INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce

this

document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The

following explanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

1

9

.The sign or ‘‘target” for pages apparently lacking from the document

photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘“sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,

sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universi
Microfilms

International

300 N. Zeeb Road

Ann Arbor, Mi 48106

8524683
O’Neil, Thomas Eugene
THE MULTIDIMENSIONAL FOREST LANGUAGES

lowa State University PH.D. 1985

University
Microfilms
International s . zeeb Road, ann Arbor, Mi 48106

The multidimensional forest languages

by

Thomas Eugene O'Neil

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Approved:

Signature was redacted for privacy.

In Charge of Major Work
Signature was redacted for privacy.
For the Major Department

Signature was redacted for privacy.

For the Graduate College

lowa State University
Ames, lowa

1685

ii

TABLE OF CONTENTS

Page

CHAPTER 1. INTRODUCTION .coiriiiiniinicnrineiinismisiiemis e sssssssesssssses 1
CHAPTER 2. MULTIDIMENSIONAL TREES AND FORESTS ..., 6
Defining Trees and FOTESIS i 6

The Frontier Operationecvcecmimmincmrme oo 10
Grammars and Languages ... 14

CHAPTER 3. ONE-DIMENSIONAL FOREST YIELD LANGUAGES 17

One-Dimensional Normal Form

.. 17
Equivalence of OY 1F with the Regular Languagesc.cuviincinianenanens 20
CHAPTER 4. TWO-DIMENSIONAL FOREST YIELD LANGUAGES 22
2-d Forest Grammars with Standard Seleclors .uuaiiiiieieiminenoen 22
Two-Dimensional NOFMal FOTM eeuuureememmresresssesmmsssseresssesmssseesssssssssesson 23
The Deleting Power of Extended Selectors ..ueeueeiiemnineicnienneneesenens 32
Grammars with Non-Overlapping Selectors woniinenninnneninee 37
Grammars Withoutl Deletion CyCIES .iuirinmmiimienciieiiinseesseees 44
Length Predictors for 2-d Forest Grammars ..coeueeeiienemsnnenses 49
The Remainder Operation on Context-Free Languagesvveeveeecenineenen 64
Normal Form for Deletion Cycle Analysis .cuevvviiiiiinmnineinneemense. 67
2-d Forest Grammars with Regular Deletion: Cycles .iivenervcriininncnnens 73
Grammars with Consistent Deletion Cycles .o, 82

OY2F and the Subclass OY2F, ..., OO UROTUR PRI 104

CHAPTER 5. THREE-DIMENSIONAL FOREST YIELD LANGUAGES 107

Examples of 3-d Forest Grammars .ovovieensinrenninesmienensensinesssnees 107

Three-Dimensional Normal FOTM aeuvvcrmiiiineiiniieceeiesssninecsesniane 119
3-d INCTeaSING GTAIMMATS .vrereerrererurerniennntanieiresmessesssseissenesessesarssssesnssssosssne 124
Grammars with Deletion COnstants ... 128
3-d Grammars without Overlap Cycles ..oooiniinininnniiiieieniiiniens 135
3-d EXPliCit GramMIMATS .vreeereiirerirermmimtenstiinssssisssissestsesisssnssssssssses 149
A Subclass of 1Y 3F within Context-Sensitive ..ucueimemeeimene, 162
CHAPTER 6. OUTSIDE-IN LANGUAGES IN OY3F .riviiiniincicniinnsniineenes 172
The 10 Conversion Method ... iessesseese 172
The O Conversion Method ... reesreeeiesiesiesiesnereinsessssesesssesssesssessanns 181
CHAPTER 7. CONCLUSIONS AND FURTHER WORK ..cccviiiiiireeeiernnnnne 196

BIBLIOGRAPHY otiiniiimininiininieniecsents e ssssis s s ssesinessssssrssasassassas ons 200

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION 2

DEFINITION

DEFINITION 2

DEFINITION

DEFINITION

DEFINITION

LEMMA 3-2.
LEMMA 3-3.

THEOREM 3-d. Conversion 10 IDNF e cnnnennen

2-10. Direct derivations

3-1.

1-d short-rule form

I:liminating 1-d selectors

. Indexed sets

. The string frontier

iv

LIST OF DEFINITIONS AND THEOREMS

. Multidimensional trees

Multidimensional forests

S1aNAATd SELECTOTS weririirrererieeierenisatreesesserersnsnreseressnnns

Extended SElEClOrS civnniieeirmneeiieiererersesieransssssnesessinsnes

The selection function

. The substitution function ...c.ceccrceemmsnennmermnnen.
. The frontier function ..u.ceereeeieneeenne.

Regular fOrest grammarsc.oeiieenmenioensisenne.

. DErIVALIONS eevrrvrerrecvriesesssssensersssessessesessseranessmmessaasaesens

. The language of @ grammaroueeeeemerens

. The string function ...,

. The yield of @ grammarceeeermeememme.
. Classes of forest Janguagescoovimiersceinienninienns

1-dimensional normal fOrm ..oeeviiirimriniicincnninn.

..

..

...

...

...

...

...

10

11

11

13

14

THEOREM 3-5. OYIF =regular

..

COROLLARY 3-6. 1YIF =ALG/

THEOREM 4-1. ALG,' asubset of 1YnF

.........................

COROLLARY 4-2. Context-free a subset of OY2F
THEOREM 4-3. Standard OY2F a subset of context-free
DEFINITION 4-4. Two-dimensional normal form

DEFINITION 4-5. 2-d short-rule grammars

LEMMA 4-6. Conversion to short-rule form

DEFINITION 4-7. Partitioned grammars

.............................

LEMMA 4-8. Partitioning by selectors

LEMMA 4-9. Partitioning by final character

...................

...................................

..........

.................................

.................................

.................................

.................................

................................

.................................

................................

.................................

.................................

.................................

LEMMA 4-10. Eliminating truncalion .ueeeemeemeisieemnisen.

THEOREM 4-11. Converting a grammar to 2DNF

.........

DEFINITION 4-12. External selectors

..............................

.................................

.................................

DEFINITION 4-13. External SClector SEIS .ceeeeriiiiiirorcssssennans

THEOREM 4-14. Constructing external selector sets

DEFINITION 4-15. The truncation function

...................

DEFINITION 4-16. Overlapping selectors

........................

DEFINITION 4-17. The debts sets of non-terminals

......

.................................

.................................

.................................

LEMMA 4-18. Consiructing debis ..ceeuieeisienninienieememsemee

THEOREM 4-19. Non-overlapping implies context-free

.................................

33

35

35

30

37

w
w

40

Vi

DEFINITION 4-20. Preceding and following sublorests v, 44
DEFINITION 4-21. Deletion CYCLES .civurmvrmieiriiiimiimeieeesisimninssssssonessases 44
LEMMA 4-22. Length predicting without deletion cycles .ooovivvemnnenecnciininns 45

THEOREM 4-23. No deletion cycles implies context-{ree 47
DEFINITION 4-24. paths of a non-1erminal .uveeeenininniniscsencssmnnne 49

LEMMA 4-25. Constructing paths sets

.. 50
DEFINITION 4-26. Substitution of length-predicting eXpressionsc.c.... 51
LEMMA 4-27. Substitution gives equivalent eXpressionsccceiiessnnneorens 51
DEFINITION 4-28. Self-referential eXpresSions ...eeeeciieieeinniienesn 52
DEFINITION 4-29. Base elements of predicting SChemescovmiiiiininnne 53
LEMMA 4-30. Linearizing the length predictors s, 53
LEMMA 4-31. Simple subtraction in predicting SCheMES ..ccovvuiresmnericininiiens 56
LEMMA 4-32. Partial sums which divide evenly e, 57
LEMMA 4-33. Eliminating self-referential subtracting eXpressions 58
THEOREM 4-34. Length predicting schemes without subtractionee. 02
COROLLARY 4-35. parhs Sets are TERUWAT .weveiecineieensesencenmniniissnimninins s 63
DEFINITION 4-36. The remainder of @ language ..c.oeocemriiinniiniicii, 04
DEFINITION 4-37. The quotient of @ Janguagecceeeeernmsiinimninininnnnens 65
THEOREM 4-38. Remainder related 10 QUOLIENT oieervenceciciniiinisissinensnssenanns 05
THEOREM 4-39. Remainder of cf and regular is ¢f ..ocooviviinniniinniiinnin, 05

LEMMA 4-40. Frontier substitution as a remainder Operation ..o 60

COROLLARY 4-41. Frontier as a remainder operation
DEFINITION 4-42.
DEFINITION 4-43.
DEFINITION 4-44.
DEFINITION 4-45.
DEFINITION 4-46.
DEFINITION 4-47.
LEMMA 4-48. Distinct forests with the same frontier
THEOREM 4-49. Conversion to cyclic normal form
DEFINITION 4-50.
DEFINITION 4-51.
LEMMA 4-52. Relating deletion maps to the {rontier operation
. THEOREM 4-53. Regular deletion cycles are context-free
DEFINITION 4-54.
DEFINITION 4-55.
DEFINITION 4-56.
DEFINITION 4-57.

DEFINITION 4-58.

I.EMMA 4-59. Relating inversion maps 1o frontier operations

...................................

The descendents of a non-terminal ...

Cycles of non-terminals .
The 100t 0f @ CYCIE irrerrrnrririnnerier e
Essential non-terminals of a cycle .ivniniiiniiiiniinnn.

CYCLE SIEPS trvmirireriiriresnnreneinsressssi s esaanassasessane s sisesnans

Cyclic normal form

Regular deletion cycles

...

...

Deletion maps

...................
..............................

Leading and trailing non-terminals

..................................

Consistent deletion cycles

...

INVETSION IMAPS -eerrrrininirmninesnrmssme s s ssesssrsssoens

Terminal-erasing homomorphiSm ...,

Terminal-preserving homomorphiSm e

......................

LLEMMA 4-60. Relating inversion maps 1o frontier 0perations ..o

DEFINITION 4-61.

xout , tail , and inver: ErammarsS .oeceea.

67

68

68

68

68

68

69

69

70

73

75

75

77

80

87

87

87

20

93

viii
LEMMA 4-62. xour simulates complete deletion v 93
LEMMA 4-63. rail simulates partial deletionieimeenenninmmieeeen. 96
LEMMA 4-64. invert non-terminals simulate remainder operationc...... 90
LEMMA 4-65. invert grammar simulates deletion cycle

................................ 101

THEOREM 4-66. Eliminating consistent deletion cycles .cowouevvncnvcnnaens 102

COROLLARY 4-67. Consistent deletion cycles are context-freecuieeenneee 103
DEFINITION 4-68. Subclass OY2F, of OY2F .ovvviieiniriiniiieninniiiennenees 105
THEOREM 4-69. 0Y2F, =CONtEXI-fTEL wivrivuririninrncrreneriniesnssstecnissnssissnnnonsne 105
LEMMA 4-70. A language not in OY2F i 105
COROLLARY 4-71. OY2F a proper subsel of OY3F .ocivvinininninninnnneenne 106
THEOREM 5-1. ALG{ a proper subset of TY3F ovmrieeeremmmiscmsccmssnenons 118
DEFINITION 5-2. 3-d short-rule grammars ...eieemesninimsmmeessseens 119
LEMMA 5-3. Conversion 10 short-rule form ...cniecene 119
LEMMA 5-4. Nodes with three subtirees UNNECESSATY ..vvevrrrressiiessiesinecsnnsnns 120
DEFINITION 5-5. 3-d normal fOrm .cceieriiineiniiniineenenissmni coseenns 121

LEMMA 5-6. Eliminating nodes with three Subirees .oeoesnssesvsecee 121

THEOREM 5-7. Conversion 10 3DNF .o 123
DEFINITION 5-8. 3-d increasing grammarsS .ioeiues s iesmssmesnssemioisssin e 124
THEOREM 5-9. A non-linear space bound ..u.eeiennionninnen. 124
COROLLARY 3-10. Partial enumeration of 2-d yield ..oeivieniicinenn 127

DEFINITION 5-11. The deletion CONSIANT cvriiiiniiemieeiminiemmeismmmiesresianss 128

ix

DEFINITION 5-12. ¢ -augmented grainmars .oeeeenseiommimememmeme s 129
LEMMA 5-13. Constructing ¢ -augmented graminars ..o 129
LEMMA 5-14. Linear bound for increasing grammars ...eceeiieesereneen 129
DEFINITION 5-15. OULETr SCIECIOTS uvvverisvmnrnrismrenisensesisensssssinssisessessssasasssones 136
DEFINITION 5-16. outscl sets fOr fOTESIS .ivmiirmeinrinennnniteniiesssnsssnnsnnasnss 136
DEFINITION 5-17. outsel sets for non-terminals .ueivessemiennminnneceneens 136
LEMMA 5-18. COnsStructing ou75el SEIS ...u.umrieereisnnssnseisisnnmsnmsonsasmesssene 136
DEFINITION 5-19. Compleie fOTESTS wminnmmineimisnsenineiisiressnsnsssesnessns 139
DEFINITION 5-20. Complete and truncating grammars .c...veeeewessesesessseens 139
LEMMA 35-21. Deletion constant for complete grammars .ooeeveenenenssnes 139
DEFINITION 5-22. Full CyCle SIEPS .eviriiiviiiiiinnienssnnrssnssnissrsssessssssnosnessne 140
DEFINITION 5-23. Leading and trailing non-terminalsccueininnieneninns 140
DEFINITION 5-24. Overlap CYCleS .uuermmmminicnsiietinmnensnmesnesmsns 141
DEFINITION 5-25. The gain of @ CYCI covveinivinineiimencsintcecsnsiiisse e 141
DEFINITION 5-26. Increasing, decreasing, and mixed cycles .oimeiniininees 141
LEMMA 5-27. Partitioning by outside SElectors weimeernencencnicniinnniins 142
DEFINITION 5-28. The race [UNCLON wvvvieiiersrnnnnesesininneesmnecsrisesiniens 143
LEMMA 5-29. No overlap implimva complele grammar ueoieeemereesnseseeene 143
LEMMA 5-30. No overlap implies an increasing grammar ..., 145
LEMMA 5-31. Composition of seleclor paths .., 147

THEOREM 5-32. No overlap cycles implies complete, increasing .ooeeeeevceeen 147

DEFINITION 5-33. Explicit forests
DEFINITION 5-34. Explicit grammars

DEFINITION 5-66. The slen function

...

...

..

...................

...................

LEMMA 5-67. Minimum string length for explicit 2-d forests

LEMMA 5-68. Explicit 2-d forests have increasing string length ...

LEMMA 5-69. Minimum string length for explicit 3-d forests
LEMMA 5-7C. Explicit 3-d {orests have increasing string length
LEMMA 5-71. Maximum consecutive 2-nodes
LEMMA 5-72. Relating forest size to string length

THEOREM 5-73. Linear relation between Y 1(G) and Y »(G)

..............................

.....

...................

..................

...................

...................

...................

LEMMA 5-74. Términal leaf implies truncation for 2-d forests ...,

LEMMA 5-75. Terminal leaf implies truncation for 3-d forests
LEMMA 5-76. Eliminating terminal leaves ...

THEOREM 5-77. Standard selectors imply an explicit grammar
DEFINITION 5-78. A linear subclass of 1Y3F

THEOREM 5-79. Grammars yielding 1Y 3F, languages

...............

...................

...................

...................

DEFINITION 5-80. Input forests fOr CVCles v

DEFINITION 5-81. Linear deletion CyCles i,
THEOREM 3-82. Linear cycles yield 1Y3F; languagescceeen

LEMMA 5-83. An Ol language in 1Y3F; i

THEOREM 5-84. ALG 4§ a proper subset of 1Y3F, ..

...................

...................

150

151

151

153

154

155

156

157

158

160

163

163

163

164

164

166

167

xi
THEOREM 5-85. 1Y3F, recognized by Iba
COROLLARY 35-80. 1Y 3F, a subsct of context-sensitive nineersne 170
DEFINITION 6-1. Simple macro grammars e eemsmeseesresesmmmns 172
DEFINITION 6-2. The imap function e 173
LEMMA 6-3. Simulating 10 macro substitution .o, 176

LEMMA 6-4. Simulating I0 macro eXpansion ..o..esewsesimsmsmssseseens 178

THEOREM 6-5. 3-d grammar for simple 10 Macro e, 180
DEFINITION 6-6. The omap funclion ..o 181
LEMMA 6-7. Simulating Ol macro substitution ... 184
LEMMA 6-8. Simulating Ol macro eXpansioneueessessesmsecessseees 187

THEOREM 6-9. 3-d grammar for simple Ol Macro ..eemmncinssmensnene 189

THEOREM 6-10. Simple IO and OI macro in 1Y3F,

CHAPTER 1.

INTRODUCTION

The top two levels of the Chomsky language hierarchy play a major role in
the translation of programming languages. Lexical and syntactic analyzers can be
automatically generated given regular and context-free grammars. A large part of
the work of syntactic analysis, however, lies outside the realm of context-free
languages. Syntax rules such as those regarding type agreement, scope of names,
and parameter correspondence cannot be expressed in a context-free grammar.

Such rules are enforced during translation by ad hoc methods.

Despite the limitations of context-free languages, their use in syntactic
analysis provides a framework for the code-generation phase of translation.
Derivation trees are constructed during syntactic analysis. Syntax-directed trans-
lation uses these trees for code generation. The underlying theory characterizes
translation as an operation on trees (Aho and Ullman 1977). The code produced
by a syntax-direcied transiation of a program in a high-level language can be seri-
ously suboptimal, and complete translation may require one or more optimization

phases.

This is the state of the art in translation: regular and context-free grammars
lay the foundation; ad hoc methods complete the process. This approach is con-
sidered satisfactory for translation of the high-level languages of today, and more
sophisticated translation methods would probably not do much better. So why

search for better translation methods? There is no need 10 -- as long as the high-

level languages of today are adequate. But the IIrcmcndous expense of developing
and maintaining reliable sof tware leads us 10 believe that our high-level languages
are not adequate. There is an urgent need for general-purpose. very-high-level
languages which can be efficiently translated. So far no such languages have
appeared. Compared to the whirlwind development of computer hardware over
the last thirty years, the progress in programming languages has been disappoint-
ingly slow. Our languages under-utilize the capacity of the machines. Program-
mers and general users are burdened with mountains of detail, low-level algo-
rithms, and inflexible syntax rules. The fact is that our so-called " high-level"
languages are still inflexible and unnatural, and the limitations of these languages

may be a direct result of the inadequacy of our theory of translation.

Regular and context-free grammars have been stretched as far as they will go.
More powerful theoretical 1ools are needed for translation of higher-level
languages. The next level in the Chomsky hierarchy is the class of context-
sensitive languages. But this class is too broad and complex to be of use. Resecarch
has been continuing since the late 1960s to find reasonable extensions of the
context-free languages and 1o discover non-context-[ree rewriting systems which

generate context-free languages. This thesis presents resuits which contribute o

that area of research.

Ginsburg and Greibach (1966) have investigated certain rewriting systems
with context-dependent rules that delete symbols. These grammars were found to
produce languages that are context-sensitive, and under some circumsiances even

context-free. Book (1972), Baker (1974), and Aggarwal and Heinen (1979)

pursued this line of research 1o discover that rewriting systems can take into
account constant-size, non-overlapping amounts of context and still produce
context-free languages. While such rewriting systems do not give us a new class o-f
languages, they do allow us to write simple grammars for languages whose

contexi-free grammars would be formidable.

In 1968, Michael Fischer described macro languages, a class of languages larger
than context-free and smaller than context-sensitive (Fischer 1968). Fischer
showed a macro grammar which had the power to enforce declared type con-
sistency on the right- and left-hand sides of assignment operators in a program-
ming language. The grammar failed, however, to prevent multiple declarations of
identifiers. Macro languages were observed to have two incomparable subclasses:
inside-out (I0) and outside-in (OI). Both these subclasses contain interesting non-
context-free languages, but neither subclass contains all the interesting new
languages. The grammar mentioned above which enforced type consistency was a
quoted macro grammar, one which selectively used both outside-in and inside-out
rewriting rules. The results which Fischer obtained for I0 and OI macro languages
were not shown to apply to quoted macro languages. It remains unknown whether

quoted macro grammars produce languages which are noi context sensitive.

In the early 1970s, several people defined and investigated grammars and
finite automata on trees (Rounds 1969 and 1970, Engelfriet 1975b). Recognizable
sets of trees were defined 10 be those sets accepted by finite tree automata. It was
found that the frontier operation applied to a recognizable set of trees produced a

context-free language of strings. Similarly context-free grammars on irees produce

sets whose frontiers yield macro languages of strings.

Tree automata have been generalized to define iree transducers -- tree auto-
mata with output (Baker 1975, Engelfriet 1975b). Tree-transducers applied to
recognizable sets of trees can produce sets of trees whose frontiers form languages
outside the class of context-free languages, but well within the class of context-
sensitive languages. Tree automata and transducers have been used to formally
describe syntax-directed translation (Baker 1975). This formalism covers only
translation of the context-free portion of a language’s syntax. Tree-transducers
might be more beneficial if a programming language could be characterized as a
transduction or composition of transductions so that the formal model would
encompass the non-context-free features of the language. This approach, however,
may not be feasible because tree transducers are not closed under composition
(Baker 1979). Another unsettling feature of transducers is the presence of two
incomparable subclasses, top-down and bottom-up (Engelfriet 1975a). This dicho-
tomy is analogous 1o the problem of the OI and IO subclasses of macro languages

(Engelfriet and Schmidt 1977, 1978).

Multidimensional trees have recently been introduced by Strawn (1982) and
Baldwin (1983). These data structures are logical extensions of trees to higher
dimensions. The 1-dimensional structures correspond to strings of symbols, the
2-dimensional structures correspond to trees, and the definition of higher dimen-
sional structures is based on a generalization of the relationship between strings
and trees. Just as a frontier operation can be applied to a tree to give a string, so

can frontier operations be applied to higher-dimension structures to give strings.

The frontiers of multidimensional trees (md trees) form an infinite hicrarchy of
string languages properly contained within the class of context-sensitive languageé.
The first three levels of the hierarchy correspond to the regular, context-free, and

10 macro languages respectively.

This thesis presents a modification of multidimensional trees which results in
a hierarchy of string languages related to that discovered by Strawn and Baldwin.
Most attention is focused on the second and third leveis of this hierarchy and their
relationship with other known classes of languages. It is hoped that multidimen-
sional trees will provide a unifying framework for study of classes of languages
between context-free and context-sensitive, and that further study will lead to the
discovery of automatic and efficient methods for translating higher-level program-

ming languages.

Chapter 2 presents some basic definitions and summarizes some results
obtained by Strawn and Baldwin. Chapter 3 shows the correspondence of I-
dimensional tree-frontier languages and the regulaf languages. Chapter 4 explores
the relationship between 2-dimensional tree-frontier languages and the context-free
languages. Chapter 5 examines the 3-dimensional tree-f rontier languages and their
relationship with the context-sensitive languages. Chapter 6 relates the 3-
dimensional tree frontier languages to the 10 and OI macro languages. Chapter 7

contains a concluding summary and suggestions for further work.

CHAPTER 2.

MULTIDIMENSIONAL TREES AND FORESTS

The basic data structure investigated in this thesis is the multidimensional
forest. The basic operation on multidimensional forests is the frontier operation,
which can convert forests to strings. Grammars can be written to produce forest

languages, and each forest language has an associated string language called its

string yield.

Defining Trees and Forests

Multidimensional forests are structures containing nodes and arcs. The nodes
are labeled with symbols: terminals, non-terminals, or auxiliary symbols called
selectors. The arcs are labeled with natural numbers. The selectors and non-
terminals are elements of indexed sets.

DEFINITION 2-1. An indexed set I is a set whose elements are pairs <i,x >
consisting of an integer index i and a symbol or string x. A subscripted
reference to an indexed set I, represents a subset containing every element
of I whose index isn.

In order to specify multidimensional forests in one or two dimensions, an n -
dimensional forests is represented as an n -ary tree. The correspondence between
n -d forests and n -ary trees is a generalization of the correspondence between con-
ventional forests and binary trees (Horowitz and Sahni 1976). A 3-d forest, for
example. can be represented as a structure in v hich each node has at most three

arcs, labeled 1, 2, and 3.

Every multidimensional forest has a dimension n and a degree k. If n is the
largest label on any arc of a forest 8, and 4 is the smallest label on any arc

emanating from the root of B, then 8 is an n -dimensional, k& -degree forest.

It should be noted that not every n -ary trec represents an n -dimensional
forest. The informal rules below characterize multidimensional forests. These
rules are useful for determining whether a given n -ary tree represents a multidi-
mensional forest over a set of terminals L and a set of selectors =.

1) Elements of T can label any nodes.
2) If a selector <r,p >in E labels a node, then the label on each arc emanating

from the node can be at most r— 1.

3) If the arc pointing to a node has label 7, then the label on each arc emanating

from the node must be at least r— 1.

The two definitions below refer to one another to formally define multidimen-
sional trees and forests. We will adopt the notational convention that A[, B]
represents theset { a[,b6] | @ € A and® e B}. If B is the empty set, then the
brackets will be elided, leaving A[, ®]=A.

DEFINITION 2-2. Let T be a finite set of symbols and let = be a finite indexed

set of auxiliary symbols. Then the set of n-dimensional trees over X and =,
H,(T,=),n>0, is defined

HZ,=E)=2Z,and
H (£, 5)=1Ur,HY(Z,2)1Uz, -

DEFINITION 2-3. Let I be a finite set of symbols and let = be a finite indexed

set of auxiliary symbols. Then the set of n-dimensional forests over L and
£ is defined

HXZ,2)=HNL, 5),
HKZ,2)=H, (H}*1(2;5), £) for 0<k <n, and
HXZ,2)=H,(Z,2).

These definitions are consistent with those developed by Baldwin (1983) and
Strawn (1982). The set of 1-dimensional trees over I and @, where ® is the empty
set, corresponds to the conventional notion of the set of strings over X. The set of
2-dimensional trees over £ and @ corresponds to the conventional notion of the set

of ordered trees over I represented as binary trees.

Figure 1 contains two 3-ary trees of which only one represents a valid 3-
dimensional tree. The second tree is not a 3-d forest since the node d has a 3-arc
pointing 1o it and a i-arc emanating from it. This figure also shows a non-
standard graphic representation of n-ary trees. This representation is preferred
since it is easily printed and it corresponds directly to the multidimensional forest

definition. The labeled arcs simply replace the labeled brackets.

The selectors in multidimensional trees and forests mark the places where
substitution will occur during the frontier operation. Two universal selector sets

are defined below: the set of standard selectors and the set of extended selectors.

DEFINITION 2-4. The set of standard selectors =° is an indexed set of ele-
ments <n,x>wheren >0and xe{l. 2,..., n-1}*.

r [3 a [3 b [z d [zx [1 }’]][]e [zf [1 }’]]]]][3b [zC [1 V]]]]

a valid 3-d tree

rlsaldbxliylyely f Lyl Lelyy

not a valid 3-d tree

FIGURE 1. 3-ary trec examples

10

DEFINITION 2-5. The set of extended selectors =¢ is an indexed set of ele-
ments <n,x >wheren >0andxef{l, 2,...,n}t*

The standard selectors are those used in the work of Strawn (1982) and Baldwin
(1983). The extended selectors are introduced here for the first time, and the rest

of this thesis is devoted 1o assessing the impact of this seemingly minor change.

The Frontier Operation

The frontier operation reduces the dimension of a forest. It involves the selec-
tion and substitution of subtrees. The selectors in a forest mark the places where
substitution can occur and specify what subtrees will be moved or copied. Each
selector has two components: an index and a path. The index specifies the dimen-
sion of the forest to which the selector can be applied as well as the dimension of
the tree which will be selected. The path is a sequence of arc labels used by the
selection function to pick out a subtree for substitution. A path is traced in a
forest by starting at the root node and traversing the arcs whose labels match
those in the path. For example, the path of selector <3, 3321> can be traced to
the node e in the valid 3-d tree of figure 1. The tree selected is juste. The sub-

forest f [, y]is dropped, since the arc pointing to it is not a 3-arc.

DEFINITION 2-6. The selection function sel (<n,p > 8): =, x H}XZ, =Z)—
H, (XL, £) is defined

sel (<n ,A\> o) =« for o € H,(Z, =) and A the empty string,
sel (<n ,A>, oy yl) = sel (<n ,A\>, o) for & <n,
oe HY YT, £), and ye HX 7M(T, 2).

11

sel (<n, ki > al;y]) = sel (<n.ki > a) fora eH] N T, 2),
y e H{7WT,5), j <k,
Csel (<n,ki> ol y])=sel(<n,i>y) fora e H YL,)
and y € HS7)(E, £), and
sel (<n,p >, B) is otherwise undefined.

There are situations in which the selection function is not defined. Let B be
the valid 3-d forest of figure 1. sel (<3,321>, B) is not defined because the node b
has no l-arc. This is called a path error. If the y in B is a selector <1, A>, then
sel (<3, 3221>, B) is also undefined. In this case, we successfully trace 3221 to y,

but y = <1, A> is not an element of H 5(Z, £) as required.

The substitution function subs, («, B) operates on two n -dimensional forests.

It simply replaces each selector <n,p > in « with sel (<n,p >, B).

DEFINITION 2-7. The substitution function subs,(«, B): HIZ, =) —
HI(Z, £) is defined

subs,(a,B)=a fora eX UZ;,j<n,

subs, (x ,B) = sei{x,B) forx € Z,,and

subs, (al,y1, B) = subs, («, B)[,, subs, (y, B)]
form<n,o e HP*Y(Z,5), and y e HF "X, 2).

A call 1o the frontier function fr, (o) reduces the dimension of « to n. If the
dimension of « exceeds n+ 1, then fr, . («) is performed first. If the dimension
of « is less than n + 1, then the frontier operation has no effect. Any nodes with
arcs labeled n + 1 are removed by fr,. A node with an n +1-arc but no n -arc is

simply eliminated. A node with both an n +1-arc and an n -arc is processed by

12

a---1 b---1 #--2
z b---1 c---1

ya c---1
|
z

3-d forest with selectors x = <2,211>,y=<2,2>2z2=<1,A>

z a---1
[
2-d frontier y4
c---1
!
c---1
|
a---1i
[
a---1

!
1-d frontier z

FIGURE 2. A 3-d forest and its frontiers

13

frontiering the subforests and calling the substitute function: fr, (#[;,,81{,y]) =

subs, (f1, (B), f1,(y)). The frontier function f7, («) is undefined if « is a selector,
<r,p> andr>n.

DEFINITION 2-8. The frontier function fr,(a):HA(Z,.2) ->HMNZ, =) is
defined when m >n+1 as fr, (o) = fr,(fr,,1(a)), and when m <n+1 as

fr(d)=>b forb eX |J=; wherei<n,
fr 0l +181) = fr,(B) ford eX |J=and B e HA(T, £),
11 (b1, 1811, ¥1) = subs, (fr, (B), fr, (y))
ford e UE,B e HAX,E),and y e HZX(E, 5),
R BLyD) = fr (B, fr(y)]
fork <r<n,B e HI*Y(ZT,5), and y e H, 1T, £), and

fr, (@) is otherwise undefined.

Figure 2 contains an example of a 3-d forest and its 2-d and 1-d frontiers.
This figure also illustrates that the frontier operation has the power to delete sub-
forests. The subtree #[, bl; 5[, z1}] is unselected during the 2-d frontier, and so it
is eliminated. Deletion will also occur during fr, («) if & = #[, ,,v][,8]and y

contains no n -dimensional selectors. In that case, fr, (#1, ,1¥1[, 8]) = fr, (y).

The frontier operation also has the power to make multiple copies of subtrees.
This happens when a substitution is made into a subtree that has multiple
occurrences of the same selector. Since the frontier operation has both copying

power and deleting power, the result of a frontier operation can be either larger or

smaller than the original forest.

14
Grammars and Languages

Sets of multidimensional forests can be generated by rewriting systems called
regular multidimensional forest grammars. These grammars are regular because of

the restricted placement of non-terminal symbols in the replacement rules.

DEFINITION 2-9. A regular n-dimensional forest grammar is a formal system
<Z,E,N,R,S>,f, n>0, 1<k <n, where

T is a finite set of terminal symbols,
= is a finite set of selectors with indices in {1, 2, ..., n},

N is a finite indexed set of non-terminal symbols
with indices in {1, 2, ..., n},

R is a finite set of replacement rules of the form A - 8
where A e N; and B e HI(E, = |JN) for 1€i<n, and

S is the start symbol in N, .

A non-ierminal in a forest grammar generates a set of forests by repeated
application of the replacement rules. The intermediate structures, which contain a
mix of terminals, selectors, and non-terminals, are called structural forms. The
process of applying the replacement rules is a derivation. A derivation step is the

application of a single rule to obtain one structural form from another.

DEFINITION 2-10. A structural form o of a forest grammar
<Z,=,N,R,S>F directly derives another structural form B, « = B, if
and only if R contains a rule A — vy and B can be obtained from o by re-
placing an occurrence of A with 7.

DEFINITION 2-11. A structural form o« of a forest grammar derives another
structural form B, «=* B, if o =B or there are structural forms
Oy .-, @, m 20,suchthat o =>)= -+ =>a, =8

15

DEFINITION 2-12. The lunguage generated by a f{orest grammar G =
<IL,%,N,R,S5>})isdefinedas L(G)={B | S =* Band Be Hi(Z, Z)}.

The language generated by a grammar is thus defined as the set of forests each
of which contains no non-terminals and can be derived from the start symbol.
The frontier function can be applied to forests generated by a gramnmar to give sets
of lower-dimensioned forests. These lower-dimensioned sets are the yields of the
grammar. The O-dimensional yield will be defined to establish a direct relationship
between 1-dimensional trees and strings.

DEFINITION 2-13. The string function str(a):H(Z,5) |JIA} T is
defined

str(A) =,

str(a)=a fora eZ,
str(x)=Aforx €%,

str(x[; B]) = str(B) for x € =, and

stralyBl)=a - str(B)fora X .
where - represents string catenation.

DEFINITION 2-14. The string frontier of a forest Be HX(Z, Z) is defined as
sfr(B)=str(fry(B)).

DEFINITION 2-15. The m-dimensional yield of a grammar G =
<I,Z,N,R,S>)is defined as

Yo(G)={a | BeL(G)andszr(fri(B)) = «}, and
Y,(G)={at BeL(G)and fr(B)=a}for I<m <n.

Some major results of Baldwin (1983) can be summarized in terms of the

above definitions. Baldwin established the existence of an infinite hierarchy of

16

string languages which he called the algebraic hierérchy: ALG,! CALG,., for

n 21, and ALG,} cCS, where CS represents the class of context-sensitive
languages. ALG,! is the class of languages obtained by taking the 1-d yield of n-
dimensional forest grammars which use only standard selectors. More formally,
L e ALG,! if and only if L =Y,(G) for some grammar G = <I,=,N,R,S>F
where 1<k <n and £ C2°. We know from Baldwin's work that ALG] is the

class of regular languages, ALG 4 is the class of context-free languages, and ALG }

is the class of IO macro languages.

Language classes corresponding to the algebraic hierarchy can be defined which
allow the use of extended selectors. These new classes will be represented as

mYnF forn 2 1. mYnF is an acronym for the m-dimensional Yields of regular

sets of n-dimensional Forests.

DEFINITION 2-16. A language L belongs to the language class mYnF,n 2>1
and m 20, if and only if L =Y,(G) for some grammar G =
<Z,=,N,R,S>F where 1<k <n and £ C =°.

In the chapters that follow, we explore the relationship of the first three lev-

els of the algebraic hierarchy and the corresponding OYnF language classes.

17

CHAPTER 3.

ONE-DIMENSIONAL FOREST YIELD LANGUAGES

The string languages which are yields of regular sets of 1-dimensional forests,
OY 1F, can be shown to be equivalent to the class of regular languages. A method

for converting a 1-d forest grammar to a regular grammar is given in this chapter.

One-Dimensional Normal Form

A 1-d forest grammar can be made to look like a regular string grammar by
putting it in 1-dimensional normal form.

DEFINITION 3-1. A grammar G = <X%,=%,N,R,S>! is in l—dimensional
normal form, 1DNF, if and only if every rule has the form

1)A—al;BlforA,BeN,andaeZX,
2)A—a forAeN,andaeZX,or
3) A>\ for A ¢ N and A the empty string.

Note that a IDNF grammar makes no use of selectors. This is appropriate
because the selectors in a 1-d forest are nothing more than endmarkers which will
be removed when the forest is converted to a string. The conversion of an arbi-
trary 1-d forest grammar to 1DNF is described in two steps. The first step is to
add non-terminals to the grammar so that the right-hand side of each rule contains

at most one terminal and one non-terminal.

