
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(sj or section, tiiey are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

UniversiW
MicrOTlms

International
aoON.Zeeb Road
Ann Arbor, Ml 48106

O'Neil, Thomas Eugene

THE MULTIDIMENSIONAL FOREST LANGUAGES

Iowa State University

University
Microfilms

i ntGrn 8.ti0 n si 300 N. zeeb Road, Ann Arbor, Ml 48106

The multidimensional forest languages

by

Thomas Eugene O'Ncil

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Approved:

In Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1985

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

i i

TABLE OF CONTENTS
Page

CHAPTER]. INTRODUCTION 1

CHAPTER 2. MULTIDIMENSIONAL TREES AND FORESTS 6

Defining Trees and Forests 6

The Frontier Operation 10

Grammars and Languages 14

CHAPTER 3. ONE-DIMENSIONAL FOREST YIELD LANGUAGES 17

One-Dimensional Normal Form 17

Equivalence of OYIF with the Regular Languages 20

CHAPTER 4. TWO-DIMENSIONAL FOREST YIELD LANGUAGES 22

2-d Forest Grammars with Standard Selectors 22

Two-Dimensional Normal Form 23

The Deleting Power of Extended Selectors 32

Grammars with Non-Overlapping Selectors 37

Grammars "Without Deletion Cycles 44

Length Predictors for 2-d Forest Grammars 49

The Remainder Operation on Context-Free Languages 64

Normal Form for Deletion Cycle Analysis 67

2-d Forest Grammars with Regular Deletion Cycles 73

Grammars with Consistent Deletion Cycles 82

0Y2F and the Subclass 0Y2F^ 104

i i i

CHAPTER 5. THREE-DIMENSIONAL FOREST YIELD LANGUAGES 107

Examples of 3-d Forest Grammars 107

Three-Dimcnsional Normal Form 119

3-d Increasing Grammars 124

Grammars with Deletion Constants 128

3-d Grammars without Overlap Cycles 135

3-d Explicit Grammars 149

A Subclass of 1Y3F within Context-Sensitive 162

CHAPTER 6. OUTSIDE-IN LANGUAGES IN 0Y3F 172

The 10 Conversion Method 172

The 01 Conversion Method 181

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 196

BIBLIOGRAPHY 200

i v

LIST OF DEFINITIONS AND THEOREMS
Page

DEFINITION 2-1. Indexed sets 6

DEFINITION 2-2. Multidimensional trees 7

DEFINITION 2-3. Multidimensional forests 8

DEFINITION 2-4. Standard selectors 8

DEFINITION 2-5. Extended selectors 10

DEFINITION 2-6. The selection function 11

DEFINITION 2-7. The substitution function 11

DEFINITION 2-8. The frontier function 13

DEFINITION 2-9. Regular forest grammars 14

DEFINITION 2-10. Direct derivations 14

DEFINITION 2-11. Derivations 15

DEFINITION 2-12. The language of a grammar 15

DEFINITION 2-13. The string function 15

DEFINITION 2-14. The string frontier 15

DEFINITION 2-15. The yield of a grammar 15

DEFINITION 2-16. Classes of forest languages 16

DEFINITION 3-1. 1-dimensional normal form 17

LEMMA 3-2. 1-d short-rule form 17

LEMMA 3-3, liliininaling 1-d selectors 18

THEOREM 3-4. Conversion to IDNF 20

\

THEOREM 3-5. OYIF = regular 21

COROLLARY 3-6. lYlF=ALGi' 21

THEOREM 4-1. ALG^ a subset of lYnF 22

COROLLARY 4-2. Conlexl-free a subset of 0Y2F 22

THEOREM 4-3. Standard 0Y2F a subset of context-free 23

DEFINITION 4-4. Two-dimensional normal form 24

DEFINITION 4-5. 2-d short-rule grammars 24

LEMMA 4-6. Conversion to short-rule form 24

DEFINITION 4-7. Partitioned grammars 26

LEMMA 4-8. Partitioning b} selectors 26

LEMMA 4-9. Partitioning by final character 27

LEMMA 4-10. Eliminating truncation 29

THEOREM 4-11. Converting a grammar to 2DNF 32

DEFINITION 4-12. External selectors 33

DEFINITION 4-13. External selector sets 35

THEOREM 4-14. Constructing external selector sets 35

DEFINITION 4-15. The truncation function 36

DEFINITION 4-16. Overlapping selectors 37

DEFINITION 4-17. The licte sets of non-terminals 38

LEMMA 4-18. Constructing Jeftrs- 38

THEOREM 4-19. Non-overlapping implies context-free 4U

v i

DEFINITION 4-20. Preceding and following subrorests 44

DEFINITION 4-21. Deletion cycles 44

LEMMA 4-22. Length predicling without deletion cycles 45

THEOREM 4-23. No deletion cycles implies context-free 47

DEFINITION 4-24. paths of a non-terminal 49

LEMMA 4-25. Constructing paths sets 50

DEFINITION 4-26. Substitution of length-predicting expressions 51

LEMMA 4-27. Substitution gives equivalent expressions 51

DEFINITION 4-28. Self-referential expressions 52

DEFINITION 4-29. Base elements of predicting schemes 53

LEMMA 4-30. Linearizing the length predictors 53

LEMMA 4-31. Simple subtraction in predicting schemes 56

LEMMA 4-32. Partial sums which divide evenly 57

LEMMA 4-33. Eliminating self-referential subtracting expressions 58

THEOREM 4-34. Length predicting schemes without subtraction 62

COROLLARY 4-35. paths sets are regular 63

DEFINITION 4-36. The remainder of a language 64

DEFINITION 4-37. The quotient of a language 65

THEOREM 4-38. Remainder related to quotient 65

THEOREM 4-39. Remainder of cf and regular is cf 65

LEMMA 4-40. Frontier substitution as a remainder operation 66

v i i

COROLLARY 4-4 L Frontier as a remainder operation 67

DEFINITION 4-42. The descendents of a non-terminal 68

DEFINITION 4-43. Cycles of non-terminals 68

DEFINITION 4-44. The root of a cycle 68

DEFINITION 4-45. Essential non-terminals of a cycle 68

DEFINITION 4-46. Cycle steps 68

DEFINITION 4-47. Cyclic normal form 69

LEMMA 4-48. Distinct forests with the same frontier 69

THEOREM 4-49. Conversion to cyclic normal form 70

DEFINITION 4-50. Regular deletion cycles 73

DEFINITION 4-51. Deletion maps 75

LEMMA 4-52. Relating deletion maps to the frontier operation 75

THEOREM 4-53. Regular deletion cycles arc context-free 77

DEFINITION 4-54. Leading and trailing non-terminals 82

DEFINITION 4-55. Consistent deletion cycles 82

DEFINITION 4-56. Inversion maps 86

DEFINITION 4-57. Terminal-erasing homomorphism 87

DEFINITION 4-58. Terminal-preserving homomorphism 87

LEMMA 4-59. Relating inversion maps to frontier operations 87

I,I:MMA 4-60. Relating inversion maps to frontier operations

DI-F'INITION 4-61. xoul , tail , and inver: grammars 93

v i i i

LEMMA 4-62. xout simulates complote deletion 93

LEMMA 4-63. tail simulates partial deletion %

LEMMA 4-64. invert non-terminals simulate remainder operation 96

LEMMA 4-65. invert grammar simulates deletion cycle 101

THEOREM 4-66. Eliminating consistent deletion cycles 102

COROLLARY 4-67. Consistent deletion cycles are context-free 103

DEFINITION 4-68. Subclass 0Y2F^ of 0Y2F 105

THEOREM 4-69. 0Y2F, = context-free 105

LEMMA 4-70. A language not in 0Y2 F 105

COROLLARY 4-71. 0Y2F a proper subset of 0Y3F 106

THEOREM 5-1. ALG j a proper subset of 1Y3F 118

DEFINITION 5-2. 3-d short-rule grammars 119

LEMMA 5-3. Conversion to short-rule form 119

LEMMA 5-4. Nodes with three subtrees unnecessary 120

DEFINITION 5-5. 3-d normal form 121

LEMMA 5-6. Eliminating nodes with three subtrees 121

n ll:OREM 5-7. Conversion to 3DNF 123

DEFINI! ION 5-8. 3-d increasing grammars 124

I HHOREM 5-9. A non-linear space bound 124

COROLLARY 5-10. Partial enumeration of 2-d yield 127

DEFINITION 5-11. The deletion constant 128

i x

DEFINITION 5-12. c-augmenled grammars 129

LEMMA 5-13. Constructing c-augmented grammars 129

LEMMA 5-14. Linear bound for increasing grammars 129

DEFINITION 5-15. Outer selectors 136

DEFINITION 5-16. ouiscl sets for forests 136

DEFINITION 5-17. outsel sets for non-terminals 136

LEMMA 5-18. Constructing oz/rse/ sets 136

DEFINITION 5-19. Complete forests 139

DEFINITION 5-20. Complete and truncating grammars 139

LEMMA 5-21. Deletion constant for complete grammars 139

DEFINITION 5-22. Full cycle steps 140

DEFINITION 5-23. Leading and trailing non-terminals 140

DEFINITION 5-24. Overlap cycles 141

DEFINITION 5-25. The gain of a cycle 141

DEFINITION 5-26. Increasing, decreasing, and mixed cycles 141

LEMMA 5-27. Partitioning by outside selectors 142

DEFINITION 5-28. The rracp function 143

LEMMA 5-29. No overlap implies a complete grammar 143

LEMMA 5-30. No overlap implies an increasing grammar 145

LEMMA 5-31. Composition of selector paths 147

THEOREM 5-32. No overlap cycles implies complete, increasing 147

X

DEFINITION 5-33. Explici! fortsls 149

DEFINITION 5-34. Explicit grammars 149

DEFINITION 5-66. The sien function 150

LEMMA 5-67. Minimum string length for explicit 2-d forests 150

LEMMA 5-68. Explicit 2-d forests have increasing string length 151

LEMMA 5-69. Minimum string length for explicit 3-d forests 151

LEMMA 5-70. Explicit 3-d forests have increasing string length 152

LEMMA 5-71. Maximum consecutive 2-nodes 153

LEMMA 5-72. Relating forest size to string length 154

THEOREM 5-73. Linear relation between y',(G) and >',(0) 155

LEMMA 5-74. Términal leaf implies truncation for 2-d forests 156

LEMMA 5-75. Terminal leaf implies truncation for 3-d forests 157

LEMMA 5-76. Eliminating terminal leaves 158

THEOREM 5-77. Standard selectors imply an explicit grammar 160

DEFINITION 5-78. A linear subclass of 1Y3F 163

THEOREM 5-79. Grammars yielding 1Y3F, languages 163

DEFINITION 5-80. Input forests for cycles 163

DEFINITION 5-81. Linear deletion cycles 164

THEOREM 5-82. Linear cycles yield n'3F; languages 164

LEMMA 5-83. An 01 language in n'3Iv 166

THEOREM 5-84. ALG j a proper subset of 1Y3F; 167

x i

THHOREM 5-85. 1Y31\ recûgniztd by Iba 169

COROLLAR"!' 5-86. 1\'3F, a subscl of context-sensitive 170

DEFINITION 6-1. Simple macro grammars 172

DEFINITION 6-2. The imap function 175

LEMMA 6-3. Simulating 10 macro substitution 176

LEMMA 6-4. Simulating 10 macro expansion 178

THEOREM 6-5. 3-d grammar for simple 10 macro 180

DEFINITION 6-6. The oma/i function 181

LEMMA 6-7. Simulating 01 macro substitution 184

LEMMA 6-8. Simulating 01 macro expansion 187

THEOREM 6-9. 3-d grammar for simple 01 macro 189

THEOREM 6-10. Simple 10 and 01 macro in 1Y3F, 192

1

CHAPTER 1.

INTRODUCTION

The lop TWO levels of the Chomsky language hierarchy play a major role in

the translation of programming languages. Lexical and syntactic analyzers can be

automatically generated given regular and context-free grammars. A large part of

the work of syntactic analysis, however, lies outside the realm of context-free

languages. Syntax rules such as those regarding type agreement, scope of names,

and parameter correspondence cannot be expressed in a context-free grammar.

Such rules are enforced during translation by ad hoc methods.

Despite the limitations of context-free languages, their use in syntactic

analysis provides a framework for the code-generation phase of translation.

Derivation trees are constructed during syntactic analysis. Syntax-directed trans

lation uses these trees for code generation. The underlying theory characterizes

translation as an operation on trees (Aho and Ullman 1977). The code produced

by a syntax-directed translation of a program in a high-level language can be seri

ously suboptimal, and complete translation may require one or more optimization

phases.

This is the state of the art in translation: regular and context-free grammars

lay the foundation; ad hoc methods complete the process. This approach is con

sidered satisfactory for translation of the high-level languages of today, and more

sophisticated translation methods would probably nol do much better. So why

search for better translation methods? There is no need to — as long as the high-

2

level languages of today arc adequate. Bui the Tremendous expense of developing

and maintaining reliable software leads us lo believe that our high-level languages

are not adequate. There is an urgent need for general-purpose, very-high-level

languages which can be efficiently translated. So far no such languages have

appeared. Compared to the whirlwind development of computer hardware over

the last thirty years, the progress in programming languages has been disappoint

ingly slow. Our languages under-utilize the capacity of the machines. Program

mers and general users are burdened with mountains of detail, low-level algo

rithms, and inflexible syntax rules. The fact is that our so-called "high-level"

languages are still inflexible and unnatural, and the limitations of these languages

may be a direct result of the inadequacy of our theory of translation.

Regular and context-free grammars have been stretched as far as they will go.

More powerful theoretical tools are needed for translation of higher-level

languages. The next level in the Chomsky hierarchy is the class of context-

sensitive languages. But this class is too broad and complex to be of use. Research

has been continuing since the late 1960s to find reasonable extensions of the

context-free languages and to discover non-context-free rewriting systems which

generate context-free languages. This thesis presents results which contribute to

that area of research.

Ginsburg and Greibach (1966) have investigated certain rewriting systems

with context-dependent rules that delete symbols. These grammars were found to

produce languages that are context-sensitive, and under some circumstances even

context-free. Book (1972), Baker (1974), and Aggarwal and Heinen (1979)

3

pursued this line of research lo discover that rewriting systems can take into

account constant-size, non-overlapping amounts of context and still produce

context-free languages. While such rewriting systems do not give us a new class of

languages, they do allow us to write simple grammars for languages whose

context-free grammars would be formidable.

In 1968, Michael Fischer described macro languages, a class of languages larger

than context-free and smaller than context-sensitive (Fischer 1968). Fischer

showed a macro grammar which had the power to enforce declared type con

sistency on the right- and left-hand sides of assignment operators in a program

ming language. The grammar failed, however, to prevent multiple declarations of

identifiers. Macro langtiages were observed to have two incomparable subclasses:

inside-out (10) and outside-in (01). Both these subclasses contain Interesting non-

context-free languages, but neither subclass contains all the interesting new

langtiages. The grammar mentioned above which enforced type consistency was a

quoted macro grammar, one which selectively tjsed both outside-in and inside-out

rewriting rules. The results which Fischer obtained for 10 and 01 macro languages

were not shown to apply to quoted macro languages. It remains unknown whether

quoted macro grammars produce langtiages which are not context sensitive.

In the early 1970s, several people defined and investigated grammars and

finite automata on trees (Rounds 1969 and 1970, Engelfriet 1975b). Recognizable

sets of trees were defined to be those sets accepted by finite tree automata. It was

fotind that the frontier operation applied to a recognizable set of trees produced a

context-free language of strings. Similarly context-free grammars on trees produce

4

sels whose frontiers yield macro languages of strings.

Tree automata have been generalized to define tree transducers — tree auto

mata with output (Baker 1975, Engelfriet 1975b). Tree-transducers applied to

recognizable sets of trees can produce sets of trees whose frontiers form languages

outside the class of context-free languages, but well within the class of context-

sensitive languages. Tree automata and transducers have been used to formally

describe syntax-directed translation (Baker 1975). This formalism covers only

translation of the context-free portion of a language's syntax. Tree-transducers

might be more beneficial if a programming language could be characterized as a

transduction or composition of transductions so that, the formal model would

encompass the non-context-free features of the language. This approach, however,

may not be feasible because tree transducers are not closed under composition

(Baker 1979). Another unsettling feature of transducers is the presence of two

incomparable subclasses, top-down and bottom-up (Engelfriet 1975a). This dicho

tomy is analogous to the problem of the 01 and 10 subclasses of macro languages

(Engelfriet and Schmidt 1977, 1978).

Multidimensional trees have recently been introduced by Strawn (1982) and

Baldwin (1983). These data structures are logical extensions of trees to higher

dimensions. The 1-dimensional structures correspond to strings of symbols, the

2-dimensional structures correspond to trees, and the definition of higher dimen

sional structures is based on a generalization of the relationship between strings

and trees. Just as a frontier operation can be applied to a tree to give a string, so

can frontier operations be applied to higher-dimension structures to give strings.

5

The frontiers of multidimensional trees (md trees) form an infinite hierarchy of

string languages properly contained within the class of context-sensitive languages.

The first three levels of the hierarchy correspond to the regular, context-free, and

10 macro languages respectively.

This thesis presents a modification of multidimensional trees which results in

a hierarchy of string languages related to that discovered by Strawn and Baldwin.

Most attention is focused on the second and third levels of this hierarchy and their

relationship with other known classes of languages. It is hoped that multidimen

sional trees will provide a unifying framework for study of classes of languages

between context-free and context-sensitive, and that further study will lead to the

discovery of automatic and efScient methods for translating higher-level program

ming languages.

Chapter 2 presents some basic definitions and summarizes some results

obtained by Strawn and Baldwin. Chapter 3 shows the correspondence of 1-

dimensional tree-f rontier languages and the regular languages. Chapter 4 explores

the relationship between 2-dimensional tree-frontier languages and the context-free

languages. Chapter 5 examines the 3-dimensional tree-frontier languages and their

relationship with the context-sensitive languages. Chapter 6 relates the 3-

dimensional tree frontier languages to the 10 and 01 macro languages. Chapter 7

contains a concluding summary and suggestions for further work.

6

CHAPTER 2.

MULTIDIMENSIONAL TREES AND FORESTS

The basic data structure investigated in this thesis is the multidimensional

forest. The basic operation on multidimensional forests is the frontier operation,

which can convert forests to strings. Grammars can be written to produce forest

languages, and each forest language has an associated string language called its

string yield.

Defining Trees and Forests

Multidimensional forests are structures containing nodes and arcs. The nodes

are labeled with symbols: terminals, non-terminals, or auxiliar>' symbols called

selectors. The arcs are labeled with natural numbers. The selectors and non

terminals are elements of indexed sets.

DEFINITION 2-1. An indexed set I is a set whose elements are pairs <i ,x >

consisting of an integer index i and a symbol or string .r. A subscripted

reference to an indexed set represents a subset containing every element

of I whose index is n .

In order to specify multidimensional forests in one or two dimensions, an n -

dimensional forests is represented as an n -ary tree. The correspondence between

n -d forests and n -ary trees is a generalization of the correspondence between con

ventional forests and binary trees (Horowitz and Sahni 1976). A 3-d forest, for

example, can be reprcsenieci as a structure in which each node has at most three

arcs, labeled 1, 2, and 3.

7

Every multidimensional forest has a dimension n and a degree k. If ii is the

largest label on any arc of a forest 3, and k is the smallest label on any arc

emanating from the root of 3. then j8 is an n -dimensional, k -degree forest.

It should be noted that not every n -ary tree represents an n -dimensional

forest. The informal rules below characterize multidimensional forests. These

rules are useful for determining whether a given n -ary tree represents a multidi

mensional forest over a set of terminals I and a set of selectors H.

1) Elements of I can label any nodes.

2) If a selector <r ,p>in B labels a node, then the label on each arc emanating

from the node can be at most r — 1.

3) If the arc pointing to a node has label r, then the label on each arc emanating

from the node must be at least r — 1.

The two definitions below refer to one another to formally define multidimen

sional trees and forests. We will adopt the notational convention that A [„]

represents the set { a [„ 6] I a e A and b e 5 }. If 5 is the empty set, then the

brackets will be elided, leaving A [„ 0] = A .

DEFINITION 2-2. Let E be a finite set of symbols and let H be a finite indexed

set of auxiliary symbols. Then the set of n-dimensional trees over Z and H,

n>0, is defined

HqCI, H) = I, and

8

DEFINITION 2-3. Let I be a finite set of symbols and lei E be a finite indexed

set of auxiliary symbols. Then the set of n-dirncnsional foi'csts over E and

E is defined

H„°(I,E) = H„KI,E),

H^iZ, E) = Hk (H^+KZ:E), E) for 0<A: <;î , and

H„"a,E) = H„(I,E).

These definitions are consistent with those developed by Baldwin (1983) and

Strawn (1982). The set of 1-dimensional trees over I and 0, where 0 is the empty

set, corresponds to the conventional notion of the set of strings over I. The set of

2-dimensional trees over I and 0 corresponds to the conventional notion of the set

of ordered trees over I represented as binary trees.

Figure 1 contains two 3-ary trees of which only one represents a valid 3-

dimensional tree. The second tree is not a 3-d forest since the node d has a 3-arc

pointing to il and a i-arc emanating from it. This figure also shows a non

standard graphic representation of n-ary trees. This representation is preferred

since it is easily printed and it corresponds directly to the multidimensional forest

definition. The labeled arcs simply replace the labeled brackets.

The selectors in multidimensional trees and forests mark the places where

substitution will occur during the frontier operation. Two universal selector sets

are defined below: the set of standard selectors and the set of extended selectors.

DEFINITION 2-4. The set of standard selectors E^ is an indexed set of ele

ments <n ,X > where n >0 and x e {1, 2 n-1 }*.

9

r [i a b [2 d [2 X [j yl^e [2 / [1 y]]]]]^^ [2 c [j y]]]]

r — 3
I
a — - 3 2

I I
b — 2 b

1

I 1
X — 1 0 — 2

I I
y f - — 1

I
y

a valid 3-d tree

r [3 a [3 [2 [1 y]][i e [j / [j y]]]][2^ U c [1 y]]]]

r — 3
I
a — - 3 2

I I
d — 2 1 b — 2

I I I
X— 1 0— 1 c — 1

I I I
y f — 1 y

I
y

not a valid 3-d tree

- - - 2

1

c — 1
I
y

FIGURE 1. 3-ary tree examples

10

DEFINITION 2-5. The set of extended selectors is an indexed sel of ele

ments <n ,A: > where n >0 and x e {L 2 n]*.

The standard selectors are those used in the work of Strawn (1982) and Baldwin

(1983). The extended selectors are introduced here for the first time, and the rest

of this thesis is devoted to assessing the impact of this seemingly minor change.

The Frontier Operation

The frontier operation reduces the dimension of a forest. It involves the selec

tion and substitution of subtrees. The selectors in a forest mark the places where

substitution can occur and specify what subtrees will be moved or copied. Each

selector has two components: an index and a path. The index specifies the dimen

sion of the forest to which the selector can be applied as well as the dimension of

the tree which will be selected. The path is a sequence of arc labels used by the

selection function to pick out a subtree for substitution. A path is traced in a

forest by starting at the root node and traversing the arcs whose labels match

those in the path. For example, the path of selector <3, 3321 > can be traced to

the node e in the valid 3-d tree of figure 1. The tree selected is just e. The sub-

forest /[]>'] is dropped, since the arc pointing to it is not a 3-arc.

DEFINITION 2-6. The selection function œ/(<7î ,>,/3) : x E)^

f/n (I, E) is defined

sel (<n , X>, oi) = a for a e (E, E) and k the empty string,

sel (<71,k>, «[jt y]) = sel(<n ,k>, a) for k <n ,

a e H^'+HI.E), and yeH*-'(Z,E).

11

seli<n ,k.i>, nij-y]) = sel{<n .ki>, a) f o r c v e £),

y < * ,

sel (<n , ki >, y]) = sel (<n , i > y) for a e E)

and y e H^'KY., E), and

set {<n ,p >, 0) is otherwise undefined.

There are situations in which the selection function is not defined. Let 3 be

the valid 3-d fcrest of figure 1. se/ (<3, 321 >, j3) is not defined because the node b

has no l-arc. This is called a path error. If the y in)3 is a selector <1, X.>, then

sel (<3, 3221 >, jS) is also undefined. In this case, we successfully trace 3221 to y,

but y = <1, X.> is not an element of HsH, E) as required.

The substitution function subs„ (a, /8) operates on two -dimensional forests.

It simply replaces each selector <n ,p> in a with seli<n ,p >, /3).

DEFINITION 2-7. The substitution function subs^ia, (E, E) -»

E) is defined

subsn(a,^) = a fora el U Ej, ; < ,

subs^ ix ,li)= sel (.t, jS) for A- e En , and

siibs„ (a;[„ y], jS) = subs^ (a, 3) U suhs„ (y, /3)]

for m , a; e E), and y « E).

