cr = —oo, then = —oo gives 

(tE = = epi]g(/cr). If cr = +00, then = -f-oo gives crE = 0 = epi^{f„). 

So assume there is some a € E" with acr g E. Then cr£7 is an intersection of 

at least one closed, cylindrically-closed, cylindrically-bounded-below, convex 

upset, so by Facts 1.4 and 1.7, it is the finitary epigraph of a closed convex 

function, f — f„. Thus we always have aE = epijj/o., and since (5c € F and 

a E e C ,  

SqE — C )' C — GpijgjFgg, and 

^aE — ^ r' f • 

For the converse, we must show E Ç epijg/ and H^p-^fE < ^epW, the 

reverse inclusion and inequality holding by Theorem 3.1. Lemma 4.2 gives 

epi,/ = epi.(V /»(«")) = | k £ /»(«")} = 

and for a € E", 

=sup{fc € TT-^a} | epigt D 

= sup{fc € 7r"^{a} | epigt 3 (n{epijj(c6epi„/) | c € E")}} 

= sup{k 6 7r~^{a} | epi^k D epig(a6ep;g/)} 

It seems that the identification of "closed" convex functions is the key to 

getting subgradients defined at "almost every" point in the domain. 
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CHAPTER 5: SUBGRADIENTS IN SEMILATTICE THEORY 

In this chapter we present a basic example to motivate and clarify the def­

initions to be used in Chapter 6. Since semilattices and distributive lattices 

are about the simplest nontrivial examples of modes and modals, with only 

one mode operation, we consider functions from A-semilattices into distribu­

tive lattices. What makes this example especially simple is that there is an 

additional order </\ on both the domain and codomain, and the two orders 

<A, and <v in the codomain coincide. 

Lemma 5.1. In a meet semilattice (S, A), if W Ç S is a chain and a, 6 G S, 

then the sets Ç W | i i A a A &} and {x Ay | x = .r A a € W, y = y A 6 € W} 

are equal. 

Proof; l f t  =  i A a A b ^ W  then t  =  t A a  =  t A b ,  and we know t  =  t  A t ,  s o  

l e t  X  =  y  =  t  E  W .  T h e n  t  i s  o f  t h e  f o r m  x  A  y  w i t h  x  =  x  A  a  a n d  y  =  y  A b  

both in W. Conversely, 

X = a: A a € W, y = y A 6 € W 

X  A  y  =  { x  A  a )  A  ( y  A  b )  =  ( x  A  y) A (a A 6) € W, 

so let t = a; A y. Then t  =  t  A  a  A  b  and is in W. • 

Lemma 5.2. A function from a meet semilattice to a distributive lattice is 

convex if and only if it is monotone. 

Proof: First recall that the orders < and < coincide in a distributive lat-—A —V 
tice. Let S be a meet semilattice and D a distributive lattice. Let y : S —>• D 

be A-convex, and x,y € S. Then we have 

X  < y  X  -  x  Ay =4> x c j  =  ( x  A  y ) g  <  x g  A  y g  <  y g ,  

so g  is monotone. Conversely, let g  be monotone, and x , y  6 S. Since 

X  A  y  <  X  a n d  x  A  y  <  y ,  w e  h a v e  ( z  A  y ) g  <  x g  a n d  { x  A  y ) g  <  y g .  

T h u s  ( x  A  y ) g  <  x g  A y g .  •  

Now fix a semilattice (S,A) and a completely distributive lattice (D,V,A). 

Let / ; S —> D be a fixed convex function. We want to define subgradients 

of / as sets of homomorphisms from S to D. We first define a function h as a 
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candidate for a subgradient homomorphism of /. For a fixed c € S, let W be 

a maximal chain in S containing c. For 6 € S, let W& = {s | a: A 6 = x € W} 

and define 

Definition 5.1. Suppose S has no infinite chains. Let V be a chain in S. 

Define max V to be the element a; 6 V such that for every y Ç.V, y < x. (Since 

V is finite, max V exists.) 

