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CHAPTER 1. 

INTRODUCTION 

The lop TWO levels of the Chomsky language hierarchy play a major role in 

the translation of programming languages. Lexical and syntactic analyzers can be 

automatically generated given regular and context-free grammars. A large part of 

the work of syntactic analysis, however, lies outside the realm of context-free 

languages. Syntax rules such as those regarding type agreement, scope of names, 

and parameter correspondence cannot be expressed in a context-free grammar. 

Such rules are enforced during translation by ad hoc methods. 

Despite the limitations of context-free languages, their use in syntactic 

analysis provides a framework for the code-generation phase of translation. 

Derivation trees are constructed during syntactic analysis. Syntax-directed trans­

lation uses these trees for code generation. The underlying theory characterizes 

translation as an operation on trees (Aho and Ullman 1977). The code produced 

by a syntax-directed translation of a program in a high-level language can be seri­

ously suboptimal, and complete translation may require one or more optimization 

phases. 

This is the state of the art in translation: regular and context-free grammars 

lay the foundation; ad hoc methods complete the process. This approach is con­

sidered satisfactory for translation of the high-level languages of today, and more 

sophisticated translation methods would probably nol do much better. So why 

search for better translation methods? There is no need to — as long as the high-
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level languages of today arc adequate. Bui the Tremendous expense of developing 

and maintaining reliable software leads us lo believe that our high-level languages 

are not adequate. There is an urgent need for general-purpose, very-high-level 

languages which can be efficiently translated. So far no such languages have 

appeared. Compared to the whirlwind development of computer hardware over 

the last thirty years, the progress in programming languages has been disappoint­

ingly slow. Our languages under-utilize the capacity of the machines. Program­

mers and general users are burdened with mountains of detail, low-level algo­

rithms, and inflexible syntax rules. The fact is that our so-called "high-level" 

languages are still inflexible and unnatural, and the limitations of these languages 

may be a direct result of the inadequacy of our theory of translation. 

Regular and context-free grammars have been stretched as far as they will go. 

More powerful theoretical tools are needed for translation of higher-level 

languages. The next level in the Chomsky hierarchy is the class of context-

sensitive languages. But this class is too broad and complex to be of use. Research 

has been continuing since the late 1960s to find reasonable extensions of the 

context-free languages and to discover non-context-free rewriting systems which 

generate context-free languages. This thesis presents results which contribute to 

that area of research. 

Ginsburg and Greibach (1966) have investigated certain rewriting systems 

with context-dependent rules that delete symbols. These grammars were found to 

produce languages that are context-sensitive, and under some circumstances even 

context-free. Book (1972), Baker (1974), and Aggarwal and Heinen (1979) 
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pursued this line of research lo discover that rewriting systems can take into 

account constant-size, non-overlapping amounts of context and still produce 

context-free languages. While such rewriting systems do not give us a new class of 

languages, they do allow us to write simple grammars for languages whose 

context-free grammars would be formidable. 

In 1968, Michael Fischer described macro languages, a class of languages larger 

than context-free and smaller than context-sensitive (Fischer 1968). Fischer 

showed a macro grammar which had the power to enforce declared type con­

sistency on the right- and left-hand sides of assignment operators in a program­

ming language. The grammar failed, however, to prevent multiple declarations of 

identifiers. Macro langtiages were observed to have two incomparable subclasses: 

inside-out (10) and outside-in (01). Both these subclasses contain Interesting non-

context-free languages, but neither subclass contains all the interesting new 

langtiages. The grammar mentioned above which enforced type consistency was a 

quoted macro grammar, one which selectively tjsed both outside-in and inside-out 

rewriting rules. The results which Fischer obtained for 10 and 01 macro languages 

were not shown to apply to quoted macro languages. It remains unknown whether 

quoted macro grammars produce langtiages which are not context sensitive. 

In the early 1970s, several people defined and investigated grammars and 

finite automata on trees (Rounds 1969 and 1970, Engelfriet 1975b). Recognizable 

sets of trees were defined to be those sets accepted by finite tree automata. It was 

fotind that the frontier operation applied to a recognizable set of trees produced a 

context-free language of strings. Similarly context-free grammars on trees produce 
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sels whose frontiers yield macro languages of strings. 

Tree automata have been generalized to define tree transducers — tree auto­

mata with output (Baker 1975, Engelfriet 1975b). Tree-transducers applied to 

recognizable sets of trees can produce sets of trees whose frontiers form languages 

outside the class of context-free languages, but well within the class of context-

sensitive languages. Tree automata and transducers have been used to formally 

describe syntax-directed translation (Baker 1975). This formalism covers only 

translation of the context-free portion of a language's syntax. Tree-transducers 

might be more beneficial if a programming language could be characterized as a 

transduction or composition of transductions so that, the formal model would 

encompass the non-context-free features of the language. This approach, however, 

may not be feasible because tree transducers are not closed under composition 

(Baker 1979). Another unsettling feature of transducers is the presence of two 

incomparable subclasses, top-down and bottom-up (Engelfriet 1975a). This dicho­

tomy is analogous to the problem of the 01 and 10 subclasses of macro languages 

(Engelfriet and Schmidt 1977, 1978). 

Multidimensional trees have recently been introduced by Strawn (1982) and 

Baldwin (1983). These data structures are logical extensions of trees to higher 

dimensions. The 1-dimensional structures correspond to strings of symbols, the 

2-dimensional structures correspond to trees, and the definition of higher dimen­

sional structures is based on a generalization of the relationship between strings 

and trees. Just as a frontier operation can be applied to a tree to give a string, so 

can frontier operations be applied to higher-dimension structures to give strings. 
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The frontiers of multidimensional trees (md trees) form an infinite hierarchy of 

string languages properly contained within the class of context-sensitive languages. 

The first three levels of the hierarchy correspond to the regular, context-free, and 

10 macro languages respectively. 

This thesis presents a modification of multidimensional trees which results in 

a hierarchy of string languages related to that discovered by Strawn and Baldwin. 

Most attention is focused on the second and third levels of this hierarchy and their 

relationship with other known classes of languages. It is hoped that multidimen­

sional trees will provide a unifying framework for study of classes of languages 

between context-free and context-sensitive, and that further study will lead to the 

discovery of automatic and efScient methods for translating higher-level program­

ming languages. 

Chapter 2 presents some basic definitions and summarizes some results 

obtained by Strawn and Baldwin. Chapter 3 shows the correspondence of 1-

dimensional tree-f rontier languages and the regular languages. Chapter 4 explores 

the relationship between 2-dimensional tree-frontier languages and the context-free 

languages. Chapter 5 examines the 3-dimensional tree-frontier languages and their 

relationship with the context-sensitive languages. Chapter 6 relates the 3-

dimensional tree frontier languages to the 10 and 01 macro languages. Chapter 7 

contains a concluding summary and suggestions for further work. 
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CHAPTER 2. 

MULTIDIMENSIONAL TREES AND FORESTS 

The basic data structure investigated in this thesis is the multidimensional 

forest. The basic operation on multidimensional forests is the frontier operation, 

which can convert forests to strings. Grammars can be written to produce forest 

languages, and each forest language has an associated string language called its 

string yield. 

Defining Trees and Forests 

Multidimensional forests are structures containing nodes and arcs. The nodes 

are labeled with symbols: terminals, non-terminals, or auxiliar>' symbols called 

selectors. The arcs are labeled with natural numbers. The selectors and non­

terminals are elements of indexed sets. 

DEFINITION 2-1. An indexed set I is a set whose elements are pairs <i ,x > 

consisting of an integer index i and a symbol or string .r. A subscripted 

reference to an indexed set represents a subset containing every element 

of I whose index is n . 

In order to specify multidimensional forests in one or two dimensions, an n -

dimensional forests is represented as an n -ary tree. The correspondence between 

n -d forests and n -ary trees is a generalization of the correspondence between con­

ventional forests and binary trees (Horowitz and Sahni 1976). A 3-d forest, for 

example, can be reprcsenieci as a structure in which each node has at most three 

arcs, labeled 1, 2, and 3. 
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Every multidimensional forest has a dimension n and a degree k. If ii is the 

largest label on any arc of a forest 3, and k is the smallest label on any arc 

emanating from the root of 3. then j8 is an n -dimensional, k -degree forest. 

It should be noted that not every n -ary tree represents an n -dimensional 

forest. The informal rules below characterize multidimensional forests. These 

rules are useful for determining whether a given n -ary tree represents a multidi­

mensional forest over a set of terminals I and a set of selectors H. 

1) Elements of I can label any nodes. 

2) If a selector <r ,p>in B labels a node, then the label on each arc emanating 

from the node can be at most r — 1. 

3) If the arc pointing to a node has label r, then the label on each arc emanating 

from the node must be at least r — 1. 

The two definitions below refer to one another to formally define multidimen­

sional trees and forests. We will adopt the notational convention that A [„ ] 

represents the set { a [„ 6 ] I a e A and b e 5 }. If 5 is the empty set, then the 

brackets will be elided, leaving A [„ 0] = A . 

DEFINITION 2-2. Let E be a finite set of symbols and let H be a finite indexed 

set of auxiliary symbols. Then the set of n-dimensional trees over Z and H, 

n>0, is defined 

HqCI, H) = I, and 
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DEFINITION 2-3. Let I be a finite set of symbols and lei E be a finite indexed 

set of auxiliary symbols. Then the set of n-dirncnsional foi'csts over E and 

E is defined 

H„°(I,E) = H„KI,E), 

H^iZ, E) = Hk (H^+KZ:E), E) for 0<A: <;î , and 

H„"a,E) = H„(I,E). 

These definitions are consistent with those developed by Baldwin (1983) and 

Strawn ( 1982). The set of 1-dimensional trees over I and 0, where 0 is the empty 

set, corresponds to the conventional notion of the set of strings over I. The set of 

2-dimensional trees over I and 0 corresponds to the conventional notion of the set 

of ordered trees over I represented as binary trees. 

Figure 1 contains two 3-ary trees of which only one represents a valid 3-

dimensional tree. The second tree is not a 3-d forest since the node d has a 3-arc 

pointing to il and a i-arc emanating from it. This figure also shows a non­

standard graphic representation of n-ary trees. This representation is preferred 

since it is easily printed and it corresponds directly to the multidimensional forest 

definition. The labeled arcs simply replace the labeled brackets. 

The selectors in multidimensional trees and forests mark the places where 

substitution will occur during the frontier operation. Two universal selector sets 

are defined below: the set of standard selectors and the set of extended selectors. 

DEFINITION 2-4. The set of standard selectors E^ is an indexed set of ele­

ments <n ,X > where n >0 and x e {1, 2 n-1 }*. 
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r  [ i  a  b  [ 2  d  [ 2 X  [j yl^e [2 / [1 y]]]]]^^ [2 c [j y]]]] 

r — 3  
I 
a — - 3  2  

I I 
b — 2  b  

1 

I 1 
X — 1  0 — 2  

I I 
y  f - — 1  

I 
y 

a valid 3-d tree 

r [3  a [3  [2 [1 y]][i e [j / [j y ]]]][2^ U c [1 y ]]]] 

r — 3  
I 
a — - 3  2  

I I 
d — 2  1  b — 2  

I I I 
X— 1 0— 1 c — 1 

I I I 
y  f — 1  y  

I 
y  

not a valid 3-d tree 

- - - 2  

1 

c — 1  
I 
y 

FIGURE 1. 3-ary tree examples 
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DEFINITION 2-5. The set of extended selectors is an indexed sel of ele­

ments <n ,A: > where n >0 and x e {L 2 n]*. 

The standard selectors are those used in the work of Strawn (1982) and Baldwin 

(1983). The extended selectors are introduced here for the first time, and the rest 

of this thesis is devoted to assessing the impact of this seemingly minor change. 

The Frontier Operation 

The frontier operation reduces the dimension of a forest. It involves the selec­

tion and substitution of subtrees. The selectors in a forest mark the places where 

substitution can occur and specify what subtrees will be moved or copied. Each 

selector has two components: an index and a path. The index specifies the dimen­

sion of the forest to which the selector can be applied as well as the dimension of 

the tree which will be selected. The path is a sequence of arc labels used by the 

selection function to pick out a subtree for substitution. A path is traced in a 

forest by starting at the root node and traversing the arcs whose labels match 

those in the path. For example, the path of selector <3, 3321 > can be traced to 

the node e in the valid 3-d tree of figure 1. The tree selected is just e. The sub-

forest /[]>'] is dropped, since the arc pointing to it is not a 3-arc. 

DEFINITION 2-6. The selection function œ/(<7î ,>,/3) : x E)^ 

f/n (I, E) is defined 

sel ( <n , X>, oi) = a for a e (E, E) and k the empty string, 

sel (<71,k>, «[jt y] ) = sel(<n ,k>, a) for k <n , 

a e H^'+HI.E), and yeH*-'(Z,E). 
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seli<n ,k.i>, nij-y]) = sel{<n .ki>, a) f o r  c v  e  £), 

y  < * ,  

sel ( <n , ki >, y] ) = sel ( <n , i > y) for a e E) 

and y e H^'KY., E), and 

set {<n ,p >, 0) is otherwise undefined. 

There are situations in which the selection function is not defined. Let 3 be 

the valid 3-d fcrest of figure 1. se/ ( <3, 321 >, j3) is not defined because the node b 

has no l-arc. This is called a path error. If the y in )3 is a selector <1, X.>, then 

sel ( <3, 3221 >, jS) is also undefined. In this case, we successfully trace 3221 to y, 

but y = <1, X.> is not an element of HsH, E) as required. 

The substitution function subs„ (a, /8) operates on two -dimensional forests. 

It simply replaces each selector <n ,p> in a with seli<n ,p >, /3). 

DEFINITION 2-7. The substitution function subs^ia, (E, E) -» 

E) is defined 

subsn(a,^) = a fora el U Ej, ; < , 

subs^ ix ,li)= sel (.t, jS) for A- e En , and 

siibs„ (a;[„ y ], jS) = subs^ (a, 3) U suhs„ (y, /3) ] 

for m , a; e E), and y « E). 

A call to the frontier function /?„ (a) reduces the dimension of a to ?i. If the 

dimension of a exceeds ;? + ], then //'„ +1(0-) is performed first. If the dimension 

of a is less than n + 1, then the frontier operation has no effect. Any nodes with 

arcs labeled n + 1 are removed by . A node with an n + l-arc but no n -arc is 

simply eliminated. A node with both an n 4-l-arc and an n -arc is processed by 
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FIGURE 2. A 3-d forest and its frontiers 

z a —  1  

2-d frontier z 



13 

frontiering the subforests and calling the substitute function: + = 

//nCy)). The frontier function fin{a) is undefined if a is a selector, 

<r,p>, and r>n. 

DEFINITION 2-8. The frontier function fr^ia) : is 

defined when m > n +1 as fr^ (a) = fr„ (/r„+i(a)), and when m +1 as 

f i n { b )  = b  for ft e I U H,- where i  ,  

/''nCft[n+i3] ) =/?n(3) for A el U H and jS € (I, H), 

f^n it> [n +i3] In yl) = subs^ {fr^ (/3), (y) ) 

f o r i  e Z  U = . ) 3  ( H ; ; ( Z . 5 ) , a n d y  

pn (/3[r y] ) = frn (P) i frn (y) ] 

for ^ <r , /3 6 =), and y e S), and 

fr^ (a) is otherwise undefined. 

Figure 2 contains an example of a 3-d forest and its 2-d and 1-d frontiers. 

This figure also illustrates that the frontier operation has the power to delete sub-

forests. The subtree #[2b{ib[i r]]] is unselected during the 2-d frontier, and so it 

is eliminated. Deletion will also occur during (a) if a — #[„ + iy] [„ 8] and y 

contains no n -dimensional selectors. In that case, /?„ (#[„ +iy] [„ S]) = (y). 

The frontier operation also has the power to make multiple copies of subtrees. 

This happens when a substitution is made into a subtree that has multiple 

occurrences of the same selector. Since the frontier operation has both copying 

power and deleting power, the result of a frontier operation can be either larger or 

smaller than the original forest. 
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Grammars and Languages 

Sets of multidimensional forests can be generated by rewriting systems called 

regular multidimensional forest grammars. These grammars are regular because of 

the restricted placement of non-terminal symbols in the replacement rules. 

DEFINITION 2-9. A regular n-dimensional forest grammar is a formal system 

<1,E,N ,R ,S>n, n>0, 1 A: ^ n , where 

I is a finite set of terminal symbols, 

H is a finite set of selectors with indices in {1, 2, . .. , n}, 

A' is a finite indexed set of non-terminal symbols 

with indices in {1, 2, . .. , n}, 

/? is a finite set of replacement rules of the form A—y^ 

where A e and j3 e (I, E JJ ) for 1 ̂  z ^72, and 

S  is the start symbol in N j ^ . 

A non-terminal in a forest grammar generates a set of forests by repeated 

application of the replacement rules. The intermediate structures, which contain a 

mix of terminals, selectors, and non-terminals, are called structural forms. The 

process of applying the replacement rules is a derivation. A derivation step is the 

application of a single rule to obtain one structural form from another. 

DEFINITION 2-10. A structural form cv of a forest grammar 

<1., E, N, R ,S directly derives another structural form jS, a j8, if 

and only if R contains a rule A—>7 and 0 can be obtained from a by re­

placing an occurrence of A with y. 

DEFINITION 2-11. A structural form a of a forest grammar derives another 

structural form a =>* j3, if a = |3 or there are structural forms 

tti , m >0, such that q;=?> ct] =?> ••• =^a>- =^(3. 
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DEFINITION 2-12. The language generated by a forest grammar G = 

<Z, B, N, R ,S is defined as L (G ) = {jS I S =$>* j3 and E)}. 

The language generated by a grammar is thus defined as the set of forests each 

of which contains no non-terminals and can be derived from the start symbol. 

The frontier function can be applied to forests generated by a grammar to give sets 

of lower-dimensioned forests. These lower-dimensioned sets are the yields of the 

grammar. The 0-dimensional yield will be defined to establish a direct relationship 

between 1-dimensional trees and strings. 

DEFINITION 2-13. The string function sTr (a) : 5) (J {X} is 

defined 

sîr (X.) = X, 

stria ) = a for a e Z, 

s t r i x  )  =  k f o T  X  €  H ,  

str (.\- [i /3] ) = sir ((3) for x e z, and 

str (a [j 13] ) = Û • str C/3) for a el. 

where • represents string catenation. 

DEFINITION 2-14. The sti'ing frontier of a forest lie is defined as 

s f  /-(jS) = s l r i f r - i i ^ ) ) .  

DEFINITION 2-15. The m-dimensional yield of a grammar G = 

<1,E,N ,R ,S>n is defined as 

y'oCG ) = {a I )3 e L(G ) and str{fr-^{^) ) = a 1, and 

(G ) = {a I jS e L(G ) and (i3) = a } for 1 <7n 4". 

Some major results of Baldwin (1983) can be summarized in terms of the 

above definitions. Baldwin established the existence of an infinite hierarchy of 



string languages which he called the algebraic hierarchy; ALG^ cALG^'+j for 

77 ^ 1, and ALCr! C CS, where CS represents the class of context-sensitive 

languages. ALG^ is the class of languages obtained by taking the 1-d yield of n-

dimensional forest grammars which use only standard selectors. More formally, 

L  €  A L G n  i f  a n d  o n l y  i f  L  =  } ' i ( G  )  f o r  s o m e  g r a m m a r  G  =  < Z , E , N  , R  , S > ^  

where 1 and 5 C . We know from Baldwin's work that ALG / is the 

class of regular languages, ALG 2 is the class of context-free languages, and ALG 3 

is the class of 10 macro languages. 

Language classes corresponding to the algebraic hierarchy can be defined which 

allow the use of extended selectors. These new classes will be represented as 

niYnF for n ^ 1. mYnF is an acronym for the m-dimensional Yields of regular 

sets of n-dimensional Forests. 

DEFINITION 2-16. A language L  belongs to the language class m Y i i F ,  n ^ 1 

and m^O, if and only if L =Y^{.G) for some grammar G = 

<Z,=,N ,R ,S >n, where ï^k and E C . 

In the chapters that follow, we explore the relationship of the first three lev­

els of the algebraic hierarchy and the corresponding 0}'/?^ language classes. 
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CHAPTER 3. 

ONE-DIMENSIONAL FOREST YIELD LANGUAGES 

The string langiiages which are yields of regular sets of I-dimensional forests, 

OYIF, can be shown to be equivalent to the class of regular languages. A method 

for converting a 1-d forest grammar to a regular grammar is given in this chapter. 

One-Dimensional Normal Form 

A 1-d forest grammar can be made to look like a regular string grammar by 

putting it in 1-dimensional normal form. 

DEFINITION 3-1. A grammar G = < I . , S , N  , R  , S > 1  is in I—dimensional 

normal f orm , IDNF, if and only if every rule has the form 

1) .4 ^a[i B] for A , 5 e , and a  e Z ,  

2 ) A — ^ a  for A e , and a e Z, or 

3)A—f o r  A  €  N  and X. the empty string. 

Note that a IDNF grammar makes no use of selectors. This is appropriate 

because the selectors in a 1-d forest are nothing more than endmarkers which will 

be removed when the forest is converted to a string. The conversion of an arbi­

trary 1-d forest grammar to IDNF is described in two steps. The first step is to 

add non-terminals to the grammar so that the right-hand side of each rule contains 

at most one terminal and one non-terminal. 

LEMMA 3-2. If G is a grammar < I . , E , N  , R  , S > 1  then there is a grammar 

G' = such that (1) L(G ) = I.(G' ) and (2) if 



^ —»a [j /3] e /?' then jS e A^'. 

PROOF. Construct G' from G by introducing new non-terminals Q as required. 

Set Z' = I, E' = E, S' = S, and construct R' and N' according to the algorithm 

below. Assume A € N' and a e I'. 

Put all the rules in R in /?'. 

Set TV' = N .  

Set i = 0. 

Repeat 

Add 1 to I. 

Find A —> a [i a] in R '  where a is not in N ' .  

Invent new non-terminal C; and put it in N ' .  

Replace A a [i a] in R' with A ^ a [j ]. 

Add Ci -*0! to R'. 

Until no rule A —>a [j a] can be found where a  is not in N ' .  

It should be clear that this construction does not affect the language generated by 

the grammar. We have only introduced more non-terminals and rules to make the 

derivations longer. So Z, CG ) = L (G' ). QED. 

The next step in converting a 1-d forest grammar to normal form is to remove 

the selectors. This construction is described in the proof of lemma 3-3 below. 

LEMMA 3-3. Suppose G is a grammar < 1 , E . N  , R  , S > 1  such that if R  contains 

aruleA—jB ], then 5 eN. There is a IDNF grammar G = 

<I', E\N',R'.S'>i such that S' a and .srr(al = AC if and only if 



s =>* 3 and str C/3) = v , where hv I ^0. 

PROOF. Construct G' from G by first setting I' = Z, E' = 0, and S' = S. Then, 

construct R' and N' from R and N according to the steps below. Assume that 

A,B,C (N,a,b el, and:*: e E. 

1 ) For every pair of rules ^ a [j 5 ] and 5 —> ft in , add A' ] and 

B' -*b to R', and add A '  and B '  to N ' .  

2) For every pair of rules A — y a { - ^ B ]  and 5—>5[i C ] in /? , add A '  - t a l ^ B ' ]  and 

5 '  - >  &  [ j  C  ]  t o  R '  ,  a n d  a d d  A ' ,  B '  a n d  C  t o  N ' .  

3) For every pair of rules j4 ->a 5 ] and B - * x  i n  R  ,  add A' —*a Xo R' , and add 

A '  t o N ' .  

4) If /? has a rule S —» x , add S' —> X. to R' and add S' to N'. 

We can show that G' satisfies the requirements of lemma 3-3 in two parts. 

(A) If A =>* a and str (a) = w then A' =>* <3 and sf/- (jS) = u\ 

Proof of (A) by induction on I, the length of w. 

Base. Iw I ^1. 

Case 1. A =^* x and sîr {x ) = k. 

In this case, R has a rule A and R' has a rule A' ̂  \ from step 4 of the 

c o n s t r u c t i o n  o f  G ' .  I t  i s  c l e a r  t h a t  A '  = > *  \  a n d  s t r  i k )  =  k .  

Case 2. A =?>* a [, x ], and str (a [] x ]) = a. 

In this case, R  has rules A -»a [j 5] and B — * x ,  and R '  has a rule A '  a .  So 

A =?>* a [] X ] and A' =?>* a and str {a [i x ]) = stria ) = a. 

Case 3. A =>* a and str ia) = a. 

In this case./? has a rule A—» a and/?' has a rule A'—va. SoA =^* a and 



A' =>* a and sir [a ) = a. 

Inductive hypothesis: Assume (A) is true for !</ =  n — l .  

Inductive step; Show (A) is true for I v I = Z = n. 

If / > ] then Ai- = av' where I v' I = n — 1. We know that =$>* a and 

stj- [a) = aw'. This means there must be a rule A ->a [j 5 ] in /? where 

5 =$>* a', la') = v', and hv' 1^1. Since IsTr Ca') I ^ 1, there must be a 

rule B—tb[iC] or B-*b in/?. But if R contains such rules for A and B, 

then/?' contains yi'—>a[i 5'] and rules for 5' constructed from 5. By the 

inductive hypothesis, B' j3' and str (g ) = w'. So str (a [j /3']) = 

str (a [j a']) = v , and setting j3 = a [j /3'], we have str (/3) = w. 

(B) If j4' J3 and sf/'CiS) = w , then A =^* a and sïr (a) = w. 

The proof of (B) is similar to the proof of (A). QED. 

THEOREM 3-4. If G is a grammar < Z , B , N  , R  , S > i  then there is a IDNF gram­

mar G' = < I', =", N\R\S •>! such that rqCG' ) = YoiG ). 

PROOF. This theorem follows from the previous two lemmas. We transform G 

to G' by applying the construction of lemma 3-2 followed by the construction of 

lemma 3-3. Lemma 3-3 assures us that w e Yo(G' ) if and only if w e YqCG ). 

QED. 

Equivalence of OY IF with the Regular Languages 

Theorem 3-4 establishes that every 1-d regular forest grammar can be 

transformed to a IDNF grammar. IDNF grammars are directly related to regular 
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grammars, and this allows us to assert thai OYIF and the class of regular 

languages are equivalent. 

THEOREM 3-5. The class of languages OYIF is equivalent to the class of regular 

languages. 

PROOF. According to theorem 3-4, every language in OYIF is VqCG ) for some 

IDNF grammar G. If we construct a grammar C by removing the brackets from 

the right-hand sides of the rules of G , we have a regular grammar such that 

L (G' ) = yglG ). Similarly, if we construct G' from a regular grammar G by 

adding brackets to the rules of G , we have a IDNF grammar such that 

yo(G') = L(G ). QED. 

COROLLARY 3-6. The class of languages lYlF corresponds to the class ALG i . 

PROOF. This corollary follows directly from theorem 3-5 and theorem 73 of 

Baldwin (1983), which establishes that every language in ALG / is a regular set if 

the brackets and selectors are removed. In 1-d forests, it doesn't matter whether 

extended selectors or standard selectors are used because the selectors are never 

applied in a frontier operation. QED. 
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CHAPTER 4. 

TWO-DIMENSIONAL FOREST YIELD LANGUAGES 

In 2-d forests, the difference between standard and extended selectors becomes 

significant. It is possible for the paths of extended selectors to overlap one another, 

and this gives the frontier operation more deleting power. This chapter establishes 

that a large subclass of 0Y2F is equivalent to the class of context-free languages. 

2-d Forest Grammars with Standard Selectors 

Only selectors in Ej are applied during a 1-d frontier operation on a 2-d 

forest, and the only selector in sf is <1, k>. Thus, 2-d forests with standard 

selectors are strictly non-deleting, and it is easy to show that ALC 2 G 1Y2F. The 

theorem below is presented for n -dimensional languages. The special case n = 2 is 

of immediate interest. 

THEOREM 4-1. If L e ALG„^ then L e lYnF, n >1. 

PROOF. Strings in languages are the yields of n -d forests produced by reg­

ular forest grammars using only standard selectors. Since C , a n -d forest 

grammar with standard selectors is also a n -d forest grammar with extended 

selectors. So any language in ALG^ is also in lYnF. QED. 

COROLLARY 4-2. If L is a context-free language, then L e 0Y2F. 
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PROOF. This follows immediately from the previous theorem, since Baldwin has 

shown that ever}' context-free language corresponds to an ALG j language 

(Baldwin. 1983). QED. 

THEOREM 4-3. If G is a 2-d forest grammar <I, S, , /? ,5 >2 for l^k ^2 and 

S C , then Yo(G ) is a context-free language. 

PROOF. If G has only standard selectors, then it can be converted directly to a 

context-free grammar G'. The conversion method is summarized as 

1) A->a[25][iC] becomes A - ^ B C ,  

2) A -» a [2 B ] becomes A - ^ B ,  

3) A —» a [1 5 ] becomes A^aB , and 

4 )  A — b e c o m e s  A — » X .  

A simple induction on the length of a derivation will show that L { G ' )  =  Y  q CG ) .  

The induction is not shown here. QED. 

Two-Dimensional Normal Form 

To facilitate the analysis of 2-d regular forest grammars which involve dele­

tion, a normal form is defined below which will not affect the string yields of 2-d 

grammars. The normal form will prevent generation of some forests which are not 

frontierable and also some forests which contain useless subforests that would be 

eliminated by the frontier operation. 
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DEFINITION 4-4. Let G be a grammar < 2 , E , N  , R  , S > 2 .  G  is in 2—dimen­

sional normal form , 2DNF, if and only if every rule in R fits one of the 

following forms; 

1) A — ^ a l i B ]  f o r  A  e  N  2 ,  a  e  1 ,  a n d  B  e  N  

2 )  B - * a [ 2 C \ i D ]  f o r  5  , C , . D  €  a n d  a  e  I ,  

3 )  5 — » a [ i C ]  f o r  5 , C  €  A ^ i  a n d  a  6  r ,  o r  

A) B-^x for 5 e A^i and j: 6 El-

This normal form is analogous to Chomsky normal form for context-free 

grammars. Note that selectors in =2 are excluded and that forests without selec­

tors in £] cannot be generated. The constructions of lemma 4-6 through theorem 

4-11 will show how to convert an arbitrary 2-d grammar into a 2DNF grammar. 

The first step in converting a grammar to normal form is to introduce new non­

terminals and rules so that only single non-terminals appear inside brackets in the 

right-hand side of a rule, and terminals or selectors appear only outside brackets. 

DEFINITION 4-5. A 2-d forest grammar G  =  < Ï . , B , N  , R  , S  > 2  is a 

short —rule grammar if every rule in R fits one of the following forms for 

A ,B ,C e N, a iZ, and feel (J E : 

1 ) y4 —» Û [2 5 ], 

2 )  A - » a [ 2 5 ] [ i C L  

3) /i ->6[i 5], or 

4) A - ^ b .  

LEMMA 4-6. Let G be a grammar < Z , E , N  , R  , S  >2'. There is a shorl-rule gram­

mar G' = <I',H',A^',/?',5'>2*suchthatri(G)= Ki(CM 

PROOF. Construct G' from G by introducing new non-terminals C, as required. 

Set I' = I, E' = E, S' = S, and construct R' and N' according to the algorithm 
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below. Assume A , B e N' and a € I' U 

Put all the rules of R in /?'. 

Set N' = N. 

Set i = 0. 

Repeat 

If R has a rule A -» 3] for jS not in A^' , ae Hi Cl, H) then 

Add 1 to i. 

Invent C, and put it in TV/. 

Replace A -» |3] in R' with A Q ]. 

Add Ci3 to/?'. 

Else if R '  has a rule A - ^ a l i a][i B ] where a not in then 

Add 1 to i. 

Invent Q and put it in A^j'. 

Replace A -> a [j q;][i 5 ] in with A -» a [3 C; ][] fi ]. 

Add C; -» a to R'. 

Else if R' has rules A —> 5 [1 a] and 5 a [2 /3] or 5 -> a then 

Replace A -» 5 [j a] with rules A -» a [2 jSKi cv] or A a [j a] 

using right-hand side of every rule for B. 

Else if R' has rules A —and 5->3 for 3 not in N then 

If A = 5 then remove the rule from R'. 

Else replace A — y B  i n  R '  with A —»3-

Until every rule is in short-rule form. 



It should be clear that this construction does not affect the language generated 

by the grammar. We have only introduced more non-terminals and rules without 

altering the forests which are derived. So i (G ) = L CG' ) and F]CG ) = 1'i(G' ). 

QED. 

Any grammar can be partitioned into subgrammars by letting non-terminals 

other than S be the start symbol. If G is a grammar <1, E, ,/? ,5 >2, then G^ 

will represent the subgrammar of G whose start symbol is . It will also be use­

ful to partition a grammar G into subgrammars based on the last characters of the 

elements of Yi(G ). The last character of ae (I, E) is defined as the label on 

the only node of o which does not have an arc emanating from it. 

DEFINITION 4-7. Let G be a grammar < 1 , = , N  , R  , S > 2 .  Then Gg :A or 

5;A , where B e N and A c E, represents a subgrammar of G such that 

ae Y 1(5 :A) if and only if B =t>* /3, /rj(3) = o, and the last character of a 

is in A. 

Algorithms for generating Gg :A from a grammar G are presented in the 

proofs of the next two lemmas. The first lemma deals with the special case where 

A = E. 

LEK-IMA 4-8. Suppose G is a short-rule grammar < 1 , = , N , R  , S  >2. There is an 

effective procedure for construction of Gg :E where B e N. 

PROOF. Gg :E can be constructed simply by removing non-terminals and rules 

from G as follows: 

1) Remove all non-terminals from N and rules from R which cannot be 

r e a c h e d  f r o m  B  .  T h i s  g i v e s  t h e  s u b g r a m m a r  G g .  
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2) Remove all productions of the from .4 —>a where A  e  N  and a  e Z .  

3) Eliminate non-terminals and rules which don't derive forests in Hj CI, H). 

The resulting grammar does not generate any forest whose frontier ends with a 

terminal, for that would require a production A-* a. Also, since rules of the form 

A-^x where x e B were not removed, all the forests derived from B which have 

external selectors are unaffected. QED. 

The next lemma handles the general case of Gg :A. The proof will call for the 

merging of subgrammars with statements like "add to GgThis should be 

understood as an operation on Gg which sets Zg = Is U^.4, 

Rb = Rb\J^a, U and Sg remains unchanged. 

LEMMA 4-9. Let G be a short-rule grammar < Z , E , N  , R  , S  >1 • There is an 

effective procedure for generating G5 :A = <Z',E',N',R',S'>2 where 

5  €  A ?  a n d  A  C I U H .  

PROOF. To construct Gg :A , first remove all non-terminals and rules from N and 

R that are not reachable from B. Then, build Cg :A following the algorithm 

b e l o w .  A s s u m e  t h a t  A  ,  B  ,  C  e  N ,  a  e Z ,  a n d  b  e Z  ( J r .  

Set N' = { } , / ? '  = ( } , £ '  =  5 .  a n d  I '  =  I .  

For each rule in R of the form A 

Put A in N'. 

If è € A then put A in R'. 

Else don't add the rule to R'. 



Remove A — * b  from R .  

Repeat 

Select from R a rule such that 

the non-terminals in /3 are already in N'. 

If the rule is A —> a C ] for 1 ̂  r ^ 2 then 

Put A-^a[r C] in /?'. 

Put A i n N ' .  

If the rule is A -^a [2 C ][i Z) ] then 

If Cj is not already in N' then 

Form Gq  :5 with start symbol Cj and add it to Gg :A . 

Put A a [2 Q ][i Z) ] in R'. 

If Q is not already in N' then 

Form Gc H ̂  with start symbol Q and add it to Gg :A . 

Put A -» a [2 Q ] in R'. 

Put A in A^'. 

Remove A -+ )3 from R. 

Until R is empty. 

Set S' = B. 

The construction can be completed by removing the useless or unreachable 

non-terminals and rules. The initial steps of the algorithm make useless any non­

terminal which does not derive a forest whose frontier ends with an element of A . 

The handling of a rule A a [, C ][i Z) ] is complicated by the possibility that C 



may derive a subforest whcih does not have an external selector. In that case the 

subforest derived from D is truncated during the frontier operation. The addition 

of -• a [i Q ] to R' and Gq :(I Q A) to :A assures that the appropriate sub-

forests of truncating 2-1 structures are included. QED. 

Partitioning can be used to isolate subforests which yield strings that end in a 

terminal instead of a selector. When the frontier is taken, such subforests may 

cause other subforests to be truncated. The next lemma shows how to eliminate 

truncating subforests from a 2-d forest grammar. 

LEMMA 4-10. Let G be a short-rule grammar <r, ,/? ,5 >2- There is a 

grammar G' = <Z',E',N',R',S'>2 such that every rule in R' is either 2DNF 

or A—>B where A , B c N' and Y qCG ) = 7 o(G' ). 

PROOF. To prove this lemma we describe the construction of G' and then prove 

two propositions to get the desired result. G' is constructed from G in six steps. 

Assume A ,B ,C e N and a el.. 

1) Set I '  = I ,  ='  = 5 ={},and/V ={}.  

2) If has a rule ^4 -» x [j 5 ] or A -»x where x e Ei' Ihen don't add a 

corresponding rule to R'. 

3) Find rules in R of the form A -> a [2 B ]. Add A' and B' to A^'. If A = B or 

A , then put A' —>B' in R'. Otherwise put A' -• a [t -B' ] in R'. 

4) Find rules in R of the form A -> c [2 5 ][j C ]. Form :H with start symbol 

B' and add it to G'. Form G s :I with start symbol B" and add it to G'. Add 

A*->a[2J5'][iC] and A'-»5" to 7?', and add A' and C to TV. 



5) Find rules in R of the form A -» a [j 5 ] or A —» .v for .r e Ej. Add corresponding 

r u l e s  A '  — >  a  [ j  5 '  ]  o r  — »  A -  t o  / ? ' ,  a n d  a d d  A '  a n d  B '  t o  N ' .  