LEMMA 3-2. If G isagrammar <ZI,Z,N,R,S>! then there is a grammar

G' = <L = N',R'S>! suchthat (1) L(G)= L(G')and (2)if

18

A—al;Bl¢R thenBeN'.
7 from G by introducing new non-terminals C; as required.
SetX'=ZX,2=52, § =5, and construct R'and N' according to the algorithm

below. Assume A e¢ N' anda €X',

Put all the rulesin R in R'.

Set N' =N.

Seti =0.

Repeat
Add 1toi.
Find A —al; o] in R* where « is not in N'.
Invent new non-terminal C; and put it in N'.
Replace A —al; o] in R' with A —»al,C;]
AddC;—» o toR'.

Until no rule A —al; o] can be found where « is not in N'.

It shoulid be clear that this construction does not affeci the language generated by
the grammar. We have only introduced more non-terminals and rules to make the

derivations longer. So L(G)= L(G'). QED.

The next step in converting a 1-d forest grammar to normal form is to remove

the selectors. This construction is described in the proof of lemma 3-3 below.

LEMMA 3-3. Suppose G is a grammar <ZI,Z.N,R,S >/ such that if R contains
arule A—bl, Bl then B ¢ N. Thereis a IDNF grammar G =

<X, =, N, R'.S'>] such that §' =* « and str (o) = w if and only if

19

S =* Band str (B) = w, where |w | 20.
PROOF. Construct G' from G by first setting Z'=ZX, ' = @, and §' = S. Then,
construct R" and N' from R and N according to the steps below. Assume that
A,B,C eN,a,b eZ,andx €E.
1) For every pair of rules A —al; Bl and B—5 in R, add A' —al; B'] and
B —»b toR' ,and add A' and B' to N'.
2) For every pair of rules A —al; Bland B—b[;Clin R, add A'—al; B'] and
B 5b[;C'JtoR ,andadd A', B' and C' to N'.
3) For every pair of rules A —»al; Bland B—x in R,add A' »a to R', and add
A toN'.

4) If R hasaruleS—»x,add S >Ato R and add S' to N'.

We can show that G’ satisfies the requirements of lemma 3-3 in two parts.

(A) If A =>* o and str(a) =w then A' =* Band str(B) = w.

Proof of (A) by induction on [, the length of w.

Base. lw 1 <1.

Case 1. A =* x and str(x)=A\.
In this case, R has arule A —»x and R' has a rule A' — A from step 4 of the
construction of G'. 1t is clear that A' =* X and str(\) = A.

Case 2. A =% al;jx]andstr(alyjxD=a.
In this case, R has rules A »a[; Bland B—x,and R' hasa rﬁle A'—=a. So
A=>* gljxland A' =* g and str(al xD=str(a) =a.

Case 3. A =* g and str(a) =a.

In this case. R hasarule A —a and R' hasarule A'—a. So A =* ¢ and

20

A'=* gandsir(a)=a

Inductive hypothesis: Assume (A) is true for 1</ =n—1.

Inductive step: Show (A)is truefor Iw 1 =1 =n.
If {>1 then w =aw' where [w' | =n~1. We know that A =* « and
str (a) = aw'. This means there must be a rule A »al; Blin R where
B =>* o, str(a’)=w,and |w' | 21. Since Iszr («')]1 2 1, there must be a
rule B[Clor B—b in R. Butif R contains such rules for A and B,
then R' contains A' »al; B'] and rules for B' constructed from B. By the
inductive hypothesis, B' =* f'and str (8) = w'. Sostr(al, B =
str(al; o’]) = w, and setting 8 = al; B, we have str(8) = w.

(B) If A' =* Bandstr(B)=w, then A =* o and str(a) =w.

The proof of (B) is similar to the proof of (A). QED.

THEOREM 3-4. If G is a grammar <I,Z,N,R,S>{ then there is a IDNF gram-
marG' = <I',Z,N',R'S§">{ suchthat Yo(G')=Y(G).

PROOF. This theorem follows from the previous two lemmas. We transform G

to G' by applying the construction of lemma 3-2 followed by the construction of

lemma 3-3. Lemma 3-3 assures us that w ¢ Y o(G') if and only if w € Yo(G).

QED.

Equivalence of OY 1F with the Regular Languages

Theorem 3-4 establishes that every 1-d regular forest grammar can be

transformed to a 1DNF grammar. 1DNF grammars are directly related to regular

grammars, and this allows us 1o assert that OY 1F and the class of regular

languages are equivalent.

THEOREM 3-5. The class of languages OY1F is equivalent to the class of regular
languages.

PROOF. According to theorem 3-4, every language in OY 1F is Y o(G) for some

1DNF grammar G . If we construct a grammar G' by removing the brackets from

the right-hand sides of the rules of G, we have a regular grammar such that

L(G')=Y(G). Similarly, if we construct G' from a regular grammar G by

adding brackets to the rules of G, we have a 1DNF grammar such that

Yo(G') = L(G). QED.

COROLLARY 3-6. The class of languages 1Y1F corresponds to the class ALG ;.
PROOF. This corollary follows directly from theorem 3-5 and theorem 73 of
Baldwin (1983), which establishes that every language in ALG { is a regular set if
the brackets and selectors are removed. In 1-d forests, it doesn’t matter whether
extended selectors or standard selectors are used because the selectors are never

applied in a frontier operation. QED.

22

CHAPTER 4.

TWO-DIMENSIONAL FOREST YIELD LANGUAGES

In 2-d forests, the difference between standard and extended selectors becomes
significant. It is possible for the paths of extended selectors to overlap one another,
and this gives the frontier operation more deleting power. This chapter establishes

that a large subclass of OY2F is equivalent to the class of context-free languages.

2-d Forest Grammars with Standard Selectors

Only selectors in = are applied during a 1-d frontier operation on a 2-d
forest, and the only selector in £ is <1,A>. Thus, 2-d forests with standard
selectors are strictly non-deleting, and it is easy to show that ALG; S1Y2F. The

theorem below is presented for n ~dimensional languages. The special casen = 2 is

of immediate interest.

THEOREM 4-1. If L € ALG, then L € 1YnF,n >1.

PROOF. Strings in ALG,! languages are the yields of n -d forests produced by reg-
ular forest grammars using only standard selectors. Since 2° C £°, an -d forest

grammar with standard selectors is also a n -d forest grammar with extended

selectors. So any language in ALG,! is also in 1YnF. QED.

COROLLARY 4-2. If L is a context-free language, then L ¢ OY2F.

23

PROOF. This follows immediately from the previous theorem, since Baldwin has
shown that every context-free language corresponds to an ALG 7 language

(Baldwin, 1983). QED.

THEOREM 4-3. If G is a 2-d forest grammar <X,%,N,R,S>5 for 1<k <2 and
E C =%, then Y (G) is a context-free language.
PROOF. If G has only standard selectors, then it can be converted directly to a
context-free grammar G'. The conversion method is summarized as
1) A—sal,Bl[;C] becomes A— BC,
2) A-al,B] becomes A—B,
3) A—al,B] becomes A—aB,and
4) A—x° becomes A—\.
A simple induction on the length of a derivation will show that L(G') = Y (G).

The induction is not shown here. QED.

Two-Dimensional Normal Form

To facilitate the analysis of 2-d regular forest grammars which involve dele-
tion, a normal form is defined below which will not affect the string yields of 2-d
grammars. The normal form will prevent generation of some forests which are not
frontierable and also some forests which contain useless subforests that would be

eliminated by the frontier operation.

24

DEFINITION 4-4. Let G be a grammar <X,=,N,R,S >2"'. G is in 2—dimen-

sional normal form, 2DNF, if and only if every rule in R fits one of the
following forms:

1) A—al;B] forA eNjaeX,andBeN,
2) B—al,Cl; D] forB,C,DeN,andacZ,
3) B—al;C] forB,CeN,andaeZ,or

4) B»x forBeN;and x € =;.

This normal form is analogous to Chomsky normal form for context-free
grammars. Note that selectors in =, are excluded and that forests without selec-
tors in Z; cannot be generated. The constructions of lemma 4-6 through theorem
4-11 will show how to convert an arbitrary 2-d grammar into a 2DNF grammar.
The first step in converting a grammar to normal form is to introduce new non-
terminals and rules so that only single non-terminals appear inside brackets in the

right-hand side of a rule, and terminals or selectors appear only outside brackets.

DEFINITION 4-5. A 2-d forest grammar G = <I,5,N,R,5>f is a

short —rule grammar if every rule in R fits one of the following forms for
A,B,CeN,aeZ,andbeX [J=:

1) A->al; B},
2) A-albBI;C]
3) A-bd[;Blor
4) A —b.
LEMMA 4-6. Let G be a grammar <X, Z,N,R,S>X. There is a short-rule gram-
marG' = <I,=,N,R'S>FsuchthatY,(G) =Y ,(G)
PROOF. Construct G' from G by introducing new non-terminals C; as required.

Setr'=%,5'=E2,58 =5, and construct R' and N' according to the algorithm

25

below. AssumeA,BeN anda €X' |JE=.

Put all the rules of R in R'.
Set N' = N.
Seti =0.
Repeat
If R hasarule A—af, B]for Bnotin N', xe H#(Z, =) then
Add 1 toi.
Invent C; and put it in V.
Replace A —of, Blin R' with A —of, C;].
Add C;—Bto R
Elseif R' hasarule A »al; «ll; B] where o not in N’ then
Add 1 toi.
Invent C; and put it in N'.
Replace A —al, all; Blin R' with A—al,C; 1, Bl
Add C;—«a 1o R
Else if R' has rules A — B[, o] and B—~a[,Blor B—a then
Replace A —» B[, o] with rules A —a[, Bl[; «] or A —al; o]
using right-hand side of every rule for B.
Else if R' has rules A —» B and B— B for 8 not in NV then
IfA =8B theﬁ remove the rule from R'.
Else replace A —» B in R' with A — .

Until every rule is in short-rule form.

26

It shoilld be clear that this construction does not affect the language generated
by the grammar. We have only introduced more non-terminals and rules without
altering the forests which are derived. So L(G)= L(G')and Y1(G) =Y ,(G").
QED.

Any grammar can be partitioned into subgrammars by letting non-terminals
other than S be the start symbol. If G is a grammar <X, Z,N,R,S >f, then G4
will represent the subgrammar of G whose start symbol is A. It will also be use-
ful to partition a grammar G into subgrammars based on the last characters of the
elements of Y,(G). The last character of oe H (T, =) is defined as the label on
the only node of ¢ which does not have an arc emanating from it.

DEFINITION 4-7. Let G be a grammar <ZX,=,N,R,S>F. Then Gg:A or
B:A, where Be N and A C Z, represents a subgrammar of G such that
o€ Y,(B:A) if and only if B =>* B, fr;(B) = o, and the last character of ¢
isin A.

Algorithms for generating G :A from a grammar G are presented in the

proofs of the next two lemmas. The first lemma deals with the special case where

A=

n

LEMMA 4-8. Suppose G is a short-rule grammar <X, =, N,R,S>5. There is an
_effective procedure for construction of Gg:= where B € N.
PROOF. Gp:E can be constructed simply by removing non-terminals and rules
from G as follows:
1) Remove all non-terminals from N and rules from R which cannot be

reached from B. This gives the subgrammar Gg.

27

2) Remove all productions of the from A —a where A ¢ N and a ¢ L.

3) Eliminate non-terminals and rules which don't derive forests in H4 (Z, 2).
The resulting grammar does not generate any forest whose frontier ends with a
terminal, for that would require a production A —a. Also, since rules of the form
A — x where x € £ were not removed, all the forests derived from B which have

external selectors are unaffected. QED.

The next lemma handles the general case of Gg:A. The proof will call for the
merging of subgrammars with statements like "add G4 to Gg." This should be
understood as an operation on Gz which sets Lz =Xz |J Ls Np =Ng U Ny,

Ry =Rz URs, Ep =Ep|JE,4, and Sp remains unchanged.

LEMMA 4-9. Let G be a short-rule grammar <Z,=, N,R,S >5. There is an
effective procedure for generating Gg:A= <T',=,N',R',S'>F where
BeN andAcI{E.
PROOF. To construct Gg:A, first remove all non-terminals and rules from N and
R that are not reachable from B. Then, build Gz:A following the algorithm

below. AssumethatA,B,CeN,aeZ,andbeX |JE.

Set V' ={},R" ={}, 2= E,and L' = L.
For each rule in R of the form A —b
Put A in NV'.
If be Athenput A—-b in R\

Else don’t add the rule to R'.

28

Remove A - b from .R.
Repeat
Select from R a rule A — 8 such that
the non-terminals in B are already in N'.
If the ruleis A —al, Clfor 1<r £2 then
Put A—al, ClinR.
Put A in N'.
If the ruleis A—al[,C 1} D] then
If C, is not already in V' then
Form G :E with start symbol C, and add it to Gz:A.
Put A—al,C. [, D]in R
If C, is not already in N' then
Form G¢:(Z [} A) with start symbol C, and add it to Gg:A.
Put A-al,C,]1in R
Put A in NV
Remove A — B from R.
Until R is empty.

Set §' = B.

The construction can be completed by removing the useless or unreachable
non-terminals and rules. The initial steps of the algorithm make useless any non-
terminal which does not derive a forest whose frontier ends with an element of A.

The handling of a rule A —al,Cl[; D1is complicated by the possibility that C

29

may derive a subforest whcih does not have an external selector. In that case the
subforest derived from D is truncated during the frontier operation. The addition
of A-al>C, 110 R and G¢:(Z [)A) 10 Gp:A assures that the appropriate sub-

forests of truncating 2-1 structures are included. QED.

Partitioning can be used to isolate subforests which yield strings that end in a
terminal instead of a selector. When the frontier is taken, such subforests may
cause other subforests to be truncated. The next lemma shows how to eliminate

truncating subforests from a 2-d forest grammar.

LEMMA 4-10. Let G be a short-rule grammar <%, 5,N,R,S >f. Thereis a
grammar G' = <IL,E,N",R',S '>2" such that every rule in R' is either 2DNF
or A—~B where A,Be N and Y (G) =Y (G).

PROOF. To prove this lemma we describe the construction of G' and then prove

two propositions to get the desired result. G' is constructed from G in six steps.

Assume A,B,CeN andael.

1) Set =2, 2= U{KL,A>LR ={},and N' ={}.

2) If R hasaruleA »x{; Bl or A—x where x ¢ =,, then don’t add a
corresponding rule to R'.

3) Find rules in R of the form A —»al,B]. Add A" and B' toN'. If A =B or
A 5§, thenput A'> B inR'. Otherwise put A' »al,B']in R'.

4) Find rules in R of the form A —»al, Bll; C] Form G :E with start symbol
B' and add it to G'. Form Gp:Z with start symbol B" and add it to G'. Add

A'sal,B];C'Jand A'> B" toR',and add A' and C' to N'.

30

5) Find rules in R of the form A —al; Blor A —x for x € Z;, Add corresponding
rulesA' —»al;B'lorA'—»x 10 R',and add A' and B' to N'.

6) Find rules in R of the form A —a. Invent a new non-terminal T, put
A'sal;T]land T—x in R' where x = <1,A\>and put A' and T in N'.

After application of these steps, all the right-hand sides of rules in R' are single

non-terminals or they fit 2DNF. If propositions (A) and (B) below can be shown

to be true, then the lemma is proven.

(A) If thereis A in N such that A =* « and fri(a) = o, then thereis a
corresponding non-terminal A' in N' such that A' =* Band fr(B) = ¢ if « has

an external selector, or fry(8) = 0-x, where x = <1,\>, if « has no external

selector.

Proof of (A) by induction on |« the number of nodes in «.
Base. lal =1.
For G to derive a structure of one node, one of the following cases must be true.
Case 1. R contains a rule S—x where x € =,
In this case, @ = x cannot be in Z,, or fry{«) would not be defined. By step 5
in the construction, S' — x is in R', so (A) is satisfied.
Case 2. R contains a rule S-—-~a wherea € L.
In this case, construction step 6 adds to R' therulesS —al;Tland T—x
where x = <1,A\>. aisjusta, and Bisal;x]. So fri{a) =a and
fri(B) = al; x]. Since « has no external selector, (A) is satisfied.

Inductive hypothesis. Assume (A) is true for 1< ol <n.

[43]
futy

Inductive step. Show (A) is true for lal = n.

Case 1. « =al,yland R hasarule A—al;, B] where B =>* y.
According to step 3 of the construction, A' —al; B'lor A' - B' was added to
R'. We can apply the inductive hypothesis to establish that
B =* vy, B' =*§,and fri(y) = fr(8) or fr(y)-x = fry(8) where
x = <1,A>. Since frylal,¥]) = fri(y), or frilal, yl-x) = fri(y)-x and
frilal, 8] = fry(8), we have satisf;ed (A) above.

Case 2. o =al,yll;8]land R has A —al, BI,C]
By construction step 4, R hasarule A'—»al,B'][, C'}or A'— B". First let
us assume that vy has an external selector. Since both vy and 8 are smaller than
«, we can apply the inductive hypothesis to get u and p such that B' =>* u
and C' =* p, fry(y) = fr(w) and fry(8) = fry(p), or fry(8)-x = fry(p) |
where x = <1,A>. It follows that fry(a(, ull; p1) = frilal; yll; 81) or
frilal; yll; 8D - x when & has no external selector, and so (A) is satisfed.

- Now assume that y has no exte.rnal selector. Since B =* vy and vy is smaller

that o we can apply the inductive hypothesis to get B =* u and
frily)-x = fri(p). 1t follows that frilal, yl; 8D -x = frilal,yD-x =
frial, ul), thus satisfying (A).

Case 3. o =al,yland R has A—al; Bl
In this case, step 5 adds to R' the rule A' —al; B']. Since 7y is smaller than «,
we apply the inductive hypothesis to get B' =>* 8 and fri(y) = fr,(8) or
frily)-x = fry(8) where x = <1,A>. It follows that fry(a[; 8]) =

frilaly yD or frilal; ¥ - x . thus satisfying (A).

32

(B) If thereis A' in N' such that A' =* Band fr;(8) = o-x where x = <1,A>,
then there is a corresponding non-terminal A in V such that A =* « and
frila) = 0-x if « has an external selector or fr;(a) = 0 if « has no external

selector.

Proof of (B). The proof of (B) is similar to the proof of (A). QED.

Finally, it can be shown that every 2-d forest grammar has a yield-equivalent

2DNF grammar.

THEOREM 4-11. Let G be a grammar <ZI,=,N,R,S >X. There is a 2DNF gram-
mar G' = <Z',Z,N',R",S">f such that Y o(G) = Y (G).
PROOF. Form a grammar G" by applying the constructions of lemmas 4-6 and
4-10 to G. The lemmas guarantee that Y o(G") = Y 4(G). G" can be converted o
2DNF grammar G' by eliminating the productions of the form A — B where both
A and B are non-terminals. This can be done by replacing A — B with A — 8 for
each rule B— 3, and the yield of the grammar is not affected. Unreachable non-
terminals and rules can also be removed. Since Y o(G) = Y ((G") and

YolG") =Y (G), we have Y (G) = Y(G'). QED.

The Deleting Power of Extended Selectors

Using extended selectors, we can write 2-d forest grammars in which the
selector paths overlap one another. If this happens in a cycle of non-terminals,

then the grammar contains a deletion cycle. Consider the following example gram-

33

mar, which will be named ABC. Let N, = ®, N, =1{S,A}, == {x,y} where
x =<1,1>andy = <1,A>, X ={#,a,b,c}, and R consists of 4 rules:
DS—#L #Lx Shcely]l
2)S-A,
3)A-#Lal,y Nl #L Al 61,1, and
4) Asalyblyl
This grammar yields the string language {a™ ™™ ™ c™} |J{6"™™ c™*™} for
n >0 and 0<m <n. Rules 3 and 4 constitute a context-free subgrammar which
yields {e™ 8™}, n >0. Each application of rule 1 attaches a selector to the front of
the derived structure and the terminal ¢ to the end. During the frontier operation,
a ¢ is attached to the end of the resulting string every time a terminal is removed

from the front. Figure 3 contains a forest derived from grammar ABC and its 1-d

frontier.

In a forest produced by grammar ABC, a subtree may be repeatedly subjected
to deletion during the frontier operation. This happens because the forest contains
overlapping selectors. In order to define overlapping selectors formally, we will
first introduce external selectors and a forest truncation function. Truncation,
external selectors, and overlapping selectors are defined for n -dimensional struc-

tures so that the definitions will be useful in later chapters.

DEFINITION 4-12. Let B be a forest in H,’f():, =Z). x is an external selector of
B if and only if x € Z,_; and x isin fr,_1(B).

34

forest derived from grammar ABC

b---1
|
c---1
I
c---1
I
c---1
I
y

its 1-d frontier

1
y
1
|
y
1
|
y
p SR 1
| |
a---1 b---1
| |
b---1 y
|
y

FIGURE 3. Example 2-d forest containing overlapping selectors

If x is an external selector of an n-dimensional forest 8, then the selector x

will not be applied when f7,(8) is taken. If any subforest of 8 has no external

35

selector, then neither does B. A 2-d forest 8 has al most one external selector, and
it will occur at the end of the string resulting from fr{(B). If a 2-d forest has an
external selector, it can be found by starting at the root and traversing the arcs,
choosing 1-arcs instead of 2-arcs if there is a choice. For the rest of chapter 4, we
will adopt the notational convention that x?, p >0, is an abbreviation for the
selector <1, 17 >, and x © represents the selector <1, A>.
DEFINITION 4-13. If G is a grammar <Z,5,N,R,S>f such that A e N,
then exsel (A) is the set of all external selectors of forests derived from A.
Since exsel (A) € = for any grammar, it is clear that exsel (4) is finite. A

procedure for constructing exsel (A) is given in the proof of the next theorem.

THEOREM 4-14. If G is a grammar <Z,=,N,R,S >f such that A ¢ N, then
there is an effective procedure for constructing exsel (A4).
PROOF. The set exsel (A) can be constructed by deriving a finite subset of L (A)
called minser (A), taking the frontiers of the derived forests, and examining the
selectors at the ends of the resulting strings. Put B in minset (A) if A =* 8 and
no rule number appears more than once on any path from the root to the leaves of
the derivation tree for B. To construct a derivation tree, first number the rules of
the grammar. Whenever a rule is applied in the derivation of a forest, label the
node which was expanded with the number of the applied rule. Since there are a
finite number of rules and a maximum number of non-terminals introduced in

applying a rule, the set minset (4) is finite.

36

To prove the theorem, we need to show that if B is derived by repeating a
rule, then there is a smaller forest ' which has the same external selector. Sup-
posé A =* B and B contains B’ such that A =* ', and the same rule is applied
first in both derivations.

Case 1. If B has no external selector, then neither does 8. So 8 and B’ have the
same external selector.

Case 2. If B’ has an external selector, then it will be replaced during the frontier
operation by a string whose external selector is that of 8. So we can
replace B with any subforest that has an external selector without
affecting the external selector of 8. We can choose a subforest to replace S’
which is derived without a previously used rule.

The process described above can be applied until all repeated rules are eliminated

and the resulting forest has the same external selector as the original. Since the

forest has no repeated rules, it will be in minser (A). QED.

DEFINITION 4-15. The truncation function zrunc (B): HX(X,2) - H}E, =) is
defined as

trunc(a)=a fora eX |Jz,

trunc (al, o) =al, trunc(a)]
fora eI, o e H?"YX,Z)and m <n,

trunc (al,, «ll, BD = al,, trunc (o), zrunc (B)]
fora €Z,0e HP* YZ,2),B e HI"YZ,E),m<n,r <n—1, and

trunc (al, oll,—; BD = al, trunc (o)l
fora €I, o e H?7HZ, =), and B ¢ HF 74X,).

37

For a 2-d forest, the truncation function removes subforests joined 10 a node
by a l-arc only when the node also has a 2-arc. Now truncation and external

selectors can be used to define overlapping selectors.

DEFINITION 4-16. A forest 8 € HX(Z, =) contains an overlapping selector if
either

1) some subforest of B contains an overlapping selector, or
2)B=al, all,—; Yl and sel (<n =1, 0>, fro_(trunc(y))) =x
where x € £, and <n-—1, o7 > is an external selector of «
form=\a e L, ae H' YI,2), and y e H?X(T, 5).
Overlapping selectors are impossible in n -d forests without extended paths.
The selection operation always retrieves an n -d tree, and every path of an n -d tree
starts with n. Since an n -d standard selector has apath in {1,..., n—1}", the
path of one n -d selector cannot penetrate into a tree selected by another n -d selec-
tor. The increased deleting power of extended selectors will be analyzed step-by-

step. beginning with selectors that do not overlap.

Grammars with Non-Overlapping Selectors

As shown in the proof of theorem 4-3, a 2-d forest grammar in which every

selector is x©

can be converted directly to a context-free grammar. A similar
scheme can be used for 2DNF grammars with extended selectors, but no overlap-
ping selectors. The conversion will require the use of the debts of non-terminals
and partitioning of forest grammars by external selectors. If a non-terminal

derives a forest o and has debt i, then 7 characters will be deleted from the yield

of o when the frontier operation is performed on a larger forest which contains «.

38

DEFINITION 4-17. Suppose G is a grammar <Z,=,N,R,S>F with non-
"terminal A € N. debts(A) is the set of integers such that i € debrs(A) if
and only if A =* o, §=* B, « is a substructure of B, sfr(B)= uvw
where v is a suffix of the yield of «, and sfr(«) = yv, where Iy | = i.

LEMMA 4-18. Given a grammar G = <Z,Z,N,R,S >f with no deletion cycles,

there is an effective procedure for constructing debrs (A) for every non-

terminal A € N.

PROOF. The construction of debts (A) requires prior calculation of the debts of all

the non-terminals which can precede A in a derivation. The algorithm below con-

structs all the debrs sets of a grammar by making multiple passes through the rule

set R.

Set debts (S) = {0}.
Set debts (A) = {} for all other non-terminals.
Repeat
Foreach rule A—- Bin R
If B=al, B] then
If O¢ debrs (A) put O in debts (B).
If r >0 and r € debts (A) put 7—1 in debts (B).
If B=al,B]then
Add every element of debrs (A) to debts(B).
If B=al, B]; Clthen
Add every element of debrs (A) to debts(B).

For each m € exsel (B) and r e debts (A)

39

If B: m- yields a string of length 27 then
Put m in debts(C).
For each { such that 1</ <m
If B:m yields a string of length ! then
Put m +r—{ in debts (C).

Until no change is made in any debts set.

It can be established that the construction algorithm produces the right debts by

proving the two propositions below.

(A) fAeN,A =>* S =* B, « is a substructure of B, sfr(a)=yv,

sfr(B)=uvw,and ly | =i, then i e debts(A).

(B) If i edebts(A), then A =* «, S =* B, « is a substructure of B,

sfre) =yv,sfr(B)=uwvw,and ly | =i.

These can be proven by induction on the difference in size between « and B,

I8l — lal. The inductions are not shown here. QED.

In the case of a rule A - al, B[, C] when calculating dedts (A), if the gram-
mar has no overlapping selectors, then no word which B yields is smaller than any
debt of A. If the grammar contains overlapping selectors, then the lengths of
strings yielded from B must be determined. A length-predicting scheme will be
presented later. First we demonstrate that 2-d grammars which have no overlap-

ping selectors can be converted to context-free grammars.

40

THEOREM 4-19. Given a 2DNF grammar G = <Z,Z,N,R,S>§ with no over-
lapping selectors, there is a context-free grammar G' such that
YolG)=L(G").

PROOF. To construct G', follow the algorithm below. Assume that A, B,Ce N,

aeX,and x" € Z,.

Set '=3X,R ={},and N' ={§'}.
For each x” ¢ exsel (S)
Put (S, in V.
Put §' — (S, in R
Repeat
Take a non-terminal ; A, from N’ for which there are
no rules in R'.
For each rule A—Bin R
Ll: IfB=x"andj =0, put 4,5\ in R\
L2: IfB=ali;B]then
If j =0add (A, —a (B, toR' and B, to N'.
Elseadd ;A,— ;_;B, toR and ;_;B, to N
L3: IfB=al;Bladd ;4,—;B, toR and ;B, to N'.
L4: If B=al,BI;C]then
Add ;A - ;B, ,C, toR and ;B,,,C, 1o N
for each x™ ¢ exsel (B).

Until all non-terminals in N' have rules in R'.

41
The theorem is true if propositions (A) and (B) below can be proven.

(A) TAeN,A=>*B,sfr(B)=vw, lvw !l =j,jedebts(A), and

x" eexsel(A)then ;A.eN' and ;A, =* w.

Proof of (A) by induction on |181.

Base. IBI =1L
In this case, R has a rule A—x". Since G has no overlapping selectors, the
debt of @ is 0. Also, the external selector of x™ is x", fr{x")=x", and

str(x”) = X\. By line L1 of the construction algorithm, R' contains ¢4, — A.
So (A) is satisfied.

Inductive hypothesis. Assume (A) is true for 1< {81 <n.

Inductive step. Show (A) is true for |81 = n.

Case 1. R hasarule A—al,Bland B=al; y] where B =>* .
We know A has external selector x” and debt j. First, suppose j = 0. Then
sfr(B) = aw'. We can apply the inductive hypothesis to y with debt 0 and
external selector x” to get B, in R' such that 3B, =>* w'. By line L2, we
also have gA,—agB, in R'. So ¢A, =* aow', and (A) is satisfied. Now sup-
pose j >0. Then sfr(B)=sfrlal; yl) = av'w = vw, where y yields v'w,
and B has external selector » and debt j —1. The inductive hypothesis gives
us ;_;B, =* w for ;_;B, in N' and line L2 puts ;A,—;_,B, inR. So
j A, =* w, and (A) is satisfied.

Case 2. R has A —al, Bland 8= al,y] where B =* y.

B has the same debt j as A, and vy has the same external selector x” and

42

frontier as 8. So sf7(B) = sfr(y) = vw. Since y is smaller that B, we apply
the inductive hypothesis to get ; B, in N' such that ; B, =* w. Linel3
gives us the rule ;A,—; B, inR',so ;A, =* w, satisfying (A).

Case 3. R has A—al,BI;Cl, B=al, vl 8], B =* y,and C =* 8.
Since A has debt j and external selector x™, B has debt j and 8 has external
selector x”. B has some other external selector x™ and the debt of C is
therefore m , since selectors cannot overlap. We know that sfr(8) = vw,
lv | = j. This means that sfr(y) = vw, and sfr(8) = uw,, where lu | =m
and w = w,;w,. Allof v is derived from B since selectors cannot overlap. 7y
and 3 are smaller than B, so we apply the inductive hypothesis to get ; By,
and ,C. in N' such that ; B, =* w; and ,,C, =* w ,. Line 14 also gives

jAr— By »C. inR',s0 ; A, =* w and (A) is satisfied.

(B) If ;A,eN' and ;A, =* w, then thereis A in N such that A =* B,

jedebts(A), x" eexsel (A), and sfr(B) =vw where Iv 1 =j.

Proof by induction on d, the number of derivation steps required for w.

Base. d = 1.
N' has arule gA, —»A. Then N has A —»x" by lineLl, A has debt 0 and
external selector x”, and sfr(x") = A. Thus, (B) is satisfied.

Inductive hypothesis. Assume (B) is true for 1<d <n.

Inductive step. Show (B) is true ford = n.

Case 1. R' has gA,—a B, and g4, =* aw' where (B, =>* w'.

We apply the inductive hypothesis for the derivation of w' to get B =* v,

43

sfr(y)=w', B has debt O and external selector x”. By line L2, R contains
A—al;B] andso A =* al; yl But sfrialy yD) = str(al; fri(y)D =
a -sfr(y)=aw'. A has debt O and external selector x", so (B) is satisfied.
Case 2. R' has ;A,— 1B, and A, =>;_|B, =% w.
We apply the inductive hypothesis to get B in NV such that B =>* v,
sfr(y)=v'w, Iv' | = j—1=debt (B), and x" € exsel (B). By line L2, we
have A —al; B]in R where A has external x” and debt j. So A =* al; v],
and sfrial;y) =a -sfr(y) =av'w = vw where Iv 1 =j. Thus, (B)is
satisfied.
Case 3. R' hasarule ;A,—;B, and ;A, =>;B, =* w.
We apply the inductive hypothesis to get B in /V such that B =* v,
sfr(y)=vw, lvl=j =debr(B), and x" € exsel (B). By line L3, we have
A—al,Blin R where A has external selector x” and debt j. So
A =>*qal,yland sfrial;y]) = sfr(y) = vw. Thus, (B) is satisfied.
Case 4. R hasarule jA,— By nCr,w =w W, B, =* w;and
nCr =>* wa.
We apply the inductive hypothesis to get B and C in N such that B =>* vy,
C=>*8,sfr(y)=vywy, vyl =j,x™eexsel (B), sfr(8) =v,w,,
v, =m,and x” € exsel (C). From line L4, we have A »a[; BI[;Clin R
where A has debt j and external selector x”. So sfr(al,yl; 8D =
str (subs(fry(y), fri(8))) = vyw,w, = v;w where vy = j. Thus, (B) is

satisfied. QED.

Grammars Without Deletion Cycles

2-d forest grammars are harder to analyze when they contain overlapping
selectors, particularly when there’s a cycle of overlapping selectors called a deletion
cycle. To define a deletion cycle, it will be necessary to distinguish the substruc-
tures pf a forest which precede a given node from those which follow it. The dele-
tion cycle definition also contains some terminology which can be informally
defined as follows: a 1-node in a forest is a node which has only a 1-arc enamating
from it, a 2-1-node has both a 1-arc and a 2-arc, and a 2-node has only a 2-arc.
DEFINITION 4-20. Suppose o and B are subforests of ye HX(Z, =) such that

sel(<n,p>,vy)=a,and sel(<n,¢g>y)=P. Let p =cimand ¢ = 0jp
where i #= j. o precedes Bif i>j, and o follows Bif i <.

DEFINITION 4-21. Suppose a grammar G = <I,=,N,R,S>f has a non-
terminal M such that M =>* vy, B is a subforest of y, and M =>* B. If the
sum of the lengths of the selector paths exceeds the number of 1-nodes
over all the subtrees that precede 8 in v, then G has a deletion cycle.

So a deletion cycle deletes more than it adds when the {rontier is taken. If we
try to find the debts of non-terminals in a grammar with a deletion cycle, the
algorithm of lemma 4-18 will never halt. If there is no deletion cycle, the algo-
rithm will halt and a maximum debt for any non-terminal can be identified. If a
grammar has overlapping selectors but no deletion cycles, it can be converted 1o
context-free by a procedure similar to that of theorem 4-19. In order to calculate
the debts of the non-terminals, however, it is necessary to predict the lengths of

words yielded from certain non-terminals.

45

LEMMA 4-22. Let G be a 2DNF grammar <I,=.N,R,S>f which is partitioned
according to external selectors. has no deletion cycles, and has non-terminal A.
There is an effective procedure for determining whether ¥ (L (A)) contains a
string whose length is [, for arbitrary ! 2 0.

PROOF. The algorithm is presented as a recursive function wordsize which has

three parameters: a non-terminal A, and integer length /, and a set callser of

(non-terminal, integer) pairs which is used to prevent repetition of useless function

calls. The function answers yes if A yields a word of length /, and no otherwise.

wordsize (A, 1, callset):
If (A, !)ecallset then set answer 1o no.
Else
Set answer to no.
Repeat
Select a rule A/— Bin R.
If B=al, B] then
If >0 then
Set answer 1o wordsize (B, 1—1, callsee {J{(A4, 1)}).
If B=al, B} then
Set answer 10 wordsize(B, 1, callser |J{(A4,1)}).
If B8=2x" then
If I = 0 then
Set answer to yes.

If B=al, B, C]whereexsel (B)={m} then

46

Seti 10 0.
Repeat
If wordsize (B, i, callser |J{(A4,)}) then
Set answer 10 wordsize(C, 14+m—1, callser |J{(A, 1)}).
Add 1 to i.
Until i =1 or answer = yes.
Until all rules for A have been examined.

Return the value of answer.

The wordsize function answers yes when ! is 0 and it finds a production
A —x". Otherwise, it calls itself with the appropriate non-terminals and new
value of . When it finds a rule A —a[, B1[; C}, it makes calls using all possible
sublengths of / with B and C. In some instances, the value of / in the new func-
tion call is larger than that which was passed in. If the grammar were to éontain a
deletion cycle, the function would call itself indefinitely. But since the grammar
does not contain a deletion cycle, the number of symbols added (the sum of the
values of i) exceeds the number of symbols deleted (the sum of the values of m)
for each pass through a cycle. When the function calls itself at the beginning of

each new pass through a cycle, the value of { is smaller than before.