Fact 5.1. If S has no infinite chains, we can define a function g  to agree with 

/ on the maximal chain W, and then for every b ^ W, find the largest element 

X of W less than b. Defining bg = xg will give a A-homomorphism 

g  :  S  D ;  b  (max{x- | x  € W, x  <  b } ) f .  

Actually, g  is the function h  defined above, since 

b g  = (max{.T | x  € W, a; < b } ) f  

Lemma 5.3. The function J i  defined above is a semilattice homomorphism. 

Proof; Let a, 6 G S. Then 

a h  A b h  =  (\/{x/ |  x  = z A a € W}) A (V{î// I  î/ = Î/ A 6 G W}) 

: S —» D; 6 i-> \ / { x f  |  x  €  W^}. 

=  m a , x { x f  I a; 6 W, X < 6} 

= max{.T/ I a; = x A 6 € W} 

=  \ / { x f  I  X  €  W f t }  

=  b h .  

[f monotone] 

= (\/{x/ A  y f  \  X = X A  a ,  y = y A 6 € W}) 

= (V{(^ A y)f I .T = X A a, y = y A 6 € W}) 

=  ( y { t f  \  t  A  a  A  b  =  t  e  W } )  

= (a A b ) h .  •  

[/ monotone] 

[Lemma 5.1] 

[(CD) in D] 

Lemma 5.4. The functions h  and / and the element c € S above satisfy the 

c o n d i t i o n s  h  <  f  a n d  c h  =  c f .  
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Proof: Let 6 6 S. Now 

a;  €  Wf t  =4»  X A b =  X x  <  b =>  x f  <  b f .  

So bh <  b f .  Also, 

6 € W => b A b  =  b ^ W b  b h > b f .  

So, for b 6 W, bh =  b f .  In particular, since c 6 W, ch  =  c f .  •  

Definition 5.2. Define the set /He := € Hom(S,D) \  k  <  f ,  ck  =  c f } .  

Proposition 5.1. For every c € S, /He has a maximal element. 

Proof: We want to use Zorn's Lemma to conclude /Hg has a maximal element. 

By the above construction, /He is nonempty. Now suppose we have a chain 

0 = {/la I a € A} of homomorphisms in /Hg. Then 

a,  ̂  Q A  (ha  V h js  = ha or ha V  h^  = hp)  => ha y hp Ç:  0. 

Let A. = \ ] { h a  I cv € X}. We need h  to be a homomorphism. Then we will 

have h € /He, since 

(Vfc € 0, c& = c f  and k  <  f )  =>» (ch  =  c f ,  and h <  f )  =>  h  €  /Hg. 

Let x,y E S. Note first that since every A: € 0 is convex, h is convex (Prop. 

2.5). So (x A y)h < xh A yh, and also, 

x h  A y h =  ( \ / { x h a  | a  G X}) A (V{î/^/9 I G A] )  

=  (x  A y )h .  

Therefore A 6 0, showing chains in /He have upper bounds in /He. Thus by 

Zorn's Lemma, /He has maximal elements. • 

Note 5.3. If we let /H* be the set of all maximal elements of /He, we could 

define /H* to be the subgradient of / at c, but this does not always give 

a submode of Hom(S,D), as we have in the Euclidean case. So, we use a 

different notion of maximal, that at only one point. 

= A yh f i  \  a ,  13 e  A}  

<  \ / { xk  A yk  \  k  =  haV hp ,  a , l3  Ç  A }  

= \/{xk A yk I A: € 0} 

= \ / { ( ^  A y )k  I A; 6 0} [homomorphism] 

[A monotone] 

[(CD) in D] 
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Definition 5.3. Define d f { c )  := /He, the set of those homomorphisms h  <  f  

which take the maximal value ch = cf at c, to be the subgradient of f at c. 

Proposition 5.2. The setyHcÇHom(S,D) is convex, so 9/:S—>(Hom(S,D))S. 