6) Find rules in R of the form A -*a. Invent a new non-terminal T, put 

A' —>Û I] J] and T—>x in R' where x = < 1, X> and put A' and T in N'. 

After application of these steps, all the right-hand sides of rules in R' are single 

non-terminals or they fit 2DNF. If propositions (A) and (B) below can be shown 

to be true, then the lemma is proven. 

(A) If there is A in such that A =?>* a and /rjCa) = o, then there is a 

corresponding non-terminal A' in A^' such that A' =i>* j3 and /rjC/B) = a if a has 

an external selector, or /rjC/S) = a • x ; where x = <1, X.>, if a has no external 

selector. 

Proof of (A) by induction on I a I, the number of nodes in a. 

Base. I a I = 1. 

For G to derive a structure of one node, one of the following cases must be true. 

Case 1. R contains a rule S-*x where % e 

In this case, or = jc cannot be in Si, or /rjCa) would not be defined. By step 5 

in the construction, S' —» % is in R', so (A) is satisfied. 

Case 2. R  contains a rule S - * a  where a e I. 

In this case, construction step 6 adds to R' the rules 5 a [j T ] and T —» x 

where X = <1,X.>. a is just a , and g is a x ]. So/ri(a;) = a and 

/7-jC3) = a [j X ]. Since or has no external selector, (A) is satisfied. 

Inductive hypothesis. Assume (A) is true for 1 ̂  I a I <n. 



Inductive step. Show (A) is true for I a I = n. 

Case 1. a = o [2 y] and R has a rule A^aliB] where 5 =i> * y. 

According to step 3 of the construction, A' ->a [2 5' ] or A' -> B' was added to 

R'. We can apply the inductive hypothesis to establish that 

B =è>* y, B' =>* 6, and /rj(y) = /ri(8) or /rjCy) • x = /rjCS) where 

z  =  < 1 , X > .  S i n c e  / r j C a l i y ] )  = / r j C y ) ,  o r  / r j C a E j y l - x )  =  / r ^ C y ) a n d  

/rjCa [2 8]) = /ri(8), we have satisfied (A) above. 

Case 2. or = a [2 y][i 8] and R has A -> a [2 5 ][i C ]. 

By construction step 4, has a rule A' a 5' C ] or A' B". First let 

us assume that y has an external selector. Since both y and 8 are smaller than 

a, we can apply the inductive hypothesis to get fx and p such that B' =>* /i 

a n d  C  = ^ *  p ,  / r j C y )  =  / r j C / i )  a n d  / r i ( 8 )  =  f r ^ i p ) ,  o r  / r j C S )  •  %  =  f r ^ i p )  

where z = < 1, A.>. It follows that fr^ia [2 /i][i p]) = /rjCa [2 y][i 8]) or 

fr^ia [2 y][i 6]) • x when 8 has no external selector, and so (A) is satisfied. 

Now assume that y has no external selector. Since B =$>* y and y is smaller 

that a we can apply the inductive hypothesis to get B" =^* and 

f r i { y ) - x  =  f r i i f i ) .  I t  f o l l o w s  t h a t  / r i ( a [ 2 y ] [ i  8 ] ) - . r  =  [ 2 y D - x  =  

/rj(a [2 At]), thus satisfying (A). 

Case 3. a = a [j y] and R has A -• c 5 ]. 

In this case, step 5 adds to R' the rule A' -»a [j B' ]. Since y is smaller than a, 

we apply the inductive hypothesis to get B' =?>* 8 and fr^iy) = or 

/rjCy) • -t = /ri(8) where .r = <1, X>. It follows that /rjCo [j 8]) = 

fr^ia [1 y]) or /rjCa [j y]) • .r , thus satisfying (A). 



(B) If there is A' in N' such that A' =S>* )3 and = o • .v where x = < 1, X>, 

then there is a corresponding non-terminal in N such that A =>* a and 

=  0 -  X  if a has an external selector or /rjCa) = o if a has no external 

selector. 

Proof of CB). The proof of (B) is similar to the proof of (A). QED. 

Finally, it can be shown that every 2-d forest grammar has a yield-equivalent 

2DNF grammar. 

THEOREM 4-11. Let G be a grammar < 1 , E , N  , R  , S  >2 • There is a 2DNF gram­

mar C = such that ro(C?) = ro(G'). 

PROOF. Form a grammar G" by applying the constructions of lemmas 4-6 and 

4-10 to G . The lemmas guarantee that Yo^G" ) = FolG ). G" can be converted to 

2DNF grammar G' by eliminating the productions of the form A-*B where both 

A and B are non-terminals. This can be done by replacing A-^B with A —> /3 for 

each rule B—t^, and the yield of the grammar is not affected. Unreachable non­

terminals and rules can also be removed. Since Y qCG ) = /oCG" ) and 

yo(G" ) = XoCG' ), we have ^qCG ) = FoCG' ). QED. 

The Deleting Power of Extended Selectors 

Using extended selectors, we can write 2-d forest grammars in which the 

selector paths overlap one another. If this happens in a cycle of non-terminals, 

then the grammar contains a deletion cycle. Consider the following example gram­



mar, which will be named ABC. Let N2 — N ^ = {S , A }, I = {z , y ) where 

A" = < 1,1 > and y = <1,A.>, I = and R consists of 4 rules: 

1 ) 5 —» #[2 #[2 •^' ][] ]][i c [j y ]], 

2 ) 5 - > A ,  

3) A —> #[2 c [j y ]][j #[2-A ][j 6 [j y ]]], and 

4 )  v 4 - » a [ i & [ i y ] ] .  

This grammar yields the string language {a""*" 6" c'" } (J {A""'" } for 

n > 0 and 0<m Rules 3 and 4 constitute a context-free subgrammar which 

yields {a" ft" }, n > 0. Each application of rule 1 attaches a selector to the front of 

the derived structure and the terminal c to the end. During the f rontier operation, 

a c is attached to the end of the resulting string every time a terminal is removed 

from the front. Figure 3 contains a forest derived from grammar ABC and its 1-d 

frontier. 

In a forest produced by grammar ABC, a subtree may be repeatedly subjected 

to deletion during the frontier operation. This happens because the forest contains 

overlapping selectors. In order to define overlapping selectors formally, we will 

first introduce external selectors and a forest truncation function. Truncation, 

external selectors, and overlapping selectors are defined for n -dimensional struc­

tures so that the definitions will be useful in later chapters. 

DEFINITION 4-12. Let 3 be a forest in f/^(Z,E). x is an external selector of 

j3 if and only if x e En-i and x is in /r„_i()3). 
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its 1-d frontier 

FIGURE 3. Example 2-d forest containing overlapping selectors 

If X is an external selector of an n-dimensional forest j3, then the selector % 

will not be applied when /rjCjS) is taken. If any subforest of |3 has no external 



selector, then neither does /3. A 2-d forest 0 has al most one external selector, and 

it will occur at the end of the string resulting from /rjC/S). If a 2-d forest has an 

external selector, it can be found by starting at the root and traversing the arcs, 

choosing 1 -arcs instead of 2-arcs if there is a choice. For the rest of chapter 4, we 

will adopt the notational convention that , p > 0, is an abbreviation for the 

selector <1,1^ >, and represents the selector <1, X.>. 

DEFINITION 4-13. If G is a grammar < Z , B , N  , R  , S > 2  such that A  e N ,  

then exsel (A ) is the set of all external selectors of forests derived from A. 

Since exsel (A ) G 5 for any grammar, it is clear that exsel (A ) is finite. A 

procedure for constructing exsel (A ) is given in the proof of the next theorem. 

THEOREM 4-14. If G is a grammar , R  , S > 2  such that A  e  N ,  then 

there is an effective procedure for constructing exsel {A ). 

PROOF. The set exsel (A ) can be constructed by deriving a finite subset of L (A ) 

called minset (A ), taking the frontiers of the derived forests, and examining the 

selectors at the ends of the resulting strings. Put j3 in minset (A ) if A =>* jS and 

no rule number appears more than once on any path from the root to the leaves of 

the derivation tree for /3. To construct a derivation tree, first number the rules of 

the grammar. Whenever a rule is applied in the derivation of a forest, label the 

node which was expanded with the number of the applied rule. Since there are a 

finite number of rules and a maximum number of non-terminals introduced in 

applying a rule, the set minset [A ) is finite. 
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To prove the theorem, we need to show that if 3 is derived by repeating a 

rule, then there is a smaller forest j3' which has the same external selector. Sup­

pose A =?>* /3 and j3 contains jS' such that A =>* 0', and the same rule is applied 

first in both derivations. 

Case 1. If i3' has no external selector, then neither does (S. So /3 and )3' have the 

same external selector. 

Case 2. If jS' has an external selector, then it will be replaced during the frontier 

operation by a string whose external selector is that of 3. So we can 

replace 0' with any subforest that has an external selector without 

affecting the external selector of /3. We can choose a subforest to replace 3' 

which is derived without a previously used rule. 

The process described above can be applied until all repeated rules are eliminated 

and the resulting forest has the same external selector as the original. Since the 

forest has no repeated rules, it will be in minset {A ). QED. 

DEFINITION 4-15. The truncation function trunc (3): H) is 

defined as 

T r u n c  { a )  =  a  for a  e I (J E, 

trunc ia a]) = a trunc (a)] 

f o r a  €  I ,  a  e  c )  a n d  m  ,  

trunc (a «Er 31) = o L trunc (a)][r trunc (3)] 

f o r a  € l ,  3  (  S), m , r -1, and 

trunc (a [„ 3]) = o U trunc (a)] 

f o r a  e l ,  a  and 3 



For a 2-d forest, the truncation function removes subforests joined to a node 

by a 1-arc only when the node also has a 2-arc. Now truncation and external 

selectors can be used to define overlapping selectors. 

DEFINITION 4-16. A forest ^ e z) conxains an overlapping selector if 

either 

1) some subforest of /3 contains an overlapping selector, or 

2 ) j 8  =  û [ „  « ] [ „ _ !  y ]  a n d s e / ( < n — 1 ,  o  > ,  f  r n - i i t r u n c i y ) ) )  =  x  

w h e r e  x  e  E ^ - i  a n d  < n  —  1 ,  o t t  >  i s  a n  e x t e r n a l  s e l e c t o r  o f  a  

for 77?^ A., a 6 I, a e H), and y e ~^(I, E). 

Overlapping selectors are impossible in n -d forests without extended paths. 

The selection operation always retrieves an n -d tree, and every path of an n -d tree 

starts with jt. Since an n -d standard selector has a path in {1,..., n — 1}', the 

path of one n -d selector cannot penetrate into a tree selected by another n -d selec­

tor. The increased deleting power of extended selectors will be analyzed step-by-

step, beginning with selectors that do not overlap. 

Grammars with Non-Overlapping Selectors 

As shown in the proof of theorem 4-3, a 2-d forest grammar in which every 

selector is can be converted directly to a context-free grammar. A similar 

scheme can be nsed for 2DNF grammars with extended selectors, but no overlap­

ping selectors. The conversion will require the use of the debts of non-terminals 

and partitioning of forest grammars by external selectors. If a non-terminal 

derives a forest a and has debt i, then i characters will be deleted from the yield 

of oi when the frontier operation is performed on a larger forest which contains a. 
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DEFINITION 4-17. Suppose G is a grammar , R  , S > 2  wilh non­

terminal A  €  N .  d e b l s  { A  ) is the sel of integers such that i e debts iA ) if 

and only if A =$>* a, S =4>* /3, a is a substructure of )3, 5//" (3)= "vu-

w h e r e  v  i s  a  s u f & x  o f  t h e  y i e l d  o f  Œ ,  a n d  s f  r { a )  =  y v ,  w h e r e  \ y  I  =  i .  

LEMMA 4-18. Given a grammar G = < 1 , E , N  , R  , S > 2  with no deletion cycles, 

there is an effective procedure for constructing debts (>i ) for every non­

terminal A e N. 

PROOF. The construction of debts iA ) requires prior calculation of the debts of all 

the non-terminals which can precede A in a derivation. The algorithm below con­

structs all the debts sets of a grammar by making multiple passes through the rule 

set R. 

Set debts is ) — {0}. 

Set debts iA ) = {} for all other non-terminals. 

Repeat 

For each rule A —> jS in 

If iS = a [j 5 ] then 

If Oe debts iA ) put 0 in debts iB ). 

If r > 0 and r e debts (A ) put r — 1 in debts iB ). 

If /3 = a U 5 ] then 

Add every element of debts (A ) to debts iB ). 

If j3 = a [2 5 ][i C ] then 

Add every element of debts (A ) to debts iB ). 

For each m e exsel iB ) and r e debts (A ) 
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If 5 : m yields a string of length I then 

Put m in debi^ (C ). 

For each I such that I ^ < m 

If 5 : m yields a string of length I then 

Put m +r —I in debts (C ). 

Until no change is made in any debts set. 

It can be established that the construction algorithm produces the right debts by 

proving the two propositions below. 

( A )  If A € N, A =$>* Of, S =$>* /3, a is a substructure of 0, sf r (or) = yv , 

s/r (/3) = uv\v, and ly I ~ i, then i e debts {A ). 

CB) If i g debts [A ), then A =?>* a, S =$>* 0, a is a substructure of jS, 

sf r (a) = yv , sf r (jS) = uvw , and ly I = i. 

These can be proven by induction on the difference in size between a and /3. 

1131 — 1 a 1. The inductions are not shown here. QED. 

In the case of a rule /i -» a [2 5 ][i C ] when calculating debts [A ), if the gram­

mar has no overlapping selectors, then no word which B yields is smaller than any 

debt of A. If the-grammar contains overlapping selectors, then the lengths of 

strings yielded from B must be determined. A length-predicting scheme will be 

presented later. First we demonstrate that 2-d grammars which have no overlap­

ping selectors can be converted to context-free grammars. 



THEOREM 4-19. Given a 2DNF grammar G = < 1 . E , N  , R  . S  > 2  with no over­

lapping selectors, there is a context-free grammar G' such that 

yo (G) = lCG' ). 

PROOF. To construct G' , follow the algorithm below. Assume that A , B , C e N, 

a € I, and z'' e Ej. 

Set = ={),andN' = {5'}• 

For each x'' e exsel {S ) 

Put oSr in N'. 

Put5'-»o5r ini?'. 

Repeat 

Take a non-terminal jA^ from for which there are 

no rules in R'. 

For each rule A - * ^ i n  R  

LI: If j8 = x'" and j = 0, put qA^—^X in R'. 

L2: If j8 = a li 5 ] then 

If ; =0 add qA^ -» a to R' and to N'. 

Else add j A r - * j - i B r  t o  R '  and j - ^ B ^  t o N ' .  

L3: If /3 = a [25 ] add j A r — ^ j B ^  to R' and j Br to N'. 

LA: If 3 = a[2-S][iC] then 

Add j A r - y j B ^  j n C r  to R' and jB^,^ I 0  N'. 

for each x'" e exsel {B ). 

Until all non-terminals in N' have rules in R'. 
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The theorem is true if propositions (A) and (B) below can be proven. 

(A) IÏ A (. N , A )3, sf r Cj3) = w , I w \ = j , j e debts CA ), and 

x'' e exsel {A ) then jAr e N' and w. 

Proof of (A) by induction on 1/31. 

Base. 1/31 = 1. 

In this case, R has a rule A-^x''. Since G has no overlapping selectors, the 

debt of a is 0. Also, the external selector of is x'", /rjCx'" ) = x'", and 

strix'' ) = X.. By line LI of the construction algorithm, R' contains o^r— 

So (A) is satisfied. 

Inductive hypothesis. Assume (A) is true for 1< I /31 <n. 

Inductive step. Show (A) is true for I j31 =n. 

Case 1. R has a rule A —>a [j 5 ] and /3 = a [j y] where B =5>* y. 

We know A has external selector x*" and debt First, suppose ; = 0. Then 

sfr{^) = a^v'. "We can apply the inductive hypothesis to y with debt 0 and 

external selector x'" to get o-S^ in R' such that qB^ =>* w'. By line L2, we 

also have >oo-Sm io R'. So o^r =>* ov', and (A) is satisfied. Now sup­

pose i > 0. Then sf r (3) = sfria [j y]) = av'v = vu-, where y yields v'w , 

and B has external selector r and debt ; —1. The inductive hypothesis gives 

us j-iB^ u- for j-iBr in N' and line L2 puts jA^-yj-iB^ in R'. So 

jA^ =5>* u-, and (A) is satisfied. 

Case 2. R has .4 —>a [j 5 ] and j3 = a U y] where B =^* y. 

B has the same debt j as A , and y has the same external selector x ' and 



frontier as j3. So sf r (/3) = sf r (y) = w. Since y is smaller thai 3, we apply 

the inductive hypothesis to get j in N' such that =^* iv. Line L3 

gives us the rule jA^-* j B,. in /?' , so -vf , satisfying (A). 

Case 3. R has A -» a [2 5 ][] C ], )3 = a [, ylli 8], 5 =>* y, and C =^* 8. 

Since A has debt j and external selector x'', B has debt j and 8 has external 

selector x''. B has some other external selector xand the debt of C is 

therefore m , since selectors cannot overlap. We know that sf r (3) = vw , 

IV I = ;. This means that sf r Cy) = vw j and s/r (8) = uw 2, where I u I = m 

and w = w jW2. All of v is derived from B since selectors cannot overlap, y 

and 8 are smaller than /3, so we apply the inductive hypothesis to get j B^ 

and ^Cr in N' such that jB^ =^* wj and =>* u'2. Line L4 also gives 

jAr-* jBjn in R', so jA^ =>* w and CA) is satisfied. 

(B) If jAr € N' and j A^ =§>* w , then there is ̂  in TV such that A =^* j3, 

i e debts {A), x'' e exsd {A ), and sf r (jS) = vw where 1 v I = ;". 

Proof by induction on d , the number of derivation steps required for 

Base, d = \. 

N' has a rule qA^^X. Then N has A —>x'' by line LI, A has debt 0 and 

external selector x'', and sf r (x'" ) = k. Thus, (B) is satisfied. 

Inductive hypothesis. Assume (B) is true for Kc? <n. 

Inductive step. Show (B) is true for d = n. 

Case L R' has oA,.-*a qB^ and qA^ =>* oiv' where qB^ =>* w'. 

We apply the inductive hypothesis for the derivation of w' to get 5 =>* y, 



s f r  (y) = Al'', B has debt 0 and external selector x''. By line L2, R contains 

^ -»a [j 5 ], and so A =^* a[i -y]. But sfriaii y]) = striai^ fj'iiy)]) = 

a - sfr (y) = aw'. A has debt 0 and external selector x*", so (B) is satisfied. 

Case 2. R' has jA^-^ j-i^r and jA^ =^* w. 

We apply the inductive hypothesis to get B in. N such that B =>* y, 

s/r (y) = v'w , I v' I = ; — 1 = debt {B ), and e exsel{B ). By line L2, we 

have A -•a [i 5 ] in /? where A has external x'' and debt j. So A a [j y], 

and sf r (a [j y]) = a • sfr{y) = av'v = w where I v I = Thus, (B) is 

satisfied. 

Case 3. R '  has a rule j A ^ - ^ j B ^  and j A ^  =#>^5^ =>* w. 

We apply the inductive hypothesis to get 5 in such that 5 =?>* y, 

s f r  Cy) = VU', IV 1 = ;• = debt (fi ), and z'' e exsel (B ). By line L3, we have 

A -> a [2 5 ] in where A has external selector and debt j. So 

A =^* a [2 y] and sfr {a y]) = sfriy) = vw. Thus, CB) is satisfied. 

Case4. R' has a rule jA^-*jB^ mCr,^' = w2, jBm ^i and 

mCr =5>* W 2 .  

We apply the inductive hypothesis to get B and C in such that B y, 

C =>* 8, sf r (y) = V jii' 1, IV11 = 7 , x'" e exsel {B ), sf r (6) = V2W2, 

IV 21 = m , and x e exsd (C ). From line L4, we have A a [2 5 C ] in /? 

where A has debt j and external selector x . So sf r {a [2 y][i 8]) = 

sïr(sutei(/riCy),/rjCS))) = VjVjU'2 = V]U' where Ivjl = Thus, (B) is 

satisfied. QED. 



Grammars Without Deletion Cycles 

2-d forest grammars are harder to analyze when they contain overlapping 

selectors, particularly when there's a cycle of overlapping selectors called a deletion 

cycle. To define a deletion cycle, it will be necessary to distinguish the substruc­

tures of a forest which precede a given node from those which follow it. The dele­

tion cycle definition also contains some terminology which can be informally 

defined as follows: a 1-node in a forest is a node which has only a l-arc enamating 

from it, a 2-1-node has both a l-arc and a 2-arc, and a 2-node has only a 2-arc. 

DEFINITION 4-20. Suppose a and 3 are subforests of ye = ) such that 

sel{<n ,p>,y) = a, and sel{<n ,q>,y)= )3. Let p — oiir and q = oj p 

where i # j. a precedes ^iï i> j , and a follows jS if i < j. 

DEFINITION 4-21. Suppose a grammar G = <Z,z,N ,R ,S>2 has a non­

terminal M such that M y, /S is a subforest of y, and M =>* )3. If the 

sum of the lengths of the selector paths exceeds the number of 1-nodes 

over all the subtrees that precede /3 in y, then G has a deletion cycle. 

So a deletion cycle deletes more than it adds when the frontier is taken. If we 

try to find the debts of non-terminals in a grammar with a deletion cycle, the 

algorithm of lemma 4-18 will never halt. If there is no deletion cycle, the algo­

rithm will halt and a maximum debt for any non-lerminal can be identified. If a 

grammar has overlapping selectors but no deletion cycles, it can be converted to 

context-free by a procedure similar to that of theorem 4-19. In order to calculate 

the debts of the non-terminals, however, it is necessary to predict the lengths of 

words yielded from certain non-terminals. 



LEMMA 4-22. Let G be a 2DNF grammar <1, E.N .R ,S>2 which is partitioned 

according to external selectors, has no deletion cycles, and has non-terminal .4. 

There is an effective procedure for determining whether YoiL {A )) contains a 

string whose length is Z, for arbitrary I ^0. 

PROOF. The algorithm is presented as a recursive function ^mrdsize which has 

three parameters: a non-terminal A , and integer length Z, and a set callset of 

(non-terminal, integer) pairs which is used to prevent repetition of useless function 

calls. The function answers yes if A yields a word of length I, and no otherwise. 

wordsize {A , I, callset ): 

If (j4 , Z ) € callsel then set answer to no. 

Else 

Set answer to no. 

Repeat 

Select a rule Ai-^ 3 in R. 

If )3 = a [j 5 ] then 

If Z > 0 then 

Set answer to wordsize{.B ,1 — 1, callset (J {(A , Z )}). 

If = o [i 5 ] then 

Set answer to wordsize {B ,l, callsel IJ {(A , Z )}). 

If )3 = A" '• then 

If Z = 0 then 

Set answer to yes. 

If i3 = a [j 5 ][i C ] where e.xsel (5 ) = (tti } then 
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Set i to 0. 

Repeat 

If word size (5 , i, callset |J {(A , O}) then 

Set a?^s^\.'er to vordsize (C, I +m — 1, callset IJ {(A , / )} ). 

Add 1 to i. 

Until i = I or answer = yes. 

Until all rules for /i have been examined. 

Return the value of answer. 

The wordsize function answers yes when I is 0 and it finds a production 

A-^x''. Otherwise, it calls itself with the appropriate non-terminals and new 

value of I. When it finds a rule A -• a [2 B ][i C ], it makes calls using all possible 

sublengths of I with B and C. In some instances, the value of I in the new func­

tion call is larger than that which was passed in. If the grammar were to contain a 

deletion cycle, the function would call itself indefinitely. But since the grammar 

does not contain a deletion cycle, the number of symbols added (the sum of the 

values of i ) exceeds the number of symbols deleted (the sum of the values of m ) 

for each pass through a cycle. "When the function calls itself at the beginning of 

each new pass through a cycle, the value of I is smaller than before. 

The function always adds the current values of A and I to the callsa when 

it makes new calls. If the grammar has a cycle which neither increases nor 

decreases the size of the yielded string, the function will not traverse the cycle 

more than once. Having traversed such a cycle once, it is useless to continue. 

Thus, execution of the function eventually halts with an answer of yes or no. 
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OED. 

Now it is possible to demonstrate that any 2-d forest grammar which does 

not have a deletion cycle can be converted to context-free. The conversion process 

is very similar to that used for grammars without overlapping selectors. 

THEOREM 4-23. Let G be a 2DNF grammar <Z,B,N ,R ,S >2. If G does not 

contain a deletion cycle, then there is a context-free grammar G' such that 

L(G') = yo(G ). 

PROOF. To construct G' , follow the algorithm below. Assume that A , B , C € N, 

a e I, and x'' e Ej. 

Set T = 'L,R' ={},andN' = {S'}• 

For each :c e exsel iS ) 

Put in N'. 

Put 5" -* oSr in R'. 

Repeat 

Take a non-terminal j from N' for which there are 

no rules in R'. 

For each rule A in R 

LI; If )3 = x*" and j = 0, put qAj.-^'K in /?'. 

L2: If /3 = a [1 S ] then 

If =0 add qA^-^q to R' and qB^ to N'. 

Else add jAr-^j-iB^ to/?' and j-\Br loN'. 
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L3: If |3 = a [2 B ] add j A ^ ^ j  to R' and j to N'. 

L4: If )3 = 0 [2-6 ][i C] then 

Add jAr-*jBm mCr to/?' and to AT. 

for each m e exsel {B). 

Add jAr-ym+j-iCr to/?' and to A^' 

for each m e exsel {B ) and I e paths iB : m ) such that / < ; 

and 5 : m yields a string of length 1. 

Until all non-terminals in N' have rules in R'. 

The theorem is established by proving the propositions (A) and (B) of theorem 4-

19. 

Proof of (A). This proof is the same as in theorem 4-19 with the following addi­

tion: 

Case 3. R has A -+a [,5 ][i C], jS = S], B =#>* y and C =?>* 6. 

We know that A has debt j and external selector x'', and s f r i j i )  =  w 

where I v I = /. Suppose that sf r (y) has length I less than j and assume 

that B has external selector j^ . Then C has debt m+j —I and external selec­

tor x . We apply the inductive hypothesis to establish that ^ -z * w 

for Q in 7?'. Line L4 also gives us j A^-^ j^+j-iCr R'- So 

jAr =^* w and (A) is satisfied. 

Proof of (B). This proof is the same as in theorem 4-19 with the following case 

added: 

Case 5. i?' has and ; .4^ =>* w. 



m +J-1 Cr derives av in one less step than jAr,so we apply the inductive 

hypothesis to get C =>* 8 and sf rib) = va»' for C in with debt m-\-j —I 

and external selector x'', and Iv 1 = m+j —I. By line L4, we also know that 

R has a rule A [t 5 ][] C] and 5 =>* y such that Is/r (y) I = I and y has 

external selector m. So sf r (a -/][] 8]) = v jv 2^ where I v j I — I and 

IvtI = Iv I—m = j—l. But then lvjV2l = satisfying (B). QED. 

Theorems 4-19 and 4-23 show that any forest 2-d grammar that does not 

have a deletion cycle can be converted to a context-free grammar. It follows that 

any 2-d forest grammar that does not have a deletion cycle can be rewritten using 

only standard selectors. Just convert the grammar to context-free, and then con­

vert it back to a 2DNF grammar whose only selector is z 

Length Predictors for 2-d Forest Grammars 

Before deletion cycles are analyzed, it will be demonstrated that a 2-d forest 

grammar can be converted to a system which predicts the lengths of the strings 

yielded by the grammar. Given a grammar and a non-terminal A , the set 

paths iA ) contains the lengths of all the strings which A yields. 

DEFINITION 4-24. If G is a grammar <Z,=,N ,R, S >2 and A eN, then 

paths {A) is the set of integers such that i e paths {A ) if and only if 

A =>* 3 and Is/r Cj3)l = i. 

The rewriting rules for a non-terminal A implicitly contain rules for the con­

struction of paths {A ). The set of expressions for construcling paths {A ) will be 



denoted À. The rules will contain base values and will specify addition and sub­

traction operations on values generated from other sets of expressions. 

LEMMA 4-25. Suppose G is a 2DNF grammar <Z,E,N ,R ,S>2 and A e N. 

There is an effective procedure for constructing A , a set of expressions which 

specify paths (A ). 

PROOF. To construct À  , first form C  =  <  I', N ' , R ' , S  '>1 such that the 

derived forests are partitioned according to their external selectors. If N has non­

terminal A , then N' has A^^,.... Ar^ for each r, in exsel (A ), l<i , and 

Ar. represents A }. The set paths (A ) will be the union for f = 1 to m of 

paXhs{Ar^). To form Ây where; = r,, ûnd all the rules for non-terminal A y in 

G' and follow these steps: 

1) If A^' has Ay , put 0 in Ây. 

2) If A^' has Ay-> a [j 5y ], put the expression 5y +1 in Â^. 

3) lî N' has Ay-» a [2 5^ ], put the expression 5y in Ây. 

4) If A^' has Ay a [2 Br ][i Cj ], put the expression Br + Cj — r in Ay. 

Complete the construction by forming the rule set for each B^ such that B^ is 

used in an expression of Ây. An expression + I in Ây means that 6 + 1 belongs 

to paths La j ) for everj' b in paths {B^ ). An expression Q + — r means that 

c +b —r belongs to paths (Ay ) for every b in paths ) and c in paths (Q ). The 

operator — is a subtraction operation which is defined for b —r only if 6 ^ r. 

Negative string lengths are not meaningful. We will adopt the convention that the 

— operator applies only to the term that immediately precedes it. Thus, 8-^6 and 



(4+4)—6 are meaningful, but 4+4—6 is not defined. 

It can be shown by induction on the number of steps required 1o derive 3 thai 

À will put \sf 7-(/8)I in paths {A ) if and only if A =^* j8. The restricted subtrac­

tion operator assures that no elements will be added for forests which contain path 

errors. QED. 

The length-predicting scheme described in the previous lemma builds sets of 

integers with repeated addition and subtraction on a finite number of base ele­

ments. Some operations on the length-predicting expressions can be performed 

which will eventually eliminate subtraction from all the expressions. A substitu­

tion operation will allow some initial simplification of the system. This simple 

substitution is defined below and justified in the lemma following the definition. 

DEFINITION 4-26. Suppose G is a grammar <Z,E,N ,R ,S>2 for which 

A and B generate paths {A ) and paths [B ) respectively where A , B e N. 

If À has an expression which refers to B and B consists of expressions 

Gi'.ez',... then the substitution of B into is accomplished by re­

placing 6; with m expressions in which (e^.') is substituted 

for 5 , l^r ̂ m. 

LEMMA 4-27. Suppose G is a grammar ,R ,S>2 for which À and B 

generate paths {A ) and paths [B ) respectively where A , B e N. If A has an 

expression e, and À ' is the same as A with B substituted into e,, then À ' also 

generates paths {A ). 

PROOF. The textual substitution of subexpressions has no effect on the set gen­

erated. The subset of expressions {c, , } in Â ' specifies the same elements 
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for paths (^4 ) as the expression c. from À in combination with B , and no expres­

sions other that c, are modified. The meaning of a restricted subtraction operator 

following B in e,- is preserved by putting parentheses around the subexpressions 

which replace B. QED. 

If À has expressions which contain a term B and paths (5 ) is a finite set, 

then B can be substituted into the expressions of À. This increased the number of 

expressions in À , but it allows some arithmetic operations to be performed and it 

may eliminate the need for B. Any subexpressions A+c or h—c can be evaluated. 

If A <c in a subexpression b—c, then the expression should be removed from the 

system. 

If a grammar contains cycles of non-terminals, then its length-predicting sys­

tem will contain corresponding cycles. Expressions can refer to one another, and 

those that refer to themselves, either directly or indirectly, are called self-

referential. 

DEFINITION 4-28. Suppose G is a 2DNF grammar <1,E,N ,R ,S>2, A e N, 

and Â specifies the set paths {A ). An expression in A refers to 5 (or 

non-terminal 5 ) if and only if 

1 ) it contains an occurrence of 5 , or 

2) it contains an occurrence of C and an expression in C refers to B. 

DEFINITION 4-29. Suppose G is a 2DNF grammar <I.,=,N ,R ,S>2, A e N, 

and Â specifies the set paths {A ). An integer ^ is a base element of A if it 

can be generated without applying any expression more than once and 

without applying any self-referential expression which contains an arith­

metic operator. 



Since the number of expressions in a length-predicting scheme for a grammar 

is finite, the set of base elements of a non-terminal is finite, and it can easily be 

enumerated. Substitution of base elements can be used to reduce the complexity of 

expressions which have two terms that are self-referential. This process is called 

linearization. 

LEMMA 4-30. Suppose G is a grammar < 1 , E , N  , R  , S > 2  f o r  which A generates 

paths {A], A € N. There exists À ' such that À ' generates paths iA ) and no 

expression in À '  has two terms which refer to A. 

PROOF. The construction of Â ' is described for two situations, depending on 

whether À refers to itself directly or indirectly. 

1) If A has an expression e ^ :  A + A — p  where p  is an integer, put all the expres­

sions of A except gq in A '. Suppose i» &2. • • • >are the base elements of A. 

Put the expressions b j+A —p , b 2+A '—p and b^ +A '—p in A ' instead of 

eo-

2) Suppose A has an expression en : 5 4-C —p where p is an integer, an expression 

in B refers to A , an expression of C refers to A , and èj, Ô2 br are the 

base elements of A. To form A put all the expressions of A in A ' except e^. 

Replace references to A with A ' in these expressions. Put expressions 

B'+C —p and B + C '—p in A ' instead of eg- -B ' is formed from B as fol­

lows: if B has an expression / which refers to A , replace it with expressions 

/ J, / 2,. • • , fr> where /j is the expression / with A replaced by b^, 

1 ̂  z ^ r. C ' is formed from C in a similar manner. 
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It is clear in each situation thai if A ' generates I, then Â generates I. since 

generations in ,4 ' can be exactly duplicated in À. It is less obvious that I generated 

by À is also generated by À This can be proven by induction on the number of 

steps required to generate I. The proof is shown below for situation 1 in the con­

struction rules. The proof for situation 2 is similar. In the proof, the symbol b 

will represent a base element of Â , and the symbol I will represent an integer 

which has been generated by a series of steps from one or more base elements. 

(A) If À generates I, then À ' generates I. 

Proof of (A) where À ' is constructed as in situation 1 by induction on the number 

of steps in the generation of I. 

Base. A generates I in one step. 

In this case, Z = ô is a base element. A ' has the same base elements as Â , so 

À ' also generates I. 

Inductive hypothesis. Assume (A) is true when A generates I in less than n steps. 

Inductive step. Show (A) is true when Â generates I in n steps. 

If I  is generated by an expression other than e q, then I  =  I i ± i  o r  I  =  

l\+ 12—p , where i, p are integers and Z^, Z; are generated by A. In these 

cases, we use the inductive hypothesis to extablish that Z j and Z ^ are generated 

by A ', and then observe that A ' has the same expressions as A except for eo-

Since Cq is not used in the last step, we know that À ' generates Z. 

If Z is generated by eg, then Z = Z i+ Z 2— p. We can show that Z is in Â ' 

by examining the ways in which Z j can be generated. 



Case 1. 11 = b ,a base element of A. 

In this case, the inductive hypothesis can be applied to extablish that /1 is in 

A  T h e r e  i s  a l s o  a  r u l e  b  +  À  ' — p  ,  s o  Z  =  f t  +  Z  p  i s  g e n e r a t e d  i n  À  

Case 2. Z ^ for integer / and Z3 in jsor/isCA ). 

In this case, Â has a rule A ± i. The element I can also be generated by 

applying the expressions in a slightly different order without causing a path 

error; I =l\+l2—p =li±i + li—p =1^+12—p±i. Since Z 2 and / 3 are 

both in paths (A ), A generates Z 3+ Z 2— p , and the inductive hypothesis can be 

applied to show that À ' generates 17,+12—p. A' has a rule Â ' ± z, so Â ' gen­

erates Z. 

Case 3. Z J = Z3+ Z 4 — /> for integer p and Z3, Z4 in paths [A ). 

In this case, Z j is generated by a previous application of e^. The inductive 

hypothesis can be applied to establish that Z j is generated in Â ' as 

11 = b + l/( — p. Since every generation in À ' can be imitated step for step in 

A ,l \ can be generated in A as 6 -1- Z 4' — /? also. Now we have 

I =l\-+l2~P = i.b-¥l/(—p)-¥l2 — p- Observe that Z 4'+Z 2 —/J is larger than 

Z4', so Z can also be generated as è + (Z 4'+Z2~/')— /' in Â. The inductive 

hypothesis can be applied to establish that Z2' = Z4'+ Z2 —can also be gen­

erated in .4 and since Â ' has an expression 6 +Â ' — p , Z is generated in A 

QED. 

Subtraction which is not part of a deletion cycle is easy to eliminate from a 

length-predicting scheme. To subtract a constant value cZ from every element of 
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paths {A ), just subtract d from the base elements of A. If some of the base ele­

ments are smaller than d , then it is necessary' to expand the base before subtract­

ing. 

LEMMA 4-31. Suppose G is a grammar < I, £,A^. , S >1 with non-terminal A 

and A specifies the set paths [A ). If no expression of À uses subtraction and 

every expression has been linearized, then for any positive number d , there is 

À ' which specifies pathsiA' ) where paths (>\' ) = {;î I Z — d =72 and 

I e paths [A )}. 

PROOF. To construct À first place all the expressions of A in Â For each base 

element of Â apply every possible combination of increasing steps to get a 

number m such that d 4m <i+d where i is the smallest increment of any step 

applied in the generation of m. Add each such m to Â ' as a base element. These 

values are easily enumerated, since every expression is increasing. Remove all base 

elements from A ' which are less than d. Subtract d from every base element 

which is greater than or equal to d. 