A call to the frontier function /?„ (a) reduces the dimension of a to ?i. If the

dimension of a exceeds ;? +], then //'„ +1(0-) is performed first. If the dimension

of a is less than n + 1, then the frontier operation has no effect. Any nodes with

arcs labeled n + 1 are removed by . A node with an n + l-arc but no n -arc is

simply eliminated. A node with both an n 4-l-arc and an n -arc is processed by

12

^ 3 2

- - _ 2 # - - - 2

X 1 ^ 2 1

y s—1 ^— 2 1

3 — 1 b—1 ^— 2

z b — 1 c — 1

z c 1

z

3-d forest with selectors x = <2, 211>, y = <2, 2>, z = < 1, X>

- — 2

I

I I
c 1 ^—2

I 1
C 1 3 1

C 1
I
c 1

I
a — 1

I
a — 1

I
1-d frentier z

FIGURE 2. A 3-d forest and its frontiers

z a — 1

2-d frontier z

13

frontiering the subforests and calling the substitute function: + =

//nCy)). The frontier function fin{a) is undefined if a is a selector,

<r,p>, and r>n.

DEFINITION 2-8. The frontier function fr^ia) : is

defined when m > n +1 as fr^ (a) = fr„ (/r„+i(a)), and when m +1 as

f i n { b) = b for ft e I U H,- where i ,

/''nCft[n+i3]) =/?n(3) for A el U H and jS € (I, H),

f^n it> [n +i3] In yl) = subs^ {fr^ (/3), (y))

f o r i e Z U = .) 3 (H ; ; (Z . 5) , a n d y

pn (/3[r y]) = frn (P) i frn (y)]

for ^ <r , /3 6 =), and y e S), and

fr^ (a) is otherwise undefined.

Figure 2 contains an example of a 3-d forest and its 2-d and 1-d frontiers.

This figure also illustrates that the frontier operation has the power to delete sub-

forests. The subtree #[2b{ib[i r]]] is unselected during the 2-d frontier, and so it

is eliminated. Deletion will also occur during (a) if a — #[„ + iy] [„ 8] and y

contains no n -dimensional selectors. In that case, /?„ (#[„ +iy] [„ S]) = (y).

The frontier operation also has the power to make multiple copies of subtrees.

This happens when a substitution is made into a subtree that has multiple

occurrences of the same selector. Since the frontier operation has both copying

power and deleting power, the result of a frontier operation can be either larger or

smaller than the original forest.

14

Grammars and Languages

Sets of multidimensional forests can be generated by rewriting systems called

regular multidimensional forest grammars. These grammars are regular because of

the restricted placement of non-terminal symbols in the replacement rules.

DEFINITION 2-9. A regular n-dimensional forest grammar is a formal system

<1,E,N ,R ,S>n, n>0, 1 A: ^ n , where

I is a finite set of terminal symbols,

H is a finite set of selectors with indices in {1, 2, . .. , n},

A' is a finite indexed set of non-terminal symbols

with indices in {1, 2, . .. , n},

/? is a finite set of replacement rules of the form A—y^

where A e and j3 e (I, E JJ) for 1 ̂ z ^72, and

S is the start symbol in N j ^ .

A non-terminal in a forest grammar generates a set of forests by repeated

application of the replacement rules. The intermediate structures, which contain a

mix of terminals, selectors, and non-terminals, are called structural forms. The

process of applying the replacement rules is a derivation. A derivation step is the

application of a single rule to obtain one structural form from another.

DEFINITION 2-10. A structural form cv of a forest grammar

<1., E, N, R ,S directly derives another structural form jS, a j8, if

and only if R contains a rule A—>7 and 0 can be obtained from a by re

placing an occurrence of A with y.

DEFINITION 2-11. A structural form a of a forest grammar derives another

structural form a =>* j3, if a = |3 or there are structural forms

tti , m >0, such that q;=?> ct] =?> ••• =^a>- =^(3.

15

DEFINITION 2-12. The language generated by a forest grammar G =

<Z, B, N, R ,S is defined as L (G) = {jS I S =$>* j3 and E)}.

The language generated by a grammar is thus defined as the set of forests each

of which contains no non-terminals and can be derived from the start symbol.

The frontier function can be applied to forests generated by a grammar to give sets

of lower-dimensioned forests. These lower-dimensioned sets are the yields of the

grammar. The 0-dimensional yield will be defined to establish a direct relationship

between 1-dimensional trees and strings.

DEFINITION 2-13. The string function sTr (a) : 5) (J {X} is

defined

sîr (X.) = X,

stria) = a for a e Z,

s t r i x) = k f o T X € H ,

str (.\- [i /3]) = sir ((3) for x e z, and

str (a [j 13]) = Û • str C/3) for a el.

where • represents string catenation.

DEFINITION 2-14. The sti'ing frontier of a forest lie is defined as

s f /-(jS) = s l r i f r - i i ^)) .

DEFINITION 2-15. The m-dimensional yield of a grammar G =

<1,E,N ,R ,S>n is defined as

y'oCG) = {a I)3 e L(G) and str{fr-^{^)) = a 1, and

(G) = {a I jS e L(G) and (i3) = a } for 1 <7n 4".

Some major results of Baldwin (1983) can be summarized in terms of the

above definitions. Baldwin established the existence of an infinite hierarchy of

string languages which he called the algebraic hierarchy; ALG^ cALG^'+j for

77 ^ 1, and ALCr! C CS, where CS represents the class of context-sensitive

languages. ALG^ is the class of languages obtained by taking the 1-d yield of n-

dimensional forest grammars which use only standard selectors. More formally,

L € A L G n i f a n d o n l y i f L = } ' i (G) f o r s o m e g r a m m a r G = < Z , E , N , R , S > ^

where 1 and 5 C . We know from Baldwin's work that ALG / is the

class of regular languages, ALG 2 is the class of context-free languages, and ALG 3

is the class of 10 macro languages.

Language classes corresponding to the algebraic hierarchy can be defined which

allow the use of extended selectors. These new classes will be represented as

niYnF for n ^ 1. mYnF is an acronym for the m-dimensional Yields of regular

sets of n-dimensional Forests.

DEFINITION 2-16. A language L belongs to the language class m Y i i F , n ^ 1

and m^O, if and only if L =Y^{.G) for some grammar G =

<Z,=,N ,R ,S >n, where ï^k and E C .

In the chapters that follow, we explore the relationship of the first three lev

els of the algebraic hierarchy and the corresponding 0}'/?^ language classes.

17

CHAPTER 3.

ONE-DIMENSIONAL FOREST YIELD LANGUAGES

The string langiiages which are yields of regular sets of I-dimensional forests,

OYIF, can be shown to be equivalent to the class of regular languages. A method

for converting a 1-d forest grammar to a regular grammar is given in this chapter.

One-Dimensional Normal Form

A 1-d forest grammar can be made to look like a regular string grammar by

putting it in 1-dimensional normal form.

DEFINITION 3-1. A grammar G = < I . , S , N , R , S > 1 is in I—dimensional

normal f orm , IDNF, if and only if every rule has the form

1) .4 ^a[i B] for A , 5 e , and a e Z ,

2) A — ^ a for A e , and a e Z, or

3)A—f o r A € N and X. the empty string.

Note that a IDNF grammar makes no use of selectors. This is appropriate

because the selectors in a 1-d forest are nothing more than endmarkers which will

be removed when the forest is converted to a string. The conversion of an arbi

trary 1-d forest grammar to IDNF is described in two steps. The first step is to

add non-terminals to the grammar so that the right-hand side of each rule contains

at most one terminal and one non-terminal.

LEMMA 3-2. If G is a grammar < I . , E , N , R , S > 1 then there is a grammar

G' = such that (1) L(G) = I.(G') and (2) if

^ —»a [j /3] e /?' then jS e A^'.

PROOF. Construct G' from G by introducing new non-terminals Q as required.

Set Z' = I, E' = E, S' = S, and construct R' and N' according to the algorithm

below. Assume A € N' and a e I'.

Put all the rules in R in /?'.

Set TV' = N .

Set i = 0.

Repeat

Add 1 to I.

Find A —> a [i a] in R ' where a is not in N ' .

Invent new non-terminal C; and put it in N ' .

Replace A a [i a] in R' with A ^ a [j].

Add Ci -*0! to R'.

Until no rule A —>a [j a] can be found where a is not in N ' .

It should be clear that this construction does not affect the language generated by

the grammar. We have only introduced more non-terminals and rules to make the

derivations longer. So Z, CG) = L (G'). QED.

The next step in converting a 1-d forest grammar to normal form is to remove

the selectors. This construction is described in the proof of lemma 3-3 below.

LEMMA 3-3. Suppose G is a grammar < 1 , E . N , R , S > 1 such that if R contains

aruleA—jB], then 5 eN. There is a IDNF grammar G =

<I', E\N',R'.S'>i such that S' a and .srr(al = AC if and only if

s =>* 3 and str C/3) = v , where hv I ^0.

PROOF. Construct G' from G by first setting I' = Z, E' = 0, and S' = S. Then,

construct R' and N' from R and N according to the steps below. Assume that

A,B,C (N,a,b el, and:*: e E.

1) For every pair of rules ^ a [j 5] and 5 —> ft in , add A'] and

B' -*b to R', and add A ' and B ' to N ' .

2) For every pair of rules A — y a { - ^ B] and 5—>5[i C] in /? , add A ' - t a l ^ B '] and

5 ' - > & [j C] t o R ' , a n d a d d A ' , B ' a n d C t o N ' .

3) For every pair of rules j4 ->a 5] and B - * x i n R , add A' —*a Xo R' , and add

A ' t o N ' .

4) If /? has a rule S —» x , add S' —> X. to R' and add S' to N'.

We can show that G' satisfies the requirements of lemma 3-3 in two parts.

(A) If A =>* a and str (a) = w then A' =>* <3 and sf/- (jS) = u\

Proof of (A) by induction on I, the length of w.

Base. Iw I ^1.

Case 1. A =^* x and sîr {x) = k.

In this case, R has a rule A and R' has a rule A' ̂ \ from step 4 of the

c o n s t r u c t i o n o f G ' . I t i s c l e a r t h a t A ' = > * \ a n d s t r i k) = k .

Case 2. A =?>* a [, x], and str (a [] x]) = a.

In this case, R has rules A -»a [j 5] and B — * x , and R ' has a rule A ' a . So

A =?>* a [] X] and A' =?>* a and str {a [i x]) = stria) = a.

Case 3. A =>* a and str ia) = a.

In this case./? has a rule A—» a and/?' has a rule A'—va. SoA =^* a and

A' =>* a and sir [a) = a.

Inductive hypothesis: Assume (A) is true for !</ = n — l .

Inductive step; Show (A) is true for I v I = Z = n.

If / >] then Ai- = av' where I v' I = n — 1. We know that =$>* a and

stj- [a) = aw'. This means there must be a rule A ->a [j 5] in /? where

5 =$>* a', la') = v', and hv' 1^1. Since IsTr Ca') I ^ 1, there must be a

rule B—tb[iC] or B-*b in/?. But if R contains such rules for A and B,

then/?' contains yi'—>a[i 5'] and rules for 5' constructed from 5. By the

inductive hypothesis, B' j3' and str (g) = w'. So str (a [j /3']) =

str (a [j a']) = v , and setting j3 = a [j /3'], we have str (/3) = w.

(B) If j4' J3 and sf/'CiS) = w , then A =^* a and sïr (a) = w.

The proof of (B) is similar to the proof of (A). QED.

THEOREM 3-4. If G is a grammar < Z , B , N , R , S > i then there is a IDNF gram

mar G' = < I', =", N\R\S •>! such that rqCG') = YoiG).

PROOF. This theorem follows from the previous two lemmas. We transform G

to G' by applying the construction of lemma 3-2 followed by the construction of

lemma 3-3. Lemma 3-3 assures us that w e Yo(G') if and only if w e YqCG).

QED.

Equivalence of OY IF with the Regular Languages

Theorem 3-4 establishes that every 1-d regular forest grammar can be

transformed to a IDNF grammar. IDNF grammars are directly related to regular

21

grammars, and this allows us to assert thai OYIF and the class of regular

languages are equivalent.

THEOREM 3-5. The class of languages OYIF is equivalent to the class of regular

languages.

PROOF. According to theorem 3-4, every language in OYIF is VqCG) for some

IDNF grammar G. If we construct a grammar C by removing the brackets from

the right-hand sides of the rules of G , we have a regular grammar such that

L (G') = yglG). Similarly, if we construct G' from a regular grammar G by

adding brackets to the rules of G , we have a IDNF grammar such that

yo(G') = L(G). QED.

COROLLARY 3-6. The class of languages lYlF corresponds to the class ALG i .

PROOF. This corollary follows directly from theorem 3-5 and theorem 73 of

Baldwin (1983), which establishes that every language in ALG / is a regular set if

the brackets and selectors are removed. In 1-d forests, it doesn't matter whether

extended selectors or standard selectors are used because the selectors are never

applied in a frontier operation. QED.

22

CHAPTER 4.

TWO-DIMENSIONAL FOREST YIELD LANGUAGES

In 2-d forests, the difference between standard and extended selectors becomes

significant. It is possible for the paths of extended selectors to overlap one another,

and this gives the frontier operation more deleting power. This chapter establishes

that a large subclass of 0Y2F is equivalent to the class of context-free languages.

2-d Forest Grammars with Standard Selectors

Only selectors in Ej are applied during a 1-d frontier operation on a 2-d

forest, and the only selector in sf is <1, k>. Thus, 2-d forests with standard

selectors are strictly non-deleting, and it is easy to show that ALC 2 G 1Y2F. The

theorem below is presented for n -dimensional languages. The special case n = 2 is

of immediate interest.

THEOREM 4-1. If L e ALG„^ then L e lYnF, n >1.

PROOF. Strings in languages are the yields of n -d forests produced by reg

ular forest grammars using only standard selectors. Since C , a n -d forest

grammar with standard selectors is also a n -d forest grammar with extended

selectors. So any language in ALG^ is also in lYnF. QED.

COROLLARY 4-2. If L is a context-free language, then L e 0Y2F.

23

PROOF. This follows immediately from the previous theorem, since Baldwin has

shown that ever}' context-free language corresponds to an ALG j language

(Baldwin. 1983). QED.

THEOREM 4-3. If G is a 2-d forest grammar <I, S, , /? ,5 >2 for l^k ^2 and

S C , then Yo(G) is a context-free language.

PROOF. If G has only standard selectors, then it can be converted directly to a

context-free grammar G'. The conversion method is summarized as

1) A->a[25][iC] becomes A - ^ B C ,

2) A -» a [2 B] becomes A - ^ B ,

3) A —» a [1 5] becomes A^aB , and

4) A — b e c o m e s A — » X .

A simple induction on the length of a derivation will show that L { G ') = Y q CG) .

The induction is not shown here. QED.

Two-Dimensional Normal Form

To facilitate the analysis of 2-d regular forest grammars which involve dele

tion, a normal form is defined below which will not affect the string yields of 2-d

grammars. The normal form will prevent generation of some forests which are not

frontierable and also some forests which contain useless subforests that would be

eliminated by the frontier operation.

24

DEFINITION 4-4. Let G be a grammar < 2 , E , N , R , S > 2 . G is in 2—dimen

sional normal form , 2DNF, if and only if every rule in R fits one of the

following forms;

1) A — ^ a l i B] f o r A e N 2 , a e 1 , a n d B e N

2) B - * a [2 C \ i D] f o r 5 , C , . D € a n d a e I ,

3) 5 — » a [i C] f o r 5 , C € A ^ i a n d a 6 r , o r

A) B-^x for 5 e A^i and j: 6 El-

This normal form is analogous to Chomsky normal form for context-free

grammars. Note that selectors in =2 are excluded and that forests without selec

tors in £] cannot be generated. The constructions of lemma 4-6 through theorem

4-11 will show how to convert an arbitrary 2-d grammar into a 2DNF grammar.

The first step in converting a grammar to normal form is to introduce new non

terminals and rules so that only single non-terminals appear inside brackets in the

right-hand side of a rule, and terminals or selectors appear only outside brackets.

DEFINITION 4-5. A 2-d forest grammar G = < Ï . , B , N , R , S > 2 is a

short —rule grammar if every rule in R fits one of the following forms for

A ,B ,C e N, a iZ, and feel (J E :

1) y4 —» Û [2 5],

2) A - » a [2 5] [i C L

3) /i ->6[i 5], or

4) A - ^ b .

LEMMA 4-6. Let G be a grammar < Z , E , N , R , S >2'. There is a shorl-rule gram

mar G' = <I',H',A^',/?',5'>2*suchthatri(G)= Ki(CM

PROOF. Construct G' from G by introducing new non-terminals C, as required.

Set I' = I, E' = E, S' = S, and construct R' and N' according to the algorithm

25

below. Assume A , B e N' and a € I' U

Put all the rules of R in /?'.

Set N' = N.

Set i = 0.

Repeat

If R has a rule A -» 3] for jS not in A^' , ae Hi Cl, H) then

Add 1 to i.

Invent C, and put it in TV/.

Replace A -» |3] in R' with A Q].

Add Ci3 to/?'.

Else if R ' has a rule A - ^ a l i a][i B] where a not in then

Add 1 to i.

Invent Q and put it in A^j'.

Replace A -> a [j q;][i 5] in with A -» a [3 C;][] fi].

Add C; -» a to R'.

Else if R' has rules A —> 5 [1 a] and 5 a [2 /3] or 5 -> a then

Replace A -» 5 [j a] with rules A -» a [2 jSKi cv] or A a [j a]

using right-hand side of every rule for B.

Else if R' has rules A —and 5->3 for 3 not in N then

If A = 5 then remove the rule from R'.

Else replace A — y B i n R ' with A —»3-

Until every rule is in short-rule form.

It should be clear that this construction does not affect the language generated

by the grammar. We have only introduced more non-terminals and rules without

altering the forests which are derived. So i (G) = L CG') and F]CG) = 1'i(G').

QED.

Any grammar can be partitioned into subgrammars by letting non-terminals

other than S be the start symbol. If G is a grammar <1, E, ,/? ,5 >2, then G^

will represent the subgrammar of G whose start symbol is . It will also be use

ful to partition a grammar G into subgrammars based on the last characters of the

elements of Yi(G). The last character of ae (I, E) is defined as the label on

the only node of o which does not have an arc emanating from it.

DEFINITION 4-7. Let G be a grammar < 1 , = , N , R , S > 2 . Then Gg :A or

5;A , where B e N and A c E, represents a subgrammar of G such that

ae Y 1(5 :A) if and only if B =t>* /3, /rj(3) = o, and the last character of a

is in A.

Algorithms for generating Gg :A from a grammar G are presented in the

proofs of the next two lemmas. The first lemma deals with the special case where

A = E.

LEK-IMA 4-8. Suppose G is a short-rule grammar < 1 , = , N , R , S >2. There is an

effective procedure for construction of Gg :E where B e N.

PROOF. Gg :E can be constructed simply by removing non-terminals and rules

from G as follows:

1) Remove all non-terminals from N and rules from R which cannot be

r e a c h e d f r o m B . T h i s g i v e s t h e s u b g r a m m a r G g .

27

2) Remove all productions of the from .4 —>a where A e N and a e Z .

3) Eliminate non-terminals and rules which don't derive forests in Hj CI, H).

The resulting grammar does not generate any forest whose frontier ends with a

terminal, for that would require a production A-* a. Also, since rules of the form

A-^x where x e B were not removed, all the forests derived from B which have

external selectors are unaffected. QED.

The next lemma handles the general case of Gg :A. The proof will call for the

merging of subgrammars with statements like "add to GgThis should be

understood as an operation on Gg which sets Zg = Is U^.4,

Rb = Rb\J^a, U and Sg remains unchanged.

LEMMA 4-9. Let G be a short-rule grammar < Z , E , N , R , S >1 • There is an

effective procedure for generating G5 :A = <Z',E',N',R',S'>2 where

5 € A ? a n d A C I U H .

PROOF. To construct Gg :A , first remove all non-terminals and rules from N and

R that are not reachable from B. Then, build Cg :A following the algorithm

b e l o w . A s s u m e t h a t A , B , C e N , a e Z , a n d b e Z (J r .

Set N' = { } , / ? ' = (} , £ ' = 5 . a n d I ' = I .

For each rule in R of the form A

Put A in N'.

If è € A then put A in R'.

Else don't add the rule to R'.

Remove A — * b from R .

Repeat

Select from R a rule such that

the non-terminals in /3 are already in N'.

If the rule is A —> a C] for 1 ̂ r ^ 2 then

Put A-^a[r C] in /?'.

Put A i n N ' .

If the rule is A -^a [2 C][i Z)] then

If Cj is not already in N' then

Form Gq :5 with start symbol Cj and add it to Gg :A .

Put A a [2 Q][i Z)] in R'.

If Q is not already in N' then

Form Gc H ̂ with start symbol Q and add it to Gg :A .

Put A -» a [2 Q] in R'.

Put A in A^'.

Remove A -+)3 from R.

Until R is empty.

Set S' = B.

The construction can be completed by removing the useless or unreachable

non-terminals and rules. The initial steps of the algorithm make useless any non

terminal which does not derive a forest whose frontier ends with an element of A .

The handling of a rule A a [, C][i Z)] is complicated by the possibility that C

may derive a subforest whcih does not have an external selector. In that case the

subforest derived from D is truncated during the frontier operation. The addition

of -• a [i Q] to R' and Gq :(I Q A) to :A assures that the appropriate sub-

forests of truncating 2-1 structures are included. QED.

Partitioning can be used to isolate subforests which yield strings that end in a

terminal instead of a selector. When the frontier is taken, such subforests may

cause other subforests to be truncated. The next lemma shows how to eliminate

truncating subforests from a 2-d forest grammar.

LEMMA 4-10. Let G be a short-rule grammar <r, ,/? ,5 >2- There is a

grammar G' = <Z',E',N',R',S'>2 such that every rule in R' is either 2DNF

or A—>B where A , B c N' and Y qCG) = 7 o(G').

PROOF. To prove this lemma we describe the construction of G' and then prove

two propositions to get the desired result. G' is constructed from G in six steps.

Assume A ,B ,C e N and a el..

1) Set I ' = I , =' = 5 ={},and/V ={}.

2) If has a rule ^4 -» x [j 5] or A -»x where x e Ei' Ihen don't add a

corresponding rule to R'.

3) Find rules in R of the form A -> a [2 B]. Add A' and B' to A^'. If A = B or

A , then put A' —>B' in R'. Otherwise put A' -• a [t -B'] in R'.

4) Find rules in R of the form A -> c [2 5][j C]. Form :H with start symbol

B' and add it to G'. Form G s :I with start symbol B" and add it to G'. Add

A*->a[2J5'][iC] and A'-»5" to 7?', and add A' and C to TV.

5) Find rules in R of the form A -» a [j 5] or A —» .v for .r e Ej. Add corresponding

r u l e s A ' — > a [j 5 '] o r — » A - t o / ? ' , a n d a d d A ' a n d B ' t o N ' .

6) Find rules in R of the form A -*a. Invent a new non-terminal T, put

A' —>Û I] J] and T—>x in R' where x = < 1, X> and put A' and T in N'.

After application of these steps, all the right-hand sides of rules in R' are single

non-terminals or they fit 2DNF. If propositions (A) and (B) below can be shown

to be true, then the lemma is proven.

(A) If there is A in such that A =?>* a and /rjCa) = o, then there is a

corresponding non-terminal A' in A^' such that A' =i>* j3 and /rjC/B) = a if a has

an external selector, or /rjC/S) = a • x ; where x = <1, X.>, if a has no external

selector.

Proof of (A) by induction on I a I, the number of nodes in a.

Base. I a I = 1.

For G to derive a structure of one node, one of the following cases must be true.

Case 1. R contains a rule S-*x where % e

In this case, or = jc cannot be in Si, or /rjCa) would not be defined. By step 5

in the construction, S' —» % is in R', so (A) is satisfied.

Case 2. R contains a rule S - * a where a e I.

In this case, construction step 6 adds to R' the rules 5 a [j T] and T —» x

where X = <1,X.>. a is just a , and g is a x]. So/ri(a;) = a and

/7-jC3) = a [j X]. Since or has no external selector, (A) is satisfied.

Inductive hypothesis. Assume (A) is true for 1 ̂ I a I <n.

Inductive step. Show (A) is true for I a I = n.

Case 1. a = o [2 y] and R has a rule A^aliB] where 5 =i> * y.

According to step 3 of the construction, A' ->a [2 5'] or A' -> B' was added to

R'. We can apply the inductive hypothesis to establish that

B =è>* y, B' =>* 6, and /rj(y) = /ri(8) or /rjCy) • x = /rjCS) where

z = < 1 , X > . S i n c e / r j C a l i y]) = / r j C y) , o r / r j C a E j y l - x) = / r ^ C y) a n d

/rjCa [2 8]) = /ri(8), we have satisfied (A) above.

Case 2. or = a [2 y][i 8] and R has A -> a [2 5][i C].

By construction step 4, has a rule A' a 5' C] or A' B". First let

us assume that y has an external selector. Since both y and 8 are smaller than

a, we can apply the inductive hypothesis to get fx and p such that B' =>* /i

a n d C = ^ * p , / r j C y) = / r j C / i) a n d / r i (8) = f r ^ i p) , o r / r j C S) • % = f r ^ i p)

where z = < 1, A.>. It follows that fr^ia [2 /i][i p]) = /rjCa [2 y][i 8]) or

fr^ia [2 y][i 6]) • x when 8 has no external selector, and so (A) is satisfied.

Now assume that y has no external selector. Since B =$>* y and y is smaller

that a we can apply the inductive hypothesis to get B" =^* and

f r i { y) - x = f r i i f i) . I t f o l l o w s t h a t / r i (a [2 y] [i 8]) - . r = [2 y D - x =

/rj(a [2 At]), thus satisfying (A).