The function always adds the current values of A and ! to the callset when
it makes new calls. If the grammar has a cycle which neither increases nor
decreases the size of the yielded string, the function will not traverse the cycle
more than once. Having traversed such a cycle once. it is useless to continue.

Thus, execution of the function eventually halts with an answer of yes or no.

47

QED.

Now it is possible to demonstrate that any 2-d forest grammar which does
not have a deletion cycle can be converted to context-free. The conversion process

is very similar to that used for grammars without overlapping selectors.

THEOREM 4-23. Let G. be a 2DNF grammar <X,=,N,R,S>5. If G does not
contain a deletion cycle, then there is a context-free grammar G' such that
L(G')=YG).

PROOF. To construct G', follow the algorithm below. AssumethatA,B,CeN,

aeX,and x” ¢ &;.

Set T'=Z,R ={},and N' ={S"}.
For each x” ¢ exsel (S)
Put S, in V.
Put §' - oS, in R'.
Repeat
Take a non-terminal ; A, from N' for which there are
no rules in R'.
For each rule A — Bin R
L1: IfB=x"andj =0, put 44, —A in R
L2 I B=al,B]then
If j =0add gA,~-a o8, 1o R" and (B, to N'.

Elseadd ;A,— ;1B 10 R and ; B, to N'.

48

L3: IfB=al,Bladd ;A,—;B, 10R and ;B, to N
L4: 1fB=al,BI;C]then
Add jA,‘—»,-Bm mnCr 10R and ; B, ,,,C. 10N
for each m ¢ exsel (B).
Add ;A -4 C tOR and ,4;,C, 1o NV
for each m ¢ exsel (B) and [€ paths (B :m) such that [<j
and B:m yields a string of length L.

Until all non-terminals in N' have rules in R'.

The theorem is established by proving the propositions (A) and (B) of theorem 4-

19.

Proof of (A). This proof is the same as in theorem 4-19 with the following addi-

tion:

Case 3. R hasA—al,BI[;Cl, B=al,¥l[;8], B=* yand C =*§.
We know that A has debt j and external selector x”, and sfr (B8) = vw
where v | = j. Suppose that sf 7 (y) has iength { less than j and assume
that B has external selector x™. Then C has debt m +j —! and external selec-
tor x”. We apply the inductive hypothesis to establish that ,.;,C, =% w
for ,4;-C- in R. LineL4 also givesus ;A,— 4+;—C, iInR'. S0
;A =* w and (A) is satisfied.

Proof of (B). This proof is the same as in theorem 4-19 with the following case
added:

Case 5. R has ;A —,4;C, and ; A, =% w.

49

m+;-:Cr derives w in one less step than ; A, , so we apply the inductive
hypothesis to get C =>* § and sfr(8) = vw for C in N with debt m+j —I
and external selector x™, and lv | =m+j —[. By line L4, we also know that
R hasarule A—al,Bl;Cland B =* ysuch that Isfr(y)l =7 and y has
external selector m. So sfr(al;yl; 81) =v,v,w where Iv,| =1 and

vyl = lvI—m = j—I Butthen lv,v,| = j,satisfying (B). QED.

Theorems 4-19 and 4-23 show that any forest 2-d grammar that does not
have a deletion cycle can be converted to a context-free grammar. It follows that
any 2-d forest grammar that does not have a deletion cycle can be rewritten using
only standard selectors. Just convert the grammar to context-free, and then con-

vert it back to a 2DNF grammar whose only selector is x°.

Length Predictors for 2-d Forest Grammars

Before deletion cycles are analyzed, it will be demonstrated that a 2-d forest
grammar can be converted to a system which predicts the lengths of the strings
yielded by the grammar. Given a grammar and a non-terminal A , the set

paths (A) contains the lengths of all the strings which A yields.

DEFINITION 4-24. If G is a grammar <ZX,Z,N,R,S>f and A ¢ N, then
paths (A) is the set of integers such that ie parhs(A) if and only if
A =% Band Isfr(B)l =i

The rewriting rules for a non-terminal A implicitly contain rules for the con-

struction of paths(A). The set of expressions for constructing parhs (4) will be

S0

denoted A. The rules will contain base values and will specify addition and sub-

traction operations on values generated {rom other sets of expressions.

LEMMA 4-25. Suppose G is a 2DNF grammar <I,Z,N,R.S>5 and A ¢ N.
There is an effective procedure for constructing A, asetof expressions which
specify paths (A).

PROOF. To construct A, first form G' = <I', =, N',R", S'>¥ such that the

derived forests are partitioned according to their external selectors. If N has non-

terminal A, then N' has A, , A, ..., A, foreachr; inexsel(A), 1<i<m, and

A, represents A :{x"}. The set paths (A) will be the union fori =1 tom of

paths (Ar,). To form A j Where j =r;, find all the rules for non-terminal A j in

G’ and follow these steps:

1) If V' hasA;»x/,putOin 4;.
2) If N' has A; —al; B;], put the expfession B, +1in A.

~

3) If N' has A;—al; B,], put the expression B; in 4;.
4) If N' has A;—al, B 1i; C,], put the expression B, + C; <r in 4;.
Complete the construction by forming the rule set me for each B,, such that Bm is
used in an expression of A j- An expression me + 1in Aj means that b+1 belongs
to paths(A;) for every b in paths(B,,). Anexpression C, + B,, = r means that
c+b=r belongs 1o parhs (A;) for every b in paths (B,) and ¢ in paths(C,). The
operator — is a subtraction operation which is defined for b= only if & 2r.

Negative string lengths are not meaningful. We will adopt the convention that the

< operator applies only to the term that immediately precedes it. Thus, 8—6 and

51

(4+4)—6 are meaningful, but 4+4-=6 is not defined.

It can be shown by induction on the number of steps required to derive 3 that
A will put Isf7(B)! in paths (A) if and only if A =>* B. The restricted subtrac-
tion operator assures that no elements will be added for forests which contain path

errors. QED.

The length-predicting scheme described in the previous lemma builds sets of
integers with repeated addition and subtraction on a finite number of base ele-
ments. Some operations on the length-predicting expressions can be performed
which will eventually eliminate subtraction from all the expressions. A substitu-
tion operation will allow some initial simplification of the system. This simple
substitution is defined below and justified in the lemma following the definition.
DEFINITION 4-26. Suppose G is a grammar <I,Z,N,R,S>F for which

A and B generate paths(A) and paths (B) respectively where A, B ¢ N.
If A has an expression e; which refers to B and B consists of expressions
ey’ ey, ..., ey, ", then the substitution of B into e; is accomplished by re-

placing e; with m expressions ¢;,e;,,...,€; in which (e.") is substituted
forB,1<r <m.

LEMMA 4-27. Suppose G is a grammar <X, =, N,R,S > for which A and B
generate paths (A) and parhs (B) respectively where A, B e N. If A hasan
expression ¢; and A’ is the same as A with B substituted into ¢;, then A also
generates paths (A).

PROOF. The textual substitution of subexpressions has no effect on the set gen-

erated. The subset of expressions {(J,»l,(»:?. .0 }in A specifies the same elements

Ini

S2

for paths (A) as the expression ¢, from A in combination with B, and no expres-
sions other thatl ¢; are modified. The meaning of a restricted subtraction operator

following Bin e; is preserved by putting parentheses around the subexpressions

which replace B. QED.

If A has expressions which contain a term B and paths (B) is a finite set,
then B can be substituted into the expressions of A. This increased the number of
expressions in A, but it allows some arithmetic operations to be performed and it
may eliminate the need for B. Any subexpressions d+c or b—c can be evaluated.

If & <c in a subexpression b —c, then the expression should be removed from the

system.

If a grammar contains cycles of non-terminals, then its length-predicting sys-
tem will contain corresponding cycles. Expressions can refer to one another, and
those that refer to themselves, either directly or indirectly, are called self-

referential.

DEFINITION 4-28. Suppose G is a 2DNF grammar <Z,Z,N,R,S>f, AeN,

and A specifies the set paths(A). An expression in A refers to B (or
non-terminal B) if and only if

1) it contains an occurrence of B, or

2) it contains an occurrence of C and an expression in C refers to B.

DEFINITION 4-29. Suppose G is a 2DNF grammar <Z,5,N,R,S>§, Ae N,
and A specifies the set paths (A). An integer b is a base element of A if it
can be generated without applyine any expression more than once and

without applying any self-referential expression which contains an arith-
metic operator.

53

Since the number of expressions in a length-predicting scheme for a grammar
is finite, the set of base elements of a non-terminal is finite, and it can easily be
enumerated. Substitution of base elements can be used to reduce the complexity of
expressions which have two terms that are self-referential. This process is called

linearization.

LEMMA 4-30. Suppose G is a grammar <X,Z,N,R,S>¥ for which A generates
paths (A), A € N. There exists A ' such that A ' generates paths (4) and no
expression in A’ has two terms which refer to A.

PROOF. The construction of A * is described for two situations, depending on

whether A refers to itself directly or indirectly.

1) If A has an expression ey : A+A —p where p is an integer, put all the expres-
sions of A except e in A Suppose b4, b5,...,b, are the base elements of A.
Put the expressions b;+A '~p, b,+A'<p,...,and b.+A '=p in A" instead of
€o-

2) Suppose A hasan expression eg : B+C —p where p is an integer, an expression
in B refersto A, an expression of C refersto A, and bi,bs ..., b, are the
base elements of A. To form A, put all the expressions of Aind except e.
Replace references to A with A" in these expressions. Put expressions
B'+C=p and B+C'<p in A’ instead of eq. B’ is formed from B as fol-
lows: if B has an expression [which refers to A, replace it with expressions
fovfaz---. fr, Where [, is the expression f with A replaced by b;,

1<i<r. C'isformed from C in a similar manner.

54

It is clear in each situation that if A" generates ([, then A generates [, since
generations in A" can be exactly duplicated in A. Ttis less obvious that generated
by A is also generated by A". This can be proven by induction on the number of
steps required 1o generate {. The proof is shown below for situation 1 in the con-
struction rules. The proof for situation 2 is similar. In the proof, the symbol b

will represent. a base element of A, and the symbol [will represent an integer |

which has been generated by a series of steps from one or more base elements.

(A) If A generates [, then A generates L.

Proof of (A) where A" is constructed as in situation 1 by induction on the number

of steps in the generation of /.
Base. A generates [in one step.
In this case, [= b is a base element. A’ has the same base elements as A , so
A’ also generates /.
Inductive hypothesis. Assume (A) is true when A generates [in less than n steps.
Inductive step. Show (A) is true when A generates I in n steps.
If 1 is generated by an expression other than eg, then! =1,*i orl =
[+ 1,—p,wherei,p are integeré and [y, [, are generated by A. In these
cases, we use the inductive hypothesis to extablish that [, and 7, are generated
by A’, and then observe that A’ has the same expressions as A except foreg.
Since e is not used in the last step, we know that A generates L.
If I is generated by ey, then! =I,+1,—p. We can show that/ is in A

by examining the ways in which {; can be generated.

o]}
O

Case 1. I, = b, a base element of A.
In this case, the inductive hy pothesis can be applied to extablish that /, is in
A'. Thereisalsoaruleb+A'~p,sol =b+1,~p is generated in A ".

Case 2. [, = 13“*_'1'. for integer 7 and 3 in paths (A).
In this case, A has arule A £i. The element! can also be generated by
applying the expressions in a slightly different order without causing a path
error: | =1+ 1,—p =l3*xi+l,—p =13+1,—p*i Sincel,and!;are
both in paths (A), A generates I 3+ [,— p, and the inductive hypothesis can be
applied to show that A generates s+l,~p. A hasarule A'+i,s0 A’ gen-
erates I.

Case 3. 1, =13+1,~p forinteger p and I3, 4 in paths (4).
In this case, ! is generated by a previous application of e, The inductive
hypothesis can be applied to establish that /; is generated in A’as
[y =b+14=p. Since every generation in A’ can be imitated step for step in
A, {1 can be generated in Aasb+l 4 —p also. Now we have
l =li+1,—p =(b+14—p)+i,—p. Observethatl,+1,—p is larger than
l4, sol can also be generated as b+ (I /+1,~p)—p in A. The inductive
hypothesis can be applied to establish that {,' = {44+ [, —p can also be gen-

erated in A ', and since A has an expression b4+A ' —p,{ is generated in A",

QED.

Subtraction which is not part of a deletion cycle is easy to eliminate from a

length-predicting scheme. To subtract a constant value d from every element of’

56

paths (A), just subtract d from the base elements of A. If some of the base ele-

ments are smaller than d, then it is necessary to expand the base before subtract-

ing.

LEMMA 4-31. Suppose G is a grammar <Z,=,N.R,S>5 with non-terminal A
and A specifies the set paths (A). 1If no expression of A uses subtraction and
every expression has been linearized, then for any positive number d, there is
A’ which specifies paths (A") where paths (A')=1{n | I=d =n and
[e paths(A)}.

PROOF. To construct A, first place all the expressions of A in A". For each base

element of A’ apply every possible combination of increasing steps to get a

number m such that d <m <i+d wherei is the smallest increment of any step

applied in the generation of m. Add each such m to A’ as a base element. These
values are easily enumerated, since every expression is increasing. Remove all base
elements from A ‘ which are less than d. Subtract d from every base element

which is greater than or equal to d.

Now A ' generates n if and only if A generatesn+d. 1If A’ generates n from
base element &, then A has base element b +d and generates n +d by the same
sequence of operations. If A generates n + d from base element b 2d , then A
generates n from base element b—d by the same sequence of operations. If b is
less than d , then A generates n in fewer steps from a larger base element

b+i—d, wherei is the smallest sum of initial increments such that b+ i—d 20.

QED.

57

Removal of subtraction in deletion cycles in considerably more complicated.
but it is possible because the number of distinct increments and decrements in a
length-predicting system is finite. Subtraction is eliminated by enumerating base
elements below a certain value and then changing the subtractions to additions.
This method is described in lemma 4-33. An auxiliary lemma is presented first

which will be needed for the proof of lemma 4-33.

LEMMA 4-32. Suppose iy+i,+ - -+ +1, isasum of positive integers where p is
larger than some number d. There is a partial sum §;+i; 1+ -+ + i, =
nxd suchthat/>1lorm<p,andn >1.

PROOF. First observe a property involving remainders of integer division: if

a mod d =b mod d then(a—b)mod d =0 for positive integers a,b, and d

such that @ >b. In other words, if some number is added to @ and the addition

does not change the remainder of dividing by d , then the amount added is a multi-

ple of d.

Now consider the sum i;+i,+ +++ +i,. Wecan calculate the remainder of

14
dividing each partial sum by d: (¥ i;)mod d =r, for every value 1< <p.

j=1
Since p is larger than d , there must be a repeated remainderin sy, 73...., 4.
A
This means there are & and m such that 1Sh<m <d and (Y i;) mod d =
j=1

m

(X) mod d. Applying the property observed in the previous paragraph,
i=1

m
(¥ i;) mod d =0. Sowehave iy)+ ip42+ - +i, =nXd for some
joh+l

n 2 1. QED.

LEMMA 4-33. Suppose A specifies parhs (A) for non-terminal A of a 2DNF
grammar G = <I,Z,N,R,S > If every expression of A has been linear-
ized, one self-referential expression contains a subexpression AL p,and no
base element of A is smaller than D, then there is a system A’ which specifies
paths (A) and has no subtraction operators.

PROOF. If paths(A) is a finite set, then its elements can be enumerated in A'as

base elements, and A * will contain neither additions nor subtractions.

If paths (A) is an infinite set, then some expressions of A specify constant
increments, iy, i, ..., i,, Which can be repeatedly added to get larger elements of
paths (A). The largest of these increments will be represented as i ,.. Lete =
A= p+i be the self-referential expression in A from which the subtraction opera-
tor will be removed. Construct A’ as follows:

1) Put every expression of AinA’ except e.

2) Add more base elements to A by taking the base elements of A and applying
all possible sequences of increasing steps which give a total increment less than
or equal 10 d X i ;4. This adds a finite number of base elements to A", since
there is a finite number of possible increments.

3) Add more base elements to A’ by applying the subtracting expression e in A
to the existing base elements of A'. This shbuld be repeated until no new base
elements are added.

4) Put expression €' in A’ suchthate is A+d whered = ti—p .

59

If i > p in expression e, tht;n ¢ is an increasing step evén though it contains
subtraction. The net increase is i —p = d , and the expression ¢' : A+d appropri-
ately replaces e. Application of ¢ and e’ give different results only if the element
of paths (A) to which they are applied is less than p. In that case e cannot be
applied, but €' can be applied. This never happens, however, because no base ele-

ment of A is less than p , and no rule is decreasing. So every value to which e is

applied must be at least as big as p.

If i <p in expression e, then e is a decreasing step. An inductive proof will
be required to show that e' : A+ (p—1i) is an appropriate replacement for e. A

can be shown to generate paths (A) by proving propositions (A) and (B) below.

(A) If A generates [, then A generates [l

Proof of (A) by induction on the number of steps in the generation of L.
Base. A generates 1 in one step.
In this case, [is a base element in A. By construction step 1,/ is also a base
element of A .
Inductive hypothesis. Assume (A) true when A generates/ in less than n steps.
Inductive step. Show (A) is true when A generates [in n steps.
Case 1. [is generated without increasing steps.
In this case, [is addéd 10 A as a base element by construction rule 3.
Case 2. [is generated without subtraction steps.
In this case. A ' has the same increasing steps as A by construction rule 1. The

same generation sequence can be used to generate! in A"

60

Case 3. [is generated with a mixed seqﬁence of addition and subtraction steps.
If the total increment does not exceed d X i ., then ! is a base element of A
by construction rules 2 and 3.

If there are x addition steps and y subtraction steps in the generation of !
where x >d and y <ip,,, then it can be shown that there is another genera-
tion of / in A which takes fewer steps. If there are more than d increment
steps, lemma 4-32 tells us that there is a sequence of x' increment steps such
that x' £d and the sum of the x' increments is a multiple of d, say ¥' X d
The sum of the x' increments must be less than or equal to d X i ,,, and
therefore y' <ip X d. Thus, there is a generation of / which takes x — x'
increment steps and y —y' decrement steps. The inductive hypothesis can be
applied to establish that A’ also generates [.

Now suppose there are x additions and y subtractions where x >d and
¥ <imax Leti; be the smallest of the x increments in the generation of .
Consider /', a number with the same generation sequence as [except for one
less addition of i;: I' =1—i;. A also generates [' if it can be confirmed that
no path error will occur. In the generation of /, the amount added exceeds
d X i nax» and the amount subtracted is less than d X i .. If the difference
between the amount added and the amount subtracted is called the gain , then

gain 2(d 4 1)X i pay— (i pax— 1)X d
2d Xt ipax—d Xigaet d
2 i payt d.

In the generation of I', there is still a positive gain . since i p,+d—1i; >0. So

61

I' is generated by A in fewer steps than /, and the inductive hypothesis can be
applied 1o establish that ' is generated by A By construction rule 1, A’ has

the same increasing expressions as A,sol =0'+i ; is generated by A
(B) If A" generates/, then A generates [.

Proof of (B) by induction on the number of steps in the generation of [in A
Base. A ' generates! in one step.
In this case, [is a base element of A . By construction rules 1, 2, and 3, either
[is a base element of A, or it is generated in A with increment less than
d X 4., and a number of subtractions not exceeding i ..
Inductive hypothesis. Assume (B) is true when A generates ! in fewer than n
steps.
Inductive step. Show that (B) is true when A generates [in n steps.

If [is generated using a step which is not an application of e', then con- .
sider ' generated in A’ with one less step: {' =1—i;. The inductive
hypothesis can be applied to establish that ' is also generated by A. But since
A'and A share all addition expressions except e', [is also generated by A.

If 7 is generated by applications of €' only, then!’ = [—d is generated in
A" and the inductive hypothesis to establish that {' is also generated by A.
But if I' is generated by A, thend applications of an expression with some
increment i; and i;— 1 applications of expression e can be made 1o get another
element of A :

U'+dxi;—(i;— 1xd

62

=l—-d+dxi,—ixd+d
=1

Thus, if I' is generated by A, then soisl. QED.

The previous five lemmas supply enough machinery to remove all subtraction
from an arbitrary length-predicting system, as shown in the theorem below. The
proof of the theorem specifies the order in which the constructions of the support-

ing lemmas should be applied.

THEOREM 4-34. Suppose G is a 2DNF grammar <£,%,N,R,S > and G isits
corresponding length-predicting system. There is an equivalent system G
which does not use subtraction.

PROOF. To construct G, first apply finite substitution, arithmetic simplification,

and linearization 10 each A where A ¢ N, giving A'. Remove subtraction according

to the method below, starting with A'=5" the expression set corresponding to
the start symbol.

1) For each expression in A containing B=- p where no expression of B refers to
A, remove the subtraction from B’ by the current method and then subtract
p from B using the method of lemma 4-31.

2) Create two sets of expressions: A o and A +. Put all the non-subtracting expres-
sions of A’ in A + and leave A o empty.

3) Remove the subtracting expression from A which subtracts the smallest
amount, p, and put it in A +e

4) Generate all the elements of A + without using the subtracting expression

63

which are smaller than p or which exceed p by less than one increment.
Remove the base elements less than p from A + and put them in Ao
5) Transform A + using the method of lemma 4-33 to remove the subtraction.

6) Repeat steps 3, 4, and 5 until no subtracting expressions remain.

7) Set A'={4, A}

The steps in the above method use the constructions of the previous lemmas
which guarantee that the path sets generated by the transformed systems are the
same as those generated by the original systems. Small base elements are isolated
from sets of expressions in step 4 to prevent transformed expressions from being
applied to values for which the original expressions are undefined. The self-
referential subtracting expressions which correspond to deletion cycles in the origi-
nal grammar are transformed one at a time, beginning with the expression which
deletes the least. Steps in a grammar cycle can be arbitrarily intermixed to give
words of the same length. For any productive forest derived from a non-terminal
which has deletion cycles, there is a corresponding forest which has the same
derivation steps where repeated applications of the same rule are grouped together
and the smallest deletions are first. The two forests may not yield the same string,
but they yield strings of the same length. This justifies the consecutive transfor-

mation of deletion cycles. Simultaneous transformation would give the same

result. QED.

COROLLARY 4-35. If A is a non-terminal of a 2DNF grammar G =

<I,Z,N,R,S>%, then paths (A) is a regular set.

64

PROOF. Form the length-predicting system for the subgrammar whose start sym-
bol is A and remove subtraction from the system. The unary representation of a
positive integer n is just a string of n ones, and O is represented as the empty
string. If all the integers in the length-predicting system are converted 1o unary
representation and the addition operators are changed 1o concatenation, the system
becomes a linear context-free grammar over a one-sy mbol alphabet which generates

paths (A). Such a grammar can easily be converted to a regxi]ar grammar, and so

paths (A) must be a regular set. QED.

The Remainder Operation on Context-Free Languages

The 2-d forest yield languages which involve deletion can be related to
context-free languages with the help of the remainders of context-free languages.
The remainder of language L, with respect to language L , is the set of strings that

remain after prefixes from L, are deleted from words in L ;.

DEFINITION 4-36. Let L, and L, be string languages. The remainder of L,
with respect to L, is defined as follows:

L,\L;={w | forsomev in L,, vw isin Lq}.

The remainder operation is defined for sets of strings in the preceding
definition. It will be convenient to use the operator on single strings as well as sets
of strings. Thus, ab \ abcde = cde. The remainder of a language is a close relative
of the quotient of a language, as defined by Ginsburg and Greibach (1969). The
quotient of a language L, with respect to a language L, is the set of prefixes that

remain after suffixes from L, are deleted from words in L.

65

DEFINITION 4-37. Let L, and L, be string languages. The guoticnt of L,
with respect 10 L, is defined as follows:

L,| L,={w forsomev in L,, wv isin L,}.

It has been established that the quotient of a context-free language with
respect to a regular language is context-free. It is also well known that both
context-free and regular languages are closed under reversal. These facts can be
used to show first that remainder can be expressed in terms of reversal and quo-
tient, and then that the remainder of a context-free language with respect to a reg-

ular language is context-free.

THEOREM 4-38. Suppose L, and L, are string languages. Then
reverse(L,\ L) = reverse(L) | reverse(L).
PROOQF. This theorem follows directly from the definitions of remainder, quotient, |
and reversal:
reverse(L,\ L)

= reverse ({w | for some v in L, vw isin L;})

= {w | for some v in reverse(L,), wv is in reverse (L)}

= reverse (L) | reverse(L,).

QED.

THEOREM 4-39. If L, is a context-free language and L is a regular language,
then L,\ L, is a context-free language.

PROOF. This theorem is proven by using the previons theorem and closure for

reversal and quotient.

66

L, is context-frec and L, is regular
=> reverse(L,) is context-free and reverse (L ,) is regular
=> reverse(L) | reverse(L,) is context-free
=> reverse(reverse (L) | reverse(L ,)) is context-free
= reverse(reverse (L, \ L)) is context-free
=> reverse(L ,\ L) is context-free
= L,\ L, is context-free.

QED.

The strings that result from a deleting frontier operation on elements of a set
of 2-d forests can be described as a remainder language. If o ¢ H{ (I, Z), then

str(sel (x™ ,o0)) is just str (o) with the first r characters removed. This can also be

expressed as Z7 \ str (o).

LEMMA 4-40. Suppose « = #[,x"I[; Blis in H3 (T, £), where # € £, x” ¢ Z;, and
Be H} (X, =), and fri(a) is defined. Then str(fry(a))=Z" \ sfr(B).
% PROOF. This follows from the definitions of remainder, the frontier function, and
the st function:
sfra)

= str(subs,(fri(x7). fry(B)))

= str(subs,(x", fr(B)))

= str(sel (x", fry(B)))

= sfr(B) with a prefix of 7 characters deleted.

QED.

67

COROLLARY 4-41. Suppose a = #[, Bl[, vl is in H3 (X, Z) wherc # ¢ Z, B and
ve H3(I,Z). B has external selector x” € =y, and fry(a) is defined. Then
sfria)=sfr(B)-T7\ sfrfryy).

PROOF. This corollary follows from the previous lemma and the observation that

Iri(#0BIL ¥D = fr(#L B #[, x" 1, y]I) where x” is the external selector of B

and B' is the same as 8 with external selector x” replaced by x° QED.

In theorems 4-19 and 4-23, context-free grammars were built with non-
terminals like ; A.. The subgrammar constructed for ; A, is actually a grammar
for £/ \ (L (A):r). Remainder languages are helpful in relating deletion cycles to
the theory of context-free languages. Analyses in computer science literature of
deleting operations on context-free and context-sensitive languages suggest that
there must always be a constant bound on the number of consecutive deletion
operations. Theorem 4-39, however, demonstrates that regular deletion cycles are

tolerated in context-free languages.

Normal Form for Deletion Cycle Analysis

Several terms are defined below to0 aid the analysis of deletion cycles in 2-d
forest grammars. One non-terminal in a cycle is designated the roor, or reference
point for analysis. In many cycles, the number of non-terminals can be reduced to
only one by expansion of the grammar rules. Such cycles have only one essential
non-terminal. Cycles which cannot be expressed with only one non-terminal have

several essential non-terminals.

68

DEFINITION 4-42. Let G be a grammar <I,Z,N.R.S>f such that
A,B,and C ¢ N. B is adescendent of A if and only if

1) A =8,
2) thereis a rule A — B8 and B contains B, or

3) thereis a rule A — B8, 8 contains C, and B is a descendent of C.

DEFINITION 4-43. Let G be a grammar <Z,2,N,R,S>%. G contains a cy-
cle if and only if there is a subset of N such that each non-terminal in the
subset is a descendent of every other non-terminal in the subset.

DEFINITION 4-44. Let G be a grammar <Z,Z,N,R,S>f which contains a
cycle{A;, A,,..., A} EN. A; is aroot of the cycle if it appears in the
right-hand side of a rule for a non-terminal which is not in the cycle.

DEFINITION 4-45. Let G be a grammar <Z,%,N,R,S>f which contains a
cycle C = {A,,A,,...,A,} ©N. A non-terminal A; in the cycle is

essential if it is a root of C, or if it is a root of another cycle which is a
subset of C.

DEFINITION 4-46. Let G be a grammar <Z,=,N,R,S>f which contains a
cycle {A,,A,,...,A,} with root A;. A cycle step is an expansion of A
to derive the smallest structure o such that « contains an essential non-
terminal A; and no non-terminal which precedes A; in « is in the cycle.
The analysis of deletion cycles will be made easier by the use of a normal
form for grammar cycles. Different shaped forests of ten have the same frontier. If
o = #[2 #[2 B][] 'Y]][] 8] and sy = #[2 B][] #[2 ')’][1 81, then frl(al) = fl'l(az) pro-

vided the frontier of «; is defined. A grammar is in cyclic normal form if the

forests derived from the cycles have the shape of «, rather than «;.

69

DEFINITION 4-47. Let G be a grammar <X.Z.N,R.$>f which contains
one or more deletion cycles. G is in cvclic normal form if and only if the
path in every cycle step from the root of the cycle to the leftmost essential
non-terminal is 2' or 2'1, i 20.

A grammar can be in cyclic normal form and 2-d normal form at the same
time. In that case it will be called a cyclic 2DNF grammar. The conversion of a
grammar to cyclic normal form takes advantage of the fact mentioned above that
different shaped forests can yield the same strings. This yield-equivalence is for-

malized in the lemma below.

LEMMA 4-48. Suppose «;, o, B, 7y, and 8 are forests in H 5 (Z, £) such that
oy = #[, #0, B, v1I; 8), o, = #[, BIl; #[, vll; 811, B has external selector x?,
and vy has external selector x™. If | fri(y)12p, then fri{e;) = frilay). If
| fry(y)t =m <p, then fri(#[; BIl; 8]) = fri(«;) where 8 is B with external
selector x? replaced by x?*" ™™,
PROOF. This lemma follows from the definition of the frontier function. First of
all, assume that | fry(;y)1 2p. Then the order of the substitutions during the
frontier operation can be changed without affecting the resulting string:
friloy) = subs (fry(#05 Bl vD. fr(8))
= subs {(subs(fri(B), fri(y)), fry(8))
= subs ;(fr,(B), subs,(fry(y), fri(8)))
= frilay)
This is not true when m = 1 fry(y)1 <p, for then fry(#[, BIl; ¥]) is undefined.

The frontier operation on «; fails while it succeeds on «a.

70

Iri(as) = subs (fry(B). fri(#[vN, 81))
= subs ,(fr(B), subs (fry{y), fry(8))
The substitution of fr1(8) into fri(y) removes r symbolg from the front of
fr1(8). The substitution of this subforest into fr;(B) removes all m symbols of
fi1(y) and p—m more symbols from fr;(8). So there is a forest with an
equivalent frontier that does not contain y at all: fry(a,) = fri(#[, B, 8]) where

B' is constructed from B by replacing external selector x? with x?*"~™ . QED.

THEOREM 4-49. Let G be a 2DNF grammar <I,Z,N,R,S >F with one or more
deletion cycles. There is a grammar G' = <I,Z, N’ R ’,S'>3" such that G' is
in cyclic normal form and Y (G) = Y o(G').

PROOF. To begin the construction, set G' = G. Then, partition the non-terminals

of G' according to external selectors and repeat the steps below until no further

changes can be made. Assume A, B,C,D,andFE arein N',and #,a¢eZ".

1) If R" has rules A— #[, Bl[;Cland C—al; D] where A, C, and D are part of
a deletion cycle and x? is the external selector of B, then replace the rule for
A with A - #[, B][, C'] and add the rule C' — #[, a[; x°I][; D], for new
non-terminal C'.

2) If R hasrules A - #[,Bl[;CJand C— #[, D[E] where A, C . and E are
part of a deletion cycle, C is not essential, B and D are outside the cycle, the
external selector of B is x?, and the external selector of D is x™, then replace
the rule for 4 with A - #L, T, EL A= #LB,LEL A= #[, B-ILEL ...,

A - #[,B,_,); E]. Then. add rules for B; only when 0<i <p and

71

i € paths (D). B; has the same rules as B. except that external selector xF is
replaced by xP*™ . Finally. add a rule T— #[, B1[; D] for newly invented
non-terminal 7.
3) Perform the same modification as in step 2 when A, C, and D are part of the
cycle, C is not essential, and B and £ are outside the cycle.
To prove the theorem, it needs to be shown for the construction steps above that
the algorithm halts, the resuiting grammar G' is in cyclic normal form, and the
yield of G' is the same as the yield of G. Step 1 just changes the form of certain
cycle rules so that step 2 can be applied. Since no rules of the form C—al; D] are
added by any step, the number of applications of step 1 is finite. Step 1 does not
affect the yield of the grammar because fry(#[,al; x°N; D1) = frlal, D).
Steps 2 and 3 both have the eff ect of eliminating a non-essential non-terminal
with a l-arc pointing to it. When all such non-terminals are gone, the algorithm
halts, and the resulting grammar will be in cyclic normal form. Since no 1-arcs
point 10 non-essential cycle non-terminals, the path from the root to an essential
non-terminal in a cycle step can have 1 only at the end. It is evident from lemma

4-48 that the modifications made in steps 2 and 3 will not affect the yields of

derived forests. Thus, G' is in cyclic normal form, and Y o(G') = Y o(G). QED.

Once a grammar has been put into cyclic normal form, the right-hand sides of
rules for essential cycle non-terminals can be expanded to become full cycle steps.
It then becomes evident that there are three kinds of cycle steps, as illustrated in

fipure 4 for cycles with one essential non-terminal B. A cycle which has only type

72

Bo #---2---m o - 1
l !
R Rt | O
I !
Cr—l
#---2---1
I |
B Cy
type 1

A B
type 2
B # -0 1
| !
R R e LT 1 G,
I |
.Cr—l

FIGURE 4. Normal form cycle steps
1 steps is non-deleting. If the external selectors of the non-terminals C; overlap
one another. a path error will occur. Cycles with type 2 and type 3 steps can be

deleting cycles, since the external selectors from repeated occurrences of A can

73

overlap one another without causing path errors. Type 3 steps are more compli-
cated. They allow a suffix to be attached 10 the end of a string every time a prefix
is deleted from the front during the frontier operation. The example grammar
ABC from the beginning of this chapter contains a deletion cycle with type 3 steps.
Deletion cycles with type 2 steps can be shown to have corresponding context-free

grammars by application of the remainder operation. Cycles with type 3 steps are

more difficult to simulate with a context-free grammar.

2-d Forest Grammars with Regular Deletion Cycles

Cycles of type 2 in figure 4 will be called regular deletion cycles, and 2-d
forest grammars which have only regular deletion cycles can be shown to yield
context-free languages. A regular deletion cycle can be used to form a regular set
called a deletion map , which predicts the number of symbols that will be deleted
in the cycle. The deletion map can be applied with the remainder operation on

subgrammars which are not part of the cycle to generated the yield.

DEFINITION 4-50. Let G be a cyclic 2DNF grammar <I,=,N,R,S>f. It G
contains a deletion cycle such that the left-most non-terminal in every cy-
cle step is not part of the cycle, then G has regular deletion cycle.

The deletion map for a cyclic 2DNF grammar G = <I,=Z,N.R,S>f witha
regular deletion cycle can be constructed according to the steps below.
1) Partition the grammar G according to external selectors. If there is a rule
B— #[,C1l[; D] where B is in a deletion cycle but C and D are not, replace

the rule with B— T and T — #[, C][, D] for newly invented non-terminal 7.

74

2) Make a regular grammar froin the rules in R foreachi,m, A. énd B where i
and m are paths on external selectors, A is a non-terminal in the deletion
cycle, and B is any non-terminal in V. The grammar ;AB, =
<N',Z,R',S >is formed as follows:

a) SetT' =10, 1}, N' =N,and §' = A.

b) PutaruleS—0'-A inR'.

¢) If R hasarule C— #[, DI, E], then put C—D -0 -E in R' and add to
R' rules for regular grammar D which generates the lengths of all the
strings yielded by D.

d) If R hasaruleC— #[, DIl E], either E = B or R also has a rule E— B,
and the path on the external selector of D is m, then put C -DinR,
and add the rules for D to R

e) Rewrite the rules of R', adding new non-terminals as required, so that each
rule has the form E—n -F or E~n,forn = 0 or 1, and non-terminals
E and F.

3) Convert each ;AB,, to a push-down automaton ; AB,, =
<Q.,z", 1,8, Ty Qg Qf > as follows:

a) SetQ =N UIFLZ =10}, T={¢ 0}, Ty=¢€Q¢=S,and Qr ={F}.

b) If R hasaruleC—0-D, put (C,*,\)=(D,*0) in 8, where * is any
stack symbol and A means no input is consumed.