Now À ' generates n if and only if A generates n + d. If Â ' generates n from 

base element b , then A has base element b-\-d and generates n -\-d by the same 

sequence of operations. If A generates n + d i rom base element b^d , then A ' 

generates n from base element ô — i by the same sequence of operations. If is 

less than d , then À ' generates n in fewer steps from a larger base element 

b +  i  —  d  ,  w h e r e  i  i s  t h e  s m a l l e s t  s u m  o f  i n i t i a l  i n c r e m e n t s  s u c h  t h a t  b - ¥  i  —  d ^ Q .  

QED. 



Removal of subtraction in deletion cycles in considerably more complicated, 

but it is possible because the number of distinct increments and decrements in a 

length-predicting system is finite. Subtraction is eliminated by enumerating base 

elements below a certain value and then changing the subtractions to additions. 

This method is described in lemma 4-33. An auxiliary lemma is presented first 

which will be needed for the proof of lemma 4-33. 

LEMMA 4-32. Suppose î i+12+ ' ' ' + ip is a sum of positive integers where p is 

larger than some number d. There is a partial sum ii + /^+i+ • • • + im = 

n  X  d  s u c h  t h a t  Z  >  1  o r  m  < p  ,  a n d  n ^ l .  

PROOF. First observe a property involving remainders of integer division; if 

a mod d = b mod d then (a —b ) mod d = 0 for positive integers a ,b , and d 

such that a>b. In other words, if some number is added to a and the addition 

does not change the remainder of dividing by d , then the amount added is a multi­

ple of d. 

Now consider the sum 2  j+ ?  2 +  " " * + ip • We can calculate the remainder of 

t 
dividing each partial sum by ) mod d = for every value 1 ^p. 

/ = i  

Since p is larger than d , there must be a repeated remainder in /• 1, r 2 'd • 

h 
This means there are h  and m such that \ ^ h  < m  ̂ d  and ( H ) mod d = 

; = i  

m 
i  ̂ i j )  m o d  d .  Applying the property observed in the previous paragraph, 

y = i  

m 
( 22 Zy ) mod cf = 0. So we have +] + + 2  + ' ' ' + '771 =  n y . d  for some 
i  = h  + 1  
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;i >1. QED. 

LEMMA 4-33. Suppose À specifies paths {A ) for non-terminal A of a 2DNF 

grammar G = ,R ,S W. If every expression of Â has been linear­

ized, one self-referential expression contains a subexpression A — p , and no 

base element of A is smaller than p , then there is a system À ' which specifies 

paths (v4 ) and has no subtraction operators. 

PROOF. If paths (A ) is a finite set, then its elements can be enumerated in A ' as 

base elements, and À ' will contain neither additions nor subtractions. 

If paths (A ) is an infinite set, then some expressions of A specify constant 

increments, i i. z'z, - - - » 4 < which can be repeatedly added to get larger elements of 

paths {A ). The largest of these increments will be represented as z Let e = 

A — p + i be the self-referential expression in A from which the subtraction opera­

tor will be removed. Construct A ' as follows: 

1) Put ever)' expression of A in A ' except e. 

2) Add more base elements to A ' by taking the base elements of A and applying 

all possible sequences of increasing steps which give a total increment less than 

or equal to d X z This adds a finite number of base elements to A ', since 

there is a finite number of possible increments. 

3) Add more base elements to A ' by applying the subtracting expression e in A 

to the existing base elements of A '. This should be repeated until no new base 

elements are added. 

4) Put expression é in A ' such that e' is A + d where d = I f I. 
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If z > /) in expression e, then c is an increasing step even though it contains 

subtraction. The net increase is i — p — d . and the expression e' : A + d appropri­

ately replaces e. Application of e and e' give different results only if the element 

of paths (A ) to which they are applied is less than p. In that case e cannot be 

applied, but e' can be applied. This never happens, however, because no base ele­

ment of A is less than p , and no rule is decreasing. So every value to which e is 

applied must be at least as big as p. 

If i  <p in expression e , then e is a decreasing step. An inductive proof will 

be required to show that e' : À+ {p —i) is an. appropriate replacement for e. A ' 

can be shown to generate paths (A ) by proving propositions (A) and (B) below. 

(A) If À generates I, then À ' generates Z. 

Proof of (A) by induction on the number of steps in the generation of I. 

Base. A generates 1 in one step. 

In this case, I is a base element in Â. By construction step 1, Z is also a base 

e l emen t  o f  Â ' .  

Inductive hypothesis. Assume (A) true when À generates Z in less than n steps. 

Inductive step. Show (A) is true when Â generates I in n steps. 

Case 1. Z is generated without increasing steps. 

In this case, Z is added to A ' as a base element by construction rule 3. 

Case 2.  I is generated without subtraction steps. 

In this case, À ' has the same increasing steps as A by construction rule 1. The 

same generation sequence can be used to generate Z in Â '. 



Case 3. I is generated with a mixed sequence of addition and subtraction steps. 

If the total increment does not exceed d X then I is a base element of À ' 

by construction rules 2 and 3. 

If there are x addition steps and y subtraction steps in the generation of / 

where x >d and y ^J'niax- then it can be shown that there is another genera­

tion of Z in Â which takes fewer steps. If there are more than d increment 

steps, lemma 4-32 tells us that there is a sequence of x' increment steps such 

that x' and the sum of the x' increments is a multiple of d , say y' x d 

The sum of the x' increments must be less than or equal to d x and 

therefore y' ^ i Thus, there is a generation of Z which takes x — jc' 

increment steps and y — y' decrement steps. The inductive hypothesis can be 

applied to establish that A ' also generates I. 

Now suppose there are x  additions and y subtractions where x > d  and 

y < I'max- Let ij be the smallest of the z increments in the generation of Z. 

Consider V , a number with the same generation sequence as Z except for one 

less addition of : Z' = I — ij. À also generates Z' if it can be confirmed that 

no path error will occur. In the generation of Z, the amount added exceeds 

d X i and the amount subtracted is less than d x z If the difference 

between the amount added and the amount subtracted is called the gain , then 

gain l)x Znia%- (z'max- l)x ̂  

^i max"'" ^ max d X i max"'" 

^ ̂ max"'" 

In the generation of Z', there is still a positive gain , since z i^ax^ d — ij>0. So 
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V is generated by Â in fewer steps than I, and the inductive hypothesis can be 

applied to establish that /' is generated by Â By construction rule 1, Â ' has 

the same increasing expressions as ̂  , so Z = 1' + ij is generated by A 

(B) If A ' generates I, then À generates /. 

Proof of (B) by induction on the number of steps in the generation of Z in A 

Base. A ' generates I in one step. 

In this case, I is a base element of A '. By construction rules 1,2, and 3, either 

Z is a base element of A , or it is generated in A with increment less than 

d X i jnax and a number of subtractions not exceeding i ̂ ax-

Inductive hypothesis. Assume (B) is true when A ' generates Z in fewer than n 

steps. 

Inductive step. Show that (B) is true when A ' generates Z in n steps. 

If Z is generated using a step which is not an application of e', then con­

sider Z' generated in A ' with one less step: Z' = I — ij. The inductive 

hypothesis can be applied to establish that Z' is also generated by A. But since 

A ' and A share all addition expressions except e', I is also generated by A. 

If Z is generated by applications of e' only, then Z' = l — d is generated in 

A ' and the inductive hypothesis to establish that Z' is also generated by A. 

But if Z' is generated by A , then d applications of an expression with some 

increment ij and ij—\ applications of expression e can be made to get another 

element of A : 

V  d  X  i j  —  [ i j  —  1 )x 
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=  1  —  d - \ - d x i ,  —  i i X d - ¥ d  

= I. 

Thus, if V is generated by À , then so is I. QED. 

The previous five lemmas supply enough machinery to remove all subtraction 

from an arbitrary length-predicting system, as shown in the theorem below. The 

proof of the theorem specifies the order in which the constructions of the support­

ing lemmas should be applied. 

THEOREM 4-34. Suppose G is a 2DNF grammar < Z , B , N  , R  , S > 2  and G is its 

corresponding length-predicting system. There is an equivalent system G ' 

which does not use subtraction. 

PROOF. To construct G first apply finite substitution, arithmetic simplification, 

and linearization to each A where A € N, giving À Remove subtraction according 

to the method below, starting with A ' = 5", the expression set corresponding to 

the start symbol. 

1) For each expression in À ' containing B — p where no expression of B ' refers to 

À , remove the subtraction from B ' by the current method and then subtract 

p f rom B ' using the method of lemma 4-31. 

2) Create two sets of expressions: À q and À +. Put all the non-subtracting expres­

sions of À' in À + and leave À q empty. 

3) Remove the subtracting expression from À ' which subtracts the smallest 

amount, p , and put it in À +. 

4 ) Generate all the elements of Â + without using the subtracting expression 



which are smaller than p or which exceed p by less than one increment. 

Remove the base elements less than p from A + and put them in Aq-

5) Transform A + using the method of lemma 4-33 to remove the subtraction. 

6) Repeat steps 3, 4, and 5 until no subtracting expressions remain. 

7) Set j4 ={Aq,Aj^\. 

The steps in the above method use the constructions of the previous lemmas 

which guarantee that the path sets generated by the transformed systems are the 

same as those generated by the original systems. Small base elements are isolated 

from sets of expressions in step 4 to prevent transformed expressions from being 

applied to values for which the original expressions are undefined. The self-

referential subtracting expressions which correspond to deletion cycles in the origi­

nal grammar are transformed one at a time, beginning with the expression which 

deletes the least. Steps in a grammar cycle can be arbitrarily intermixed to give 

words of the same length. For any productive forest derived from a non-terminal 

which has deletion cycles, there is a corresponding forest which has the same 

derivation steps where repeated applications of the same rule are grouped together 

and the smallest deletions are first. The two forests may not yield the same string, 

but they yield strings of the same length. This justifies the consecutive transfor­

mation of deletion cycles. Simultaneous transformation would give the same 

result. QED. 

COROLLARY 4-35. If A is a non-terminal of a 2DNF grammar G = 

< Z , E . N  , R  , S > 2 ,  then paths (^ ) is a regular set. 
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PROOF. Form the length-predictinj; system for the subgrammar whose start sym­

bol is ^ and remove subtraction from the system. The unary representation of a 

positive Integer n is just a string of n ones, and 0 is represented as the empty 

string. If all the integers in the length-predicting system are converted to unary 

representation and the addition operators are changed to concatenation, the system 

becomes a linear context-free grammar over a one-symbol alphabet which generates 

paths {A ). Such a grammar can easily be converted to a regular grammar, and so 

paths {A ) must be a regular set. QED. 

The Remainder Operation on Context-Free Languages 

The 2-d forest yield languages which involve deletion can be related to 

context-free languages with the help of the remainders of context-free languages. 

The remainder of langtiage L i with respect to language L 2 is the set of strings that 

remain after prefixes from L, are deleted from words in L j. 

DEFINITION 4-36. Let Lj and 2 2 be string languages. The remainder of Lj 

with respect to L 2 is defined as follows: 

Li\Li — |u' I for some v in Li, vv is in Lj}. 

The remainder operation is defined for sets of strings in the preceding 

definition. It will be convenient to use the operator on single strings as well as sets 

of strings. Thus, ab \ abcde = cde. The remainder of a language is a close relative 

of the quotient of a language, as defined by Ginsburg and Greibach (1969). The 

quotient of a language L, with respect to a language Lt is the set of prefixes that 

remain after suffixes from A2 are deleted from words in L ]. 
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DEFINITION 4-37. Let Lj and Li be string languages. The quoiicni of Lj 

with respect to L 2 is defined as follows: 

Li / L, = {"vv I for some v in L2. is in L]}. 

It has been established that the quotient of a context-free language with 

respect to a regular language is context-free. It is also well known that both 

context-free and regular languages are closed under reversal. These facts can be 

used to show first that remainder can be expressed in terms of reversal and quo­

tient, and then that the remainder of a context-free language with respect to a reg­

ular language is context-free. 

THEOREM 4-38. Suppose Lj and L2 are string languages. Then 

reverse(L2\ 1 ) = reverseiLy) I reverse(L 

PROOF. This theorem follows directly from the definitions of remainder, quotient, 

and reversal: 

reverse (L 2 \-Li) 

= reverse ({w I for some v inZ.2,vv isinLj}) 

= {v I for some v in reverse(2,2), w is in reverse(L j)} 

= reverse {Li) I reverse {L2)-

OED. 

THEOREM 4-39. If L] is a context-free language and L2 is a regular language, 

then -L 2 \ L1 is a context-f ree language. 

PROOF. This theorem is proven by using the previous theorem and closure for 

reversal and quotient. 
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Lj is context-free and Ly is regular 

^ revcrscXL •^) is context-free and tcvcjsc iL j) is regular 

reverseiLi) I 7 - cawsp( L 2 )  i s  c o n t e x t - f r e e  

=> reverseir'eversciL-i) I reverse[Lt)) is context-free 

=?> reverse {reveise [L 2 \ -L1 )) is context-free 

^ reverse is context-free 

=> L 2 \ L i  is context-free. 

QED. 

The strings that result from a deleting frontier operation on elements of a set 

of 2-d forests can be described as a remainder language. If ae H} (I, H), then 

str {sel (x'" ,a)) is just sîr {a) with the first r characters removed. This can also be 

expressed as Z'" \ srr (a). 

LEMMA 4-40. Suppose a = #[2:*:'"][i )3] is in H2 (I, S), where # e I, x'' e Hi, and 

i3e H2HI, H), and //j(a) is defined. Then srr (//'iCq;)) = I'" \ s/rCiS). 

V:' PROOF. This follows from the definitions of remainder, the frontier function, and 

the str function: 

sf r  C a )  

= str {subs lifr-iix''). /rj(/3))) 

= str {subs i{x'', /7- iC / 3 ) ) )  

= str {sel {x'', /rj(|3))) 

= sf with a prefix of r characters deleted. 

QED. 
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COROLLARY 4-4L Suppose a = #[2 y] is in (I, £) where ^  e  1 ,  ̂  and 

ye H Hi, E). ^ has external selector .r'" e Ej, and fryia) is defined. Then 

s f r { a )  =  s / 7 - ( / 3 ) - I ' "  \  s f r [ f T \ [ y ) ) .  

PROOF. This corollary follows from the previous lemma and the observation that 

fr\i#[2 jSKi y]) = /ri(#[2l3'][i yD) where a-*" is the external selector of /3 

and j3' is the same as jS with external selector x'' replaced by A QED. 

In theorems 4-19 and 4-23, context-free grammars were built with non­

terminals like jAr- The subgrammar constructed for jA^ is actually a grammar 

for \ (L (A ):r ). Remainder languages are helpful in relating deletion cycles to 

the theory of context-free languages. Analyses in computer science literature of 

deleting operations on context-free and context-sensitive languages suggest that 

there must always be a constant bound on the number of consecutive deletion 

operations. Theorem 4-39, however, demonstrates that regular deletion cycles are 

tolerated in context-free languages. 

Normal Form for Deletion Cycle Analysis 

Several terms are defined below to aid the analysis of deletion cycles in 2-d 

forest grammars. One non-terminal in a cycle is designated the root, or reference 

point for analysis. In many cycles, the number of non-terminals can be reduced to 

only one by expansion of the grammar rules. Such cycles have only one essential 

non-terminal. Cycles which cannot be expressed with only one non-terminal have 

several essential non-terminals. 



68 

DEFINITION 4-42. Lei G be a grammar <1,5. A\ . S >2 such that 

A , B , and C € N. B is a descenJcnr of A if and only if 

1) A = 5, 

2) there is a rule A - ^ I S  and /3 contains B  , or 

3) there is a rule A li, ̂  contains C , and 5 is a descendent of C. 

DEFINITION 4-43. Let G be a grammar <1, E,^ ,5>1. G contains a cy-

cle if and only if there is a subset of N such that each non-terminal in the 

subset is a descendent of every other non-terminal in the subset. 

DEFINITION 4-44. Let G be a grammar < Z , z , N , R , S > 2  which contains a 

cycle {A J, A2,.. . , Ar} ÇM A, is a root of the cycle if it appears in the 

right-hand side of a rule for a non-terminal which is not in the cycle. 

DEFINITION 4-45. Let G be a grammar < ' L , ~ , N  , R  , S  > 2  which contains a 

cycle C = {A 1, A2, .. • , Ar} Q N. A non-terminal A; in the cycle is 

essential if it is a root of C, or if it is a root of another cycle which is a 

subset of C. 

DEFINITION 4-46. Let G be a grammar , R  , S > 2  which contains a 

cycle {A A2,. . . , Ar ) with root A i- A cycle step is an expansion of A j 

to derive the smallest structure q such that a contains an essential non­

terminal A; and no non-terminal which precedes A, in a is in the cycle. 

The analysis of deletion cycles will be made easier by the use of a normal 

form for grammar cycles. Different shaped forests often have the same frontier. If 

aj = #[2 #[2 Ml y]][i 8] and 0^2 = #[2 Mi #[2 ylC] 8]], then /rjCai) = //"iCai) Pro­

vided the frontier of a 1 is defmed. A grammar is in cyclic normal form if the 

forests derived from the cycles have the shape of a, rather than a2-
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DEFINITION 4-47. Lei G be a grammar < Z . E , N ,  R  . S > 2  which contains 

one or more deletion cycles. G is in cyclic normal f or-m if and only if the 

path in every cycle step from the root of the cycle to the leftmost essential 

non-terminal is 2' or 2' 1, i ^0. 

A grammar can be in cyclic normal form and 2-d normal form at the same 

time. In that case it will be called a cyclic 2DNF grammar. The conversion of a 

grammar to cyclic normal form takes advantage of the fact mentioned above that 

different shaped forests can yield the same strings. This yield-equivalence is for­

malized in the lemma below. 

LEMMA 4-48. Suppose «i, or;, /3, y ,  and 6 are forests in H 2  (Z, 5) such that 

«1 = #[2 #[2 i3][i y]][i 8], «2 = #[2 i3][i #[2 yïïi 8]]. |8 has external selector , 

and y has external selector :c'". If \ fr-^iy) 1 , then /riCaj) = friiai). If 

I friiy) I =m<p , then /ri(#[2 8]) = fr-S-Oti) where g' is j3 with external 

selector replaced by . 

PROOF. This lemma follows from the definition of the frontier function. First of 

all, assume that I /?"iCy) I ^p. Then the order of the substitutions during the 

frontier operation can be changed without affecting the resulting string; 

= 5ufe](/ri(#[2i3][] y]), /rjCS)) 

=  s u M ] { s u b s / r j C y ) ) ,  / r j C 8 ) )  

= suôsi(/riCy), /rjCS))) 

= 

This is not true when m  = I /rj(y) \ < p  ,  for then j3][] y]) is undefined. 

The frontier operation on aj fails while it succeeds on a,. 
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= subs lifriiH), subs^lfriiy), /^(ô))) 

The substitution of /?"i(S) into fr'iiy) removes r symbols from the front of 

/r]C8). The substitution of this subforesl into /''i(/3) removes all rn symbols of 

fi'iiy) and p — m more symbols from /7"](8). So there is a forest with an 

equivalent frontier that does not contain y at all: fr\{a2) = /3'][j S]) where 

/3' is constructed from jS by replacing external selector with . QED. 

THEOREM 4-49. Let G be a 2DNF grammar < 1 , ~ , N  , R  , S > 2  with one or more 

deletion cycles. There is a grammar G' = <I', N',R',S '>* such that G' is 

in cyclic normal form and Yo(G ) = Vo(G' ). 

PROOF. To begin the construction, set G' = G. Then, partition the non-terminals 

of G' according to external selectors and repeat the steps below until no further 

changes can be made. Assume A , B , C , D, and E are in N', and #, a e I'. 

1 ) If 7?' has rules ^ » #[3 5 ][i C ] and C -> c [j Z) ] where A  , C ,  and D  are part of 

a deletion cycle and is the external selector of B , then replace the rule for 

A with ^ ̂  #[2 5 ][] C ] and add the rule C -» #[, a [1 x°]][i D ], for new 

non-terminal C. 

2) If /?' has rules .4 -> #[, B ][i C ] and C -» #[2 Z) ] [ \  E  ]  where A  , C  .  and E  are 

part of a deletion cycle, C is not essential, B and D are outside the cycle, the 

external selector of B is , and the external selector of D is x'" , then replace 

the rule for A with /i ^ #[3 r][i £]. -4 -» #[2 5]][] £], ^ #[2 £"] 

A-» #[2 5p_i][i £]. Then, add rules for 5, only when 0^; </' and 



i € paths [D ). Bi has the same rules as B . except thai external selector is 

replaced by . Finally, add a rule T#[2 B ][, D ] for newly invented 

non-terminal T .  

3) Perform the same modification as in step 2 when .4 , C , and D  are part of the 

cycle, C is not essential, and B  and E  are outside the cycle. 

To prove the theorem, it needs to be shown for the construction steps above that 

the algorithm halts, the resulting grammar G' is in cyclic normal form, and the 

yield of G' is the same as the yield of G. Step 1 just changes the form of certain 

cycle rules so that step 2 can be applied. Since no rules of the form C —> a [] D ] are 

added by any step, the number of applications of step 1 is finite. Step 1 does not 

a f f e c t  t h e  y i e l d  o f  t h e  g r a m m a r  b e c a u s e  / r i ( # [ 2  a  [ j  x ° ] ] [ i  Z )  ] )  =  f r i i a  [ j  D  ] ) .  

Steps 2 and 3 both have the effect of eliminating a non-essential non-terminal 

with a 1-arc pointing to it. "When all such non-terminals are gone, the algorithm 

halts, and the resulting grammar will be in cyclic normal form. Since no 1-arcs 

point to non-essential cycle non-terminals, the path from the root to an essential 

non-terminal in a cycle step can have 1 only at the end. It is evident from lemma 

4-48 that the modifications made in steps 2 and 3 will not affect the yields of 

derived forests. Thus, G' is in cyclic normal form, and ) = y'o(G ). QED. 

Once a grammar has been put into cyclic normal form, the right-hand sides of 

rules for essential cycle non-terminals can be expanded to become full cycle steps, 

h then becomes evident that there are three kinds of cycle steps, as illustrated in 

figure 4 for cycles with one essential non-terminal B. A cycle which has only type 
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FIGURE 4. Normal form cycle steps 

1 steps is non-deleting. If the external selectors of the non-terminals C, overlap 

one another, a path error will occur. Cycles with type 2 and type 3 steps can be 

deleting cycles, since the external selectors from repeated occurrences of A can 



73 

overlap one another without causing pal h errors. Type 3 steps are more compli­

cated. They allow a suffix to be attached lo the end of a string every time a prefix 

is deleted from the front during the frontier operation. The example grammar 

ABC from the beginning of this chapter contains a deletion cycle with type 3 steps. 

Deletion cycles with type 2 steps can be shown to have corresponding context-free 

grammars by application of the remainder operation. Cycles with type 3 steps are 

more difficult to simulate with a context-free grammar. 

2-d Forest Grammars with Regular Deletion Cycles 

Cycles of type 2 in figure 4 will be called regular deletion cycles, and 2-d 

forest grammars which have only regular deletion cycles can be shown to yield 

context-free languages. A regular deletion cycle can be used to form a regular set 

called a deletion map , which predicts the number of symbols that will be deleted 

in the cycle. The deletion map can be applied with the remainder operation on 

subgrammars which are not part of the cycle to generated the yield. 

DEFINITION 4-50. Let G be a cyclic 2DNF grammar < Z , B , N , R , S  >2. It G 

contains a deletion cycle such that the left-most non-terminal in every cy­

cle step is not part of the cycle, then G has regular deletion cycle. 

The deletion map for a cyclic 2DNF grammar G = < I . , E . N  . R  , S  > 2  with a 

regular deletion cycle can be constructed according to the steps below. 

1 ) Partition the grammar G according to external selectors. If there is a rule 

5 —> #[2 C ][] Z) ] where B is in a deletion cycle but C and D are not, replace 

t h e  r u l e  w i t h  5  - >  7  a n d  # [ ,  C  ] [ i  / )  ]  f o r  n e w l y  i n v e n t e d  n o n - t e r m i n a l  T .  
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2) Make a regular grammar from the rules in R  for each i  , m  .  A  .  and B  where ; 

and m are paths on external selectors, ^ is a non-terminal in the deletion 

cycle, and B is any non-terminal in N. The grammar , = 

<N', E', R ' ,  S '  >  is formed as follows: 

a) Set I' = {0, 1}, A^' = N , and 5' = A .  

b) Put a rule S—> 0' -  A  in/?'. 

c) If R  has a rule C -> #[2 D  ][i E ], then put C -» Z) 0' - E in 7?' and add to 

R '  rules for regular grammar D  which generates the lengths of all the 

s t r i n g s  y i e l d e d  b y  D .  

d) If/? has a rule C—> #[2/) Il either £ =  B  o r  R  also has a rule 5 , 

and the path on the external selector of Z) is m , then put C-*b in /?', 

and add the rules for f) to /?'. 

e) Rewrite the rules of /?', adding new non-terminals as required, so that each 

rule has the form E - ^ n  •  F  o r  E - - * n  ,  f o T  n  = Oorl, and non-terminals 

E  a n d  F .  

3) Convert each ; to a push-down automaton iAB^ = 

< Q ,  I", r, 8, To, Go. Of >as follows: 

a) Set Q =  N '  [J{F}, I" = {0), T = { e, 0), Tq  = e, O q  = 5', and Q p  =  { F } .  

b) If /?' has a rule C-*0 • D, put (C , * , X.) = (Z? , * 0) in S, where * is any 

stack symbol and k means no input is consumed. 

c) If /?' has a rule C -• 1 • D, put (C , -yO, A.) = (Z), y) in 5, where ye F*". 

d) If R '  has a rule C -> 0, put (C . * . A):(f , * 0) in 8. 

e) If /?' has a rule C—> 1, put (C , yO, k):[F, y) in 8. 
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f) Add {r. 0. 0.):(F , A.) to 8. The autonialon slops, accepting a string of zeros 

only when the stack is em pi y and all the inpul has been consumed. 

The regular set constructed in step 2 contains strings of ones and zeros. The 

zeros are unary representations of the paths on selectors in the cycle. The ones 

represent characters embedded within the cycle that will be deleted. The strings of 

interest in the set are those in which the zeros outnumber the ones, not just 

overall, but in every possible prefix. The grammar is converted to a pda in step 3 

to accept only the strings of interest in the regular set. The pda uses X-moves as it 

simulates the regular grammar. Zeros from the regular grammar are pushed on the 

stack, and the stack is popped when the regular grammar produces a 1. If any ini­

tial sequence of moves is chosen in which the ones outnumber the zeros, then the 

pda gets stuck. If the zeros always outnumber the ones, however, the simulation 

of the regular grammar terminates and the pda moves to a final state which reads 

zeros from input and accepts the string if it matches what is on the stack. Since I" 

has only one element, the accepted set is regular. 

DEFINITION 4-51. The deletion map for a regular deletion cycle which con­

tains non-terminals A and 5 in a 2DNF grammar G is a regular set 

, formed by the construction steps above. 

LEMMA 4-52. Let G be a cyclic 2DNF grammar < Z , E , N  , R  , S  > 2  which has a 

regular deletion cycle containing non-terminals A and B . Suppose „ is a 

regular deletion map for the cycle. The string is recognized by „ AB^ if 

and only if there are a and j3 such that A =^* a, B =>* j3, jS is a subforest of 

Q', m is the path on the external selector of the subforest which precedes /3, 



and I" \ s f  r { a }  =  \  s f  r  (/3). 

PROOF. This lemma is established by proving propositions (A) and (B) below. 

(A) If there exist a and )3 such that A =>* a, B =5>* /3 and I" \ s f  r  { a )  =  

£d+m then 0*^ is recognized by 

Proof of (A) by induction on the number of cycle steps in the derivation of or. 

Base. A  =^* a in one cycle step. 

In this case, there are productions in the forest grammar A  -> #[? Z) ][, 5 ] and 

B-*E where A and B are in the cycle, D and E are not in the cycle, and the 

e x t e r n a l  s e l e c t o r  o f  D  i s  z  .  S o  a  =  # [ 2  8 ] [ i  j S ] ,  a n d  I "  \  s f  r  =  

^n-i+m \sfr (/3) where I is the length of the yield of 8. We know that 8 con­

tributes nothing to the frontier, so it must be the case that n >1. By step 2 of 

the construction, „ is given rules - A and A--*b. By step 3, 

„ ABjn has corresponding rules which 1 ) push n  zeros on the stack, 2) pop I 

zeros off the stack where D derives a string of I ones, and 3) move to a final 

state which accepts an input string of n—l zeros. Thus, (A) is satisfied where 

d  =  n  —  l +  m .  

Inductive hypothesis. Assume (A) is true for A  =?>* a in r — 1 cycle steps. 

Inductive step. Show (A) is true for A  =i>* a  in r  cycle steps. 

There are productions A  —» #[3 DjH] C J, C ]-> #[2 C 

C a - ^ # { 2 D g \ i B  ], and B - * E  where A , C1, C 2 C g ,  B  are in the cycle, 

Z) J D g  and E  are not in the cycle, and the external selector of D g  is x . 

Let the external selectors o f  ^ q  —  I .  h e  x ^ ' .  We have a  = #[28][j y] 

where Z)i =?>* 8 and C j =>* y. sf j- (a) = sîr (.suôSi(/?'i(S), /'"iCy))), and /3 is 



a substructure of y. Since the yield of a is a suf&x of the yield of /3. the yield 

of S is completely deleted. If ls/r(8)l = Zthen /]<;%. So I"\i'/r(a) = 

1" \{sf r{y)) = 1'^*'"\sf riH). An expansion of d would 

show that d + m = n — 11+ p i— 12+- • •+ Pg -i- Iq + m , and so \ s f  r  (y) = 

\  s j T  (/3) where d '  = cf — 7î  + Z j. The inductive hypothesis can be 

applied to establish that contains d'. By construction steps 2 and 3, 

nABjri has a rule ̂ -*1)1-(f'-C], and pushes n zeros on the stack, 

pops 1 1 zeros, pushes p  j zeros and goes to a state C1, where Z1 is a length gen­

erated by b 1- We also know that p pushes p 1 zeros and goes to state 

Cj. Soif pjCi5;n accepts cf', then ^ accepts n — Zi+d'. But 

n — Z1+ d' =11 —I i+d — n + li = d, so (A) is satisfied. 

(B) If is recognized by „ , then there are a and /3 such that A  =>* a, 

B  = $ > *  i 3 , . . .  ,  a n d  I "  \  s f  r  ( a )  =  \  s f r i . B ) .  

Proof of (B) by induction on the number of cycle steps in the derivation of a. 

The proof of (B) is similar to the proof of (A). QED. 

THEOREM 4-53. Suppose G is a cyclic 2DNF grammar < Z , z , N  , R  , S > 2  which 

contains only regular deletion cycles. There is a context-free grammar G' = 

< N', I', R\S'> such that L (G' ) = YoiG ). 

PROOF. To construct G' from G, first partition G according to external selectors. 

The non-terminal set will include for every A in TV, every external selector 

path m . and every inlegcr where is the longest path on any selec­

tor. Set I' = E and S'  = for each external selector path m. Begin making the 
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rules with the non-terminals in the deletion cycle closest to the start symbol, fol­

lowing the steps below. 

1) Find each non-'erminal E  which is not in the cycle, but is in the right-hand 

side of a rule for non-terminal A which is in the cycle. Form rules for 

and add them to /?' , where m is the path on the external selector for any sub-

forest which can precede £ in a derivation. If the subgrammar Gg has no 

deletion cycles, then form its rules using the method of theorem 4-23. If 

does contain a deletion cycle, then use the method currently being described. 

2) Form iAB^ for each pair of non-terminals, and 5 , in the cycle and each 

pair of paths, z and m, on external selectors. 

3) If there is a rule A-*E such that A is in the deletion cycle but E is not, put a 

rule in i?' for each possible £ and for m such that x'" is the exter­

nal selector of A .  

4) If there is a rule A  #[2£][i B  ] where A  and B  are in the cycle but E  is not, 

put ^ A ^ ^  ̂ E r  • r B , n  in for each possible i, r such that x'' is the external 

selector of £, and m such that x'" is the external selector of A. 

5) If/? has rules,4->#[2£'][i  5] and C-»£ where ^ , 5, and C are in the dele­

tion cycle but E and E are not, put rules IA^—^ <, AC^- \RF„,> in R'  for 

each possible i, r such that x'' is the external selector preceding C, and m 

such that ;c'" is the external selector of E. Then, add a subgrammar to i?' for 

each non-terminal < iACr \rEm> such that < ,• AC^ generates the 

context-free language h  { L  AQ )) \ L where h  is the following 

homomorphism on strings of zeros in L  AQ ): (0) = a where a  is any 



element of I. 

6) If R  has rules .4 -B] and C -» #[2 FKi D ]  where A  ,  B  . C  ,  and D  are 

in the deletion cycle but E and F are not, put rules , .4^ -» <, AC^ \r^i^' 

iDjn, in R' for each possible i, r such that x*" is an external selector which 

precedes C , I such that x' is the external selector of F, and m such that x'" 

is the external selector of D. Then, add a subgrammar to R' for each non­

terminal < i ACr \rFi> such that <, ACr \ rF; > generates the context-free 

language h {L (; AQ )) \ L Fi ), where h is the following homomorphism on 

strings of zeros in L AQ ): /z (0) = a where a is any element of I. 

Regular deletion maps and remainder operations are used in steps 5 and 6. 

The remainder operation is applied only to non-terminals outside the cycle, allow­

ing context-free subgrammars to be constructed before the operation is applied. 

Then, the remainder of a context-free language with respect to a regular language is 

f o r m e d  t o  g i v e  a n o t h e r  c o n t e x t - f r e e  l a n g u a g e  ( t h e o r e m  4 - 3 9 ) .  T h e  g r a m m a r  G '  

can be shown to satisfy theorem 4-53 in the proof of propositions (A) and (B) 

below, (A) \ï A e N, A =$>* or. I' \ sf r {a) = w, and a has external selector x*" , 

then TV' contains ^Am such that , =?>* iv. 

Proof of CA) by induction on the number of steps in the derivation of a. 

Base. A =>* a in one step. 

It must be the case that a = .x'" , i = 0, and u- = k .  R  has a rule A — ^ x ' "  and 

R' has qAj^-^X, as in the proof of theorem 4-23. 

Inductive hypothesis. Assume (A) is true when .4 =S>* a in less than n steps. 

Inductive step. Show that (A) is true when A =S>* a in n steps. 



If the first step in the derivation of a is .4 —[j 5 ] or then 

the proof is the same as in theorem 4-19. 

If the first step in the derivation of a is /I —»£, then £ =>* a in one less 

step. If I' \ sf r Ca) = v and a has external selector m , the inductive 

hypothesis can be applied to establish that , 5^ =*>* v. By construction step 

3, R' has and so #>* w. 

If the first step in the derivation of a is A —> 5 ] and neither A  

nor B are in a deletion cycle, then ; ̂ 4^ =^* iv as in the proofs of theorems 

4-19 and 4-23. 

If the first step is A —» #[2£][i 5 ] where A  and B  are in a deletion cycle, 

first consider the case in which the yield of £ is not completely deleted. Then 

£ =>* y, B =#>* 0, a = #[?'y][i 0], w = wI' \s/r(y) = and 

£'• \ sf r (i3) = ̂ 2 where the external selector of y is x'". The inductive 

hypothesis can be applied to establish that R' has ;£r =^* u'l and 

rBjj^^* If 2- Step 4 of the construction gives iA^^ ;£r >5^. Thus, 

Î Am =>* M- jiv 2 = If , and (A) is satisfied. 

Now suppose the first derivation step is A —» #[2£][i B  ] with A and B  in 

the deletion cycle, and the yield of £ is completely deleted during the frontier 

operation. Let of = #[2 #[272^^1 " ' ' #[% Yg S] - • • ]] where y^ is either 

the first subforest that is not completely deleted in the cycle, or it is the last 

subforest in the cycle. Assume also that C =?>* 6, C is in the deletion cycle, 

t h e  e x t e r n a l  s e l e c t o r  o f  y  g  i s  x * " ,  a n d  t h e  e x t e r n a l  s e l e c t o r s  f o r  y . .  1  ̂  /  < q  .  

are x^'. If represents the length of the string yielded by y,-, then = 
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I' \ s f  r i a )  =  1 ^ ' ^ ' '  \ .v/r (S) where =/ — /] + />]—/2+...+ p ^ - i — l q -  This 

means thai I'" \ sf r (8) = vSr where hf' I = d. The inductive hypothesis 

can be applied to establish that r^m 

If is the last leading subforest of the cycle, then the first step in the 

derivation of 8 is C F, where F is outside the cycle. According to construc­

tion step 5, R' has a rule <, AC^ \^Fm> and rules for 

h [L iiACr )) \ i (r fm ), and lemma 4-52 assures us that is accepted by 

iACr- Since r^'m w'w and I w' I = d, it follows that lA^ =^* 

\ w'w = w. 

Finally, suppose y  g  is not the last subforest in the deletion cycle, but it 

does contribute to the yield. In this case, the first step of the derivation of 6 is 

C -» D] where C and D are both in the cycle. R' has a corresponding 

rule rCjn-* s^d the inductive hypothesis establishes that 

where hv' I = d .  Since F  contributes to the yield, it must be 

true that =>* W2, and w? = w. According to con­

struction step 6, R' has a rule , <, ACr \ ^ > •  / - D m  a s  w e l l  a s  r u l e s  

for h (L (j ACr ))\ L (r f"; ). We also know from lemma 4-52 that , AC^ 

accepts 0'^. It follows that iA^=^* cf \ iv'w i ' iv ? = w ; = w , satisfying 

(A). 

(B) If A" contains , such that u-, then j V  contains A such that 

A  =$>* Of, I' \ s f  r  (of) = w , and cv has external selector x ' "  . 