Case 3. a = a [j y] and R has A -• c 5].

In this case, step 5 adds to R' the rule A' -»a [j B']. Since y is smaller than a,

we apply the inductive hypothesis to get B' =?>* 8 and fr^iy) = or

/rjCy) • -t = /ri(8) where .r = <1, X>. It follows that /rjCo [j 8]) =

fr^ia [1 y]) or /rjCa [j y]) • .r , thus satisfying (A).

(B) If there is A' in N' such that A' =S>*)3 and = o • .v where x = < 1, X>,

then there is a corresponding non-terminal in N such that A =>* a and

= 0 - X if a has an external selector or /rjCa) = o if a has no external

selector.

Proof of CB). The proof of (B) is similar to the proof of (A). QED.

Finally, it can be shown that every 2-d forest grammar has a yield-equivalent

2DNF grammar.

THEOREM 4-11. Let G be a grammar < 1 , E , N , R , S >2 • There is a 2DNF gram

mar C = such that ro(C?) = ro(G').

PROOF. Form a grammar G" by applying the constructions of lemmas 4-6 and

4-10 to G . The lemmas guarantee that Yo^G") = FolG). G" can be converted to

2DNF grammar G' by eliminating the productions of the form A-*B where both

A and B are non-terminals. This can be done by replacing A-^B with A —> /3 for

each rule B—t^, and the yield of the grammar is not affected. Unreachable non

terminals and rules can also be removed. Since Y qCG) = /oCG") and

yo(G") = XoCG'), we have ^qCG) = FoCG'). QED.

The Deleting Power of Extended Selectors

Using extended selectors, we can write 2-d forest grammars in which the

selector paths overlap one another. If this happens in a cycle of non-terminals,

then the grammar contains a deletion cycle. Consider the following example gram

mar, which will be named ABC. Let N2 — N ^ = {S , A }, I = {z , y) where

A" = < 1,1 > and y = <1,A.>, I = and R consists of 4 rules:

1) 5 —» #[2 #[2 •^'][]]][i c [j y]],

2) 5 - > A ,

3) A —> #[2 c [j y]][j #[2-A][j 6 [j y]]], and

4) v 4 - » a [i & [i y]] .

This grammar yields the string language {a""*" 6" c'" } (J {A""'" } for

n > 0 and 0<m Rules 3 and 4 constitute a context-free subgrammar which

yields {a" ft" }, n > 0. Each application of rule 1 attaches a selector to the front of

the derived structure and the terminal c to the end. During the f rontier operation,

a c is attached to the end of the resulting string every time a terminal is removed

from the front. Figure 3 contains a forest derived from grammar ABC and its 1-d

frontier.

In a forest produced by grammar ABC, a subtree may be repeatedly subjected

to deletion during the frontier operation. This happens because the forest contains

overlapping selectors. In order to define overlapping selectors formally, we will

first introduce external selectors and a forest truncation function. Truncation,

external selectors, and overlapping selectors are defined for n -dimensional struc

tures so that the definitions will be useful in later chapters.

DEFINITION 4-12. Let 3 be a forest in f/^(Z,E). x is an external selector of

j3 if and only if x e En-i and x is in /r„_i()3).

34

_ _ _ 2 1
I I
— 2 — 1 c — 1
II I
X #—2 1 y

I I
#— 2 — 1 c — 1

I I I
X #—2 1 y

I I
^—2 — 1 c — 1

I I I
X ^—2 1 y

I I
3 1 4^ 2 1

I I I
y 3— 1 b— 1

b — 1 y
I
y

forest derived from grammar ABC

b — 1
I
c — 1

I
c 1

I
c 1

I
y

its 1-d frontier

FIGURE 3. Example 2-d forest containing overlapping selectors

If X is an external selector of an n-dimensional forest j3, then the selector %

will not be applied when /rjCjS) is taken. If any subforest of |3 has no external

selector, then neither does /3. A 2-d forest 0 has al most one external selector, and

it will occur at the end of the string resulting from /rjC/S). If a 2-d forest has an

external selector, it can be found by starting at the root and traversing the arcs,

choosing 1 -arcs instead of 2-arcs if there is a choice. For the rest of chapter 4, we

will adopt the notational convention that , p > 0, is an abbreviation for the

selector <1,1^ >, and represents the selector <1, X.>.

DEFINITION 4-13. If G is a grammar < Z , B , N , R , S > 2 such that A e N ,

then exsel (A) is the set of all external selectors of forests derived from A.

Since exsel (A) G 5 for any grammar, it is clear that exsel (A) is finite. A

procedure for constructing exsel (A) is given in the proof of the next theorem.

THEOREM 4-14. If G is a grammar , R , S > 2 such that A e N , then

there is an effective procedure for constructing exsel {A).

PROOF. The set exsel (A) can be constructed by deriving a finite subset of L (A)

called minset (A), taking the frontiers of the derived forests, and examining the

selectors at the ends of the resulting strings. Put j3 in minset (A) if A =>* jS and

no rule number appears more than once on any path from the root to the leaves of

the derivation tree for /3. To construct a derivation tree, first number the rules of

the grammar. Whenever a rule is applied in the derivation of a forest, label the

node which was expanded with the number of the applied rule. Since there are a

finite number of rules and a maximum number of non-terminals introduced in

applying a rule, the set minset [A) is finite.

36

To prove the theorem, we need to show that if 3 is derived by repeating a

rule, then there is a smaller forest j3' which has the same external selector. Sup

pose A =?>* /3 and j3 contains jS' such that A =>* 0', and the same rule is applied

first in both derivations.

Case 1. If i3' has no external selector, then neither does (S. So /3 and)3' have the

same external selector.

Case 2. If jS' has an external selector, then it will be replaced during the frontier

operation by a string whose external selector is that of 3. So we can

replace 0' with any subforest that has an external selector without

affecting the external selector of /3. We can choose a subforest to replace 3'

which is derived without a previously used rule.

The process described above can be applied until all repeated rules are eliminated

and the resulting forest has the same external selector as the original. Since the

forest has no repeated rules, it will be in minset {A). QED.

DEFINITION 4-15. The truncation function trunc (3): H) is

defined as

T r u n c { a) = a for a e I (J E,

trunc ia a]) = a trunc (a)]

f o r a € I , a e c) a n d m ,

trunc (a «Er 31) = o L trunc (a)][r trunc (3)]

f o r a € l , 3 (S), m , r -1, and

trunc (a [„ 3]) = o U trunc (a)]

f o r a e l , a and 3

For a 2-d forest, the truncation function removes subforests joined to a node

by a 1-arc only when the node also has a 2-arc. Now truncation and external

selectors can be used to define overlapping selectors.

DEFINITION 4-16. A forest ^ e z) conxains an overlapping selector if

either

1) some subforest of /3 contains an overlapping selector, or

2) j 8 = û [„ «] [„ _ ! y] a n d s e / (< n — 1 , o > , f r n - i i t r u n c i y))) = x

w h e r e x e E ^ - i a n d < n — 1 , o t t > i s a n e x t e r n a l s e l e c t o r o f a

for 77?^ A., a 6 I, a e H), and y e ~^(I, E).

Overlapping selectors are impossible in n -d forests without extended paths.

The selection operation always retrieves an n -d tree, and every path of an n -d tree

starts with jt. Since an n -d standard selector has a path in {1,..., n — 1}', the

path of one n -d selector cannot penetrate into a tree selected by another n -d selec

tor. The increased deleting power of extended selectors will be analyzed step-by-

step, beginning with selectors that do not overlap.

Grammars with Non-Overlapping Selectors

As shown in the proof of theorem 4-3, a 2-d forest grammar in which every

selector is can be converted directly to a context-free grammar. A similar

scheme can be nsed for 2DNF grammars with extended selectors, but no overlap

ping selectors. The conversion will require the use of the debts of non-terminals

and partitioning of forest grammars by external selectors. If a non-terminal

derives a forest a and has debt i, then i characters will be deleted from the yield

of oi when the frontier operation is performed on a larger forest which contains a.

38

DEFINITION 4-17. Suppose G is a grammar , R , S > 2 wilh non

terminal A € N . d e b l s { A) is the sel of integers such that i e debts iA) if

and only if A =$>* a, S =4>* /3, a is a substructure of)3, 5//" (3)= "vu-

w h e r e v i s a s u f & x o f t h e y i e l d o f Œ , a n d s f r { a) = y v , w h e r e \ y I = i .

LEMMA 4-18. Given a grammar G = < 1 , E , N , R , S > 2 with no deletion cycles,

there is an effective procedure for constructing debts (>i) for every non

terminal A e N.

PROOF. The construction of debts iA) requires prior calculation of the debts of all

the non-terminals which can precede A in a derivation. The algorithm below con

structs all the debts sets of a grammar by making multiple passes through the rule

set R.

Set debts is) — {0}.

Set debts iA) = {} for all other non-terminals.

Repeat

For each rule A —> jS in

If iS = a [j 5] then

If Oe debts iA) put 0 in debts iB).

If r > 0 and r e debts (A) put r — 1 in debts iB).

If /3 = a U 5] then

Add every element of debts (A) to debts iB).

If j3 = a [2 5][i C] then

Add every element of debts (A) to debts iB).

For each m e exsel iB) and r e debts (A)

39

If 5 : m yields a string of length I then

Put m in debi^ (C).

For each I such that I ^ < m

If 5 : m yields a string of length I then

Put m +r —I in debts (C).

Until no change is made in any debts set.

It can be established that the construction algorithm produces the right debts by

proving the two propositions below.

(A) If A € N, A =$>* Of, S =$>* /3, a is a substructure of 0, sf r (or) = yv ,

s/r (/3) = uv\v, and ly I ~ i, then i e debts {A).

CB) If i g debts [A), then A =?>* a, S =$>* 0, a is a substructure of jS,

sf r (a) = yv , sf r (jS) = uvw , and ly I = i.

These can be proven by induction on the difference in size between a and /3.

1131 — 1 a 1. The inductions are not shown here. QED.

In the case of a rule /i -» a [2 5][i C] when calculating debts [A), if the gram

mar has no overlapping selectors, then no word which B yields is smaller than any

debt of A. If the-grammar contains overlapping selectors, then the lengths of

strings yielded from B must be determined. A length-predicting scheme will be

presented later. First we demonstrate that 2-d grammars which have no overlap

ping selectors can be converted to context-free grammars.

THEOREM 4-19. Given a 2DNF grammar G = < 1 . E , N , R . S > 2 with no over

lapping selectors, there is a context-free grammar G' such that

yo (G) = lCG').

PROOF. To construct G' , follow the algorithm below. Assume that A , B , C e N,

a € I, and z'' e Ej.

Set = ={),andN' = {5'}•

For each x'' e exsel {S)

Put oSr in N'.

Put5'-»o5r ini?'.

Repeat

Take a non-terminal jA^ from for which there are

no rules in R'.

For each rule A - * ^ i n R

LI: If j8 = x'" and j = 0, put qA^—^X in R'.

L2: If j8 = a li 5] then

If ; =0 add qA^ -» a to R' and to N'.

Else add j A r - * j - i B r t o R ' and j - ^ B ^ t o N ' .

L3: If /3 = a [25] add j A r — ^ j B ^ to R' and j Br to N'.

LA: If 3 = a[2-S][iC] then

Add j A r - y j B ^ j n C r to R' and jB^,^ I 0 N'.

for each x'" e exsel {B).

Until all non-terminals in N' have rules in R'.

41

The theorem is true if propositions (A) and (B) below can be proven.

(A) IÏ A (. N , A)3, sf r Cj3) = w , I w \ = j , j e debts CA), and

x'' e exsel {A) then jAr e N' and w.

Proof of (A) by induction on 1/31.

Base. 1/31 = 1.

In this case, R has a rule A-^x''. Since G has no overlapping selectors, the

debt of a is 0. Also, the external selector of is x'", /rjCx'") = x'", and

strix'') = X.. By line LI of the construction algorithm, R' contains o^r—

So (A) is satisfied.

Inductive hypothesis. Assume (A) is true for 1< I /31 <n.

Inductive step. Show (A) is true for I j31 =n.

Case 1. R has a rule A —>a [j 5] and /3 = a [j y] where B =5>* y.

We know A has external selector x*" and debt First, suppose ; = 0. Then

sfr{^) = a^v'. "We can apply the inductive hypothesis to y with debt 0 and

external selector x'" to get o-S^ in R' such that qB^ =>* w'. By line L2, we

also have >oo-Sm io R'. So o^r =>* ov', and (A) is satisfied. Now sup

pose i > 0. Then sf r (3) = sfria [j y]) = av'v = vu-, where y yields v'w ,

and B has external selector r and debt ; —1. The inductive hypothesis gives

us j-iB^ u- for j-iBr in N' and line L2 puts jA^-yj-iB^ in R'. So

jA^ =5>* u-, and (A) is satisfied.

Case 2. R has .4 —>a [j 5] and j3 = a U y] where B =^* y.

B has the same debt j as A , and y has the same external selector x ' and

frontier as j3. So sf r (/3) = sf r (y) = w. Since y is smaller thai 3, we apply

the inductive hypothesis to get j in N' such that =^* iv. Line L3

gives us the rule jA^-* j B,. in /?' , so -vf , satisfying (A).

Case 3. R has A -» a [2 5][] C],)3 = a [, ylli 8], 5 =>* y, and C =^* 8.

Since A has debt j and external selector x'', B has debt j and 8 has external

selector x''. B has some other external selector xand the debt of C is

therefore m , since selectors cannot overlap. We know that sf r (3) = vw ,

IV I = ;. This means that sf r Cy) = vw j and s/r (8) = uw 2, where I u I = m

and w = w jW2. All of v is derived from B since selectors cannot overlap, y

and 8 are smaller than /3, so we apply the inductive hypothesis to get j B^

and ^Cr in N' such that jB^ =^* wj and =>* u'2. Line L4 also gives

jAr-* jBjn in R', so jA^ =>* w and CA) is satisfied.

(B) If jAr € N' and j A^ =§>* w , then there is ̂ in TV such that A =^* j3,

i e debts {A), x'' e exsd {A), and sf r (jS) = vw where 1 v I = ;".

Proof by induction on d , the number of derivation steps required for

Base, d = \.

N' has a rule qA^^X. Then N has A —>x'' by line LI, A has debt 0 and

external selector x'', and sf r (x'") = k. Thus, (B) is satisfied.

Inductive hypothesis. Assume (B) is true for Kc? <n.

Inductive step. Show (B) is true for d = n.

Case L R' has oA,.-*a qB^ and qA^ =>* oiv' where qB^ =>* w'.

We apply the inductive hypothesis for the derivation of w' to get 5 =>* y,

s f r (y) = Al'', B has debt 0 and external selector x''. By line L2, R contains

^ -»a [j 5], and so A =^* a[i -y]. But sfriaii y]) = striai^ fj'iiy)]) =

a - sfr (y) = aw'. A has debt 0 and external selector x*", so (B) is satisfied.

Case 2. R' has jA^-^ j-i^r and jA^ =^* w.

We apply the inductive hypothesis to get B in. N such that B =>* y,

s/r (y) = v'w , I v' I = ; — 1 = debt {B), and e exsel{B). By line L2, we

have A -•a [i 5] in /? where A has external x'' and debt j. So A a [j y],

and sf r (a [j y]) = a • sfr{y) = av'v = w where I v I = Thus, (B) is

satisfied.

Case 3. R ' has a rule j A ^ - ^ j B ^ and j A ^ =#>^5^ =>* w.

We apply the inductive hypothesis to get 5 in such that 5 =?>* y,

s f r Cy) = VU', IV 1 = ;• = debt (fi), and z'' e exsel (B). By line L3, we have

A -> a [2 5] in where A has external selector and debt j. So

A =^* a [2 y] and sfr {a y]) = sfriy) = vw. Thus, CB) is satisfied.

Case4. R' has a rule jA^-*jB^ mCr,^' = w2, jBm ^i and

mCr =5>* W 2 .

We apply the inductive hypothesis to get B and C in such that B y,

C =>* 8, sf r (y) = V jii' 1, IV11 = 7 , x'" e exsel {B), sf r (6) = V2W2,

IV 21 = m , and x e exsd (C). From line L4, we have A a [2 5 C] in /?

where A has debt j and external selector x . So sf r {a [2 y][i 8]) =

sïr(sutei(/riCy),/rjCS))) = VjVjU'2 = V]U' where Ivjl = Thus, (B) is

satisfied. QED.

Grammars Without Deletion Cycles

2-d forest grammars are harder to analyze when they contain overlapping

selectors, particularly when there's a cycle of overlapping selectors called a deletion

cycle. To define a deletion cycle, it will be necessary to distinguish the substruc

tures of a forest which precede a given node from those which follow it. The dele

tion cycle definition also contains some terminology which can be informally

defined as follows: a 1-node in a forest is a node which has only a l-arc enamating

from it, a 2-1-node has both a l-arc and a 2-arc, and a 2-node has only a 2-arc.

DEFINITION 4-20. Suppose a and 3 are subforests of ye =) such that

sel{<n ,p>,y) = a, and sel{<n ,q>,y)=)3. Let p — oiir and q = oj p

where i # j. a precedes ^iï i> j , and a follows jS if i < j.

DEFINITION 4-21. Suppose a grammar G = <Z,z,N ,R ,S>2 has a non

terminal M such that M y, /S is a subforest of y, and M =>*)3. If the

sum of the lengths of the selector paths exceeds the number of 1-nodes

over all the subtrees that precede /3 in y, then G has a deletion cycle.

So a deletion cycle deletes more than it adds when the frontier is taken. If we

try to find the debts of non-terminals in a grammar with a deletion cycle, the

algorithm of lemma 4-18 will never halt. If there is no deletion cycle, the algo

rithm will halt and a maximum debt for any non-lerminal can be identified. If a

grammar has overlapping selectors but no deletion cycles, it can be converted to

context-free by a procedure similar to that of theorem 4-19. In order to calculate

the debts of the non-terminals, however, it is necessary to predict the lengths of

words yielded from certain non-terminals.

LEMMA 4-22. Let G be a 2DNF grammar <1, E.N .R ,S>2 which is partitioned

according to external selectors, has no deletion cycles, and has non-terminal .4.

There is an effective procedure for determining whether YoiL {A)) contains a

string whose length is Z, for arbitrary I ^0.

PROOF. The algorithm is presented as a recursive function ^mrdsize which has

three parameters: a non-terminal A , and integer length Z, and a set callset of

(non-terminal, integer) pairs which is used to prevent repetition of useless function

calls. The function answers yes if A yields a word of length I, and no otherwise.

wordsize {A , I, callset):

If (j4 , Z) € callsel then set answer to no.

Else

Set answer to no.

Repeat

Select a rule Ai-^ 3 in R.

If)3 = a [j 5] then

If Z > 0 then

Set answer to wordsize{.B ,1 — 1, callset (J {(A , Z)}).

If = o [i 5] then

Set answer to wordsize {B ,l, callsel IJ {(A , Z)}).

If)3 = A" '• then

If Z = 0 then

Set answer to yes.

If i3 = a [j 5][i C] where e.xsel (5) = (tti } then

46

Set i to 0.

Repeat

If word size (5 , i, callset |J {(A , O}) then

Set a?^s^\.'er to vordsize (C, I +m — 1, callset IJ {(A , /)}).

Add 1 to i.

Until i = I or answer = yes.

Until all rules for /i have been examined.

Return the value of answer.

The wordsize function answers yes when I is 0 and it finds a production

A-^x''. Otherwise, it calls itself with the appropriate non-terminals and new

value of I. When it finds a rule A -• a [2 B][i C], it makes calls using all possible

sublengths of I with B and C. In some instances, the value of I in the new func

tion call is larger than that which was passed in. If the grammar were to contain a

deletion cycle, the function would call itself indefinitely. But since the grammar

does not contain a deletion cycle, the number of symbols added (the sum of the

values of i) exceeds the number of symbols deleted (the sum of the values of m)

for each pass through a cycle. "When the function calls itself at the beginning of

each new pass through a cycle, the value of I is smaller than before.

The function always adds the current values of A and I to the callsa when

it makes new calls. If the grammar has a cycle which neither increases nor

decreases the size of the yielded string, the function will not traverse the cycle

more than once. Having traversed such a cycle once, it is useless to continue.

Thus, execution of the function eventually halts with an answer of yes or no.

47

OED.

Now it is possible to demonstrate that any 2-d forest grammar which does

not have a deletion cycle can be converted to context-free. The conversion process

is very similar to that used for grammars without overlapping selectors.

THEOREM 4-23. Let G be a 2DNF grammar <Z,B,N ,R ,S >2. If G does not

contain a deletion cycle, then there is a context-free grammar G' such that

L(G') = yo(G).

PROOF. To construct G' , follow the algorithm below. Assume that A , B , C € N,

a e I, and x'' e Ej.

Set T = 'L,R' ={},andN' = {S'}•

For each :c e exsel iS)

Put in N'.

Put 5" -* oSr in R'.

Repeat

Take a non-terminal j from N' for which there are

no rules in R'.

For each rule A in R

LI; If)3 = x*" and j = 0, put qAj.-^'K in /?'.

L2: If /3 = a [1 S] then

If =0 add qA^-^q to R' and qB^ to N'.

Else add jAr-^j-iB^ to/?' and j-\Br loN'.

48

L3: If |3 = a [2 B] add j A ^ ^ j to R' and j to N'.

L4: If)3 = 0 [2-6][i C] then

Add jAr-*jBm mCr to/?' and to AT.

for each m e exsel {B).

Add jAr-ym+j-iCr to/?' and to A^'

for each m e exsel {B) and I e paths iB : m) such that / < ;

and 5 : m yields a string of length 1.

Until all non-terminals in N' have rules in R'.

The theorem is established by proving the propositions (A) and (B) of theorem 4-

19.

Proof of (A). This proof is the same as in theorem 4-19 with the following addi

tion:

Case 3. R has A -+a [,5][i C], jS = S], B =#>* y and C =?>* 6.

We know that A has debt j and external selector x'', and s f r i j i) = w

where I v I = /. Suppose that sf r (y) has length I less than j and assume

that B has external selector j^ . Then C has debt m+j —I and external selec

tor x . We apply the inductive hypothesis to establish that ^ -z * w

for Q in 7?'. Line L4 also gives us j A^-^ j^+j-iCr R'- So

jAr =^* w and (A) is satisfied.

Proof of (B). This proof is the same as in theorem 4-19 with the following case

added:

Case 5. i?' has and ; .4^ =>* w.

m +J-1 Cr derives av in one less step than jAr,so we apply the inductive

hypothesis to get C =>* 8 and sf rib) = va»' for C in with debt m-\-j —I

and external selector x'', and Iv 1 = m+j —I. By line L4, we also know that

R has a rule A [t 5][] C] and 5 =>* y such that Is/r (y) I = I and y has

external selector m. So sf r (a -/][] 8]) = v jv 2^ where I v j I — I and

IvtI = Iv I—m = j—l. But then lvjV2l = satisfying (B). QED.

Theorems 4-19 and 4-23 show that any forest 2-d grammar that does not

have a deletion cycle can be converted to a context-free grammar. It follows that

any 2-d forest grammar that does not have a deletion cycle can be rewritten using

only standard selectors. Just convert the grammar to context-free, and then con

vert it back to a 2DNF grammar whose only selector is z

Length Predictors for 2-d Forest Grammars

Before deletion cycles are analyzed, it will be demonstrated that a 2-d forest

grammar can be converted to a system which predicts the lengths of the strings

yielded by the grammar. Given a grammar and a non-terminal A , the set

paths iA) contains the lengths of all the strings which A yields.

DEFINITION 4-24. If G is a grammar <Z,=,N ,R, S >2 and A eN, then

paths {A) is the set of integers such that i e paths {A) if and only if

A =>* 3 and Is/r Cj3)l = i.

The rewriting rules for a non-terminal A implicitly contain rules for the con

struction of paths {A). The set of expressions for construcling paths {A) will be

denoted À. The rules will contain base values and will specify addition and sub

traction operations on values generated from other sets of expressions.

LEMMA 4-25. Suppose G is a 2DNF grammar <Z,E,N ,R ,S>2 and A e N.

There is an effective procedure for constructing A , a set of expressions which

specify paths (A).

PROOF. To construct À , first form C = < I', N ' , R ' , S '>1 such that the

derived forests are partitioned according to their external selectors. If N has non

terminal A , then N' has A^^,.... Ar^ for each r, in exsel (A), l<i , and

Ar. represents A }. The set paths (A) will be the union for f = 1 to m of

paXhs{Ar^). To form Ây where; = r,, ûnd all the rules for non-terminal A y in

G' and follow these steps:

1) If A^' has Ay , put 0 in Ây.

2) If A^' has Ay-> a [j 5y], put the expression 5y +1 in Â^.

3) lî N' has Ay-» a [2 5^], put the expression 5y in Ây.

4) If A^' has Ay a [2 Br][i Cj], put the expression Br + Cj — r in Ay.

Complete the construction by forming the rule set for each B^ such that B^ is

used in an expression of Ây. An expression + I in Ây means that 6 + 1 belongs

to paths La j) for everj' b in paths {B^). An expression Q + — r means that

c +b —r belongs to paths (Ay) for every b in paths) and c in paths (Q). The

operator — is a subtraction operation which is defined for b —r only if 6 ^ r.