¢) If R hasaruleC—1"-D,put(C,y0,A)=(D,vy)in 3, where ye I'*.

d) If R' hasarule C -0, put (C.* A):(F,*0)in 3.

e) If R hasaruleC—1, put (C,y0, A\):(F, y)in 3.

75

f) Add (F.0.0)%(F.A)108. The automaton stops, accepting a string of zeros

only when the stack is empty and all the input has been consumed.

The regular set constructed in step 2 contains strings of ones and zeros. The
zeros are unary representations of the paths on selectors in the cycle. The ones
represent characters embedded within the cycle that will be deleted. The strings of
interest in the set are those in which the zeros outnumber the ones, not just
overall, but in every possible prefix. The grammar is converted 1o a pda in step 3
to accept only the strings of interest in the regular set. The pda uses A-moves as it
simulates the regular grammar. Zeros from the regular grammar are pushed on the
stack, and the stack is popped when the regular grammar produces a 1. If any ini-
tial sequence of moves is chosen in which the ones outnumber the zeros, then the
pda gets stuck. If the zeros always outnumber the ones, however, the simulation
of the regular grammar terminates and the pda moves to a final state which reads
zeros {rom input and accepts the string if it matches what is on the stack. Since Z”

has only one element, the accepted set is regular.

DEFINITION 4-51. The deletion map for a regular deletion cycle wkich con-
tains non-terminals A and B in a 2DNF grammar G is a regular set
L AB,, , formed by the construction steps above.

LEMMA 4-52. Let G be a cyclic 2DNF grammar <Z,=,N,R,S >§ which has a
regular deletion cycle containing non-terminals A and B. Suppose , AB,, is a
regular deletion map for the cycle. The string 0¢ is recognized by , AB,, if
and only if there are & and B8 such that A =* «, B =>* f3, B is a subforest of

w, m is the path on the external selector of the subforest which precedes 8.

76

and 2" \ s/ r (o) =X \sfr(B).
PROOF. This lemma is established by proving propositions (A) and (B) below.
(A) If there exist o and Bsuch that A =* o, B =>* 3,...,and I” \sfr(a) =
T4*m \ 577 (B), then 0¢ is recognized by ,AB,,.
Proof of (A) by induction on the number of cycle sieps in the derivation of «.
Base. A =* « in one cycle step.
In this case, there are productions in the forest grammar A — #[, D][; B] and
B— E where A and B are in the cycle, D and E are not in the cycle, and the
external selector of D is x™. So a = #[, 81, 8], and £" \ s/ r () =
L=+ \sfr(B) where! is the length of the yield of 8. We know that & con-
tributes nothing to the frontier, so it must be the case that n >I. By step 2 of
the construction, ,AB,, is given rules S —»0" -+ A and A —D. By step 3,
. AB,, has corresponding rules which 1) push n zeros on the stack, 2) pop!
zeros off the stack where D derives a string of 7 ones, and 3) move 1o a final
state which accepts an input string of n —{ zeros. Thus, (A) is satisfied where
=n—Il+m.
Inductive hypothesis. Assume (A) is true for A =>* « in r — 1 cycle steps.
Inductive step. Show (A) is true for A =>* « in 1 cycle steps.
There are productions A — #[, D,][; C11, Ci—= #L D,I; C,l, . - .,
C,—#[, D,y B], and B—E where A, Cy,C,. ..., Cg, B arein the cycle,
D,,..., D, and E are not in the cycle, and the external selector of D, is x™.
Let the external selectors of D;, 1<7 <g—1, be x”'. We have « = #[, 8][, y]

where D;=>* 8 and C, =* vy, sfr(a) = str (subs ,(fr1(8), fri(y))), and B is

77

a substructure of y. Since the yield of o is a suffix of the yield of B, the yield
of & is completely deleted. If Isf7(8)! ={,.then;<n. So L™ \sfr(a)=
2P\ (sfr(8))- P\ sfr(y)) =T9*™ \sfr(B). An expansion of d would
show thatd+m =n—1+p,—{+...+ p,—y— [, +m, and so P\ sfriy)=
¢+ \sfr(B) whered' =d—n+1,. Theinductive hypothesis can be

applied to establish that » ICI_Bm contains d'. By construction steps 2 and 3,

2AB, hasarule A —»b, -0°*-C,, and , AB,, pushesn zeros on the stack,
pops I, zeros, pushes p, zeros and goes to a state Cy, where !, is a length gen-
erated by D 1 We also know that plC_‘;fm pushes p; zeros and goes to state
Cy. Soif , C B, acceptsd', then ,AB,, acceptsn—1I,,d'. But
n—I+d =n—1l+d—n+l;=d,so (A) is satisfied.
(B) If 0¢ is recognized by ,AB,,, then there are and 8 such that A =>* «,
B=*f,..., and " \sfr(a) = L¢*™ \sfr(B).
Proof of (B) by induction on the number of cycle steps in the derivation of a.

The proof of {B) is similar to the proof of (A). QED.

THEOREM 4-53. Suppose G is a cyclic 2DNF grammar <Z,Z,N,R,S >5 which
contains only regular deletion cycles. There is a context-free grammar G' =
<N',T, R'.S >such that L(G') =Y (G).

PROOF. To construct G' from G, first partition G according to external selectors.

The non-terminal set will include ; A,, for every A in N, every external selector

path m. and every integer 0K i < p pa Where p .« is the longest path on any selec-

tor. Set L'=71 and §' = S, for each external selector path /n. Begin making the

78

rules with the non-terminals in the deletion cycle closest 1o the start symbol, fol-

lowing the steps below.

1) Find each non-terminal £ which is not in the cycle, but is in the right-hand
side of a rule for non-terminal A which is in the cycle. Forin rules for ; E,
and add them to R', where m is the path on the external selector for any sub-
forest which can precede £ in a derivation. If the subgrammar Gg has no
deletion cycles, then form its rules using the method of theorem 4-23. If Gg
does contain a deletion cycle, then use the method currently being described.

2) Form ;AB,, for each pair of non-terminals, A and B, in the cycle and each
pair of paths, i and m, on external selectors.

3) If there is a rule A - E such that A is in the deletion cycle but E is not, put a
tule ;A, —;E, in R' for each possible i and for m such that x™ is the exter-
nal selector of A.

4) If there is a rule A —» #[, EJ[, Bl where A and B are in the cycle but E is not,
put ;A, —,E -, B, in R' for each possible i, r such that x” is the external
selector of E, and m such that x™ is the external selector of A.

5) If R hasrules 4 —» #[, Ell, Bland C—» 7 where A, B, and C are in the dele-
tion cycle but £ and F are not, put rules ; A, — <;AC, \,Fn>in R' for
each possible i, r such that x” is the external selector preceding C, and m
such that x™ is the external selector of F. Then, add a subgrammar to R* for
each non-terminal <;AC, \, F, > such that <;AC, \, F,, > generates the
context-free language A (L (; AC,) \ L (, F,,), where h is the following

homomorphism on strings of zeros in L (;AC,): A (0) =a wherea is any

79

element of Z.

6) If R hasrules A - #[,El;Bland C— #[, F)[, D} where A, B. C,and D are
in the deletion cycle but £ and F are not. put rules , A, — <;AC.\,F;>
: D, in R' for each possible i, 7 such that x” is an external selector which
precedes C ./ such that x! is the external selector of F, and m such that x™
is the external selector of D. Then, add a subgrammar to R' for each non-
terminal <;AC, \, F,>such that <, AC, \ ,F, > generates the context-free
language h (L (; AC,)\ L(, F;), where h is the following homomorphism on

strings of zeros in L (;AC,): h(0) =a wherea is any element of I.

Regular deletion maps and remainder operations are used in steps 5 and 6.
The remainder operation is applied only to non-terminals outside the cycle, allow-
ing context-free subgrammars to be constructed before the operation is applied.
Then, the remainder of a context-free language with respect to a regular language is
formed to give another context-free language (theorem 4-39). The grammar G'
can be shown to satisfy theorem 4-53 in the proof of propositions (A) and (B)
below. (A) If Ae N,A =* o, L' \ sfr(a) = w, and « has external selector x™,
then V' contains ; A,, such that ; 4, =* w.
Proof of (A) by induction on the number of steps in the derivation of «.
Base. A =* « in one step.
It must be the case that @ = x™,i =0, andw =A. R hasaruleA —-x™ and
R' has gA,, =\, as in the proof of theorem 4-23.
Inductive hypothesis. Assume (A)is true when A =* « in less than n steps.

Inductive step. Show that (A) is true when A =>* « inn steps.

80

If the first step in the derivation of a is A »al; Blor A - #[, B], then
the proof is the same as in theorem 4-19.

If the first step in the derivation of « is A - E, then £ =* « in one less
step. If 2\ sfr(a) = w and o has external selector m, the inductive
hypothesis can be applied 10 establish that ; B, =* w. By construction step
3,R" has ;A,—;E,,andso ;A, =* w.

If the first step in the derivation of o is A — #[, E][; B] and neither A
nor B are in a deletion cycle, then ; A, =* w as in the proofs of theorems
4-19 and 4-23.

If the first step is A — #[, E][; B] where A and B are in a deletion cycle,
first consider the case in which the yield of £ is not completely deleted. Then
E=>*vy, B=>* B, a=#[Lyl;Bl,w =w;w,y Z \sfr(y)=w,, and
" \sfr(B) = w, where the external selector of vy is x”. The inductive
hypothesis can be applied to establish that R' has ;E. =* w; and
»Bn =% w,. Step 4 of the construction gives ;A, — ;E. -,.B, Thus,

i Am =% wyw,=w, and (A) is satisfied.

Now suppose the first derivation step is A — #[, E][; B] with A and B in
the deletion cycle, and the yield of E is completely deleted during the frontier
operation. Let o = #[,y,1[; #[, v,1l; -+ #[5 v, 1[; 81--- 1l where vy, is either
the first subforest that is not completely deleted in the cycle, or it is the last
subforest in the éycle. Assume also that C =* §, C is in the deletion cycle,
the external selector of vy, is x”, and the external selectors for y;. | <i<y.

P

are x"'. If {; represents the length of the string yielded by 7;. thenw =

81

Ti\sfr(a) =28 \sfr(8) whered =i—1,+p,—ls¥..+F Ps-1—1y- This
means that L7 \ s/ 7(8) = w'w where Iw' | =d. The inductive hypothesis
can be applied to establish that . C,, =* w'w.

If 7y, is the last leading subforest of 'the cycle, then the first step in the
derivation of 8 is C — F, where F is outside the cycle. According to construc-
tion step 5, R' hasarule ;A, —» <;AC, \, F,, > and rules for
h(L(;AC, D\ L(, F,), and lemma 4-52 assures us that 0¢ is accepted by
AC,. Since ,F, =* w'w and |w' | =d, it follows that ; 4,, =*
4\w'w =w.

Finally, suppose v, is not the last subforest in the deletion cycle, but it
does contribute to the yield. In this case, the first step of the derivation of & is
C - #[, FI[; D] where C and D are both in the cycle. R' has a corresponding
rule ,C,,— ,F;* ;D, and the inductive hypothesis establishes that
»Cp =* w'w where |w' l_ =d. Since F contributes to the yield, it must be
true that , F; =* w'wy, ; D, =* w,, and w;w, = w. According to con-
struction step 6, R' has arule ;A,— <;AC, \,F;>+;D, as well as rules
for h (L (;AC,)\ L(,F;). We also know from lemma 4-52 that ; AC,
accepts 0¢. 1t follows that ;A, =* d \w'wq-w,=1w;w,=w,satislying

(A).

(B) If N' contains ; A, such that ;A,, =* w, then V contains A such that

A =>* o, L \sfr(a) = w, and « has external selector x™.

Proposition (B) can be proven in a manner similar to the proof of (A) by induction

82

on the number of steps in the derivation of w. QED.

Grammars with Consistent Deletion Cycles

The theorem above shows that a forest grammar whose deletion cycles have
only type 2 steps can be converted to a context-free grammar. A similar result can
be obtained for forest grammars with type 3 deletion cycles, provided they are
consistent. The conversion process begins with the formation of an inversion map
for the cycle. This is a regular set which specifies the number of symbols that will
be deleted by the cycle and indicates what substrings will be attached to the end
of the resulting string as the deletions occur. An inversion operation is then
apblied which takes an inversion map and a context-free grammar, and produces a
new context-free grammar. The new grammar produces only the strings which are
yielded by the deletion cycle.

DEFINITION 4-54. Let G be a cyclic 2DNF grammar with a deletion cycle. A
non-terminal D is a leading non —terminal in a cycle step if the path from
the root of the cycle step to D is in 2%, and D is not in the cycle. A non-

terminal is a trailing non —terminal if it follows a non-terminal which is
in the cycle.

DEFINITION 4-55. Let G be a cyclic 2DNF grammar with a deletion cycle.
The deletion cycle is consistent if the external selector of the leading non-
terminal in each cycle step is always an overlapping selector.

Given a grammar G = <Z,=,N,R,S >¥ in cyclic 2DNF, the inversion map
can be constructed by the steps below.

1) Partition the non-terminals of G which are not in the deletion cycle according

83

to external selectors. 1f there is a rule B — #[, C][E] where B is in the cycle
but C and E are not, then replace the rule with B—T and T'— #[, CI[; E] for
newly invented non-terminal 7. |

2) Form a regular grammar /map (G, A, D) for each A and E in the deletion

cycle of G. The terminal set of imap is a subset of {0, Taptag -« L4,

Lo e la,} where{A,, Ay ..., A, }=N. Therulesof imap(G,A,D)
are constructed according to the steps below. Assume A, B,C,D,E,and J
are non-terminals A; for some i.

a) If R has B— #[,E][; C] where B and E are in the deletion cycle but C is
not, add B—E -1, to the rules of imap (G, A, D).

b) If R hasarule B— #[, J[; E] where B and E are in the cycle but C is
not, add B—E - (7 -{; to the rules of Imap where x? is the external
selector of C.

¢) If R has D — B for any right-hand side 8, add D — A to the rules of
Imap(G,A,D).

d) Make A the start symbol of imap(G, A, D).

3) Form a regular grammar tmap (G, A, D) for each A and D in the deletion
cycle of G such that there is a rule B — #[, D][; E] where B is in the cycle
but £ is not. Use the same rules to construct tmap as in step 2, but replace 2¢
with the following:
¢) If R has B— #[, D], E] where B and D are in the cycle but E is not, add

B -l totmap where x? is the external selector of D.

4) Form a general sequential machine Z which operates on strings produced by

&4

{map or tmap. The input alphabet is the same as that of Imap, and the output

alphabet is the input alphabet with {SA;' SAyu e SAr} added, where A4; is a

non-terminal of G. There is a start state z, a final state z; , and a state z; for

each A;. The rules of the mapping are defined as follows:

a) Add (zo,\) =(z;, 54) for every 157 7.

b) Add (z;,0)=(z,0),(z, 14)=(z, ZAJ), and (z;, ZA;) =(z, tAj) for
every i and j between 1 and r.

¢) Add (z;,1,)= (zf,\) for every 1<i 7.

d) Add(z,,0) =(z;,0)and (z;,24)= (z;,14) forevery 4.

e) Add (zq, M) =(z;,\).

5) Form the length-predicting grammars Ai for each non-terminal A; which is in
the deletion cycle of G or is a leading non-terminal in the deletion cycle. Con-
vert each A,- to general sequential machine M; as follows:

a) Convert A; to a finite automaton A *; .

b) Give M, the same state set, alphabet and start state as A e

¢) If A’; hasarule (g, 1) = p forstates ¢ and p, put a corresponding rule
(¢,0)=(p, A) in the mapping of M;.

d) Add arule(g,zc)=(g.7c) for each state ¢ of M; and each terminal of
the form z¢ in the terminal set of Imap (G, A, D).

6) Combine the machines M; to form a gsm M o which will operate on stri.ngs of
Imap(G,A,D) ortmap(G,A,D). The input alphabet is the alphabet of

{map ., and the output alphabet is a subset of the input alphabet without [,

85

for A; which are leading non-terminals in the deletion cycle. The start state

and final state is a new state ¢o. The mapping rules are as follows:

a) Addarule(go ly)=(mg,A) foreachl, and mg such that 4; is a lead-
ing non-terminal of the deletion cycle and m, is the start state of M;.

b) Add arule(gy, ls,) =(go.14,) for each A; which is in the deletion cycle.

c) Addarule(go 4)=1(g¢,24) and (go, 54) = (qo, s4,) for each 4;.

d) Add a rule (g, 0) = (g¢, 0). ‘

e) Addarule(m; ,\) = (g, \) for each m; which is a final state of M;.

7) Construct another gsm P from the machines M, such that non-terminal A; is
in the deletion cycle of G. P will operate on the output of M. The input
alphabet is the same as the output alphabet of M, The output alphabet is the
input alphabet with any terminals of the form /4 . The start state and final
state is py. The mapping rules are as follows:

a) Addarule(po, 14)= (mg,\) forl,, and m, such that A; is in the dele-
tion cycle of G.

b) Addarule(m; ,A)=(po, \) for each m; which is a final state of M;.

¢) Add rules (po. 0) = (po. 0), (po. 24,0 = (po, 24,), 2nd (po, s5,) = (po, Sa,)

for each A,;.

DEFINITION 4-56. Let G be a cyclic 2DNF grammar <Z,Z,N.R,S>f with
a consistent deletion cycle which contains non-terminals A and D. Then
4 Xp is an inversion map P(M(Z(map(G,A,D)))) and ¥, is an
inversion map P(M(Z (tmap(G,A,D)))) where lmap , tmap , P. Z, and
M , are defined by the construction steps above.

86

A grammar Imap (G .A . D) or imap (G .A, D) generates a regular sel which
contains strings of zeros and terminals of the form s;.{; and ¢ . corresponding to
non-terminals / and C of G. Each string in the set corresponds 1o some forest
derived from G. There is a zero in a string for each symbol that will be deleted by
the deletion cycle during the frontier operation on the forest to which the string
corresponds. Each string starts with a terminal s; representing the initial
undeleted subforest derived from J. There is also a terminal [; for each subforest
derived from non-terminal J which will be completely deleted by the deletion
cycle. For each subforest derived from trailer non-terminal C which will be
attached to the end of the yield during the frontier operation, the Imap (or tmap)
string has a terminal 7c. The grammar tmap (G, A, D) differs from
Imap (G ,A,D) in that its strings correspond to forests in which subforest derived
from trailing non-terminals will be deleted during the frontier operation. In

forests which have corresponding Imap strings, no trailers are deleted by the dele-

tion cycle.

The general sequential machines Z, M, and P remove the /; terminals from
strings of Imap and tmap. Z has the effect of moving the last {; in the string to
the front and renaming it s;. M simulates embedded deletion. Each time M
encounters a terminal /; in its input string where / is a leading non-terminal in
the deletion cycle, control is transferred to a submachine which reads a number of
zeros corresponding to the length of some word yielded by J. As the zeros are
read, no output is produced. This simulates the deletion of subforests derived

from leading non-terminals in the cycle. Given the restriction that the deletion

87

cycles are consistent, this simulation can be accomplished by a gsm. Without the

consistency requirement, a stack transducer would be required.

The machine P is similar 1o M ,, except that it operates only on terminals /z
where B is in the deletion cycle. There are no such terminals in /map strings, and
there is at most on such terminal at the beginning of rmap strings. P, therefore,
has no effect on Imap strings. Operating on lmap' strings, P simulates the deletion
of an arbitrarily large subforest containing both leaders and trailers. A gsm suc-
cessfully achieves this simulation since it happens only once in the string, and since

all other terminals /; have been removed by M before P is applied.

Note that Imap and tmap are regular grammars, and regular sets are closed
under gsm mappings, so 4 Xp and 4 Y, arealso regular sets. An inversion opera-
tion will be defined later to complete the deletion and move the terminals 7¢ to
their proper locations. The next lemma establishes the relationship between the
reduced Imap strings and the strings yielded from forest grammar G.

DEFINITION 4-57. Let 7, be a homomorphism on a set of strings such that
hy(1)=1,h0)=0,and h(a)=Afora =1 anda 0.

DEFINITION 4-58. Let h, be a homomorphism on a set of strings such that
ho(1)=A h5(0)=X,and hs{a)=a fora =1 anda ®0.

LEMMA 4-59. Let G be a cyclic 2DNF grammar <ZI,=,N,R,S>§ which con-
tains a consistent deletion cycle. Suppose non-terminals A and E are in the
cycle, non-terminals 7, B, C,.C,.....C, are outside the cycle, and R has a

rule D—7T. Then 4 X, contains w such that 7;(w) =07 and h,(w) =

88

S;lc,.-"lc, ifandonly if A =* B.T =%y,] =% . C; =*y, for
1<j<r,andsfr(a)=sfr(n)- 9 \sfriyy) IP°\sfriy,)-..
TP\ sfr(y,) where Isf7(n)l =i and x” is the external selector of y; for
0<j <.
PROOF. The lemma is established by proving propositions (A) and (B) below.
(A) If A=>* o, T =>*1y,,..., then 4 Xp has w such that ~;(w) =07 and
holw)=s;-1c,".. 1c .
Proof of (A) by induction on the number of derivation steps for « using non-
terminals in the cycle.
Base. A =>* « using one step for A.
It must be the case that A = D, and « is derived with A =T =* v,
Imap(G,A,A) hasarule A—»\. Z, My, and P produce A on input A. So
aXa hasw =X\ A(w)=Nand h(w) =\ sfria) =sfriyy)=
20\ sfr (v,), which satisfies (A) when d = 0 and s; and I¢, are not present.
Inductive hypothesis. Assume (A) is true when fewer than n steps involving cycle
non-terminals are used to derive a.

Inductive step. Show (A) is true when o is derived using n steps involving cycle

non-terminals.

Case 1. The derivation of « begins with A — #[, E)[; C,] where E is in the dele-
tion cycle, but C, is not. We are given that A =* «, I =* 7, T =>* y,,
C; =%y, andsfr(a)=sfr(n)- 2\ sfrlyg)- P\ sfriy)-...

2" "\ sfr(y,). Since a = #[, BN, v,] where E =* Band C, =>* y,, it fol-

89

nlows that sfr(B)=sfr(n)- 9 \sfr{yy) I'\sfrly;) ... -T2\
sfr(y,—1). The inductive hypothesis can be applied to establish that g Xp
contains w such that a;(w)= 0% and h,(w)=s; ‘¢ ~..-1¢ . Thestring
w is a gsm mapping of a word from lmap (G ,E, D). From construction step
2a,lmap(G,A,D) hasarule A>E -7c ,and 5o w -7¢_must be in AXp. But
hilw -tc)=hy(w)=d and hy(w *1c) =57 "tc, .1, , s0 (A) is satisfied.
Case 2. The derivation of o begins with A — #[,71][; E], where E is in the cycle
but / is not. In this case, & = #[, n][; Bl where] =* n and E =* B. We
are given that sfr(a) =sfr(n)- T4 \sfryy)- Z°\sfry,)-...
BN\ sfry,), T =%y, C; =* y;,and Isfr(n)! =i Thenon-
terminals 7’ and C; are descendents of E in the derivation of 8. The forest 8
may contain a leading subforest m' which is entirely deleted during the frontier
operation. In that case, sfr(B8) = sfr(n’): £ \sfr(yy): E°\sfriy,)-...
2P\ sfr(y,), where Isfr(n)l =1 | andd' =d+1i'—m forx™ the exter-
nal selector of 7. If B does not contain a ieading 7', then i’ = 0 and s/ r{(n’)
will not be present in sf7 (8). The inductive hypothesis can be applied to
establish that ¢ Xp produces w' such that & ,(w') =07 and h,(w') =
Sy ¢, .-"Ic,. W' Isagsm mapping on astring v' in lmap (G ,E,D)derived
E=* B-0F -l 1¢c,"..."1c, >* v for jSr or E=>B - -[; =* V.
By construction step 2b, Imap (G,A,D) hasa rule A -E -0™ -{;, and
A=>¥B-lyj-1c +...01¢, 0" -y or B -07 -1, - 0™ +{;. When machine Z is

applied to this string to get w . {;, not {;, will be moved to the front to

90

become s;. When A7, scans the string, /; will trigger the removal of ' zeros

from the string. Also. the string has m more zeros than v does. So A(w) =

hl(w')- Om_i‘ = 0d'+m—i' = Od y hz(\\') =5 ‘Z(“ . -..'l(l N and (A) is

satisfied.

(B) If 4Xp produces w such that A{(w)=0% and ho(w)=15; -7¢ ~..-1¢c, then
1 Cl r

A=*a,..., andsfra)=sfr(n)- ¢ \sfriyy)- L7\ sfr(y)-..

PN\ sfr (v,).

Proof of (B) by induction on the number of steps in the derivation of v in the
grammar !map (G, A, D) such that 4 X[, contains w.

The proof of (B) is similar to the proof of (A). QED.

LEMMA 4-60. Let G be a cyclic 2DNF grammar <X, %,N,R,S >§ which con-
tains a consistent deletion cycle. Suppose non-terminals A, D, and E are in
the cycle, non-terminals B, C,, C,,...,C, are outside the cycle, I ¢ NV, and
R hasarule E—#[, DI T). Then 4 ¥, contains w such that 4 (w) = 0¢
and ho(w) =157 -1¢, .. t¢, if and only if A =* B, T =>* y,, I =* n,

C; =*y; for 1< <r,and sfr(e) = s7r(n)- 29 \sfr(yo)-

P\ sfr(y) .. T\ sfr(y,) where Isfr(n)l =i and x? is the external

selector of y; for 0<j <r.
PROOF. This is the same as the previous lemma except that tmap is used instead
of Imap. The two propositions involved caﬁ be proven by induction on the
number of steps using cycle non-terminals which precede the application of the

rule E — #[, D[, T] in the derivation of a. The proof is very similar to that of

91

the previous lemma, and it is not shown here. QED.

A coniext-free grammar G, and an inversion map 4 X or , Y, representing
an inversion map can be combined to form a new context-free grammar A. The
rules of Gy and 4 X, are examined simultaneously to create rules for K. Termi-
nals in rules of G; which match zeros in rules of 4 X, are eliminated. Also,
occurrences of terminals Z¢ in rules of 4 Xp are moved to the ends of rules in X.
The grammar K is called the inversion of G, and 4 X, . As K is built, three kinds
of non-terminals are used: the single non-terminals of Gy called singlets, symbols
taken from Ng X Ny called doublets, and symbols from Ng X Nx X Ny called
triplets. The singlets will generate substrings of words in L (G7) which have not
been subjected to deletion. The doublets will generate partially deleted words of
L (Gy). The triplets generate strings of terminals 7 which represent the éomplete
deletion of a word from L (Gy). The inversion process is described in the steps
below. The steps are carried out in the context of a é—d forest grammar G from
which Gy and 4 Xp are constructed.

1) Modify the context-free grammar Gy = <Ng, L, Rg, Lg > so that every rule
has the form W—oa,W—a -U,orWoa -U -V for W,U,V e N; and
aelg.

2) Write a regular grammar <Ny, Iy, Ry, Sy >for 4 Xp.

3) Form a set of rules xout (4 Xp, Gy), whose non-terminals are triplets as
specified below. Assume A, B, D yE,andJ e Ny, T,U,V, and WeNg, #

and % represent any non-terminal in Ny, 7 and s; € Zyx,a € L. and B is any

92

right hand side in a rule of Rg.

If Ry has and R; has put in xout (4 Xp, Gy)
a) Boie -E W B WB# 1 - WE#
b) Bo0-E Woa WBE —\
¢) Bo0-E Woa-U WB# - UF#
d) B-0-E Woa-U-V WB# o UE % - W %#

4) Form a set of rules zail (4 Xp) according to the steps below. Assume A, B,
D, E are non-terminals in Nx and 7o € Zx.

a) If Ry has B—~1c -E, add 0BD —t¢ - OED.
b) If Ry has B—1tc -D,add OBD —1c¢.

5) Form a context-free‘grammar K = <Ng,Zg,Ryg,Sx>=invert (4 Xp,Gr)
Zx will contain Z; and the terminals 7o from Zy. Ny will contain singlets,
doublets, and triplets from Ng and Nx. Put xout (, X, Gy) and zail (4 Xp)
in K as rules for the triplets. Rules for singlets are the same as in Gy, and
rules for the doublets are added according to the chart below. Assume that
T,U,V,WeNg,aeks;,0,tceZy,and A,B,D,Ee Ny. Thesymbol #is
a wildcard representing any non-terminal in Ny, and p represents any right-
hand side in Rg. Also assume that a code table associates with each doublet a
distinct integer greater than zero. The doublet MJ; is a wildcard doublet

which represents every doublet whose code is i such that i = code(WB).

If R; has and Ry has add to invert (4 X, Gr)

) Wop Boic WB oW -MJ, 1¢

93

b) W p Boic -E WB, = MJ, -1

O Woa B0 WB o MJ,

DWoa- U B0 WB U - MJ,

e Woa U -V B0 WBymU -V - MJ,

)W —a B—0-E WB g MJ, - OED

g)Woa- U B-0-E WB;—MJ; for j = code(UE)
hWoa-U-V B-0'E WB; -V -MJ; for j = code(UE)
YWoa-U-V B-0-E WB; —MJ; -UE# for j = code(V#)

j) If there is a rule WB; — 0, *MJ; 6, where W =T and Rx has A —s7° B,
then add a rule WB; — 0, * 0;.

k) Add Sx—1; - WE, for every doublet with subscript 0. Also, add
Sx—1t;+TBD where Ry has A — sy - B.

DEFINITION 4-61. Let G be a 2DNF grammar which has a consistent deletion
cycle with non-terminals A and D. Suppose also that 4 X, (or 4¥p)is
an inversion map formed from G, and G has a non-terminal 7 whose
yield can be generated by a context-free grammar Gr. Then
xout(4 Xp,Gr) is a regular grammar formed by construction step 3

above. tail (4 X) is a regular grammar formed by step 4 above, and
invert (4 X, Gy) is a context-free grammar formed by all the steps above.

LEMMA 4-62. Suppose 4.Xp (or 4Xp)is a regular inversion map and Gr is a
context-free grammar. xout (s Xp, Gr) = X has a non-terminal WBE such
that WBE =>* 1¢ -...-1¢, if and only if G; has non-terminal W such that
W =* B, , Xp has B such that B =>* z -0-E forz in Zx*, h,(z -0) = 0%,

hyz)=1c, ... 1c,. and IBI =d.

94

PROOF. The lemma is established by proving propositions (A) and (B) below.
(A) If G; has W such that....then Y has WBE such that WBE e el
Proof of (A) by induction on ! 1.
Base. 1z 1=0.
In this case, 4 Xp hasarule B—0-E,d = 1,hy(z)=\. Sinced = 1,B=«
and Gy has W—a. By construction step 3b, X has WBE — A.
Inductive hypothesis. Assume (.A) istrue for0< 1z 1 <n.
Inductive step. Show (A) is true for Iz | =n.
Case 1. z =1 -2z where J =>* z\.
AXp has Botc,-J,B=>*1c 2 +0-E, and Gy has W =% B. Also,
hy(z' -0) =h(z -0) and h (2") =1¢ ... tc,. The inductive hypothesis can
be applied to establish that xout (4 Xp, Gy) contains WJE such that
WJE =* 1¢ -... 1¢c,. Step 3a adds WBE — 1¢ -WJE to X. So WBE =
tc, WIE =* 1¢ -... 1.
Case2. z =0z where/ =%z and 83=a 8.
xout (4 Xp,Gr)has B—~0-J and B=* 0-z' -0-E. hy(z' -0)=d—1, and
hy(z')=hyz)=1c, -... 1c,. Also, thereis arulein G W— a -U where
U =>* B'. The inductive hypothesis can be applied 1o establish that
xout (4 Xp, Gr) contains UJE such that UJE =>* ¢ +...-1¢c . Step 3c adds
WBEUJE to X, so WBE => UJE =* 1¢ ... Ic,.
Case 3. 2 =0-zy-z,whereJ =*z,, F *z,,and B=a ;B>

AXphasBo0-J,J=*z;-F.and F &*z,-0-E hyz))=d = 1B1,

a5

hizy)=d = 1Byl andd = 1+d +d,. Also hiy(zy)=1¢ el
ho(z,) = ’c,.,+-+'1c,»and Gy has W— a -U -V where U =* B and
V =* f,. The inductive hypothesis can he applied to establish that
xout (4 Xp, Gy) has UJF such that UJF =>* 1¢ - ... *2¢,» and VFE such
that VFE =* 1¢ -...-1c . Step 3d adds the rule WBE - UJF - VFE. So
WBE => UJF -VFE =% 1¢,-..."1¢, “Ic,,, " ---*lc, =lg," .- "Ic,.
(B) If X has a non-terminal WBE such that WBE =>* t¢ +...-7¢ =7, then Gy
has non-terminal W such that W =* B, , X, has B such that B =* z -0-F for
z inZx*, hi(z-0)=0% hyz)=1¢,"... 1c, and I8l =d.
Proof of (B) by induction on the number of steps in the derivation of .
Base. WBE derives 7 in one step.
7 must be \, and X has WBE =>* \. This means that 4 X, has B— 0-E
and Gy has W —»a. 2,(0) =d and h,(0) = A, so (B) is satisfied.
Inductive hypothesis. Assume (B) is true when WBE =>* 7 in less than n steps.
Inductive step. Show (B) is true when WBE =>* 7 inn steps.
Case 1. WBE =>1¢ -WJE =>* 1.
Construction step 3a was applied in this case,so 4 X, has B —1c,-J and Gy
has W such that W =* (. The inductive hypothesis can be applied with
WJE =* 1, ... I¢, 1o establish that 4 Xp hasJ =>* ' -0-E,
hy(z'-0)=d,hy(z')=1c, ... 1c, and 1Bl =d. So B =>*
te, ' *0-E=z-G-E hy(z-0)=d.and hlz)=1c -hal) =1¢, ... 1c,

Case 2. WBE =UJE =*r.

96

Construction step 3¢ was applied 10 get WBE - UJE. So 4 Xp has B—0-J
and Gy has W—a -U. The inductive hy pothesis can be applied 1o establish
that 4 Xp hasJ =* ' -0-E,h(2 Q) =d—1,h,(')=7.and U =* B
where |81 =d—1. SoW =>* a-B=8,IBl=d.B=>* 0-2' -0-E =
z+0-E,hy(z-0)=d,and hy(z)=7.

Case 3. WBE =>UJF -VFE=* 1¢ *...°1c *

s ZCJ_H'...'ZCr =T7T.

Construction step 3d was applied to get WBE —»UJF - VFE. So 4 Xp has
B—0-J and Gy has W— a ‘U -V. The inductive hypothesis can be applied
twice to establish that 4 X, has J =>* z,-0-F and F =* z,-0-E,
hi(zy-0) =dy hy(z,-0)=dy hy(z) =1¢ - ...otc, hylzo) =1¢,, - 2c,
U=*B,V=>*By, 181 =dq,and 1Bl =d, SoW =g U -V =>*
a-B;-B,=818l=1+d+dy,=d,B=>0-J=>* 0-2,-0-2,-0-E =

2 ’O‘E,hl(Z '0)= 1+d1+d2, andh2(2)=tcl‘...’2cr =T. QED.

LEMMA 4-63. Let 4 Xp (or 4 Y,) be a regular inversion map. The set of rules
1ail (4 Xp) has OBD such that 0BD =>* t¢ -...-1¢ if and only if 4 X has
B such that B =>* ¢ +...'1c, where B is a descendent of A.

PROOF. The theorem is proven by a simple induction on r, which corresponds to
the number of steps in the derivation of 7¢, - ...*7¢, . The induction is not shown

here. QED.

LEMMA 4-64. Let G be a 2DNF grammar <Z, =, N,R,S >§ which has a con-

sistent deletion cycle containing non-terminals A and D. Suppose that 4 Xp

97

is an inversion map for the deletion cycle and 7 is a non-terminal outside the

deletion cycle whose yield is generated by contexi-free grammar G7. 4.Xp
has non-terminal B such that B =* w, h(w) =07, h,(w) = e, ---"1c,,
and Gy has a non-terminal W such that W =>* B, 18124, if and only if
invert (4 Xp, Gr) has a non-terminal YF such that YFo=>* £¢\B8-MJ,; -

‘1¢," ... 1, for every doublet MJ; wherei = code(WB) and YFo=>>*

I4\B-1¢c," ... tc, when W =T and 4, Xp, hasarule A— s;-B.