Proposition (B) can be proven in a manner similar to the proof of (A) by induciion 
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on the number of steps in the derivation of v. QED. 

Grammars with Consistent Deletion Cycles 

The theorem above shows that a forest grammar whose deletion cycles have 

only type 2 steps can be converted to a context-free grammar. A similar result can 

be obtained for forest grammars with type 3 deletion cycles, provided they are 

consistent. The conversion process begins with the formation of an inversion map 

for the cycle. This is a regular set which specifies the number of symbols that will 

be deleted by the cycle and indicates what substrings will be attached to the end 

of the resulting string as the deletions occur. An inversion operation is then 

applied which takes an inversion map and a context-free grammar, and produces a 

new context-free grammar. The new grammar produces only the strings which are 

yielded by the deletion cycle. 

DEFINITION 4-54. Let G be a cyclic 2DNF grammar with a deletion cycle. A 

non-terminal D is a leading non —terminal in a cycle step if the path from 

the root of the cycle step to D is in 2^, and D is not in the cycle. A non­

terminal is a trailing non —terminal if it follows a non-terminal which is 

in the cycle. 

DEFINITION 4-55. Let G be a cyclic 2DNF grammar with a deletion cycle. 

The deletion cycle is consistent if the external selector of the leading non­

terminal in each cycle step is always an overlapping selector. 

Given a grammar G = < 1 , E , N , R  , S  > 2  i n  cyclic 2DNF, the inversion map 

can be constructed by the steps below. 

1) Partition the non-terminals of G which are not in the deletion cycle according 



to external selectors. If there is a rule /i #[2 C Kj £] where B  is in the cycle 

but C and £ are not. then replace the rule with 5—» r and T—> #[2C][i £] for 

n e w l y  i n v e n t e d  n o n - t e r m i n a l  T .  

2) Form a regular grammar hnap (G , , D ) for each .4 and E in the deletion 

c y c l e  o f  G .  T h e  t e r m i n a l  s e t  o f  I m a p  i s  a  s u b s e t  o f  ( 0 ,  . . .  ,  ,  

} where { A  A 2 , . .  •  ,  A ^ ]  =  N .  The rules of Imap {G , A , D) 

are constructed according to the steps below. Assume A  ,  B  ,  C  ,  D  ,  E ,  and J  

a r e  n o n - t e r m i n a l s  A ^  f o r  s o m e  i .  

a) If R  has 5 -> #[2 £][i C ] where B  and E  are in the deletion cycle but C is 

not, add B - ^ E  -î q  to the rules of I m a p  i G  ,  A  ,  D ) .  

b) If R  has a rule 5 -+ # [2 7 ][i £ ] where B  and £ are in the cycle but C is 

not, add B^E - Çf -Ij to the rules of Imap where is the external 

selector of C. 

c) If R  has D-» j3 for any right-hand side )3, add D - ^ k X o  the rules of 

Imap {G , A , D). 

d) Make A the start symbol of I m a p  { G  , A  ,  D ) .  

3) Form a regular grammar imap {G , A , D) for each A and D in the deletion 

cycle of G such that there is a rule 5 —> #[2 Z3 ][] £] where B is in the cycle 

but £ is not. Use the same rules to construct tmap as in step 2, but replace 2c 

with the following: 

c) If R  has 5 -> #[2 ][] £] where B  and D  are in the cycle but £ is not, add 

5—» CP - Id to ! map where is the external selector of D. 

4) Form a general sequential machine Z which operates on strings produced by 



Imap or ïmap. The input alphabet is the same as that of Imap, and the output 

alphabet is the input alphabet with added, where is a 

non-terminal of G. There is a start state Zo, a final state Zf , and a state Z; for 

each A.. The rules of the mapping are defined as follows: 

a) Add (zq. X) = (Zj, 5^^ ) for every 1 

b) Add (z,, 0) = (Zj, 0), (z;, J = (z,, ), and (z, ,t^) = (z,, ) for 

every i and j between 1 and r. 

c) Add (Zj, ) = { z f  , X )  for every 1 < i  ̂ r. 

d) Add (zy , 0) = [Zf , 0) and {zf , ?^.) = ("/ , for every A,. 

e) Add (zq, X) = (zy , X). 

5) Form the length-predicting grammars Â,- for each non-terminal A, which is in 

the deletion cycle of G or is a leading non-terminal in the deletion cycle. Con­

vert each Ài to general sequential machine M; as follows; 

a) Convert A, to a finite automaton À . 

b) Give Mi the same state set, alphabet and start state as Â . 

c) If À  has a rule { q ,  I )  =  p  for states q  and p  , put a corresponding rule 

(q ,0) = (p , \) in the mapping of M,-. 

dl Add a rule ) = (^, ) for each state q  of M ,  and each terminal of 

t h e  f o r m  t c  i n  t h e  t e r m i n a l  s e t  o f  I m a p  { G ,  A  ,  D ) .  

6) Combine the machines M; to form a gsm Mq  which will operate on strings of 

Imap (G , .4 , Z) ) or tmap (G, ,4 , Z) ). The input alphabet is the alphabet of 

Imap , and the output alphabet is a subset of the input alphabet without 
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for Ai which are leading non-lerniinals in the deletion cycle. The start state 

and final state is a new state q^. The mapping rules are as follows: 

a) Add a rule {q^, ) = (mg  , k) for each and 77 îo^ such that .4, is a lead­

ing non-terminal of the deletion cycle and m  q . is the start state of M,. 

b) Add a rule { q  q , ) = (^o- ) for each A ^  which is in the deletion cycle. 

c) Add a rule { q q , t j ^ , ) - { q Q ,  ) and { q q ,  S j ^ ^  )  =  { . q q ,  s ^  )  i o r  each A^. 

d) Add a rule (çq . 0) = (?0' 0)-

e) Add a rule (m^., X) = (çc for each my which is a final state of Mj. 

7) Construct another gsm P  from the machines Mj such that non-terminal A ,  is 

in the deletion cycle of G. P will operate on the output of Mq. The input 

alphabet is the same as the output alphabet of Mq. The output alphabet is the 

input alphabet with any terminals of the form . The start state and final 

state is p q. The mapping rules are as follows: 

a) Add a rule { p  o, I  a .  ) = Cm q, , )*.) for and m  q, such that Aj is in the dele­

tion cycle of G. 

b) Add a rule (m, , A.) = (po, X.) for each rrif ^ which is a final state of Mj. 

c) Add rules (po, 0) = (po. 0), (po, = (po- and {po, = ipo, s^.) 

for each A , . 

DEFINITION 4-56. Let G be a cyclic 2DNF grammar < 1 , E , N  , R  , S > 2  with 

a consistent deletion cycle which contains non-terminals A and D. Then 

aXjj is an inversion map P (.Mq[Z {imap [G , A , D )))) and ^ is an 

inversion map P(M(,(Z (.imap {G , A ,D )))) where Imap , tmap , P. Z , and 

Mq are defined by the construction steps above. ' 



A grammar Imap IC .A .D ) or i m a p  ( G  . A  ,  D )  generates a regular sel which 

contains strings of zeros and terminals of the form sj .Ij and tc . corresponding to 

non-terminals J and C of G. Each string in the set corresponds to some forest 

derived from G. There is a zero in a string for each symbol that will be deleted by 

the deletion cycle during the frontier operation on the forest to which the string 

corresponds. Each string starts with a terminal Sj representing the initial 

undeleted subforest derived from J. There is also a terminal Z/ for each subfcrest 

derived from non-terminal J which will be completely deleted by the deletion 

cycle. For each subforest derived from trailer non-terminal C which will be 

attached to the end of the yield during the frontier operation, the Imap (or îmap ) 

string has a terminal îc• The grammar tmap {C , A ,D) differs from 

Imap {G , A ,D) in that its strings correspond to forests in which subforest derived 

from trailing non-terminals will be deleted during the frontier operation. In 

forests which have corresponding Imap strings, no trailers are deleted by the dele­

tion cycle. 

The general sequential machines Z  ,  M q ,  and P  remove the I j  terminals from 

strings of Imap and îmap. Z has the effect of moving the last Ij in the string to 

t h e  f r o n t  a n d  r e n a m i n g  i t  S j .  M q  s i m u l a t e s  e m b e d d e d  d e l e t i o n .  E a c h  t i m e  M q  

encounters a terminal Ij in its input string where 7 is a leading non-terminal in 

the deletion cycle, control is transferred to a submachine which reads a number of 

zeros corresponding to the length of some word yielded by J. As the zeros are 

read, no output is produced. This simulates the deletion of subforests derived 

from leading non-terminals in the cycle. Given the restriction that the deletion 



cycles are consistent, this simulation can be accomplished by a gsm. Without the 

consistency requirement, a stack transducer would be required. 

The machine P  is similar to M  q , except that it operates only on terminals Zjg 

where B is in the deletion cycle. There are no such terminals in Imap strings, and 

there is at most on such terminal at the beginning of îmap strings. P, therefore, 

has no effect on Imap strings. Operating on tmap strings, P simulates the deletion 

of an arbitrarily large subfcrest containing both leaders and trailers. A gsm suc­

cessfully achieves this simulation since it happens only once in the string, and since 

all other terminals Ij have been removed by Mq before P is applied. 

Note that Imap and tmap are regular grammars, and regular sets are closed 

under gsm mappings, so and ^ are also regular sets. An inversion opera­

tion will be defined later to complete the deletion and move the terminals Tq to 

their proper locations. The next lemma establishes the relationship between the 

reduced Imap strings and the strings yielded from forest grammar G. 

DEFINITION 4-57. Let /zj be a homomorphism on a set of strings such that 

/ !  ] ( 1 )  =  1 ,  f t  i ( 0 )  =  0 ,  a n d  f t  i ( a  )  =  \  f o r  a  a n d  a # 0 .  

DEFINITION 4-58. Let ft 2 be a homomorphism on a set of strings such that 

f t  2 ( 1 )  =  f t  2 ( 0 )  =  A . ,  a n d  f t  2 ( 0  )  =  a  f o r  a  #  1  a n d  a  ^ 0 .  

LEMMA 4-59. Let G be a cyclic 2DNF grammar < I . , = , N  , R  , S > 2  which con­

tains a consistent deletion cycle. Suppose non-terminals A and E are in the 

cycle, non-terminals I ,  B  , C  are outside the cycle, and R  has a 

rule D^T. Then 4 contains such lhal ft ) = 0'^ and ft ) = 
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Sj • if and only if .4 =?>* ( i . T  =?>* yQ. 7 =?>* r i .  C j  = ^ *  y .  for 

1 ^ ;  < r ,  a n d  s f  /-(a) =  s f r i - n )  •  I . "  \  s f  r (yo) -Zf°\s/r(y])\.. 

\ s/r (y^ ) where ls/r(Ti)l = z and.x^-' is the external selector of yj for 

0 ^  j  4 r  

PROOF. The lemma is established by proving propositions (A) and (B) below. 

(A) If A =>• a, T =^* yo, .. . , then 4 .Y^ has w such that h jCw ) = and 

f t j b v )  =  S j  

Proof of (A) by induction on the number of derivation steps for a using non­

terminals in the cycle. 

Base. A =$>* Q; using one step for A. 

It must be the case that A  =  D  ,  and a is derived with A =>T =$>* yq. 

Lmap (G , A , A ) has a rule A ^ X.. Z,  Mq,  and P produce k on input k. So 

A  X a  h a s  w  = k ,  h  i ( w  )  =  k  a n d  h  )  =  X .  s / r  ( o f )  =  s f r  ( y o )  =  

E°\s/r(yo), which satisfies (A) when d = 0 and Sj and are not present. 

Inductive hypothesis. Assume (A) is true when fewer than n steps involving cycle 

non-terminals are used to derive a. 

Inductive step. Show (A) is true when a  is derived using n  steps involving cycle 

non-terminals. 

Case 1. The derivation of a  begins with A ^ #[2£][i Q ] where E  is in the dele­

tion cycle, but Q is not. We are given that A =^* a, / =>* 7}, T =i>* yo, 

C ,  y , ,  a n d  s f r  { a )  =  s f r { . T i )  • 1 ' ^  \  s f r  ( y o )  •  l f ^ \ s f r { y i )  • . . .  

• 1^' ' \ sf r (y^ ). Since a = #[3 )3][i y^ ] where £ =?>* jS and Q =>* y^, it fol-



lows that s/rCj3) = s f  r i v ) -  \ s  f  r  (y^) •  l''"\.s/r(yi) 

s f  r(yr_i). The Inductive hypothesis can be applied to establish that g A'g 

contains v such that /? ](u- ) = 0'^ and A ^ — ^'7 ' ̂ c, '• • • The string 

u- is a gsm mapping of a word from ! m a p  ( G  , E , D ) .  From construction step 

2a, Imup [G , A ,D) has a rule A-^E and so av • must be in But 

h  i(w • t c  )  =  h  i (w )  = d  and h zlw • t c ^ )  = S j  •  •  • ' »  s o  ( A )  i s  s a t i s f i e d .  

Case 2. The derivation of a begins with /I -» #[?/ ][] E], where E  is in the cycle 

but 1 is not. In this case, a = #[2 t)][i j3] where 1 =^* v and E =$>* /3. "We 

are given that sfria) = s/r [t))- \ sf r (yo) • Z^°\sfriyi)-... 

•Z'''"^\sfr{yr), r =i>* yo, C; =^* Yy, and ls/r(n)l = Î. The non­

terminals T and Cj are descendents of E in the derivation of j3. The forest /? 

may contain a leading subforest t)' which is entirely deleted during the frontier 

operation. In that case, sfr (3) = sfr (7]') • \ sfr (yg) • " \ s/r (yj) •... 

• \ s/r (y^ ), where Is/rC-n')! = i' and t?' =d + i' — m forjc*" the exter­

n a l  s e l e c t o r  o f  t ) .  I f  j S  d o e s  n o t  c o n t a i n  a  l e a d i n g  t ) ' ,  t h e n  i '  =  0  a n d  s f  r { n ' )  

will not be present in sfr- (j3). The inductive hypothesis can be applied to 

e s t a b l i s h  t h a t  p r o d u c e s  w '  s u c h  t h a t  h  ,  C w '  )  =  0 * ^  a n d  h  i l w '  )  =  

s J • J . v' is a gsm mapping on a string v' in Imap (G ,E,D) derived 

E =^* B - CF •  I j  - t c j '  =>* v' for j  or E • (F -Zy =>* v'. 

By construction step 2b, I m a p  { G  , A  , D )  has a rule A E  - Ç T  - I j ,  and 

A =^* B -Ij • • ... • * 0*" -Ij or B • (F • / ; • 0'" • /;. When machine Z is 

applied to this string to get w , Z;, not Z; , will be moved to the front to 
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become Sj. When A7q  scans Ihc string, I j  will trigger the removal of i '  zeros 

from the string. Also, the string has m more zeros than does. So/?]Cm') = 

/z i(w') • 0'""' = +m-: = - ... - , and (A) is 

satisfied. 

CB) If ^ Xj) prodtices w such that h ](v ) = 0*^ and h iCw ) = Sj •tc^\..-îc^, then 

A  = > *  a ,  .  .  .  ,  a n d  s f r { a )  =  s f  r i r ) ) -  \ s f r i y Q ) -

\s/rCyr). 

Proof of (B) by induction on the number of steps in the derivation of v in the 

grammar Imap [G , A ,D) such that ^ contains w .  

The proof of (B) is similar to the proof of (A). QED. 

LEMMA 4-60. Let G be a cyclic 2DNF grammar ,R ,S >2 which con­

tains a consistent deletion cycle. Suppose non-terminals A  ,  D  ,  and E  are in 

the cycle, non-terminals B , Ci, C2, • • • ,C^ are outside the cycle, I e N, and 

R has a rule £-> #[2 -D ][i T]. Then contains w such that h jCiv ) = 0*^ 

a n d  h  z C w  )  =  S j  t c ^  i f  a n d  o n l y  i f  A  = > *  0 ,  T  = > *  y o ,  I  V ,  

Cj =$>* yj for 1< j  , and s f r i a )  =  s f r i r i ' ) -  \ s f  / (yo)' 

s/r (yj) \ s/r (y^ ) where \ s f r { 7 ) ) \  = i  and x"'is the external 

selector of yy for 0^; ̂ r. 

PROOF. This is the same as the previous lemma except that tmap is used instead 

of Imap. The two propositions involved can be proven by induction on the 

number of steps using cycle non-terminals which precede the application of the 

rule E#[2 -D ][i 3"] in the derivation of ct. The proof is very similar to that of 
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the previous lemma, and it is nol shown here. QED. 

A context-free grammar G; and an inversion map 4 A"^ or ^ Yp representing 

an inversion map can be combined to form a new context-free grammar K. The 

rules of Gy and ^ A'^, are examined simultaneously to create rules for K. Termi­

nals in rules of Gj which match zeros in rules of are eliminated. Also, 

o c c u r r e n c e s  o f  t e r m i n a l s  i n  r u l e s  o f  a r e  m o v e d  t o  t h e  e n d s  o f  r u l e s  i n  K .  

The grammar K is called the inversion of Gj and ^ A'g . As K is built, three kinds 

of non-terminals are used; the single non-terminals of Gj called singlets, symbols 

taken from Nq x Nx called doublets, and symbols from x Nx x called 

triplets. The singlets will generate substrings of words in L (Gj- ) which have not 

been subjected to deletion. The doublets will generate partially deleted words of 

L (Gj ). The triplets generate strings of terminals which represent the complete 

deletion of a word from L (Gy ). The inversion process is described in the steps 

below. The steps are carried out in the context of a 2-d forest grammar G from 

which Gt and ^ X^, are constructed. 

1 ) Modify the context-free grammar G j  = < N g  , I q  , R q  , I -g  > s o  that eveiy rule 

has the form W —*a ,W —*a -1], or W —^a -U - V for W, , V e Nq and 

a e Z c -

2) Write a regular grammar < N x , Ix. ̂ x - > for ^ A'^. 

3) Form a set of rules x o u t  { ^ X ^  , G t ) ,  whose non-terminals are triplets as 

s p e c i f i e d  b e l o w .  A s s u m e  A  ,  B  ,  D  ,  E ,  a n d  J  €  N x  ,  T ,  U ,  V ,  a n d  W  e  N Q ,  #  

and % represent any non-terminal in A ^ , tç and Sj e Ix, a e Eg . and 3 is any 
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right hand side in a rule of R q  . 

If /?x has and has put in xout ( ^ X 'd , Gy ) 

a } B ^ i c - E  \ V - » j 3  

b )  5 — > 0 - £  W  — »  a  

W B # - ^ t ç  -  W E #  

WBE-*k 

c) B-»0 E W - » a  - U  WB#^UE4f: 

d )  B - y Q - E  W —*a 'U • V W B # - ^ U E % - W % ^  

4) Form a set of rules tail according to the steps below. Assume A ,B , 

D, E are non-terminals in and ^ 2%. 

a) If /?x has B - * t c  ' E ,  add Q B D - » ?c " OED. 

b) If Rx has B — * î c  • D , add Q B D î q .  

5) Form a context-free grammar K = <Niç R^, Sf:>= invert ( ^ , Cy ). 

Ejc will contain Zg and the terminals from will contain singlets, 

d o u b l e t s ,  a n d  t r i p l e t s  f r o m  N q  a n d  N x  •  P u t  x o u t  i  a n d  t a i l  ^ a X j ) )  

in K as rules for the triplets. Rules for singlets are the same as in Gy, and 

rules for the doublets are added according to the chart below. Assume that 

T, U, V, W e Nq , a ( Zq , 0, tf;- € Zx ' and A , B, D, E e Nx • The symbol # is 

a wildcard representing any non-terminal in Nx, and p represents any right-

hand side in Rq . Also assume that a code table associates with each doublet a 

distinct integer greater than zero. The doublet MJ^ is a wildcard doublet 

which represents every doublet whose code is i such that i = codeiWB ). 

If Rq has and Rx has add to invert ( ^ Xjy, Gj ) 

a ) W - ^ p  B  ? (  W B  o-> W • M J i  • tc 
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b )  W - > p  B - ^ t ç  • E  W B ,  M J . ^  •  ? ( •  

c ) W - , a  B - > 0  

d) W-^c7 •L" 5-.0 W B o - ^ U  -  M J i  

e) W  - »  a  • i '  •  V  W B o - ^ U  - V  -  M J i  

f) \V-»a • E  W B o - - > M J i  - Q E D  

g) W -» Û • U  • E  W B j  —* M J i  for y = code { U E  )  

h) W  — >  a  • u  • V B-»0 • E  W B  j — * V '  M J i  for ; = code { U E  )  

i) W - * a  • U  •  y 5->0 • E  W B j  M J i  •  U E #  for j = code (V# ) 

j) If there is a rule W B j  - >  Oj • M J i  • o i  where W  =  T  and Rx has A  - ^ S j  •  B ,  

then add a rule WB02. 

k) Add Sjç-^îj • WEq  for every doublet with subscript 0. Also, add 

5^ —> ?/ • TBD where Rx has A-* sj • B. 

DEFINITION 4-61. Let G be a 2DNF grammar which has a consistent deletion 

cycle with non-terminals A and D. Suppose also that ^ (or ) is 

an inversion map formed from G , and G has a non-terminal T whose 

yield can be generated by a context-free grammar Gy. Then 

xout { Xq , Gj) is a regular grammar formed by construction step 3 

above, tail ( A'^, ) is a regular grammar formed by step 4 above, and 

mverr ( ^ A'g , Gy- ) is a context-free grammar formed by all the steps above. 

LEMMA 4-62. Suppose .V^, (or 4 fg ) is a regular inversion map and Gy is a 

context-free grammar, xout ( ^ X^ ,Gj) = X has a non-terminal WBE such 

that WBE =i>* •... • Tc, if and only if Gy has non-terminal W such that 

W =>* (8, ^ Xj) has B such that B r • 0 •£ for r in I_v* , A - 0) = 0''. 

2C2 ) = î'c 1 • • • • • • and I j31 = d. 
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PROOF. The lemma is established by proving propositions (Al and (B) below. 

(A) If Gj has W such that .... then .V has WBE such thai WBE^ re, ' • • • " ?c, • 

Proof of (A) by induction on 1 r I. 

Base. IJ I = 0. 

In this case, has a rule B—*0-E,d = I,  h2iz) = k.  Since d = I, /3 = a 

and G J- has W -> a. By construction step 3b, .Y has WBE —> X.. 

Inductive hypothesis. Assume (A) is true for 0^ Ir I 

Inductive step.  Show (A) is true for I z  I = n. 

Case 1. z =?Ci*z' where 7 =>* z' .  

^Xd hss B ̂ tc^- J ,  B =?>* ^c, ••2' • 0-£, and Gj- has W =$>* jS. Also, 

h liz '  * 0) = ft i(z • 0) and h 2(2' ) = tc^'  • • - The inductive hypothesis can 

be applied to establish that xout i ̂ X^yG^) contains WJE such that 

WJE =5>* tc^- . . . - tc,-  Step 3a adds WBE^ tc^ • WJE to A'.  So WBE 

tc^-WJE=^* fc," --.'/c,-

Case 2. z = 0- z'  where J =5>* z'  and p = a • jS'. 

xoz/r ( yj Z/), Gj") has 5 —»0 • y and 5 0-z'-0-£. ft i(r' • 0) = £? — 1, and 

ft 2(2' ) = ft 2(2 ) = • Also, there is a rule in Gj W -* a - U where 

[/ =>* j8'. The inductive hypothesis can be applied to establish that 

XOUÎ ( 4 A'o , G J ) contains UJE such that UJE =>* - Step 3c adds 

WBE-»UJE to X , so WBE => UJE =>* fc." -

Case 3. z = 0 • z j • 22 where J =5>* T], F =^* Tt, and )3 = a - - jSi. 

A'd  has 5->0-7,7=?>*2i -F. and f"=^*22-0-£. ft](,Ji) = J = I 1, 



h ] { z 2 )  =  d  =  l i S i l - a n d J  =  l + J j + J , -  A l s o . / î i C T ] )  =  

h 2(^2) = fc^., • • • • • > and Gj has \V-» a • II  • V where U /Sj and 

V =^* 1^2- The inductive hypothesis can be applied to establish that 

xout ( /\ A'2), Gy ) has UJF such that L'JF =?>* j ' • • • " • ^nd VFE such 

that VFE =>* tcj^j • • • • • • Step 3d adds the rule WBE-» UJF • VFE. So 

W B E  ̂  U J F  -  V F E  f c , " .  -  f C j  = f c /  

(B) If X has a non-terminal WBE such that WBE =#>* fc," - = r, then Gy 

has non-terminal W such that W =$>* a^d hasB such that B =5>* z • 0• £ for 

z in Zx* ,  /!  i lz • 0)  = O' ' ,  /Z2CZ )  = rci '  • • •  "^Cr» and 1)31 = d. 

Proof of (B) by induction on the number of steps in the derivation of T .  

Base. WBE derives r in one step. 

T must be X, and X has WBE =$>* X.. This means that ^Xq has 5 -» 0 •£ 

and G J has W-»a. h jCO) = d and h 2(0) = X, so (B) is satisfied. 

Inductive hypothesis. Assume CB) is true when WBE =^* r in less than n steps. 

Inductive step. Show (B) is true when WBE =4>* r in n steps. 

Case 1. WBE =>* r .  

Construction step 3a was applied in this case, so ^Xj^ has B-^ îq^- J and Gj 

has W such that W =5>* j3. The inductive hypothesis can be applied with 

W J E  = > *  t o  e s t a b l i s h  t h a t  ^ X ^  h a s  J  = > *  - O - E ,  

h ]Cz' • 0) = c?, /2 2(z' ) = Tc/ - • and I jSl = i. So 5 =$>* 

• r' • 0•£ = z • (j•£•, ft i(z • 0) = ii . and h^{z) = • h •,(:') = • ...-tc • 

Case 2. WBE ^UJE =4>* r. 
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Construction step 3c was applied to get WBE —» L'JK. So .Y^ has B —» 0 - V 

and Gj has W—>a -U. The inductive hypothesis can be applied to establish 

that ^ X'd has J =>* z' - O- E, h i(r' • 0) = li — \ , h ](:' ) = r. and U =>* 3' 

where I j3' I = d — 1. So W =5>* a • fi' = ^, \ fil = d . B =S>* 0 • r' • 0 •£ — 

2  •  0  • £ ,  / î  1 ( 2  •  0 )  =  c ? ,  a n d  h j i z )  =  t .  

Case 3. WBE ^UJF-VFE =^* tr "'c ~ L. 1 J 

Construction step 3d was applied to get WBE UJF • VEE. So ^ Xq has 

B-^Q- J and Gj has W-* a - U - V. The inductive hypothesis can be applied 

t w i c e  t o  e s t a b l i s h  t h a t  j s ^ X j )  h a s  /  = $ > *  Z j  - 0 -  F  a n d  F  z j ' Q ' E ,  

h l izI 'O) = d i  h i iz2-0) = d2, h 2(2 j)  = 7^^ •. . .  • ,  / j  2(2 ?) =  ̂ Cj^i '  • •  •  '  • 

U =>* jSj,  V =^* ^2, Ii3i  I = d 1, and \^2^ =d 2- SoW ^  a -U - V =>* 

a - / 3 i - / 3 2  =  3 .  1 / 3 1  =  =  0 - 7  = $ > *  Q - z - ^ - Q -  Z 2 - ^ - E  =  

z • 0 • £, /2 i(z • 0) = 1+ c? 1+ c? 2> and AzCz ) = - ... - = r. QED. 

LEMMA 4-63. Let ^ (or ) be a regular inversion map. The set of rules 

tail { has OBD such that OBD =5>* •... • if and only if ^ Xj) has 

B such that B •... • where 5 is a descendent of A. 

PROOF. The theorem is proven by a simple induction on r, which corresponds to 

the number of steps in the derivation of - ... - r^. The induction is not shown 

here. QED. 

LEMMA 4-64. Let G be a 2DNF grammar < Z , £ , N  , R  , S  > 2  which has a con­

sistent deletion cycle containing non-terminals A and D. Suppose that 4 A'g 
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is an inversion map for the deletion cycle and 7 is a non-terminal outside the 

deletion cycle whose yield is generated by context-free grammar Gj. 4 

has non-terminal B such that B =^* m-  ,  h ](-u'  )  = 0"^ ,  A )  =  ̂ c, '  • •  •  '  • 

and G J has a non-terminal W such that W )3, 1 j3l , if and only if 

inverl ( ^ Xj), Gj ) has a non-terminal YFq such that YFq =>* \ j3 - MJ, • 

^Ci • •  •  •  •  for every doublet  M/j where i  = code (WB )  and YFo=^* 

\ 3 • rcj • ... • when W = T and ^X^, has a rule A -» Sj -B. 

PROOF. The lemma is established by proving the propositions (A) and (B) below. 

The proofs are written for the general case in which W or A does not derive 

sj • B. The proofs of the special cases involving start symbols are the same as 

below except that MJi should be removed from the sentential forms. Construc­

tion step 5j  adds terminating rules without MJi for start  symbols T and B. 

(A) If aXd has B such that B =?>* w ,h jCw ) = 0"^, ft 2(:t' ) = ?Ci " • • • "> aod 

Gy has W such that W =5>* i3, 1/31 , then mver? ( ^ , Gj ) = Â' has KF0 

such that YFQ =#>* \  )3 •  M/,  • '  • • •  '  for every MJ^ where i  = code (W5 ) .  

Proof of (A) by induction on I w I. 

Base, lu- I = 1. 

Case 1. 11" = Tc. 

In this case, d = 0 and h 2(m ' ) = ?c  • 0. 1 /31 > 0, and ^ X^ has a rule 

B^Tc . Step 5a of the construction adds to K a rule WB o-> W • MJi • îq 

w h e r e  2  = c o i i e ( W 5 ) .  S o  W ' B Q ^  W  -  M J I  -  r e  ^ - M J i  - t c  =  
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Case 2. V = 0. 

We have d •= \ ,  h ) = A., W =ï>* /3, 1 /BI > 1, and a rule 50 in a^d- If 

j3 = J then Gj has W, and step 5c puts \VBo-+ M/j in K, where 

i  = codc iWB ) .  So WB o=> À -  M J.  = l '  \  a • MJ^ = \  /3 • MJ^. 

If j3 = (J -3' where U =^* i3', then Gy has W —>a - U,  and step 5d adds 

rule WB o-> U • MJ,, i = code {WB ). So WB U • MJ^ =S> * /3' • MJi = 

If 3 = a • /3i * 02 where =>* jSj, and V =>* jB;, then Gj has 

W —»a -U - V, and step 5e adds rule WB q—> U - V • MJ^, i = co(ie{WB ). So 

W5o^ -V-MJi /3i-|82-M/i 

Inductive hypothesis. Assume (A) is true for Iw I <n. 

Inductive step. Show (A) is true for i w 1 = n. 

Case 1. w = ?c, • 

In this case, h jCu-' )  = h ) = 0"^, /j  2^"^' ) = ' • • • ' has 

B — i t c , ' E  where £ =$>* V , and Gy has W  =>* jS. The inductive hypothesis 

establishes that invert ( ^ X^,, Gj) = K has YFQ such that YFQ=^* 

\ (3 • MJj • tc^ - • • • • t c ,  where j  = code {WE ). Step 5b adds a rule 

WBj-^MJi where z — code{WB). \ l i-WBj -tc^'  

. . .  -  T c ,  = >  \  g  -  M J ,  •  i c ^ -

Case 2. w = 0 • v' and /3 = a. 

In this case, ^ A'^, has B - * 0 - E  and E =>* u-'. h  ](w ) = 1, A ) = ^r, ' 

.. .-îç, and Gj has W —^a. Since \^\^d ,d must be 1, and w' has no zeros. 



So h 2W ) = 11-' = •... • ?Cr- Step 5c adds a rule W'B o-> A77, • OED where 

i = code {\\'B ). Step 4 of the construction added tail ( ,4 A'g ) to K, and 

lemma 4-63 establishes that OED in tail ( ̂  A'g ) derives So 

WBq=^ MJi • OED =>* MJi • • • • •  • \  /3-M/j • ^ • . . .  • 

Case 3. m' = 0 • v' and /3 = a • ;3'. 

has 5->0•£ and E =>* V ,  h jCu- )  = O''"'- /!  2(w' )  = ?Ci '  and 

G7 has W-»a -U where t/ =>* 3'-and I jS'l — 1. The inductive hypothesis 

establishes that invert Gy) = A" has Yf 0 such that YFq^* Z''"' \ /3 • 

W5 j  • tc^ - • •••tc^ where j  = code iUE ). Step 5g adds a rule WE j MJi 

where i  = code iWB ) .  So YFq =?>* • WBj - -  . . .  - => 

Case 4. w = 0• w 1 • -vv2, 13 = a • jSj • 32. and Igl >ii > 1+ 13i I. 

a X j ) has B — * 0 - E , E  =4>* u- j -^2, A/ is a descendent of E  such that 

H =5>* W2, /! iCu'i)  = = tc^ - . .  .- tc^,  à l iwi) = h 2(^2) = 

.-tc^,  d 1= 13] I, ^2^ I ^21, = !•¥ d d 2, and Gy has W -» 

a - U -V where U =>* 3i and V 3?- In this case, 3i is completely 

deleted, and 3? is at least partially deleted. The inductive hypothesis estab­

lishes that ijivert ( 4 Xq ,Gj) = K has YFq such that YFq=^* 

\ 32 • WBy • ?C;,+i • • • • • ^c,  where j  = code {VH ). Step 5i adds a rule 

WBj—* MJi • UEH where i = code {\VB ). Step 3 of the construction adds the 

rules xout , Cy) to K. The value of d, must be at least 1, so it is true 

that £ =^* u' 1 - H = z • 0 •/-/ . /? ](z • 0) = 0''', and /? 2(^ ) = ?c, " • • • " We 
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can apply lemma 4-62 lo establish that IJEH =>* •... • . So ITq  =$>* 

\ ̂ 2. . Zc,., -... ' Zr, Z"' \ jGz - -... -

Z'^'Xigz-My, 'grg2-Myrrc,'...-rr, = 

\ ^ - M J i  Tc, ... fc/ 

Case 5. w = 0 • V and /3 = a • ^2< and 1+ 13i i ^<^ > !• 

^ Xd has 5 ->0 •£ and E =>* w',  h ](-\v )  = h 2(v' )  = fc, '  • •  • .  and 

G J has W -*a • U - V where U =^* jSj and y =$>* jS,- In this case, part or all 

of is deleted, but none of ^2 is deleted. The hypothesis establishes that 

inverti j^Xd,Gt) = K has VF 0 such that IT 0=^* - Zc, ' 

where j  = code iUE ). Step 5h adds a rule WBj-* V • MJ^ where 

i = codeiWB ). So YFq^* \ • V • • Tc, •... • ?c, =>* 

(B) If i n v e r t  { , C t )  =  K  has Y F  ̂  such that Y F  ( where ( = 

\^- MJi • tc^ - .. . - tç^ for ever): doublet M J where i  = code iWB ), then ^ A'^, 

has B such that B =^* m-  ,  h jC-vv )  = 0"^, /? 2CW )  = Tc, '  - - -  '  '  and Gy has \V 

such that W =?>* /3,  \( i \ '^d.  

Proof of (B) by induction on the number of doublet rule applications in the deriva­

tion of 

Base. FFo =>( in one step. 

Case 1. ^ is derived with WBg W • MJi • tç =5>* g • MJ, • . 

K contains such a rule (step 5a) only if 4 Xj^ has B-^tç and G7- has a rule 

for W. So 5 =4>* = 0, h 2(^0 ) = • and W (3, satisfying (B). 



There are similar eases for sleps 5c through 5f. 

Inductive hypothesis. Assume (B) is true when YFo=^* ^ in less than n steps. 

Inductive step. Show (B) is true when ITo=$>* ( in n steps. 

There are four cases which correspond to cases 1, 3, 4, and 5 in the inductive 

step of the proof of (A). Only case 3 is shown here. 

Case 3. YFq=^* \ jS • MJi •  "  •  •  •  " - »  V  •  MJ^ is the last doub­

let rule applied, where i = code (W5 ) and j = code WE ). This rule is added 

by step 5h, so has 5 —>0 • £ and Gj has W-^a - U -V. If one less step 

is taken in the derivation from YFq, we have YFq=^* \  /3i •  WBj • îc,  '  

... " fQ where /3 = /3i • J32 such that V ^2- The inductive hypothesis can be 

applied with this shorter derivation to get U =>* j3i, £ =$>* w', ft jCu-' ) = 0'^, 

and h2(w' ) = ...-fQ. It is certainly true that \ /3 = I''\a • /3. So 

we can write FFg =>* ^2'' ̂Ci'••Since t/=>* /îj, 

V 02- and there is a rule W—» a • i7 • V, we have W =t>* a • jSj • jSi = 

a • / j .  Also,  5  =$>0 • £  =i>* 0 • u ' '  = v , h ,  and h 2(v.-  )  =  ̂ Cj '  

Thus, (B) is satisfied. QED. 

LEMMA 4-65. Let G be a 2DNF grammar with a consistent deletion cycle for 

which ^ is defined, and Gj is a contexl-frec grammar which generates the 

yield oï T (. N.  ^ Xj^ has non-terminal A such that A =$>* w ,  / i  i(-vv )  = 0'^ ,  

h 2(w ) = Sj 'tcj' and Gj- has non-1 erminal T such that 7 =?>* 3, 

l / S l ^ d  , if and only if inverr ( ^ Xf, . C j  )  has si art symbol such that 

Sk =^* f; - Z'' \g' fc," 
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PROOF. Step 5k of the const ruction of invcj't C .4 .Vg . G; ) adds a rule -> ?; • 

YFq for each doublet with a zero subscript. Lemma 4-64 lakes care of the rest. 

QED. 