Negative string lengths are not meaningful. We will adopt the convention that the

— operator applies only to the term that immediately precedes it. Thus, 8-^6 and

(4+4)—6 are meaningful, but 4+4—6 is not defined.

It can be shown by induction on the number of steps required 1o derive 3 thai

À will put \sf 7-(/8)I in paths {A) if and only if A =^* j8. The restricted subtrac

tion operator assures that no elements will be added for forests which contain path

errors. QED.

The length-predicting scheme described in the previous lemma builds sets of

integers with repeated addition and subtraction on a finite number of base ele

ments. Some operations on the length-predicting expressions can be performed

which will eventually eliminate subtraction from all the expressions. A substitu

tion operation will allow some initial simplification of the system. This simple

substitution is defined below and justified in the lemma following the definition.

DEFINITION 4-26. Suppose G is a grammar <Z,E,N ,R ,S>2 for which

A and B generate paths {A) and paths [B) respectively where A , B e N.

If À has an expression which refers to B and B consists of expressions

Gi'.ez',... then the substitution of B into is accomplished by re

placing 6; with m expressions in which (e^.') is substituted

for 5 , l^r ̂ m.

LEMMA 4-27. Suppose G is a grammar ,R ,S>2 for which À and B

generate paths {A) and paths [B) respectively where A , B e N. If A has an

expression e, and À ' is the same as A with B substituted into e,, then À ' also

generates paths {A).

PROOF. The textual substitution of subexpressions has no effect on the set gen

erated. The subset of expressions {c, , } in Â ' specifies the same elements

52

for paths (^4) as the expression c. from À in combination with B , and no expres

sions other that c, are modified. The meaning of a restricted subtraction operator

following B in e,- is preserved by putting parentheses around the subexpressions

which replace B. QED.

If À has expressions which contain a term B and paths (5) is a finite set,

then B can be substituted into the expressions of À. This increased the number of

expressions in À , but it allows some arithmetic operations to be performed and it

may eliminate the need for B. Any subexpressions A+c or h—c can be evaluated.

If A <c in a subexpression b—c, then the expression should be removed from the

system.

If a grammar contains cycles of non-terminals, then its length-predicting sys

tem will contain corresponding cycles. Expressions can refer to one another, and

those that refer to themselves, either directly or indirectly, are called self-

referential.

DEFINITION 4-28. Suppose G is a 2DNF grammar <1,E,N ,R ,S>2, A e N,

and Â specifies the set paths {A). An expression in A refers to 5 (or

non-terminal 5) if and only if

1) it contains an occurrence of 5 , or

2) it contains an occurrence of C and an expression in C refers to B.

DEFINITION 4-29. Suppose G is a 2DNF grammar <I.,=,N ,R ,S>2, A e N,

and Â specifies the set paths {A). An integer ^ is a base element of A if it

can be generated without applying any expression more than once and

without applying any self-referential expression which contains an arith

metic operator.

Since the number of expressions in a length-predicting scheme for a grammar

is finite, the set of base elements of a non-terminal is finite, and it can easily be

enumerated. Substitution of base elements can be used to reduce the complexity of

expressions which have two terms that are self-referential. This process is called

linearization.

LEMMA 4-30. Suppose G is a grammar < 1 , E , N , R , S > 2 f o r which A generates

paths {A], A € N. There exists À ' such that À ' generates paths iA) and no

expression in À ' has two terms which refer to A.

PROOF. The construction of Â ' is described for two situations, depending on

whether À refers to itself directly or indirectly.

1) If A has an expression e ^ : A + A — p where p is an integer, put all the expres

sions of A except gq in A '. Suppose i» &2. • • • >are the base elements of A.

Put the expressions b j+A —p , b 2+A '—p and b^ +A '—p in A ' instead of

eo-

2) Suppose A has an expression en : 5 4-C —p where p is an integer, an expression

in B refers to A , an expression of C refers to A , and èj, Ô2 br are the

base elements of A. To form A put all the expressions of A in A ' except e^.

Replace references to A with A ' in these expressions. Put expressions

B'+C —p and B + C '—p in A ' instead of eg- -B ' is formed from B as fol

lows: if B has an expression / which refers to A , replace it with expressions

/ J, / 2,. • • , fr> where /j is the expression / with A replaced by b^,

1 ̂ z ^ r. C ' is formed from C in a similar manner.

54

It is clear in each situation thai if A ' generates I, then Â generates I. since

generations in ,4 ' can be exactly duplicated in À. It is less obvious that I generated

by À is also generated by À This can be proven by induction on the number of

steps required to generate I. The proof is shown below for situation 1 in the con

struction rules. The proof for situation 2 is similar. In the proof, the symbol b

will represent a base element of Â , and the symbol I will represent an integer

which has been generated by a series of steps from one or more base elements.

(A) If À generates I, then À ' generates I.

Proof of (A) where À ' is constructed as in situation 1 by induction on the number

of steps in the generation of I.

Base. A generates I in one step.

In this case, Z = ô is a base element. A ' has the same base elements as Â , so

À ' also generates I.

Inductive hypothesis. Assume (A) is true when A generates I in less than n steps.

Inductive step. Show (A) is true when Â generates I in n steps.

If I is generated by an expression other than e q, then I = I i ± i o r I =

l\+ 12—p , where i, p are integers and Z^, Z; are generated by A. In these

cases, we use the inductive hypothesis to extablish that Z j and Z ^ are generated

by A ', and then observe that A ' has the same expressions as A except for eo-

Since Cq is not used in the last step, we know that À ' generates Z.

If Z is generated by eg, then Z = Z i+ Z 2— p. We can show that Z is in Â '

by examining the ways in which Z j can be generated.

Case 1. 11 = b ,a base element of A.

In this case, the inductive hypothesis can be applied to extablish that /1 is in

A T h e r e i s a l s o a r u l e b + À ' — p , s o Z = f t + Z p i s g e n e r a t e d i n À

Case 2. Z ^ for integer / and Z3 in jsor/isCA).

In this case, Â has a rule A ± i. The element I can also be generated by

applying the expressions in a slightly different order without causing a path

error; I =l\+l2—p =li±i + li—p =1^+12—p±i. Since Z 2 and / 3 are

both in paths (A), A generates Z 3+ Z 2— p , and the inductive hypothesis can be

applied to show that À ' generates 17,+12—p. A' has a rule Â ' ± z, so Â ' gen

erates Z.

Case 3. Z J = Z3+ Z 4 — /> for integer p and Z3, Z4 in paths [A).

In this case, Z j is generated by a previous application of e^. The inductive

hypothesis can be applied to establish that Z j is generated in Â ' as

11 = b + l/(— p. Since every generation in À ' can be imitated step for step in

A ,l \ can be generated in A as 6 -1- Z 4' — /? also. Now we have

I =l\-+l2~P = i.b-¥l/(—p)-¥l2 — p- Observe that Z 4'+Z 2 —/J is larger than

Z4', so Z can also be generated as è + (Z 4'+Z2~/')— /' in Â. The inductive

hypothesis can be applied to establish that Z2' = Z4'+ Z2 —can also be gen

erated in .4 and since Â ' has an expression 6 +Â ' — p , Z is generated in A

QED.

Subtraction which is not part of a deletion cycle is easy to eliminate from a

length-predicting scheme. To subtract a constant value cZ from every element of

56

paths {A), just subtract d from the base elements of A. If some of the base ele

ments are smaller than d , then it is necessary' to expand the base before subtract

ing.

LEMMA 4-31. Suppose G is a grammar < I, £,A^. , S >1 with non-terminal A

and A specifies the set paths [A). If no expression of À uses subtraction and

every expression has been linearized, then for any positive number d , there is

À ' which specifies pathsiA') where paths (>\') = {;î I Z — d =72 and

I e paths [A)}.

PROOF. To construct À first place all the expressions of A in Â For each base

element of Â apply every possible combination of increasing steps to get a

number m such that d 4m <i+d where i is the smallest increment of any step

applied in the generation of m. Add each such m to Â ' as a base element. These

values are easily enumerated, since every expression is increasing. Remove all base

elements from A ' which are less than d. Subtract d from every base element

which is greater than or equal to d.

Now À ' generates n if and only if A generates n + d. If Â ' generates n from

base element b , then A has base element b-\-d and generates n -\-d by the same

sequence of operations. If A generates n + d i rom base element b^d , then A '

generates n from base element ô — i by the same sequence of operations. If is

less than d , then À ' generates n in fewer steps from a larger base element

b + i — d , w h e r e i i s t h e s m a l l e s t s u m o f i n i t i a l i n c r e m e n t s s u c h t h a t b - ¥ i — d ^ Q .

QED.

Removal of subtraction in deletion cycles in considerably more complicated,

but it is possible because the number of distinct increments and decrements in a

length-predicting system is finite. Subtraction is eliminated by enumerating base

elements below a certain value and then changing the subtractions to additions.

This method is described in lemma 4-33. An auxiliary lemma is presented first

which will be needed for the proof of lemma 4-33.

LEMMA 4-32. Suppose î i+12+ ' ' ' + ip is a sum of positive integers where p is

larger than some number d. There is a partial sum ii + /^+i+ • • • + im =

n X d s u c h t h a t Z > 1 o r m < p , a n d n ^ l .

PROOF. First observe a property involving remainders of integer division; if

a mod d = b mod d then (a —b) mod d = 0 for positive integers a ,b , and d

such that a>b. In other words, if some number is added to a and the addition

does not change the remainder of dividing by d , then the amount added is a multi

ple of d.

Now consider the sum 2 j+ ? 2 + " " * + ip • We can calculate the remainder of

t
dividing each partial sum by) mod d = for every value 1 ^p.

/ = i

Since p is larger than d , there must be a repeated remainder in /• 1, r 2 'd •

h
This means there are h and m such that \ ^ h < m ̂ d and (H) mod d =

; = i

m
i ̂ i j) m o d d . Applying the property observed in the previous paragraph,

y = i

m
(22 Zy) mod cf = 0. So we have +] + + 2 + ' ' ' + '771 = n y . d for some
i = h + 1

58

;i >1. QED.

LEMMA 4-33. Suppose À specifies paths {A) for non-terminal A of a 2DNF

grammar G = ,R ,S W. If every expression of Â has been linear

ized, one self-referential expression contains a subexpression A — p , and no

base element of A is smaller than p , then there is a system À ' which specifies

paths (v4) and has no subtraction operators.

PROOF. If paths (A) is a finite set, then its elements can be enumerated in A ' as

base elements, and À ' will contain neither additions nor subtractions.

If paths (A) is an infinite set, then some expressions of A specify constant

increments, i i. z'z, - - - » 4 < which can be repeatedly added to get larger elements of

paths {A). The largest of these increments will be represented as z Let e =

A — p + i be the self-referential expression in A from which the subtraction opera

tor will be removed. Construct A ' as follows:

1) Put ever)' expression of A in A ' except e.

2) Add more base elements to A ' by taking the base elements of A and applying

all possible sequences of increasing steps which give a total increment less than

or equal to d X z This adds a finite number of base elements to A ', since

there is a finite number of possible increments.

3) Add more base elements to A ' by applying the subtracting expression e in A

to the existing base elements of A '. This should be repeated until no new base

elements are added.

4) Put expression é in A ' such that e' is A + d where d = I f I.

59

If z > /) in expression e, then c is an increasing step even though it contains

subtraction. The net increase is i — p — d . and the expression e' : A + d appropri

ately replaces e. Application of e and e' give different results only if the element

of paths (A) to which they are applied is less than p. In that case e cannot be

applied, but e' can be applied. This never happens, however, because no base ele

ment of A is less than p , and no rule is decreasing. So every value to which e is

applied must be at least as big as p.

If i <p in expression e , then e is a decreasing step. An inductive proof will

be required to show that e' : À+ {p —i) is an. appropriate replacement for e. A '

can be shown to generate paths (A) by proving propositions (A) and (B) below.

(A) If À generates I, then À ' generates Z.

Proof of (A) by induction on the number of steps in the generation of I.

Base. A generates 1 in one step.

In this case, I is a base element in Â. By construction step 1, Z is also a base

e l emen t o f Â ' .

Inductive hypothesis. Assume (A) true when À generates Z in less than n steps.

Inductive step. Show (A) is true when Â generates I in n steps.

Case 1. Z is generated without increasing steps.

In this case, Z is added to A ' as a base element by construction rule 3.

Case 2. I is generated without subtraction steps.

In this case, À ' has the same increasing steps as A by construction rule 1. The

same generation sequence can be used to generate Z in Â '.

Case 3. I is generated with a mixed sequence of addition and subtraction steps.

If the total increment does not exceed d X then I is a base element of À '

by construction rules 2 and 3.

If there are x addition steps and y subtraction steps in the generation of /

where x >d and y ^J'niax- then it can be shown that there is another genera

tion of Z in Â which takes fewer steps. If there are more than d increment

steps, lemma 4-32 tells us that there is a sequence of x' increment steps such

that x' and the sum of the x' increments is a multiple of d , say y' x d

The sum of the x' increments must be less than or equal to d x and

therefore y' ^ i Thus, there is a generation of Z which takes x — jc'

increment steps and y — y' decrement steps. The inductive hypothesis can be

applied to establish that A ' also generates I.

Now suppose there are x additions and y subtractions where x > d and

y < I'max- Let ij be the smallest of the z increments in the generation of Z.

Consider V , a number with the same generation sequence as Z except for one

less addition of : Z' = I — ij. À also generates Z' if it can be confirmed that

no path error will occur. In the generation of Z, the amount added exceeds

d X i and the amount subtracted is less than d x z If the difference

between the amount added and the amount subtracted is called the gain , then

gain l)x Znia%- (z'max- l)x ̂

^i max"'" ^ max d X i max"'"

^ ̂ max"'"

In the generation of Z', there is still a positive gain , since z i^ax^ d — ij>0. So

61

V is generated by Â in fewer steps than I, and the inductive hypothesis can be

applied to establish that /' is generated by Â By construction rule 1, Â ' has

the same increasing expressions as ̂ , so Z = 1' + ij is generated by A

(B) If A ' generates I, then À generates /.

Proof of (B) by induction on the number of steps in the generation of Z in A

Base. A ' generates I in one step.

In this case, I is a base element of A '. By construction rules 1,2, and 3, either

Z is a base element of A , or it is generated in A with increment less than

d X i jnax and a number of subtractions not exceeding i ̂ ax-

Inductive hypothesis. Assume (B) is true when A ' generates Z in fewer than n

steps.

Inductive step. Show that (B) is true when A ' generates Z in n steps.

If Z is generated using a step which is not an application of e', then con

sider Z' generated in A ' with one less step: Z' = I — ij. The inductive

hypothesis can be applied to establish that Z' is also generated by A. But since

A ' and A share all addition expressions except e', I is also generated by A.

If Z is generated by applications of e' only, then Z' = l — d is generated in

A ' and the inductive hypothesis to establish that Z' is also generated by A.

But if Z' is generated by A , then d applications of an expression with some

increment ij and ij—\ applications of expression e can be made to get another

element of A :

V d X i j — [i j — 1)x

62

= 1 — d - \ - d x i , — i i X d - ¥ d

= I.

Thus, if V is generated by À , then so is I. QED.

The previous five lemmas supply enough machinery to remove all subtraction

from an arbitrary length-predicting system, as shown in the theorem below. The

proof of the theorem specifies the order in which the constructions of the support

ing lemmas should be applied.

THEOREM 4-34. Suppose G is a 2DNF grammar < Z , B , N , R , S > 2 and G is its

corresponding length-predicting system. There is an equivalent system G '

which does not use subtraction.

PROOF. To construct G first apply finite substitution, arithmetic simplification,

and linearization to each A where A € N, giving À Remove subtraction according

to the method below, starting with A ' = 5", the expression set corresponding to

the start symbol.

1) For each expression in À ' containing B — p where no expression of B ' refers to

À , remove the subtraction from B ' by the current method and then subtract

p f rom B ' using the method of lemma 4-31.

2) Create two sets of expressions: À q and À +. Put all the non-subtracting expres

sions of À' in À + and leave À q empty.

3) Remove the subtracting expression from À ' which subtracts the smallest

amount, p , and put it in À +.

4) Generate all the elements of Â + without using the subtracting expression

which are smaller than p or which exceed p by less than one increment.

Remove the base elements less than p from A + and put them in Aq-

5) Transform A + using the method of lemma 4-33 to remove the subtraction.

6) Repeat steps 3, 4, and 5 until no subtracting expressions remain.

7) Set j4 ={Aq,Aj^\.

The steps in the above method use the constructions of the previous lemmas

which guarantee that the path sets generated by the transformed systems are the

same as those generated by the original systems. Small base elements are isolated

from sets of expressions in step 4 to prevent transformed expressions from being

applied to values for which the original expressions are undefined. The self-

referential subtracting expressions which correspond to deletion cycles in the origi

nal grammar are transformed one at a time, beginning with the expression which

deletes the least. Steps in a grammar cycle can be arbitrarily intermixed to give

words of the same length. For any productive forest derived from a non-terminal

which has deletion cycles, there is a corresponding forest which has the same

derivation steps where repeated applications of the same rule are grouped together

and the smallest deletions are first. The two forests may not yield the same string,

but they yield strings of the same length. This justifies the consecutive transfor

mation of deletion cycles. Simultaneous transformation would give the same

result. QED.

COROLLARY 4-35. If A is a non-terminal of a 2DNF grammar G =

< Z , E . N , R , S > 2 , then paths (^) is a regular set.

64

PROOF. Form the length-predictinj; system for the subgrammar whose start sym

bol is ^ and remove subtraction from the system. The unary representation of a

positive Integer n is just a string of n ones, and 0 is represented as the empty

string. If all the integers in the length-predicting system are converted to unary

representation and the addition operators are changed to concatenation, the system

becomes a linear context-free grammar over a one-symbol alphabet which generates

paths {A). Such a grammar can easily be converted to a regular grammar, and so

paths {A) must be a regular set. QED.

The Remainder Operation on Context-Free Languages

The 2-d forest yield languages which involve deletion can be related to

context-free languages with the help of the remainders of context-free languages.

The remainder of langtiage L i with respect to language L 2 is the set of strings that

remain after prefixes from L, are deleted from words in L j.

DEFINITION 4-36. Let Lj and 2 2 be string languages. The remainder of Lj

with respect to L 2 is defined as follows:

Li\Li — |u' I for some v in Li, vv is in Lj}.

The remainder operation is defined for sets of strings in the preceding

definition. It will be convenient to use the operator on single strings as well as sets

of strings. Thus, ab \ abcde = cde. The remainder of a language is a close relative

of the quotient of a language, as defined by Ginsburg and Greibach (1969). The

quotient of a language L, with respect to a language Lt is the set of prefixes that

remain after suffixes from A2 are deleted from words in L].

65

DEFINITION 4-37. Let Lj and Li be string languages. The quoiicni of Lj

with respect to L 2 is defined as follows:

Li / L, = {"vv I for some v in L2. is in L]}.

It has been established that the quotient of a context-free language with

respect to a regular language is context-free. It is also well known that both

context-free and regular languages are closed under reversal. These facts can be

used to show first that remainder can be expressed in terms of reversal and quo

tient, and then that the remainder of a context-free language with respect to a reg

ular language is context-free.

THEOREM 4-38. Suppose Lj and L2 are string languages. Then

reverse(L2\ 1) = reverseiLy) I reverse(L

PROOF. This theorem follows directly from the definitions of remainder, quotient,

and reversal:

reverse (L 2 \-Li)

= reverse ({w I for some v inZ.2,vv isinLj})

= {v I for some v in reverse(2,2), w is in reverse(L j)}

= reverse {Li) I reverse {L2)-

OED.

THEOREM 4-39. If L] is a context-free language and L2 is a regular language,

then -L 2 \ L1 is a context-f ree language.

PROOF. This theorem is proven by using the previous theorem and closure for

reversal and quotient.

66

Lj is context-free and Ly is regular

^ revcrscXL •^) is context-free and tcvcjsc iL j) is regular

reverseiLi) I 7 - cawsp(L 2) i s c o n t e x t - f r e e

=> reverseir'eversciL-i) I reverse[Lt)) is context-free

=?> reverse {reveise [L 2 \ -L1)) is context-free

^ reverse is context-free

=> L 2 \ L i is context-free.

QED.

The strings that result from a deleting frontier operation on elements of a set

of 2-d forests can be described as a remainder language. If ae H} (I, H), then

str {sel (x'" ,a)) is just sîr {a) with the first r characters removed. This can also be

expressed as Z'" \ srr (a).

LEMMA 4-40. Suppose a = #[2:*:'"][i)3] is in H2 (I, S), where # e I, x'' e Hi, and

i3e H2HI, H), and //j(a) is defined. Then srr (//'iCq;)) = I'" \ s/rCiS).

V:' PROOF. This follows from the definitions of remainder, the frontier function, and

the str function:

sf r C a)

= str {subs lifr-iix''). /rj(/3)))

= str {subs i{x'', /7- iC / 3)))

= str {sel {x'', /rj(|3)))

= sf with a prefix of r characters deleted.

QED.

67

COROLLARY 4-4L Suppose a = #[2 y] is in (I, £) where ^ e 1 , ̂ and

ye H Hi, E). ^ has external selector .r'" e Ej, and fryia) is defined. Then

s f r { a) = s / 7 - (/ 3) - I ' " \ s f r [f T \ [y)) .

PROOF. This corollary follows from the previous lemma and the observation that

fr\i#[2 jSKi y]) = /ri(#[2l3'][i yD) where a-*" is the external selector of /3

and j3' is the same as jS with external selector x'' replaced by A QED.

In theorems 4-19 and 4-23, context-free grammars were built with non

terminals like jAr- The subgrammar constructed for jA^ is actually a grammar

for \ (L (A):r). Remainder languages are helpful in relating deletion cycles to

the theory of context-free languages. Analyses in computer science literature of

deleting operations on context-free and context-sensitive languages suggest that

there must always be a constant bound on the number of consecutive deletion

operations. Theorem 4-39, however, demonstrates that regular deletion cycles are

tolerated in context-free languages.

Normal Form for Deletion Cycle Analysis

Several terms are defined below to aid the analysis of deletion cycles in 2-d

forest grammars. One non-terminal in a cycle is designated the root, or reference

point for analysis. In many cycles, the number of non-terminals can be reduced to

only one by expansion of the grammar rules. Such cycles have only one essential

non-terminal. Cycles which cannot be expressed with only one non-terminal have

several essential non-terminals.

68

DEFINITION 4-42. Lei G be a grammar <1,5. A\ . S >2 such that

A , B , and C € N. B is a descenJcnr of A if and only if

1) A = 5,

2) there is a rule A - ^ I S and /3 contains B , or

3) there is a rule A li, ̂ contains C , and 5 is a descendent of C.

DEFINITION 4-43. Let G be a grammar <1, E,^ ,5>1. G contains a cy-

cle if and only if there is a subset of N such that each non-terminal in the

subset is a descendent of every other non-terminal in the subset.

DEFINITION 4-44. Let G be a grammar < Z , z , N , R , S > 2 which contains a

cycle {A J, A2,.. . , Ar} ÇM A, is a root of the cycle if it appears in the

right-hand side of a rule for a non-terminal which is not in the cycle.

DEFINITION 4-45. Let G be a grammar < ' L , ~ , N , R , S > 2 which contains a

cycle C = {A 1, A2, .. • , Ar} Q N. A non-terminal A; in the cycle is

essential if it is a root of C, or if it is a root of another cycle which is a

subset of C.

DEFINITION 4-46. Let G be a grammar , R , S > 2 which contains a

cycle {A A2,. . . , Ar) with root A i- A cycle step is an expansion of A j

to derive the smallest structure q such that a contains an essential non

terminal A; and no non-terminal which precedes A, in a is in the cycle.

The analysis of deletion cycles will be made easier by the use of a normal

form for grammar cycles. Different shaped forests often have the same frontier. If

aj = #[2 #[2 Ml y]][i 8] and 0^2 = #[2 Mi #[2 ylC] 8]], then /rjCai) = //"iCai) Pro

vided the frontier of a 1 is defmed. A grammar is in cyclic normal form if the

forests derived from the cycles have the shape of a, rather than a2-

69

DEFINITION 4-47. Lei G be a grammar < Z . E , N , R . S > 2 which contains

one or more deletion cycles. G is in cyclic normal f or-m if and only if the

path in every cycle step from the root of the cycle to the leftmost essential

non-terminal is 2' or 2' 1, i ^0.

A grammar can be in cyclic normal form and 2-d normal form at the same

time. In that case it will be called a cyclic 2DNF grammar. The conversion of a

grammar to cyclic normal form takes advantage of the fact mentioned above that

different shaped forests can yield the same strings. This yield-equivalence is for

malized in the lemma below.

LEMMA 4-48. Suppose «i, or;, /3, y , and 6 are forests in H 2 (Z, 5) such that

«1 = #[2 #[2 i3][i y]][i 8], «2 = #[2 i3][i #[2 yïïi 8]]. |8 has external selector ,

and y has external selector :c'". If \ fr-^iy) 1 , then /riCaj) = friiai). If

I friiy) I =m<p , then /ri(#[2 8]) = fr-S-Oti) where g' is j3 with external

selector replaced by .

PROOF. This lemma follows from the definition of the frontier function. First of

all, assume that I /?"iCy) I ^p. Then the order of the substitutions during the

frontier operation can be changed without affecting the resulting string;

= 5ufe](/ri(#[2i3][] y]), /rjCS))

= s u M] { s u b s / r j C y)) , / r j C 8))

= suôsi(/riCy), /rjCS)))

=

This is not true when m = I /rj(y) \ < p , for then j3][] y]) is undefined.