PROOF. The lemma is established by proving the propositions (A) and (B) below.

The proofs are written for the general case in which W =T or A does not derive

sy + B. The proofs of the special cases involving start symbols are the. same as

below except that MJ; should be removed from the sentential forms. Construc-

tion step 5j adds terminating rules without MJ; for start symbols T and B.

(A) If 4 Xp has B such that B =>* w, hy(w)=0% h(w)=1¢ *... 1c, and

Gy has W such that W =* B, 181 2>d, then invert (4 X, ,G7) = K has YF

such that YFo=>* £9\B-MJ, - te," - tc, forevery MJ; where i = code(WB).

Proof of (A) by induction on |w I.

Base. lwl=1.

Case l. w =1c.
In this case,d = 0and ho(w) =10, W =* B, IB1>0, and 4 X, has a rule
B 1c. Step 5a of the construction adds to A" a rule WBg— W - MJ; - 1¢
wherei = code(WB). So WBy= W -MJ; “tc =* B-MJ; tc =

£O\B-MJ, -1c.

98

Case 2. w =0.
We haved =1, hy(w) =AW =% 8 |B8I1>1.,andarule B0in 4, Xp. If
B = a then Gy has W—a, and step 5¢ puts WB— AMJ; in K, where
i = code(WB). So WBo=> A-MJ, = X' \a -MJ, =T\ B- MJ,.

If B=a -B where U =* 8, then G; has W—a -U, and step 5d adds
rule WBy— U -MJ,, i = code(WB). So WBy=> U -MJ, =>* B-MJ;, =
I\ B-MJ;.

If B=a -B; B, where U =* B;,and V =>* B,, then G; has
W —a -U -V, and step 5e adds rule WBy— U -V - MJ,, i = code(WB). So
WBo=> U -V -MJ;, =* By-By-MJ; =L\ B-MJ,.

Inductive hypothesis. Assume (A) is true for lw | <n.

Inductive step. Show (A) is true for iw | = n.

Case 1. w =1c W'
In this case, h;(w') =hi(w)=0%, ho(w)=1c ... 1c,, aXp has
B—1c,-E where E =>* w', and Gy has W =>* B. The inductive hypothesis
establishes that invert (4 X, G;) = K has YF (such that YF,=>*
¢ \B-MJ; “1c," ... 1c, Where j = code(WE). Step 5b adds a rule
WB; — MJ, -1¢, where i = code(WB). So YFo=>* T¢\B-WB; -ic,-
cotte, > TINBMI, 1 2,

Case2. w =0-w and B=a.
In this case, 4 Xp has B—0-E and E =>* w' . hy(w) =1, hy(w') =1 -

ceatles and Gy has W—a. Since |8 2d,d must be 1, and w' has no zeros.

99

So ho(w')=w' =1¢ +...-7c . Step Scadds a rule WBo— AMJ; -OED where

i = code(WB). Step 4 of the construction added zail (4 Xp) to K, and

lemma 4-63 establishes that OED in tail (, X) derives 7¢ ... :I¢ . So

WBo=> MJ; -0ED =* MJ; tc,* .. tc, =L\B-MJ;1c +... 1c,-
Case3. w =0'w and B=a - 8.

aXp has B»0-E and E=>* w' , hy(w)=0""hy(w)=1¢ +... 7, and

Gr has W —a U whereU =* B, and 18| 2d —1. The inductive hypothesis

establishes that invert (4 X5, Gy) = K has YF ysuch that YF,=>* £¢71\ 8.

WB; -1c," ... tc, where j = code(UE). Step Sg adds a rule WB; » MJ;

where i = code(WB). So YFo=>* T¢I\ B-WB; -t¢c ... 1c. =

TEINB M g et S TENBMT; v 1g a0,
Cased. w =0-wy-wy, B=a-B;-B3 and I1B1>d > 1+ 1B 1.

aXp has B-+0-E,E =>* w,-w,, H is a descendent of E such that

H=*w,, hi(wy)= 0%, Ay(wy) = tc," - lc, hilwy)= 092, hy(w,) =

tc,., --lc, d1= 1By, d2<1Byl,d = 1+d+d; and Gy has W —

a-U -V where U =* $; and V =* B,. In this case, B; is completely

deleted, and 3, is at least partially deleted. The inductive hypothesis estab-

lishes that invert (4 Xp, Gy) = K has YF such that YF =>*

T2\ By WB; -tc, *..."tc Where j =code(VH). Step 5i adds a rule

WB; — MJ; -UEH where i = code (WB). Step 3 of the construction adds the

rules xour (4 Xp, Gr) to A. The value of d, must be at least 1, so it is true

that E=>* w-H =z -0-H.hyz -0) = 0%, and holz)=1¢,"..."1c,- We

100

can apply lemma 4-62 10 establish that UVEH =>* 1c -...-i¢,. S0 YFy=*
292\ B, WB, Ue, e le, TNBy MJ - UEH -1, ... 1c S
2\ By MU 1c,te, =TT G BBy MUttt =
TINB-MJ;1¢, ... 1,
Case5. w =0-w' and B=a By By and 1+ 181 2d>1.
4Xp has B—0-E and E=>* w', y(w) =01 hy(w') =1c, ... 1¢c,, and
Gr has W—a -U -V where U =>* ; and V =* f8,. In this case, part or all
of B; is deleted, but none of B, is deleted. The hypothesis establishes that
invert (4 Xp,Gr) = K has YF such that YFo=>* T¢I\ B;-WB; -1¢ -
...Ic Wwhere j = code (UE). Step 5h adds a rule WB; — V -MJ; where
i =code(WB). SoYFo=>>* Z¢7I\B-V -MJ; “1¢c,*...1c >*
OB By M iyttt =ZU\BMT; 1,0, -
(B) If invert (, Xp, Gy) = K has YF g such that YF y=>* { where { =
T4\B-MJ; - tc," - I, for every doublet MJ wherei = code (WB), then 4 Xp
has B such that B =>* w, hy(w) = 0%, hy(w)=1c -...-17c, and Gy has W
such that W =>* B, 181 2>d.
Proof of (B) by induction on the number of doublet rule applications in the deriva-
tion of &.
Base. YFy=>{ in one step.
Case 1. { isderived with WBy=>W -MJ; -t =>* B-MJ; “tc.
R contains such a rule (step 5a) only if 4 Xp has B—1- and G; has a rule

forW. So B=*1.,d =0, hy(tc) =1¢,and W =* B, satisfying (B).

101

There are similar cascs for steps 5¢ through 5f.

Inductive hypothesis. Assume (B) is true when YF j=>* { in less than n steps.

Inductive step. Show (B) is true when YF¢=>* { inn steps.

There are four cases which correspond to cases 1, 3, 4, and 5 in the inductive
step of the proof of (A). Only case 3 is shown here.

Case 3. YFo=>* L¢\B-MJ; 1¢ ... 1¢c,,and WB; — V - MJ, is the last doub-
let rule applied, where i = code(WB) and j = code(UE). This rule is added
by step Sh,so 4 Xp has B—0-E and Gy has W—a -U - V. If one less step
is taken in the derivation from YF, we have YFo=>* L¢\B,-WB; -1¢ -
...tc_where B = B, * B, such that V =>* B,. The inductive hypothesis can be
applied with this shorter derivation to get U =>* B;, E =* w', h,(w') =07,
and }zz(w')=tc, * ... tc,. Itiscertainly true that £ \ = Z%*'\a - 8. So
we can write YFo=>* L¢*\a - B;-B,-MJ; -1 * ... 1c . Since U =* B,
V =* 3, and thereisarule W— a -U -V, wehave W =* g -f;-8, =
a-PB. Also, B=>0-E=* 0-w' =w, h(w)=0" and hy{w)=1c -

...1c . Thus, (B) is satisfied. QED.

LEMMA 4-65. Let G be a 2DNF grammar with a consistent deletion cycle for
which 4 :XTD is defined, and Gy is a context-free grammar which generates the
yield of T € N. 4 Xp has non-terminal A such that A =* w, h(w) =0,
holw)=s;+2¢ *... 1c,, and Gy has non-terminal T such that 7 =>* B,
|81>d, if and only if invert (4 Xp. Gy) has start symbol S such that

SI\' @* 21 ‘Ed \B‘rcl' ...'ZCr.

102

PROOF. Step 5k of the construction of invert (4 X . G;) adds a rule Sg— 7, -

YF for each doublet with a zero subscript. Lemma 4-64 takes care of the rest.

QED.

THEOREM 4-66. Let G be a 2DNF grammar <ZI,=,N,R,S >f such that all of
its deletion cycles are consistent. There is a grammar G' =
<I',E,N',R',S">¥ such that G' has no deletion cycles and Y 4(G) = Y ((G').

PROOF. To constructG',setZ'=X, = = £,and §' = S. For every subgrammar

G¢ which has no deletion cycles, put the rules and non-terminals of G¢ in G'. For

every G4 where A is the root of a deletion cycle, follow these steps:

1) Find every rulein G4 of the form a) D—T or b) B— #[, DI[; '] where B
and D are in the deletion cycle, but T is not.

2) For each such rule, form context-free grammar Gy, regular grammar a) 4 Xp
or b) 4¥p, and context-free grammar a) K; = invert (4 Xp,Gy)or b)

K; =invert(4 Xp, GT.), where i ranges from 1 to the number of rules of the
form a)or b).

3) Convert each K; to a 2DNF grammar X';.

4) In the rules of every K';, replace tc with non-terminal C. Replace occurrences
of non-terminal 7" in the right-hand sides of rules with #[, T'][; x?] where x?
is the external selector of T'.

5) Foreachi,add A"; to G' along witharule A—S x, Where Sk is the start
symbol of X';.

The theorem is established in the proofs of propositions (A) and (B) below.

103

(A) If G has non-terminal A such that A =>* a and s/7(a) = w, then G' has
A' such that A' =* o' and sfr{a') = w.

This can be proven by induction on the length of the derivation of a. The
formal induction is not shown here, but its substance is summarized. If G4 has no
deletion cycles, then it is clear that o can be derived in G' using the same rules as
in G. But suppose A =* @, sfr(a) =w, and A is the root of a deletion cycle.
Then sfr(a) =sfr(n)- T \sfriyy)-ZP°\sfriy)-...-T" "\ sfr(y,), where
the first leading non-terminal in the cycleis 7 and 7 =>* 7, d is the accumulated
deficit of the overlapping selectors, I =>* vy, trailer non-terminals C; =* vy; for
1<j <r,and x”’ is the external selector of ;. Lemmas 4-59, 4-60, and 4-65
establish that invert (4, X, Gy) = K; derives a string s; - £¢ \ s 7 (o) - c,*

.."Ic,. Steps 3 and 4 of the construction turn K; into K*; which derives o’ =
#LING #L #L T PG #20C L #LCLI .. #0,C 1. N where T =>*
T4\ sfr(vyg). Sosfrla)=sfra).
{B) If G' has a non-terminal A' such that A' =* o« and sf7{a') =w, then G
has A such that A =* o and sfr(«) = w.

The proof of (B) is similar to the proof of (A). QED.

COROLLARY 4-67. Let G be a 2DNF grammar <X, =, N, R, S > with con-

sistent deletion cycles. There is a context-free grammar G' such that Y (G) =

L(G").

PROOF. This follows from theorem 4-66 and theorem 4-23. QED.

104

The grammar ABC presented at the beginning of this chapter is an example of
a 2-d grammar with a consistent deletion cycle. As a result of the previous corol-

lary. the yield of ABC is a context-frec language.

OY2F and the Subclass OY2F,

Recall the language generated by grammar ABC. A derivation and subsequent
frontier operation generates a stringa’d* for i 20, and then deletes an arbitrary
number of characters from the front of the string while adding c’s at the end.
Suppose a rule S— #[, #[,el; f [, x1[; ST, d[; y 1] were added to ABC to create
ABC'.- Then the deleting steps could be intermixed with steps that add ef to the
front and d to the end of the string. The deletion cycle would no longer be con-
sistent, and the methods above could not be used 1o convert ABC’ to a context-free
grammar. The modified deletion cycle contains mixed increasing and decreasing
steps, and a general sequential machine is not be adequate to create the inversion
map. This does not necessarily mean that the yield of ABC’ is not. context-free. If
the pumping lemma for context-free languages is applied to arbitrary words of
Y o{ABC'), we find that every word can be successfully pumped. It seems likely
that a method will be discovered for transforming inconsistent deletion cycles to
context-free subgrammars. The methods employed above are inadequate for this
purpose, and it remains an open question whether OY2F = context-free. We can,

however, define a large subclass of 0Y2F which is context-free.

105

DEFINITION 4-68. A language L belongs to the class OY2F,. if and only if
L =YyG) and G is a 2-d forest grammar such that G has no deletion
cycles or every deletion cycle in G is consistent or regular.

THEOREM 4-69. L ¢ O0Y2F, if and only if L is context-{ree.

PROOF. Theorem 4-533 and corollary 4-67 establish that L ¢ 0Y2F, =L is
context-free. Corollary 4-2 establishes that a context-free grammar can be con-
verted to a yield-equivalent 2-d forest grammar. The 2-d grammar will contain

_only standard selectors, and thus no deletion cycles at all. So L is context-free

implies L ¢ 0Y2F_. QED.

‘We conclude the analysis of 2-d forest grammars by showing that 0Y2F is a
proper subset of OY3F. First it is shown that a language known to be in OY3F is

not in OY2F.

LEMMA 4-70. The language L = {a?"}, n >0, is not in OY2F.

PROOF. Suppose L € 0Y2F. Then L = Y (G) for some 2DNF grammar G =
<Z,E,N,R,S>F Ifwel,thenw =sfr(Band S =* B Since L isan
infinite language, there must be a increasing cycle in G. Let B; be a forest gen-
erated from i applications of an increasing cycle step, and let w; = sfr(8;). L
contans a string w; for every value of i 20. Regarding the difference in size of B;
and B;,1, we have |8, 1— [B; | =c, where c isa constant which can be deter-
mined by examining the rules of the grammar. Observe that if 8 is a 2-d forest,
then | fry(B)I < 1B1. The 1-d frontier operation can only decrease the number of

nodes in a forest. Since B; is a subforest of B,,. it follows that lw; ;1<

106

lw, I+ ¢. There are also B; ,, and w, ., such that |w; 51 < Iw, ,;14+c But now
we have a contradiction. If the difference in size between any three consecutive

words in L is a constant, L {a?"}. QED.

COROLLARY 4-71. OY2F is a proper subset of OY3F.

PROOF. If L is in OY2F, then it is the yield of some 2-d grammar G. This gram-
mar can be converted to a 3-d grammar G' with the same string yield by adding
S' — #[;#[, S]] and all the rulesof G to G', where ' is the start symbol of G'
and S is the start symbol of G. So OY2F is a subset of O0Y3F. Theorem 79 of
Baldwin’s thesis shows that the language {a?"}, n >0, is in ALG }. Theorem 4-1
earlier in this chapter establishes that ALG} € 1Y3F, so it must be true that
{a®"}e OY3F. So every language in OY2F is in OY3F, but O0Y3F has a language

that is not in OY2F (lemma 4-70). QED.

In summary, OY2F, is a subset of OY2F and is equivalent to the class of
context-free languages. All 2-d forest grammars which do not contain deletion
cycles yield languages in O0Y2F,. Many grammars which do have deletion cycles
have also been shown to yield O0Y2F, languages, provided the deletion cycles are
regular or consistent. While OY2F may contain non-context-free languages, it is

still much smaller than OY3F, the next class of string languages in the forest-yield

hierarchy.

107

CHAPTER 5.

THREE-DIMENSIONAL FOREST YIELD LANGUAGES

The frontier operation on a 2-dimensional forest is the concatenation of the
strings which are the frontiers of its subforests. When two strings are con-
~ catenated, there is no confusion about where to join them: the second string is
attached to the end of the first. The frontier operation on a 3-d forest is a concate-
nation of the trees which are the yields of subforests. Again, the concatenation of
two trees can be described as attaching the second tree to the end of the first. But
that description is not complete, since the first tree may have several ends, or
leaves. The selectors in a forest indicate where concatenation will occur and what
subtrees will be attached. Two or more selectors may demand the same subtree,
and in that case multiple copies of the subtree are attached. This gives 3-d forest

grammars a copying power that 2-d forest grammars do not have.

Examples of 3-d Forest Grammars

A 3-d forest grammar can be written which yields the language {a2"}, n 20.
This grammar, called A2N, will illustrate the copying power of the frontier opera-
tion. As shown here, the grammar has only one non-terminal, A ¢ N,. The selec-
tor setis £ = {y, z}, where y represents <2,A>and z is <1,A>. The terminal
setis T = {#, a}, and the rules are the following:

1) A-#[#LyLyI, AL and

2) As#lal 2]k

108

RN S 2
| |
R, S S S 2
| | |
Y-l #-2 #oD
| | |

y y---1 a---1
| I
y z
derived 3-d forest
#---2
]
D 1
| !
7 S, . 1 #--2
| | |
a---1 #---2 #£ -2 1
l I I |
yA a---1 a---1 #---2
| | |
z Z a---1
|
z
2-d frontier
a---1
I
a---1
|
a---1
I
a---1

]
zZ
1-d frontier

FIGURE 5. 3-d forest and yields produced by A2N

109

Figure S contains a 3-d forest produced by A2N and its 2-d and 1-d frontiers. A
derived forest yields the string a?", where n is the number of times rule 1 is

applied in the derivation. The derivation sequence for the forest in figure 5 is

112,

The grammar A2N has only A-paths on its selectors, so the selectors are stan-
dard. The use of extended selectors in 3-d forest grammars does not affect the
copying power of the frontier operation, but is does increase ﬂexibilify in specify-
ing what subtrees will be copied, and it also introduces deletion cycles. This
enhanced deletion power makes it possible for the frontier operation on 3-d forests
to simulate list-processing operations such as the selection of an arbitrary element
from a list or the division of a list into disjoint sublists. The forest
#l, #l,e.0l; #[; #e,); -+ #[, #[,,11- -+ 11l can be used to represent a list
of k elements, e; through e,. The forest is structured so that a selector can
extract a single element or a sublist with one or more of the leftmost elements
deleted. For example, the selector <2, 22> extracts element e, and the selector
<2, 21> extracts the rest of the list. The creation of forests which represent lists
is illustrated by the 2-d grammar BLIST. The terminal set is T = {#, b} and the
selector set is = = {z}, where z = <1,A\>. There is only one non-terminal,

B € N,. The rules are as follows:
1) B #[L, #0621, Bl and

2) B #[,#Lb[211

110

FIGURE 6. 2-d tree produced by BLIST
Figure 6 contains a 2-d forest produced by BLIST with the derivation sequence

11 2. The forest represents a list of three b’s.

Another example grammar, MERGE, illustrates the list-processing power of
3-d forest grammars. MERGE will have two 2-d subgrammars, ALIST and BLIST,
which generate lists of a’s and b’s. The frontier operation on a forest produced by
MERGE will have the effect of merging two lists into a single list of mixed a’s and
b’s. The terminal set is T = {#, a, b}, and the selector setis = ={n.o0,p, ¢,
t,u.v,z}, wheren = <2,211>,0 = <2,212>,p = <2,2121>,¢ = <2,22>,
1 =<2,221>,u =<2,21>,v = <£2,2>, and z = <1,A>. The non-terminals
are N,={S,M,P,Q,V,B, A}, where S is the start symbol. The rules are as

follows:

111

#-3---2
! |
#-2 #-3---2
| | |
u-1 #2 #-3---2
| | | |
#-2 v-1 #2 #2
| | | |
v-1 p-1 t-1 #-2-----—-- 1
| | i | |
n #2 u-1 #2---1 #2
| | | | |
o-1 #2 a-1 #2 #2---1
! | | | | |
n q 2z #2Db-1#2
] | |
a-1 z #-2

i |
z b-1

|

z

FIGURE 7. 3-d tree produced by MERGE
DS—#[Q1,M],

2) Q- #luly #Lv [n]l

3) Q- #L vl #Lul 2 11,

M- #[3PH,M],

S)M-#VIL#L AL B

6) P #l e luly #[,¢0, n TN,

)P #Lvlply #holin 11

8) Vo #l e luly #4110,

9) V—»#[ZV[lp[l #[20]]]],

112

10) B #1, #1602 1, B 1L
11) B #[, #5610, 211,

12) Ao #l,#al, 21 A1), and

13)A——>#[2#[30[1:]]]-
#-D
|

S, S 1

z b---1
|
z
2-d frontier
b---1
!
a---1
!
b-~-1
|
a---1
|
z

1-d frontier

#__D

#-2

a---1

FIGURE 8. Frontiers of the tree in figure 7

113

Rules 10 and 11 constitute the subgrammar BLIST, and rules 12 and 13 form
a similar subgrammar ALIST. Non-terminal A generates the list-processing cycle.
The cycle is designed so that an imermedi-ate 2-d tree of the form #[,a list [,
b list [y mixed list 1]] is maintained throughout the frontier operation. This struc-
ture is initially set up by application of rule 5, the terminating cycle step. Each
application of rule 4 in the cycle corresponds to an operation on the intermediate
tree when the frontier is taken. Each such cycle step introduces a subtree derived
from P by rule 6 or 7. The subtree of rule 6 takes an a off the a-list and attaches
it 1o the front of the mixed list. The subtree of rule 7 takes a & off the &-list and
attaches it to the mixed list. The application of rule I corresponds to the final step
of the frontier operation. This step attaches the remainder of the a-list and the
remainder of the b -list as the first two elements of the mixed list. Figure 7 con~
tains a 3-d tree derived from S, and figure 8 contains its 2-d and 1-d frontiers.

The derivation sequence for the tree in figure 7is 124 758 10 11 12 13.

In list-processing applications, the need sometimes arises to turn a complex
list into a simple list. A complex list is one whose elements can themselves be
lists. The grammar A2N produces forests whose 2-d yields can be considered to
represent complex lists of a’s. Figure 9 shows complex and simple list representa-
tions with 2-d trees. A 3-d grammar SQUASH can be written which creates com-
plex lists of a’s as 2-d subtrees in its derived forests. The frontier operation then

transforms the complex lists into simple lists. SQUASH has terminal set =

114

forest representing a simple list

FIGURE 9. Tree representations of lists

~

<

S

21>, u =<2,21>, v = <2,2>5, w = <2,22>, x = <2,222>,

v = <2,A> and z = <1,A> The non-terminal setis N, ={R, W, 7T, A} with

115

start symbol R. The rules are the following:
1) R-#[TILR]
2) R—#[3#Luly #[v ML W],
3) T—#[el # w11,
4) T #[#Lx [#L sl MG 2]l
5) W #3#Lwl) #L [« I, W),
6) WA,
7 A-#[3#Lyvlyll,A] and

8) A= #[yal z]l

#H--3em- 2
I |
#--2 #--3----- 2
I ! I
t--1 #--2 #-3----- 2
| I | I
#-2 t--1 #.-2 #-3----—- 2
I | | | |
w--1 #-2 u--1 #-2 #-3----- 2
| ! | I ! |
u w--1 #--2 w--1 #-2 #-3----- 2
| l | | l |
u v #--2 y--1 #--2 #--2

FIGURE 10. 3-d forest produced by SQUASH

116

Rules 7 and 8 constitute the subgrammar A2N. The non-terminal R generates
the list-processing cycle. Rule 2 is the terminating cycle step. An intermediate 2-d
tree of the form #[5o0ld list {; new list 1] is maintained throughout the cycle.
Each time rule 1 is applied in the cycle, a non-terminal 7 is introduced. T is
expanded by rule 3 or rule 4. Whenever a subtree produced by rule 3 is encoun-
tered during the frontier operation, the first element of the old list is moved to the
front of the new list. Whenever a subtree produced by rule 4 is encountered, the
first element of the old list is split into two elements and the new list is
unchanged. If the first element of the old list is not itself a list in this situation, a
path error will occur. The non-terminal W generates a cycle which repeatedly
divides the first element of the old list into two pieces. When the first element is a
simple element, application of rule 2 makes this element the initial new list, and
the intermediate tree is in the proper form for application of the R cycle. Figure
10 contains a 3-d forest produced by SQUASH and figure 11 shows its 2-d fron-
tier. The derivation sequence for the forestis 1313256 7 7 8. The old list is
partially or completely simplified during the frontier operation, but no a’s are
added or deleted in the process. The resulting 2-d forest has the same number of

a'’s as the 2-d forest derived from non-terminal A.

The four example grammars just introduced can be composed to form a gram-
mar which will help relate 0Y3F to other known classes of languages. The gram-
mar BA2N might be described as MERGE (SQUASH (A2N), BLIST). It yields the

subset of {a | b}* such that each string in the subset has 2" a's,n >0, and an

117

z #---2

a---1

FIGURE 11. 2-d frontier of forest in figure 10

arbitrary number of b’s. The terminal set of BA2N is £ = {#, a, b}, and the
selectorsetis =={n,0,p,q,s,t,u,v,w,x,y, z |, where the selectors are
defined as in the preceding examples. The non-terminal set is N, =
{S,M,P,Q,RT,V,W,A, B}, with start symbol S. The rules are as follows:

1) S—#[;0lLM]

2) Q- #Luly #L,vn 1T,

3) Q- #0vl #hul, n 11,

4) M- #[;PI.M],

5) M- #[;VI,#[L,R[, B,

6) P—)#[27[1U[1 #[Q_Q[ll'l]]]]],

118

7) P#bLvl ol #Lolin L

8) Ve #[yrlyuly #,¢10

9) Vo#lvlpl, #Lo 1Nl

10) R #[;TILR],

1D R #[3#Lul, #L,vINL W],
12) T— #[e [y #L w1,

13) T #[#lx [, #[s [M w1,
1) Wo #,#Lwl 2L Lz MLW],
15)WoA,

16) A-#3#LyLyN;AL

17) A= #[,al; 21},

18) B~ #[, #[,b(; z]I, B}, and

19) B— #[2 #[zb[lzl]]-

The yield of BA2N is a language which is not an 10 macro language. It can be

used to prove that 1Y3F is larger than ALG i

THEOREM 5-1. ALG$ is a proper subset of 1Y3F.

PROOF. Theorem 4-1 gives us ALG] € 1Y3F. Fischer (1968) has shown that
the language of the preceding example, L (BA2N), is an Ol macro language which is
not an 10 macro language. Baldwin (1983) has shown the equivalence of ALG 3

with the 10 macro languages. So L (BA2N) is in 1Y3F, but not in ALG 3. QED.

119
Three-Dimensional Normal Form

The goal of this chapter is to identify a subclass of 0Y3F which is larger than
the 10 macro languages, but still within the context-sensitive languages. A normal
form can be defined for 3-d forest grammars such that every language in 0Y3F is
Y o(G) where G is a normal form grammar. The normal form prevents the gen-
eration of some non-frontierable forests. The first step in transforming a 3-d
grammar to normal form is conversion to a short-rule grammar.

DEFINITION 5-2. A 3-d forest grammar G = <ZI,Z,N,R,S>f is a short -

rule grammar if and only if every rule in R fits one of the following forms
forA,B,C,Ee¢N,andae Z|J=:

1) Asal,BILCI, Dl 5) Amal,Cl, D],

2) A—»a[3B][2C]. 6) A—-)G[zC],
3) A-al;BI;C], 7) A=al, D]}, or
4) A—)d[_;B], 8) A-a. '

LEMMA 5-3. Let G be a grammar <Z,=,N,R,S >F. There is a short-rule gram-
marG' = <L, Z,N' R',5">f such that L(G) = L(G'
PROOF. The construct method for G' is quite similar to the method in the proof
of lemma 4-6, so it will only be summarized here. Only non-terminals can be
inside brackets in the right-hand sides of rules, so it G has a rule A — of, B] where
B is not a non-terminal, a new non-terminal 7 is invented and A — al, Bl is
replaced by A — o, T]and T— B. If G has a rule with a non-terminal outside of
brackets, A — B[, o], then put the rules for B in short-rule form and replace

Ao Bl o]lwithA=Bilal.... A=B,l o] where By, ..., B,. are the right-

120

hand sides of rules for B. This process involves only textual substitution of non-
terminals and right-hand sides of rules. The forests derived from the grammar are

not changed. So L(G)= L(G'). QED.

The transformation from short-rule to normal form is made by modifying or
removing certain kinds of rules. Any rules containing a selector in =3 can be
removed. Rules of the form A —a (3 B]can be eliminated-unless 4 is the start

symbol, and rules like A »a[; B, Cll[; D] can be replaced by virtue of the next

lemma.

LEMMA 5-4. Suppose there are «, B, y, 8, and { in /3 (T, £) such that « =
#[3yll; 8], ¢l and B = #[3 #[5 ¥, 81[; L) Then fry(a) = fry(B).
PROOF. This lemma follows from the definition of the frontier function:
frolo) = fry(#[5 vl 8D, ()]

= fry(#l3 #[5 vyl 61D ()]

= fry(#[; # [yl 81 LD

= [r:(B).
QED.

DEFINITION 5-5. Let G be a grammar <I,Z.N.R,S>§. G is in 3-
dimensional normal form, 3DNF, if and only if every rulein R fits one of
the forms below. Assume that BeN, C,De N,|UN, aeZ, be

rUzandcezJE Uz
1) S—al3B] forSeNs,
2) A=al;BI,C] where 4 e N, |JN>,

121

3) A»al,C] where A e Ny [N,
4) A—c whereAe N;UN.
5) A—=al;BI;C] where 4 € Ny,
6) A—al,Cl; D] where A e Ny,
7) A=b[,C] wherc A e Ny,

The next lemma and theorem complete the conversion of a short-rule gram-
mar to 3DNF. The construction in the proof of the lemma shows how to eliminate
nodes which have three subtrees. The final step in the proof of the theorem is the

removal of unit productions (of the form A — B).

LEMMA 5-6. Let G be a short-rule grammar <Z,=,N,R,S >k There is a gram-
mar G' = <I¥',=,N',R",8'>f such that every rule in R' is either 3DNF or
A—B where A, Be N, and Y,(G) =Y ,(G").

PROOF. Construct G' by the following steps:

D SetZ =%, 2= UsgadN =N JI{S)

2) If R hasS—al; A] whereS is the start symbol of G, put §' — #[35]in R’
and §' in V' ;. Otherwiseadd arule S'— S, and put ' in N'; where S ¢ N;.

3) If R has A —»al;B], remove it and put A — B in R', and move A to N',.

4) 1If R has a rule which contains an element of =3, remove it from R.

5) TR hasarule A—al3BYI,CI; D], remove it from R and put
A—al;TIiDland T #[;Bl.Clin R". Add newly invented non-terminal
T toN',.

6) Add the remaining rules of R to R

The lemma is established by proving propositions (A) and (B) below.

122

(A) If G contains non-terminal A4 such that A =* « and fro(a) = B, then G'

has 4 such that A =* o', and fry(a’) = B.

Proof of {(A) by induction on the number of steps in the derivation of .

Base. A =>« in one step.
There must be arule A »a in R. If a € =3 then fry(a) is undefined, and R'
has no corresponding rule. If a € T|J =, |J =5, then R' has the same rule.

Inductive hypothesis. Assume (A) is true when A =* « in n— 1 steps.

Inductive step. Show (A) is true when A =>* « in n steps.

Case 1. The first derivation step is A —al3 B1].
In this case, @ = a[;y] where B =* y and fry(«) = fry(y) = B. The induc-
tive hypothesis establishes that G' also has B such that B =* y' and
froy') = B. Construction step 3 putsarule A—B inR',s0 A = B =>* vy
in G' and fry(y) = 8.

Case 2. The first stepis A —al; BI,CH, D]
We have o = al3{][, v, 8] where B =* {,C =* vy, and D =>* §. The
inductive hypothesis can be applied to establish that G' has B, C, and D such
that B=>* (', C =>* vy, D =* §', (') = fra(L), fraly') = fry(y), and
fra(8) = fry(8). Step 5 of the construction adds to R' the rules
A=al3TI;Dland T #[;BI,CL SoinG' . A * o' =
al; #[;L)5 vl 8], and frole') = frola) according to lemma 5-4.

Case 3. The first step is A — 0. where o isal; BYI,C), al3BI;C], al, BN, C],
al,Bl or al; Bl

For each situation, apply the inductive hy pothesis on the forests derived from

123

B and C. and observe that R' has the same rule for 4 and R docs by con-

struction step 6.
To conclude the proof of (A), note that if there is S =* « such that fry{a) = Bin
G, then S =* o such that fro(«’) = Bisin G', and step 2 has added to G' a rule

S'— #[35]or§'=S. So the start symbol of G' also derives a forest whose 2-d

frontier is B.

(B) If G' has A such that A =* «', fr,(a’) = B,and A € N, then G has A such
that A =* o and fry(e) = B. If G' has T such that T =* o, fryla’) =B, T is
notin N,and 7 55, then G has A such that A =* a[; Bl[,Cll; D]and
frolal;Ll,y]) = B, where B =* { and C =* y. f T = §', then G has § =* «

and frz(a) == B.

Proof of (B) by induction on the number of steps in the derivation of o',

The proof is similar to the proof of (A). QED.

THEOREM 5-7. Let G be a grammar <ZI,=,N,R,S >§. There is a 3DNF gram-
mar G' = <I',E,N' R", S >¥ suchthat Y.(G) =Y ,(G").

PROOF. Apply the constructions of lemma 5-3 and lemma 5-6 to G, and then

eliminate productions of the form A — B by the conventional substitution method.

The result is G' such that G' is 3DNF and Y »(G') = ¥ »(G). QED.

124
3-d Increasing Grammars

If a 3-d forest grammar yields a string language that is within the context-
sensitive class. then there must be a linear relationship between the length of a
vielded word w and the number of derivation steps required to produce a forest
which yields w. If a grammar G is in 3DNF, then each rule application introduces
exactly one terminal or selector. The number of steps required to derive a 3-d
forest Bin L(G) is the same as |8 |, the number of nodes in B. A linear relation-
ship between o | and 18| where A =* B and fr,(B) = o will be shown first
for 3-d grammars which are increasing. A grammar will be called increasing if the
2-d yield grows with each step of the frontier operation on every derived forest.
DEFINITION 5-8. Let G be a 3DNF grammar <Z,%,N,R,5>f. G isan in-

creasing grammar if and only if |1fr(B) 1> 1fr(y) | and | fry(B) 1>

| fr,(8) | for every B = #[;yll, 8] such that A =* Band A ¢ N.

The requirement that | fr,(B)| be greater than | fr,(y)| in the above
definition is not too stringent, since it is always the case that | fr,(B)1 2 | fry(y)1.
The other requirement, that | fr>(B)1> | fr5(8)1, is more significant. As a result
of this restriction, an increasing 3-d grammar has no decreasing cycles. The next
lemma shows a non-linear relationship between the size of a derived forest and its

2-d {rontier for increasing grammars.

THEOREM 5-9. Suppose G is an increasing 3DNF grammar <Z,=,N,R,S>f
which has non-terminal A € N. If ae Y(G4)and lol =1, then thereis a

forest B such that A =* B, fr,(B) = «, I1B1<2'—1 when A e N;{JN,. and

1B1<2" when A e N

PROOYF. The theorem can be proven by induction on 1! = L

Base. | = 1.
If Ae Nyor A e Ny, then it must be the case that o« = ¢ and G has a rule
A—c wherece 2|z U=, Soa=B8=Cand lal =1=2'-1= 18], If
A € N 3, then the derivation starts A »a[; B] where B e N, and B =* B.
The case of B € N, was just considered, showing 181 = 1. So |81 =
la[;8]) = 2L

Inductive hypothesis. Assume the lemma is true for 7 <n.

Inductive step. Show the lemma is true from ! = n.

Case 1. o =al; o]
In this case, B must be derived A »a[;C]l where A e N;,C =>* B, CeN,|J
N ,, and fry(B) = o’. By the inductive hypothesis, |31 <2/~1— 1. But then
181 = 1+ 27 1= 1 =2!71<2 — 1.