THEOREM 4-66. Let G be a 2DNF grammar < Z , E , N  , R  , S  > 2  such that all of 

its deletion cycles are consistent. There is a grammar G' = 

< I', H', N ' , R ' , S  ' > 2  such that G' has no deletion cycles and i'oCG ) = Y q CG' ). 

PROOF. To construct G', set Z' = I, H' = H, and S' = S. For every subgrammar 

Gc which has no deletion cycles, put the rtiles and non-terminals of Gc in G'. For 

every G a where A is the root of a deletion cycle, follow these steps: 

1) Find every rule in G^ of the form a ) D - * T  or b) #[2/) ][i T] where J5 

and D are in the deletion cycle, but T is not. 

2) For each such rule, form context-free grammar Gj, regular grammar a) ^ A'g 

or b) a^D' and context-free grammar a) Ki = invert { ^Xd >Gr) or b) 

A' i  =  i n v e r t  { , G j ) ,  where i  ranges from 1 to the number of rules of the 

form a) or b). 

3) Convert each A', to a 2DNF grammar A'%. 

4) In the rules of every K'^, replace tc with non-terminal C. Replace occurrences 

of non-terminal T in the right-hand sides of rules with #[? T][i ] where 

is the external selector of T. 

5) For each i , add K 'i to G' along with a rule A where 5^-. is the start 

symbol of K\. 

The theorem is established in the proofs of propositions (A) and (B) below. 
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(A) If G has non-terminal A such thai a and sfr ia) = m- , then C has 

A '  such that A '  =?>* a '  and s f  / • ( « ' )  =  v. 

This can be proven by induction on the length of the derivation of a. The 

formal induction is not shown here, but its substance is summarized. If G^ has no 

deletion cycles, then it is clear that a can be derived in G' using the same rules as 

in G. But suppose A =>* a, sf r (a) = u', and A is the root of a deletion cycle! 

Then sf ria) = sfriri) • 1'^ Vs/rCyo)* l''°\ s/r(yi) • .. .•Z^'"^\sf riy^ ), where 

the first leading non-terminal in the cycle is I and J ri,d is the accumulated 

deficit of the overlapping selectors, T =^* yq, trailer non-terminals Cj =$>* yj for 

and x' ' '  is the external selector of yj . Lemmas 4-59, 4-60, and 4-65 

establish that invert ( A'g , Gy ) = A', derives a string Sj \ s/r (yo) • tc^ ' 

Steps 3 and 4 of the construction turn A', into A", which derives a' = 

#[2/][i #[2C2][i ...# [2 C, ]...]]]] where 

\ s f  r i y o ) .  So s/r(a) = s/r(a). 

(B) If G' has a non-terminal A' such that A' =?>* a' and sf  r  (a') = v , then G 

has A such that A =>* a and sfr {a) = w. 

The proof of (B) is similar to the proof of (A). QED. 

COROLLARY 4-67. Let G be a 2DNF grammar <1.,  B,N ,R ,S >2 with con­

sistent deletion cycles. There is a context-free grammar G' such that YolG ) = 

2(G'). 

PROOF. This follows from theorem 4-66 and theorem 4-23. QED. 
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The grammar ABC presented ai ihe beginning of this chapter is an example of 

a 2-d grammar with a consistent deletion cycle. As a result of the previous corol­

lary, the yield of ABC is a con text-free language. 

0Y2F and the Subclass 0Y2F(. 

Recall the language generated by grammar ABC. A derivation and subsequent 

frontier operation generates a string a'6' for i ^0, and then deletes an arbitrary 

number of characters from the front of the string while adding c's at the end. 

Suppose a rule S ̂  #[2 #[% e [1 / [1 x ]]][i S ]][i d [j y ]] were added to ABC to create 

ABC. • Then the deleting steps could be intermixed with steps that add ef to the 

front and d to the end of the string. The deletion cycle would no longer be con­

sistent, and the methods above could not be used to convert ABC to a context-f ree 

grammar. The modified deletion cycle contains mixed increasing and decreasing 

steps, and a general sequential machine is not be adequate to create the inversion 

map. This does not necessarily mean that the yield of ABC is not context-free. If 

the pumping lemma for context-free languages is applied to arbitrary words of 

YQ{ABC ), we find that every word can be successfully pumped. It seems likely 

that a method will be discovered for transforming inconsistent deletion cycles to 

context-free subgrammars. The methods employed above are inadequate for this 

purpose, and it remains an open question whether 0Y2F = context-free. We can, 

however, define a large subclass of 0Y2F which is context-free. 
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DEFINITION 4-68. A language L belongs lo the class 0Y2Fc if and only if 

L = )'o(G ) and G is a 2-d forest grammar such that G has no deletion 

cycles or every deletion cycle in G is consistent or regular. 

THEOREM 4-69. L e 0V2F^ if and only if L is con text-free. 

PROOF. Theorem 4-53 and corollary 4-67 establish that L € 0Y2F^ =^L is 

context-free. Corollary 4-2 establishes that a context-free grammar can be con­

verted to a yield-equivalent 2-d forest grammar. The 2-d grammar will contain 

only standard selectors, and thus no deletion cycles at all. So L is context-free 

implies L e OY2F(.. QED. 

We conclude the analysis of 2-d forest grammars by showing that 0Y2F is a 

proper subset of 0Y3F. First it is shown that a language known to be in 0Y3F is 

not in 0Y2F. 

LEMMA 4-70. The language L = }, n >0, is not in 0Y2F. 

PROOF. Suppose L e 0Y2F. Then L = FolG ) for some 2DNF grammar G = 

<Z, E ,N ,R ,S >2 • If "vv t L, then u- = sf r (3) and 5 =$>* /3. Since L is an 

infinite language, there must be a increasing cycle in G. Let jS, be a forest gen­

e r a t e d  f r o m  i  a p p l i c a t i o n s  o f  a n  i n c r e a s i n g  c y c l e  s t e p ,  a n d  l e t  =  s f r  ( / 3 j  ) .  L  

contans a string for ever)' value of i ^0. Regarding the difference in size of (3,-

and we have 1 I — I3i I = c , where c is a constant which can be deter­

mined by examining the rules of the grammar. Observe that if ^ is a 2-d forest, 

then I /rjCiS) I 4 13 L The 1-d frontier operation can only decrease the number of 

nodes in a forest. Since /S; is a subforest of + it follows that I Vj+j I ^ 



106 

IM-; I + c. There are also j3, and +2 such that I ^ +1 I + c- But now 

we have a contradiction. If the difference in size between any three consecutive 

words in L is a constant, L # }. QED. 

COROLLARY 4-7 L 0Y2F is a proper subset of 0Y3F. 

PROOF. If L is in 0Y2F, then it is the yield of some 2-d grammar G . This gram­

mar can be converted to a 3-d grammar G' with the same string yield by adding 

S' #[3 #[2 5']] and all the rules of G to G', where S' is the start symbol of G' 

and S is the start symbol of G. So 0Y2F is a subset of 0Y3F. Theorem 79 of 

Baldwin's thesis shows that the language ), n > 0, is in ALG3. Theorem 4-1 

earlier in this chapter establishes that ALG 3 Ç 1Y3F, so it must be true that 

{a '"} e 0Y3F. So every language in 0Y2F is in 0Y3F, but 0Y3F has a language 

that is not in 0Y2F (lemma 4-70). QED. 

In summary, 0Y2Fc is a subset of 0Y2F and is equivalent to the class of 

context-free languages. All 2-d forest grammars which do not contain deletion 

cycles yield languages in 0Y2F(-. Many grammars which do have deletion cycles 

have also been shown to yield 0Y2Fc languages, provided the deletion cycles are 

regular or consistent. While 0Y2F may contain non-context-free languages, it is 

still much smaller than 0Y3F, the next class of string languages in the forest-yield 

hierarchy. 
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CHAPTER 5. 

THREE-DIMENSIONAL FOREST YIELD LANGUAGES 

The frontier operation on a 2-dimensional forest is the concatenation of the 

strings which are the frontiers of its subforests. When two strings are con­

catenated, there is no confiision about where to join them: the second string is 

attached to the end of the first. The frontier operation on a 3-d forest is a concate­

nation of the trees which are the yields of subforests. Again, the concatenation of 

two trees can be described as attaching the second tree to the end of the first. But 

that description is not complete, since the first tree may have several ends, or 

leaves. The selectors in a forest indicate where concatenation will occur and what 

subtrees will be attached. Two or more selectors may demand the same subtree, 

and in that case multiple copies of the subtree are attached. This gives 3-d forest 

grammars a copying power that 2-d forest grammars do not have. 

Examples of 3-d Forest Grammars 

A 3-d forest grammar can be written which yields the language {a^"}, n ^0. 

This grammar, called A2N, will illustrate the copying power of the frontier opera­

tion. As shown here, the grammar has only one non-terminal, A e N 2- The selec­

tor set is H = {y , r }, where y represents <2, X> and r is <1, X.>. The terminal 

set is r = {#, a }, and the rules are the following: 

1) ^->#[3 #[2y[i y]]][2^ ]. and 

2 )  A  — >  # [ 2  < 2  [ ]  Î  ] ] .  
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4^— 3 2 
1 I 
^— 2 — 3 2 

I I I 
y— 1 4t- 2 ^ 2 

I I I 
y y— 1 a— 1 

I I 
y z 

derived 3-d forest 

#-—2 

I 
#-—2 1  

I I 
^—2 1 ^—2 

I I I 
a—1 ^—2 ^—2 1 

I I I I 
z a—1 a— 1 ^—2 

I I I 
z z a—1 

I 
z 

2-d frontier 

a —  1  

I 
a—1 

I 
a —  1  

I 
a —  1  

1 

z 
1-d frontier 

FIGURE 5. 3-d forest and yields produced by A2N 
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Figure 5 contains a 3-d forest produced by A2N and its 2-d and 1-d frontiers. A 

derived forest yields the string , where n is the number of times rule 1 is 

applied in the derivation. The derivation sequence for the forest in figure 5 is 

1 1 2. 

The grammar A2N has only X-paths on its selectors, so the selectors are stan­

dard. The use of extended selectors in 3-d forest grammars does not affect the 

copying power of the frontier operation, but is does increase flexibility in specify­

ing what subtrees will be copied, and it also introduces deletion cycles. This 

enhanced deletion power makes it possible for the frontier operation on 3-d forests 

to simulate list-processing operations such as the selection of an arbitrary element 

from a list or the division of a list into disjoint sublists. The forest 

#[% #[% • • • *[2 * * • ]]]] can be used to represent a list 

of k  elements, through e*. The forest is structured so that a selector can 

extract a single element or a sublist with one or more of the leftmost elements 

deleted. For example, the selector <2,22> extracts element Cj, and the selector 

<2,21 > extracts the rest of the list. The creation of forests which represent lists 

is illustrated by the 2-d grammar BLIST. The terminal set is I = {#, è} and the 

selector set is H = {z }, where z = <1,X>. There is only one non-terminal, 

B € N 2- The rules are as follows; 

1) #[2 #[26 [j zKi 5 ]], and 

2) 5-.#[2#[2^[iZ]]]. 
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# - - - 2  

I 
4^ 2 1 

I I 

b 1 4P 2 
I I 

z 4P 2 1 
I I 
b—1 ^—2 

I I 
z # - - - 2  

I 

b—1 
I 
z 

FIGURE 6. 2-d tree produced by BLIST 

Figure 6 contains a 2-d forest produced by BLIST with the derivation sequence 

112. The forest represents a list of three b's. 

Another example grammar, MERGE, illustrates the list-processing power of 

3-d forest grammars. MERGE will have two 2-d subgrammars, ALIST and BLIST, 

which generate lists of a's and b's. The frontier operation on a forest produced by 

MERGE will have the effect of merging two lists into a single list of mixed a's and 

b's. The terminal set is I = {#, a , ô }, and the selector set is E = {72 . o , />, g, 

I ,u z\. where n = <2, 211>, 0 = <2, 212>, p = <2, 2121 >, q = <2, 22 >, 

I = <2,221>,u =<2,21>,v = <2,2>, and z = <1,\>. The non-terminals 

are N 2 = \S, M, P, 0 , B, A\, where 5 is the start symbol. The rules are as 

f ollows: 



I l l  

I  I  

# - 2  # - 3 - - - 2  

I  I  I  

u - 1  # - 2  # - 3 - - - 2  

I  I  I  I  

# - 2  v - 1  # - 2  # - 2  

I  I  I  I  

v-i p—1 t—1 ^—2 1 

#-2 u-1 #-2---l #-2 
I I I I I 
0 - 1  # - 2  a - 1  # - 2  # - 2 -  — 1  

I I I I I I 
n q z #-2 b-1 #-2 

I I I 
a-1 z #-2 

I  1  

z b-1 

FIGURE 7. 3-d tree produced by MERGE 

1)S^#[3Q][2M], 

2 )  Q  — >  # [ 2  u  [ 1  # [ 2  [ 1  n  ] ] ] ] ,  

3)Q_>#[2v [ i  #[2u[in]]]], 

4 )  

5 )  M - . # [ 3  V ] [ 2 # [ 2 A [ I 5 ] ] ] ,  

6) P—> #[2 r [j u [j ? I-i 

7) P^#[2v[i /j[i #[2o[i n  ] ] ] ] ] ,  

8 )  V  — >  # [ 2  7  [ j  u  [ j  # [ 2 ^  ] ] ] ] ,  

9 )  \  — >  # [ 2  V  [ j  p  [ j  # [ 2  0  ] ] ] ] ,  
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11)5-#[,#[2^[i - ] ] ] ,  

12) ,4 -> #[2 z]][i A ]], and 

13) A-»#[2#[2a[ir]]]. 

# - - - 2  

I 
^— 2 — 1 

I I 
# _ _ _ 2  # - - - 2  

I I 
b — 1 ^— 2 1 

I I I 
z ^—2 #—2 

I I 
a — 1 ^— 2 1 

I I I 
z b 1 2 

I I 
z #—2 

I 
a—1 

I 
z 

2-d frontier 

b---l 
1 

a —  1  

I 
b— I 

I 
a — 1 

I 
z 

1-d frontier 

FIGURE 8. Frontiers of the tree in figure 7 
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Rules 10 and 11 conslilulc ihi- subgrainmar BUST, and rules 12 and 13 form 

a similar subgramrnar ALIST. Non-terminal M generates the list-processing cycle. 

The cycle is designed so that an intermediate 2-d tree of the form lisi [j 

b list [j mixed list ]]] is maintained throughout the frontier operation. This struc­

ture is initially set up by application of rule 5, the terminating cycle step. Each 

application of rule 4 in the cycle corresponds to an operation on the intermediate 

tree when the frontier is taken. Each such cycle step introduces a subtree derived 

from P by rule 6 or 7. The subtree of rule 6 takes an a off the a -list and attaches 

it to the front of the mixed list. The subtree of rule 7 takes a A off the A-list and 

attaches it to the mixed list. The application of rule 1 corresponds to the final step 

of the f rontier operation. This step attaches the remainder of the a -list and the 

remainder of the b -list as the first two elements of the mixed list. Figure 7 con­

tains a 3-d tree derived from 5, and figure 8 contains its 2-d and 1-d frontiers. 

The derivation sequence for the tree in figure 7 is 1 2 4 7 5 8 10 11 12 13. 

In list-processing applications, the need sometimes arises to turn a complex 

list into a simple list. A complex list is one whose elements can themselves be 

lists. The grammar A2N produces forests whose 2-d yields can be considered to 

represent complex lists of a's. Figure 9 shows complex and simple list representa­

tions with 2-d trees. A 3-d grammar SQUASH can be written which creates com­

plex lists of a's as 2-d subtrees in its derived forests. The frontier operation then 

transforms the complex lists into simple lists. SQUASH has terminal set I = 

{#, (2} and selector sel S = {s, 1, u , v, w, x . y , z ], where s = <2. 2221 >, 
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# - - - 2  

# _ _ _ 2  1  
I I 
it 2 1 2 

I I I 
a — 1 ^— 2 ^— 2 1 

I I I I 
z a— 1 a — 1 ^—2 

I I I 
z z a—I 

forest representing a complex list 

# - - - 2  

I 
—2 • -1 

I I 
a —  1  — 2  

I I 
z ^—2 1 

I I 
a—1 ^— 2 

I I 
z ^— 2 1 

I I 
a —  1  — 2  

I I 
# - - - 2  

I 
a —  1  

forest representing a simple list 

FIGURE 9. Tree representations of lists 

/ = <2.221>, u = <2,21>, V = <2,2>, w = <2,22>, = <2.222>, 

y = <2, A.>, and 2 = <1, X>. The non-terminal set is = {i?, W ,T, A] with 
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Stan symbol R. The rules arc the following: 

1)  

2) R—» #[2 ZY #[2 ]]]][] ], 

3 )  r - > # [ 2 r [ i  # [ 2 v [ i z y ] ] ] ] ,  

4) T  — >  # [ 2  # [ 2  t l  ^ 1 - 2  t l  '  ] ] ] ] [ ;  Z /  ] ] .  

5 )  W - » # [ 3 # [ 2 v [ i  # [ 2 r [ i Z i ] ] ] ] ] [ 2 W ] ,  

6) W-^A, 

7) A-» # [ 3  #[2y [1 y ], and 

8) A -» #[2a[i z]]. 

4^—3 2 
I I 
#--2 #--3 2 

I I I  
t — 1 —2 ^—3 2 

I I I I 
#-_2 t--l #--2 #--3 2 

I I I I I 
"w—1 ^—2 "u—1 #—2 ^—3 2 

I I I I I I 
u w— 1 Tr—2 Vv— 1 ^— 2 ^— 3 2 

I I I I I I 
u  V #--2 y--l #--2 #--2 

I I I I 
t -1 y y— 1 5— 1 

I I I 
u y z 

FIGURE 10. 3-d forest produced by SQUASH 
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Rules 7 and 8 constitute the subgrammar A2N. The non-terminal R generates 

the list-processing cycle. Rule 2 is the terminating cycle step. An intermediate 2-d 

tree of the form ^[20ld lisî new lisî ]] is maintained throughout the cycle. 

Each time rule 1 is applied in the cycle, a non-terminal T is introduced. T is 

expanded by rule 3 or rule 4. Whenever a subtree produced by rule 3 is encoun­

tered during the frentier operation, the first element of the old list is moved to the 

front of the new list. Whenever a subtree produced by rule 4 is encountered, the 

first element of the old list is split into two elements and the new list is 

unchanged. If the first element of the old list is not itself a list in this situation, a 

path error will occur. The non-terminal W generates a cycle which repeatedly 

divides the first element of the old list into two pieces. When the first element is a 

simple element, application of rule 2 makes this element the initial new list, and 

the intermediate tree is in the proper form for application of the R cycle. Figure 

10 contains a 3-d forest produced by SQUASH and figure 11 shows its 2-d fron­

tier. The derivation sequence for the forest is 131325677 8. The old list is 

partially or completely simplified during the frontier operation, but no a's are 

added or deleted in the process. The resulting 2-d forest has the same number of 

a ' s  as the 2-d forest  derived from non-terminal A. 

The four example grammars just introduced can be composed to form a gram­

mar which will help relate 0Y3F to other known classes of languages. The gram­

mar BA2N might be described as MERGE (SQUASH (.A2N), BLIST). It yields the 

subset of (a I Z) I"*" such that each string in the subset has 2" a's, n > 0, and an 
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# - - - 2  

I 

I I 
3—1 ^—2 

I I 
z #—2 1 

I I 
3 1 ^ 2 

I I 
z ^— 2 1 

I I 
3 1 ^ 2 

I I 
z #---2 

I 
3 1 

1 
Z 

FIGURE 11. 2-d frontier of forest in figure 10 

3rbitr3ry number of b's. The termin3l set of BA2N is I = {#, a, 6 }, and the 

selector set is B = {n , o , p , q , s, t ,u ,v ,-w , x , y, z }, where the selectors are 

defined as in the preceding examples. The non-terminal set is A^2 — 

{S ,  M ,  P,  Q , R r, y, W, A , B ), with start symbol S. The rules are as follows: 

1) 5-.#[3Q][2ML 

2) #[2v[in]]]], 

3) 0-» #[2 V[] #[,^[1 72 ]]]], 

4) M-^#UP][2MI 

5) A'7-^#[3V'][3#[,i?[i£]]], 

6) P  — >  [ i  ?  [ ]  [ ]  ^ [ 2  9  1 1  ] ] ] ] ] ,  
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7) P-^#[2v[ip[i #[20[i 71 ]]]]], 

8) V—> #[2 ? [j u [] #[2 ? ]]]]. 

9) V —> #[2 V [j p [j #[20 ]]]], 

1 0 ) i ? ^ # [ 3 r ] [ 2 / ? ] ,  

11 ) /? —» #[3 #[2 U [1 #[2 V ]]]][2 W ], 

12)r->#[2r[i#[2w[i"]]]]. 

13) T#[2 ̂ [2Il ̂ [2[1 ̂ zz ]], 

14) W —» #[3 #[2 w [j #[2 Î [j u ]]]]][2 3> 

15) W-^A, 

16) A —> #[3 #[2 y [] y  ]][2-A ].  

17)yi->#[2a[ir]], 

18) 5-» #[2 ^ i i b i i z V k x  B  ]], and 

19)i5-»#[2#[2Ô[i2]]]. 

The yield of BA2N is a language which is not an 10 macro language. It can be 

used to prove that 1Y3F is larger than ALG^. 

THEOREM 5-1. ALG3 is a proper subset of 1Y3F. 

PROOF. Theorem 4-1 gives us ALG 3 Q 1Y3F. Fischer (1968) has shown that 

the language of the preceding example, L (BA2N), is an 01 macro language which is 

not an 10 macro language. Baldwin (1983) has shown the equivalence of ALG I 

with the 10 macro languages. So L (BA2N) is in 1Y3F, but not in ALG3. QED. 
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Three-Dimensional Normal Form 

The goal of this chapter is to identify a subclass of 0Y3F which is larger than 

the 10 macro languages, but still within the context-sensitive languages. A normal 

form can be defined for 3-d forest grammars such that every language in 0Y3F is 

yglG ) where G is a normal form grammar. The normal form prevents the gen­

eration of some non-frontierable forests. The first step in transforming a 3-d 

grammar to normal form is conversion to a short-rule grammar. 

DEFINITION 5-2. A 3-d forest grammar G = < I . , E , N  , R  , S > 3  is a short-

rule grammar if and only if every rule in R fits one of the following forms 

for A , B , C, E e N, and a € E (J2: 

1) A->a[3 5][2C][iDL 5) A-^a ̂  C][i D], 

2) A^Û[3B][2C], 6) A-»a[2C], 

3) 7) A->a[iZ)], or 

4) 8) A—»a. 

LEMMA 5-3. Let G be a grammar <1.,  B,N, R ,S >j. There is a short-rule gram­

mar G' = <l'  , E' ,  N ' ,  R ' ,  S '>1 such that LiC) = LiG' ).  

PROOF. The construct method for G' is quite similar to the method in the proof 

of lemma 4-6, so it will only be summarized here. Only non-terminals can be 

inside brackets in the right-hand sides of rules, so it G has a rule A -+ )3] where 

j3 is not a non-terminal, a new non-terminal T is invented and A —> j3] is 

replaced by A ^ T] and T—» j3. If G has a rule with a non-terminal outside of 

brackets, A^Bir a], then put the rules for B in short-rule form and replace 

A a] with A a] A /3„ cv] where jS] are the right-
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hand sides of rules for B. This process involves only lexlual substitution of non­

terminals and right-hand sides of rules. The forests derived from the grammar are 

not changed. So L (G ) = L (G' 3- QED. 

The transformation from short-rule to normal form is made by modifying or 

removing certain kinds of rules. Any rules containing a selector in £3 can be 

removed. Rules of the form A-^ai^B] can be eliminated-unless A is the start 

symbol, and rules like yi —»a [3 B ][2C ][j Z) ] can be replaced by virtue of the next 

lemma. 

LEMMA 5-4. Suppose there are a, )3, y, 8, and ( in Hj (I, H) such that a = 

#[3'y][2 8lti 4] and j3 = *[3 ^]. Then f r ^ i a )  =  

PROOF. This lemma follows from the definition of the frontier function: 

//•jCo;) = /r2(#[3y][2 8])[j /rjCO] 

= #[3 

=/r2(#[3 #[3y][2 8]][i 

= /nCjS). 

QED. 

DEFINITION 5-5. Let G be a grammar < Z . E . N  . R  , S > ^ .  G  is in 3-

dimcnsional normal form , 3DNF, if and only if every rule in R fits one of 

t h e  f o r m s  b e l o w .  A s s u m e  t h a t  B  €  N  2 >  C , D €  a  e l ,  b e  

E U = ] '  a n d  c  e  l U = i U = 2 -

1 )  [ 3 B ]  f o r 5 € A ^ 3 ,  

2) A-»a[3B][2C] where.4 e A'] y A'2, 



121 

3) ,4 —> a C ] where .4 e A'; (J 

4) A ~*c where .4 e A', (J N 

5) .4-•aljfiJIi r] where.4€yVj, 

6) .4 —» a [2 C 111 ^ ] where A e N i, 

7 )  -4^^[, C] where/ieA^]. 

The next lemma and theorem complete the conversion of a short-rule gram­

mar to 3DNF. The construction in the proof of the lemma shows how to ehminate 

nodes which have three subtrees. The final step in the proof of the theorem is the 

removal of unit productions (of the form A-^B). 

LEMMA 5-6. Let G be a short-rule grammar <Z, H, A^,/? ,5 >3^. There is a gram­

mar G' = < Z', H', N',R',S '>3 such that every rule in R' is either 3DNF or 

A->B where A , B e. N2, and y'2(G ) = ). 

PROOF. Construct G' by the following steps: 

1) SetI' = I. E' = HiU=2. andAf' =A: )-

2) If R has 5 ̂  Û [3.4 ] where S is the start symbol of G , put S' -* #[3 S ] in /?' 

and 5' in N' 3. Otherwise add a rule 5' —» 5 , and put S' in N'^ where 5 e A',. 

3) If R has >1 -> Û [ 3  5 ], remove it and put A —>B in R' , and move A to N' 

4) If /? has a rule which contains an element of £3, remove it from R. 

5) If R has a rule A —va [ 3  B C Ij D ], remove it from R and put 

A —»a[3r][i D] and T-»#[35JUC] in R'. Add newly invented non-terminal 

T to N' 2-

6) Add the remaining rules of R to R'. 

The lemma is established by proving propositions (A) and (B) below. 
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(A) If G contains non-terminal .4 such that A =>* a and = 13, then G' 

has .4 such that A =>* a', and = j3. 

Proof of (A) by induction on the number of steps in the derivation of a. 

Base. .4 => o- in one step. 

There must be a rule A-*a in R. If a e =3 then ) is undefined, and R' 

has no corresponding rule. If a e I U U =2> then R' has the same rule. 

Inductive hypothesis. Assume (A) is true when A =>* a in n — 1 steps. 

Inductive step. Show (A) is true when A =$>* a in n steps. 

Case 1. The first derivation step is [ 3  5 ] .  

In this case, a = a [ 3  y] where B =>* y and = /r^ly) = 3- The induc­

tive hypothesis establishes that G' also has B such that 5 =>* y' and 

friiy) — /3. Construction step 3 puts a rule A—^B in /?', so A => 5 =?>* y' 

in G' and friiy') = /3. 

Case 2. The first step is A -» a [ 3  5 K2 C ][; D ]. 

We have a = 8] where B =#>* C =4>* y, and D =$>* 8. The 

inductive hypothesis can be applied to establish that G' has 5 , C , and D such 

that B =>* C =$>* y, D =>* 8', = /7-2((), frli) = My), and 

/;"2(S') = friib). Step 5 of the construction adds to R' the rules 

.A^aljrllifllandr^^lifiLCl. So in G' . A =>* a'= 

a [ 3  #[jC][2y]][i 8], and = friM according to lemma 5-4. 

Case 3. The first step is A -» a. where a is a [ 3  5 ][; C ], a [ 3  5 ][; C ], o [2 5 ][i C ], 

a [2 5], or a[i 5]. 

For each situation, apply the inductive hypothesis on the forests derived from 
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B and C , and observe that R' has the same rule for .4 and R does by con­

struction step 6. 

To conclude the proof of (A), note thai if there is 5 =^* or such that fr^ia) = /3 in 

G , then S =4>* a' such that fviia') = 3 is in G', and step 2 has added to G' a rule 

5" #[3 S] or S' ->5'. So the start symbol of G' also derives a forest whose 2-d 

f rentier is /3. 

(B) If G' has A such that A a', frjia) = jS, and A  €  N ,  then G has A  such 

that A =>* a and //'iCa) = /3. If G' has T such that T a', friioc') = /3, T is 

not in N , and T ^S', then G has A such that A =$>* a [3 5 ][2C ][i D ] and 

[ 3  ̂ [[2 y]) = 3, where B  =>* ( and C =>* y .  If T =  S ' ,  then G has S =>* a 

and fri^a) = jS. 

Proof of (B) by induction on the number of steps in the derivation of a'. 

The proof is similar to the proof of (A). QED. 

THEOREM 5-7. Let G be a grammar < Z , E , N  , R , S  >3 .  There is a 3DNF gram­

mar G' = <E',= ,/VS'>f such that XilG ) = ). 

PROOF. Apply the constructions of lemma 5-3 and lemma 5-6 to G , and then 

eliminate productions of the form A—tB by the conventional substitution method. 

The result is G' such that G' is 3DNF and YniC ) = V'ltG ). QED. 
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3-cl Increasing Grammars 

If a 3-d f orest grammar yields a string language that is within the context-

sensitive class, then there must be a linear relationship between the length of a 

yielded word if and the number of derivation steps required to produce a forest 

which yields w. If a grammar G is in 3DNF, then each rule application introduces 

exactly one terminal or selector. The number of steps required to derive a 3-d 

forest i3 in L (G ) is the same as 13 1, the number of nodes in jS- A linear relation­

ship between I a I and I /3 I where A =i>* J3 and = a will be shown first 

for 3-d grammars which are increasing. A grammar will be called increasing if the 

2-d yield grows with each step of the frontier operation on every derived forest. 

DEFINITION 5-8. Let G be a 3DNF grammar < Z , ~ , N , R , S > 3 .  G  is an in­

creasing grammar if and only if I //iC/S) I > I friiy) I and I /rzCjS) I > 

I /r2(6) 1 for every jS = #[3 y][2 6] such that A j3 and A e N. 

The requirement that I /riCjS) I be greater than I fr-^y) I in the above 

definition is not too stringent, since it is always the case that I /r2(/S) I ^ I frjiy) I. 

The other requirement, that I I > I , is more significant. As a result 

of this restriction, an increasing 3-d grammar has no decreasing cycles. The next 

lemma shows a non-linear relationship between the size of a derived forest and its 

2-d frontier for increasing grammars. 

THEOREM 5-9. Suppose G is an increasing 3DNF grammar < I, H, TV, /?, 5 >3  

which has non-terminal A é N. If o-e ^2^^^ ) and I a I = I, then there is a 

forest/3 such that A jS,/r^CiS) = a, I )31 ^2'— 1 when i4 e 
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1/31^2'' when A e A'3. 

PROOF. The theorem can be proven by induction on I or I = I. 

Base. / = 1. 

I f A e A ' 2 o r A e A ^ i ,  t h e n  i t  m u s t  b e  t h e  c a s e  t h a t  a  =  c  a n d  G  h a s  a  r u l e  

A—*c wherec e Z (JE; (J-2- Soq' = /3 = C and lal = 1= 2^— 1= I/SI- If 

A € Nthen the derivation starts A -»a [3 5 ] where B e N2 and B =>* j3'. 

The case of B e N 2 was just considered, showing 113' 1 = 1. So 1/31 = 

la [ 3  j8']l = 2\ 

Inductive hypothesis. Assume the lemma is true for / <n. 

Inductive step. Show the lemma is true from I = n. 

Case 1. a = a [j or']. 

In this case, jS must be derived A —»a [j C] where A e A^ j, C =^* j3', C e A^i |J 

Nj, and /r2(i3') = a'. By the inductive hypothesis, I j3' I ^2'"^— 1. But then 

1/31 = 1+ 2'"^- 1 = 2^-^ <2^-1. 

Case 2. a = c [2 ajlli «2]. 

/3 can be b [ 3  gJLi ^2^ or a [2 jS,]. If# is 6 [ 3  li^], then it must be 

derived by A -»ft[3S][iC] where B =>* jSj, C =5>* 32. -S e N2, and 

C € A' ] U 7V2. It must also be true that fr2{^2^ = a, and //jCjS, ) = a [2 aj. 

The inductive hypothesis can be applied to establish thai 10,1 ^2'""'— 1 and 

1)821 42'---1. But then 

I i 8 l  =  1 +  1 3 i l  +  i / 3 2 '  

<14- 2'-'- 1+2'"-- 1 



^2'-1+2''"-- 1 

< 2 ' ~ ' + 2 ' " ' -  1  

<2x  2 ' " ' -  1  

<2'-l. 

I f / 3  is  a [2 /3 i ] [ i / 32 ] ,  i t  i s  de r ived  -^a  C ]  where  5  ,  C  e  A^ iU^2 -

B =5>*  jS j ,  and  C  =>*  jS i .  I t  must  be  t rue  tha t  / r 2 ( j 3 i )  =  «1  and  / r i l jS ; )  =  Œ; ,  

so  the  induc t ive  hypothes is  i s  app l i ed  to  g ive  I  jS j  I  ̂ 2^"^— I  and  I  jS ,  I  ^  

2 ' "^—1.  Bu t  then  

1)31 = 1+ l/3il+ 1^21 

< 1+2'"^+2'"2- 1 

<2x 2^-'- 1 

<2'-l. 

Case 3. a = a [2 a']. 

I n  th is  case ,  )3  can  be  a / 3 ' ] ,  b [ 3  / 3 i ] [ 2  <32 ] ,  o r  b [ 3  j 8 ' ] .  I f  jS  i s  a  [2  j3 ' ] ,  t hen  i t  

must  be  der ived  us ing  where  B =>* B e N i\}N 2, and  

=  a ' .  The  induc t ive  hypothes is  es tab l i shes  tha t  I / 3 ' 1  ̂ 2 ' "^—1.  But  

t h e n  1 / 3 1  = 1 +  2 ^ ~ ^ —  1  =  2 ' —  1 .  

I f  ^ is b [ 3  )3 i ] [ 2  iS i ] ,  i t  i s  de r ived  ̂  [3  5  ] [2  C  ]  fo r  5  ,  C  e  A '  1  U  

B  = 5 > *  j 3 i  a n d  C  = ^ *  1 ^ 2 -  s o  i l  m u s t  b e  t r u e  t h a t  =  « ) ,  

f r 2 {^2 )  =  a '2 ,  and  a  =  0^3) -  S ince  G  is  inc reas ing ,  I c t  I  >  l # i l  and  

I  a  I  >  1 «2  i .  The  induc t ive  hypothes is  can  be  app l i ed  to  es tab l i sh  tha t  13 i  I  ^  

2^" '— 1  and  I  /B? !  ̂ 2 ' "^— 1 .  Bu i  then  

131 = 1+ i j3] i + I iSi I 
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< l + 2 ' " ' + 2 ' " ' -  1  

< 2 x  2 ' - ' -  1  

< 2 ' - l .  

If 3 is ^ [ 3  /3'], then it is derived with ^ [ 3  £ ] where 5^*3' and 

B e N2. By the previous discussion, 13' I ^ 2' — 1. So 131^2'. QED. 

As a result of the previous theorem, we can determine whether an increasing 

3-d grammar G yields a 2-d forest 3 by deriving all the forests of size less than 

2 and then taking their 2-d frontiers. This will be helpful in improving the 

non-linear relationship between Y ) and Y 2(G ) to a linear relationship. 

COROLLARY 5-10. Suppose G is an increasing grammar < Z ,  E ,  N ,  R  , S  > 3 ,  and 

let be the set of forests such that aç only when ae ) and 

I a I for some constant c. There is a 2-d grammar G' such that 

L CG' ) = F,. 

PROOF. As a result of theorem 5-9 above, XiCG ) is a recursive set. To enumerate 

the forests in VSCG ) with size less than or equal to c , we just generate all the 3-d 

trees in L (G ) of size ^ 2"^ — 1 and take their frontiers. This set is finite for 

fixed c, so we can certainly write a 2-d regular forest grammar to derive its 

forests. There could be a separate rule for every forest in the language. QED. 
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Grammars with Deletion Constants 

With the addition of another constraint on a grammar, the non-linear rela­

tionship in theorem 5-9 between the size of a derived forest and the size of its 2-d 

frentier can be replaced with a linear relationship. The new constraint is called the 

deletion constant. It places a constant upper bound on the number of symbols 

that are deleted by any single step of the frontier operation. Note that the deletion 

constant does not limit the total number of symbols deleted during the frontier 

operation, since an arbitrary number of steps can occur. In 2DNF grammars, the 

deletion constant is no larger than the longest path on any selector. This is also 

true with 3DNF grammars for which no entire subforests are thrown away during 

the frontier operation. Even when a 3-d grammar deletes entire subforests, it will 

have a deletion constant if the size of the deleted subforest in any single frontier 

step is independent of the size of the subforest which is not deleted. 

DEFINITION 5-11. Let G be a 3DNF grammar <1, H, ,/? ,S >|. The 

deletion constant of G is the smallest constant c such that 1/72(3)1^ 

l/r2(8)l —c for every a in YjiG } and /3 in I,(G ) where jS = 

a [3 y][2 8] is the smallest forest such that //^(iS) = If no such constant 

can be found, then G has no deletion constant. 

Given any constant c , a grammar can be written so that any forest whose 2-d 

yield has less than c nodes can be derived without introducing and 3-nodes or 3-2 

nodes. Such a grammar is said to be c -augmented. 
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DEFINITION 5-12. A 3DNF grammar (/ c -augmented if it is increasing, has 

deletion constant c, and every ^ such thai I a I ^ c is derivable 

by a 2-d subgrammar of G . 