Proof: Let h,k Ç /He. Now, 

h < f =#» h Ak < f, and 

ch = ck = cf =4» c(h A k) = ch A ck = cf A  c f  =  c f  = >  c ( h  A  k )  =  c f .  

So ft A 6 /Hp. Therefore /He = df{c) is a submode of Hom(S, D). • 

Theorem 5.1. A convex function from a meet semilattice to a completely 

distributive lattice is a join of semilattice homomorphisms. 

Proof: Let / : (S, A) —> (D, V, A) be convex. We have shown 

Vc € S, 3ft € d f ( c )  •  c h  —  c f .  

Thus y  9/(S) > /, and since \ J  d f { S )  < /, the theorem is proved. • 

Example 5.1. A meet semilattice S and a completely distributive lattice D 

are shown by their Hasse diagrams in Figure 5.1. Also shown is the position 

1 w< 

D 

d,e 

im f 

Figure 5.1. Hasse diagrams of (S, A), (D, V, A), and im/. 

in D of the images of the elements of S under the function / : S —> D defined 

in Table 5.1 below. Note that / is convex and that there is one subsemilattice 

that is not a chain, the one consisting of {6, c, e, z}, on which / is a homo-

morphism. We will find that there is a maximal homomorphism that agrees 

with / only on a proper subset of this set. (Compare xf = |a;| in the reals.) 

The process of finding the subgradient at a point is shown is the steps below. 

There are surprisingly many homomorphisms that are equal to / at at least one 



I 

35 

point. In fact, in this example, all homomorphisms below / satisfy i h  =  i f ,  

so we get that all homomorphisms below / are subgradients. Now because 

every homomorphism listed is a subgradient of / at the set /H,- of all these 

homomorphisms forms a semilattice. In Table 5.1, some homomorphisms have 

been partially defined on choice subsets of S. The subscripts identify where 

we originally decide to make them agree with /. Tables 5.2 and 5.3 show the 

Table 5.1. Some homomorphisms partially defined to agree with /. 

^en ,  f  Hq ^bc  

a r g \  

a  s  s  

h  u  u  u  

c  t  t  t  t  

d  V V  

e  V  V  V V V 

(J X X X 

i  y y y y y y y 

progression from Table 5.1 of finding maximal values for each homomorphism. 

Note that every homomorphism started in Table 5.1 is to be a subgradient of 

/ at either e or g. The images of the elements in S lying above e ov g are 

then listed in Table 5.2. Table 5.3 is the completion of this process, and also 

includes an additional homomorphism hj which agrees with / only at i but 

is a maximal element of the set of all subgradients in Hom(S, D). Figure 5.2 

shows the images of each homomorphism in Table 5.3 while Figure 5.3 shows 

the other generators of the semilattice of subgradients of / at i. The simplest 

subgradients are shown in Figure 5.4. Their proper place in the semilattice 

order is easy to see. 
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Table 5.2. Homomorphisms from Table 5.1 defined above e or g. 

\ fen f ha hb hbc 
a r g \  

I'eg 

a s s t V u 

b u V u u V 

c t V V t t t X 

d V X V 

e V V V  V  V  

9 X X X 

i y  y  y  y  y  y  y  

Table 5.3. Completion of Table 5.1, and one more homomorphisn 

yd. f h(i hb hbc ^cg 
a r g \  

a  s  s  t  V u  w  y  X 

b  u  V u u  V w  y  X 

c  t  V  V  t  t  t  X X 

d  V y  y  y  y  X V  w 

e V V V  V  V  lU y  X 

9 X y  y  y  y  X X  y  

i y  y  y  y  y  y  y  y  

eg d' abce 

Figure 5.2. Images of the maximal homomorphisms. 
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abce/ \d 

^gi 
dg ace/ \ / \ace 

âbei \^gi 
abe 

âgi 

abe/ \dg ,cdg t/ \cdg 

bei 

,a d/ \b 

cegi ^acegi 

Figure 5.3. The other generating homomorphisms. 

bcdegi bcdegi abcegi abcegi abcegi acdegi acdegi 

acdegi abdegi abdegi abdegi abdegi abcdegi 

Figure 5.4. The simple homomorphisms. 