Case 2. o =aly o]l a5l
B can be b{; B[, B,] or al, Bi1l; B,1. If Bis &[5 B,1[; B,l, then it must be
derived by A »b[3B][; C] where B =* B,,C =* B,, Be N,, and
C e N,|UN, It must also be true that fry(B,) = «, and fr2(B;) = al;).
The inductive hypothesis can be applied 1o establish that 18,1<2'7'— 1 and
18,1 <2!72— 1. But then

1Bl = 14+ 1B 1+ 18,1

L1+ 20714 2072y

126

<2l-1.
If Bis aly Bl B,), it is derived A —»a[, BI; Clwhere B,C e N,|UN,,
B =* B, and C =* B,. It must be true that fr5(B;) = «; and fry(B,;) = as,
so the inductive hypothesis is applied to give 18,1 <2/ !—1 and 18,1 <

2!=1— 1. But then

1B =1+ 18,1+ 18,1
1+ 21714272
<2x2'71-1
<2 -1,

Case 3. o« =al,]

In this case, B can be al, B, &[3B,1;B,], or b[3 81 If Bisal,B], thenit
must be derived using 4 —a[, B] where B =* 8,B e N;|UN,, and
fro(B) = o'. The inductive hypothesis establishes that |81 <2/"1— 1. But
then |81 = 1+ 2/71— 1 =271<2l,

If Bis b3 8,1, B.], it is derived A »b[; B ClforB,Ce N,{UN,,
B =* B, and C =>* B,. fr(B) = . so it must be true that f75(B;) = «,
fra(B3) = ay, and & = subs,(«;, «s). Since G is increasing, lo|> ial | and
la1> Iyl The inductive hypothesis can be applied to establish that 18; | <
27— 1 and 18,1 <2'"'= 1. But then

1B1 =1+ 1B, 1+ 18,1

If Bisbl;B], then it is derived with A - &[5 B] where B =* B and

B ¢ N,. By the previous discussion, 18'1<2/—1. So 181<2'. QED.

As a result of the previous theorem, we can determine whether an increasing
3-d grammar G yields a 2-d forest 8 by deriving all the forests of size less than
2'B! and then 1aking their 2-d frontiers. This will be helpful in improving the

non-linear relationship between Y 3(G) and Y ,(G) to a linear relationship.

COROLLARY 5-10. Suppose G is an increasing grammar <%, =, N,R,S>f, and
let F, be the set of forests such that a€¢ F, only when ae Y,(G)and

lae1<c for some constant ¢. There is a 2-d grammar G' such that

L(G')=F,.

PROOF. As a result of theorem 5-9 above, Y ,(G) is a recursive set. To enumerate
the forests in Y 5(G) with size less than or equal 1o ¢, we just generate all the 3-d
trees in L (G) of size <2°— 1 and take their frontiers. This set £, is finite for
fixed ¢, so we can certainly write a 2-d regular forest grammar to derive its

forests. There could be a separate rule for every forest in the language. QED.

128
Gramumars with Deletion Constants

With the addition of another constraint on a grammar, the non-linear rela-
tionship in theorem 5-9 between the size of a derived forest and the size of its 2-d
frontier can be replaced with a linear relationship. The new constraint is called the
deletion constanz. 1t places a constant upper bound on the number of symbols
that are deleted by any single step of the frontier operaﬁon. Note that the deletion
constant does not limit the total number of symbols deleted during the frontier
operation, since an arbitrary number of steps can occur. In 2DNF grammars, the
deletion constant is no larger than the longest path on any selector. This is also
true with 3DNF grammars for which no entire subforests are thrown away during
the frontier operation. Even when a 3-d grammar deletes entire subforests, it will
have a deletion constant if the size of the deleted subforest in any single frontier
step is independent of the size of the subforest which is not deleted.

DEFINITION 5-11. Let G be a 3DNF grammar <Z,Z,N,R,S>f The
deletion constant of G is the smallest constant ¢ such that |fr(B)I2
Lfra(y) 1+ 1 fry(8)1—c for every « in Y,(G) and B in L{G) where B =
al3yll; 8] is the smallest forest such that fr,(B) = . If no such constant
can be found, then G has no deletion constant.

Given any constant ¢, a grammar can be written so that any forest whose 2-d
yield has less than ¢ nodes can be derived without introducing and 3-nodes or 3-2

nodes. Such a grammar is said to be ¢ -augmented.

129

DEFINITION 5-12. A 3DNF grammar G is ¢ -augmented if i1 is increasing, has
deletion constant ¢, and every a¢ Y ,(G) such that lwl<c¢ is derivable
by a 2-d subgrammar of G . '

LEMMA 5-13. If G is an increasing, 3DNI' grammar with deletion constant c,
then there is a ¢ -augmented 3DNF grammar G' such that Y (G) = Y »(G').
PROOF. Put all therulesof G inG'. If A yields« in G and lo | £c, then add
2-d rules to G' for A to derive « directly, using the method described in the proof
of corollary 5-10. Certainly Y 5(G) =Y 5(G'), since G' has all the rules of G, and
the only rules added derive forests which are in Y ,(G). Also, any we Y (G)is

derivable in G' without the use of any 3-d rules. QED.

LEMMA 5-14. Suppose G is a ¢ -augmented 3DNF grammar <X, Z,N,R,S>f.
If e Y,(G4) where A € N and la| =, then there is a 8 such that

A =>* 8, fr(B)=«, and |81 =d where

[forl <c,
d<)2(c+1)U—=c)-1 forl>cand A e NN, and
l2(c+1)(l—c) fori>c and A € NV;

PROOF. Proof by inductionon! = l«l.

Base. [= 1.

Case 1. I <c.
In this case, « is derivable without 3-d steps. A =a = B = f75(B). So
(B = ol =1

Case2. [>c and A € N, UNZ.b

The only possible derivation of « is A =a = «, whereae L Uz Uz,

130

Since ! is 1.¢c must be 0. So B= fr(B)=«. IBl =1, and
1€2(c+N{=c)-1

<200+ DU~0)-1

/N

2—1

N

L.
Case 3. [>c and A € N,
The derivation of 8 starts with A »al3B), Be N,, B =* 8, and fr(B) =
" . Case 2 above establishes that 181 =1=2(c+1)({—c)—1. So IBI =
I+ 181 =2(+1)U—c)
Inductive hypothesis. Assume the lemma is true for 1</ <n.
Inductive step. Show the lemma is true for ! = n.
Case 1. o =al;]
The derivation of 8 must be A =>al;C] =* al; B], where A ¢ N4, fr(B) =
o',and C e Ny|UN,. IfI—1<c, then 181 =7~1and IB! =1 This
satisfies the lemma if [<c. If [= ¢+ 1, then we need to verify that {81 =
[< (2c+2) (I—c)-1< 2/— 1. But this is true for7 2 1.
If I— 1>, then the inductive hypothesis gives |81 < (2¢+2) X
(l—1=c)—1. So
IBISIBI+1
<Q@c+2)(1-1-¢)
<2cl —2c2+ 21 —2c—2-2¢
<2l =2+ 20— 2c— |

LQ2c+2)U=-c)- 1.

131

Case 2. o =al, o)} as}and B=5l; 8,1 Bl

B is derived with arulc A »b[3 Bl Clwhere A, Ce NN Be Ny,

B =* B;,and C =* B,. It must also be true that f7,(8,) = «» and

B =al,e;). Letl =1,+1, wherel; = lal,]l and I, = lasl. The

inductive hypothesis can be applied to determine the maximum size of 8; and

B, There are four possible situations, depending on the values of I, [, and c.

We can assume that [>c¢. Otherwise, 8 could be derived without

A-blBICl

a) If 1;<c and [,<c, then 18,1 =1, 1B =13, and 1B] =1+ +1,=
1+ L. We are given that [>c¢, and we deduce that [<2c¢, sincel =1[+1,.
It remains to show that 1+ <(2c+2)({—c)—1 whenc </ <2c. Itis
clear that I — ¢ is at least 1, so we must only verify that 1+ <
2c+2—1=2c+ 1, which is certainly true when [£2c.

b) If {;>c and [,<c, then 1B, I<(2c+2)(l;—c), IB;1 =1, and

1Bl = 181+ 1B8,1+1

<(2c+2)U=c)+1+1

IN

2cl ;= 2c%+ 20— 2c+c+ 1

/)

2c I—1)=2c2+2(—1)-2c+c+1

A

2cl—2c%+20—2c—2—c+1
L(@2c+2)(I—-c)-1-c
<@2c+2)-c)-1

¢) If1,<c and I,>c, then 18,1 =1,, 1B1 <(2c+2)(I,—c)~1,and

(Bl =181+ 18,1+ 1

132

I+ (2c+2)—c)
Lo+ 2l 5~ 202+ 21— 2¢
Le+2c (= 1D=-2c2+21—1)-2c
<2cz-2c5+2z—2c~2— 2c+c
SQc+2)(U—c)1—c—1
SQ@c+2)(l—c)-1.
d) If{;>c and,>c, then 1B 1K (2c+2)({;—c), 1B,I £
(2¢+2)U,—c)-1, and
1Bl = 1B 1+ 18,1+ 1
SQRc+2)—c)H+(2c+2)Uy—c)-1+1
L2l ;—2c2+ 21— 2c + 2cl ,— 2c 2+ 21 ;— 2c — 1+ 1
€2 (+15)-2c2+ 2+ 1)~ 2c—1—-2c2=2c+ 1
€Q@c+2)(U—c)-1-2c2-2c+1
S(2c+2)(I—c)-1.
Case 3. @ =al, o]} anl and B=al, B;1[; By}
B is derived A =>al, BI; C1 =* al, 8;1; B,] with B, C ¢ N, |JN,. It must
be true that fry(B;) = &y and fr5(Bs) = 3. Letl = 141+ 1, wherel, =
lay ! and {5 = la,|. The inductive hypothesis is applied to limit the sizes of
B, and B, Again, there are four possible situations:
a) If 1;<c and 1,<c, then 181 =1 1Bl =15 and 18l = 1+ 1)+, =1 If
[>c, it must be shown that / <(2c +2) (I —c)~1. The logic is similar
to case 2a.

b) If{;>c and [,<c, then 1B, 1K(2c+2)({,—c)—1, I1B,1 =15, and

133

1B = iB;1+ 18,1+ 1. This is shown to be smaller than
(2¢+2)(i—c)—1 by a method similar 1o that of casc 2b.

¢) If{;<c and [,> ¢, Ihén 1BV =1y, 1B1K(2c+2)(l,—c)—1, and
IB1 = IB; I+ 18,1+ 1. This is similar to case 2c.

d) If I;>c and {,>c, then 131 <(2c+2)({;—c)—1,
1B,1<(2c+2)({U3—c)—1,and 1Bl = IB;1+ 1B,1+ 1. This is similar to
case 2d.

Case 4. « =al,aland B=al,B]
B is derived A =al, B]1=>* al, 81 with Be N,;|JN,. It must be true that
fro(B) = &', and la’'| =1— 1. This case is very similar to case 1.

Case 5. o =al,a]land B= b3 8,1, B,)

B is derived A =b[;BI,C] =* b[; 8,1, B, with Be N,andC e N |JNo.

fra(B) = o, so it must be true that fr,(B;) = o and fr5(B,) = a5, and & =

subs»(ay, o3). Letl; = layl and I, = la,l. G is an increasing grammar, so

[>1,and[>1,. G has deletion constant ¢, so ! 21+ {,—c. The inductive

hypothesis can be applied to limit the sizes of B; and 8, There are four possi-

ble situations:

a) If 1;<c and 7,<c, then IB)| =1, 1B, =15, and 1Bl = 1+ 1+, We
also have I >c. Otherwise there would be no 3-2 step in the derivation of
B. So 1Bl =1+1;+1,<2c+1,and (2c+2) ([—c)—122c+ 1, since
l—c21.

b) If{;>c¢ and [,<c, then 181K (2c+2)(;—c¢)=1, IB1 =1,,and

IB1 = 18,14 1851+ 1. This is shown to be smaller than

134

(2¢+2)({—c)—1 given that {,<c¢ and ;<! —1 by a method similar to
that of case 2b.
c) If {;<c and (,>c,then I1B;! =4, lel<(2c+2)(lz;—c)~l,and
IB1 = 18,1+ 1B, 1+ 1. This is exactly parallel to case 2c.
d) If {;>c andl,>c, then 181K (2¢+2)(1;—c)~ 1,
1B1<€(2c+2)(,—c)-1, and
1Bl = 1B 1+ 181+ 1
SQc+2)U—c)H(2c+2)U—c)-1+1
<2l y— 2c?+ 21— 2c — 14 2cl ,— 2c %+ 21 ,— 2c — 1+ 1
€2 (4 +1~c)=2c2+ 2+ 1,~c)~2c—1
L2 —2c2+20—2c—1
L@c+2)(I—c)-1
Case 6. o =al,oland B=b[;8].
B is derived A =b[; B]1=* b[; 8] where B e N,. By cases4 and 5, |81 <

(2c+2)(I=c)—1. So 1BIK (2c+2)(I—c). QED.

If a grammar is increasing and has a deletion constant, there is a linear rela-
tionship between the sizes of forests in the 3-d yield and the 2-d yield. Many use-
ful 3-d forest grammars are not strictly increasing. So, given a non-increasing
grammar G, we would like to know if there is an increasing grammar G' with the

same yield as G. This topic is investigated in the next section.

135
3-d Grammars without Overlap Cycles

3-d forest grammars that do not have cycles of overlapping selectors can be
transformed to grammars which are strictly increasing. To achieve this result, i1
will be necessary to define several terms similar to those used for analyzing 2-d

grammars in chapter 4.

. For many 3-d forest grammars, it can be determined whether the grammar is
increasing by examination of its rules. The existence and value of a deletion con-
stant can also be determined. In examining the rules, we must be able to predict
the outcome of the 2-d frontier operation. This requires that we know which

selectors will be applied in each frontier step.

Suppose B is a 3-d forest #[; 81[,y]l. There is a set of outer selectors in &
which will be applied when fr,(f) is taken. Outer selectors are analagous to the
external selectors defined in chapter 4. They differ from external selectors in two
. respects. First, a 2-d forest has at most one external selector. A 3-d forest, how-
ever, has a finite set of outer selectors. Second, the outer selector set may contain
selectors which will be truncated when the 2-d frontier operation is applied. For
example, let B = #[; <2,21>] [, #[, x [, y]Il where x, y € £5. Selectors x and y
are the outer selectors of 8, but only v is an external selector. x is eliminated
when fr,(B) is taken. Thus, the outer selector set of a 3-d forest is a superset of
the external selector set. Quter selectors are easily found. It is muéh more difficult

1o determine whether outer selectors will be external selectors.

136

DEFINITION 5-15. Let B be a forest in /3§ (Z,Z). A selector x ¢ =, is an

outer selector of B when B contains x and the path from the root of 8 to
x is v where

1) vel1,2}, or
2) if v = 037 for 0, me {1, 2, 3},
then sel (<2, 62>, B) is undefined.

DEFINITION 5-16. Let B be a forest in H 3 (T, Z). The set ouzsel (B) is defined
as {x | x is an outer selector of B}.
With 2-d grammars, it was possible to construct a set of 1-d selectors,
exsel (A), for each non-terminal A such that A derived B if and only if the exter-
nal selector of B was in exsel (A). With 3-d grammars, a set of sets of outer selec-
tors is associated with each non-terminal.
DEFINITION 5-17. Let G be a 3DNF grammar <I,=,N,R,S>¥. The set
outsel (A) where A € N is defined as {s | s = oursel (B) where A =* B}.
Note that outsel is multiply defined. Hopefully, this will not cause confusion.
If the argument of owrsel is a 3-d forest, then oursel is a set of 2-d selectors. If the

argument is a non-terminal in a 3-d grammar, then outsel is a set of sets of 2-d

selectors.

LEMMA 5-18. Suppose G is a 3DNF grammar <Z,%,N,R,S>§. If A ¢ N, then
there is an effective procedure for constructing outsel (A).

PROOF. The algorithm given here constructs ouzsel (A) for every non-terminal in

the grammar. The construction proceeds by taking a rule A — B from R, selecting

the appropriate case depending on the form of 8. and adding elements to

137

outsel (A). The case statement is given as a procedure which is repeatedly invoked
as rules are taken from R. Assume that A, B, and C areelementsof N,a e X,
and X € =,
Procedure addel (A, B).
Begin
Case B of
al, B, r 21: add the elements of outsel (B) 1o outsel (A).
x[; Bl add {x}{Js to outsel (A) for each s in ouzsel (B).
x: add {x } to oursel (A).
al,BI;CL, r>1: adds |J¢ tooursel(A) foreach s in
outsel (B) and 7 in outsel (C).
al3 BY,C): add the elements of oursel (C) to outsel (A).
End case.
End addel.
The selection of rules from R is undertaken according to the following algorithm:
Repeat
Take a rule A — B8 from R.
If A is not in a cycle then
Use the current method to form ouzsel (B) and outsel (C), where B
and/or C arein B.
Call addel (A, B).
Remove A — 3 from R.

Elseif A isinacycle(A;, A,...., Ay,) then

138

Find every rule for A,, 1</ <m.
Use the current method to form ouzsel (B) for each B which is not
in the cycle, but is in the right-hand side y of a rule
Ay 1<i<m.
Repeat
Fori =1tom
Call addel (A;, y) for each rule of A,.
Until nothing new is added to any outsel set.
Remove the rules A; -y from R, 1<i <m.

Until R is empty.

The size of every oursel set is bounded by the number of possible subsets of
£,, so the construction algorithm halts. It can be shown by induction on the size
of a forest { that if A =>* {, then oursel ({)e oursel (A). It can also be shown by
induction on the number of addel steps in the construction of ouzsel (A) that if

outsel (A) contains selector set s, then A =>* { where s = outsel ({). QED.

Definition 4-16 defined overlapping selectors for n-dimensional forests. The
definition requires that the external selectors of a forest be known. If the external

selectors are not known, the outside selectiors can be used instead.

During the frontier operation on 3-d forests, entire subforests can be deleted.
This is also true with 2-d forests, but it is relatively easy to remove such truncat-
ing steps from 2-d grammars. With 3-d grammars, however, the elimination of all

truncating steps is more difficult. The following definition distinguishes between

139
complete and truncating frontier steps.

DEFINITION 5-19. Let B8 = #[;y)[>8] be a forest in HJ (X, Z). The 2-d fron-
tier of B is complete if and only if fry(y) is complete, fr2(8) is complete,
and for each subtree 8' of §, the path from the root of § to 8’ is either

1) o where <2, 6> ¢ outsel (vy),
2) o027 where <2, 0> € outsel (), or

3) o where <2, 0> ¢ outsel (), and 8'¢ L.

DEFINITION 5-20. Let G be a 3-d grammar <X,=,N,R,S>f. G is com-
plete if for every ae Y (G) there is a 8 such that A =>* B, fry(B) is com-
plete, fr,(B) = «, and A ¢ N. If G is not complete, then it is truncating.

LEMMA 5-21. Let G be a 3-d grammar <Z,Z,N,R,S>5. If G is complete,
then G has deletion constant ¢, and ¢ is no greater than the sum of the
lengths of the paths on the selectors in =,.

PROOF. This lemma follows directly from the definition of a complete grammar.

If a non-terminal derives a forest B = #[; yl[; 8] and an entire subtree of § is not

selected for copying during the 2-d frontier operation, then fr,(8) is not complete,

and neither is G. The only nodes that are deleted are the terminals along the selec-
tor paths, and so the number of deleied nodes cannot exceed the sum of the lengths

of the selector paths for any single frontier step. QED.

During the frontier operation on a 2-d forest, only one selection/substitution
process is active. This results from the fact that each subtree has only one external
selector. Subtrees in 3-d forests. however, can have several external selectors. So

several selection/substitution processes may be occurring simultaneously during

140

the 2-d frontier operation. Some of the terminology used in the analysis of 2-d
cycles will have to be broadened or generalized. Cycles, roots of cycles. essential
non-terminals, and cycle steps will nol need 1o be redefined, but i1 will be useful

to speak of full cyclesteps for 3-d grammars. A full cycle step is one expansion

of a cycle from root to root.

DEFINITION 5-22. Let G be a grammar <ZI,=,N,R,S >} which contains a
cycle{A, A, ..., A} withroot A;. A full cycle step is any structural
form B derived from A; such that B contains A; and no non-terminals
other that A,,..., A, are expanded in the derivation.

The leading and trailing non-terminals of a cycle were previously defined only

for cyclic 2DNF grammars. The following definitions redefine these terms or 3-d

cycles.

DEFINITION 5-23. Let G be a grammar <X,=Z,N,R,S >§ which contains a
cycle whose root is A, and suppose B is a full cycle step derived from A
which contains a non-terminal B. If the path from the root node of 8 to A
is 037 and the path to B is 02r, then B is a leading non-terminal of the
cycle. If the path to A is 027 and the path to B is 03v, then B is a trail-
ing non-terminal of the cycle.

The concept of deletion cycles in 2-d grammars will be replaced with overlap
cycles in 3-d grammars. The term "deletion" is abandoned because it is quite com-
mon in 3-d grammars for overlap cycles 10 show net growth in spite of the

repeated deletion. This happens when an overlap cycle has several outside selec-

tors, some overlapping and some non-overlapping.

141

DEFINITION 5-24. Suppose G is a grammar <I.Z,N.R,S>} which con-
tains a cycle whose root is A. The cycle is an overlap cvcle if and only if
there is a full cycle step B8 derived from A such that

1) B has leading non-terminals By, Ba. B;.
2) <2,7;> eoutsel(B;) for 1Si <!,
3) B, =>*{; and sel (<2, 0;>, fry({;)) = <2, 7;>for 1<i </, and

4) 0, 05°... -0, is a proper prefix of my - w3+... 7 - 7.

A set of integers called gain can be associated with each full cycle step, and,
depending on the values in the gain sets, cycles can be classified as increasing,
decreasing, 0-gain, or mixed.

DEFINITION 5-25. Suppose G is a grammar <Z,=,N,R,S>f which con-
tains a cycle whose root is A, and B is a full cycle step such that A =* 8.
The integer g belongs to gain (A) if and only if g = 1fr(8)1 — 1 fry(8°)1

where 8¢ H 3 (XL, =), B=>* §, and & is the largest subforest of & such that
A =>*§

DEFINITION 5-26. Suppose G is a grammar <ZX,=,N,R,S>] which con-
tains a cycle whose root is A. The cycle is increasing if g >0 for every
g egain(A), decreasing if g<O0 for every gegain(A), O-gain if
gain (A) = {0}, and mixed otherwise.
It will eventually be shown that any 3-d forest grammar which does not have
overlapping selectors can be converted to an increasing grammar which has the
same string yield. This will be accomplished by eliminating subforests which will

be truncated during the frontier operation. Before truncation can be eliminated.,

however, a grammar must be partitioned according to the outside selector sets of

the non-terminals.

142

LEMMA 5-27. Let G be a 3DNF grammar <X, =, N, R, S >} which has non-
terminal A. There is an effective procedure for constructing a subgrammar
G4 :s such that A" in G4 :s derives 8 if and only if A derives 8 and
outsel (B) = s.
PROOF. Given a set of selectors, s ={<2,p;>, <2,p;>,..., <2, >},
Ga:s = <I,E,N',R',S">¥ can be constructed from the subgrammar G4
according to the steps below. AssumeA,B,C,DeN,a,be L|JZ;, and x € =,.
1) Set' =X, =5 N =N,andR =R.
2) Put A' in N' and A' > A, in R'.
3) Add non-terminals B, to N' for every non-terminal B of G4 and every ¢
which is a subset of s.
4) Select a non-terminal B, from N' for which there are no rules and make rules
for it as follows:
a) If R has B—al,Clform <3, put B,—al,C;]in R".
b) If R hasB—x[;Cland x €7, thenadd B,—x[;C,]and B,— x[;C,] to
R,whereuy =r—{x}. If x isnotinz, then do not add a rule to R".
¢) If R hasB—a and? = ¢, put B,—a inR'.
d) If R hasB—x and7z = {x}, putB,—x in R'. Ifr ={x}, thenadd
nothing to R'.
e) If R hasB—al;CN; D), put B,—al;CI, D, 1in R'.
£) If R has B—al,Cl;Dlform =2or3, put B,—~al,C,;D,1in R" for
every u and v such thatu [Jv =1.

g) If none of cases a) through f) result in the addition of a rule for B,,

143

remove B, from N'.

5) Repeat step 4 until all the non-terminals in N' have rules.

It is clear that the algorithmn above halts. Each non-terminal B, is processed
by step 4 only once. The lemma can be proven by induction on the size of 8. The

induction is not shown here. QED.

In order to eliminate truncating frontier steps from a grammar, it is necessary
to trace a 2-d selector path in a 3-d forest. The trace function below accomplishes
this, provided the forest to be traced does not have overlapping selectors.

DEFINITION 5-28. The function trace(x, B): 52XH31 (2,5)—-»1—]3I (£,5) is
defined as follows:

trace (<2,\>, B) = B,

trace (x , #[3y)) = trace(x,),

trace (x , #[3 yll, 8]) = trace (x, y),

trace (<2, k 0>; o, y]) = trace (<2, k 6>, «) for m <k, and
trace(<2,k 0>, ol; y]) = trace (<2, 6>, y).

LEMMA 5-29. Suppose G is a 3DNF grammar <ZI, Z,N,R,S >f with no over-
lapping selectors. There is a grammar G' = <I',Z',N', R, S'>} such that
Y,(G)=Y,(G')and G' is complete.

PROOF. The grammar G' can be constructed by the steps below. Assume

A,B,C.,D,EeN,anda, #¢ L|J=.

1) Set G' =G and partition G' according 10 outside selector sets.

2) Find a rule A—a[;B),Clin R

3) Lets = oursel (B). Generate all the m distinct structural forms 8; which have

144

the following characteristics for 1<i <m:

a) C =* B,

b) no non-terminal D in B, is expanded unless D = trace (<2, 6>, B;), where
o is a prefix of the path on some x ¢ s, and

c¢) no rule in a 3-d cycle which does not produce a 2-node is applied more
than once in deriving B;.

4) For each B; generated instep 3, if B; = al;EI,y], alsyl, E), aLEI, v],
al, v, EY, oral,E], wheretrace(x, B;) #E for any x ins, then delete E
and the arc pointing to it in B;.

5) Foreach B;, add aruleT; — #[3 B, 8;] 10 R where T, is a new non-terminal.
Also, replace A »al; BI,Clin R' withi rules A—T;, 1<i<m. Ifs =0
(and m = 0), replace A —»al; B][;C] with A - B.

6) Repeat steps 2 through 5 for every rule A —»al3; BI,Clin R

7) Remove unreachable non-terminals and rules from G'.

Since G has no overlapping selectors, it is possible to expand ihe non-ierminail
C inarule A —al3B][3C]until all the paths of the set of outside selectors of B
are visible. Then it is evident what subforests will be truncated, and the rules can
be modified so that the truncated forests are never derived. The algorithm above
accomplishes this without making any other changes to the grammar. so any 8 in
Y 5(G) is also in Y 5(G'), and vice versa. This can be proven rigorously by induc-

tion on the size of 8. The induction is not shown here. QED.

145

Any.S—d grammar without overlapping sclectors can also be modified 1o make
a grammar with the same string yield which is strictly increasing. One approach
of this modification would be expanding the right-hand sides of grammar rules and
taking partial frontiers to write new rules that Coﬁbine the decreasing steps with
larger increasing steps. A less complicated approach (but also more wasteful) is
shown here which takes advantage of the fact that 2-nodes disappear during the
1-d frontier operation. Using this approach, extra 2-nodes are added to any rules
which produce decreasing frontier steps. These additional nodes increase the size of

the 2-d yield, but they are eliminated during the 1-d frontier operation.

LEMMA 5-30. Let G be a complete 3DNF grammar <ZI, =, N,R,S >f without
overlapping selectors. There is an increasing grammar G' =
<I',E,N"R' S >fsuchthat Y,(G)=Y,(G).

PROOF. The grammar G' can be constructed by the steps below. Assume

A,B,CeN,andaeX|J=.

1) Set G' =G and partition G' according to the outside selector sets.

2) FindarueA—al;Bl,ClinR.

3) Lets = oursel(B). Generate all the m distinct structural forms B; as in step 3
in the proof of lemma 5-29.

4) 1f trace(x, B;) =a isin L {J= for every x in s, then replace one such a in B
with #[,a]. Do this for every 1<i <m.

5) Choose one of the outside selectors x in s and replace it in the rules for B in
Gy with #[, #[, ... #[,x]...]l to form G', where the number of 2-nodes

added is the sum of the lengths of the paths on every selector in s.

146

6) Replacc A —al; Bl C] withrules A - #[; B 1LB8;) 1<i <m.

7) Repeat steps 2 through 6 until every A — a {3 B[, C] rule has been modified.

It is apparent that the above algorithm halts. The largest sum of path-lengths
in any outside selector set is a constant, and no selectors are modified by the algo-
rithm. So step 5 does not have to be repeatedly applied for any single grammar
rule. It is also apparent that the changes made will not affect the string yield of
the grammar, since fry(a) = fri(#[, «]) for any set «. The 2-d yield will contain

larger forests, but the 1-d yield is the same. So Y(G)=Y,(G").

It remains to be verified that G' is increasing. Suppose G' generates 8 =
#[3yll, 8]. It isalways the case that [fr(B)1 2 | fr(y)l, and [fr(B)1 =
| fr,(y)1 only occurs when every subtree selected from fr,(8) during the frontier

operation has size 1. Step 4 above ensures that at least one selected subtree has size

2. So | fr(B)I> 1fry(y)l.

It happens that | fr,(B)1 < 1f7,(8)| when a subforest of & is deleted during
the frontier operation, or when the number of interior nodes in & along the selec-
tion paths is larger than the number of non-selector nodes in vy, so that the frontier
operation deletes more interior nodes than it adds. But G and G' are complete
grammars, and step 5 increased the number of nodes in y to exceed the sum of the
path-lengths of the outside selectors. So no subforests are truncated. and the
number of interior nodes added always exceeds the number deleted, giving

| Fr(B)1> 1 fry(8)1. QED.

147

If a 3-d forest grammar contains overlapping selectors, but no overlap cycles,
then the selector paths can be changed so that they do not overlap one another.
Suppose B = #[3 #[, x 1, #[3 #(, v][,]}, where x is a selector <2,221> ahd y is
<2, 121>, The selector x overlaps y. As the path of x is traced, y is encountered
after traversing one 2-arc. We can form ' by replacing x with x' = <2,2>and
y with ¥y = <2,12121>, The path of y' is formed by attaching the unused por-
tion of the x path to the end of the y path. The selector x' does not overlap y' in
the newly formed 8, and fr,(8') = fry(B). This method will be used to prove

that if a grammar has no overlap cycles, then there is a complete, increasing gram-

mar with the same yield.

LEMMA 5-31. Let 8 = o[5[, ... @n[; Bl... 1] be a forest in HM(E, £). If
sel(<n, 7>, sel (<n,v>,8)) = B where 7, ve {1, 2,...,n}", then
sel (<n,vmr>, 8)=R.
PROOF. If sel (<n,#n>, sel (<n, v>, §)) = B, then it must be true that
v=11ly e m =g 'lm,andsel(<n,v>,8)=oz_,-+1[ll+=...

@, [, Bl...1wherel; ,; =n. Butsince it is also true that

sel(<n,l;-... L, > 8)=B, wehave sel (<n,v7> 8)= B. QED.

THEOREM 5-32. Suppose G is a 3DNF grammar <Z,Z,N,R,S >§ without over-
lap cycles. There is a complete, increasing grammar G' = <IZ', 2, N',R", S>f
such that Y ,(G) =Y ,(G").

PROOF. The grammar G' can be constructed by the steps below. Assume that

A,B,CeN,andae Z|J=.

148

1) Set G' =G and partition G' according 1o outside selector sets.

2) Findarule A—al;BI,Clin R.

3) Lets = outsel (B). Generate all the m distinct structural forms B; as in step 3
in the proof of lemma 5-29.

4) Find B; such that zrace (<2, 0>, 3;) =y where y € =, and o is a proper prefix
of a path on one selector x in s. Suppose y = <2,v>and x = <2, o7>.
Then let y' = <2,v7>and x' = <2, 0> Replacey in f; withy' to form
B';, and replace the outside x in Gp with x' to form Gp. Add a rule
T;— #[3 B; 1, B;] where T; is a new non-terminal.

5) Find B; such that trace(<2, 0>, B;) =y where j > 1,y € =,, and 0 is a proper
prefix on r selectors x; in s, 1<j <r. Supposey = <2,v> and x; =
<2,0m;> Thenlety'; = <2,vw; > and x'; = <2., 621/71>, Replace y in
B; with #[,¥'1[;y' 5l ... [;¥,]1... 1] to form B'; Replace the outside x; in
Gp with x'; to form Gz. Add a rule T;— #[3B;][; 8;], where T; is a new
non—terﬁinm.

6) Add arule T; — #[; B[, B;] for every B; that was not processed by step 4 and
step 5, and replace A —a[; Bl[, C] with rules A - T}, 1<i <m.

7) Repeat steps 2 through 6 until no overlapping selectors are left in G'.

The above algorithm is guaranteed to halt if there are no overlap cycles, and
the resulting grammar G' has no overlapping selectors. Every B in Y ,(G) is also
in Y 5(G"), and vice versa. This can be proven rigorously by induction on the size

of B. The induction is not shown here. The proof appeals to the previous lemma

149

10 establish that the selector compositions in steps 4 and 5 do not affect the yields
of the derived forests. If G' is nol complete, it can be converted to a complete

grammar by the method of lemma 5-29. QED.

3-d Explicit Grammars

For an increasing 3-d forest grammar, the size of a derived 3-d forest is
linearly related to the size of its 2-d yield. It must also be shown that a linear
relationship exists between the size of the 2-d yield and the 1-d yield of a forest.
To eliminate some of the complexity of the frontier operation, a class of grammars

called explicit forest grammars will be defined.

The 1-d yield of a 3-d forest is the result of & two-pass frontier operation.
The first pass does selection and substitution mandated by the selectors in =,. The
second pass uses the selectors in £;. In explicit grammars, A is the only path
allowed for 1-d selectors, so that all the deletion occurs during the first péss of the
frontier operation. Restrictions on the placement of 1-d selectors are also made to
prevent substitution of trees whose string yield is A during the 1-d frontier opera-
tion. The definitions that follow formally define explicit forests and grammars.
DEFINITION 5-33. Suppose Be H4 (Z,Z). B is explicit if and only if B has

no subforests b{,z], dlyzNi vyl alylliz) or y, where z = <1,A>,
ye HI (2, 2),beX|JEyandy ez |2~ {2]

DEFINITION 5-34. Let G be a 3-d forest grammar <Z,Z,N,R,S>f G is
explicic il and only if every forest in ¥ ,(G) is explicit.

150

It is an open question whether explicit 3-d gramiars retain all the power of
non-explicit grammars. It will be shown, however, that explicit grammars are
more powerful than grammars with only standard selectors. Explicit grammars
have properties which make it easier 1o establish a linear relationship between the
sizes of the 1-d and 2-d frontiers of a derived forest. These properties are

described below, first as properties of 2-d forests, and then as properties of 3-d

forests grammars.

The length of the string yield of a 2-d forest can be predicted by counting the
1-nodes in the forest. The slen function does this, and if the 1-d frontier of a 2-d

forest B is defined, then slen () = | fry(B)I.

DEFINITION 5-66. The function slen (8): H3 (X, £)— N is defined as follows:
slen(z)=0forze =,
sten (x)=1forx e ZL|J =,
sten (al; y]) = 1+ sten (y) fora e T |J =,,
slen (al, y]) = slen(y) fora € £, and
sten (a [, yll; 81) = sten (y) + slen (8) for a € Z.
LEMMA 5-67. Suppose Be H3 (X, Z) and B is explicit. If B == where
z = <1,A>, then sten (8)>0.
PROOF. The smallest possible explicit non-z forest has 2 nodes: al; 21, al;x],
xlz] x[[x} alax] orxl,x]wherea ¢ T and x € Z,. The string length is | or

2 in each case.

Every larger forest contains at.least one of these 2-node forests, and since

non-A paths on 1-d selectors are prohibited, no deletion occurs during the 1-d

151

fronticr operation. Therefore, every larger forest also has string length greater

than zero. QED.

LEMMA 5-68. If B =al,yll; 8le H] is explicit, then slen (8)> slen (y) and

sten (B)> slen (8). |
PROOF. Neither y nor & can be <1,A>, since 8 is explicit. So by the previous
lemma, slen (y)>0 and slen (§)>0. slen (B) is just slen (y) + slen (8), so sten (B)>

slen (y) and slen (B)> slen (8). QED.

As a result of lemma 5-67, <1,A> is the only explicit forest whose string
frontier is A. Lemma 5-68 guarantees that substitution steps in the 1-d frontier

operation always result in larger strings. These results on 2-d forests can be dupli-

cated for 3-d forests.

LEMMA 5-69. If Be H3 (T,) is explicit and B ¥z where z = <1, A>, then
sten (fr,(B))>0.
PROOF. Proof by induction on h, the number of 3-nodes and 3-2-nodes in B.
Base. h = 0.
In. this case, f5(B) = B, and lemma 5-67 establishes the desired result.
Inductive hypothesis. Assume the lemma is true for 2z <n.
Inductive step. Show the lemma is true for z = n.
Case 1. B=al;3B,] oral;B;l; Byl
It is not possible that B; = z, since z is not in H # (L, =). So we can apply the
inductive hypothesis to establish that slen (f7,(8;))>0. But [r(B) = fry(B;)

or (Bl fra(B1)], so sten (Fr2(B))> 0.