The frontier operation on aj fails while it succeeds on a,.

6]3)

= subs lifriiH), subs^lfriiy), /^(ô)))

The substitution of /?"i(S) into fr'iiy) removes r symbols from the front of

/r]C8). The substitution of this subforesl into /''i(/3) removes all rn symbols of

fi'iiy) and p — m more symbols from /7"](8). So there is a forest with an

equivalent frontier that does not contain y at all: fr\{a2) = /3'][j S]) where

/3' is constructed from jS by replacing external selector with . QED.

THEOREM 4-49. Let G be a 2DNF grammar < 1 , ~ , N , R , S > 2 with one or more

deletion cycles. There is a grammar G' = <I', N',R',S '>* such that G' is

in cyclic normal form and Yo(G) = Vo(G').

PROOF. To begin the construction, set G' = G. Then, partition the non-terminals

of G' according to external selectors and repeat the steps below until no further

changes can be made. Assume A , B , C , D, and E are in N', and #, a e I'.

1) If 7?' has rules ^ » #[3 5][i C] and C -> c [j Z)] where A , C , and D are part of

a deletion cycle and is the external selector of B , then replace the rule for

A with ^ ̂ #[2 5][] C] and add the rule C -» #[, a [1 x°]][i D], for new

non-terminal C.

2) If /?' has rules .4 -> #[, B][i C] and C -» #[2 Z)] [\ E] where A , C . and E are

part of a deletion cycle, C is not essential, B and D are outside the cycle, the

external selector of B is , and the external selector of D is x'" , then replace

the rule for A with /i ^ #[3 r][i £]. -4 -» #[2 5]][] £], ^ #[2 £"]

A-» #[2 5p_i][i £]. Then, add rules for 5, only when 0^; </' and

i € paths [D). Bi has the same rules as B . except thai external selector is

replaced by . Finally, add a rule T#[2 B][, D] for newly invented

non-terminal T .

3) Perform the same modification as in step 2 when .4 , C , and D are part of the

cycle, C is not essential, and B and E are outside the cycle.

To prove the theorem, it needs to be shown for the construction steps above that

the algorithm halts, the resulting grammar G' is in cyclic normal form, and the

yield of G' is the same as the yield of G. Step 1 just changes the form of certain

cycle rules so that step 2 can be applied. Since no rules of the form C —> a [] D] are

added by any step, the number of applications of step 1 is finite. Step 1 does not

a f f e c t t h e y i e l d o f t h e g r a m m a r b e c a u s e / r i (# [2 a [j x °]] [i Z)]) = f r i i a [j D]) .

Steps 2 and 3 both have the effect of eliminating a non-essential non-terminal

with a 1-arc pointing to it. "When all such non-terminals are gone, the algorithm

halts, and the resulting grammar will be in cyclic normal form. Since no 1-arcs

point to non-essential cycle non-terminals, the path from the root to an essential

non-terminal in a cycle step can have 1 only at the end. It is evident from lemma

4-48 that the modifications made in steps 2 and 3 will not affect the yields of

derived forests. Thus, G' is in cyclic normal form, and) = y'o(G). QED.

Once a grammar has been put into cyclic normal form, the right-hand sides of

rules for essential cycle non-terminals can be expanded to become full cycle steps,

h then becomes evident that there are three kinds of cycle steps, as illustrated in

figure 4 for cycles with one essential non-terminal B. A cycle which has only type

72

- - - 2 1

I I

I I

Cr- i

4f- 2 1
1 I

B C i

type 1

jB —> ̂ 2 1
I I

A B

type 2

#—2 1

I I

#—2 1 Q
I I

Q-i

#___2---l Ci
I I

A B

type 3

FIGURE 4. Normal form cycle steps

1 steps is non-deleting. If the external selectors of the non-terminals C, overlap

one another, a path error will occur. Cycles with type 2 and type 3 steps can be

deleting cycles, since the external selectors from repeated occurrences of A can

73

overlap one another without causing pal h errors. Type 3 steps are more compli

cated. They allow a suffix to be attached lo the end of a string every time a prefix

is deleted from the front during the frontier operation. The example grammar

ABC from the beginning of this chapter contains a deletion cycle with type 3 steps.

Deletion cycles with type 2 steps can be shown to have corresponding context-free

grammars by application of the remainder operation. Cycles with type 3 steps are

more difficult to simulate with a context-free grammar.

2-d Forest Grammars with Regular Deletion Cycles

Cycles of type 2 in figure 4 will be called regular deletion cycles, and 2-d

forest grammars which have only regular deletion cycles can be shown to yield

context-free languages. A regular deletion cycle can be used to form a regular set

called a deletion map , which predicts the number of symbols that will be deleted

in the cycle. The deletion map can be applied with the remainder operation on

subgrammars which are not part of the cycle to generated the yield.

DEFINITION 4-50. Let G be a cyclic 2DNF grammar < Z , B , N , R , S >2. It G

contains a deletion cycle such that the left-most non-terminal in every cy

cle step is not part of the cycle, then G has regular deletion cycle.

The deletion map for a cyclic 2DNF grammar G = < I . , E . N . R , S > 2 with a

regular deletion cycle can be constructed according to the steps below.

1) Partition the grammar G according to external selectors. If there is a rule

5 —> #[2 C][] Z)] where B is in a deletion cycle but C and D are not, replace

t h e r u l e w i t h 5 - > 7 a n d # [, C] [i /)] f o r n e w l y i n v e n t e d n o n - t e r m i n a l T .

74

2) Make a regular grammar from the rules in R for each i , m . A . and B where ;

and m are paths on external selectors, ^ is a non-terminal in the deletion

cycle, and B is any non-terminal in N. The grammar , =

<N', E', R ' , S ' > is formed as follows:

a) Set I' = {0, 1}, A^' = N , and 5' = A .

b) Put a rule S—> 0' - A in/?'.

c) If R has a rule C -> #[2 D][i E], then put C -» Z) 0' - E in 7?' and add to

R ' rules for regular grammar D which generates the lengths of all the

s t r i n g s y i e l d e d b y D .

d) If/? has a rule C—> #[2/) Il either £ = B o r R also has a rule 5 ,

and the path on the external selector of Z) is m , then put C-*b in /?',

and add the rules for f) to /?'.

e) Rewrite the rules of /?', adding new non-terminals as required, so that each

rule has the form E - ^ n • F o r E - - * n , f o T n = Oorl, and non-terminals

E a n d F .

3) Convert each ; to a push-down automaton iAB^ =

< Q , I", r, 8, To, Go. Of >as follows:

a) Set Q = N ' [J{F}, I" = {0), T = { e, 0), Tq = e, O q = 5', and Q p = { F } .

b) If /?' has a rule C-*0 • D, put (C , * , X.) = (Z? , * 0) in S, where * is any

stack symbol and k means no input is consumed.

c) If /?' has a rule C -• 1 • D, put (C , -yO, A.) = (Z), y) in 5, where ye F*".

d) If R ' has a rule C -> 0, put (C . * . A):(f , * 0) in 8.

e) If /?' has a rule C—> 1, put (C , yO, k):[F, y) in 8.

75

f) Add {r. 0. 0.):(F , A.) to 8. The autonialon slops, accepting a string of zeros

only when the stack is em pi y and all the inpul has been consumed.

The regular set constructed in step 2 contains strings of ones and zeros. The

zeros are unary representations of the paths on selectors in the cycle. The ones

represent characters embedded within the cycle that will be deleted. The strings of

interest in the set are those in which the zeros outnumber the ones, not just

overall, but in every possible prefix. The grammar is converted to a pda in step 3

to accept only the strings of interest in the regular set. The pda uses X-moves as it

simulates the regular grammar. Zeros from the regular grammar are pushed on the

stack, and the stack is popped when the regular grammar produces a 1. If any ini

tial sequence of moves is chosen in which the ones outnumber the zeros, then the

pda gets stuck. If the zeros always outnumber the ones, however, the simulation

of the regular grammar terminates and the pda moves to a final state which reads

zeros from input and accepts the string if it matches what is on the stack. Since I"

has only one element, the accepted set is regular.

DEFINITION 4-51. The deletion map for a regular deletion cycle which con

tains non-terminals A and 5 in a 2DNF grammar G is a regular set

, formed by the construction steps above.

LEMMA 4-52. Let G be a cyclic 2DNF grammar < Z , E , N , R , S > 2 which has a

regular deletion cycle containing non-terminals A and B . Suppose „ is a

regular deletion map for the cycle. The string is recognized by „ AB^ if

and only if there are a and j3 such that A =^* a, B =>* j3, jS is a subforest of

Q', m is the path on the external selector of the subforest which precedes /3,

and I" \ s f r { a } = \ s f r (/3).

PROOF. This lemma is established by proving propositions (A) and (B) below.

(A) If there exist a and)3 such that A =>* a, B =5>* /3 and I" \ s f r { a) =

£d+m then 0*^ is recognized by

Proof of (A) by induction on the number of cycle steps in the derivation of or.

Base. A =^* a in one cycle step.

In this case, there are productions in the forest grammar A -> #[? Z)][, 5] and

B-*E where A and B are in the cycle, D and E are not in the cycle, and the

e x t e r n a l s e l e c t o r o f D i s z . S o a = # [2 8] [i j S] , a n d I " \ s f r =

^n-i+m \sfr (/3) where I is the length of the yield of 8. We know that 8 con

tributes nothing to the frontier, so it must be the case that n >1. By step 2 of

the construction, „ is given rules - A and A--*b. By step 3,

„ ABjn has corresponding rules which 1) push n zeros on the stack, 2) pop I

zeros off the stack where D derives a string of I ones, and 3) move to a final

state which accepts an input string of n—l zeros. Thus, (A) is satisfied where

d = n — l + m .

Inductive hypothesis. Assume (A) is true for A =?>* a in r — 1 cycle steps.

Inductive step. Show (A) is true for A =i>* a in r cycle steps.

There are productions A —» #[3 DjH] C J, C]-> #[2 C

C a - ^ # { 2 D g \ i B], and B - * E where A , C1, C 2 C g , B are in the cycle,

Z) J D g and E are not in the cycle, and the external selector of D g is x .

Let the external selectors o f ^ q — I . h e x ^ ' . We have a = #[28][j y]

where Z)i =?>* 8 and C j =>* y. sf j- (a) = sîr (.suôSi(/?'i(S), /'"iCy))), and /3 is

a substructure of y. Since the yield of a is a suf&x of the yield of /3. the yield

of S is completely deleted. If ls/r(8)l = Zthen /]<;%. So I"\i'/r(a) =

1" \{sf r{y)) = 1'^*'"\sf riH). An expansion of d would

show that d + m = n — 11+ p i— 12+- • •+ Pg -i- Iq + m , and so \ s f r (y) =

\ s j T (/3) where d ' = cf — 7î + Z j. The inductive hypothesis can be

applied to establish that contains d'. By construction steps 2 and 3,

nABjri has a rule ̂ -*1)1-(f'-C], and pushes n zeros on the stack,

pops 1 1 zeros, pushes p j zeros and goes to a state C1, where Z1 is a length gen

erated by b 1- We also know that p pushes p 1 zeros and goes to state

Cj. Soif pjCi5;n accepts cf', then ^ accepts n — Zi+d'. But

n — Z1+ d' =11 —I i+d — n + li = d, so (A) is satisfied.

(B) If is recognized by „ , then there are a and /3 such that A =>* a,

B = $ > * i 3 , . . . , a n d I " \ s f r (a) = \ s f r i . B) .

Proof of (B) by induction on the number of cycle steps in the derivation of a.

The proof of (B) is similar to the proof of (A). QED.

THEOREM 4-53. Suppose G is a cyclic 2DNF grammar < Z , z , N , R , S > 2 which

contains only regular deletion cycles. There is a context-free grammar G' =

< N', I', R\S'> such that L (G') = YoiG).

PROOF. To construct G' from G, first partition G according to external selectors.

The non-terminal set will include for every A in TV, every external selector

path m . and every inlegcr where is the longest path on any selec

tor. Set I' = E and S' = for each external selector path m. Begin making the

78

rules with the non-terminals in the deletion cycle closest to the start symbol, fol

lowing the steps below.

1) Find each non-'erminal E which is not in the cycle, but is in the right-hand

side of a rule for non-terminal A which is in the cycle. Form rules for

and add them to /?' , where m is the path on the external selector for any sub-

forest which can precede £ in a derivation. If the subgrammar Gg has no

deletion cycles, then form its rules using the method of theorem 4-23. If

does contain a deletion cycle, then use the method currently being described.

2) Form iAB^ for each pair of non-terminals, and 5 , in the cycle and each

pair of paths, z and m, on external selectors.

3) If there is a rule A-*E such that A is in the deletion cycle but E is not, put a

rule in i?' for each possible £ and for m such that x'" is the exter

nal selector of A .

4) If there is a rule A #[2£][i B] where A and B are in the cycle but E is not,

put ^ A ^ ^ ̂ E r • r B , n in for each possible i, r such that x'' is the external

selector of £, and m such that x'" is the external selector of A.

5) If/? has rules,4->#[2£'][i 5] and C-»£ where ^ , 5, and C are in the dele

tion cycle but E and E are not, put rules IA^—^ <, AC^- \RF„,> in R' for

each possible i, r such that x'' is the external selector preceding C, and m

such that ;c'" is the external selector of E. Then, add a subgrammar to i?' for

each non-terminal < iACr \rEm> such that < ,• AC^ generates the

context-free language h { L AQ)) \ L where h is the following

homomorphism on strings of zeros in L AQ): (0) = a where a is any

element of I.

6) If R has rules .4 -B] and C -» #[2 FKi D] where A , B . C , and D are

in the deletion cycle but E and F are not, put rules , .4^ -» <, AC^ \r^i^'

iDjn, in R' for each possible i, r such that x*" is an external selector which

precedes C , I such that x' is the external selector of F, and m such that x'"

is the external selector of D. Then, add a subgrammar to R' for each non

terminal < i ACr \rFi> such that <, ACr \ rF; > generates the context-free

language h {L (; AQ)) \ L Fi), where h is the following homomorphism on

strings of zeros in L AQ): /z (0) = a where a is any element of I.

Regular deletion maps and remainder operations are used in steps 5 and 6.

The remainder operation is applied only to non-terminals outside the cycle, allow

ing context-free subgrammars to be constructed before the operation is applied.

Then, the remainder of a context-free language with respect to a regular language is

f o r m e d t o g i v e a n o t h e r c o n t e x t - f r e e l a n g u a g e (t h e o r e m 4 - 3 9) . T h e g r a m m a r G '

can be shown to satisfy theorem 4-53 in the proof of propositions (A) and (B)

below, (A) \ï A e N, A =$>* or. I' \ sf r {a) = w, and a has external selector x*" ,

then TV' contains ^Am such that , =?>* iv.

Proof of CA) by induction on the number of steps in the derivation of a.

Base. A =>* a in one step.

It must be the case that a = .x'" , i = 0, and u- = k . R has a rule A — ^ x ' " and

R' has qAj^-^X, as in the proof of theorem 4-23.

Inductive hypothesis. Assume (A) is true when .4 =S>* a in less than n steps.

Inductive step. Show that (A) is true when A =S>* a in n steps.

If the first step in the derivation of a is .4 —[j 5] or then

the proof is the same as in theorem 4-19.

If the first step in the derivation of a is /I —»£, then £ =>* a in one less

step. If I' \ sf r Ca) = v and a has external selector m , the inductive

hypothesis can be applied to establish that , 5^ =*>* v. By construction step

3, R' has and so #>* w.

If the first step in the derivation of a is A —> 5] and neither A

nor B are in a deletion cycle, then ; ̂ 4^ =^* iv as in the proofs of theorems

4-19 and 4-23.

If the first step is A —» #[2£][i 5] where A and B are in a deletion cycle,

first consider the case in which the yield of £ is not completely deleted. Then

£ =>* y, B =#>* 0, a = #[?'y][i 0], w = wI' \s/r(y) = and

£'• \ sf r (i3) = ̂ 2 where the external selector of y is x'". The inductive

hypothesis can be applied to establish that R' has ;£r =^* u'l and

rBjj^^* If 2- Step 4 of the construction gives iA^^ ;£r >5^. Thus,

Î Am =>* M- jiv 2 = If , and (A) is satisfied.

Now suppose the first derivation step is A —» #[2£][i B] with A and B in

the deletion cycle, and the yield of £ is completely deleted during the frontier

operation. Let of = #[2 #[272^^1 " ' ' #[% Yg S] - • •]] where y^ is either

the first subforest that is not completely deleted in the cycle, or it is the last

subforest in the cycle. Assume also that C =?>* 6, C is in the deletion cycle,

t h e e x t e r n a l s e l e c t o r o f y g i s x * " , a n d t h e e x t e r n a l s e l e c t o r s f o r y . . 1 ̂ / < q .

are x^'. If represents the length of the string yielded by y,-, then =

81

I' \ s f r i a) = 1 ^ ' ^ ' ' \ .v/r (S) where =/ — /] + />]—/2+...+ p ^ - i — l q - This

means thai I'" \ sf r (8) = vSr where hf' I = d. The inductive hypothesis

can be applied to establish that r^m

If is the last leading subforest of the cycle, then the first step in the

derivation of 8 is C F, where F is outside the cycle. According to construc

tion step 5, R' has a rule <, AC^ \^Fm> and rules for

h [L iiACr)) \ i (r fm), and lemma 4-52 assures us that is accepted by

iACr- Since r^'m w'w and I w' I = d, it follows that lA^ =^*

\ w'w = w.

Finally, suppose y g is not the last subforest in the deletion cycle, but it

does contribute to the yield. In this case, the first step of the derivation of 6 is

C -» D] where C and D are both in the cycle. R' has a corresponding

rule rCjn-* s^d the inductive hypothesis establishes that

where hv' I = d . Since F contributes to the yield, it must be

true that =>* W2, and w? = w. According to con

struction step 6, R' has a rule , <, ACr \ ^ > • / - D m a s w e l l a s r u l e s

for h (L (j ACr))\ L (r f";). We also know from lemma 4-52 that , AC^

accepts 0'^. It follows that iA^=^* cf \ iv'w i ' iv ? = w ; = w , satisfying

(A).

(B) If A" contains , such that u-, then j V contains A such that

A =$>* Of, I' \ s f r (of) = w , and cv has external selector x ' " .

Proposition (B) can be proven in a manner similar to the proof of (A) by induciion

82

on the number of steps in the derivation of v. QED.

Grammars with Consistent Deletion Cycles

The theorem above shows that a forest grammar whose deletion cycles have

only type 2 steps can be converted to a context-free grammar. A similar result can

be obtained for forest grammars with type 3 deletion cycles, provided they are

consistent. The conversion process begins with the formation of an inversion map

for the cycle. This is a regular set which specifies the number of symbols that will

be deleted by the cycle and indicates what substrings will be attached to the end

of the resulting string as the deletions occur. An inversion operation is then

applied which takes an inversion map and a context-free grammar, and produces a

new context-free grammar. The new grammar produces only the strings which are

yielded by the deletion cycle.

DEFINITION 4-54. Let G be a cyclic 2DNF grammar with a deletion cycle. A

non-terminal D is a leading non —terminal in a cycle step if the path from

the root of the cycle step to D is in 2^, and D is not in the cycle. A non

terminal is a trailing non —terminal if it follows a non-terminal which is

in the cycle.

DEFINITION 4-55. Let G be a cyclic 2DNF grammar with a deletion cycle.

The deletion cycle is consistent if the external selector of the leading non

terminal in each cycle step is always an overlapping selector.

Given a grammar G = < 1 , E , N , R , S > 2 i n cyclic 2DNF, the inversion map

can be constructed by the steps below.

1) Partition the non-terminals of G which are not in the deletion cycle according

to external selectors. If there is a rule /i #[2 C Kj £] where B is in the cycle

but C and £ are not. then replace the rule with 5—» r and T—> #[2C][i £] for

n e w l y i n v e n t e d n o n - t e r m i n a l T .

2) Form a regular grammar hnap (G , , D) for each .4 and E in the deletion

c y c l e o f G . T h e t e r m i n a l s e t o f I m a p i s a s u b s e t o f (0 , . . . , ,

} where { A A 2 , . . • , A ^] = N . The rules of Imap {G , A , D)

are constructed according to the steps below. Assume A , B , C , D , E , and J

a r e n o n - t e r m i n a l s A ^ f o r s o m e i .

a) If R has 5 -> #[2 £][i C] where B and E are in the deletion cycle but C is

not, add B - ^ E -î q to the rules of I m a p i G , A , D) .

b) If R has a rule 5 -+ # [2 7][i £] where B and £ are in the cycle but C is

not, add B^E - Çf -Ij to the rules of Imap where is the external

selector of C.

c) If R has D-» j3 for any right-hand side)3, add D - ^ k X o the rules of

Imap {G , A , D).

d) Make A the start symbol of I m a p { G , A , D) .

3) Form a regular grammar imap {G , A , D) for each A and D in the deletion

cycle of G such that there is a rule 5 —> #[2 Z3][] £] where B is in the cycle

but £ is not. Use the same rules to construct tmap as in step 2, but replace 2c

with the following:

c) If R has 5 -> #[2][] £] where B and D are in the cycle but £ is not, add

5—» CP - Id to ! map where is the external selector of D.

4) Form a general sequential machine Z which operates on strings produced by

Imap or ïmap. The input alphabet is the same as that of Imap, and the output

alphabet is the input alphabet with added, where is a

non-terminal of G. There is a start state Zo, a final state Zf , and a state Z; for

each A.. The rules of the mapping are defined as follows:

a) Add (zq. X) = (Zj, 5^^) for every 1

b) Add (z,, 0) = (Zj, 0), (z;, J = (z,,), and (z, ,t^) = (z,,) for

every i and j between 1 and r.

c) Add (Zj,) = { z f , X) for every 1 < i ̂ r.

d) Add (zy , 0) = [Zf , 0) and {zf , ?^.) = ("/ , for every A,.

e) Add (zq, X) = (zy , X).

5) Form the length-predicting grammars Â,- for each non-terminal A, which is in

the deletion cycle of G or is a leading non-terminal in the deletion cycle. Con

vert each Ài to general sequential machine M; as follows;

a) Convert A, to a finite automaton À .

b) Give Mi the same state set, alphabet and start state as Â .

c) If À has a rule { q , I) = p for states q and p , put a corresponding rule

(q ,0) = (p , \) in the mapping of M,-.

dl Add a rule) = (^,) for each state q of M , and each terminal of

t h e f o r m t c i n t h e t e r m i n a l s e t o f I m a p { G , A , D) .

6) Combine the machines M; to form a gsm Mq which will operate on strings of

Imap (G , .4 , Z)) or tmap (G, ,4 , Z)). The input alphabet is the alphabet of

Imap , and the output alphabet is a subset of the input alphabet without

85

for Ai which are leading non-lerniinals in the deletion cycle. The start state

and final state is a new state q^. The mapping rules are as follows:

a) Add a rule {q^,) = (mg , k) for each and 77 îo^ such that .4, is a lead

ing non-terminal of the deletion cycle and m q . is the start state of M,.

b) Add a rule { q q ,) = (^o-) for each A ^ which is in the deletion cycle.

c) Add a rule { q q , t j ^ ,) - { q Q ,) and { q q , S j ^ ^) = { . q q , s ^) i o r each A^.

d) Add a rule (çq . 0) = (?0' 0)-

e) Add a rule (m^., X) = (çc for each my which is a final state of Mj.

7) Construct another gsm P from the machines Mj such that non-terminal A , is

in the deletion cycle of G. P will operate on the output of Mq. The input

alphabet is the same as the output alphabet of Mq. The output alphabet is the

input alphabet with any terminals of the form . The start state and final

state is p q. The mapping rules are as follows:

a) Add a rule { p o, I a .) = Cm q, ,)*.) for and m q, such that Aj is in the dele

tion cycle of G.

b) Add a rule (m, , A.) = (po, X.) for each rrif ^ which is a final state of Mj.

c) Add rules (po, 0) = (po. 0), (po, = (po- and {po, = ipo, s^.)

for each A , .

DEFINITION 4-56. Let G be a cyclic 2DNF grammar < 1 , E , N , R , S > 2 with

a consistent deletion cycle which contains non-terminals A and D. Then

aXjj is an inversion map P (.Mq[Z {imap [G , A , D)))) and ^ is an

inversion map P(M(,(Z (.imap {G , A ,D)))) where Imap , tmap , P. Z , and

Mq are defined by the construction steps above. '

A grammar Imap IC .A .D) or i m a p (G . A , D) generates a regular sel which

contains strings of zeros and terminals of the form sj .Ij and tc . corresponding to

non-terminals J and C of G. Each string in the set corresponds to some forest

derived from G. There is a zero in a string for each symbol that will be deleted by

the deletion cycle during the frontier operation on the forest to which the string

corresponds. Each string starts with a terminal Sj representing the initial

undeleted subforest derived from J. There is also a terminal Z/ for each subfcrest

derived from non-terminal J which will be completely deleted by the deletion

cycle. For each subforest derived from trailer non-terminal C which will be

attached to the end of the yield during the frontier operation, the Imap (or îmap)

string has a terminal îc• The grammar tmap {C , A ,D) differs from

Imap {G , A ,D) in that its strings correspond to forests in which subforest derived

from trailing non-terminals will be deleted during the frontier operation. In

forests which have corresponding Imap strings, no trailers are deleted by the dele

tion cycle.