There are sixteen homomorphisms that together form a subsemilattice iso­

morphic to the semilattice reduct of the lattice Mg x Mg. These satisfy the 

conditions ah € {«, t, u, u}, bh = ch = eh € {u, w, x, y}, and dh = gh = ih = y. 

This subsemilattice is shown in Figure 5.5. Figure 5.6 is the full semilattice 

/H; of subgradients at i except that, to avoid confusion, the homomorphisms 

in Figures 5.4 and 5.5 are eliminated. Their position relative to any given 

homomorphism in the figure is included when deemed enlightening. 
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a 

bee 

teedgi 

'cedgi 

ébci 

bee 

xedgi 

Figure 5.5. The M2 x Mg semilattice. 
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abe<>dg 

Ocdg 

Figure 5.6. The subgradient semilattice (H,). 
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dOabce 
abei abei 

abdegi 
abce 

abegi begi aegi dgi abei abce 'aei 

abdegi 

acegi adegi bcegi 

abce, 

V </cdg 
abei 

Figure 5.6. (Continued.) 

abëgi 
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CHAPTER 6: SUBGRADIENTS IN MODAL THEORY 

We finally have the foundations set to define subgradients of modal-theoret-

ically convex functions. 

Proposition 6.1. Let (M, fi) be a mode and (D, V, 0) a compatible completely 

distributive modal. Then the modal (Conv(M, D), V, 0) of convex functions is 

completely distributive also. 

Proof; Let C = Conv(M, D) and F Ç C. First we show that (C,V) is a 

complete semilattice. Let f = \/F. This exists as a function since D is 

complete. We need / € C. Let a; € fi, I'l,..., € M be arbitrary. Then 

(xi . . . ZwrW)/ = yHxi . . . .TwrW)/' | /' € F} 

^ \/{{xif'. . . Xurf)'^} [w monotone] 

~ [V(^1 y ) • • • \/(.^urf )]^ [(CD) in D] 

= . . . .Xc^r(V/')]^ 

— ^WTf^' 

So, / 6 C. To prove complete distributivity, let w G /i,...,/u)r € C, 

F Ç C, 1 < J < wr, and .t € M be arbitrary. Then 

</i • • • /j-i(V F)/j+i ... /wrW) 

= {xfi ... [x(\/ F)]... 

= {x f i . . .  \ J {x f j  I / j  € F} ... a;/wr)w 

— Vfi * • • ^ f j • • • ^ fu)r I fj G F j 

= V{^(/l • • • f j - - -  /wrW) I f j  e  F}, 

SO /i . . . /j-l(V F)/j + l • • • /wrW = V{/l • • • /y • • • /wrW | f j  € F}. • 

Definition 6.1. Let / ; (M, Q.) —> (D, V, fi) be a convex function from a mode 

to a compatible completely distributive modal. The closure of / is the function 

cl/ = V{/i € Hom(M,D) \ h < f } .  

Note 6.1. By the above proposition, since Hom(M,D) Ç Conv(M,D), cl/ is 

convex. Also, cl/ < / clearly. 
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Definition 6.2. A convex function / from a mode to a compatible completely 

distributive modal is closed iff / = cl/. 

Thus the closed convex functions are precisely the functions that are joins 

of some set of homomorphisms. In particular, all convex functions from 

A-semilattices to completely distributive lattices are closed, by Theorem 5.1. 

Closed functions will be useful in the study of possible duality results. 

Definition 6.3. Let (M, f2) be a mode and (D, V, fi) a compatible completely 

distributive modal. For a convex function / : M —> D, define for each c € M, 

/He :=  {h  6 Hom(M, D)  \  h  <  f ,  ch  =  c(cl/)}. 