LEMMA 5-13. If G is an increasing, 3DNF grammar with deletion constant c, 

then there is a c-augmented 3DNF grammar G' such that Y2^.0 ) = V'jCG' ). 

PROOF. Put all the rules of G in G'. If A yields a in G and I oc I , then add 

2-d rules to G' for A to derive a directly, using the method described in the proof 

of corollary 5-10. Certainly Y2(0 ) = ), since G' has all the rules of G , and 

the only rules added derive forests which are in YnCG ). Also, any ae Y2CG ) is 

derivable in G' without the use of any 3-d rules. QED. 

LEMMA 5-14, Suppose G is a c -augmented 3DNF grammar < Z , B , N  , R  , S  >3. 

If a € y 2(^ 4 ) where A e N and I a I = I, then there is a )3 such that 

A =4>* jS, /r2(i3) = CK, and 1/31 = d where 

d < 

1 for I , 

2 (c + 1 ) (/ — c )— 1 for / >c and A e N i (J^2- and 

2(c+ 1)(Z — c) for Z >c and A e /V3 

PROOF. Proof by induction on Z = la I. 

Base. Z = 1. 

Case 1. Z ^c. 

In this case, a is derivable without 3-d steps. A =^a = |3 = So 

l/r2(l3)l = la I = Z. 

Case 2. Z >c and A g U^z-

The only possible derivation of a is A =i>a = a, where a € I U^i U^2-
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Since I is ], c must be 0. So /3 = /ritjSj = a. I j3l = 1, and 

1 ^ 2 (c + 1 ) (/ — c )— ] 

<2(0+ l)U-0)- 1 

< 2— 1 

< 1 .  

Case 3. / >c and A e N 

The derivation of <3 starts with A  B  e  N 2 <  B  =>* )3', and /r2C3') = 

' a. Case 2 above establishes that I jS' I = 1 = 2 (c + 1) (/ — c )— 1. So 1)31 = 

1 +  1 / 3 ' I  =  2 ( c +  l ) ( Z - c ) .  

Inductive hypothesis. Assume the lemma is true for 1< / < n. 

Inductive step. Show the lemma is true for Z = n. 

Case 1. a = all 

The derivation of must be A =è>û [j C] =5>* o [j /3'], where A e N= 

a', and C e (J^2- If l—l^c, then 1/3'I = Z — 1 and 1/81 = I. This 

satisfies the lemma if Z <c. If Z = c + 1, then we need to verify that 1/31 = 

Z < [2c + 2) (Z - c )- 1 < 2Z - 1. But this is true for Z > 1. 

If Z — 1> c , then the inductive hypothesis gives I /3' I < (2c + 2) x 

( Z — 1 — c ) —  1 .  S o  

1/31 < 1/3'!+ 1 

<(2c + 2)(Z- 1-c) 

< 2cZ - 2c -+ 2 1 - 2 c -  2- 2c 

< 2 c Z - 2 c " +  2 Z - 2 c -  1  

< ( 2 c  +  2 ) ( Z - c ) -  1 .  
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Case 2. a = a [, a JC, a,] and 3 = ^ [3 jSjI, gi]. 

)3 is derived with a rule A — > b  [3 B ][, C ] where A  ,  C  e  N  i { J  N  2 ,  B  e  N  2 ,  

B =5>* )3i, and C =^* jSi. It must also be true that = a; and 

/rzCjS]) = a [2 û-]]. Let / = /1+ /i where /1 = la [, aj 1 and Z2 = I a? I. The 

inductive hypothesis can be applied to determine the maximum size of 3i and 

02, There are four possible situations, depending on the values of and c. 

We can assume that I>c. Otherwise, 3 could be derived without 

A ^ 5 [ 3  5 ] [ I C ] .  

a) If and , then 1/3] I =  1 1 ,  1182' =  h <  and IjSI = 1+ Z2 — 

1+ Z. We are given that Z > c , and we deduce that Z ^ 2c, since Z — 11+12-

It remains to show that 14- Z ^ (2c + 2) (Z — c )— 1 when c < Z ^ 2c. It is 

clear that Z — c is at least 1, so we must only verify that 14- Z ^ 

2 c  4 -  2 —  1  =  2 c  4 - 1 ,  w h i c h  i s  c e r t a i n l y  t r u e  w h e n  I  ^  2 c .  

b )  I f  Z j > c  a n d Z j ^ c ,  t h e n  I  j S ;  I  ^ ( 2 c 4 - 2 )  ( Z j — c  ) ,  1 3 2  I  =  h '  a n d  

1 3 1  =  I 3 ] I 4 -  1 3 2 I +  1  

^ (2c 4- 2) (Z J— c )4- Z 24- 1 

<2cZi- 2c^4- 2Z1- 2c 4- c 4- 1 

<2c (Z-l)-2c'4-2(Z-D- 2c4-c4- 1 

< 2 c Z  - 2 c ^ + 2 l - 2 c - 2 - c  +  I  

^ (2c 4- 2) (Z — c )— 1— c 

^ (2c 4- 2) (Z — c )— 1. 

c) If Z ] ^c and Z2>c , then 13i I = ^ 1. 1321 ^(2c 4- 2) (Z,— c )— 1, and 

I 31 = 13] 14- I 3:14- ] 



^ / i+ 1 2 C  +  2 ) ( / 2 ~ C )  

< c  +  2 d 2 - 2 c - + 2 / 2 - 2 c  

< c  +  2 c  ( / -  D -  2 c - + 2 ( / -  D -  2 c  

< 2cl - 2c ~+ 2Z - 2c - 2- 2c + c 

< ( 2 c  +  2 ) ( / - c ) -  1 - c -  1  

^ ( 2 c  +  2 ) ( Z - c ) -  1 .  

d )  I f  Z ; > c  a n d Z 2 > c , t h e n  I i 3 i  I  < ( 2 c  +  2 )  ( Z i - c ) ,  1 ^ 2  1  ^  

(2c + 2) (/ 2— c )- 1, and 

1 ^ 1  =  l / 3 i l +  I / S 2 I +  1  

^ (2c + 2) (Z J— c )+ (2c + 2) (Z 2~ c )— 1+ 1 

^  2 c Z  1 —  2 c  2 Z  J —  2 c  +  2 c Z  2 —  2 c  2 Z  2 —  2 c  —  1 + 1  

^ 2c (Z1+ Z 2)— 2c"+ 2 (Z j+ Z 2)— 2c — 1— 2c 2c + 1 

< ( 2 c  +  2 ) ( Z - c ) -  l -2c^-2c+  1  

< ( 2 c  +  2 ) ( Z - c ) -  1 .  

Case 3. a = a [2 ori^i a?] and j3 = a [, jSjlli fij]-

/3 is derived A =5>a [, 5 ][i C ] =>* a [2 )3]][i ^2^ with B ,C e (J ̂ 2- must 

be true that/r2(/3i) = Q i and/;-2()32) = a2- Let Z = 1+Z1+Z2 where Z ] = 

I a 11 and Zi = ' «21. The inductive hypothesis is applied to limit the sizes of 

|Bi and 02. Again, there are four possible situations; 

a )  I f  Z i ^ c  a n d  Z i ^ c ,  t h e n  I / 3 ]  I  =  Z i _  I / S ?  I  =  h '  a n d  1 / 3 1  =  l + Z j + Z 2  =  Z .  I f  

Z  > c ,  i t  m u s t  b e  s h o w n  t h a t  Z  ^ ( 2 c  +  2 )  ( Z  —  c  ) —  1 .  T h e  l o g i c  i s  s i m i l a r  

to case 2a. 

b )  I f  Z i > c  a n d  l i ^ c ,  t h e n  1 3 ]  I  ^ ( 2 c  +  2 )  ( Z  j — c  ) —  I ,  1 ^ 2 ^  =  Z 2 ,  a n d  
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I )31 = I 011 + 1021 + 1. This is shown to be smaller than 

(2c + 2) (/ — c )— 1 by a method similar to thai of ease 2b. 

c )  I f / ] ^ c  a n d  Z 2 > c ,  t h e n  1 0 , 1  = Z ] ,  1 0 2 1  ̂ ( 2 c  +  2 )  ( ^ 2 — c  ) — 1 ,  a n d  

1 0 1  =  1 0 j  I  +  i  0 2 1  +  1 .  T h i s  i s  s i m i l a r  t o  c a s e  2 c .  

d )  I f  Z i > c  a n d  l 2 > c  ,  t h e n  1 0 i  I  < ( 2 c  +  2 )  ( /  j — c  ) —  1 ,  

1 0 2 1  ̂  (2c + 2) (Z 2" c )— 1, and 101 = 10i I + 1021 + 1. This is similar to 

case 2d. 

Case 4. o i  =  a i j  a'] and 0 = a [t 0']. 

0 is derived A  =5>a [2 5 ] =^* a [2 0'] with B  ̂  N  i \ ^ N  2 -  It must be true that 

/r2(0') = ct', and I a' I — I — \. This case is very similar to case 1. 

Case 5. a = a [2 (%'] and 0 = 5 [ 3  0j[2 02]. 

0 is derived A =^b [ 3  B K2 C ] b [ 3  0]][2 02] with B e. N2 and C e A^i U ̂ 2-

/r2(0) = a, so it must be true that /r2(0j = aj and /r2(02) = «2, and a = 

subs2{ocx, oi2). Let/i= I a, I and Z 2 = I «21. G is an increasing grammar, so 

l>l\ and Z > Z 2- G has deletion constant c, so Z ^ Z1+ Z 2— c. The inductive 

hypothesis can be applied to limit the sizes of 0i and 02. There are four possi­

ble situations: 

a )  I f  Z  i ^ c  a n d  Z 2 ^ c ,  t h e n  1 0 i  1  =  Z  j  1 0 2 1  =  Z 2 ,  a n d  1 0 1  =  1  +  Z i +  Z 2 .  W e  

also have I > c. Otherwise there would be no 3-2 step in the derivation of 

0. So 101 = 1+Zi+Z2<2c + 1, and (2c + 2)(Z-c)- l>2c+ 1. since 

l - c > L  

b) If Zi> c and Z2^c , then 10i I ^(2c + 2) (Z ] — c )— 1, 1021 = 12^ and 

1 0 1  =  I  0 ]  I  +  1 0 2 1 +  1 .  T h i s  i s  s h o w n  t o  b e  s m a l l e r  t h a n  
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( 2 c  + 2 )  ( /  — c  ) - 1  g i v e n  t h a i a n d / ] ^ / — 1  b y  a  m e t h o d  s i m i l a r  t o  

that of case 2b. 

c )  I f  / 1  ̂  c  a n d  l 2 > c  ,  t h e n  I  ) 3 ,  1  =  / 1 ,  I  j S i  I  ^  ( 2 c  +  2 )  ( Z 2 —  c  ) —  1 ,  a n d  

1/31 = I /3i I + 1182 I + ]. This is exactly parallel to case 2c. 

d )  I f  /  ] > c  a n d  Z 2 > c  ,  t h e n  I  / 3 i  I  ^ ( 2 c  +  2 )  ( / j — c  ) -  1 ,  

l / 3 2 l < ( 2 c  +  2 ) a 2 - c ) - l ,  a n d  

1^1 = l^iH- 1/3,1+ 1 

<(2c + 2)ai-c)+ (2C + 2)(Z2-C)- 1+ 1 

^ 2 c Z j — 2 c ^ + 2 Z i — 2 c — 1 4 -  2 c Z  2 — 2 c  ̂ 4 -  2 Z  2 — 2 c — 1 + 1  

^2c (Z1+ Z 2~ c )— 2c^+ 2 (Z j+ Z 2~ c )— 2c — 1 

< 2 c Z - 2 c ^ +  2 Z - 2 C - 1  

< ( 2 c  +  2 ) ( Z - c ) - l .  

Case 6 .  a = a [, a'] and /3 = 6 [ 3  18']. 

3 is derived A  =>6 [ 3  B  ]  =i>* b  [ 3  )3'] where B  e N 2 -  By cases 4 and 5, I 0' 1 ^ 

(2c + 2)(Z-c)-1. So 1/31 < (2c + 2)(Z-c). QED. 

If a grammar is increasing and has a deletion constant, there is a linear rela­

tionship between the sizes of forests in the 3-d yield and the 2-d yield. Many use­

ful 3-d forest grammars are not strictly increasing. So, given a non-increasing 

grammar G , we would like to know if there is an increasing grammar G' with the 

same yield as G. This topic is investigated in the next section. 
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3-d Grammars \viiho\U Overlap Cycles 

3-d forest grammars that do not have cycles of overlapping selectors can be 

transformed to grammars which are strictly increasing. To achieve this result. il 

will be necessary to define several terms similar to those used for analyzing 2-d 

grammars in chapter 4. 

For many 3-d forest grammars, it can be determined whether the grammar is 

increasing by examination of its rules. The existence and value of a deletion con­

stant can also be determined. In examining the rules, we must be able to predict 

the outcome of the 2-d frontier operation. This requires that we know which 

selectors will be applied in each frontier step. 

Suppose )3 is a 3-d forest #[3 8I2 y]. There is a set of outer selectors in 8 

which will be applied when frxi^) is taken. Outer selectors are analagous to the 

external selectors defined in chapter 4. They difFer from external selectors in two 

respects. First, a 2-d forest has at most one external selector. A 3-d forest, how­

ever, has a finite set of outer selectors. Second, the outer selector set may contain 

selectors which will be truncated when the 2-d frentier operation is applied. For 

example, let j3 = <2.21 >] [? x [j y ]]] where x , y e 2%. Selectors x and y 

are the outer selectors of j3, but only y is an external selector, x is eliminated 

when is taken. Thus, the outer selector set of a 3-d forest is a superset of 

the external selector set. Outer selectors are easily found. It is much more difiBcult 

to determine whether outer selectors will be external selectors. 
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DEFINITION 5-15. Let /3 be a forest in H} (I.ï). A selector .v e Et is an 

ouTer selector of |3 when /S contains x and the path from the root of 0 to 

.v is V where 

1) v e  { 1 , 2 } ' ,  or 

2) if r = airr for o, tté { 1 ,  2 ,  3 } ' ,  

then seZ(<2, a2>, j3) is undefined. 

DEFINITION 5-16. Let j3 be a forest in H^ (I, H). The set outsel (/3) is defined 

as {:c I .T is an outer selector of j8}. 

With 2-d grammars, it was possible to construct a set of 1-d selectors, 

exsel [A ), for each non-terminal A such that A derived (3 if and only if the exter­

nal selector of j3 was in exsel {A ). With 3-d grammars, a set of sets of outer selec­

tors is associated with each non-terminal. 

DEFINITION 5-17. Let G be a 3DNF grammar < Z , B , N , R  , S > i .  The set 

outsel (A ) where A e TV is defined as {s I s = oixtsel (/3) where A =4>* j3}. 

Note that outsel is multiply defined. Hopefully, this will not cause confusion. 

If the argument of outsel is a 3-d forest, then outsel is a set of 2-d selectors. If the 

argument is a non-terminal in a 3-d grammar, then outsel is a set of sets of 2-d 

selectors. 

LEMMA 5-18. Suppose G is a 3DNF grammar ,5>3. If A ê A', then 

there is an effective procedure for constructing outsel {A ). 

PROOF. The algorithm given here constructs outsel (A ) for every non-terminal in 

the grammar. The construction proceeds by taking a rule A-* ^ from R, selecting 

the appropriate case depending on the form of j3, and adding elements to 



137 

outscUA ). The case slaU'incnl is given as a procedure which is repeatedly invoked 

a s  r u l e s  a r e  t a k e n  f r o i n  R  .  A s s u m e  t h a t  A  .  B  ,  a n d  C  a r e  e l e m e n l s  o f  A ' ,  a  e  I ,  

and A- e E2. 

Procedure addcl {A , 3). 

Begin 

Case 3 of 

a B ], r ^1 ; add the elements of outsel {B ) to outsel {A ). 

:c [j 5 ]; add {z } IJ ? to outsel (A ) for each s in outsel {B ). 

X : add {x } to outsel {A ). 

a [r -B ][i C ], /• > 1: add s [J ? to outsel (A ) for each s in 

outsel {B ) and t in outsel (C ). 

a [3 -S ][? C ]: add the elements of outsel (C ) to outsel (A ). 

End case. 

End addel. 

The selection of rules from R is undertaken according to the following algorithm; 

Repeat 

Take a rule A—^ I3f rem R .  

If A is not in a cycle then 

Use the current method to form outsel iB ) and outsel (C ), where B 

and/or C are in /B. 

Call oddc/ (A , g). 

Remove .4 —» /3 from R. 

Else if A  is in a cycle (.4 j, A 2 A „ }  then 
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Find every rule for .4,, 1 < z 

Use the currenl method to form ouîsel {B ) for each B which is nol 

in the cycle, but is in the right-hand side y of a rule 

A , - > y ,  1 ^  /  ^ m .  

Repeat 

For i = 1 to 77Z 

Call addel , y) for each rule of Ai. 

Until nothing new is added to any out sel set. 

Remove the rules Aj -»y from R, 1 ̂ z 

Until R is empty. 

The size of every outsel set is bounded by the number of possible subsets of 

=2' SO the construction algorithm halts. It can be shown by induction on the size 

of a forest Ç, that if A =i>* then outsel outsel (A ). It can also be shown by 

induction on the number of addel steps in the construction of outsel (A ) that if 

outsel (A ) contains selector set s, then A =5>* 4 where s = outsel (^). QED. 

Definition 4-16 defined overlapping selectors for n-dimensional forests. The 

definition requires that the external selectors of a forest be known. If the external 

selectors are not known, the outside selectors can be used instead. 

During the frontier operation on 3-d forests, entire subforests can be deleted. 

This is also true with 2-d forests, but it is relatively easy to remove such truncat­

ing steps from 2-d grammars. With 3-d grammars, however, the elimination of all 

truncating steps is more difficult. The following definition distinguishes between 
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complelc and truncalins f r o n t i e r  s t e p s .  

DEFINITION 5-19. Let g = be a forest in Hj (I, El The 2-d fron­

tier of |3 is complete if and only if fi'2iy) is complete, /r'iCS) is complete, 

and for each subtree S' of 5, the path from the root of 8 to 8' is either 

1) o where <2, o> e outsel (y), 

2) o2tt where <2, o>e outsel (y), or 

3) a where <2, a> e oziTseKy), and 8'e I. 

DEFINITION 5-20. Let G be a 3-d grammar < 1 . , E , N  , R  , S > i .  G  is com­

plete if for every ae ) there is a g such that À =5>* (3, /r^CjS) is com­

plete, /r2(j3) = a, and A e N. If G is not complete, then it is truncating. 

LEMMA 5-21. Let G be a 3-d grammar < Z , E , N  , R  , S  >3. If G is complete, 

then G has deletion constant c, and c is no greater than the sum of the 

lengths of the paths on the selectors in =2. 

PROOF. This lemma follows directly from the definition of a complete grammar. 

If a non-terminal derives a forest )3 = #[3 y][2 8] and an entire subtree of 8 is not 

selected for copying during the 2-d frontier operation, then is not complete, 

and neither is G . The only nodes that are deleted are the terminals along the selec­

tor paths, and so the number of deleted nodes cannot exceed the sum of the lengths 

of the selector paths for any single frontier step. QED. 

During the frontier operation on a 2-d forest, only one selection/substitution 

process is active. This results from the i act that each subtree has only one external 

selector. Subtrees in 3-d forests, however, can have several external selectors. So 

several selection/substitution processes may be occurring simultaneously during 
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the 2-d frontier operation. Some of the terminology used in ihe analysis of 2-d 

cycles will have to be broadened or generalized. Cycles, roots of cycles, essential 

non-terminals, and cycle steps will not need to be redefined, but it will be useful 

to speak of /ull cycle steps for 3-d grammars. A full cycle step is one expansion 

of a cycle from root to root. 

DEFINITION 5-22. Let G be a grammar ,R ,S>i which contains a 

cycle {A 1, A 2, } with root A j. A full cycle step is any structural 

form j3 derived from Aj such that )3 contains A ^ and no non-terminals 

other that A,,..., A^ are expanded in the derivation. 

The leading and trailing non-terminals of a cycle were previously defined only 

for cyclic 2DNF grammars. The following definitions redefine these terms for 3-d 

cycles. 

DEFINITION 5-23. Let G be a grammar < Z ,  E , N  , R  , S  > 3  which contains a 

cycle whose root is A, and suppose /3 is a full cycle step derived from A 

which contains a non-terminal B. If the path from the root node of ^ to A 

is o3tt and the path to B is a2i', then 5 is a leading non-terminal of the 

cycle. If the path to A is alv and the path to B is o3z/, then 5 is a trail­

ing non-terminal of the cycle. 

The concept of deletion cycles in 2-d grammars will be replaced with overlap 

cycles in 3-d grammars. The term "deletion" is abandoned because it is quite com­

mon in 3-d grammars for overlap cycles to show net growth in spite of the 

repeated deletion. This happens when an overlap cycle has several outside selec­

tors, some overlapping and some non-overlapping. 
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DEFINITION 5-24. Suppose G is a grammar <1.E,N .R ,S>^ which con­

tains a cycle whose root is A. The cycle is an overlap cycic if and only if 

there is a full cycle step j3 derived from .4 such that 

1 ) /3 has leading non-terminals B], Bn Bi, 

2 )  < 2 ,  T T j  >  €  outsel[Bi ) for 14 f , 

3) 5, and sel ( <2, o, >, )) = <2, > for 1 ̂  z , and 

4 )  O i  •  O t  • . . .  •  O ;  i s  a  p r o p e r  p r e f i x  o f  7 7 - 2  •  ^ - 3  • . . .  •  t t - ;  •  t t j .  

A set of integers called gain can be associated with each full cycle step, and, 

depending on the values in the gain sets, cycles can be classified as increasing, 

decreasing, 0-gain, or mixed. 

DEFINITION 5-25. Suppose G is a grammar < ' L , ~ , N  , R  , S > i  which con­

tains a cycle whose root is A , and j3 is a full cycle step such that A =?>* j3. 

The integer g belongs to gain {A ) if and only if g = I /r2(S) I — I I 

where 8 e H3 ( I ,  E ) ,  3  = > *  8 ,  a n d  8 '  i s  t h e  l a r g e s t  s u b f c r e s t  o f  8  s u c h  t h a t  

A =>* 8'. 

DEFINITION 5-26. Suppose G is a grammar < Z , E , N  , R  , S  > 3  which con­

tains a cycle whose root is A. The cycle is increasing if g >0 for every 

g e gain {A }, decreasing if g <0 for every g e gain {A ), 0-gain if 

gairi (A ) = {0}, and mixed otherwise. 

It will eventually be shown that any 3-d forest grammar which does not have 

overlapping selectors can be converted to an increasing grammar which has the 

same string yield. This will be accomplished by eliminating subforests which will 

be truncated during the frontier operation. Before truncation can be eliminated, 

however, a grammar must be partitioned according to the outside selector sets of 

the non-terminals. 
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LEMMA 5-27. Let G be a 3DNF grammar < Z , £ , N  , R  , S > i  which has non­

terminal A. There is an effective procedure for constructing a subgrammar 

; s such that A' in G^ : s derives jS if and only if A derives j3 and 

oixtsel ()3) = s. 

PROOF. Given a set of selectors, ^ = { < 2 , p i > ,  < 2 , p { > ,  .  . .  ,  < 2 , p k  > } ,  

G a'- s = <T,=',N',R',S '>3 can be constructed f rom the subgrammar G.^ 

according to the steps below. Assume A,B,C,DeN,a,be E U=i' ^ =2-

1 ) Set I' = I, E' = H, = N, and R' = R. 

2) Put A' in N' andA'—>Aj in/?'. 

3) Add non-terminals Bt to N' for every non-terminal B of G^ and every 1 

which is a subset of s. 

4) Select a non-terminal B^ from N' for which there are no rules and make rules 

for it as follows; 

a) If R has B a [„ C ] for m ^ 3, put 5^ -» a C, ] in R'. 

b) If R  has 5 -» X [j C ] and x  e t ,  then add -» x [j Q ] and B ^  -> x Q ] to 

R , where u = r — {x }. If x is not in t, then do not add a rule to R'. 

c )  I f / ?  h a s B - > a  a n d  r  =  ( j ) ,  p u t 5 j - > a  i n / ? ' .  

d )  I f / ?  h a s  B  - »  X  a n d  r  =  { x  } ,  p u t B j - ^ x  i n / ? ' .  I f  r  ^ { x } ,  t h e n  a d d  

nothing to /?'. 

e) If R has B -» û [3 C ][2 Z) ], put 5; a [3 C ][2 A1 in /?'-

f) If /? has B-»a[^C][i D ] for m. = 2 or 3, put B,-ia[^ C„][i in /?' for 

every u and a' such that u IJv = ?. 

g) If none of cases a) through f) result in the addition of a rule for B^, 
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remove B. from A''. 

5) Repeat slep 4 until all the non-terminals in N' have rules. 

It is clear that the algorithm above halts. Each non-terminal is processed 

by step 4 only once. The lemma can be proven by induction on the size of jS. The 

induction is not shown here. QED. 

In order to eliminate truncating frontier steps from a grammar, it is necessary 

to trace a 2-d selector path in a 3-d forest. The trace function below accomplishes 

this, provided the forest to be traced does not have overlapping selectors. 

DEHNITION 5-28. The function frace(% , g): =2% A/j CZ, (1,5) is 

defined as follows: 

r r a c e ( < 2 , X > ,  3 )  =  1 3 ,  

trace (jc , #[3 y]) = trace {x , y), 

trace (x , #[3 yJL; 5]) = trace (z , y), 

trace (  < 2 ,  A '  a > ,  « [ „  y ] )  =  trace ( <2, A" a>, a) for m < , and 

trace{<2,k o>, aL^-y]) = trace{<2, o>, y). 

LEMMA 5-29. Suppose G is a 3DNF grammar < I . , E , N  , R  , S > i  with no over­

lapping selectors. There is a grammar G' = < I', E', N',R',S '>3 such that 

y ^lG ) = F ilG' ) and G' is complete. 

PROOF. The grammar G' can be constructed by the steps below. Assume 

A,B,C,D,EeN, and a, Z (JS. 

1) Set G' =G and partition G' according to outside selector sols. 

2 ) Find a rule ^ » a [ 3  5 C ] in R'. 

3 )  L e t s  = outsel iB). Generate all the m distinct structural forms j3, which have 
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t h e  f o l l o w i n g  c h a r a c t e r i s l i c s  f o r  1  ̂  /  ^ m :  

a) C =^* gj, 

b) no non-terminal D  in 3, is expanded unless D  =  t r a c e { < 2 ,  o > ,  ), where 

a is a prefix of the path on some .v e s , and 

c) no rule in a 3-d cycle which does not produce a 2-node is applied more 

than once in deriving g,. 

4) For each 3; generated in step 3, if jS, = aLjElIi y], a[3-y][i£], a[2£][i-y], 

a [2 ylli £], or a [j £], where trace (z , g, ) #£ for any ;c in s , then delete £ 

and the arc pointing to it in <3; • 

5) For each J3i, add a rule 7,-• # [3  512 3, ] to/?' where T, is a new non-terminal. 

Also, replace A -> a [3 5 H2 C ] in i?' with i rules A ̂  T;, 1 ̂  f < m. If s = 0 

land m = 0), replace A a [ 3  5 ][2 C ] with A—^B. 

6 )  Repeat steps 2 through 5 for every rule A 0 [ 3  5 ][2 C ] in /?'. 

7) Remove unreachable non-terminals and rules from G'. 

Since G has no overlapping selectors, it is possible to expand the non-terminal 

C in a rule A -» a [ 3  B ][3 C ] until all the paths of the set of outside selectors of B 

are visible. Then it is evident what subforests will be truncated, and the rules can 

be modified so that the truncated forests are never derived. The algorithm above 

accomplishes this without making any other changes to the grammar, so any 3 in 

Y jiG ) is also in YliG' ), and vice versa. This can be proven rigorously by induc­

tion on the size of 3. The induction is not shown here. QED. 
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Any 3-d grammar without overlapping sclcclors can also he modified 1o make 

a grammar with the same string yield which is strictly increasing. One approach 

of this modification would be expanding the right-hand sides of grammar rules and 

taking partial frontiers to write new rules that combine the decreasing steps with 

larger increasing steps. A less complicated approach (but also more wasteful) is 

shown here which takes advantage of the fact that 2-nodes disappear during the 

1-d frontier operation. Using this approach, extra 2-nodes are added to any rules 

which produce decreasing frontier steps. These additional nodes increase the size of 

the 2-d yield, but they are eliminated during the 1-d frontier operation. 

LEMMA 5-30. Let G be a complete 3DNF grammar < Z , E , N  , R  , S > i  without 

overlapping selectors. There is an increasing grammar G' = 

<r,E\N\R\S->i such that y i(G ) = V iCC ). 

PROOF. The grammar G' can be constructed by the steps below. Assume 

A , 5 , C e , and a € r Us. 

1) Set G' = G and partition G' according to the outside selector sets. 

2) Find a rule A -> a [3 5 ][2 C ] in /?'. 

3) Let 5- = outsel (B ). Generate all the m distinct structural forms /3, as in step 3 

in the proof of lemma 5-29. 

4) If trace (x , jS, ) = a is in I Ue  f o r  e v e r y  z  i n  s ,  t h e n  r e p l a c e  o n e  s u c h  a in (3, 

w i t h  # [ 2 ^ ] .  D o  t h i s  f o r  e v e r y  1  ̂ 2  

5) Choose one of the outside selectors x in s and replace it in the rules for B in 

G/i with #[2 #[? ... #[2 A" ]...]] to form G'g , where the number of 2-nodes 

added is the sum of the lengths of the paths on every selector in s. 



6) Replace .A -»a [3 5 ][, C ] with rules .4 ^ B' ][; <3, ]. 1 < / 4. m. 

7) Repeal sieps 2 through 6 until every .4 a [3 5 C" ] rule has been modified. 

It is apparent that the above algorithm halts. The largest sum of path-lengths 

in any outside selector set is a constant, and no selectors are modified by the algo­

rithm. So step 5 does not have to be repeatedly applied for any single grammar 

rule. It is also apparent that the changes made will not affect the string yield of 

the grammar, since fr-iia) = a]) for any set a. The 2-d yield will contain 

larger forests, but the 1-d yield is the same. So Fi(G ) = 7i(G' ). 

It remains to be verified that G' is increasing. Suppose G' generates /3 = 

#[3 y][2 8]. It is always the case that I /;"2(/3) I ^ I friiy) I, and I/nC/S) I = 

I fi'iiy) I only occurs when every subtree selected from fr^ih) during the frontier 

operation has size 1. Step 4 above ensures that at least one selected subtree has size 

2. So I I > I //"aCy) I • 

It happens that I /raCjS) I ^ I I when a subforest of 8 is deleted during 

the frontier operation, or when the number of interior nodes in 8 along the selec­

tion paths is larger than the number of non-selector nodes in y, so that the frontier 

operation deletes more interior nodes than il adds. But G and G' are complete 

grammars, and step 5 increased the number of nodes in y to exceed the sum of the 

path-lengths of the outside selectors. So no subforests are truncated, and the 

number of interior nodes added always exceeds the number deleted, giving 

l/r2(|3)l> 1/7-2(8)1. OED. 
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If a 3-d forest grammar contains overlapping selectors, but no overlap cycles, 

then the selector paths can be changed so that they do not overlap one another. 

Suppose /3 = #[3 #[2 -x #[3 #[2y ]][2 y]]. where -x is a selector <2, 221 > and y is 

<2, 121 >. The selector overlaps y. As the path of x is traced, y is encountered 

after traversing one 2-arc. We can form /3' by replacing % with z' = <2,2> and 

y with y' = <2,12121>, The path of y' is formed by attaching the unused por­

tion of the X path to the end of the y path. The selector x' does not overlap y' in 

the newly formed /3', and friW') = This method will be used to prove 

that if a grammar has no overlap cycles, then there is a complete, increasing gram­

mar with the same yield. 

LEMMA 5-31. Let 8 = aj/jOrjl/j... 0-;^ /3]... ]] be a forest in H). If 

seli<n , 7r>, sel{<n ,v>, 8)) = /3 where tt, vi. {1,2,..., n]'^, then 

sd{<n , vtt>, 6) = <3. 

PROOF. If sel ( <n , ir>, sel ( <n , v>, 8)) = 3, then it must be true that 

V  =  l i '  I t  -  . . .  •  I j ,  T T  =  I j + i ' . . .  - Z ^  ,  a n d  s e l i < n  , v > , 8 ' )  =  . . .  

oi^ j3]... ] where I j + i  =  n .  But since it is also true that 

seZ ( </2, Z1 •... • Zm >, 8) = )3, we have sel ( <n , i>7r>, 8) = i3. QED. 

THEOREM 5-32. Suppose G is a 3DNF grammar < Z , E , N  , R  , S > ^  without over­

lap cycles. There is a complete, increasing grammar G' = < £', E',N', R ',S'>^ 

such that Y jCG ) = Y liG' ). 

PROOF. The grammar G' can be construcled by the steps below. Assume that 

A , B , C e N , and a e I (J E. 



1) Set G' =G and partition G' according to outside selector sets. 

2) Find a rule A —>0 [35 K2C ] in i?'. 

3) Let s = ovtsel {B ). Generate all the m distinct structural forms /S; as in step 3 

in the proof of lemma 5-29. 

4) Find jS, such that trace ( <2, a>, /Sj ) = y where >' € Ei and a is a proper prefix 

of a path on one selector x in s. Suppose y ~ <2, v> and x = <2, av>. 

Then let y = <2, i'7r> and .t' = <2, a>. Replace y in 3, with y' to form 

3'j, and replace the outside x in Gg with x' to form Gg . Add a rule 

Tj-> #[3 5;][% /3'i ] where T, is a new non-terminal. 

5) Find /S; such that t r a c e { < 2 ,  a > ,  ) = y where ; > 1, y e =2. and a is a proper 

pre&x on r selectors Xj in s, 1 ̂  ; < r. Suppose y = <2, v> and x^ = 

<2, aiTj > Then let y'j = <2, vvj > and x'j = <2, ff21^~^>. Replace y in 

jSj with #[2 y' ill y' 2[i • • • [1 yV ]•••]]] to form 3':. Replace the outside x^ in 

Gs with x'j to form Gg_. Add a rule T;#[3 B; K2 0'; ], where Tj is a new 

non-terminal. 

6) Add a rule Tj -> #[3 5 ][2 /B; ] for every jS; that was not processed by step 4 and 

step 5, and replace A [3 SKj C ] with rules A-^T^, ^m. 

7) Repeat steps 2 through 6 until no overlapping selectors are left in G'. 

The above algorithm is guaranteed to halt if there are no overlap cycles, and 

the resulting grammar G' has no overlapping selectors. Every j3 in V'lCG ) is also 

in I'tIG' ), and vice versa. This can be proven rigorously by induction on the size 

of jS. The induction is not shown here. The proof appeals to the previous lemma 



to establish that the selector compositions in steps 4 and 5 do nol affcci the yields 

of the derived forests. If G' is not complete, it can be converted to a complete 

grammar by the method of lemma 5-29. QED. 

3-d Explicit Grammars 

For an increasing 3-d forest grammar, the size of a derived 3-d forest is 

linearly related to the size of its 2-d yield. It must also be shown that a linear 

relationship exists between the size of the 2-d yield and the 1-d yield of a forest. 

To eliminate some of the complexity of the frontier operation, a class of grammars 

called explicit forest grammars will be defined. 

The 1-d yield of a 3-d forest is the result of a two-pass frontier operation. 

The first pass does selection and substitution mandated by the selectors in =2. The 

second pass uses the selectors in Ei- In explicit grammars, A. is the only path 

allowed for 1-d selectors, so that all the deletion occurs during the first pass of the 

frontier operation. Restrictions on the placement of 1-d selectors are also made to 

prevent substitution of trees whose string yield is A. during the 1-d frontier opera­

tion. The definitions that follow formally define explicit forests and grammars. 

DEFINITION 5-33. Suppose jSeHo (I,H). /3 is cxpUcit if and only if jS has 

no subforests bliz], b{2z\iy], b{2y]{\z\ or y, where z = <1,X>, 

ye Hi (E. E ) ,  6 e I  U E j ,  and y e I  (J E j -  {z }. 

DEFINITION 5-34. Let G be a 3-d forest grammar <E, E ,  yV , / ?  ,  S > 3 .  G is 

expli(. i( if and only if every forest in ) is explicit. 



It is an open question whether explicit 3-d grammars retain all the power of 

non-explicit grammars. It will be shown, however, that explicit grammars arc 

more powerful than grammars with only standard selectors. Explicit grammars 

have properties which make it easier 1o establish a linear relationship between the 

sizes of the 1-d and 2-d frontiers of a derived forest. These properties are 

described below, first as properties of 2-d forests, and then as properties of 3-d 

forests grammars. 

The length of the string yield of a 2-d forest can be predicted by counting the 

1-nodes in the forest. The sien function does this, and if the 1-d frontier of a 2-d 

forest 3 is defined, then sl&i ()3) = I /ri(3) I • 

DEFINITION 5-66. The function sien (/3): /-/2 (I, H)-^ is defined as follows: 

sien (z ) = 0 for z e Hj, 

slei (x ) = 1 for X e E U Ei, 

sien (a [j y]) = 1 + sien (y) for a e I |J E?, 

sien (a [2 y]) = sien (y) for a e I, and 

sien (a [2 yJl; 8j) = sien (yj + sien (8) for a el. 

LEMMA 5-67. Suppose lie H2 (I, H) and ^8 is explicit. If jS where 

z = < 1, X>, then sien (j3)> 0. 

PROOF. The smallest possible explicit non-r forest has 2 nodes: dljz]. a 

A- [] z ], X [1 A" ], a U X ], or x [; X ] where a el and x e Ei. The string length is 1 or 

2 in each case. 