The general sequential machines Z , M q , and P remove the I j terminals from

strings of Imap and îmap. Z has the effect of moving the last Ij in the string to

t h e f r o n t a n d r e n a m i n g i t S j . M q s i m u l a t e s e m b e d d e d d e l e t i o n . E a c h t i m e M q

encounters a terminal Ij in its input string where 7 is a leading non-terminal in

the deletion cycle, control is transferred to a submachine which reads a number of

zeros corresponding to the length of some word yielded by J. As the zeros are

read, no output is produced. This simulates the deletion of subforests derived

from leading non-terminals in the cycle. Given the restriction that the deletion

cycles are consistent, this simulation can be accomplished by a gsm. Without the

consistency requirement, a stack transducer would be required.

The machine P is similar to M q , except that it operates only on terminals Zjg

where B is in the deletion cycle. There are no such terminals in Imap strings, and

there is at most on such terminal at the beginning of îmap strings. P, therefore,

has no effect on Imap strings. Operating on tmap strings, P simulates the deletion

of an arbitrarily large subfcrest containing both leaders and trailers. A gsm suc

cessfully achieves this simulation since it happens only once in the string, and since

all other terminals Ij have been removed by Mq before P is applied.

Note that Imap and tmap are regular grammars, and regular sets are closed

under gsm mappings, so and ^ are also regular sets. An inversion opera

tion will be defined later to complete the deletion and move the terminals Tq to

their proper locations. The next lemma establishes the relationship between the

reduced Imap strings and the strings yielded from forest grammar G.

DEFINITION 4-57. Let /zj be a homomorphism on a set of strings such that

/ !] (1) = 1 , f t i (0) = 0 , a n d f t i (a) = \ f o r a a n d a # 0 .

DEFINITION 4-58. Let ft 2 be a homomorphism on a set of strings such that

f t 2 (1) = f t 2 (0) = A . , a n d f t 2 (0) = a f o r a # 1 a n d a ^ 0 .

LEMMA 4-59. Let G be a cyclic 2DNF grammar < I . , = , N , R , S > 2 which con

tains a consistent deletion cycle. Suppose non-terminals A and E are in the

cycle, non-terminals I , B , C are outside the cycle, and R has a

rule D^T. Then 4 contains such lhal ft) = 0'^ and ft) =

88

Sj • if and only if .4 =?>* (i . T =?>* yQ. 7 =?>* r i . C j = ^ * y . for

1 ^ ; < r , a n d s f /-(a) = s f r i - n) • I . " \ s f r (yo) -Zf°\s/r(y])\..

\ s/r (y^) where ls/r(Ti)l = z and.x^-' is the external selector of yj for

0 ^ j 4 r

PROOF. The lemma is established by proving propositions (A) and (B) below.

(A) If A =>• a, T =^* yo, .. . , then 4 .Y^ has w such that h jCw) = and

f t j b v) = S j

Proof of (A) by induction on the number of derivation steps for a using non

terminals in the cycle.

Base. A =$>* Q; using one step for A.

It must be the case that A = D , and a is derived with A =>T =$>* yq.

Lmap (G , A , A) has a rule A ^ X.. Z, Mq, and P produce k on input k. So

A X a h a s w = k , h i (w) = k a n d h) = X . s / r (o f) = s f r (y o) =

E°\s/r(yo), which satisfies (A) when d = 0 and Sj and are not present.

Inductive hypothesis. Assume (A) is true when fewer than n steps involving cycle

non-terminals are used to derive a.

Inductive step. Show (A) is true when a is derived using n steps involving cycle

non-terminals.

Case 1. The derivation of a begins with A ^ #[2£][i Q] where E is in the dele

tion cycle, but Q is not. We are given that A =^* a, / =>* 7}, T =i>* yo,

C , y , , a n d s f r { a) = s f r { . T i) • 1 ' ^ \ s f r (y o) • l f ^ \ s f r { y i) • . . .

• 1^' ' \ sf r (y^). Since a = #[3)3][i y^] where £ =?>* jS and Q =>* y^, it fol-

lows that s/rCj3) = s f r i v) - \ s f r (y^) • l''"\.s/r(yi)

s f r(yr_i). The Inductive hypothesis can be applied to establish that g A'g

contains v such that /?](u-) = 0'^ and A ^ — ^'7 ' ̂ c, '• • • The string

u- is a gsm mapping of a word from ! m a p (G , E , D) . From construction step

2a, Imup [G , A ,D) has a rule A-^E and so av • must be in But

h i(w • t c) = h i (w) = d and h zlw • t c ^) = S j • • • ' » s o (A) i s s a t i s f i e d .

Case 2. The derivation of a begins with /I -» #[?/][] E], where E is in the cycle

but 1 is not. In this case, a = #[2 t)][i j3] where 1 =^* v and E =$>* /3. "We

are given that sfria) = s/r [t))- \ sf r (yo) • Z^°\sfriyi)-...

•Z'''"^\sfr{yr), r =i>* yo, C; =^* Yy, and ls/r(n)l = Î. The non

terminals T and Cj are descendents of E in the derivation of j3. The forest /?

may contain a leading subforest t)' which is entirely deleted during the frontier

operation. In that case, sfr (3) = sfr (7]') • \ sfr (yg) • " \ s/r (yj) •...

• \ s/r (y^), where Is/rC-n')! = i' and t?' =d + i' — m forjc*" the exter

n a l s e l e c t o r o f t) . I f j S d o e s n o t c o n t a i n a l e a d i n g t) ' , t h e n i ' = 0 a n d s f r { n ')

will not be present in sfr- (j3). The inductive hypothesis can be applied to

e s t a b l i s h t h a t p r o d u c e s w ' s u c h t h a t h , C w ') = 0 * ^ a n d h i l w ') =

s J • J . v' is a gsm mapping on a string v' in Imap (G ,E,D) derived

E =^* B - CF • I j - t c j ' =>* v' for j or E • (F -Zy =>* v'.

By construction step 2b, I m a p { G , A , D) has a rule A E - Ç T - I j , and

A =^* B -Ij • • ... • * 0*" -Ij or B • (F • / ; • 0'" • /;. When machine Z is

applied to this string to get w , Z;, not Z; , will be moved to the front to

90

become Sj. When A7q scans Ihc string, I j will trigger the removal of i ' zeros

from the string. Also, the string has m more zeros than does. So/?]Cm') =

/z i(w') • 0'""' = +m-: = - ... - , and (A) is

satisfied.

CB) If ^ Xj) prodtices w such that h](v) = 0*^ and h iCw) = Sj •tc^\..-îc^, then

A = > * a , . . . , a n d s f r { a) = s f r i r)) - \ s f r i y Q) -

\s/rCyr).

Proof of (B) by induction on the number of steps in the derivation of v in the

grammar Imap [G , A ,D) such that ^ contains w .

The proof of (B) is similar to the proof of (A). QED.

LEMMA 4-60. Let G be a cyclic 2DNF grammar ,R ,S >2 which con

tains a consistent deletion cycle. Suppose non-terminals A , D , and E are in

the cycle, non-terminals B , Ci, C2, • • • ,C^ are outside the cycle, I e N, and

R has a rule £-> #[2 -D][i T]. Then contains w such that h jCiv) = 0*^

a n d h z C w) = S j t c ^ i f a n d o n l y i f A = > * 0 , T = > * y o , I V ,

Cj =$>* yj for 1< j , and s f r i a) = s f r i r i ') - \ s f / (yo)'

s/r (yj) \ s/r (y^) where \ s f r { 7)) \ = i and x"'is the external

selector of yy for 0^; ̂ r.

PROOF. This is the same as the previous lemma except that tmap is used instead

of Imap. The two propositions involved can be proven by induction on the

number of steps using cycle non-terminals which precede the application of the

rule E#[2 -D][i 3"] in the derivation of ct. The proof is very similar to that of

91

the previous lemma, and it is nol shown here. QED.

A context-free grammar G; and an inversion map 4 A"^ or ^ Yp representing

an inversion map can be combined to form a new context-free grammar K. The

rules of Gy and ^ A'^, are examined simultaneously to create rules for K. Termi

nals in rules of Gj which match zeros in rules of are eliminated. Also,

o c c u r r e n c e s o f t e r m i n a l s i n r u l e s o f a r e m o v e d t o t h e e n d s o f r u l e s i n K .

The grammar K is called the inversion of Gj and ^ A'g . As K is built, three kinds

of non-terminals are used; the single non-terminals of Gj called singlets, symbols

taken from Nq x Nx called doublets, and symbols from x Nx x called

triplets. The singlets will generate substrings of words in L (Gj-) which have not

been subjected to deletion. The doublets will generate partially deleted words of

L (Gj). The triplets generate strings of terminals which represent the complete

deletion of a word from L (Gy). The inversion process is described in the steps

below. The steps are carried out in the context of a 2-d forest grammar G from

which Gt and ^ X^, are constructed.

1) Modify the context-free grammar G j = < N g , I q , R q , I -g > s o that eveiy rule

has the form W —*a ,W —*a -1], or W —^a -U - V for W, , V e Nq and

a e Z c -

2) Write a regular grammar < N x , Ix. ̂ x - > for ^ A'^.

3) Form a set of rules x o u t { ^ X ^ , G t) , whose non-terminals are triplets as

s p e c i f i e d b e l o w . A s s u m e A , B , D , E , a n d J € N x , T , U , V , a n d W e N Q , #

and % represent any non-terminal in A ^ , tç and Sj e Ix, a e Eg . and 3 is any

92

right hand side in a rule of R q .

If /?x has and has put in xout (^ X 'd , Gy)

a } B ^ i c - E \ V - » j 3

b) 5 — > 0 - £ W — » a

W B # - ^ t ç - W E #

WBE-*k

c) B-»0 E W - » a - U WB#^UE4f:

d) B - y Q - E W —*a 'U • V W B # - ^ U E % - W % ^

4) Form a set of rules tail according to the steps below. Assume A ,B ,

D, E are non-terminals in and ^ 2%.

a) If /?x has B - * t c ' E , add Q B D - » ?c " OED.

b) If Rx has B — * î c • D , add Q B D î q .

5) Form a context-free grammar K = <Niç R^, Sf:>= invert (^ , Cy).

Ejc will contain Zg and the terminals from will contain singlets,

d o u b l e t s , a n d t r i p l e t s f r o m N q a n d N x • P u t x o u t i a n d t a i l ^ a X j))

in K as rules for the triplets. Rules for singlets are the same as in Gy, and

rules for the doublets are added according to the chart below. Assume that

T, U, V, W e Nq , a (Zq , 0, tf;- € Zx ' and A , B, D, E e Nx • The symbol # is

a wildcard representing any non-terminal in Nx, and p represents any right-

hand side in Rq . Also assume that a code table associates with each doublet a

distinct integer greater than zero. The doublet MJ^ is a wildcard doublet

which represents every doublet whose code is i such that i = codeiWB).

If Rq has and Rx has add to invert (^ Xjy, Gj)

a) W - ^ p B ? (W B o-> W • M J i • tc

93

b) W - > p B - ^ t ç • E W B , M J . ^ • ? (•

c) W - , a B - > 0

d) W-^c7 •L" 5-.0 W B o - ^ U - M J i

e) W - » a • i ' • V W B o - ^ U - V - M J i

f) \V-»a • E W B o - - > M J i - Q E D

g) W -» Û • U • E W B j —* M J i for y = code { U E)

h) W — > a • u • V B-»0 • E W B j — * V ' M J i for ; = code { U E)

i) W - * a • U • y 5->0 • E W B j M J i • U E # for j = code (V#)

j) If there is a rule W B j - > Oj • M J i • o i where W = T and Rx has A - ^ S j • B ,

then add a rule WB02.

k) Add Sjç-^îj • WEq for every doublet with subscript 0. Also, add

5^ —> ?/ • TBD where Rx has A-* sj • B.

DEFINITION 4-61. Let G be a 2DNF grammar which has a consistent deletion

cycle with non-terminals A and D. Suppose also that ^ (or) is

an inversion map formed from G , and G has a non-terminal T whose

yield can be generated by a context-free grammar Gy. Then

xout { Xq , Gj) is a regular grammar formed by construction step 3

above, tail (A'^,) is a regular grammar formed by step 4 above, and

mverr (^ A'g , Gy-) is a context-free grammar formed by all the steps above.

LEMMA 4-62. Suppose .V^, (or 4 fg) is a regular inversion map and Gy is a

context-free grammar, xout (^ X^ ,Gj) = X has a non-terminal WBE such

that WBE =i>* •... • Tc, if and only if Gy has non-terminal W such that

W =>* (8, ^ Xj) has B such that B r • 0 •£ for r in I_v* , A - 0) = 0''.

2C2) = î'c 1 • • • • • • and I j31 = d.

94

PROOF. The lemma is established by proving propositions (Al and (B) below.

(A) If Gj has W such that then .V has WBE such thai WBE^ re, ' • • • " ?c, •

Proof of (A) by induction on 1 r I.

Base. IJ I = 0.

In this case, has a rule B—*0-E,d = I, h2iz) = k. Since d = I, /3 = a

and G J- has W -> a. By construction step 3b, .Y has WBE —> X..

Inductive hypothesis. Assume (A) is true for 0^ Ir I

Inductive step. Show (A) is true for I z I = n.

Case 1. z =?Ci*z' where 7 =>* z' .

^Xd hss B ̂ tc^- J , B =?>* ^c, ••2' • 0-£, and Gj- has W =$>* jS. Also,

h liz ' * 0) = ft i(z • 0) and h 2(2') = tc^' • • - The inductive hypothesis can

be applied to establish that xout i ̂ X^yG^) contains WJE such that

WJE =5>* tc^- . . . - tc,- Step 3a adds WBE^ tc^ • WJE to A'. So WBE

tc^-WJE=^* fc," --.'/c,-

Case 2. z = 0- z' where J =5>* z' and p = a • jS'.

xoz/r (yj Z/), Gj") has 5 —»0 • y and 5 0-z'-0-£. ft i(r' • 0) = £? — 1, and

ft 2(2') = ft 2(2) = • Also, there is a rule in Gj W -* a - U where

[/ =>* j8'. The inductive hypothesis can be applied to establish that

XOUÎ (4 A'o , G J) contains UJE such that UJE =>* - Step 3c adds

WBE-»UJE to X , so WBE => UJE =>* fc." -

Case 3. z = 0 • z j • 22 where J =5>* T], F =^* Tt, and)3 = a - - jSi.

A'd has 5->0-7,7=?>*2i -F. and f"=^*22-0-£. ft](,Ji) = J = I 1,

h] { z 2) = d = l i S i l - a n d J = l + J j + J , - A l s o . / î i C T]) =

h 2(^2) = fc^., • • • • • > and Gj has \V-» a • II • V where U /Sj and

V =^* 1^2- The inductive hypothesis can be applied to establish that

xout (/\ A'2), Gy) has UJF such that L'JF =?>* j ' • • • " • ^nd VFE such

that VFE =>* tcj^j • • • • • • Step 3d adds the rule WBE-» UJF • VFE. So

W B E ̂ U J F - V F E f c , " . - f C j = f c /

(B) If X has a non-terminal WBE such that WBE =#>* fc," - = r, then Gy

has non-terminal W such that W =$>* a^d hasB such that B =5>* z • 0• £ for

z in Zx* , /! i lz • 0) = O' ' , /Z2CZ) = rci ' • • • "^Cr» and 1)31 = d.

Proof of (B) by induction on the number of steps in the derivation of T .

Base. WBE derives r in one step.

T must be X, and X has WBE =$>* X.. This means that ^Xq has 5 -» 0 •£

and G J has W-»a. h jCO) = d and h 2(0) = X, so (B) is satisfied.

Inductive hypothesis. Assume CB) is true when WBE =^* r in less than n steps.

Inductive step. Show (B) is true when WBE =4>* r in n steps.

Case 1. WBE =>* r .

Construction step 3a was applied in this case, so ^Xj^ has B-^ îq^- J and Gj

has W such that W =5>* j3. The inductive hypothesis can be applied with

W J E = > * t o e s t a b l i s h t h a t ^ X ^ h a s J = > * - O - E ,

h]Cz' • 0) = c?, /2 2(z') = Tc/ - • and I jSl = i. So 5 =$>*

• r' • 0•£ = z • (j•£•, ft i(z • 0) = ii . and h^{z) = • h •,(:') = • ...-tc •

Case 2. WBE ^UJE =4>* r.

96

Construction step 3c was applied to get WBE —» L'JK. So .Y^ has B —» 0 - V

and Gj has W—>a -U. The inductive hypothesis can be applied to establish

that ^ X'd has J =>* z' - O- E, h i(r' • 0) = li — \ , h](:') = r. and U =>* 3'

where I j3' I = d — 1. So W =5>* a • fi' = ^, \ fil = d . B =S>* 0 • r' • 0 •£ —

2 • 0 • £ , / î 1 (2 • 0) = c ? , a n d h j i z) = t .

Case 3. WBE ^UJF-VFE =^* tr "'c ~ L. 1 J

Construction step 3d was applied to get WBE UJF • VEE. So ^ Xq has

B-^Q- J and Gj has W-* a - U - V. The inductive hypothesis can be applied

t w i c e t o e s t a b l i s h t h a t j s ^ X j) h a s / = $ > * Z j - 0 - F a n d F z j ' Q ' E ,

h l izI 'O) = d i h i iz2-0) = d2, h 2(2 j) = 7^^ •. . . • , / j 2(2 ?) = ̂ Cj^i ' • • • ' •

U =>* jSj, V =^* ^2, Ii3i I = d 1, and \^2^ =d 2- SoW ^ a -U - V =>*

a - / 3 i - / 3 2 = 3 . 1 / 3 1 = = 0 - 7 = $ > * Q - z - ^ - Q - Z 2 - ^ - E =

z • 0 • £, /2 i(z • 0) = 1+ c? 1+ c? 2> and AzCz) = - ... - = r. QED.

LEMMA 4-63. Let ^ (or) be a regular inversion map. The set of rules

tail { has OBD such that OBD =5>* •... • if and only if ^ Xj) has

B such that B •... • where 5 is a descendent of A.

PROOF. The theorem is proven by a simple induction on r, which corresponds to

the number of steps in the derivation of - ... - r^. The induction is not shown

here. QED.

LEMMA 4-64. Let G be a 2DNF grammar < Z , £ , N , R , S > 2 which has a con

sistent deletion cycle containing non-terminals A and D. Suppose that 4 A'g

97

is an inversion map for the deletion cycle and 7 is a non-terminal outside the

deletion cycle whose yield is generated by context-free grammar Gj. 4

has non-terminal B such that B =^* m- , h](-u') = 0"^ , A) = ̂ c, ' • • • ' •

and G J has a non-terminal W such that W)3, 1 j3l , if and only if

inverl (^ Xj), Gj) has a non-terminal YFq such that YFq =>* \ j3 - MJ, •

^Ci • • • • • for every doublet M/j where i = code (WB) and YFo=^*

\ 3 • rcj • ... • when W = T and ^X^, has a rule A -» Sj -B.

PROOF. The lemma is established by proving the propositions (A) and (B) below.

The proofs are written for the general case in which W or A does not derive

sj • B. The proofs of the special cases involving start symbols are the same as

below except that MJi should be removed from the sentential forms. Construc

tion step 5j adds terminating rules without MJi for start symbols T and B.

(A) If aXd has B such that B =?>* w ,h jCw) = 0"^, ft 2(:t') = ?Ci " • • • "> aod

Gy has W such that W =5>* i3, 1/31 , then mver? (^ , Gj) = Â' has KF0

such that YFQ =#>* \)3 • M/, • ' • • • ' for every MJ^ where i = code (W5) .

Proof of (A) by induction on I w I.

Base, lu- I = 1.

Case 1. 11" = Tc.

In this case, d = 0 and h 2(m ') = ?c • 0. 1 /31 > 0, and ^ X^ has a rule

B^Tc . Step 5a of the construction adds to K a rule WB o-> W • MJi • îq

w h e r e 2 = c o i i e (W 5) . S o W ' B Q ^ W - M J I - r e ^ - M J i - t c =

%

Case 2. V = 0.

We have d •= \ , h) = A., W =ï>* /3, 1 /BI > 1, and a rule 50 in a^d- If

j3 = J then Gj has W, and step 5c puts \VBo-+ M/j in K, where

i = codc iWB) . So WB o=> À - M J. = l ' \ a • MJ^ = \ /3 • MJ^.

If j3 = (J -3' where U =^* i3', then Gy has W —>a - U, and step 5d adds

rule WB o-> U • MJ,, i = code {WB). So WB U • MJ^ =S> * /3' • MJi =

If 3 = a • /3i * 02 where =>* jSj, and V =>* jB;, then Gj has

W —»a -U - V, and step 5e adds rule WB q—> U - V • MJ^, i = co(ie{WB). So

W5o^ -V-MJi /3i-|82-M/i

Inductive hypothesis. Assume (A) is true for Iw I <n.

Inductive step. Show (A) is true for i w 1 = n.

Case 1. w = ?c, •

In this case, h jCu-') = h) = 0"^, /j 2^"^') = ' • • • ' has

B — i t c , ' E where £ =$>* V , and Gy has W =>* jS. The inductive hypothesis

establishes that invert (^ X^,, Gj) = K has YFQ such that YFQ=^*

\ (3 • MJj • tc^ - • • • • t c , where j = code {WE). Step 5b adds a rule

WBj-^MJi where z — code{WB). \ l i-WBj -tc^'

. . . - T c , = > \ g - M J , • i c ^ -

Case 2. w = 0 • v' and /3 = a.

In this case, ^ A'^, has B - * 0 - E and E =>* u-'. h](w) = 1, A) = ^r, '

.. .-îç, and Gj has W —^a. Since \^\^d ,d must be 1, and w' has no zeros.

So h 2W) = 11-' = •... • ?Cr- Step 5c adds a rule W'B o-> A77, • OED where

i = code {\\'B). Step 4 of the construction added tail (,4 A'g) to K, and

lemma 4-63 establishes that OED in tail (̂ A'g) derives So

WBq=^ MJi • OED =>* MJi • • • • • • \ /3-M/j • ^ • . . . •

Case 3. m' = 0 • v' and /3 = a • ;3'.

has 5->0•£ and E =>* V , h jCu-) = O''"'- /! 2(w') = ?Ci ' and

G7 has W-»a -U where t/ =>* 3'-and I jS'l — 1. The inductive hypothesis

establishes that invert Gy) = A" has Yf 0 such that YFq^* Z''"' \ /3 •

W5 j • tc^ - • •••tc^ where j = code iUE). Step 5g adds a rule WE j MJi

where i = code iWB) . So YFq =?>* • WBj - - . . . - =>

Case 4. w = 0• w 1 • -vv2, 13 = a • jSj • 32. and Igl >ii > 1+ 13i I.

a X j) has B — * 0 - E , E =4>* u- j -^2, A/ is a descendent of E such that

H =5>* W2, /! iCu'i) = = tc^ - . . .- tc^, à l iwi) = h 2(^2) =

.-tc^, d 1= 13] I, ^2^ I ^21, = !•¥ d d 2, and Gy has W -»

a - U -V where U =>* 3i and V 3?- In this case, 3i is completely

deleted, and 3? is at least partially deleted. The inductive hypothesis estab

lishes that ijivert (4 Xq ,Gj) = K has YFq such that YFq=^*

\ 32 • WBy • ?C;,+i • • • • • ^c, where j = code {VH). Step 5i adds a rule

WBj—* MJi • UEH where i = code {\VB). Step 3 of the construction adds the

rules xout , Cy) to K. The value of d, must be at least 1, so it is true

that £ =^* u' 1 - H = z • 0 •/-/ . /?](z • 0) = 0''', and /? 2(^) = ?c, " • • • " We

100

can apply lemma 4-62 lo establish that IJEH =>* •... • . So ITq =$>*

\ ̂ 2. . Zc,., -... ' Zr, Z"' \ jGz - -... -

Z'^'Xigz-My, 'grg2-Myrrc,'...-rr, =

\ ^ - M J i Tc, ... fc/

Case 5. w = 0 • V and /3 = a • ^2< and 1+ 13i i ^<^ > !•

^ Xd has 5 ->0 •£ and E =>* w', h](-\v) = h 2(v') = fc, ' • • • . and

G J has W -*a • U - V where U =^* jSj and y =$>* jS,- In this case, part or all

of is deleted, but none of ^2 is deleted. The hypothesis establishes that

inverti j^Xd,Gt) = K has VF 0 such that IT 0=^* - Zc, '

where j = code iUE). Step 5h adds a rule WBj-* V • MJ^ where

i = codeiWB). So YFq^* \ • V • • Tc, •... • ?c, =>*

(B) If i n v e r t { , C t) = K has Y F ̂ such that Y F (where (=

\^- MJi • tc^ - .. . - tç^ for ever): doublet M J where i = code iWB), then ^ A'^,

has B such that B =^* m- , h jC-vv) = 0"^, /? 2CW) = Tc, ' - - - ' ' and Gy has \V

such that W =?>* /3, \(i \ '^d.

Proof of (B) by induction on the number of doublet rule applications in the deriva

tion of

Base. FFo =>(in one step.

Case 1. ^ is derived with WBg W • MJi • tç =5>* g • MJ, • .