Case 2. B=al;B,l Bl
Let fry(By) = g, fr(Bs) = as. and fr5(B) = subs,(a;, @s). By cannot be =.
The inductive hypothesis establishes that slen («;)>0. If oy has no 2-d selec-
tors, then fr,(B) = fry(a;), and the lemma is proven. Suppose «; has a 2-d
selector x, and o3 = sel (x, &,). 3 cannot be z, since z is not in H #(Z, 2).
According to lemma 5-67 then, slen («3)>0. So slen (fry(B)) =
sten (subs)(aq, a3)) 2 sten (a1)>0.

Case 3. B=al,B,] oral,B;ll; B, and B, or B, has a 3-d subforest. |
Let the largest 3-d subforest of B; be ';, the largest 3-d subforest of 3, be 8,
fry(B1) = o'y, and fry(B'5) = o'5. Cases 1 and 2 demonstrate that
slen (a'{)> 0 and slen (a’,)>0. But o) (and a',) is a subtree of fr,(B), so

slen (fr,(8))>0. QED.

LEMMA 5-70. If Be H 1 (T, =), B is explicit, and fr,(B) = o = a [, yl[; 8], then
slen (a)> slen (y) and slen (a)> slen (8).

PROOF.

Case 1. B=al, B] Bl
We have fr2(B) = a, fr2(B;) =, and fra(B,) = 8. Since B is explicit, neither
B, nor B, is z. By lemma 5-69, slen (y)>0 and slen (8)>0. But slen (o) =
slen (y)+ slen (8), so slen (a)> slen (7y) and slen («)> slen (8).

Case 2. B=al;B;1; Bl
In this case, fr(B) = «, fry(By) = al,). and fr5(B,) = 8. Since neither B;

nor B3, can be z, sten (§)> 0 and sten(al, y1)>0 (by lemma 5-69). It follows

153

that slen (y)> 0. But sien (o) = sien (y)+ slen (8), so slen («) > slen (y) and
slen (@)> slen (8).
Case 3. B=al; 8,1, Bl
This is impossible: fr,(B8) must be a tree.
Case 4. B=al; Bl
Now we have f75(B8) = fry(By) = «. The lemma is established by analysis of

B1, to which case 1 or 2 will eventually be applied. QED.

The previous two lemmas can be applied to forests which are produced by
explicit 3-d forest grammars. This will help establish a linear relationship
between the 2-d and 1-d yields. It is still possible, however, for an arbitrarily
large 2-d forest to yield a short string. Consider, for example, the explicit tree 8 =
#[, #[, #[, ... #[,al;z]]...1ll. The 1-d frontier of B is just al; z], regardless of
how many 2-nodes 8 has. It is certainly possible to write a grammar with a cycle
with arbitrarily increases the number of consecutive 2-nodes in a forest. But it is
also true that if there were such a cycle, it need never be applied more than a fixed
number of times. Arbitrarily repeated cycle steps add nothing 1o the 1-d yield of
the grammar. If we are interested in the smallest 8 which yields a particular
string. then we can establish a constant upper bound on the number of consecutive

2-nodes in 8 by analyzing the rules of the grammar. This is formalized in the next

lemma.

LEMMA 5-71. Suppose G is an explicit 3DNF grammar <X, =, N ,R,S > such

that A e N, A =* B, fr,(B) = vy, and B is the smallest forest derived from A

154

such that fry(8) =w. Then vy has no more than 2° consecutive 2-nodes on

any path from its root to a leaf, where ¢ is the number of non-terminals in

N.
PROOF. Lety have the form a,[;a,l; ...a,[,y]..]ll, with m consecutive 2-
nodes. The forest B which yields vy is a forest with ¢ as its rightmost subforest
and 3-, 3-2-, or 2-nodes everywhere else. If m is greater than ¢, then some non-
terminal has been applied more than once in generating the 3-2 portion of 8, and
there is a smaller forest with the same yield. The largest possible subforest
without such repetition has 2° nodes or less, and the largest possible number of
consecutive 2-nodes in the 2-d yield of a forest of 2° nodes is 2°. So y has no

more than 2° consecutive 2-nodes. QED.

If a 2-d forest is explicit and there is a constant bound on the number of con-
secutive 2-nodes, then the size of a forest and its 1-d frontier are linearly related.
The next lemma formalizes this result, and the theorem that follows extends it to

sets of 2-d forests which are the yields of explicit 3-d brest grammars.

LEMMA 5-72. Let B be a forest over H 3 (T, £) such that B is explicit and there
are no more than m consecutive 2-nodes on a path from its root to a leaf. If y
is a subforest of B,y =z, and slen(y) =1, then lyl< m(2(—1)+31(-1.

PROOF. The lemma is proved by induction on L.

Base. I = 1.

The largest possible y is aylsas...a, [0 z]... D and fri(y) =0l z]). If

there were any 2-1-nodes. then ! would be at least 2 (by lemma 5-68). So

I =1and Iyl =m+2<m+3-1.
Inductive hypothesis. Assume the lemma is true for ! <n.
Inductive step. Show the lemma is true for! = n.
The most expensive way to add a 1-node, b, 10 an existing forest ¥ is to insert
m consecutive 2-nodes at every opportunity. If v’ is the largest possible forest
whose frontier has n — 1 nodes, then vy is no larger than a,[,as[5...
a, b, #l,a a5l ... an ol 21 MG y1 L1 So
lyl<m+ 1+ m+2+m (2 —1)- 1)+ 30 -1)-1
<2m+3+2ml—3m+3[— 3~ 1
L2ml—m+31—1
Sm21—1)+31-1.

QED.

THEOREM 5-73. Suppose G is an explicit 3DNF grammar <Z,=,N,R,S >§ such
that A e N, A =* B, fr,(B) = vy, and B is the smallest forest derived from A
such that fr(B)=1w. If! is the length of w and ¢ is the number of non-
terminals in NV, then 1yl <2°(2/ —3)+ 3l — 4.

PROOF. Consider Y,(G), the subset of Y 5(G) which contains only the smallest

forests which yield a string in Y (G). Each of these forests is explicit and has a

constant bound of 2¢ on the number of consecutive 2-nodes (by lemma 5-71). If

v in Y,(G) yields w, then slen (y) = 1w 1— 1. The value sien (y) corresponds to

I fr1(y)! when the 1-d frontier is defined, provided we subtract 1 from the size of

w. We need 1o subtract 1 because the slen function does not count the <1, A> at

156

the end of the 1-d frontier. For cach v in Y'»(G), we can apply lemma 5-72 10 get
Iyl 290200 — 1)— 1D+ 31— 1)1
22 —2-1)+31—-3-1
L2°(21—3)+ 31— 4.

QED.

It was shown in lemma 5-29 that every 3-d forest grammar with standard
selectors has a yield-equivalent complete grammar. It can now be shown that
every standard 3-d grammar has a yield-equivalent explicit grammar. A grammar
which is complete allows no truncation during the 2-d frontier operation, but
truncation may still occur during the 1-d frontier. This happens if a forest has a
leaf which is a terminal, not a selector. If terminal leaves are eliminated, then no
truncation will occur. The following two lemmas prove for 2 and 3 dimensions

that a forest which contains a terminal leaf has no external 1-d selector.

LEMMA 5-74. If Be H} (T, =) and B haé a leaf which is a terminal, then 8 has no
external selector.
PROOF. This can be proven by induction on 181 ={.
Base. [= 1.
B is just a terminal a, so B has no external selector.
Inductive hypothesis. Assume the lemma is true for/ =n—1.
Inductive Step. Show the lemma is true forl = n.
If B=al; Bl for k = 1or 2, then B; has a terminal leaf. The inductive

hypothesis establishes that 8; has no external selector, so 8 has no external

selector.

If B=al, B;]l; B,). then either B; or B, has a terminal leaf. If 8; has a
terminal leaf, then, by the inductive hypothesis, it has no external selector and
fry(B) = fri(B;). So B has no external selector. If B, has no terminal leaves
and B, has a terminal leaf, then the inductive hypothesis establishes that 3,
has no external selector. fr;(B) is formed by attaching a suffix of fr{(,) to

the end of fry(B,), so B has no external selector. QED.

LEMMA 5-75. If Be H$ (T, £), fro(B) is complete, and B has a leal which is a ter-
minal, then fr,(B) has no external selector.

PROOQF. This can be rigorously proven by induction on the size of 8. The most

interesting case is 8 = al; B;1l; B,). If B; has a terminal leaf, then so does fr,(8;)

and fry(B). The fact that fr,(B) is complete assures us that the terminal leaf will

not be truncated during the 2-d frontier operation. But if fr,(8) has a terminal

leaf, then , by lemma 5-74, it has no external selector. The logic is similar if B8,

has a terminal leaf. QED.

If a subforest has no external 1-d selector, then any subforest connected to its ‘
root by a 1-arc will be truncated during the 1-d frontier operation. A 3-d gram-
mar can be modified to remove the subforests that will be truncated from the
grammar rules. Once these subforests have been removed, selectors <1, A> can be
attached to the terminal leaves, and the modified gramfnar will have the same

yield as the original grammar.

158

LEMMA 5-76. Let G be a 3DNF grammar <ZI,Z,N,R,S >} such that = conlains
only standard selectors. There is a 3DNF grammar G' such that G' is com-
plete, G' has no productions A -a where A ¢ N and a € I, and
Y1(G) =Y (G").

PROOF. G' can be constructed according to the steps below. Assume A, B,C, D,

E,F,IeN,a,b,ceXZ,andxe=.

1) SetG =G

2) Partition G' according to outside selectors, make G' complete, and restore it to
3DNF.

3) Partition G' again to isolate subforests with terminal leaves. This process
replaces each non-terminal A in G' with Ay and Ay.

a) Replace A —x with Ay —x.

b) Replace A —»a with As—a.

¢) Replaceal;B], 1 <3, with As—al;Bsland Ax— al;Bx].

d) Replaceal,BI[,C], 1<1<3,1<r <3, with As— a[[B5l,C;], As—
al;Bsll,Cx1 As— al;Bx1l,Cs], and Ax— al;Bx)[,Cx 1

4) Find a rule Ay— al;BI,Cs}in R'.

5) Lets = outsel (B), and form all the m distinct structural forms B; derived
from Cy by the method of step 3 in the proof of lemma 5-29. Form rules
T;— al; B> B;]1and As— T, foreach 1<i <m, and remove A y—
al; B, Csl.

6) If there is a rule As—al; Bsll; C1, then replace it with As— al; Bsl.

7) If there is a rule T;— a3 B[, B;1and Gy contains a rule D— y[; F] or D>

159

b[,EN, F] where the forest derived from E coma-ins v.veys,and
sel(y.B;)=c orclyls) replace the rule for D with D~y or D— b[;E]to
form Gg . Then replace T; — a {3 Bl B;] with T;— &[3 B), B

8) Remove useless rules from G', return it to 3DNF, and repeat steps 2 through 6
until no further changes can be made.

9) Replace every rule A —»a in R' with A »al; z], where z = <1,A>.

Each pass through the algorithm has the net effect of eliminating some forests
with 1-arcs pointing to them, so the algorithm certainly halts. The goal of the
algorithm is to eliminate rules which produce subforests that will be truncated
during the 1-d frontier operation. Then the selector <1, A> is attached to any
remaining terminal leaf, so the resulting grammar is complete and produces forests

which have only selectors as leaves.

Step 2 is a partitioning step which does not affect the yield of the grammar.
A non-terminal As derives forests which have at least one terminal as a leaf. Ay
derives forests which have only selectors as leaves. Steps 4 and 5 also rewrite

some rules without affecting the yield of the grammar.

Steps 6 and 7 eliminate subforests which will be truncated during the 1-d
frontier operation. Lemma 5-75 can be cited to prove that the I-d yields will not

be affected.

The steps are repeated until no further changes occur. At this point, the
grammar has been effectively pruned so that no subforests are produced which will

be truncated during the 2-d or 1-d frontier operations. Step 9 attaches the selector

160

<1,A>10 any terminal leaves which remain, so the requirements of the lemma are

satished. QED.

Once terminal leaves have been eliminated from a grammar, it can be further
modified so that it will not produce subforests of the form al,z],al,z1l; B, or
al, Bl z], where z = <1,A>. When these modifications have been made, the

resulting grammar is explicit.

THEOREM 5-77. Suppose G is a 3DNF grammar <ZI,Z,N,R,S > which has
only standard selectors. There is a complete, explicit grammar G' =
<I',=,N‘ RS>k with standard selectors such that Y (G) =Y (G").

PROOF. Construct G' acco-rding to the steps below. Assume

A,B,C,D,E,FeN,aeX,xeE andzeE".

1) SetG' =G, makeG' complete, remove terminal leaves, and partition G'
according to outside selectors.

2) Partition G' again to form Ay, Ax,and Az forevery A in N'. Rules are
invented as follows:

a) Replace A —z with Az —z.

b) Replace A —»x with Ay — x.

¢) Replace A —ual; Bl with As—al; Bsl, As—[; Bx], and Ay— al; B;].

d) Replace A »x[; Bl with Ay—x[; Byl A,—[;Bz], and As— x[; Bsl.

e) Replace A —al, B] where r > 1 with Ay—al, Bsl, Ay — al,Bxl and
Az - al, Bzl

f) Replace A —al, BI; C1 where r>1 with As— al, Bsll; Csl, As—

161

al,Bsl;Cy1 As— al, Bs);C,) As— al, By Cs) As—
al, By i Csl. Ax > al. Bx[;Cx), Ax— al,Bxl[;Cz)l and A; -
al,B;,C;1

g) Replace A ~al3;BY,C]with As— al3Bsl,Cs) As— al3Bsl,Cx]
As— al3Bsl;Cz), As— al3BxI,Cs), Ax— als By N,Cx), and Az —
alsBx,Cz 1

3) Find arule A —als BI,C1(where A, B, and C can have any subscript) in
R'.

4) Lets = outsel (B), and form all the m distinct structural forms 83; derived
from C as in step 3 of the proof of lemma 5-29. Form rules T;— al3B 1, B;]
and A - T, foreach 1<i <m, and remove A —»a[; BI,Cl

5) If trace(x, B;) =bl,D;]for an x in s such that Gz has a rule ESx, remove
D7 from B; and replace the x in Gz which selects Dy with z to form Gp . If
Gg has a rule E—x [, F] for the x which selects Dz, replace it with £ — F.
Then, replace T, — al3 B, 8,1 with T;— al; B, 1l B;).

6) Repeat steps 3, 4, and 5 for each rule A —»al3 Bl C}.

7) If R' has a rule Az — B, replace it with A, -z,

8) If R hasarule A—al. B[, C;], replace it with A »a[, Bl

9) If R hasarule A—al, Bz, C}l replace it with A —»C.

The purpose of the algorithm is to isolate and eliminate rules which produce

only trees whose 1-d frontiers are z. Step 2 partitions the grammar so that a

non-terminal Ay derives forests which contain at least one terminal 1-node. Ay

162

derives forests which have only selectors as 1-nodes and leaves, and A, derives
forests which have only = as leaves and no 1-nodes. The 1-d frontier of any

forests derived from A3 is z.

Steps 3, 4, and 5 expand the right-hand sides of rules for 3-2 non-terminals
so that 2-d selectors which select z -forests can be eliminated. The modifications
made in step 5 do not affect the 1-d yield, since fry(al; z]l; BD) = fri(B). The
replacement of x [; E] with E shortens the path to E. This would cause a problem
if some selector of a containing forest had a path to E, but this is impossible with
standard selectors. Standard 2-d selectors have paths in 1" and cannot penetrate a

tree which results from a 2-d {rontier step.

Step 7 replaces any z -forest with a single z. Steps 8 and 9 eliminate z -
forests without affecting the 1-d yield. The resulting grammar is complete and it

produces no subforests al, z], al; z 1y B, oral, Bll; z1 QED.

A Subclass of 1Y3F within Context-Sensitive

It has been demonstrated that for many 3-d forest grammars, there is a linear
size relationship between forests in the 3-d yield and the 2-d yield. It has also
been shown that many grammars have a linear size relationship between the 2-d
yield and the 1-d yield. We now define a subclass of 1Y 3F for languages which

exhibit both relationships.

163

DEFINITION 5-78. 1Y3F, is a subset of 1Y3F. A language L belongs 1o
1Y3F, when L =Y,(G) for some 3-d forest grammar G, and if
w € Y,(G), then there is B in Y 3(G) such that jr(B)=w and IBI<
f (1w 1) for some linear function f.

THEOREM 5-79. If G is a 3-d forest grammar which is increasing, explicit, and
has a deletion constant, then Y (G)e 1Y3F;.

PROOF. G has a deletion constant and is increasing, so by lemma 5-14, if

we Y5(G), then thereis a B in Y 3(G) such that 181 <f (lal) for a linear func-

tion f ,and fr,(B) = «. G is explicit, so by lemma 5-73, if w € Y {(G), then there

isan « in Y ,(G) such that fry(e) = w and lat Sg(lw 1) for a linear function g.

So if w € Y;(G), then thereis B in Y 3(G) such that fr(B) =w and 18I <

h (1w |) where h is the linear function which is the composition of / and g. QED.

Any explicit 3-d forest grammar with strictly increasing cycles yields a
language in 1Y3F;. The cycles in the grammar can even be overlap cycles as long
as they show a net gain. Certain O-gain overlap cycles can also be included in a
grammar which yields a 1Y3F,; language. If a O-gain cycle is consistently deleting
in one of its selection processes, then the number of possible cycle steps is limited
by the size of the pre-cycle forest. If too many cycle steps are applied, a path error
occurs when the frontier is taken.

DEFINITION 5-80. Let G be a 3-d forest grammar <Z,Z,N,R,S>f which

contains a cycle whose root is A, A ¢ N. If A =* B8 and no other cycle
non-terminals are used to derive . then 8 is an inpur forest of the cycle.

164

DEFINITION 5-81. Let G be a 3DNF grammar with a deletion constant which
contains a cycle. The cycle is linear if it is a O-gain overlap cycle such that
the maximum number of cycle steps which can be applied without intro-
ducing a path error for an input forest B is f (1fr,(B)1), where f is a
linear function.

THEOREM 5-82. If G is an explicit 3DNF grammar <X, =,N,R,S >f which has
a deletion constant and every cycle in G is increasing or linear, then Y (G e
1Y3F,.

PROOF. Suppose G has a linear cycle whose root is A, B is outside the cycle, and

B derives the input forest B8 for the cycle, A, B ¢ N. Suppose also that if

o€ Y(Gg), then Y;3(Gp) has B such that fry(B) = wand IBI1<g(lal). G is

explicit, so if w € Y {G), then Y ,(G) has 8 such that fr1(8) = « and 181K

f (1w 1). The A -cycle is linear, so there is a linear function 2 such that if

A =>* y and B is the input tree which is a subforest of 7, then the maximum

number of cycle steps is # (1 fr,(B)1). Finally, assume 7y is the smallest forest

derivable from A such that fry(fry(y)) = fri(8) = w. Since G has a deletion con-
stant and the A -cycle is 0-gain, we know that 18| = | and each step of the
cycle adds no more than a constant number of nodes to the derived 3-d forest. If
this constant is ¢ and the number of steps is 5, then
Iyl < 181+ sXxc

Lglla+a(lal)xce

<glidN+aId1)xc

Lglf Uw IN+ A Uw I Dxe.

Thus, we have established that |yl <g'(tw |) where g' is a linear composition of

165

/., g, and h. Such a composite function can be constructed for each lincar cycle
in G. Since the number of cycles in G is finite, we can establish a composite func-
tion for the whole grammar. We do not have to worry about an infinite composi-
tion of functions if there is a cycle of cycles. A cycle of linear cycles can be
analyzed as a single linear cycle. A cycle of increasing cycles can be analyzed as a
single increasing cycle. A mixed cycle of linear and increasing cycles is neither

increasing nor linear, so it is ruled out by the requirements of the theorem. QED.

Linear overlap cycles are significant because the example grammars at the
beginning of this chapter employ them to perform list-processing operations. The
grammar MERGE performs the task of merging two lists into one. The cycle gen-
erated by non-terminal M does the merging. Each step in this cycle deletes two
interior nodes and adds two interior nodes without truncating any subforests. So
the cycle has a net gain of 0. Each step of the cycle removes an element from one
of two input lists. So the largest possible number of cycle steps is no greater than

the sum of the elements in the two lists, and this sum is smalier than the number

of nodes in the 2-d input forest.

The grammar SQUASH can be subjected to a similar analysis. It performs the
task of converting a complex list of elements to a simple list. The grammar has
consecutive overlap cycles generated by non-terminals R and W. These cycles
operate on a complex list of elements #[, a [, z]}, which is initially a full binary
trec. The W -cycle repeatedly splits the iefimost subtree into two subtrees and

attaches them 1o the front of the list. Each steps adds two interior nodes and

166

deletes two interior nodes without truncating and subtrees. The W -cycle ter-
minates when the first element of the old list is moved to become the first element
of the new list. Then, the R -cycle continues the processing of the old list by either
splitting the first element of the old list or by moving an element from the old list
to the new list. Each step of the R -cycle adds the same number of interior nodes
as it deletes, and no step truncates any subforests. The total number of element-
splitting steps over the two cycles is no larger than the number of interior nodes in
the original binary tree. If a full binary tree has n leaves, then it hasn -1 inte-
rior nodes. So the number of splitting steps is no more than 21— 1. The number of
element-moving steps is no more than the number of leaves in the original tree.
The number of cycle steps for R and W combined is less than 2n , where n is the
number of leaves in the original tree, and the number of leaves is half the total
number of nodes in the tree. So the number of cycle steps is linearly bounded in

terms of the size of the 2-d frontier of the input tree.

The grammar BA2N yields the subset of {a | &}* such that each string has

2"a's,n >0. It can now be demonstrated that the language yielded by BA2N is in

1Y3F,.

LEMMA 5-83. Y (BA2N)e 1Y3F,.

PROOF. The grammar BA2N is a composite of the grammars SQUASH, MERGE,
BLIST, and A2N. Inspection of the grammar rules verifies that BA2N is explicit.
No rule generates any of the forbidden subforests. The oveflap cycles in BA2N
come from SQUASH and MERGE. By the analysis in the paragraphs preceding this

lemma. these cycles are linear and complete. All the other cycles in the grammar

167

are complete, non-overlapping, and increasing. It follows from theorem 5-82 that

Y (BA2N)e 1Y3F,. QED.

THEOREM 5-84. ALG] is a proper subset of 1Y3F;.

PROOF. If L belongs to ALG § . then there is a 3-d forest grammar G such that
Y1(G)=L and G has only standard selectors. There is a grammar G' such that
Y(G')=Y,(G), G is complete and explicit (theorem 5-77), and G' is increasing
(lemma 5-30). By theorem 5-79, then, L ¢ 1Y3F,. Lemma 5-83 shows that
Y,(BA2N) is in 1Y3F,, but Y {(BA2N) is not in ALG } (see theorem 5-1). So

ALG } is a proper subset of 1Y3F;. QED.

Baldwin (1983) has shown that a linear-bounded grammar can be written
which simulates the frontier operation on a forest in HX(Z, =) with standard selec-
tors. This grammar can be used for forests with extended selectors if the search
routine on page 241 of Baldwin’s dissertation is modified to accommodate them.
Below is a search subgrammar written specifically for 3-d forests. It demonstrates
that the required modification in Baldwin’s grammar will not violate the linear
space bound. The non-terminal set for this subgrammar is { <sp >, <sp2>,...,
<sp,, >, <rc >, <Ib >, <llb>, <move >}. The non-terminals <sp, > are the
search non-terminals. There is one for every suffix p of a path on a 2-d selector of
the input forest. <rc > is a non-terminal which carries a search non-terminal to
the right over a 2-d tree. <Id >and <lUb > are symbols representing left brackets
that have been passed over during a carry operation. The initial configuration for

the search is <sp >f3 where B is the 2-d forest to be traversed. The final

168

configuration is B; <move > B, B;, where 8, is the trec selected for copying. The
steps which precede and follow these configurations are unchanged from Baldwin’s

dissertation. Let the symbol @ represent any element of X. The rules for search

are given below.
1) <sp>a —ma<sp> if p A,
2) <sp>a —<move>a if p =\,
3) <sp>l, o <sp><re>l, ifp =1p',
4) <sp>[-h<sp'> ifp =2p',
5) <sp>l;-li<sp'>ifp =1p',
6) <sp><rc>[;, »[,<Ub><sp><rc>,
7) <llb><sp><rc>a —a <lb><sp><rc>,
8) <lb><sp><rc>[; -[; <Ub><sp><re>,
9) <Ub><sp><rc>]-]<sp>,
10) <sp><rc>a —»a<sp><rc>,
11) <ib><sp><re>[; »[; <ib><ib><sp > <re >,
12) <Ib><sp><rc>]—1<sp><rc>,
13) <Ub>a —a<lilb>,
14) <ub>]-]<Ub>,
15) <ub>[; »[; <uv>,
16) <lb>a —a<ilb>,
17) <ib>]-], and

18) < >[; »[;<w>.

169

The first 5 rules consume the path p. switching from <sp >to <sp'> when
appropriate. Rules 6 through 12 carry an <sp > 1o the right over a subtree. Each
time a left bracket is passed over, an <!/b > (or <Ub > for the first left bracket) is
added. Whenever a right bracket is passed over, an <!/b > is erased. When a right
bracket is encountered and only an </l > marker is present, the carry operation is
complete. Rules 13 through 18 are auxiliary to the carry operation. They just
move the left bracket markers to the right. It is clear from the examination of the
rules above that the number of symbols required to implement the search opera-
tion on Bis 2+ IBl+ b, where b is the number of left brackets in 8. So the space

required for the operation is linear in the size of the input tree.

THEOREM 5-85. If L =Y (G) and L € 1Y3F, then there is a linear bounded
automaton M which accepts L.
PROOF. Construct M by incorporating in its finite control the 3-d forest grammar
G and the linear bounded grammar which simulates the frontier operation. We
know there is a function f such that if w e L, then G =* B, fr(8) =w, and
IB1<f (1w). Wealso know that the frontier simulator requires space not to
exceed g (1w I+ 181), where g is also a linear function. This space bound is
expressed in terms of |w I+ 181 because the 1-d frontier of 8 may be smaller or
larger that B. If fr,(B) is smaller than B, then the simulator operates in g (181)
space. If the frontier of B is larger, then the simulator operates in g (1w 1) space.

In either case, g (1w 14+ IB1) is a safe upper bound. M operates according to the

steps below:

170

1) Start with w on the tape.

2) Mark a working area on the tape of size g({w |+ 181)+ f.(|w I+ 181) next
to w.

3) Generate the next largest 8 derivable from the start symbol of G (or the smal-
lest B if this is the first time this step is executed). Write 8 in the working
area, replacing what was there before.

4) If B will not fit in the working area, then reject w and stop.

5) Simulate the frontier operation on B, replacing it with w' = fr,(B).

6) 1If the working area is not large enough for the simulation of the frontier, then
go to step 4.

7) Comparew and w'. If they are the same, then accept w and stop. If they are
not the same, then go to step 3.

M is guaranteed to halt, accepting or rejecting w. The amount of tape required is

on the order of 1w I+ g(lw I+ (Iw1)). QED.

COROLLARY 5-86. If G is a 3-d forest grammar such that Y ,(G)e 1Y3F,, then
there is a context-sensitive grammar G' such that L(G') =Y (G).
PROOF. This follows immediately from the previous theorem and the fact that a

context-sensitive grammar exists for any language which is accepted by a linear

bounded automaton. QED.

This chapter has defined a subclass of 1Y3F whose languages are recognizable

in linear space. 3-d forest grammars must be restricted to achieve this result,

171

but some interesting grammars which simulate list processing can be written
within the restrictions. Grammars with decreasing cycles have not been considered

here. It is an open question whether 1Y3F = 1Y3F;.

172

CHAPTER 6.

OUTSIDE-IN LANGUAGES IN 0Y 3F

The 3-d forest grammar BA2N of the previous chapter is an example of a
03YF, language which yields an outside-in macro language. This chapter demon-
strates that 0Y3F, contains some simple Ol macro languages as well as all the 10
macro languages.

DEFINITION 6-1. A simple macro grammar is an IO or OI macro grammar
<ZX,F,V,p,S, P> such that each cycle has only one non-terminal and

every rule has one of the following forms for A, B¢ F, «; ¢ (F JZ),
x;eV,and 0; ¢ FJT UV, 1<i<m :

1) A—-B(ay, ogye..t,),
2) A(xl,xZ,.-.,xm)-—)B(ol, 02,...,Um),
3) Alxy, x3,.0., Xy)— 0, OF

4) A—o.

The definitions of 10 and OI macro grammars are defined by Fischer (1968).
A simple macro grammar does not have any non-terminais which are arguments of
other non-terminals. Baldwin (1983) has demonstrated that ALG 3 corresponds
to the class of IO macro languages, and it immediately follows that simple 10

macro C 1O macro Cc 0Y3F,.

The 10 Conversion Method

10 macro grammars can be converted directly to 3-d forest grammars. The
direct conversion method replaces a macro rule A(x, v, z)— Blax, by, cz) with

a forest rule A — #[3 Bl #Lal; x I #L &1, v 1, #[¢!, z 1, for selectors

173

x = <2,A> y =<2,1>and - = <2,11>. Consider a macro grammar A whose

rules are the following:
1) S—A(a),
2) Alx)-A(xx), and
3) Alx)-xx.
The language L (M) is the set {a?"}, n 2 1. We can convert this diréctly to a 3-d
forest grammar, A2N’, whose rules are shown below. Let x = <2,A>and
z = <L,A>.
D S—#[3AL #al; 210,
2) A-#[;AlL #[,x[;x], and

3) Ao #bLx[1)

Figure 12 contains a derivation of the grammar A2N’ and its frontiers. Con-
trast these forests with those of figure 5. The grammars A2N and A2N’ have the
same 1-d yield, but they produce different shaped forests. During the 2-d frontier
operation on the forest of A2N’, multiple copies of 2-d selectors are made before
the a’s replace the selectors. With the corresponding forest of A2N, no 2-d selec-
tors are copied. Rather, the a’s are copied with each step of the frontier operation.
These examples illustrate that if a simple 3-d grammar generates its yield by copy-
ing 2-d selectors, there is a simple 3-d grammar with the same yield which does

not involve the copying of 2-d selectors.

Another method for converting simple macro grammars 10 3-d forest gram-

mars is presented here which can be generalized to accommodate Ol as well as 10

y y
derived 3-d forest
#---2
!
FHom D 1
| |
Hoe Do 1 #H--2
f | |
a---1 #-2 e Deee - 1
| | I |
z a---1 a---1 #---2
| | I
z z a---1

2-d frontier

a---1
|
a---1
!
a---1
!
a---1
|

z
1-d frontier

FIGURE 12. 3-d forest and yields produced by A2N’.
grammars. This method will be called the IO construction method. The resulting

grammar will produce forests which look like those of A2N instead of A2N". It

will be useful to have a function which turns a string into a 1-d forest and con-

verts macro variables to 2-d selectors. This function is call imap.

DEFINITION 6-2. Suppose A/ is a macro grammar with terminal set £ and
variable set V. The function imap (0): L JV*— H{ (T, £) is defined as

imap (a 0) = al; imap (0)] and
imap(a)=a foraeZ,

imap (x; 0') = <2,21/ 71> [, imap (¢")] and
imap (x;) = <2,21/71> for x; e V.

Let M be a simple 10 macro grammar. A 3-d forest grammar G =
<ZI,EZ,N,R,S>§ can be constructed such that Y o(G) = L (M) by the steps
below:

1) Set I equal to the terminal set of M, and add # to L.
2) Set N equal to the non-terminal set of M, and make S the same as the start

symbol of M.

3) Set 5, =1{<2,2>, <2,21>,..., <2, 21" 1>}, where m is the cardinality of
the variable set of M. Also, set Z; ={<1,A>} and Z3 = ¢.
4) Add rules to R as follows:
a) If M hasarule A—o, e (Z|{JN)*, and no non-terminal in o has any
arguments, then put a corresponding rule A — #[, 0'] in R, where o’ is the
1-d forest such that o' = imap (o).
b) If M has S— A (&, &s,... oy), Where the o's are strings of terminals and
non-terminals, put 4 — #[, #[, o, 1[; #[, &5}, ... #le 1. Min R

where «'; = imap (o;) for each 1< <m

176

c) If M has 4 (xy, x5.....x,)» B(0y, 0s,..., 0,), where the ¢’s are string
of terminals, non-terminals, and variables, put B —
#1#L#L o0), #L ol - #l0). TN AT in R, where @, =
imap (0;), 1<i <m.

d) If M has A(x;,x3,..., X,)= 0 Where 0 is a string of terminals, non-
terminals, and variables, then add the rule S — #[; #[, o'l A], where

o' = imap (o).

The construction method above is the inversion of Baldwin’s direct method.
The inversion of a 3-d grammar relies on a 3-d generalization of lemma 4-48 to
establish that different shaped 3-d forests can have the same yield. Specifically,
fri(#[; #(5 o, BN D = fri(#[5 ol #(5 BIl; y11), where «, B, and y are in
H 3 (T, £) and have no overlapping selectors. The lemmas and culminating
theorem that follow prove that the IO construction method produces a 3-d forest
grammar which is yield-equivalent to the original macro grammar. The first
lemma establishes the correspondence of the macro substitution operation and the

2-d frontier operation.

LEMMA 6-3. Suppose 3-d forest grammar G is constructed from a simple 10
macro grammar M by the 1O construction method, and M has a derivation
S=% A(y, ¥2reees Y) =% B(By, Bsvv.., Br), where A(xy, xg,..., Xp)
—B(o0y, 03,..., 0,) is the last type 2 rule applied (see definition 6-1). Sup-
pose also that 3-d forest grammar G has a derivation B =>* { and { =

#0; 2L #L 7l #L mlL .. 2L 7). G) where fra(y) =

177

#L#Ly L 2Lyl - #hyR 1 () = #1G #1840 #0851 -
#LBR)... M), o, =imap (o), 0'; =* 7, and fri(y;) = imap (y,),
1<i £m. Then B; =* w; if and only if fr(B;) =w';, wherew'; is a string
of terminals and w'; = imap (w;).
PROOF. B; is the string of terminals and non-terminals which results when
(Y1, Y25+ -+ » ¥m) is substituted into 0;. Let o; have the form p;v,p,v,...
P:V; Pr+1, Where the p’s are strings of terminals and non-terminals and the v’s are
variables. When the substitution is performed, each v;, 1< <1, selects y, where
v; refers to the & th macro argument. So B; = P1Yv,P2Yv, -+ Py, Pr+1- 1 the p’s
contain non-terminals, they are context-free non-terminals which have no argu-

ments. They can be expanded to obtain a terminal string B; =* uyy, uzy,,.--
U Yo, Yp 41

The frontier operation on { gives subs,(fro(#[, #[, m [, #, w1, ... #[, 7,]
D, iy) = #L #0800 #8LY .. #8,1.. 1L where B; is
subs(m;, fraly’)), o'; = imap (0;), and 0'; =>* 7;. 0'; is a bracketed version of o;
with the same p’s, and the v’s converted to selectors. Let ¢'; be represented as
p'1ly xily ool x LYy JE .. ML Each selector x; is <2,217 71>, wherev; in
o; refers to the A th macro argument. ¢'; is expanded before the 2-d frontier
operation to give 7; = u',[; x,[; ... '} [; x; [y ;4] ...]I The rules in G used to
deriveu'; from p’; correspond exactl.y 1o rules in M which derive u; from p;. So
fra(u';) is a bracketed version of u;. When fry(y') is substituted into #;, each x;

is replaced with #[;y, 1. where x; = <2,21771>. The frontier substitution,

178

therefore, has the same effect as the macro substitution. The result is 8; =
il ye i v vl M and f74(B;) is w e, a bracketed version of

w;. QED.

LEMMA 6-4. Suppose 3-d forest grammar G is constructed from a simple 10
macro grammar M by the IO construction method. M has a derivation § =>*
Ay, Yareees ¥)=>*% B(By, Byyeevy B), Where A(x g, Xayeen, Xy)

— B(o0y, 03,..., 0,) is the last type 2 rule applied, and B; =* w; 1<i <m,
if and only if G has a derivation B =* {, { = #[; #[, #[, m 1, 2, 7,1, ...
#lymn). ML 8, Q) = #0 #8411 #8) .. #[8%1...11), and
fri(B;) = w';, where ¢'; = imap (0;), and w'; = imap (w,), 1<i <m.