Every larger forest contains at least one of these 2-node forests, and since 

non-A. paths on 1-d selectors are prohibited, no deletion occurs during the 1-d 
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frontier operation. Therefore, every larger forest also has string length greater 

than zero. QED. 

LEMMA 5-68. If jS = o [3 y][i 5]e H\ is explicit, then sien (y) and 

s[0i (3)> slat CS). 

PROOF. Neither y nor 8 can be <1, \>, since <3 is explicit. So by the previous 

lemma, sien (y)> 0 and slai (6)> 0. sien ()3) is just sleiï Cy) + sien (6), so sleji ()3)> 

slai (y) and sien C|8)> sien (8). QED. 

As a result of lemma 5-67, <1, X,> is the only explicit forest whose string 

frontier is X. Lemma 5-68 guarantees that substitution steps in the 1-d frontier 

operation always result in larger strings. These results on 2-d forests can be dupli­

cated for 3-d forests. 

LEMMA 5-69. If /Be H3 Cl, H) is explicit and ^ where z  =  < 1 ,  k > ,  then 

sZen (/r2(i3))>0. 

PROOF. Proof by induction on h , the number of 3-nodes and 3-2-nodes in j3. 

Base. /? = 0. 

In this case, = j3, and lemma 5-67 establishes the desired result. 

Inductive hypothesis. Assume the lemma is true for h <n. 

Inductive step. Show the lemma is true for A = n. 

Case 1. )8 = ^[3 or a [3 182]. 

It is not possible that )3i = r , since z is not in H} (I, E ). So we can apply the 

inductive hypothesis to establish that slei ())> 0. Bui 

or fr-ji^OU //'zCjS?)], so slei^ (/7-2(3))> 0. 



Case 2. i3 = a [3 ^2^. 

Let /72(i3i) = ctj, = cti. and = subsiUt:-^. a,). jSj cannot be 

The inductive hypothesis establishes that slm (q;i)>0. If aj has no 2-d selec­

tors, then — fri^oi]), and the lemma is proven. Suppose Œ, has a 2-d 

selector x , and = sel (.Y , 0-2). «3 cannot be z , since z is not in HI (I, H). 

According to lemma 5-67 then, sien (q '3)> 0. So sien (/rjC/S)) = 

slm isvbs 2 ( 0 ^ 1 ,  oc-2)y^slm ( o - j ) >  0 .  

Case 3. j3 = a[* jSj or a [2 )3i][i ^2] and or ^2 has a 3-d subforest. 

Let the largest 3-d subforest of /Sj be /S'j, the largest 3-d subforest of ^2 be ^'2, 

= a'l. and /r2(/3'2) = «'2- Cases 1 and 2 demonstrate that 

sien (a'i)> 0 and sien (a;'2)> 0. But a'l (and a'2) is a subtree of fr2{0), so 

sien (/r2(i3))> 0. QED. 

LEMMA 5-70. If jSe Hi (I, =), )3 is explicit, and /r2(j3) = a = a U ylj 8], then 

sien ia)>sle!i (y) and slai io:)>sle7i (8). 

PROOF. 

Case 1. j3 = aU j8j][j gi]. 

We have /r2(i8) = a, = y, and — 8. Since jS is explicit, neither 

iSj nor ^2 is z. By lemma 5-69, slei (y)> 0 and slai (8)> 0. But sien (a) = 

slai (y)+ sien (8), so sien (a)> slai (y) and sle?! [a)> slmi (8). 

Case 2. /3 = «[3/Sjli jSiJ-

In this case, /^(jS) = a, fr2i^i) = a [2 y]. and = 8. Since neither /3j 

nor jSi can be r, slai (8)> 0 and sien (a [2 y])> 0 (by lemma 5-69). It follows 
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that slcji (y)>0. Bui slai (a) = slai (y)+ slm (.6), so slat {.o!)>slrn (y) and 

slai ia)> slcji (6). 

Case 3. |3 = jSi]. 

This is impossible: must be a tree. 

Case 4. 3 = a [3 jS^]. 

Now we have /72(/3) = = a. The lemma is established by analysis of 

j3i, to which case 1 or 2 will eventually be applied. QED. 

The previous two lemmas can be applied to forests which are produced by 

explicit 3-d forest grammars. This will help establish a linear relationship 

between the 2-d and 1-d yields. It is still possible, however, for an arbitrarily 

large 2-d forest to yield a short string. Consider, for example, the explicit tree )3 = 

#[2 #[2 #[2 ... #[2 a [1 z ]]... ]]]. The 1-d frontier of )3 is just a [j z ], regardless of 

how many 2-nodes /3 has. It is certainly possible to write a grammar with a cycle 

with arbitrarily increases the number of consecutive 2-nodes in a forest. But it is 

also true that if there were such a cycle, it need never be applied more than a fixed 

number of times. Arbitrarily repeated cycle steps add nothing to the 1-d yield of 

the grammar. If we are interested in the smallest 3 which yields a particular 

string, then we can establish a constant upper bound on the number of consecutive 

2-nodes in /3 by analyzing the rules of the grammar. This is formalized in the next 

lemma. 

LEMMA 5-71. Suppose G is an explicit 3DNF grammar <I.,=,N ,R ,S>^ such 

that e N . A =?>* /3, = y, and jS is the smallest forest derived from .4 



such thai /ri(3) = Then y has no more than 2'^ consécutive 2-nodes on 

any path from its root to a leaf, where c is the number of non-terminals in 

N. 

PROOF. Let y have the form a i[2 o aU • • • ^2 y']- • • ]]]. with m consecutive 2-

nodes. The forest /3 which yields y is a forest with y' as its rightmost subforest 

and 3-, 3-2-, or 2-nodes everywhere else. If m is greater than c, then some non­

terminal has been applied more than once in generating the 3-2 portion of )3, and 

there is a smaller forest with the same yield. The largest possible subforest 

without such repetition has 2*^ nodes or less, and the largest possible number of 

consecutive 2-nodes in the 2-d yield of a forest of 2'^ nodes is 2'^. So y has no 

more than 2'^ consecutive 2-nodes. QED. 

If a 2-d forest is explicit and there is a constant bound on the number of con­

secutive 2-nodes, then the size of a forest and its 1-d frontier are linearly related. 

The next lemma formalizes this result, and the theorem that follows extends it to 

sets of 2-d forests which are the yields of explicit 3-d forest grammars. 

LEMMA 5-72. Let jS be a forest over HI (E, 5) such that /3 is explicit and there 

are no more than m consecutive 2-nodes on a path from its root to a leaf. If y 

i s  a  s u b f o r e s t  o f  / B ,  y  ̂ r  ,  a n d  s l m  ( y )  =  Z ,  t h e n  l y  I  ^  m [ 2 l  —  l ) + 3 l  —  I .  

PROOF. The lemma is proved by induction on 1. 

Base. 1 = 1. 

The largest possible y is a ,[2 a 2-.. 0;^ [j [j r ]]... ]] and /r,(y) = è [] z ]. If 

there were any 2-1-nodes, then I would be at least 2 (by lemma 5-68). So 
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I = 1 and I y I = /?; + 2 ̂  /?! + 3— 1. 

Inductive hypothesis. Assume the lemma is true for I  < n .  

Inductive step. Show the lemma is true for I = n. 

The most expensive way to add a 1-node, ^, to an existing forest y' is to insert 

m consecutive 2-nodes at every opportunity. If y' is the largest possible forest 

whose frontier has 77—1 nodes, then y is no larger than a ilza 2(2 - - -

<^m [2 ^ tl - • • Ml 7']]- • • ]]- So 

I y I ^7n+ 1+ m + 2+ m (2(Z— 1)— 1)+ 3(/ — 1)— 1 

^2/71 + 3+ 2mZ — 3m + 3/ — 3— 1 

^ 2mZ — 771 + 3Z — 1 

^ m C2Z — 1 )+ 3Z — 1. 

QED. 

THEOREM 5-73. Suppose G is an explicit 3DNF grammar < Z , E , N  , R  , S > ^  such 

that A € N, A =>* )3, — y, and /3 is the smallest forest derived from A 

such that = V. If I is the length of iv and c is the number of non­

terminals in N, then 1 y I ^ 2^^ (2Z — 3)+ 3/ — 4. 

PROOF. Consider YilG )', the subset of y ilG ) which contains only the smallest 

forests which yield a string in Y](G ). Each of these forests is explicit and has a 

constant bound of 2*^ on the number of consecutive 2-nodes (by lemma 5-71). If 

y in )' yields w, then slai (y) = hv I — 1. The value sien (y) corresponds to 

\ ft'iiy) I when the 1-d frontier is defined, provided we subtract 1 from the size of 

u'. We need to subtract 1 because the sleii function does not count the <1, \> at 
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the end of the 1-d frontier. For cach y in i'lCG we can apply lemma 5-72 lo get 

I y I ^2'^ (2(Z — 1 )— 1 )+ 3(/ — 1 )— 1 

^ 2*^ (2Z — 2— 1 )+ 3Z — 3— 1 

<2H2Z-3)+ 3/-4. 

QED. 

It was shown in lemma 5-29 that every 3-d forest grammar with standard 

selectors has a yield-equivalent complete grammar. It can now be shown that 

every standard 3-d grammar has a yield-equivalent explicit grammar. A grammar 

which is complete allows no truncation during the 2-d frontier operation, but 

truncation may still occur during the 1-d frontier. This happens if a forest has a 

leaf which is a terminal, not a selector. If terminal leaves are eliminated, then no 

truncation will occur. The following two lemmas prove for 2 and 3 dimensions 

that a forest which contains a terminal leaf has no external 1-d selector. 

LEMMA 5-74. If jSe Hi (Z, H) and has a leaf which is a terminal, then |3 has no 

external selector. 

PROOF. This can be proven by induction on I jS I = Z. 

Base. I = \. 

/3 is just a terminal a , so |3 has no external selector. 

Inductive hypothesis. Assume the lemma is true for I = n—\. 

Inductive Step. Show the lemma is true for Z = n. 

If i3 = a 3i] for = 1 or 2, then jS, has a terminal leaf. The inductive 

hypothesis establishes that jS, has no external selector, so /3 has no external 
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selector. 

If /3 = a [i i3]][i gi], then either /3i or g, has a terminal leaf. If 3i has a 

terminal leaf, then, by the inductive hypothesis, it has no external selector and 

= /7"i(/3j). SO 3 has no external selector. If (Sj has no terminal leaves 

and ^2 has a terminal leaf, then the inductive hypothesis establishes that 

has no external selector. /rj(/3) is formed by attaching a suffix of /'"iCiSz) to 

the end of /rj(3i), so 3 has no external selector. QED. 

LEMMA 5-75. If jSe (2, B), fr2i.&) is complete, and /3 has a leaf which is a ter­

minal, then /r2C/3) has no external selector. 

PROOF. This can be rigorously proven by induction on the size of )3. The most 

interesting case is jS = a I3 j8j[2 ^2). If jSj has a terminal leaf, then so does 

and /r2(j3). The fact that /r^C/S) is complete assures us that the terminal leaf will 

not be truncated during the 2-d frontier operation. But if has a terminal 

leaf, then , by lemma 5-74, it has no external selector. The logic is similar if ^2 

has a terminal leaf. QED. 

If a subforest has no external 1-d selector, then any subforest connected to its 

root by a 1-arc will be truncated during the 1-d frontier operation. A 3-d gram­

mar can be modified to remove the subforests that will be truncated from the 

grammar rules. Once these subforests have been removed, selectors < 1, \> can be 

attached to the terminal leaves, and the modified grammar will have the same 

yield as the original grammar. 
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LEMMA 5-76. Let G be a 3DNF grammar < Z , E , N  , R  ,5 >3 such that E contains 

only standard selectors. There is a 3DNF grammar G' such that G' is com­

plete, G' has no productions A —>a where A e N and a eZ, and 

yi(G) = riCG' ). 

PROOF. G' can be constructed according to the steps below. Assume A , B , C, D, 

E, F, 1 e N, a ,b , c iZ, and z e 5. 

1) Set G =G'. 

2) Partition G' according to outside selectors, make G' complete, and restore it to 

3DNF. 

3) Partition G' again to isolate subforests with terminal leaves. This process 

replaces each non-terminal A in G' with A % and Ax • 

a) Replace A-^x with Ax -> 

b) Replace A — y  a  with A  a .  

c) Replace a [ i B ] , l  43, with A a B and Ax-* ali Bx ]• 

d) Replace Q 5 ][;.C ], 1 Z 4 3, 14 r < 3, with A ̂ —> <2 [; 5G;^], A ̂ —> 

a [; 5 %][r Cx ]. A X—> a Bx ][r G %], and Ax —» û [/ Bx ][r Cx ]• 

4) Find a rule A a 511^ C in R'. 

5) Let s = outsel {B ), and form all the m distinct structural forms jSv derived 

from by the method of step 3 in the proof of lemma 5-29. Form rules 

7; —» a [3 fi ][? i3, ]  and A for each 14 z" 4m , and remove A > 

t ?  I j  5  I I T  C  J ] .  

6) If 1 here is a rule A C ], then replace it with A-^-^ a [, B 2]. 

7) If there is a rule 7", -» c [ 3  5 ][; jS, ] and Gg contains a rule D -• y [] F ] or D -» 
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^ [ ; £ ] [ ]  F ]  where the forest derived from E  conlains y . y  e .v, and 

sel (y . /3,0 = c or c [,/ %], replace the rule for D with D -» y or D -» /^ [/£] to 

form Gb ,• Then replace T, -4 a [ 3  5 Mi <3, ] with Ti—t a [, B, ][? 3i I-

8) Remove useless rules from G' , return it to 3DNF. and repeal steps 2 through 6 

until no further changes can be made. 

9) Replace every rule A-* a in R' with A where z = < 1, \>. 

Each pass through the algorithm has the net effect of eliminating some forests 

with 1-arcs pointing to them, so the algorithm certainly halts. The goal of the 

algorithm is to eliminate rules which produce subforests that will be truncated 

during the 1-d frontier operation. Then the selector < 1, X.> is attached to any 

remaining terminal leaf, so the resulting grammar is complete and produces forests 

which have only selectors as leaves. 

Step 2 is a partitioning step which does not affect the yield of the grammar. 

A non-terminal A ̂  derives forests which have at least one terminal as a leaf. Ax 

derives forests which have only selectors as leaves. Steps 4 and 5 also rewrite 

some rules without affecting the yield of the grammar. 

Steps 6 and 7 eliminate subforests which will be truncated during the 1-d 

frontier operation. Lemma 5-75 can be cited to prove that the 1-d yields will not 

be affected. 

The steps are repeated until no further changes occur. At this point, the 

grammar has been effectively pruned so that no subf orests are produced which will 

be truncated during the 2-d or 1-d frontier operations. Step 9 attaches the selector 
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< 1, À> to any terminal leaves which remain, so the requirements of the lemma are 

satisfied. QED. 

Once terminal leaves have been eliminated from a grammar, it can be further 

modified so that it will not produce subforests of the form a [3 s ], a [2 z ][i j3], or 

a [2 /3][i z ], where z = < 1, X>. When these modifications have been made, the 

resulting grammar is explicit. 

THEOREM 5-77. Suppose G is a 3DNF grammar < Z , E , N  , R  , S > i  which has 

only standard selectors. There is a complete, explicit grammar C = 

<Z',E',N\R',S'>3 with standard selectors such that VjCG ) = i'lCG' ). 

PROOF. Construct G' according to the steps below. Assume 

A,B,C,D,E,FeN',aeZ',xe H'2, and z e E'l-

1) Set G' = G , make G' complete, remove terminal leaves, and partition G' 

according to outside selectors. 

2) Partition G' again to form A %, Ax , and Az for every A in N'. Rules are 

invented as follows: 

a) Replace A -» z with 

b) Replace A—^x with A^-*x. 

c) Replace A —> u [j ] with A ̂ —> c2 [j 5 j], A ̂ ] ,  a n d  A ̂—> û [j ]• 

d) Replace A -» .v [j 5 ] with Ay .t [j Bx Bz ], and A x-> a" [j 5 %]. 

e) Replace A-^al^B] where r > 1 with A2—»a[^B j], Ax —» aBx], and 

A2 —» fl Bz ]• 

f ) Replace A -4 a fi ][i C ] where r > 1 with A a 5 jlLj C j], A 2—» 
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iJ [f-SjlLj Cy ]. ^4 T—» a 5 j][] ], .4 J—> a [^Bij ][j C j], A j—> 

0 [r Bx ][i C j], Ax —• Û [p Bx ][i Cx ], Ax —> û [r Bx ][i Cz ]. and —» 

a  { f B z  ][] ]. 

g) Replace ^4 —• a [3 fi ][2 C ] with A J—> a ^ Z""* a [j jB C^' ], 

A %—» û [ 3  5 %][2 Cz ]. A X—> a [ 3  Bx Hz C %], Ax —» ^ [3 Bx ][% ], and Ax —> 

a Is-^x ]. 

3) Find a rule A -»a [3 B ][? C ] (where A , B , and C can have any subscript) in 

R ' .  

4) Let 5 = ouîsel {B ), and form all the m distinct structural forms jS; derived 

from C as in step 3 of the proof of lemma 5-29. Form rules 7,—» a[3B][% <3;] 

and A^Tj for each 1 ̂  , and remove —» a [3 5 ][2 C ]. 

5) If trace (x , jS, ) = 6 [2 ] for an a: in s such that Gg has a rule E—, remove 

Dz from i3, and replace the .x inG# which selects with 2 to form G^,. If 

Gs has a rule £-+ x [j F ] for the z which selects Dz , replace it with E-*F. 

Then, replace T, a  [ 3  5 ][2 ] with T^-t  a [ 3  B^ E2 <3, ] .  

6) Repeat steps 3, 4, and 5 for each rule A ->a [3 B ][2 C ]. 

7) If i?' has a rule —» <3, replace it with -» z. 

8) If R '  has a rule A -» a 5 ][i C2 ], replace it with A - ^ a l ^ B ] .  

9) If R' has a rule A -• o 5^ l[i C ], replace it with .4 -$ C. 

The purpose of the algorithm is to isolate and eliminate rules which produce 

only trees whose 1-d frontiers are r. Step 2 partitions the grammar so that a 

non-terminal Ai derives forests which contain at least one terminal 1-node. Ax 
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derives forests which have only selectors as 1-nodes and leaves, and derives 

forests which have only z as leaves and no 1-nodes. The 1-d frontier of any 

forests derived from Ax is z. 

Steps 3, 4, and 5 expand the right-hand sides of rules for 3-2 non-terminals 

so that 2-d selectors which select z -forests can be eliminated. The modifications 

made in step 5 do not affect the 1-d yield, since /ri(a[2z][i j8]) = /ri(/3). The 

replacement of a: [, E] with E shortens the path to E. This would cause a problem 

if some selector of a containing forest had a path to E, but this is impossible with 

standard selectors. Standard 2-d selectors have.paths in T and cannot penetrate a 

tree which results from a 2-d frontier step. 

Step 7 replaces any z -forest with a single z. Steps 8 and 9 eliminate z -

forests without affecting the 1-d yield. The resulting grammar is complete and it 

produces no subforests a [2 z ], a z i3], or a [1 /3][i z ]. QED. 

A Subclass of 1Y3F within Context-Sensitive 

It has been demonstrated that for many 3-d forest grammars, there is a linear 

size relationship between forests in the 3-d yield and the 2-d yield. It has also 

been shown that many grammars have a linear size relationship between the 2-d 

yield and the 1-d yield. We now define a subclass of 1Y3F for languages which 

exhibit both relationships. 
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DEFINITION 5-78. 1Y3F. is a subset of IY3F. A language L belongs to 

1Y3F/ when L =y'i(G) for some 3-d forest grammar G, and if 

u-€ }'](G ), then there is /3 in }'j(G ) such that vVjC/S) = w and l/3l< 

/ ( I1 ) for some linear function /. 

THEOREM 5-79. If G is a 3-d forest grammar which is increasing, explicit, and 

has a deletion constant, then Yi(G )e 1Y3F i. 

PROOF. G has a deletion constant and is increasing, so by lemma 5-14, if 

a € y ), then there is a )3 in F ̂CG ) such that lj3l^/(lal)fora linear func­

tion / , and /rzljS) = a. G is explicit, so by lemma 5-73, if w e >'j(G ), then there 

is an oi in ¥2(0 ) such that /riCa) = w and I a I ( Iw I) for a linear function g. 

So if w e Yi(C ), then there is <3 in y 3CG ) such that friiP) = w and 1 jS I ^ 

A ( I w I ) where ft is the linear function which is the composition of / and g. QED. 

Any explicit 3-d forest grammar with strictly increasing cycles yields a 

language in 1Y3F i. The cycles in the grammar can even be overlap cycles as long 

as they show a net gain. Certain 0-gain overlap cycles can also be included in a 

grammar which yields a 1Y3F ̂  language. If a 0-gain cycle is consistently deleting 

in one of its selection processes, then the number of possible cycle steps is limited 

by the size of the pre-cycle forest. If too many cycle steps are applied, a path error 

occurs when the frontier is taken. 

DEFINITION 5-80. Let G be a 3-d forest grammar < 1 , E , N  , R  , S > i  which 

contains a cycle whose root is A , A è N. If A =^* j3 and no other cycle 

non-terminals are used to derive |3. then /3 is an input forest of the cycle. 
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DEFINITION 5-81. Lei G be a 3DNF grammar with a deletion constant which 

contains a cycle. The cycle is linear- if it is a 0-gain overlap cycle such that 

the maximum number of cycle steps which can be applied without intro­

ducing a path error for an input forest /3 is / (1 ), where / is a 

linear function. 

THEOREM 5-82. If G is an explicit 3DNF grammar <Z,E,N ,R ,S>3 which has 

a deletion constant and every cycle in G is increasing or linear, then 7 j(G )e 

lYSF^. 

PROOF. Suppose G has a linear cycle whose root is A , 5 is outside the cycle, and 

B derives the input forest j3 for the cycle, A , B ^ N. Suppose also that if 

a e y 2(Gb ), then YgCGg ) has |3 such that /rzCiS) = or and 131 ( I a 1 ). G is 

explicit, so if u- e Y jCG ), then Y jCG ) has S such that /rjCô) = a and IS I ^ 

/ ( I w I ). The A -cycle is linear, so there is a linear function h such that if 

j4 =>* y and <3 is the input tree which is a subforest of y, then the maximum 

number of cycle steps is A ( I I ). Finally, assume y is the smallest forest 

derivable from A such that /ri(/r2Cy)) = = w. Since G has a deletion con­

stant and the A -cycle is 0-gain, we know that 18 I = I a I and each step of the 

cycle adds no more than a constant number of nodes to the derived 3-d forest. If 

this constant is c and the number of steps is s, then 

I y 1 ^ 131-I- s X c 

( la I )+/! C la I )xc 

^ g ( 16 I )-t- /? ( IÔ l)x c 

(/ ( I l))+A(/(l If I ))x c. 

Thus, we have established that I y 1 ^g' ( I •«' I ) where g' is a linear composition of 



f ,  g , and h. Such a composite fund ion can be constructed for each linear cycle 

in G . Since the number of cycles in G is ûnite, we can establish a composite func­

tion for the whole grammar. We do not have to worry about an infinite composi­

tion of functions if there is a cycle of cycles. A cycle of linear cycles can be 

analyzed as a single linear cycle. A cycle of increasing cycles can be analyzed as a 

single increasing cycle. A mixed cycle of linear and increasing cycles is neither 

increasing nor linear, so it is ruled out by the requirements of the theorem. QED. 

Linear overlap cycles are significant because the example grammars at the 

beginning of this chapter employ them to perform list-processing operations. The 

grammar MERGE performs the task of merging two lists into one. The cycle gen­

erated by non-terminal M does the merging. Each step in this cycle deletes two 

interior nodes and adds two interior nodes without truncating any subforests. So 

the cycle has a net gain of 0. Each step of the cycle removes an element from one 

of two input lists. So the largest possible number of cycle steps is no greater than 

the sum of the elements in the two lists, and this sum is smaller than the number 

of nodes in the 2-d input forest. 

The grammar SQUASH can be subjected to a similar analysis. It performs the 

task of converting a complex list of elements to a simple list. The grammar has 

consecutive overlap cycles generated by non-terminals R and W. These cycles 

operate on a complex list of elements #[2 a z ]], which is initially a full binary 

tree. The W -cycle repeatedly splits the leftmost subtree into two subtrees and 

attaches them to the front of the list. Each steps adds two interior nodes and 
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deletes two interior nodes without truncating and subtrees. The W-cycle ter­

minates when the first element of the old list is moved to become the first element 

of the new list. Then, the R -cycle continues the processing of the old list by either 

splitting the first element of the old list or by moving an element from the old list 

to the new list. Each step of the R -cycle adds the same number of interior nodes 

as it deletes, and no step truncates any subforests. The total number of element-

splitting steps over the two cycles is no larger than the number of interior nodes in 

the original binary tree. If a full binary tree has n leaves, then it has — 1 inte­

rior nodes. So the number of splitting steps is no more than n — I. The number of 

element-moving steps is no more than the number of leaves in the original tree. 

The number of cycle steps for R and W combined is less than 2n , where n is the 

number of leaves in the original tree, and the number of leaves is half the total 

number of nodes in the tree. So the number of cycle steps is linearly bounded in 

terms of the size of the 2-d frontier of the input tree. 

The grammar BA2N yields the subset of {a I ô j"*" such that each string has 

2" a's, n > 0. It can now be demonstrated that the language yielded by BA2N is in 

1Y3F;. 

LEMMA 5-83. \\[BA2N)e 1Y3F;. 

PROOF. The grammar BA2N is a composite of the grammars SQUASH, MERGE, 

BLIST, and A2N. Inspection of the grammar rules verifies that BA2N is explicit. 

No rule generates any of the forbidden subforests. The overlap cycles in BA2N 

corne 1 roni SQUASH and MERGE. By the analysis in the paragraphs preceding this 

lemma, these cycles are linear and complete. All the other cycles in the grammar 
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are complété, non-overlapping, and increasing. It follows from theorem 5-82 thai 

yi(BA2N)e 1Y3F,.QED. 

THEOREM 5-84. ALG 3 is a proper subset of 1Y3F i. 

PROOF. If L belongs to ALG I , then there is a 3-d forest grammar G such that 

Yi(G ) = L and G has only standard selectors. There is a grammar G' such that 

Yi(G' ) = Yi(G ), G' is complete and explicit (theorem 5-77), and G' is increasing 

(lemma 5-30). By theorem 5-79, then, L e 1Y3F i. Lemma 5-83 shows that 

Yi(BA2N) is in 1Y3F i, but Yi(BA2N) is not in ALG I (see theorem 5-1). So 

ALG 3 is a proper subset of 1Y3F ̂ . QED. 

Baldwin (1983) has shown that a linear-bounded grammar can be written 

which simulates the frontier operation on a forest in H^(I, E) with standard selec­

tors. This grammar can be used for forests with extended selectors if the search 

routine on page 241 of Baldwin's dissertation is modified to accommodate them. 

Below is a search subgrammar written specifically for 3-d forests. It demonstrates 

that the required modification in Baldwin's grammar will not violate the linear 

space bound. The non-terminal set for this subgrammar is ( <sp2>, , 

<sprn > <rc >, <lb > <llb >, <move >}. The non-terminals <sp^ > are the 

search non-terminals. There is one for every sufSx ^ of a path on a 2-d selector of 

the input forest. <rc > is a non-terminal which carries a search non-terminal to 

the right over a 2-d tree. <lb > and <llb > are symbols representing left brackets 

that have been passed over during a carry operation. The initial configuration for 

the search is <sp >iS where j3 is the 2-d forest to be traversed. The final 
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configuration is /Bj <move>^2 ̂ 3. where (S, is the tree selected for copying. The 

steps which precede and follow these configurations are unchanged from Baldwin's 

dissertation. Let the symbol a represent any element of I .  The rules for search 

are given below. 

1) <sp >a -»a <sp > iî p 

2) <sp >a <move >a iî p = k, 

3) <sp >[2 -» <sp > <rc >[2 if p = Ip', 

4) <sp >[2 -»[2<s/)' > if p =2p', 

5) <SyD >[i > if = 1/)', 

6) > <rc >[2 -^[2<ZZ6 > > <rc >, 

7) <llb > <sp > <rc >a -*a <llb > <sp > <rc >, 

8) <ltb > <sp > <rc >[^ -> [^ <Ub > <lb > <sp > <rc >, 

9) <llb > <sp Xrc > ] ̂  ] <sp >, 

10) <lb > <sp > <rc >a -» a <lb > <sp > <rc > 

11) <lb> <sp > <rc >[j -* [; <lb > <lb > <sp > <rc >, 

12) <Z6 > <5';; > <rc >] —» ] <sjO > <rc >, 

13) <lLb>a -,a<llb>, 

14) <llb >]-*]<llb >, 

15) <llb>[j ^[j<llb>, 

16) <lb>a —ta<lb>, 

17) <Z6>]-»]</6>, and 

18) <lb>{j -^{j <lb>. 



169 

The first 5 rules consume the path p , switching from <sp > to <sp' > when 

appropriate. Rules 6 through 12 carry an <sp > to the right over a subtree. Each 

time a left bracket is passed over, an <lb > (or <llh > for the first left bracket] is 

added. Whenever a right bracket is passed over, an <lb > is erased. When a right 

bracket is encountered and only an <llb > marker is present, the carry operation is 

complete. Rules 13 through 18 are auxiliary to the carry operation. They just 

move the left bracket markers to the right. It is clear from the examination of the 

rules above that the number of symbols required to implement the search opera­

tion on |3 is 2 + I (31 + 6. where b is the number of left brackets in 3- So the space 

required for the operation is linear in the size of the input tree. 

THEOREM 5-85. If L = 7 i(G ) and L e 1Y3F/ then there is a linear bounded 

automaton M which accepts L. 

PROOF. Construct M by incorporating in its finite control the 3-d forest grammar 

G and the linear bounded grammar which simulates the frontier operation. We 

know there is a function / such that if u- e L , then G =>* jS, /7-j(/3) = w, and 

I i31 ^ / ( IM' I ). We also know that the frontier simulator requires space not to 

exceed g ( 1 v I + 131). where g is also a linear function. This space bound is 

expressed in terms of I w I + I /31 because the 1 -d f rentier of 3 may be smaller or 

larger that 3- If /r,l3) is smaller than 3, then the simulator operates in g ( 131 ) 

space. If the frontier of 3 is larger, then the simulator operates in g ( hv I ) space. 

In either case, g ( I w I + 13 i ) is a safe upper bound. M operates according to the 

steps below: 
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1 ) Start with m' on the tape. 

2) Mark a working area on the tape of size g ( Iv 1 + 1 j31 ) + / CI u- I + I )31 ) next 

to 

3) Generate the next largest |3 derivable from the start symbol of G (or the smal­

lest j3 if this is the first time this step is executed). Write )3 in the working 

area, replacing what was there before. 

4) If j8 will not fit in the working area, then reject ai- and stop. 

5) Simulate the frontier operation on /3, replacing it with w' = /riCj3). 

6) If the working area is not large enough for the simulation of the frontier, then 

go to step 4. 

7) Compare w and w'. If they are the same, then accept u- and stop. If they are 

not the same, then go to step 3. 

M is guaranteed to halt, accepting or rejecting w. The amount of tape required is 

on the order of hv 1 + g ( I w I +/ ( hv I )). QED. 

COROLLARY 5-86. If G is a 3-d forest grammar such that y'j(G 1Y3F;, then 

there is a context-sensitive grammarG' such that L{G' ) = ,(G ). 

PROOF. This follows immediately from the previous theorem and the fact that a 

context-sensitive grammar exists for any language which is accepted by a linear 

bounded automaton. QED. 

This chapter has defined a subclass of 1Y3F whose languages are recognizable 

in linear space. 3-d forest grammars must be restricted to achieve this result, 
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but some interesting grammars which simulate list processing can be written 

within the restrictions. Grammars with decreasing cycles have not been considered 

here. It is an open question whether 1Y3F = 1Y3F/. 
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CHAPTER 6. 

OUTSIDE-IN LANGUAGES IN 0Y3F 

The 3-d forest grammar BA2N of the previous chapter is an example of a 

03YF; language which yields an outside-in macro language. This chapter demon­

strates that 0Y3F^ contains some simple 01 macro languages as well as all the 10 

macro languages. 

DEFINITION 6-1. A simple macro grammar is an 10 or 01 macro grammar 

<1., F ,V, p, S, P> such that each cycle has only one non-terminal and 

e v e r y  r u l e  h a s  o n e  o f  t h e  f o l l o w i n g  f o r m s  f o r  A ,  B  e  F ,  i F  ( J z y ,  

Xi e V, and e F (JZIJV, 1 : 

1) A -^5 (ofj, a,, 

2) A (x J, ^^2? • • • > ^B (.0^, O2, • • • , 0;7I 

3) or 

4) A—^oi. 

The definitions of 10 and 01 macro grammars are defined by Fischer (1968). 

A simple macro grammar does not have any non-terminals which are arguments of 

other non-terminals. Baldwin (1983) has demonstrated that ALGI corresponds 

to the class of 10 macro languages, and it immediately follows that simple 10 

macro c 10 macro c 0Y3F/. 

The 10 Conversion Method 

10 macro grammars can be converted directly to 3-d forest grammars. The 

direct conversion method replaces a macro rule A ix , y , B {ax , by, cz ) with 

a forest rule A #[3 B llo #[ia x ]][] #[3 &[i y ]][, z ]]]]], for selectors 
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X = <2,X>, y = <2,1>, and r = <2, 11>. Consider a macro grammar M whose 

rules are the following: 

1 )  S ^ A i a l  

2) A { x ] - ^ A  { x x  ), and 

3) Aix^-^xx. 

The language L CM ) is the set {a^"}, n ^1. We can convert this directly to a 3-d 

forest grammar, A2N', whose rules are shown below. Let x = <2,X>and 

z  =  < 1 , X > .  

1) 5-4 #[371 ][2 #[2<2 [l 2]]], 

2) a -» #[3 a ][2 #[2 ib. and 

3) A-» #[2X'[i A-]]. 

Figure 12 contains a derivation of the grammar A2N' and its frontiers. Con­

trast these forests with those of figure 5. The grammars A2N and A2N' have the 

same 1-d yield, but they produce different shaped forests. During the 2-d frontier 

operation on the forest of A2N', multiple copies of 2-d selectors are made before 

the a's replace the selectors. With the corresponding forest of A2N, no 2-d selec­

tors are copied. Rather, the a's are copied with each step of the frontier operation. 

These examples illustrate that if a simple 3-d grammar generates its yield by copy­

ing 2-d selectors, there is a simple 3-d grammar with the same yield which does 

not involve the copying of 2-d selectors. 

Another method for converting simple macro grammars to 3-d forest gram­

mars is presented here which can be generalized to accommodate 01 as well as 10 
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derived 3-d forest 
# -—2  

I 

I I 
^ 2 1 4^ 2 

I I I 
a — 1  ^ —  2  ^ — 2  1  

I I I I 
z a—1 a— 1 —2 

I I I 
z z a — 1 

2-d frontier 

a — 1  
I 
a —  1  

I 
a —  1  

I 
z 

1-d frontier 

FIGURE 12. 3-d forest and yields produced by A2N'. 

grammars. This method will be called the 10 construction method. The resulting 

grammar will produce forests which look like those of A2N instead of A2N'. It 
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will be useful to have a function which turns a string into a 1-d forest and con­

verts macro variables to 2-d selectors. This function is call imap. 

DEFINITION 6-2. Suppose M is a macro grammar with terminal set I and 

variable set V. The function imap (a): E » Hi Cl, £) is defined as 

imap [a o) = a [j imap (a)] and 

imap (a] = a for a e Z, 

imapixj o') = <2,21-'~^>li imap (o')] and 

imap {Xj)= <2,2V~^> for e V. 

Let M be a simple 10 macro grammar. A 3-d forest grammar G = 

<1,E,N ,R ,S>i can be constructed such that Y o(G ) = Z. (M ) by the steps 

below: 

1) Set I equal to the terminal set of M, and add # to I. 

2) Set equal to the non-terminal set of M, and make S the same as the start 

symbol of M. 

3) Set El = { <2,2>, <2,21>,..., <2, 21'""^>), where m is the cardinality of 

the variable set of M. Also, set E] = {< 1, A.>} and E3 = (t>-

4) Add rules to R as follows: 

a) If M has a rule A -> a, ae (I IjA^ )•*", and no non-terminal in a has any 

arguments, then put a corresponding rule .4 -» #[? o'] in R, where o' is the 

1-d forest such that a' = imap (o). 

b) If M has A («i, a;,... ), where the a's are strings of terminals and 

non-terminals, put A —> #[, a'JE, #[1 a-SK] • - • #[% «'m 1 •••]]] in /? 

where a',- = imap (.a, ) for each 14: 4m. 
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c) If M has .4 (a- 1, A-2 -V, )-> 5 (aj, a,,..., ), where the a's are string 

of terminals, non-terminals, and variables, put 5-» 

#[3 #[2 ^[2 o'i][] #[2 c r  2][i •  •  •  ^[2 "m ]  •  •  •  - A ]  i n  R  ,  where cj'; = 

imap (o; ), l^i ̂ m. 

d) If M has A {x j, .v 3,..., o where a is a string of terminals, non­

terminals, and variables, then add the rule S—^ #[3 #[2 a']][2^ 1- where 

o' = imap ( a). 

The construction method above is the inversion of Baldwin's direct method. 

The inversion of a 3-d grammar relies on a 3-d generalization of lemma 4-48 to 

establish that different shaped 3-d forests can have the same yield. Specifically, 

/7-i(#[3 #[3 a][2 j3]][2 y]3 = /ri(#[3 ala #[3 j3][2y]]), where a, jS, and y are in 

f/3 (I, H) and have no overlapping selectors. The lemmas and culminating 

theorem that follow prove that the 10 construction method produces a 3-d forest 

grammar which is yield-equivalent to the original macro grammar. The first 

lemma establishes the correspondence of the macro substitution operation and the 

2-d frontier operation. 