K contains such a rule (step 5a) only if 4 Xj^ has B-^tç and G7- has a rule

for W. So 5 =4>* = 0, h 2(^0) = • and W (3, satisfying (B).

There are similar eases for sleps 5c through 5f.

Inductive hypothesis. Assume (B) is true when YFo=^* ^ in less than n steps.

Inductive step. Show (B) is true when ITo=$>* (in n steps.

There are four cases which correspond to cases 1, 3, 4, and 5 in the inductive

step of the proof of (A). Only case 3 is shown here.

Case 3. YFq=^* \ jS • MJi • " • • • " - » V • MJ^ is the last doub

let rule applied, where i = code (W5) and j = code WE). This rule is added

by step 5h, so has 5 —>0 • £ and Gj has W-^a - U -V. If one less step

is taken in the derivation from YFq, we have YFq=^* \ /3i • WBj • îc, '

... " fQ where /3 = /3i • J32 such that V ^2- The inductive hypothesis can be

applied with this shorter derivation to get U =>* j3i, £ =$>* w', ft jCu-') = 0'^,

and h2(w') = ...-fQ. It is certainly true that \ /3 = I''\a • /3. So

we can write FFg =>* ^2'' ̂Ci'••Since t/=>* /îj,

V 02- and there is a rule W—» a • i7 • V, we have W =t>* a • jSj • jSi =

a • / j . Also, 5 =$>0 • £ =i>* 0 • u ' ' = v , h , and h 2(v.-) = ̂ Cj '

Thus, (B) is satisfied. QED.

LEMMA 4-65. Let G be a 2DNF grammar with a consistent deletion cycle for

which ^ is defined, and Gj is a contexl-frec grammar which generates the

yield oï T (. N. ^ Xj^ has non-terminal A such that A =$>* w , / i i(-vv) = 0'^ ,

h 2(w) = Sj 'tcj' and Gj- has non-1 erminal T such that 7 =?>* 3,

l / S l ^ d , if and only if inverr (^ Xf, . C j) has si art symbol such that

Sk =^* f; - Z'' \g' fc,"

102

PROOF. Step 5k of the const ruction of invcj't C .4 .Vg . G;) adds a rule -> ?; •

YFq for each doublet with a zero subscript. Lemma 4-64 lakes care of the rest.

QED.

THEOREM 4-66. Let G be a 2DNF grammar < Z , E , N , R , S > 2 such that all of

its deletion cycles are consistent. There is a grammar G' =

< I', H', N ' , R ' , S ' > 2 such that G' has no deletion cycles and i'oCG) = Y q CG').

PROOF. To construct G', set Z' = I, H' = H, and S' = S. For every subgrammar

Gc which has no deletion cycles, put the rtiles and non-terminals of Gc in G'. For

every G a where A is the root of a deletion cycle, follow these steps:

1) Find every rule in G^ of the form a) D - * T or b) #[2/)][i T] where J5

and D are in the deletion cycle, but T is not.

2) For each such rule, form context-free grammar Gj, regular grammar a) ^ A'g

or b) a^D' and context-free grammar a) Ki = invert { ^Xd >Gr) or b)

A' i = i n v e r t { , G j) , where i ranges from 1 to the number of rules of the

form a) or b).

3) Convert each A', to a 2DNF grammar A'%.

4) In the rules of every K'^, replace tc with non-terminal C. Replace occurrences

of non-terminal T in the right-hand sides of rules with #[? T][i] where

is the external selector of T.

5) For each i , add K 'i to G' along with a rule A where 5^-. is the start

symbol of K\.

The theorem is established in the proofs of propositions (A) and (B) below.

103

(A) If G has non-terminal A such thai a and sfr ia) = m- , then C has

A ' such that A ' =?>* a ' and s f / • (« ') = v.

This can be proven by induction on the length of the derivation of a. The

formal induction is not shown here, but its substance is summarized. If G^ has no

deletion cycles, then it is clear that a can be derived in G' using the same rules as

in G. But suppose A =>* a, sf r (a) = u', and A is the root of a deletion cycle!

Then sf ria) = sfriri) • 1'^ Vs/rCyo)* l''°\ s/r(yi) • .. .•Z^'"^\sf riy^), where

the first leading non-terminal in the cycle is I and J ri,d is the accumulated

deficit of the overlapping selectors, T =^* yq, trailer non-terminals Cj =$>* yj for

and x' ' ' is the external selector of yj . Lemmas 4-59, 4-60, and 4-65

establish that invert (A'g , Gy) = A', derives a string Sj \ s/r (yo) • tc^ '

Steps 3 and 4 of the construction turn A', into A", which derives a' =

#[2/][i #[2C2][i ...# [2 C,]...]]]] where

\ s f r i y o) . So s/r(a) = s/r(a).

(B) If G' has a non-terminal A' such that A' =?>* a' and sf r (a') = v , then G

has A such that A =>* a and sfr {a) = w.

The proof of (B) is similar to the proof of (A). QED.

COROLLARY 4-67. Let G be a 2DNF grammar <1., B,N ,R ,S >2 with con

sistent deletion cycles. There is a context-free grammar G' such that YolG) =

2(G').

PROOF. This follows from theorem 4-66 and theorem 4-23. QED.

104

The grammar ABC presented ai ihe beginning of this chapter is an example of

a 2-d grammar with a consistent deletion cycle. As a result of the previous corol

lary, the yield of ABC is a con text-free language.

0Y2F and the Subclass 0Y2F(.

Recall the language generated by grammar ABC. A derivation and subsequent

frontier operation generates a string a'6' for i ^0, and then deletes an arbitrary

number of characters from the front of the string while adding c's at the end.

Suppose a rule S ̂ #[2 #[% e [1 / [1 x]]][i S]][i d [j y]] were added to ABC to create

ABC. • Then the deleting steps could be intermixed with steps that add ef to the

front and d to the end of the string. The deletion cycle would no longer be con

sistent, and the methods above could not be used to convert ABC to a context-f ree

grammar. The modified deletion cycle contains mixed increasing and decreasing

steps, and a general sequential machine is not be adequate to create the inversion

map. This does not necessarily mean that the yield of ABC is not context-free. If

the pumping lemma for context-free languages is applied to arbitrary words of

YQ{ABC), we find that every word can be successfully pumped. It seems likely

that a method will be discovered for transforming inconsistent deletion cycles to

context-free subgrammars. The methods employed above are inadequate for this

purpose, and it remains an open question whether 0Y2F = context-free. We can,

however, define a large subclass of 0Y2F which is context-free.

105

DEFINITION 4-68. A language L belongs lo the class 0Y2Fc if and only if

L =)'o(G) and G is a 2-d forest grammar such that G has no deletion

cycles or every deletion cycle in G is consistent or regular.

THEOREM 4-69. L e 0V2F^ if and only if L is con text-free.

PROOF. Theorem 4-53 and corollary 4-67 establish that L € 0Y2F^ =^L is

context-free. Corollary 4-2 establishes that a context-free grammar can be con

verted to a yield-equivalent 2-d forest grammar. The 2-d grammar will contain

only standard selectors, and thus no deletion cycles at all. So L is context-free

implies L e OY2F(.. QED.

We conclude the analysis of 2-d forest grammars by showing that 0Y2F is a

proper subset of 0Y3F. First it is shown that a language known to be in 0Y3F is

not in 0Y2F.

LEMMA 4-70. The language L = }, n >0, is not in 0Y2F.

PROOF. Suppose L e 0Y2F. Then L = FolG) for some 2DNF grammar G =

<Z, E ,N ,R ,S >2 • If "vv t L, then u- = sf r (3) and 5 =$>* /3. Since L is an

infinite language, there must be a increasing cycle in G. Let jS, be a forest gen

e r a t e d f r o m i a p p l i c a t i o n s o f a n i n c r e a s i n g c y c l e s t e p , a n d l e t = s f r (/ 3 j) . L

contans a string for ever)' value of i ^0. Regarding the difference in size of (3,-

and we have 1 I — I3i I = c , where c is a constant which can be deter

mined by examining the rules of the grammar. Observe that if ^ is a 2-d forest,

then I /rjCiS) I 4 13 L The 1-d frontier operation can only decrease the number of

nodes in a forest. Since /S; is a subforest of + it follows that I Vj+j I ^

106

IM-; I + c. There are also j3, and +2 such that I ^ +1 I + c- But now

we have a contradiction. If the difference in size between any three consecutive

words in L is a constant, L # }. QED.

COROLLARY 4-7 L 0Y2F is a proper subset of 0Y3F.

PROOF. If L is in 0Y2F, then it is the yield of some 2-d grammar G . This gram

mar can be converted to a 3-d grammar G' with the same string yield by adding

S' #[3 #[2 5']] and all the rules of G to G', where S' is the start symbol of G'

and S is the start symbol of G. So 0Y2F is a subset of 0Y3F. Theorem 79 of

Baldwin's thesis shows that the language), n > 0, is in ALG3. Theorem 4-1

earlier in this chapter establishes that ALG 3 Ç 1Y3F, so it must be true that

{a '"} e 0Y3F. So every language in 0Y2F is in 0Y3F, but 0Y3F has a language

that is not in 0Y2F (lemma 4-70). QED.

In summary, 0Y2Fc is a subset of 0Y2F and is equivalent to the class of

context-free languages. All 2-d forest grammars which do not contain deletion

cycles yield languages in 0Y2F(-. Many grammars which do have deletion cycles

have also been shown to yield 0Y2Fc languages, provided the deletion cycles are

regular or consistent. While 0Y2F may contain non-context-free languages, it is

still much smaller than 0Y3F, the next class of string languages in the forest-yield

hierarchy.

107

CHAPTER 5.

THREE-DIMENSIONAL FOREST YIELD LANGUAGES

The frontier operation on a 2-dimensional forest is the concatenation of the

strings which are the frontiers of its subforests. When two strings are con

catenated, there is no confiision about where to join them: the second string is

attached to the end of the first. The frontier operation on a 3-d forest is a concate

nation of the trees which are the yields of subforests. Again, the concatenation of

two trees can be described as attaching the second tree to the end of the first. But

that description is not complete, since the first tree may have several ends, or

leaves. The selectors in a forest indicate where concatenation will occur and what

subtrees will be attached. Two or more selectors may demand the same subtree,

and in that case multiple copies of the subtree are attached. This gives 3-d forest

grammars a copying power that 2-d forest grammars do not have.

Examples of 3-d Forest Grammars

A 3-d forest grammar can be written which yields the language {a^"}, n ^0.

This grammar, called A2N, will illustrate the copying power of the frontier opera

tion. As shown here, the grammar has only one non-terminal, A e N 2- The selec

tor set is H = {y , r }, where y represents <2, X> and r is <1, X.>. The terminal

set is r = {#, a }, and the rules are the following:

1) ^->#[3 #[2y[i y]]][2^]. and

2) A — > # [2 < 2 [] Î]] .

108

4^— 3 2
1 I
^— 2 — 3 2

I I I
y— 1 4t- 2 ^ 2

I I I
y y— 1 a— 1

I I
y z

derived 3-d forest

#-—2

I
#-—2 1

I I
^—2 1 ^—2

I I I
a—1 ^—2 ^—2 1

I I I I
z a—1 a— 1 ^—2

I I I
z z a—1

I
z

2-d frontier

a — 1

I
a—1

I
a — 1

I
a — 1

1

z
1-d frontier

FIGURE 5. 3-d forest and yields produced by A2N

109

Figure 5 contains a 3-d forest produced by A2N and its 2-d and 1-d frontiers. A

derived forest yields the string , where n is the number of times rule 1 is

applied in the derivation. The derivation sequence for the forest in figure 5 is

1 1 2.

The grammar A2N has only X-paths on its selectors, so the selectors are stan

dard. The use of extended selectors in 3-d forest grammars does not affect the

copying power of the frontier operation, but is does increase flexibility in specify

ing what subtrees will be copied, and it also introduces deletion cycles. This

enhanced deletion power makes it possible for the frontier operation on 3-d forests

to simulate list-processing operations such as the selection of an arbitrary element

from a list or the division of a list into disjoint sublists. The forest

#[% #[% • • • *[2 * * •]]]] can be used to represent a list

of k elements, through e*. The forest is structured so that a selector can

extract a single element or a sublist with one or more of the leftmost elements

deleted. For example, the selector <2,22> extracts element Cj, and the selector

<2,21 > extracts the rest of the list. The creation of forests which represent lists

is illustrated by the 2-d grammar BLIST. The terminal set is I = {#, è} and the

selector set is H = {z }, where z = <1,X>. There is only one non-terminal,

B € N 2- The rules are as follows;

1) #[2 #[26 [j zKi 5]], and

2) 5-.#[2#[2^[iZ]]].

no

- - - 2

I
4^ 2 1

I I

b 1 4P 2
I I

z 4P 2 1
I I
b—1 ^—2

I I
z # - - - 2

I

b—1
I
z

FIGURE 6. 2-d tree produced by BLIST

Figure 6 contains a 2-d forest produced by BLIST with the derivation sequence

112. The forest represents a list of three b's.

Another example grammar, MERGE, illustrates the list-processing power of

3-d forest grammars. MERGE will have two 2-d subgrammars, ALIST and BLIST,

which generate lists of a's and b's. The frontier operation on a forest produced by

MERGE will have the effect of merging two lists into a single list of mixed a's and

b's. The terminal set is I = {#, a , ô }, and the selector set is E = {72 . o , />, g,

I ,u z\. where n = <2, 211>, 0 = <2, 212>, p = <2, 2121 >, q = <2, 22 >,

I = <2,221>,u =<2,21>,v = <2,2>, and z = <1,\>. The non-terminals

are N 2 = \S, M, P, 0 , B, A\, where 5 is the start symbol. The rules are as

f ollows:

I l l

I I

- 2 # - 3 - - - 2

I I I

u - 1 # - 2 # - 3 - - - 2

I I I I

- 2 v - 1 # - 2 # - 2

I I I I

v-i p—1 t—1 ^—2 1

#-2 u-1 #-2---l #-2
I I I I I
0 - 1 # - 2 a - 1 # - 2 # - 2 - — 1

I I I I I I
n q z #-2 b-1 #-2

I I I
a-1 z #-2

I 1

z b-1

FIGURE 7. 3-d tree produced by MERGE

1)S^#[3Q][2M],

2) Q — > # [2 u [1 # [2 [1 n]]]] ,

3)Q_>#[2v [i #[2u[in]]]],

4)

5) M - . # [3 V] [2 # [2 A [I 5]]] ,

6) P—> #[2 r [j u [j ? I-i

7) P^#[2v[i /j[i #[2o[i n]]]]] ,

8) V — > # [2 7 [j u [j # [2 ^]]]] ,

9) \ — > # [2 V [j p [j # [2 0]]]] ,

112

11)5-#[,#[2^[i -]]] ,

12) ,4 -> #[2 z]][i A]], and

13) A-»#[2#[2a[ir]]].

- - - 2

I
^— 2 — 1

I I
_ _ _ 2 # - - - 2

I I
b — 1 ^— 2 1

I I I
z ^—2 #—2

I I
a — 1 ^— 2 1

I I I
z b 1 2

I I
z #—2

I
a—1

I
z

2-d frontier

b---l
1

a — 1

I
b— I

I
a — 1

I
z

1-d frontier

FIGURE 8. Frontiers of the tree in figure 7

113

Rules 10 and 11 conslilulc ihi- subgrainmar BUST, and rules 12 and 13 form

a similar subgramrnar ALIST. Non-terminal M generates the list-processing cycle.

The cycle is designed so that an intermediate 2-d tree of the form lisi [j

b list [j mixed list]]] is maintained throughout the frontier operation. This struc

ture is initially set up by application of rule 5, the terminating cycle step. Each

application of rule 4 in the cycle corresponds to an operation on the intermediate

tree when the frontier is taken. Each such cycle step introduces a subtree derived

from P by rule 6 or 7. The subtree of rule 6 takes an a off the a -list and attaches

it to the front of the mixed list. The subtree of rule 7 takes a A off the A-list and

attaches it to the mixed list. The application of rule 1 corresponds to the final step

of the f rontier operation. This step attaches the remainder of the a -list and the

remainder of the b -list as the first two elements of the mixed list. Figure 7 con

tains a 3-d tree derived from 5, and figure 8 contains its 2-d and 1-d frontiers.

The derivation sequence for the tree in figure 7 is 1 2 4 7 5 8 10 11 12 13.

In list-processing applications, the need sometimes arises to turn a complex

list into a simple list. A complex list is one whose elements can themselves be

lists. The grammar A2N produces forests whose 2-d yields can be considered to

represent complex lists of a's. Figure 9 shows complex and simple list representa

tions with 2-d trees. A 3-d grammar SQUASH can be written which creates com

plex lists of a's as 2-d subtrees in its derived forests. The frontier operation then

transforms the complex lists into simple lists. SQUASH has terminal set I =

{#, (2} and selector sel S = {s, 1, u , v, w, x . y , z], where s = <2. 2221 >,

114

- - - 2

_ _ _ 2 1
I I
it 2 1 2

I I I
a — 1 ^— 2 ^— 2 1

I I I I
z a— 1 a — 1 ^—2

I I I
z z a—I

forest representing a complex list

- - - 2

I
—2 • -1

I I
a — 1 — 2

I I
z ^—2 1

I I
a—1 ^— 2

I I
z ^— 2 1

I I
a — 1 — 2

I I
- - - 2

I
a — 1

forest representing a simple list

FIGURE 9. Tree representations of lists

/ = <2.221>, u = <2,21>, V = <2,2>, w = <2,22>, = <2.222>,

y = <2, A.>, and 2 = <1, X>. The non-terminal set is = {i?, W ,T, A] with

115

Stan symbol R. The rules arc the following:

1)

2) R—» #[2 ZY #[2]]]][]],

3) r - > # [2 r [i # [2 v [i z y]]]] ,

4) T — > # [2 # [2 t l ^ 1 - 2 t l ']]]] [; Z /]] .

5) W - » # [3 # [2 v [i # [2 r [i Z i]]]]] [2 W] ,

6) W-^A,

7) A-» # [3 #[2y [1 y], and

8) A -» #[2a[i z]].

4^—3 2
I I
#--2 #--3 2

I I I
t — 1 —2 ^—3 2

I I I I
#-_2 t--l #--2 #--3 2

I I I I I
"w—1 ^—2 "u—1 #—2 ^—3 2

I I I I I I
u w— 1 Tr—2 Vv— 1 ^— 2 ^— 3 2

I I I I I I
u V #--2 y--l #--2 #--2

I I I I
t -1 y y— 1 5— 1

I I I
u y z

FIGURE 10. 3-d forest produced by SQUASH

116

Rules 7 and 8 constitute the subgrammar A2N. The non-terminal R generates

the list-processing cycle. Rule 2 is the terminating cycle step. An intermediate 2-d

tree of the form ^[20ld lisî new lisî]] is maintained throughout the cycle.

Each time rule 1 is applied in the cycle, a non-terminal T is introduced. T is

expanded by rule 3 or rule 4. Whenever a subtree produced by rule 3 is encoun

tered during the frentier operation, the first element of the old list is moved to the

front of the new list. Whenever a subtree produced by rule 4 is encountered, the

first element of the old list is split into two elements and the new list is

unchanged. If the first element of the old list is not itself a list in this situation, a

path error will occur. The non-terminal W generates a cycle which repeatedly

divides the first element of the old list into two pieces. When the first element is a

simple element, application of rule 2 makes this element the initial new list, and

the intermediate tree is in the proper form for application of the R cycle. Figure

10 contains a 3-d forest produced by SQUASH and figure 11 shows its 2-d fron

tier. The derivation sequence for the forest is 131325677 8. The old list is

partially or completely simplified during the frontier operation, but no a's are

added or deleted in the process. The resulting 2-d forest has the same number of

a ' s as the 2-d forest derived from non-terminal A.

The four example grammars just introduced can be composed to form a gram

mar which will help relate 0Y3F to other known classes of languages. The gram

mar BA2N might be described as MERGE (SQUASH (.A2N), BLIST). It yields the

subset of (a I Z) I"*" such that each string in the subset has 2" a's, n > 0, and an

117

- - - 2

I

I I
3—1 ^—2

I I
z #—2 1

I I
3 1 ^ 2

I I
z ^— 2 1

I I
3 1 ^ 2

I I
z #---2

I
3 1

1
Z

FIGURE 11. 2-d frontier of forest in figure 10

3rbitr3ry number of b's. The termin3l set of BA2N is I = {#, a, 6 }, and the

selector set is B = {n , o , p , q , s, t ,u ,v ,-w , x , y, z }, where the selectors are

defined as in the preceding examples. The non-terminal set is A^2 —

{S , M , P, Q , R r, y, W, A , B), with start symbol S. The rules are as follows:

1) 5-.#[3Q][2ML

2) #[2v[in]]]],

3) 0-» #[2 V[] #[,^[1 72]]]],

4) M-^#UP][2MI

5) A'7-^#[3V'][3#[,i?[i£]]],

6) P — > [i ? [] [] ^ [2 9 1 1]]]]] ,

118

7) P-^#[2v[ip[i #[20[i 71]]]]],

8) V—> #[2 ? [j u [] #[2 ?]]]].

9) V —> #[2 V [j p [j #[20]]]],

1 0) i ? ^ # [3 r] [2 / ?] ,

11) /? —» #[3 #[2 U [1 #[2 V]]]][2 W],

12)r->#[2r[i#[2w[i"]]]].

13) T#[2 ̂ [2Il ̂ [2[1 ̂ zz]],

14) W —» #[3 #[2 w [j #[2 Î [j u]]]]][2 3>

15) W-^A,

16) A —> #[3 #[2 y [] y]][2-A].

17)yi->#[2a[ir]],

18) 5-» #[2 ^ i i b i i z V k x B]], and

19)i5-»#[2#[2Ô[i2]]].

The yield of BA2N is a language which is not an 10 macro language. It can be

used to prove that 1Y3F is larger than ALG^.

THEOREM 5-1. ALG3 is a proper subset of 1Y3F.

PROOF. Theorem 4-1 gives us ALG 3 Q 1Y3F. Fischer (1968) has shown that

the language of the preceding example, L (BA2N), is an 01 macro language which is

not an 10 macro language. Baldwin (1983) has shown the equivalence of ALG I

with the 10 macro languages. So L (BA2N) is in 1Y3F, but not in ALG3. QED.

119

Three-Dimensional Normal Form

The goal of this chapter is to identify a subclass of 0Y3F which is larger than

the 10 macro languages, but still within the context-sensitive languages. A normal

form can be defined for 3-d forest grammars such that every language in 0Y3F is

yglG) where G is a normal form grammar. The normal form prevents the gen

eration of some non-frontierable forests. The first step in transforming a 3-d

grammar to normal form is conversion to a short-rule grammar.

DEFINITION 5-2. A 3-d forest grammar G = < I . , E , N , R , S > 3 is a short-

rule grammar if and only if every rule in R fits one of the following forms

for A , B , C, E e N, and a € E (J2:

1) A->a[3 5][2C][iDL 5) A-^a ̂ C][i D],

2) A^Û[3B][2C], 6) A-»a[2C],

3) 7) A->a[iZ)], or

4) 8) A—»a.

LEMMA 5-3. Let G be a grammar <1., B,N, R ,S >j. There is a short-rule gram

mar G' = <l' , E' , N ' , R ' , S '>1 such that LiC) = LiG').

PROOF. The construct method for G' is quite similar to the method in the proof

of lemma 4-6, so it will only be summarized here. Only non-terminals can be

inside brackets in the right-hand sides of rules, so it G has a rule A -+)3] where

j3 is not a non-terminal, a new non-terminal T is invented and A —> j3] is

replaced by A ^ T] and T—» j3. If G has a rule with a non-terminal outside of

brackets, A^Bir a], then put the rules for B in short-rule form and replace

A a] with A a] A /3„ cv] where jS] are the right-

120

hand sides of rules for B. This process involves only lexlual substitution of non

terminals and right-hand sides of rules. The forests derived from the grammar are

not changed. So L (G) = L (G' 3- QED.

The transformation from short-rule to normal form is made by modifying or

removing certain kinds of rules. Any rules containing a selector in £3 can be

removed. Rules of the form A-^ai^B] can be eliminated-unless A is the start

symbol, and rules like yi —»a [3 B][2C][j Z)] can be replaced by virtue of the next

lemma.

LEMMA 5-4. Suppose there are a,)3, y, 8, and (in Hj (I, H) such that a =

#[3'y][2 8lti 4] and j3 = *[3 ^]. Then f r ^ i a) =

PROOF. This lemma follows from the definition of the frontier function:

//•jCo;) = /r2(#[3y][2 8])[j /rjCO]

= #[3

=/r2(#[3 #[3y][2 8]][i

= /nCjS).

QED.

DEFINITION 5-5. Let G be a grammar < Z . E . N . R , S > ^ . G is in 3-

dimcnsional normal form , 3DNF, if and only if every rule in R fits one of

t h e f o r m s b e l o w . A s s u m e t h a t B € N 2 > C , D € a e l , b e

E U =] ' a n d c e l U = i U = 2 -

1) [3 B] f o r 5 € A ^ 3 ,

2) A-»a[3B][2C] where.4 e A'] y A'2,

121

3) ,4 —> a C] where .4 e A'; (J

4) A ~*c where .4 e A', (J N

5) .4-•aljfiJIi r] where.4€yVj,

6) .4 —» a [2 C 111 ^] where A e N i,

7) -4^^[, C] where/ieA^].