The set /He has the pointwise order inherited from (Conv(M, D), <v). 

As in the last chapter, /He will have maximal elements when it is nonempty. 

Theorem 6.1. Let / : (M, fi) —> (D, V, fi) be a convex function from a mode 

to a compatible completely distributive modal. Let c € M. If the set /He is 

nonempty, then it has maximal elements. 

Proof: Assume /He is nonempty. Let 0 = {/la | & € A}  be a chain of homo­

morphisms in /He. Let 

h =  \ / {ha  I a  €  A} .  

Clearly, h <  f .  We need to be a homomorphism. Then we will have h G /He, 

since 

[VA; € 8, cA; = c(cl/) and k  <  / ]  \ ch  = c(cl/) and h <  f]^  

and /He will have maximal elements by Zorn's Lemma. Take arbitrary u; € 

and xi,..., x„ G M. Then 

X \ h  . . .  X n h u j  

= {\/{xihi I € 0})... {\/{xnhn I h„ e 0})w 

= I { h i ,  . . . ,  h n )  € 0"} (complete distributivity] 

<  \ / { x i h a  .  •  .  X n h a U )  \  h a  =  max{/li, .  .  .  ,  h n } ,  { h i ,  .  .  .  ,  h n )  G 0"} [w monotone] 

= V{®1 • • • ^n'^ha I {hi, ... Jin) 6 0", ha = max{/%i, . . . , /in}} [homomorphism] 

= V{^1 • • • ^n^ha I ha € 0} 
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— 372 , . , X fiLoh, 

So h  is concave. Since h i s  a  join of homomorphisms, which are always convex, 

h is also convex. Thus is a homomorphism, proving the theorem. • 

Definition 6.4. Let / : (M, fi) —»• (D, V, 12) be a convex function from a mode 

to a compatible completely distributive modal. The subgradient of / is the 

function 

For c € M, d f { c )  = yHg is the subgrad ien t  o f  f  a t  c .  If fHc is nonempty, 

then / is said to be subdifferentiable at c. The elements of df{c) are called 

subgradient homomorphisms. A function is subdifferentiable iff it is subdiffer­

entiable at every point in its domain. 

Example 6.1. Let S be any set. Define the projection operators 

and let fZ = {pi, P2 } • Then every function / : S —>• S is an fi-homomorphism. 

(For i = 1,2, xiX2Pif = Xif = xifx2fpi-) Take the order 0 < 1 on Zg. For 

n 6 N"^, define the product order < on (0%, V). Then (0,..., 0) is the smallest 

element, and (1,..., 1) is the largest. It is easy to show (Zg, -, Î2) is a modal. 

For the algebras (R, fi) and (Z2,fi), define the function 

Actually, if fif < /, then for any x € IK where x g  =  x f ,  g  €  d f ( x ) .  So / is 

subdifferentiable everywhere, / is a subgradient homomorphism, and yet there 

are many subgradient homomorphisms. 

9/ : M —> [Hom(M, D)]S0; c t-» /Hg. 

P i , P 2 :S'^-y S; i s , t ) p i  = 5, { s , t ) p 2  = t .  

Then 

1. Vz € E, / € d f ( x ) ,  

2. \ f t  e  M\Q, h =  Oe  d f ( t ) ,  and 

3. V</ : R -> Z2 • /i < < /, Vi ^ Q, € d f ( t ) .  

Now we take another look at Euclidean spaces for examples of algebraically 

convex functions. 
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Note 6.2. For a convex function / : M" the above definition of d f  

agrees with that given in Definition 4.2. 

Recall: For convex / : X —> K, we have 

Proposition 6.3. For X € (M",I°)S, if / : X ^ E is convex, then 

Vx € X, 5/(x) = {k\x\ke a/e(x)}. 