LEMMA 6-3. Suppose 3-d forest grammar G is constructed from a simple 10 

macro grammar M by the 10 construction method, and M has a derivation 

5=^* ^C'yi,-y2----.'ym)=^* 3m)-whereAUi,JC2. 

-)5 (oj, 02,..., ) is the last type 2 rule applied (see definition 6-1 ). Sup­

pose also that 3-d forest grammar G has a derivation 5 ^ and ( = 

#[3 #[2 #[2 ̂ i][i #[2 ... #[2 ] • • • ]]]][2 yl where /r2Cy') = 
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^^2 ^^2 y JCl *^2 y • • • ^[2 y m ] • • • /^'2(C)— #[2^[2^J[l^[2^2^[l ••• 

#[2 g'm ] . .  -  ] ] ] ,  o \  =  i m a p  [ O i  ), o\ =>* Tr,, and /riCy'j ) = ijnap (y^ ), 

l^z ^m. Then j3; =#>* "vv,- if and only if fr^i^'i ) = w',, where u'', is a string 

of terminals and w', = imap (v, ). 

PROOF. 3t is the string of terminals and non-terminals which results when 

(yi, y2,..., y^ ) is substituted into O;. Let have the form pjv 1P2V 2... 

P ;  V ;  P i + i ,  where the p's are strings of terminals and non-terminals and the v's are 

variables. When the substitution is performed, each Vj, , selects y^ where 

Vj refers to the ft th macro argument. So )3i = PiyvjPayvj • P/VvjPi+i- If the p's 

contain non-terminals, they are context-free non-terminals which have no argu­

ments. They can be expanded to obtain a terminal string jS, =^* u iyvi"2yv2 • • • 

The frentier operation on ( gives subs2ifr2{^[2 #[2 ^i][] #[2 ̂ 2]^! • • • 

... ]]]), /raCyO) = #[2 *\.i 3'Jti *\-2 . #[2 ] • • • ]]], where g, is 

subs2(7^1, /roCy')), a'; = imap (a, ), and o'l =5>* tt; . a', is a bracketed version of O; 

with the same p's, and the v's converted to selectors. Let o', be represented as 

p'i[].tj[] ... p';[ixjip';+i]] ...]]]]. Each selectoris <2,21^"'>, where v ̂  in 

Oj refers to the h th macro argument, a'j is expanded before the 2-d frontier 

operation to give = u' jlj z Jj ... u'l [j [j +1]] ... ]]]]. The rules in G used to 

derive u'j from p'j correspond exactly to rules in M which derive from pj. So 

) is a bracketed version of Uj. When fr^iy') is substituted into r,, each Xj 

is replaced with #[2 y^]. where = <2,21^~^>. The frontier substitution, 



therefore, has the same effect as the macro substitution. The result is = 

ill y'x •••"'; [] y'lji u';+i]] ... ]]]], and ) is iv , a bracketed version of 

Wj. QED. 

LEMMA 6-4. Suppose 3-d forest grammar G is constructed from a simple 10 

macro grammar M by the 10 construction method. M has a derivation S =>* 

^ (yi. 72 Ym ) =^* 5 (/3i, 182,..., jSm ), where A (.v j, 

) is the last type 2 rule applied, and g, =>* Wj l<z , 

if and only if G has a derivation B =^* ^ = #[3 #[; #[2 #[; 7r2][i ... 

^[2 ] • • • 8], = #[2 #[1 3'l] [) #[2 ^ 2][l • • • ^[2 ̂  m 1 • • • ]]], SOd 

/rjC/B'; )  =  w ' i ,  w h e r e  o \  =  i m a p  (a^ ), and w', = z'ma/j (w; ), l^i <m. 

PROOF. The lemma is established by proving the propositions (A) and (B) below. 

(A) If S =$>* A (yi, yj.•••. ym )=^ 182 jS^) and JS; =^* w,, l<z , 

then 5 =>* i, fViiO = #[2 #[2#[2... #[2 •••]]]. and /nCg'J = 

M-';. 

Proof of (A) by induction on n , the number of type 2 macro rules applied to 

deriveBCjS'i, /SS,..., 3^ ). 

Base. 7Î = 1. 

The macro derivation is 5 .4 (»], an,..., ) =>* .4 (y^, y^,..., y^ ) 

(iSj, j32 i3m ). using rules 5-» ,4 la], a? ) and 

.4 (a- J, X 2,..., )-» 5 ( O), 02 ). By steps 4b and 4c of the 10 con­

struction method, G has rules 5 —> #[3 #[2 #[2 cr'ili #[2 o • • • #[2 <7'm ] 

... ]]]][2 A ] and -» #[2 #[2 a'JLi #[2 aSlCi - - - #[2 1 • • • ]]]- If some o'. 
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contains non-terminals, then a'j can be expanded to -, using rules supplied by 

step 4a of the construction. Similarly, if some o-'j has non-terminals, it can be 

expanded to y, by rules corresponding to those in M which expand a,- to y,. 

So B =>* ( where ̂  = #[3 #[2 -JLi #[2 ... #[2 ]. ••]]]] 

[2 #[2 #[2y2][] ••• #[2 y'm] •••]]]• and /7-](yi) = imapiyi). Let fviiO 

be #[2 #[2... #[2)3'm]...]]]. We are given that <3, w/.so 

we can apply lemma 6-3 to get /7"i(i3', ) = w',, I < z ^ m. 

Inductive hypothesis. Assume (A) is true for n  < r .  

Inductive step. Show (A) is true for n = r. 

The macro derivation is 5 A (aj, a2,..., )=^* A (yi, yz, - - -, Ym ) 

=>5 ()3i, jSz X and the last type 2 rule applied is A (.r j, x 2,..., )-> 

jB ( Oi, 02,..., ). By step 4c of the 10 method, G has a rule B —y 

#[3 #[2 #[2 a'lXi #[2 a'2][i ... #[2 o'm] ...]]]][2^]- By the inductive 

hypothesis, A =>* 6, /r2(8) = #[2 #[? «'jllj #[2 a'2][i ... #[2 ck''^ ] ... ]]], and 

/;-](»'; ) = irnap iy) ). If any o) has non-terminals, it can be expanded to r, 

using rules supplied by step 4a of the 10 method. So B =^>* ^ where ^ = 

#[3 #[? #[2 ^[2 • • • ^[2 ] • • • ]]]][2 8]' Let /7" 2(4 ) = 

#[? *\.i i3'i][] #[2 ... #[] jS'm ] • • • ]]], and apply lemma 6-3 lo establish 

that /riC3'i ) = imap (u-j ), 1 ̂  i ^ m. 

(B) If a =>* (, MO = #[2 #[2 |8'i][i #[2 g'zJti ... #[2 3';. ]... ]]]. and ) = 

v',, then 5 =5>* 5 (jSj, /Sj,..., 3^ ) and jS, =>* W;, 1 < i 

The proof of (B) is similar to the proof of (A). QED. 
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THEOREM 6-5. Suppose a 3-d forest grammar G is constructed from a simple 10 

macro grammar M by the 10 construction method. M has a derivation 

S a where a is a string of terminals if and only if G has a derivation 

5 =>* 3 and /^'jCjS) = imap (a). 

PROOF. 

First, assume that M has 5 =i>* B (/3i, ..., ) =>* a, the last macro 

rule applied is B (Zj, ^2 x^) -* o, and )3,- =^* W;, l^r By lemma 6-4, 

G has B #[1 ̂ [2 3'i][i ^'m 1 •  •  •  ] ] ] '  5od )  =  

imap (wj ). By construction step 4d of the 10 method, G has a rule S -y 

*[3 #[2 o'WiB]. So S =>* jS where /3 = #[j #[2 o']]!? ^]- By an argument similar 

to that in the proof of lemma 6-3, it can be shown that /rjC/B) = oc' where 

a' = imap (a). 

Now assume G has 5 =?>* #[3 #[% o'EiB] =>* j3 and = imap (a). 

Then M must have a rule 5 (x j, a-2, •.., ) -^ a. Suppose B can be expanded in 

G to give #[3 #[2 #[2 #[2 o'2][i ... #[2 o'm ] - - - ]]]][2^ i' where 

/7-2CO = ^[2y'2]ti ••• #[2y'm] •••]]]. and /riCy, ) = may? (iv, ), 

l ^ i ^ j n .  By lemma 6-4, m  has5=^* 5(/3i, )32,., i3;„ 3 and |3=^* AV;. AS 

discussed in the proof of lemma 6-3, the substitution of (/Sj, jS? /3n, ) into o 

has the same effect as the substitution of /'"2(4) into o'. So imap (.a) = a' = 

/7-,CJ3). QED. 
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The 01 Conversion Method 

A generalization of the 10 conversion method can be used to construct 3-d 

forest grammars which simulate simple 01 macro grammars. 01 processing allows 

non-terminals to be copied before they are expanded. This is simulated by generat­

ing a list of possible expansions of each argument. If two copies of some argument 

are required, then two distinct elements are taken from the list of possible expan­

sions. This method will be called the 01 construction method. 

As before, a function will be employed to add 1-brackets to strings and con­

vert macro variables to 2-d selectors. This function is similar to imap , except that 

the mapping of variables to selectors is more complicated. The symbol will 

represent the j th occurrence of the i th argument in the argument list of a macro 

non-terminal. 

DEFINITION 6-6. Suppose M is a macro grammar with terminal set I and 

variable set V. The function omap (o): (I (Jv (I, H) is de&ned as 

omap (a a) = a [j oma/) (o)] and 

omap (a ) = a for o € I, 

omap o') = <2. 2V~^22(l2y~^>[i omap [c7')l, and 

omap = <2, 21'~^22(l2y for e 7. 

Let M be a simple 01 macro grammar. A 3-d forest grammar G = 

< I, H, , ̂  , S >3 can be constructed such that FqCG ) = L (M ) by the steps 

below: 

1 ) Set I equal to the terminal set of M and add # to I. 



2) Add A  ,  A l ,  and A 2 t-O N for each non-terminal A of A'/. 

3) Add selectors to H and rules to as follows: 

a) If M has a rule A — t O ,  o e  (Z(JA^y, and no non-terminal in o  has any 

arguments, then put a corresponding rule A -» #[2 a'] in /? , where 0' = 

omap ( o). 

b) If A7 has 5-+.4 Caj, «2,... where the a's are strings of terminals and 

n o n - t e r m i n a l s ,  p u t  A  — »  # [ 2  # [ 2  ^ i l l  l i  ^ [ 2  ^ 2 ! ^  l - i  •  •  •  ̂ [ 2  ̂ l - i  ] ]  

...]]] in 7?, where each T, is a newly invented non-terminal. Add rules 

Fi-t #[2#[2Q;', ][i7'J] and Tj-» #[2 #[2 a';]], for each 141 4m , where 

a ' j  =  o m a p  ( o f j  ) .  

c) If M  has A  [ x j ,  X 2 , . 5(oj, 0 2  o ^ ) ,  where the o's are string 

of terminals, non-terminals, and variables, put B B i, B 

^[3 ^[2 y]][2 -S1 ], jB 1—» #[3 #[2 ylltz ̂ 2]' ^2~^ ^[3 ̂ 1-2 ^]][2-A ] in /?. 

y is the subforest #[2 0i[i #[2 #[2 o'l^i "J]]] Ii • • • #[30^ [] *{2 #[2 o'm ] 

[1 ?V. ]]]]...], where 0; = <2. 21'-'2(2l/'>, = <2,21'-'21>, is 

the number of occurrences of x^ over (aj, 02,^nd o', = 

omap Coj ), 14 / 4m. 8 is the subforest #[2" i[] #[2 ̂  ]]] 

[1 #[2n it] #[2-]]] [] ... #[2/2^11 #[2-]]]...]]. 

d) If M has A {x ,, A 2 )—> 0 where a contains no non-terminals with 

arguments, then add the rule S-> #[3 #[2 o']][2 A ] to 7? , where o' = 

o m a p  ( a ) .  

This construction incihod is an extension of the method for 10 grammars. 

Instead of maintaining a lis! of single arguments for a non-terminal, a list of lists 
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of arguments is generated. When copying occurs, multiple distinct versions of an 

argument are selected. If a non-terminal derives a forest which will become an 

argument of another non-terminal, then an arbitrarily long list of distinct possible 

derivations is generated. 

Step 3b initializes the argument list for a non-terminal A which has argu­

ments aj, «2,..., . New non-terminals are added to generate a list for each 

argument which contains an arbitrary number of versions of the argument. 

Step 3c produces rules to simulate an 01 derivation step which will involve 

the copying of arguments. The new forests, which are created from the old argu­

ments, are themselves arguments of another non-temiinal, so multiple versions of 

each new forest are generated. List processing techniques are applied to create new 

argument lists from the old ones. Repeated occurrences of some .r, in the a's of 

the macro rule are replaced with distinct selectors .r, . These selectors will retrieve 

distinct versions of argument i from the old argument lists. The work of repeat­

edly adding new elements to the argument lists is done by non-terminal B,. 

Non-terminal 5 2 initializes the structure by moving the new argument lists gen­

erated by the previous macro derivation step to the position of the old argument 

lists for the processing of the current macro derivation step. Step 3d terminates 

the 01 processing by joining the &rst arguments from each of the argument lists, as 

required by a. 

The two lemmas below and the theorem that follows verify that the 01 

method produces a grammar which is yield-equivalent to the original. The first 
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lemma analyzes the rules generated in step 3c of the method. 

LEMMA 6-7. Suppose 3-d forest grammar G is generated from a simple 01 macro 

grammar M by the 01 construction method. Assume M has a derivation 

5 A («], Qfj...., )=>* 5(/3i, iS, /3m ) with A (x,, x, 

Bioi, Oi Om ) as the last type 2 rule applied, and terminal strings , 

1 ^^, are independently derived from ^m. Let be the number 

of occurrences of X; over (aj, o? ). Also, assume G has a derivation 

A =>* i such that = #[2 I'lLzCjLi #[2 z^2[2^2][i 

. .. #[2 V j n  [2 4m ]] • • • ]]]]' (i = *[2 ̂ [2 8; J [1 #[2 ^[2 

... #[2 #[28;^]... ]]]], and/rjCôiP = oma/? Coj J. G also has a derivation 

5j =>* )3 which applies r rules for 5 j, one rule for B1. and which has ( as a 

subforest. Then = #[2 Y J] U #[2C'2[i y2l][i 

- - - *[2 4 m [1 Ym - ]]]], y'i = ^[2 J t] ^[2 ̂ ^2 

... #[2  # [ 2  Y i , ]] • • • ]]]], for 1 </ ^m, 4'i is with r Xelements removed 

from the front, and = omapiwij if and only if 1 ̂ 7 , are 

independently derived strings of terminals such that jS, =>* i»', . 

PROOF. The lemma is established by proving propositions (A) and (B) below. 

(A) If <3; =4>* , 1 < /• , 1 </•, then /r2(i8) =... and ) = omap ). 

Proof of (A) by induction on r. 

Base, r = 1. 

The derivation of j3 is =^#[3 *[3 ® K2U] where è = 

#[2 ^[2 il-i *[2 1 " 1 ]]]] [] • • • ^[2 f 1 * ̂2 * 1-2 ^'m 1 [] • lli and 
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0 = #[2 #[2 !1 i[i ^[2 ̂  ]]] tl *[2 2fl ^1-2 - 113 [j • • • ^[2 ^1-2 •']]]••• ID- For 

each l^z , o', = omap (Oj ), = <2, 21'"'2(2!)'''>, and /%, = 

< 2 , 2 1 ' - ' 2 1 > .  / ; - 2 C 3 ) =  # [ 2 # [ 2  4 ' I [ ]  • • •  

#[2 #[2 y m ] [1 #[2'^]1]]]...]]. The tree is selected from ^ by com­

posing selectors o, and n, . The path of n, leads to the i th argument list , 

and the path of o, removes the first Pi elements from . The forest -y;^ is 

formed by substituting ^ into 6 and then into o\. a\ has selectors Z;, of the 

form <2,21ft_i22(12y~^> forl</2<m andl<;^/)j. The path leads 

to the selector • The composition of X;,^ and forms the path 

2l''~^21 •2(12)-'~\ which selects 8^^ from 

It needs to be shown that if <3, =#>* u-;^, then /rjCyjj) = omap (w^). j3; is 

the macro substitution of (ai, 0:2,.... «m ) into o, to form a string of termi­

nals and non-terminals. Let j3; have the form •••Pi o'viPi+i. where 

Oi = pjv 1P2V2 - • • Pi^iPi+i- The p's are possibly empty strings of terminals 

and non-terminals, and the v's are possibly distinct macro variables. Each v 

is replaced by some a to form jS, from . The fully expanded g, has the 

form = yju,.jy2"vj---y;"v,yi+/. where p, =>* V/ and a.,^ =>* for 

1^/ There are several possible versions of AVjJ, resulting from different 

expansions of the p's and a's. Each is a version of % , where Vf refers to 

the h th macro argument. 

Now consider /r,(yij). is built from o\ , the bracketed version of a,. 

All the terminals and non-terminals of 0, are in o\. The non-terminals of a\ 
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are context-free, and they can be expanded just as in a. Therefore, has 

subtrees which yield _v i,... y^+i. Between each pair of these subtrees is a sub­

tree 6^ , selected from ^ using selector Xf^^. Selector corresponds to the 

j th occurrence of a variable v in o, which refers to the h th macro argument. 

So if j has a substring where Vf is the j th occurrence of a selec­

tor which refers to the h th macro argument, then y,-^ has a corresponding sub­

tree S;, selected by . It is given that J = omap (s/j J. So if jS; 

At':,, then there's a corresponding -y^ such that /riCy^) = omap 

Inductive hypothesis. Assume (A) is true for r <n. 

Inductive step. Show (A) is true for r = n. 

The derivation of0is^i=>* #[3 ̂ ][2 /3'] where ̂  = 

#[2 #[2 0 i[i #[2 ^[2llMHi . .. #[2 Om ^[2 ̂ [2 ] [1 ]]]] 3 is 

derived in r — 1 steps, so the inductive hypothesis an be applied to establish 

that is #[2 #{2 Citi y J] [1 ^[2 ̂  2^1 y 2^1 [1 • • • ^[2 C m ti y"m ]] • • • ]]]' 

y"i — *!^2 7; ,jh 'L2 #[2 • • • ^L2 ^1^2 JJ • • • ("i fei With 

(/• — 1 )xPi elements removed, and //'iCyi^ ) = omap ), 2^? To get 

/'"iC/B), /;2()3') is substituted into The selector Ov selects a sublist of 

with/5, elements removed, giving which is 4; with r xelements missing. 

The selector 72,- selects y",. By an argument similar to that used for the induc­

tive base above, the substitution into a'; results in y;, such that //"iCy,-,) = 

omapiw,^). So = #[2 y'J] U *[2r2[i y'l^l ••• '^[2^'mti y'm ]] 

...]]] where y'; = #[2 #[2yi][i #[2 ^[2ya^ti • • • #[2 ^[2yr]5 • • • and 
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) = omap ], for 1 ̂  and 1 ^ ? 4r. 

(B) If/7"2t3) = #[2 C'lti y ill C zli 7 2]! [] • • • ^[2 4'm [1 y'm ]] • • • 111 Where 

.  .  .  a n d  f r - i i y i ^ )  =  o m a p { ^ v ^ ^ ) ,  t h e n  ) 3 ,  = ? > *  f o r  l ^ z  ,  a n d  l ^ r  

The proof of CB) is similar to the proof of (A). QED. 

LEMMA 6-8. Suppose a 3-d forest C is constructed from a simple 01 macro 

grammar M by the 01 construction method. M has a derivation 5 =i>* 

5(jSj, iSj,..., /3n, ) in which the last type 2 rule applied is 

Aixi, X2,---, Bioi, 02,..., o^), and Kz and l<r 4r, are 

independently derived strings of terminals such that /3, =?>* if and only 

if G has a derivation B =^* 15 where frjUS) = #[2 YiH ti *[2C'2[i 72H 

Il • • • ^[2 ( m II ym 11 • • • 111' yi = #[2 yi,l[i ^[2 *[2 yijlfi 

... #[2 #[2 yi, 11 • • • 1111. and /rjCyj^ ) = omap ). 

PROOF. The lemma is established by proving propositions (A) and (B) below. 

(A) If M has S =>* 5 (i3j, /32,..., i3;n ) in which . .. , and . . . jS; =>* v,., then 

G has B =>* /3, //iCyS) = ... , and /riCy,.) = omapiw^). 

Proof of (A) by induction on r, the number of type 2 macro rules applied to 

derive 5 (/Sj, g? )-

Base, r = 1. 

The macro derivation is 5 =?> ^ (a^, «2 B (Bj, ̂ 2- • • • • ^ using 

rules iS—> /i (»], Q2— , and j4 (xj, x2, 5 (oj, 03,..., o^). 

The a's and jS's are strings of terminals and context-free non-terminals. Let 

Sy 1 ̂ z and l^J^q.he terminal strings such that a,- =^* s, , and let 
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be terminals strings such that /3. =?>* 1^? ^r. By steps 3b and 3c of 

the 01 construction method, G has rules A -» #[2 #[3 #[% T J] [j T,]] 

[ ]  .  .  .  # [ 2  ^  ] ]  .  .  .  ] ] ] ,  T ;  — *  ^ [ 3  ̂ [ 2  O : '  I  ] [ ]  ] ] '  ^  [ 2  ^ [ 2  B — *  B  I ,  

B  ] — *  ^ [ 3  ̂ [ 2  ̂ ] ] [ 2  ̂  - 8  ^ [ 3  # [ 2  ̂ ] ] [ 2 2 I '  2 ~ ^  # [ 3  # [ 2  6  ] ] [ 2 1 '  

where ^ = #[2 0 jl, #[2 #[2 o'JL, n J]]] [^ ... 0^ [j #[2 #[? o'm ] li "m M • • • 1. 

6  =  # [ 2  ; 2  ] [ ]  # [ 2  r  ] ] ]  [ j  # [ 2  / Z  2 ^ 1  ^ [ 2  ̂  ] ] ]  L  •  •  •  ^ 1 - 2  [ 1  ^ [ 2  3 ] ]  •  •  .  ] ] >  O ;  =  

<2,2r"^2(2iy'>, = <2, 21'"^21>, and pi is the number of occurrences 

of macro variable Z; in (oj, Oi,..., )• The rules for A can be tised to derive 

( = *[2 ̂ [2 ^[1 ( 1]] fi #[2 ^ti ( 2]] fi — #[2 ̂ ti Cm ]] • • • ]]] where = 

#[2 #[2 ^[2  ̂ [2  •  •  •  ^[2  ̂ 1-2 • • • ]]]], BOd fr 1(0;';^ = 

omap Csj J, 1^7 Let B Bi =^* (3, applying the Sj rule r times, the 

Bi rule once, and rules for A to derive Now apply lemma 6-7 to establish 

the desired result. 

Inductive hypothesis. Assume (A) is true for r <n. 

Inductive step. Show (A) is true for r = n. 

The macro derivation is 5 => Cai, a? "m ) 5 (jS,, j32,..., 3^ ) where 

the last rule applied is .4 ? 5 (oj, a,,..., ). The as and 

3's are strings of terminals and context-free non-terminals. Let s, , 

and 1 ^y ^^ , be terminal strings such that a. =>* . and let be termi­

nals strings such that /3, =>* l^r By step 3c of the 01 construction 

method, G has rules 5-»5,, 5,-+ #[3 J' -G]-» #[3 #[2^]][2^2]' 

and 51—» #[3 #[2 6 ]][2-4 ]. where £ = #[2 ^^[3 ^[2 ^ 
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[l #[2 ^[2 ]]]]...]. 6 = #[2 #[2:]]] 

[1 # [2 /Î 2^1 ^1-2 f 1 ••• ^[2 "m tl ^ ̂ 2 ^ •••]]' —*^2,21' '2(2 1 y* >, 71; = 

<2, 21'~^21 >, and is the number of occurrences of macro variable in 

(aj, 02,..., Ojji). The inductive hypothesis can be applied to establish that 

A =4>* ( such that fr2iO= #[2 #[21'lti (iD U #[2 ^'2^1 LB U • • • *[2 ]] 

...]]], ~ ^[2 ^[2 *^2 ^^2 • • • ^[2 ^^2 B ~ 

omap [s; J, ^q. There is a derivation B ^ =^* )3, which applies the 

rule for S1 r times, the 5 2 rule once, and rules for ^4 to derive Now 

lemma 6-7 can be applied to establish the desired result. 

(B) If G has 5 =^* 3,~ ̂̂2 ^[24'iti yj] ti ^ 1-2^2^1'y2ll ••• 

#[2 Cm li Ym ]] • • • ]]]' • • • and ) = omap ), then M has S =>* 

B (/Sj, 02,..., <3;^ ) in which . .. , and jS, =>* for 14 i and 1 

The proof of (B) is similar to the proof of (A). QED. 

THEOREM 6-9. Suppose a 3-d forest grammar G is constructed from simple 01 

macro grammar M by the 01 construction method. M has a derivation 

S =>* w , where u- is a terminal string, if and only if G has a derivation 

S =4>* 3 and = omap (w ). 

PROOF. First, assume M has 5-»5 (jSj, 1S2,..., |3,„ ) ^* Af , and the last macro 

rule applied is 5 (.t j, x 2,.. •, )-» a. Let u, be strings of terminals such that 

jSj =>* , for l^i 4m and 14 j By lemma 6-8, G has a derivation 

B ^ where = #[2 #[2 ( J; Yi]] ti ^[2 C zCi 7:]] ti • • • ^[2 Cm Ym ]] 

...]]], Ji = ...#[2 #[27:,]]---]]]]. and/ri(yi_) = 
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omap ), 1 ^r. By step 3d of the 01 method, G has a rule 5 —> 

#[3 So 5 =5>* #[3 #[2 o']][2(]- By the same argument as in the proof 

of lemma 6-7, it can be shown that the frontier substitution of fr2ii) into the 

expansion of o' yields the same string as the macro substitution of 

(/3i, 02 3m ) into a. 

A similar argument can be developed from the initial assumption that G has 

S =$>* #[2 a']][2 B ] =>* <3. In both cases, we find that /rjC3) = omap {w ). 

OED. 

Consider the 01 macro grammar M which has the following rules; 

1) S - * F i A ) ,  

2) F \ x x ) ,  

3) F { x ) - ^ x x ,  

4) A - * b A ,  

5) A —^ Ai) J and 

Ô3 A —• £2. 

The language generated by M is the same as yo(BA2N) from the grammar BA2N 

of chapter 5. We can construct a new version of this grammar, BA2N', to illus­

trate the 01 construction method. Much of the detail of the 01 nieihod is 

unneeded since the macro non-terminal F takes only one argument. Consequently, 

occurrences of the macro variable x are converted to selectors whose paths do not 

have the prefix 21 '"^2. The rules of BA2N' are the following: 

1 )  F ^ * { 2 * U T ] 1  
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2 )  T - ^ t U ^ l A l ^ T ] ] ,  

3) r^#[2#[2A]], 

4) F-.fl, 

5) f 1—> #[3 #[2 0 [l ^[2 ^[2251^11]' 

6) F #[3 #[2o[i ^[2 ̂ [2^ itl ̂  z]]^! ]]]]][2 F 2], 

7) F2-»#[3#[2n[l#[2 2]l2F], 

8) S —» #[3 #[2 jLi F2]. 

9) >i-»#[2ft[i^]], 

10) A^#[2A[ib[iz]]], and 

11) A-> #[2a[i z]]. 

The selectors are r = <1,\>, 0 = <2,22121>, ;? = <2,21>, .V] = <2,22>, 

and X2 = <2,2212>. Rules 1 through 3 come from step 3b of the 01 method 

applied to rule 1 of M. Rules 4 through 7 result from applying step 3c to rule 2 

of M. Rule 8 is produced when step 3d is applied to rule 3 of M. Rules 9 

through 11 result from applying step 3a to rules 4,5, and 6 of M. 

The cycle introduced in rule 2 and 3 is strictly increasing. The cycle of rules 

5 and 6 is a 0-gain cycle which penetrates deeper into an old argument list with 

each step as it generates a new argument list. The new argument Hst is shorter by 

half than the old list, since two elements are removed from the old list every time 

an element is added to the new list. When rules 4 and 7 are combined with rules 5 

and 6, we have a nested cycle. Rule 7 changes a new list to an old list for further 

processing by the inside cycle. If I is the size of the initial argument list generated 

b y  T .  t h e n  t h e  m a x i m u m  n u m b e r  o f  F , - c y c l e  s t e p s  i s / / 2 + / / 4  +  / /  8  +  
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. . . +  I  I  I  =  I  —  \  ,  and the maximum number of full F-cycle steps is log? l -  So it 

must be true that the number of derivation steps involving rules 4 through 7 does 

not exceed 3 log2 I + I — I, which is less than 41. The F-cycle, therefore, is a 

linear cycle. 

If the T -cycle or F-cycle is applied more times than necessary, some sub-

forests will be truncated when the frontier is taken. It is also true, however, that 

each forest in the 2-d yield is the frontier of a 3-d forest which is complete. So 

the grammar has a deletion constant of zero. 

As a matter of convenience, non-explicit subtrees #[2^ ] are introduced by 

step 3c. These serve as end-of-list markers. An equivalent explicit grammar can 

be written without these by adding separate end-of-list rules. As a result of 

analyzing the grammar BA2N', we conclude that F](BA2N) e 1Y3F;. This result 

is generalized to hold for any 3-d forest grammar constructed by the 10 or 01 

conversion method. 

THEOREM 6-10. If G is a 3-d forest grammar constructed from an 10 or 01 

macro grammar using either the 10 or 01 construction method, then )'i(G 

1Y3F;. 

PROOF. It needs to be established that there is G' such that Y j(G' ) = >'i(G ) and 

G' is explicit, G' has a deletion constant, and every cycle in G' is increasing or 

linear. Macro grammars can be written so that no arguments are deleted, so we 

will assume that the initial macro grammar is non-deleting. If the 10 method is 

used, then the resulting grammar has no overlapping selectors, and previous 

theorems assure us that G' can be constructed to meet the above requirements. 



193 

Suppose the 01 method is used. Non-explicit subtrees are introduced in step 

3c, but they can be easily eliminated by adding separate rules to process the last 

elements on argument lists. Subforests may be truncated during the frontier 

operation if the argument lists are too long, but for every string yielded, there is a 

derivation of a forest whose argument lists are exactly the right lengths. So each 

string in the 1-d yield can be produced by a complete forest, and the grammar has 

deletion constant 0. 

The cycles generated by step 3b of the 01 method are strictly increasing. A 

cycle introduced by step 3c for a non-terminal B j generates new argument lists 

from old argument list's. For each new argument created, a certain number, say r , 

of arguments are removed from one of the old argument lists. "We only need to 

consider the case where r > 1 for some argument list. If never exceeds 1, then 

the grammar is non-copying, and an equivalent 10 grammar can be written for the 

language. So the number of steps in each B i-cycle (and the length of the new 

argument list) is no more than I I r, where I is the number of arguments in the 

longest argument list. Step 3c also creates a cycle for B which contains 5 j as a 

subcycle. At the beginning of each repetition of the B -cycle, the previous new 

argument lists become the current old argument lists. Since the new argument list 

is always shorter than the old list by a factor of 1 / , the maximum number of 

B -cycle repetitions is log^Z. Each full B -cycle step applies 3 rules plus the 

number of B,-cycle steps. So the maximum number of rules applied in the B -

cycle is 
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log./ , 
= 3 logX + z — 

; = 1 ^ i 

logr/ , 
= 3 10g,Z + / Z — 

1=1 'i 

^3 logr/ + / 

<4 Z. 

It has been established that G' , the explicit equivalent of G , has a deletion 

constant and only increasing or linear cycles. By theorem 5-51, Vi(G' )( 1Y3F;. 

QED. 

The 10 and 01 conversion methods have been described for very simple macro 

languages to keep the level of detail at a managable level. These methods can be 

generalized to allow various-sized argument lists, larger cycles, multiple non­

nested macro non-terminals in the right-hand sides of rules, and context-free non­

terminals and terminal strings arbitrarily placed between macro non-terminals. 

The methods cannot be generalized in a straightforward manner to accommodate 

nested macro variables. Baldwin's conversion method assures us that every 10 

macro grammar has a corresponding 3-d forest grammar, but conversion methods 

for nested 01 macro grammars have not been investigated. Thus, it remains an 

open question whether 1Y3F; contains all or just some of the 01 macro languages. 

The 01 conversion method can be adapted to operate on 10 macro grammars as 

well as 01 macro grammars. To simulate 01 expansion, the 01 method maps 

repeated occurrences of macro variables in a single rule to distinct 2-d selectors. If 

repeated macro variables are mapped to the same 2-d selectors, then the new 
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grammar simulates 10 expansion. This raises the possibility of using the adapted 

01 method to convert simple quoted macro grammars to 3-d forest grammars. The 

forest grammars that result, however, may have mixed 0-gain and increasing over­

lap cycles. So the present analysis does not guarantee that these 3-d grammars 

will yield languages in 1Y3F,. 
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CHAPTER 7. 

CONCLUSIONS AND FURTHER WORK 

The question which has motivated this research is the following: What is the 

simplest formal system that is capable of completely describing common high-

level programming languages? Context-free languages are too simple; context-

sensitive languages are too complicated. The answer is somewhere in between. 

Several extensions of the context-free languages have been investigated which 

permit the copying and deletion of substrings. The ALG^ language hierarchy is 

such an extension in which each level of the hierarchy has more copying power. A 

formal system must have the ability to copy substrings in order to model the pas­

sage of arguments to subroutines. ALGI has this ability, and it is unlikely that 

the increased copying power of higher levels of the hierarchy is useful for describ­

ing programming languages. 

The 1 YnF hierarchy defined in this thesis has the same copying power as the 

ALGn hierarchy, but the ability to delete subforests is enhanced by extended 

selectors. As a result of this modification, I YnF broadens the ALG^ language 

classes for n > =2 (and perhaps for n = 2). and IY3F is more capable of describ­

ing programming languages than ALGI. If 1Y3F is to be truly useful for this pur­

pose, however, it must be proven that IY3F is not too broad. 

The use of extended selectors allows 3-d forest grammars to specify cycles 

which delete arbitrarily long sequences of charaders from yielded strings. There is 

little support in the Computer Science literature for analysis of this kind of 
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deletion. Context-sensitive grammars are commonly defined with the restriction 

that the left-hand side of a rewriting rule must not be larger than the right-hand 

side. This characterization is somewhat misleading, for it seems to imply that 

deletion is not tolerated at all in context-sensitive langauges. It is known that 

deletion is tolerated if no more than a constant number of consecutive symbols are 

deleted from a derived word. Chapter 4 goes further than this, demonstrating that 

context-free languages tolerate the deletion of arbitrarily long substrings, provided 

there is a regular grammar which describes the deleted substrings, and the deleting 

and increasing operations are independent. There is, however, a subset of 1Y2F 

which has not been shown to be within context-f ree. These languages are gen­

erated by grammars which have complex cycles that intermix simultaneous 

decreasing/increasing steps with increasing steps. It seems likely that further 

analysis will show these grammars also to have context-free equivalents, or at 

worst context-sensitive equivalents. 

When 3-d forest grammars are analyzed, it becomes apparent that even a res­

tricted subclass of 1Y3F has more languages that ALG 3 . This subclass, 1Y3F;, is 

shown in chapter 5 to be a subset of the context-sensitive languages. This is 

shown in spite of the fact that the grammars which yield 1Y3F, languages can 

have cycles which delete arbitrarily large subforests. The result in chapter 6 that 

1Y3F; contains some 01 as well as 10 languages is particularly encouraging. All 

high-level programming languages exhibit both 01 and 10 phenomena. Evaluation 

of arithmetic expressions and parameter passage using call-by-value are common 

examples of 10 phenomena. The passage of functions as parameters, call-by-name 
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in Algol, and quoted arguments in Lisp are examples of 01 phenomena. A formal 

system which fully describes high-level programming languages must clearly have 

both 01 and 10 capabilities. It remains to be investigated whether 1Y3F/ is power­

ful enough for this application. 

Opportunities for further research in multidimensional forest languages are 

plentiful. With regard to 2-d forest languages, it needs to be determined whether 

1Y2F =CF. If these classes are not equivalent, then it should be determined 

whether 1Y2F cCS. For 3-d forest languages, it is unknown whether 1Y3F = 

1Y3F,. If they are not equivalent, then a study could be made to determine if 

1Y3F - 1Y3F; contains any interesting languages. It may be true that languages 

outside the linear subclass have no forseeable applications, and in that case, 

modifications of the forest grammar and frontier definitions might lead to a more 

precise characterization of 1Y3F^. In any case, it will be interesting to discover 

whether 1Y3F; shares the properties that are known to hold for context-free 

and/or context-sensitive languages. 

Further research will also be required to determine whether 1Y3F; contains 

all the 01 macro languages. If 1Y3F; is to be useful for describing programming 

languages, then it will have to contain at least some of the nested 01 and quoted 

macro languages. II is likely that IY3F^ can also be shown to contain the yields of 

top-down and bottom-up tree transducers on regular sets of trees, and perhaps 

even the yields of compositions of tree transducers. 
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The 1 YnF languages share the copying power of the ALG^ languages. Further 

work can be done to verify that lYnF forms a proper hierarchy of languages paral­

lel to and to generalize the results for 1Y3F to lYnF, n ^3. 

Finally, there are a number of other variations of the frontier function which 

raise intrig-uing questions. One such variation would allow whole forests to be 

copied during the frontier operation. With both standard and extended selectors, 

only trees can be selected for copying. If selectors were redefined to allow 

specification of a degree, k , as well as a dimension, n , then the selection path could 

be traced to retrieve a forest in (I, H) for copying. This is a natural generaliza­

tion of standard selectors. It is likely to produce a language hierarchy distinct from 

ALGn and perhaps from lYnF as well. 
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