PROOF. The lemma is established by proving the propositions (A) and (B) below.

(A) IfS =* A(y;, ¥a0eeer Ym)= B(B), Bay--., By) and B; =* w;, 1<i <m,

then B =* {, fr({) = #[2 #[2 /3'1][1 #[2 3'2][1 - #LBRR] .. .11, and fri(B;) =

W,

Proof of (A) by induction on n, the number of type 2 macro rules applied to

derive B(B'y, B'3revn, By)

Base. n = 1.
The macro derivation is § => A (o, a2y .., 0)% Alyy, Yareees Vi)
=B (B4, Ba,..., By), using rules S— A (ayq, as,..., @y,) and
Alxy,x5,...,%,)- Bloy, 0s,..., 0,,). By steps 4b and 4c of the IO con-
struction method, G has rules B — #[; #[, #[, o', 1[; #(, o’5)l; ... #[, 0]

M Aland A= #0 #6 oy #0000 L. #h o,] 1) If some o)

179

contains non-terminals, then ¢'; can be expanded to #; using rules supplied by
step 4a of the construction. Similarly, if some o’; has non-terminals, it can be
expanded to y'; by rules corresponding 1o those in A which expand «; to ;.
So B =* { where { = #[3 #[, #[; m1[; 2, mll; ... #[; 7, 1... 111
L#Gy 2Lyl .- #hLyR 1. D) and fry(y;) = imap (y;). Let fry({)
be #[, #[, 811, #[, 8,1, ... #[,8',1...]ll. We are given that B; =>* w;,s0
we can apply lemma 6-3 to get fri(B;) =w';, 1<i<m.

Inductive hypothesis. Assume (A) is true for n <r.

Inductive step. Show (A) is true forn =r.
The macro derivation is § =>* A (ay, ag,..., 0)=% Alyy, Yareeor Ym)
=B (B, By - .-, By), and the last type 2 rule applied is A (x4, x5,..., X,)=
B(0y, 05,..., 0,). By step 4c of the IO method, G has a rule B—
#[3 #; #[; 0], #, 050, ... #[, 0, 1... 1N AL By the inductive
hypothesis, A =>* 8, fry(8) = #[, #[, o1} #[, o5ll; ... #[, ', 1... 1]}, and
frile’;) = imap (y';). If any ¢'; has non-terminals, it can be expanded to 7;
using rules supplied by step 4a of the 10 method. So B =* { where{ =
#l;#L #L 7l #L 70 .. #L 7,) L8 Let fr2(0) =
#[, #L 81 #8501 ... #[, 8]1... 111, and apply lemma 6-3 to establish
that fry(8;) = imap(w;), 1<i <m.

(B) If B =*{, fry(0) = #[, #, B0 #0851, ... #, 8] ... and fr(B;) =

w';, then S =* B(B, Bs,..., By)and B; =* w;, 1<i <m. |

The proof of (B) is similar to the proof of (A). QED.

180

THEOREM 6-5. Suppose a 3-d forest gramrﬁar G is constructed from a simple 10
macro grammar M by the 10 construction method. M has a derivation

S =* o where « is a string of terminals if and only if G has a derivation

S =>* Band fr(B) = imap (a).

PROOF.

First, assume that M has S =* B (By, Bs,-- -, B) =* «, the last macro
rule applied is B(x, X5,..., X,;) = 0, and §; =* w;, I<i <m. By lemma 6-4,
G has B =* {, fry(0) = #[, #[841 #L 841 ... #,8,1... 11 and fri(B;) =
imap (w;). By construction step 4d of the I0 method, G has a rule S—

#[; #[, N, B). So § =* B where B8 = #[; #[, 0'lll; {). By an argument similar
1o that in the proof of lemma 6-3, it can be shown that fri(B8) = « where
o' = imap («).

Now assume G has § =* #[; #[, o], B]1=* Band fr(B) = imap (a).
Then M must havea rule B(xy, x5,..., ;) — 0. Suppose B can be expanded in
G to give #[; #[, #l, o'\, #[; 051, ... #L, 0,)... M A]1=>* {, where
I = #[, #L vl #hyall ... #LyR]... I and fri(y,;) = imap (w;),
1<i <m. By lemma 6-4, m has S =* B(B;, B3,-.., B) and B=>>* w;. As
discussed in the proof of lemma 6-3, the substitution of (8;, B>...., B,) into 0
has the same effect as the substitution of fr,({) into . So imup (o) = o' =

f"l (B) QED.

181
The Ol Conversion Method

A generalization of the 10 conversion method can be used to construct 3-d
forest grammars which simulate simple Ol macro grammars. Ol processing allows
non-terminals 1o be copied before they are expanded. This is simulated by generat-
ing a list of possible expansions of each argument. If two copies of some argument
are required, then two distinct elements are taken from the list of possible expan-

sions. This method will be called the Ol constiruction method.

As before, a function will be employed to add 1-brackets to strings and con-
vert macro variables to 2-d selectors. This function is similar to imap , except that
the mapping of variables to selectors is more complicated. The symbol x;, will
represent the j th occurrence of the i th argument in the argument list of a macro
non-terminal.

DEFINITION 6-6. Suppose M is a macro grammar with terminal set £ and
variable set V. The function omap (6): (TUV)*— H{ (T, £) is defined as

omap (a ¢) = al, omap (o)l and
omapla)=a foraeZ,
omap (x, @)= <2, 2187122(12) ~1> [, omap (0')], and

omap (x;) = <2,2117122(12Y 71> for xy,€ V.

Let M be a simple OI macro grammar. A 3-d forest grammar G =
<ZX,5,N,R,S>F can be constructed such that Y o(G) = L (M) by the steps
below:

1) Set T equal to the terminal set of M and add # 10 L.

182

2) Add A, A;,and A, 1o N for each non-terminal A of M.
3) Add selectors to £ and rules to R as follows:

a) If M hasarule A— g, ge (Z|JN)*, and no non-terminal in ¢ has any
arguments, then put a corresponding rule A — #[, 0] in R, where ¢’ =
omap (o).

b) If M has S — A (@, oy, ...,), Wwhere the «’s are strings of terminals and
non-terminals, put A — #[, #[, #[, 7,1 {; 20 #[, 7,01, ... #L #[T, 1
...1Min R, where each T; is a newly invented non-terminal. Add rules
T,— #L,#L o Ti N and 7, —» #[, #[,'; 1], foreach 1<i <m, where
o'; = omap (o;).

c) If M has A (x,, x5,..., X,)» B(oy, 05,..., 6,), where the ¢'s are string
of terminals, non-terminals, and variables, put B— B, B1—
#[; #, ¥, B,], By~ #[;#[,yll; B,), and B,— #[; #[,8]l[,Alin R.
v is the subforest #[,0,[; #[, #[, o' J; n L, ... #[, 0, [; #0; 2 0,]
[7, M...], where o, = <2,211712(21)' >, n, = <2,217121>, p, is
the number of occurrences of x; over (o4, 04,..., 0,), and 0'; =
omap (0;). 1<i <m. § is the subforest #[,n,{; #[, z1l]
[#Lnsl #L=1 . #hn, [#L 2101000

d) f M has A(x,, x»..... X,) 0 Where o contains no non-terminals with
arguments, then add the rule S — #[; #[, olll;A]to R, where o' =

omap (o).

This construction method is an extension of the method for 10 grammars.

Instead of maintaining a list of single arguments for a non-terminal, a list of lists

183

of arguments is generated. When copying occurs. multiple distinct versions of an
argument are selected. If a non-terminal derives a forest which will become an

argument of another non-terminal, then an arbitrarily long list of distinct possible

derivations is generated.

Step 3b initializes the argument list for a non-terminal A which has argu-
ments oy, ®3 ..., &p. New non-terminals 7; are added to generate a list for each

argument which contains an arbitrary number of versions of the argument.

Step 3c produces rules to simulate an OI derivation step which will involve
the copying of arguments. The new forests, which are created from the old argu-
ments, are themselves arguments of another non-terminal, so multiple versions of
each new forest are generated. List processing techniques are applied to create new
argument lists from the old ones. Repeated occurrences of some x; in the o's of
the macro rule are replaced with distinct selectors x; . These selectors will retrieve
distinct versions of argument ¢ from the old argument lists. The work of repeat-
edly adding new elements to the argument lists is done by non-terminal B;.
Non-terminal B , initializes the structure by moving the new argument lists gen-
erated by the previous macro derivation step to the position of the old argument
lists for the processing of the current macro derivation step. Step 3d terminates
the Ol processing by joining the first arguments from each of the argument lists, as
required by o.

The two lemmas below and the theorem that follows verify that the Ol

method produces a grammar which is yield-equivalent to the original. The first

184

lemma analyzes the rules generated in step 3c of the method.

LEMMA 6-7. Suppose 3-d forest grammar G is generated from a simple OI macro
grammar M by the Ol construction method. Assume M has a derivation
S =% Aoy, gyeen, 0)% B(B1, Byev, B) With A(xy, xayeen, Xy)o
B(oy, 04,..., 0,) as the last type 2 rule applied, and terminal strings Si,»
1</ ¢, are independently derived from «,, 1<i <m. Let p;, be the number
of occurrences of x; over (ay, 0s,..., 0,). Also, assume G has a derivation
A =* { such that fr,(0) = #[, v, [, {1 #05 vol, GG
v #un LG G = #0 #0861 #0 #0381
o # L #D 8, 1.7, and fr(8;) = omap (0,). G also has a derivation
B; =>* B which applies r rules for B, one rule for B, and which has{ asa
subforest. Then fry(B) = #[, #[, '\[; v 1 [#L ¢l vL1G
L ULy R,y = G #Ly MG 20 #h v G
o #L #Ly 0D for 1< Sm, Uy is £ with X p; elements removed
from the front, and fri(y;,) = omap (w;) if and only if w; . 17 7, are
independently derived strings of terminals such that B; =>* w,.
PROOF. The lemma is established by proving propositions (A) and (B) below.
(A) If B; =* w,, 1Si <m, 1K1 <1, then fry(B)=...and fry(y,) = omap (v).
Proof of (A) by induction on r.
Base. r = L.
The derivation of Bis B, = #[; £ll> #[50 [, {]] where ¢ =

#0L#L ol #L#L o n M .. #0050 # #L 0, 10 2, 1L D) and

185

6 =#0, #Ln 0 #L 21 #0 0Ll 2L .. 200, 0 #L2100. 0 1) For
each 1<i <m, o; = omap (0;), 0, = <2,21712(21)""> and n; =
<2,21°7121> [ry(B) = #[, #1, 00y #L #L v I #L 2 NG .

#, 00 # #L vy, 1 #2110 .. .). The tree {'; is selected from { by com-
posing selectors o; and n;. The path of n; leads 1o the i th argument list {;,
and the path of o; removes the first p; elements from {;. The forest y; is
formed by substituting { into 6 and then into ¢;. ¢'; has selectors Xy, of the
form <2,21;,_,22(12)Y 71> for 1A <m and 1< <p;. The path xp, leads
to the selector n;,. The composition of Xp, and n;, forms the path

2177121 -2(12) 7}, which selects 8, from {.

It needs to be shown that if B; =* w; , then fry(y;) = omap (w;). B; is
the macro substitution of (o, s, .., &,) into 0; to form a string of termi-
nals and non-terminals. Let B; have the form p;«, pr,,...p; o, P47, Where
0; = P1ViPaVa..-P; Vi Pr4;- The p’s are possibly empty strings of terminals
and non-terminals, and the v’s are possibly distinct macro variables. Each v
is replaced by some « to form B; from o;,. The fully expanded B; has the
form w; = yqu, you,,...v,u,y,4;, Where p, =%y, and @, =* Uy for
1< f KL There are several possible versions of w;,, resulting from different
expansions of the p’s and «’s. Each Uy, is a version of 53, where v, refers to
the -h th macro argument.

Now consider frl(yi‘). Y:, is built from o';, the bracketed version of o;.

All the terminals and non-terminals of ¢; are in 0';. The non-terminals of ¢,

186

are context-free, and they can be expanded just as in a. Therefore, ;, has
subtrees which yield y,,... y;+1. Between each pair of these subtrees is a sub-
tree 8,,1, selected from { using selector xj, . Selector Xp, corresponds to the
j th occurrence of a variable v in o; which refers to the A th macro argument.
So if w; has a substring Uy, =Sy, where v, is the j th occurrence of a selec-
tor which refers 10 the 4 th macro argument, then y; has a corresponding sub-
tree 8, selected by x, .1t is given that frl(B;,j) = omap (s,). Soif B; =*
w;,, then there’s a corresponding y;, such that frily; 1) = omap (w;).
Inductive hypothesis. Assume (A) is true for r <n.
Inductive step. Show (A) is true for r = n.
The derivation of B is By =>* #[; £ll, B’} where £ =
#[, #l,0.0 2L #L o i n NN o # L0, [20 #0010, LU D) B s
derived in r — 1 steps, so the inductive hypothesis an be applied to establish
that fro(B) is #[#L ¢y WL #6050y 0 G- 20U Ly 0
vy =#L#hy i #h #hy o #h#hy, 0.) {7 is g with
(r — 1)X p; elements removed, and fr;(y;) = omap (w;), 2<7 <r. To get
fro(B), fri(B’) is substituted into §&. The selector o; selects a sublist of {";
with p; elements removed, giving {'; which is {; with r Xp; elements missing.
The selector n; selects y”;. By an argument similar to that used for the induc-
tive base above, the substitution into ¢'; resultsin y;, such that frl(yil) =
omap (w;). So fra(B) = #L, #L ¢y v DL #LCol vyl Ly oo #L0R yn]]

0 wherey, = #[, #L vl #0, #Lvally ... #0, #L v, ... 1 and

187

frily;,) = omap (w,), for 1<i <m and 1<7 K7
(B) If fr(B)= #L #L 0Ly DL #6800 vyl L #L0n Gy D). 1] where
.. .and fry(y;,) = omap (w;), then B; =* w; for 1<i<m,and 1<z <7,

The proof of (B) is similar to the proof of (A). QED.

LEMMA 6-8. Suppose a 3-d forest G is constructed from a simple Ol macro
grammar M by the OI construction method. M has a derivation § =*
B(By, B, ---, By) in which the last type 2 rule applied is
Alxy, x2...,X)> B(0y, 03,..., 05), and w;, 1Si Sm and 17 <7, are
independently derived strings of terminals such that 8; =* w, if and only
if G has a derivation B =>* B where fr)(8) = #[, #[, {'\[; v)1 [; #L, 055 v,
o 2Ly 0y = 20 #0 0y #0210y,
e #L#Ly, N and fr(y,) = omap (wy).
PROOF. The lemma is established by proving propositions (A) and (B) below.
(A) If M has S =>* B(By, By ..., Br)in which... ,and...B; =* w;, then
G has B =*RB, fro(B)=...,and frl(yi}_) = omap (w;).
Proof of (A) by induction on 7, the number of type 2 macro rules applied to
derive B(B4, Bs..... B,).
Base. r = 1.
The macro derivation is § = A («;, a3,..., &,)= B(B;, Ba,..., B,) using
rulesS— A(o;, as..., o)and A(xy, x5,..., X,)» B0y, 05,..., 0,).
The o's and B's are strings of terminals and context-free non-terminals. Let

s;,» 1<i<m and 1</ €q., be terminal strings such that &; =* 5, , and let

188

w, be terminals strings such that 8, =>* w,, 1<z <r. By steps 3b and 3c of
the OI construction method, G has rules A — #[, #[, #[, 7,11 [#[, #[, T,]]
L ...#L#L T, 0.0 T #L#L o, [T, 7> #[;, #l,0;]], Bo By,
B~ #[3#L €, B, B~ #[3#[5€lll; Byl and By #[3#[,01:A],
where £ = #[,04[; #[, #0, o1, n I L, ... #2050, 0 2L # 0,1 [0, DL,
6 =#Ln i #L 201 #hnoli #L 21 .. #hns [#2100 o =
<2,21712(217'>, n; = <2, 2117121>, and p; is the number of occurrences
of macro variable x; in (04, 03,..., U,). The rules for A can be used to derive
(=#L#L#L D L #G #0000 - # L #0 0L 1 where £ =
#h#h o i #l #ho JL . #L #h o 1L and fryler)) =
omap(s;), 1<j g. Let B => B, =>* B, applying the B, rule r times, the
B, rule once, and rules for A to derive {. Now apply lemma 6-7 to establish
the desired result.

Inductive hypothesis. Assume (A) is true for r <n.

Inductive step. Show (A) is true for r =n.
The macro derivation is S = A (ay, aa...., &y)= B(B}, Bs ..., Br) Where
the last rule applied is A (x 1, X5...., X,)» B(0;, 04,..., 0,). The a's and
B's are strings of terminals and context-free non-terminals. Let Si,» I<i<m
and 1</ g, be terminal strings such that &, =>* s; . and let w; be termi-
nals strings such that B; =* w;, 1<z <r. By step 3c of the OI construction
method, G has rules B— B,. B,— #[;#[, ¢, B,], B;— #[; #[,¢&lll,B,],

and Bg—» #[3 #[3 6]][3A 1. where &= #[3 01[1 #[3 #[2 0'1][1 n 1]]]]

189

Lo #ho, [#L#L 0, 1 [n, .. 0 6 = #[n [#[, 211
L#hnl #L 21011 ... #6 0, [206 z]]]A o =<2,217 1221 > n; =
<2, 21'7121> and p; is the number of occurrences of macro variable x; in
(041, 02,..., 0,). The inductive hypothesis can be applied to establish that
A =* { such that fro(0) = #[, #L v (1L #L vl GG - #G v, [R
L& = o #L8 T #1 # 8, . # L #0,8, 1) T, and fr(8,) =
omap(s;), 15 j <q. There is a derivation B => B, =>* B, which applies the
rule for By r times, the B, rule once, and rules for A to derive {. Now
lemma 6-7 can be applied to establish the desired result.

(B) If G has B =* B, fry(B) = #[, #L, ¢ [vl [2L 8L yvo11 L ...

#LH0n Ly ... 1, ... and fry(y;) = omap (w,), then M has S =>*

B(By, Ba,.--, By) in which . .., and B; =>* w; for 1</ <m and 1<z 7.

The proof of (B) is similar to the proof of (A). QED.

THEOREM 6-9. Suppose a 3-d forest grammar G is constructed from simple Ol
macro grammar M by the OI construction method. M has a derivation
S =* w, where w is a terminal string, if and only if G has a derivation
S =* Band fry(B) = omap (w).
PROOF. First, assume M has S — B (B, B3,..., B)=>* w, and the last macro
rule applied is B(x4, x5,..., X,) 0. Let Y, be strings of terminals such that
B =* u; ,for 1Si<m and 1< 7. By lemma 6-8, G has a derivation
B =* { where fr)(0) = #L #L ULy L #0L GG v # 0 Un L ya)

Gy =L #L v G #L #Ly L - # b 2Ly, L and fr(y) =

190

omap (u;), 1<17 <r. By step 3d of the O method, G has a rule S —
#[3#[, 0N, Bl SoS=* #[;#[, 0'lll;¢]. By the same argument as in the proof
of lemma 6-7, it can be shown that the frontier substitution of fr,({) into the

expansion of ¢’ yields the same string as the macro substitution of

(B1, Bay-.., By) into a.

A similar argument can be developed from the initial assumption that G has
S =* #[;#[, o1, B1=>* B. In both cases, we find that fr(B8) = omap (w).

QED.

Consider the OI macro grammar M which has the following rules:

1) S=F(A),

2) F(x)-F(xx),

3) F(x)-xx,

4) A—bA,

5) A—Ab, and

6) A—a.
The language generated by M is the same as Y ((BA2N) from the grammar BA2N
of chapter 5. We can construct a new version of this grammar, BA2N’, to illus-
trate the Ol construction method. Much of the detail of the Ol method is
unneeded since the macro non-terminal F takes o.nly one argument. Consequently,
occurrences of the macro variable x are converted to selectors whose paths do not
have the prefix 211712, The rules of BA2N’ are the following:

1) F-##[,T],

191

2) Tl #L Al T,

3) T-#L#[A1

4) FF,,

5) Fy—#[3 #0000, 20, #0 x 30 2,00 n DL F L,
6) Fi—#[3#[00; #[#[5 x40, x 1L n 1N, Fol,
7) Fyo #l3#lnl #, 2 1L F,

8) S— #[3#[x [x,1, Fal,

9) A-#[,b[,A]]

10) A-#[, Al 60,211, and

11) A—)#[Za[lzl].

The selectorsare z = <1,A>,0 = <2,22121>,n = <2,21>, x; = <2,22>,
and 3?2 = <2,2212>. Rules 1 through 3 come from step 3b of the Ol method
applied to rule 1 of M. Rules 4 through 7 result from applying step 3c to rule 2
of M. Rule 8 is produced when step 3d is applied to rule 3 of M. Rules 9

through 11 result from applying step 3a to rules 4, 5, and 6 of M.

The cycle introduced in rule 2 and 3 is strictly increasing. The cycle of rules
5 and 6 is a 0-gain cycle which penetrates deeper into an old argument list with
each step as it generates a new argument list. The new argument list is shorter by
half than the old list, since two elements are removed from the old list every time
an element is added to the new list. When rules 4 and 7 are combined with rules 5
and 6, we have a nested cycle. Rule 7 changes a new list to an old list for further
processing by the inside cycle. If / is the size of the initial argument list generated

by 7. then the maximum number of F,-cyclestepsis{ [2+ [/ d+1] 8+

192

..+ /1 =1-—1,and the maximum number of full F -cycle steps is log, {. So it
must be true that the number of derivation steps involving rules 4 through 7 does

not exceed 3 log, I +1 — 1, which is less than 41. The F -cycle, therefore, is a

linear cycle.

If the T'-cycle or F -cycle is applied more times than necessary, some sub-
forests will be truncated when the frontier is taken. It is also true, however, that
each forest in the 2-d yield is the frontier of a 3-d forest which is complete. So

the grammar has a deletion constant of zero.

As a matter of convenience, non-explicit subtrees #[; z] are introduced by
step 3c. These serve as end-of-list markers. An equivalent explicit grammar can
be written without these by adding separate end-of-list rules. As a result of
analyzing the grammar BA2N’, we conclude that Y ,(BA2N) € 1Y3F,. This resull
is generalized to hold for any 3-d forest grammar constructed by the 10 or Ol
conversion method.

THEOREM 6-10. If G is a 3-d forest grammar constructed from an 10 or Ol
macro grammar using either the IO or OI construction method, then ¥",(G Je
1Y3F,.

PROOF. It needs 1o be established that there is G' such that Y ;(G') =} ,(G) and

G' is explicit, G' has a deletion constant, and every cycle in G' is increasing or

linear. Macro grammars can be written so that no arguments are deleted, so we

will assume that the initial macro grammar is non-deleting. If the IO method is
used, then the resulting grammar has no overlapping selectors. and previous

theorems assure us that G' can be consiructed to meet the above requirements.

193

Suppose the Ol method is used. Non-explicit SubT'.I‘E'E’S are introduced in step
3c, but they can be easily eliminated by adding separate rules to process the last
elements on argument lists. Subforests may be truncated during the frontier
operation if the argument lists are too long, but for every string yielded, there is a
derivation of a forest whose argument lists are exactly the right lengths. So each

string in the 1-d yield can be produced by a complete forest, and the grammar has

deletion constant O.

The cycles generated by step 3b of the OI method are strictly increasing. A
cycle introduced by step 3c for a non-terminal B generates new argument lists
from old argument lists. For each new argument created, a certain number, say r,
of arguments are removed from one of the old argument lists. We only need 1o
consider the case where 77 > 1 for some argument list. If 7 never exceeds 1, then
the grammar is non-copying, and an equivalent IO grammar can be written for the
language. So the number of steps in each B;-cycle (and the length of the new
argument list) is no more than [| 7, where ! is the number of arguments in the
longest argument list. Step 3c also creates a cycle for B which contains B, as a
subcycle. At the beginning of each repetition of the B -cycle, the previous new
argument lists become the current old argument lists. Since the new argument list
is always shorter than the old list by a factor of 1/ r, the maximum number of
B -cycle repetitions is log, . Each full B -cycle step applies 3 rules plus the
number of B -cycle steps. So the maximum number of rules applied in the B -
cycle is

log, ! !
3+)
i=1 r

194

log,. I
=3log! +) —
e

i=1 ‘i

log, ! 1
=3logl +1) —

i=1 t
<3 logl +1

<41

It has been established that G', the explicit equivalent of G, has a deletion
constant and only increasing or linear cycles. By theorem 5-51, Y ,(G')e 1Y3F,.

QED.

The IO and OI conversion methods have been described for very simple macro
languages 1o keep the level of detail at a managable level. These methods can be
generalized to allow various-sized argument lists, larger cycles, multiple non-
nested macro non-terminals in the right-hand sides of rules, and context-free non-
terminals and terminal strings arbitrarily placed between macro non-terminals.
The methods cannot be generalized in a straightforward manner to accommodate
nested macro variables. Baldwin's conversion method assures us that every 10
macro grammar has a corresponding 3-d forest grammar, but conversion methods
for nested Ol macro grammars have not been investigated. Thus, it remains an

open question whether 1Y 3F; contains all or just some of the Ol macro languages.

The OI conversion method can be adapted to operate on IO macro grammars as
well as Ol macro grammars. To simulate OI expansion, the OI method maps
repeated occurrences of macro variables in a single rule to distinct 2-d selectors. If

repeated macro variables are mapped to the same 2-d selectors, then the new

195

grammar simulates 10 expansion. This raises the possibility of using the adapted
OI method to convert simple quoted macro grammars to 3-d forest grammars. The
forest grammars that result, however, may have mixed O-gain and increasing over-

lap cycles. So the present analysis does not guarantee that these 3-d grammars

will yield languages in 1Y 3F,.

196

CHAPTER 7.

CONCLUSIONS AND FURTHER WORK

The question which has motivated this research is the following: What is the
simplest formal system that is capable of completely describing common high-
level programming languages? Context-free languages are too simple; context-

sensitive languages are too complicated. The answer is somewhere in between.

Several extensions of the context-free languages have been investigated which
permit the copying and deletion of substrings. The ALG,! language hierarchy is
such an extension in which each level of the hierarchy has more copying power. A
formal system raust have the ability to copy substrings in order to model the pas-
sage of arguments to subroutines. ALG 4 has this ability, and it is unlikely that
the increased copying power of higher levels of the hierarchy is useful for describ-
ing programming languages.

The 1YnF hierarchy defined in this thesis has the same copying power as the
ALG,! hierarchy, but the ability to delete subforests is enhanced by extended
selectors. As a result of this modification, 1YnF broadens the ALG,} language
classes for n > =2 (and perhaps for n = 2). and 1Y3F is more capable of describ-
ing programming languages than ALG {. If 1Y3F is to be truly useful for this pur-
pose, however, it must be proven that 1Y3F is not too broad.

The use of extended selectors allows 3-d [orest grammars to specify cycles

which delete arbitrarily long sequences of characters from yielded strings. There is

little support in the Computer Science literature for analysis of this kind of

197

deletion. Context-sensitive grammars are commonly defined with the restriction
that the left-hand side of a rewriting rule must not be larger than the right-hand
side. This characterization is somewhat misleading, for it seems to imply that
deletion is not tolerated at all in context-sensitive langauges. It is known that
deletion is tolerated if no more than a constant number of consecutive symbols are
deleted from a derived word. Chapter 4 goes further than this, demonstrating that
context-free languages tolerate the deletion of arbitrarily long substrings, provided
there is a regular grammar which describes the deleted substrings, and the deleting
and increasing operations are independent. There is, however, a subset of 1Y2F
which has not been shown to be within context-free. These languages are gen-
erated by grammars which have complex cycles that intermix simultaneous
decreasing/increasing steps with increasing steps. It seems likely that further
analysis will show these grammars also to have context-free equivalents, or at

worst context-sensitive equivalents.

When 3-d forest grammars are analyzed, it becomes apparent that even a res-
tricted subclass of 1Y 3F has more languages that ALG § . This subclass, 1Y3F,, is
shown in chapler 5 to be a subset of the context-sensitive languages. This is
shown in spite of the fact that the grammars which yield 1Y3F, languages can
have cycles which delete arbitrarily large subforests. The result in chapter 6 that
1Y3F, contains some Ol as well as 10 languages is particularly encouraging. All
high-level programming languages exhibit both OI and IO phenomena. Evaluation
of arithmetic expressions and parameter passage using catl-by-value are common

examples of 10 phenomena. The passage of functions as parameters, call-by-name

198

in Algol, and quoted arguments in Lisp are examples of Ol phenomena. A formal
system which fully describes high-level programming languages must clearly have
both OI and IO capabilities. It remains to be investigated whether 1Y3F,; is power-

ful enough for this application.

Opportunities for further research in multidimensional forest languages are
plentiful. With regard to 2-d forest languages, it needs 10 be determined whether
1Y2F =CF. If these classes are not equivalent, then it should be determined
whether 1Y2F c CS. For 3-d forest languages, it is unknown whether 1Y3F =
1Y3F,. If they are not equivalent, then a study could be made to determine if
1Y3F - 1Y3F, contains any interesting languages. It may be true that languages
outside the linear subclass have no forseeable applications, and in that case,
modifications of the forest grammar and {rontier definitions might lead to a more
precise characterization of 1Y3F;. In any case, it will be interesting 1o discover
whether 1Y3F; shares the properties that are known to hold for context-free

and/or context-sensitive Janguages.

Further research will also be required to determine whether 1Y3F, contains
all the OI macro languages. If 1Y3F,; is to be useful for describing programming
languages, then it will have to contain at least some of the nested Ol and quoted
macro languages. It is likely that 1Y3F, can also be shown to contain the yields of
top-down and bottom-up tree transducers on regular sets of trees, and perhaps

even the yields of compositions of tree transducers.

199

The 1YnF languages share the copying power of the ALG,,1 languages. Further
work can be done to verify that 1YnF forms a proper hierarchy of languages paral-

lel to ALG,!, and to generalize the results for 1Y3F to 1YnF, n 23.

Finally, there are a number of other variations of the frontier function which
raise intriguing questions. One such variation would allow whole forests to be
copied during the frontier operation. With both standard and extended selectors,
only trees can be selected for copying. If selectors were redefined to allow
specification of a degree, & , as well as a dimension, i, then the selection path could
be traced to retrieve a forest in H¥(X, =) for copying. This is a natural generaliza-
tion of standard selectors. It is likely to produce a language hierarchy distinct from

ALG,! and perhaps from 1YnF as well.

200

BIBLIOGRAPHY

Aggarwal, Sarwan K., and James A. Heinen. 1979. "A General Class of Non-
context-free Grammars Generating Context-free Languages." Information
and Control 43: 187-194.

Aho, Alfred V. 1968. "Indexed Grammars." Journal of the Association for Com-
puting Machinery 15: 647-676.

Aho, Alfred V. 1969. "Nested Stack Automata." Journal of the Association for
Computing Machinery 16: 383-406.

Aho, Alfred V., and Jeffrey D. Ullman. 1977. Principles of Compiler Design.
Addison-Wesley Publishing Company, Reading, Mass.

Bader, Christopher, and Arnaldo Moura. 1982. " A Generalization of Ogden'’s
Lemma." Journal of the Association for Computing Machinery 29: 404-407.

Baker, Brenda S. 1974. "Non-contexi-free Grammars Generating Context-free
Languages." Information and Control 24: 231-246.

Baker, Brenda S. 1975. "Tree Transducers and Tree Languages." Information and
Control 37: 241-266.

Baker, Brenda S. 1978. "Generalized Syntax Directed Translation, Tree Transduc-
ers, and Linear Space." SIAM Journal on Computing 7: 376-391.

Baker, Brenda S. 1979. "Composition of Top-down and Bottom-up Tree Trans-
ducers." Information and Control 41: 186-213.

Baldwin, William A. 1983. "Hypertrees -- A Study in Language Specification."
Ph. D. dissertation, Iowa State University.

Book, Ronald. 1972. "Terminal Context in Context-sensitive Grammars." SIAM
Journal on Computing 1: 20-30.

Choffrat, Christian, and Kavel Culik II. 1983. "Properties of Finite and Pushdown
Transducers." SIAM Journal on Computing 12: 300-315.

Engelfriet, Joost. 1975a. "Bottom-up and Top-down Tree Transformations -- a
-Comparison." Mathematical Systems Theory 9: 198-231.

Engelfriet, Joost. 1975b. “Tree Automata and Tree Grammars." Unpublished

course notes. Department of Computer Science, University of Aarhus, Den-
mark.

201

Engelfriet. Joost. 1977. "Top-down Tree Transducers with Regular Look-ahead."
Information and Control 10: 289-303.

Engelfriet, Joost. 1981. "Three Hierarchies of Transducers." Marhematical Systems
Theory 15: 95-125.

Engelfriet, Joost, and Erik Meineche Schmidt. 1977. "IO and OI. Part 1." Journal
of Computer and System Sciences 15: 328-353.

Engelfriet, Joost, and Erik Meineche Schmidt. 1978. "10 and OI Part 11." Journal
of Computer and System Sciences 16: 67-99.

Engelfriet, Joost, and S. Skyum. 1982. "The Copying Power of One-state Tree
Transducers." Journal of Computer and System Sciences 25: 418-435.

Engelfriet, Joost, Grzegorz Rozenberg, and Giora Slutzki. 1980. "Tree Transducers,

L-systems, and Two-way Machines." Journal of Computer and System Sci-
ences 20: 150-202.

Engelfriet, Joost, Erik Meineche Schmidt, and Jan Van Leeuwen. 1980. "Stack
Machines and Classes of Non-nested Macro-languages." Journal of the Asso-
ciation for Computing Machinery 27: 96-117.

Fischer, Michael J. 1968. "Grammars with Macro-like Productions." IEEE Confer-
ence Record 9th Annual Symposium on Switching Automata Theory 131-142.

Ginsburg, Seymour, and Sheila A. Greibach. 1966. "Mappings which Preserve
Context-sensitive Languages." Information and Control 9: 563-582.

Ginsburg, Seymour, and Sheila A. Greibach. 1969. "Abstract Families of
Languages." Pp. 1-32 in Studies in Abstract Families of Languages. Memoir
no. 87, American Mathematical Society, Providence, R. 1.

Ginsburg, Seymour, and Barbara Partee. 1969. "A Mathematical Model of
Transformational Grammars." Information and Control 15: 297-334.

Ginsburg, Seymour, and Gene F. Rose. 1966. "Preservation of Languages by
Transducers." Information and Control 9: 153-176.

Greibach, Sheila A. 1981. "Formal Languages: Origins and Directions." Annals of
the History of Computing 3(1): 14-41.

Herman, Gabor T., and Grzegorz Rozenberg. 1975. Developmental Svstems and
Languages. North-Holland Publishing Company, Amsterdam.

202

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Inrroduction to Automata Theory.
Languages, and Computation. Addison-Wesley Publishing Company, Read-
ing, Mass.

Horowitz, Ellis, and Sartaj Sahni. 1976. Fundamentals of Data Structures. Com-
puter Science Press, Inc., Woodland Hills, California.

Lewis, P. M., and R. E. Stearns. 1968. "Syntax Directed Transduction." Journal of
the Association for Computing Machinery 15: 465-488.

Liu, L., and P. Weiner. 1973. "An Infinite Hierarchy of Intersections of Context-
free Languages." Mathematical Systems Theory 7: 185-192.

Platek, Martin, and Petr Sgall. 1978. "A Scale of Context-sensitive Languages:
Applications to Natural Language." Information and Control 24: 155-162.

Rounds, William C. 1969. "Context-free Grammars on Trees." Ist Theory of Com-
puting 143-148.

Rounds, William C. 1970. "Mappings and Grammars on Trees." Mathematical
Systems Theory 4(3): 257-287.

Savitch, Walter J. 1973. "How to Make Arbitrary Grammars Look Like
Context-free Grammars." SIAM Journal on Computing 2: 174-182.

| Siromoney, Rani, and Kamala Krithivasan. 1974. "Parallel Context-{ree
Languages." Information and Control 24: 155-162.

Strawn, George O. 1982. "Hypertrees and the Modified Chomsky Hierarchy."
Unpublished manuscript. Department of Computer Science, lowa State
University, Ames, lowa.

Thatcher, James W. 1973. "Tree Automata: An Informal Survey." Pp. 143-147

in Currents in the Theory of Computing. Prentice Hall, Englewood Cliffs, N.
J.