Also, if the absolute closure of epi^fe in M" x R and the relative closure of epi/ 

in X X IR are the same, then 

Proof: First note that Honi(X,M) = {fc f X | € H = Hom(M",IR)}, and 

epi]g/ = epi]j/e is contained in M" x M. Now the relative closure of epij^/ in 

X xR is the intersection of the absolute closure of epi^/e with X xR. Therefore, 

cl/ = (cl/e) r X. This implies 

Vx € X, VA; € H, x& = x(cl/) «#=> x k  = x(cl/e). 

Therefore, for x in X, 

k € 5/e(x) [xik = x/e and k  <  f e ]  

[ x k  =  x f  and ( k  f X) < /] (fc f X) E 9/(x). 

Let Fg be the closure of epijgfe and F be the relative closure of epijj/ in X x IR. 

If Fg = F, then 

X € X 

x ^ X .  

{ k \ x \ k e  a/ e ( iR") }  =  {k  I k  e  a/(X)}. 

epijjcl/e = Fg = F = epijjcl/ => gr^cl/g = g r ^ c l f .  

Thus 

VxeM", X& = xcl/e <=> x k  =  x ( c l f ) e ,  

so 

k  e a/g(R") rx) € d f { x ) .  •  

Thus the modal-theoretic Definition 6.4 of df  is a sensible generalization of 

the Euclidean Definition 4.2. 
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Example 6.2. Let / : [0,1] ^ R; z w 0. Then / is real-convex. Notice 

that k : [0,1] —> R; x i-^ —x and ^ : [0,1] —> M; a; 0 are both in 5/(0) 

even though k < h. Considering the fact that for proper convex functions of 

E", all subgradient elements were maximal homomorphisms, it seemed, at the 

point of Chapter 4, that k should not be included in df{0). At the same time, 

though, for the extension of /, fe = we had that the function fc ; R —» R; 

X I—» —X was in d f e { 0 ) .  This caused a dilemma that was solved by modal 

theory, which told us that 5/(0) should include k (because 0& = 0(cl/)) even 

though k is not maximal in the absolute sense. 

Example 6.3. Recall, for p & 1°, p: (IR+)^ —» R"'"; {x,y) i—> x ^ ~ P y P .  In Ex­

ample 2.15 the homomorphisms are the log-linear functions. Thus sub differen­

tiating exponentially-convex functions is approximation by the test functions 

clog a; -f- d. Consider the function xf = (loga:)^. The subgradient homomor­

phisms may be found by differentiating / and finding which log-linear function 

has the same value and slope as / at any particular point. Let xhcd = clog x+d. 

Now, xof — and xof = (logzo)^ = log zo log zo while xoh'cd = 

Therefore hcd 6 df(xo) c = 2logzg and d = — logZQ. 

Review and Extension 

Let C be any nonempty convex subset of R", and / : C —» R be convex. We 

have shown the following: 

1. Vx € C, d f ( x )  6 (Hom(C,R),r)S0, 

2. A; 6 d f { x )  x k  =  x c l f  and k  <  /, and 

3. f  =  c l f ^  f  =  \ J d f { Q ) .  

Note that 

(Hom(C,R))S S (Hom(C,R_))S \ { { k  = -oo}}. 

Thus, by sending the empty subalgebra of Hom(C,R) to the singleton subal-

gebra {k = —oo} of Hom(C,R_co), we get an isomorphism 

(Hom(C,R))S0 ^ (Hom(C,R__))S, 

and thus 
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d f e  Ç  Hom(K",R)S0 ^ Hom(E",lR_«)S. 

This is natural, in that k = —oo < /, always. We would like to generalize this 

last statement to modal theory. That will require a study of duality. 
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CHAPTER 7: SUMMARY AND TOPICS FOR 

FURTHER STUDY 

Summary 

The Galois connection 8 \C t^V E of Theorem 3.1, connecting epigraphs of 

convex functions and subgradient functions of convex functions, gave an alge­

braic interpretation of the duality realized in traditional convex analysis. By 

the resulting Galois correspondence we obtained; "A proper convex function 

is closed if and only if its epigraph is maximal (or 'closed') with respect to the 

Galois connection." 

By way of example we found that a A-convex function from a semilattice into 

a completely distributive lattice is always closed and subdifFerentiable. Then 

for compatible modes and modals, we defined 5/ : M —> [Hom(M, D)]S0 

in terms of the closure cl/ of a convex function / : M D, which turned 

out to be the proper generalization of the subgradients in Euclidean spaces, 

enabling us to define subgradients for functions of proper convex subsets of a 

Euclidean space. Thus, the closed O-convex functions of modes and modals 

are an appropriate generalization of closed real-convex functions of real spaces. 

Future study topics 

1. The results of Chapter 6 (Prop. 6.3 ff.) suggest that we study, for a mode 

(M, 0) and a modal (D, V, f2), the possibility of finding a mode Mg containing 

M to extend a convex function / : M D to some convex function 

f e - . M e - *  D"^ 

so that the subgradients of / are always maximal homomorphisms 

k  :M.e  D-oo-

2. The question of whether a Galois connection exists in the more general 

setting of modes and modals also deserves further study. The dualities of 

with E_oo, and of R" with itself seem a good place to start. These have already 

been studied in convex analysis ([Rl], p.79fF). Rockafellar has, for a proper, 

closed, convex function / : E" ^ a function /* : R" —> R"*^, which is 
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convex, and actually, { z , z f * )  —  As f *  is convex, ^epjjg/ is concave. 

The duality result is that f * *  =  f .  

The definition of subgradient might be extended to non-convex functions, 

such as convex-concave functions. Also submode reducts such as (Q, Q D 1°) 

could use some more investigation. 
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APPENDIX: INDEX OF CONCEPTS 

page 

algebra 9 

arity 9 

associative-algebra 10 

associative-operation 10 

basic (operation) 9 

chain 13 

closed (function)-in Euclidean spaces 6 

-in modal theory 42 

closure (of a function) 5-6,41 

commutative-algebra 10 

-operation 10 

compatible 17 

complete (lattice) 13 

completely distributive-algebra 16 

-modal 16 

-operation 16 

concave 17 

convex (function) 3,17 

convex combination 21 

cylinder 4 

cylindrically bounded below 4 

cylindrically closed 4 

derived (operation) 9 

differential groupoid 10 

distributive-algebra 16 

-operation 15 

effective domain 28 

epigraph 2 

-finitary 2 
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extension (of a function / : X —> R) 3 

exponentially convex 17 

fiber(Plonka ) 15 

finitary epigraph 2 

finitary graph 2 

Galois connection 26 

graph 2 

-finitary 2 

greatest lower bound 13 

homomorphisms 9 

hyperplane 7 

-vertical 7 

-nonvertical 7 

idempotent-algebra 10 

-operation 10 

identities 10 

-regular 10 

join (semilattice) 12 

lattice 12 

-complete 13 

-distributive (see distributive algebra) 16 

least uppper bound 13 

log-convexity 17 

lower bound 13 

meet (semilattice) 12 

modal 16 

-completely distributive 16 

mode 10 

-ordered 19 

monotone 17 
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normal vector 8 

- projected 8 

- regular 8 

- unit 8 

Q-algebra 9 

0-convex 17 

îî-homomorphisms 9 

operation 9 

-basic 9 

-derived 9 

ordered mode 19 

Plonka sum 14-15 

-fiber 15 

pointwise order on 2 

projected (normal vector) 8 

proper (function) 4 

quasi-convexity 18 

real-convexity 3 

regular (normal vector) 8 

reduct 9 

semilattice 12 

-complete 13 

-join 12 

-meet 12 

subalgebra 9 

subdifFerentiable 43 

subdifFerentiable at 43 

subdifFerentiable function 43 

subgradient 28,43 

subgradient at 28,43 
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submode 11 

type 9 

unit (normal vector) 8 

upset 4 

variety 12 