The next lemma and theorem complete the conversion of a short-rule gram

mar to 3DNF. The construction in the proof of the lemma shows how to ehminate

nodes which have three subtrees. The final step in the proof of the theorem is the

removal of unit productions (of the form A-^B).

LEMMA 5-6. Let G be a short-rule grammar <Z, H, A^,/? ,5 >3^. There is a gram

mar G' = < Z', H', N',R',S '>3 such that every rule in R' is either 3DNF or

A->B where A , B e. N2, and y'2(G) =).

PROOF. Construct G' by the following steps:

1) SetI' = I. E' = HiU=2. andAf' =A:)-

2) If R has 5 ̂ Û [3.4] where S is the start symbol of G , put S' -* #[3 S] in /?'

and 5' in N' 3. Otherwise add a rule 5' —» 5 , and put S' in N'^ where 5 e A',.

3) If R has >1 -> Û [3 5], remove it and put A —>B in R' , and move A to N'

4) If /? has a rule which contains an element of £3, remove it from R.

5) If R has a rule A —va [3 B C Ij D], remove it from R and put

A —»a[3r][i D] and T-»#[35JUC] in R'. Add newly invented non-terminal

T to N' 2-

6) Add the remaining rules of R to R'.

The lemma is established by proving propositions (A) and (B) below.

122

(A) If G contains non-terminal .4 such that A =>* a and = 13, then G'

has .4 such that A =>* a', and = j3.

Proof of (A) by induction on the number of steps in the derivation of a.

Base. .4 => o- in one step.

There must be a rule A-*a in R. If a e =3 then) is undefined, and R'

has no corresponding rule. If a e I U U =2> then R' has the same rule.

Inductive hypothesis. Assume (A) is true when A =>* a in n — 1 steps.

Inductive step. Show (A) is true when A =$>* a in n steps.

Case 1. The first derivation step is [3 5] .

In this case, a = a [3 y] where B =>* y and = /r^ly) = 3- The induc

tive hypothesis establishes that G' also has B such that 5 =>* y' and

friiy) — /3. Construction step 3 puts a rule A—^B in /?', so A => 5 =?>* y'

in G' and friiy') = /3.

Case 2. The first step is A -» a [3 5 K2 C][; D].

We have a = 8] where B =#>* C =4>* y, and D =$>* 8. The

inductive hypothesis can be applied to establish that G' has 5 , C , and D such

that B =>* C =$>* y, D =>* 8', = /7-2((), frli) = My), and

/;"2(S') = friib). Step 5 of the construction adds to R' the rules

.A^aljrllifllandr^^lifiLCl. So in G' . A =>* a'=

a [3 #[jC][2y]][i 8], and = friM according to lemma 5-4.

Case 3. The first step is A -» a. where a is a [3 5][; C], a [3 5][; C], o [2 5][i C],

a [2 5], or a[i 5].

For each situation, apply the inductive hypothesis on the forests derived from

123

B and C , and observe that R' has the same rule for .4 and R does by con

struction step 6.

To conclude the proof of (A), note thai if there is 5 =^* or such that fr^ia) = /3 in

G , then S =4>* a' such that fviia') = 3 is in G', and step 2 has added to G' a rule

5" #[3 S] or S' ->5'. So the start symbol of G' also derives a forest whose 2-d

f rentier is /3.

(B) If G' has A such that A a', frjia) = jS, and A € N , then G has A such

that A =>* a and //'iCa) = /3. If G' has T such that T a', friioc') = /3, T is

not in N , and T ^S', then G has A such that A =$>* a [3 5][2C][i D] and

[3 ̂ [[2 y]) = 3, where B =>* (and C =>* y . If T = S ' , then G has S =>* a

and fri^a) = jS.

Proof of (B) by induction on the number of steps in the derivation of a'.

The proof is similar to the proof of (A). QED.

THEOREM 5-7. Let G be a grammar < Z , E , N , R , S >3 . There is a 3DNF gram

mar G' = <E',= ,/VS'>f such that XilG) =).

PROOF. Apply the constructions of lemma 5-3 and lemma 5-6 to G , and then

eliminate productions of the form A—tB by the conventional substitution method.

The result is G' such that G' is 3DNF and YniC) = V'ltG). QED.

124

3-cl Increasing Grammars

If a 3-d f orest grammar yields a string language that is within the context-

sensitive class, then there must be a linear relationship between the length of a

yielded word if and the number of derivation steps required to produce a forest

which yields w. If a grammar G is in 3DNF, then each rule application introduces

exactly one terminal or selector. The number of steps required to derive a 3-d

forest i3 in L (G) is the same as 13 1, the number of nodes in jS- A linear relation

ship between I a I and I /3 I where A =i>* J3 and = a will be shown first

for 3-d grammars which are increasing. A grammar will be called increasing if the

2-d yield grows with each step of the frontier operation on every derived forest.

DEFINITION 5-8. Let G be a 3DNF grammar < Z , ~ , N , R , S > 3 . G is an in

creasing grammar if and only if I //iC/S) I > I friiy) I and I /rzCjS) I >

I /r2(6) 1 for every jS = #[3 y][2 6] such that A j3 and A e N.

The requirement that I /riCjS) I be greater than I fr-^y) I in the above

definition is not too stringent, since it is always the case that I /r2(/S) I ^ I frjiy) I.

The other requirement, that I I > I , is more significant. As a result

of this restriction, an increasing 3-d grammar has no decreasing cycles. The next

lemma shows a non-linear relationship between the size of a derived forest and its

2-d frontier for increasing grammars.

THEOREM 5-9. Suppose G is an increasing 3DNF grammar < I, H, TV, /?, 5 >3

which has non-terminal A é N. If o-e ^2^^^) and I a I = I, then there is a

forest/3 such that A jS,/r^CiS) = a, I)31 ^2'— 1 when i4 e

125

1/31^2'' when A e A'3.

PROOF. The theorem can be proven by induction on I or I = I.

Base. / = 1.

I f A e A ' 2 o r A e A ^ i , t h e n i t m u s t b e t h e c a s e t h a t a = c a n d G h a s a r u l e

A—*c wherec e Z (JE; (J-2- Soq' = /3 = C and lal = 1= 2^— 1= I/SI- If

A € Nthen the derivation starts A -»a [3 5] where B e N2 and B =>* j3'.

The case of B e N 2 was just considered, showing 113' 1 = 1. So 1/31 =

la [3 j8']l = 2\

Inductive hypothesis. Assume the lemma is true for / <n.

Inductive step. Show the lemma is true from I = n.

Case 1. a = a [j or'].

In this case, jS must be derived A —»a [j C] where A e A^ j, C =^* j3', C e A^i |J

Nj, and /r2(i3') = a'. By the inductive hypothesis, I j3' I ^2'"^— 1. But then

1/31 = 1+ 2'"^- 1 = 2^-^ <2^-1.

Case 2. a = c [2 ajlli «2].

/3 can be b [3 gJLi ^2^ or a [2 jS,]. If# is 6 [3 li^], then it must be

derived by A -»ft[3S][iC] where B =>* jSj, C =5>* 32. -S e N2, and

C € A'] U 7V2. It must also be true that fr2{^2^ = a, and //jCjS,) = a [2 aj.

The inductive hypothesis can be applied to establish thai 10,1 ^2'""'— 1 and

1)821 42'---1. But then

I i 8 l = 1 + 1 3 i l + i / 3 2 '

<14- 2'-'- 1+2'"-- 1

^2'-1+2''"-- 1

< 2 ' ~ ' + 2 ' " ' - 1

<2x 2 ' " ' - 1

<2'-l.

I f / 3 is a [2 /3 i] [i / 32] , i t i s de r ived -^a C] where 5 , C e A^ iU^2 -

B =5>* jS j , and C =>* jS i . I t must be t rue tha t / r 2 (j 3 i) = «1 and / r i l jS ;) = Œ; ,

so the induc t ive hypothes is i s app l i ed to g ive I jS j I ̂ 2^"^— I and I jS , I ^

2 ' "^—1. Bu t then

1)31 = 1+ l/3il+ 1^21

< 1+2'"^+2'"2- 1

<2x 2^-'- 1

<2'-l.

Case 3. a = a [2 a'].

I n th is case ,)3 can be a / 3 '] , b [3 / 3 i] [2 <32] , o r b [3 j 8 '] . I f jS i s a [2 j3 '] , t hen i t

must be der ived us ing where B =>* B e N i\}N 2, and

= a ' . The induc t ive hypothes is es tab l i shes tha t I / 3 ' 1 ̂ 2 ' "^—1. But

t h e n 1 / 3 1 = 1 + 2 ^ ~ ^ — 1 = 2 ' — 1 .

I f ^ is b [3)3 i] [2 iS i] , i t i s de r ived ̂ [3 5] [2 C] fo r 5 , C e A ' 1 U

B = 5 > * j 3 i a n d C = ^ * 1 ^ 2 - s o i l m u s t b e t r u e t h a t = «) ,

f r 2 {^2) = a '2 , and a = 0^3) - S ince G is inc reas ing , I c t I > l # i l and

I a I > 1 «2 i . The induc t ive hypothes is can be app l i ed to es tab l i sh tha t 13 i I ^

2^" '— 1 and I /B? ! ̂ 2 ' "^— 1 . Bu i then

131 = 1+ i j3] i + I iSi I

127

< l + 2 ' " ' + 2 ' " ' - 1

< 2 x 2 ' - ' - 1

< 2 ' - l .

If 3 is ^ [3 /3'], then it is derived with ^ [3 £] where 5^*3' and

B e N2. By the previous discussion, 13' I ^ 2' — 1. So 131^2'. QED.

As a result of the previous theorem, we can determine whether an increasing

3-d grammar G yields a 2-d forest 3 by deriving all the forests of size less than

2 and then taking their 2-d frontiers. This will be helpful in improving the

non-linear relationship between Y) and Y 2(G) to a linear relationship.

COROLLARY 5-10. Suppose G is an increasing grammar < Z , E , N , R , S > 3 , and

let be the set of forests such that aç only when ae) and

I a I for some constant c. There is a 2-d grammar G' such that

L CG') = F,.

PROOF. As a result of theorem 5-9 above, XiCG) is a recursive set. To enumerate

the forests in VSCG) with size less than or equal to c , we just generate all the 3-d

trees in L (G) of size ^ 2"^ — 1 and take their frontiers. This set is finite for

fixed c, so we can certainly write a 2-d regular forest grammar to derive its

forests. There could be a separate rule for every forest in the language. QED.

128

Grammars with Deletion Constants

With the addition of another constraint on a grammar, the non-linear rela

tionship in theorem 5-9 between the size of a derived forest and the size of its 2-d

frentier can be replaced with a linear relationship. The new constraint is called the

deletion constant. It places a constant upper bound on the number of symbols

that are deleted by any single step of the frontier operation. Note that the deletion

constant does not limit the total number of symbols deleted during the frontier

operation, since an arbitrary number of steps can occur. In 2DNF grammars, the

deletion constant is no larger than the longest path on any selector. This is also

true with 3DNF grammars for which no entire subforests are thrown away during

the frontier operation. Even when a 3-d grammar deletes entire subforests, it will

have a deletion constant if the size of the deleted subforest in any single frontier

step is independent of the size of the subforest which is not deleted.

DEFINITION 5-11. Let G be a 3DNF grammar <1, H, ,/? ,S >|. The

deletion constant of G is the smallest constant c such that 1/72(3)1^

l/r2(8)l —c for every a in YjiG } and /3 in I,(G) where jS =

a [3 y][2 8] is the smallest forest such that //^(iS) = If no such constant

can be found, then G has no deletion constant.

Given any constant c , a grammar can be written so that any forest whose 2-d

yield has less than c nodes can be derived without introducing and 3-nodes or 3-2

nodes. Such a grammar is said to be c -augmented.

129

DEFINITION 5-12. A 3DNF grammar (/ c -augmented if it is increasing, has

deletion constant c, and every ^ such thai I a I ^ c is derivable

by a 2-d subgrammar of G .

LEMMA 5-13. If G is an increasing, 3DNF grammar with deletion constant c,

then there is a c-augmented 3DNF grammar G' such that Y2^.0) = V'jCG').

PROOF. Put all the rules of G in G'. If A yields a in G and I oc I , then add

2-d rules to G' for A to derive a directly, using the method described in the proof

of corollary 5-10. Certainly Y2(0) =), since G' has all the rules of G , and

the only rules added derive forests which are in YnCG). Also, any ae Y2CG) is

derivable in G' without the use of any 3-d rules. QED.

LEMMA 5-14, Suppose G is a c -augmented 3DNF grammar < Z , B , N , R , S >3.

If a € y 2(^ 4) where A e N and I a I = I, then there is a)3 such that

A =4>* jS, /r2(i3) = CK, and 1/31 = d where

d <

1 for I ,

2 (c + 1) (/ — c)— 1 for / >c and A e N i (J^2- and

2(c+ 1)(Z — c) for Z >c and A e /V3

PROOF. Proof by induction on Z = la I.

Base. Z = 1.

Case 1. Z ^c.

In this case, a is derivable without 3-d steps. A =^a = |3 = So

l/r2(l3)l = la I = Z.

Case 2. Z >c and A g U^z-

The only possible derivation of a is A =i>a = a, where a € I U^i U^2-

130

Since I is], c must be 0. So /3 = /ritjSj = a. I j3l = 1, and

1 ^ 2 (c + 1) (/ — c)—]

<2(0+ l)U-0)- 1

< 2— 1

< 1 .

Case 3. / >c and A e N

The derivation of <3 starts with A B e N 2 < B =>*)3', and /r2C3') =

' a. Case 2 above establishes that I jS' I = 1 = 2 (c + 1) (/ — c)— 1. So 1)31 =

1 + 1 / 3 ' I = 2 (c + l) (Z - c) .

Inductive hypothesis. Assume the lemma is true for 1< / < n.

Inductive step. Show the lemma is true for Z = n.

Case 1. a = all

The derivation of must be A =è>û [j C] =5>* o [j /3'], where A e N=

a', and C e (J^2- If l—l^c, then 1/3'I = Z — 1 and 1/81 = I. This

satisfies the lemma if Z <c. If Z = c + 1, then we need to verify that 1/31 =

Z < [2c + 2) (Z - c)- 1 < 2Z - 1. But this is true for Z > 1.

If Z — 1> c , then the inductive hypothesis gives I /3' I < (2c + 2) x

(Z — 1 — c) — 1 . S o

1/31 < 1/3'!+ 1

<(2c + 2)(Z- 1-c)

< 2cZ - 2c -+ 2 1 - 2 c - 2- 2c

< 2 c Z - 2 c " + 2 Z - 2 c - 1

< (2 c + 2) (Z - c) - 1 .

131

Case 2. a = a [, a JC, a,] and 3 = ^ [3 jSjI, gi].

)3 is derived with a rule A — > b [3 B][, C] where A , C e N i { J N 2 , B e N 2 ,

B =5>*)3i, and C =^* jSi. It must also be true that = a; and

/rzCjS]) = a [2 û-]]. Let / = /1+ /i where /1 = la [, aj 1 and Z2 = I a? I. The

inductive hypothesis can be applied to determine the maximum size of 3i and

02, There are four possible situations, depending on the values of and c.

We can assume that I>c. Otherwise, 3 could be derived without

A ^ 5 [3 5] [I C] .

a) If and , then 1/3] I = 1 1 , 1182' = h < and IjSI = 1+ Z2 —

1+ Z. We are given that Z > c , and we deduce that Z ^ 2c, since Z — 11+12-

It remains to show that 14- Z ^ (2c + 2) (Z — c)— 1 when c < Z ^ 2c. It is

clear that Z — c is at least 1, so we must only verify that 14- Z ^

2 c 4 - 2 — 1 = 2 c 4 - 1 , w h i c h i s c e r t a i n l y t r u e w h e n I ^ 2 c .

b) I f Z j > c a n d Z j ^ c , t h e n I j S ; I ^ (2 c 4 - 2) (Z j — c) , 1 3 2 I = h ' a n d

1 3 1 = I 3] I 4 - 1 3 2 I + 1

^ (2c 4- 2) (Z J— c)4- Z 24- 1

<2cZi- 2c^4- 2Z1- 2c 4- c 4- 1

<2c (Z-l)-2c'4-2(Z-D- 2c4-c4- 1

< 2 c Z - 2 c ^ + 2 l - 2 c - 2 - c + I

^ (2c 4- 2) (Z — c)— 1— c

^ (2c 4- 2) (Z — c)— 1.

c) If Z] ^c and Z2>c , then 13i I = ^ 1. 1321 ^(2c 4- 2) (Z,— c)— 1, and

I 31 = 13] 14- I 3:14-]

^ / i+ 1 2 C + 2) (/ 2 ~ C)

< c + 2 d 2 - 2 c - + 2 / 2 - 2 c

< c + 2 c (/ - D - 2 c - + 2 (/ - D - 2 c

< 2cl - 2c ~+ 2Z - 2c - 2- 2c + c

< (2 c + 2) (/ - c) - 1 - c - 1

^ (2 c + 2) (Z - c) - 1 .

d) I f Z ; > c a n d Z 2 > c , t h e n I i 3 i I < (2 c + 2) (Z i - c) , 1 ^ 2 1 ^

(2c + 2) (/ 2— c)- 1, and

1 ^ 1 = l / 3 i l + I / S 2 I + 1

^ (2c + 2) (Z J— c)+ (2c + 2) (Z 2~ c)— 1+ 1

^ 2 c Z 1 — 2 c 2 Z J — 2 c + 2 c Z 2 — 2 c 2 Z 2 — 2 c — 1 + 1

^ 2c (Z1+ Z 2)— 2c"+ 2 (Z j+ Z 2)— 2c — 1— 2c 2c + 1

< (2 c + 2) (Z - c) - l -2c^-2c+ 1

< (2 c + 2) (Z - c) - 1 .

Case 3. a = a [2 ori^i a?] and j3 = a [, jSjlli fij]-

/3 is derived A =5>a [, 5][i C] =>* a [2)3]][i ^2^ with B ,C e (J ̂ 2- must

be true that/r2(/3i) = Q i and/;-2()32) = a2- Let Z = 1+Z1+Z2 where Z] =

I a 11 and Zi = ' «21. The inductive hypothesis is applied to limit the sizes of

|Bi and 02. Again, there are four possible situations;

a) I f Z i ^ c a n d Z i ^ c , t h e n I / 3] I = Z i _ I / S ? I = h ' a n d 1 / 3 1 = l + Z j + Z 2 = Z . I f

Z > c , i t m u s t b e s h o w n t h a t Z ^ (2 c + 2) (Z — c) — 1 . T h e l o g i c i s s i m i l a r

to case 2a.

b) I f Z i > c a n d l i ^ c , t h e n 1 3] I ^ (2 c + 2) (Z j — c) — I , 1 ^ 2 ^ = Z 2 , a n d

133

I)31 = I 011 + 1021 + 1. This is shown to be smaller than

(2c + 2) (/ — c)— 1 by a method similar to thai of ease 2b.

c) I f /] ^ c a n d Z 2 > c , t h e n 1 0 , 1 = Z] , 1 0 2 1 ̂ (2 c + 2) (^ 2 — c) — 1 , a n d

1 0 1 = 1 0 j I + i 0 2 1 + 1 . T h i s i s s i m i l a r t o c a s e 2 c .

d) I f Z i > c a n d l 2 > c , t h e n 1 0 i I < (2 c + 2) (/ j — c) — 1 ,

1 0 2 1 ̂ (2c + 2) (Z 2" c)— 1, and 101 = 10i I + 1021 + 1. This is similar to

case 2d.

Case 4. o i = a i j a'] and 0 = a [t 0'].

0 is derived A =5>a [2 5] =^* a [2 0'] with B ̂ N i \ ^ N 2 - It must be true that

/r2(0') = ct', and I a' I — I — \. This case is very similar to case 1.

Case 5. a = a [2 (%'] and 0 = 5 [3 0j[2 02].

0 is derived A =^b [3 B K2 C] b [3 0]][2 02] with B e. N2 and C e A^i U ̂ 2-

/r2(0) = a, so it must be true that /r2(0j = aj and /r2(02) = «2, and a =

subs2{ocx, oi2). Let/i= I a, I and Z 2 = I «21. G is an increasing grammar, so

l>l\ and Z > Z 2- G has deletion constant c, so Z ^ Z1+ Z 2— c. The inductive

hypothesis can be applied to limit the sizes of 0i and 02. There are four possi

ble situations:

a) I f Z i ^ c a n d Z 2 ^ c , t h e n 1 0 i 1 = Z j 1 0 2 1 = Z 2 , a n d 1 0 1 = 1 + Z i + Z 2 . W e

also have I > c. Otherwise there would be no 3-2 step in the derivation of

0. So 101 = 1+Zi+Z2<2c + 1, and (2c + 2)(Z-c)- l>2c+ 1. since

l - c > L

b) If Zi> c and Z2^c , then 10i I ^(2c + 2) (Z] — c)— 1, 1021 = 12^ and

1 0 1 = I 0] I + 1 0 2 1 + 1 . T h i s i s s h o w n t o b e s m a l l e r t h a n

134

(2 c + 2) (/ — c) - 1 g i v e n t h a i a n d /] ^ / — 1 b y a m e t h o d s i m i l a r t o

that of case 2b.

c) I f / 1 ̂ c a n d l 2 > c , t h e n I) 3 , 1 = / 1 , I j S i I ^ (2 c + 2) (Z 2 — c) — 1 , a n d

1/31 = I /3i I + 1182 I +]. This is exactly parallel to case 2c.

d) I f /] > c a n d Z 2 > c , t h e n I / 3 i I ^ (2 c + 2) (/ j — c) - 1 ,

l / 3 2 l < (2 c + 2) a 2 - c) - l , a n d

1^1 = l^iH- 1/3,1+ 1

<(2c + 2)ai-c)+ (2C + 2)(Z2-C)- 1+ 1

^ 2 c Z j — 2 c ^ + 2 Z i — 2 c — 1 4 - 2 c Z 2 — 2 c ̂ 4 - 2 Z 2 — 2 c — 1 + 1

^2c (Z1+ Z 2~ c)— 2c^+ 2 (Z j+ Z 2~ c)— 2c — 1

< 2 c Z - 2 c ^ + 2 Z - 2 C - 1

< (2 c + 2) (Z - c) - l .

Case 6 . a = a [, a'] and /3 = 6 [3 18'].

3 is derived A =>6 [3 B] =i>* b [3)3'] where B e N 2 - By cases 4 and 5, I 0' 1 ^

(2c + 2)(Z-c)-1. So 1/31 < (2c + 2)(Z-c). QED.

If a grammar is increasing and has a deletion constant, there is a linear rela

tionship between the sizes of forests in the 3-d yield and the 2-d yield. Many use

ful 3-d forest grammars are not strictly increasing. So, given a non-increasing

grammar G , we would like to know if there is an increasing grammar G' with the

same yield as G. This topic is investigated in the next section.

135

3-d Grammars \viiho\U Overlap Cycles

3-d forest grammars that do not have cycles of overlapping selectors can be

transformed to grammars which are strictly increasing. To achieve this result. il

will be necessary to define several terms similar to those used for analyzing 2-d

grammars in chapter 4.

For many 3-d forest grammars, it can be determined whether the grammar is

increasing by examination of its rules. The existence and value of a deletion con

stant can also be determined. In examining the rules, we must be able to predict

the outcome of the 2-d frontier operation. This requires that we know which

selectors will be applied in each frontier step.

Suppose)3 is a 3-d forest #[3 8I2 y]. There is a set of outer selectors in 8

which will be applied when frxi^) is taken. Outer selectors are analagous to the

external selectors defined in chapter 4. They difFer from external selectors in two

respects. First, a 2-d forest has at most one external selector. A 3-d forest, how

ever, has a finite set of outer selectors. Second, the outer selector set may contain

selectors which will be truncated when the 2-d frentier operation is applied. For

example, let j3 = <2.21 >] [? x [j y]]] where x , y e 2%. Selectors x and y

are the outer selectors of j3, but only y is an external selector, x is eliminated

when is taken. Thus, the outer selector set of a 3-d forest is a superset of

the external selector set. Outer selectors are easily found. It is much more difiBcult

to determine whether outer selectors will be external selectors.

136

DEFINITION 5-15. Let /3 be a forest in H} (I.ï). A selector .v e Et is an

ouTer selector of |3 when /S contains x and the path from the root of 0 to

.v is V where

1) v e { 1 , 2 } ' , or

2) if r = airr for o, tté { 1 , 2 , 3 } ' ,

then seZ(<2, a2>, j3) is undefined.

DEFINITION 5-16. Let j3 be a forest in H^ (I, H). The set outsel (/3) is defined

as {:c I .T is an outer selector of j8}.

With 2-d grammars, it was possible to construct a set of 1-d selectors,

exsel [A), for each non-terminal A such that A derived (3 if and only if the exter

nal selector of j3 was in exsel {A). With 3-d grammars, a set of sets of outer selec

tors is associated with each non-terminal.

DEFINITION 5-17. Let G be a 3DNF grammar < Z , B , N , R , S > i . The set

outsel (A) where A e TV is defined as {s I s = oixtsel (/3) where A =4>* j3}.

Note that outsel is multiply defined. Hopefully, this will not cause confusion.

If the argument of outsel is a 3-d forest, then outsel is a set of 2-d selectors. If the

argument is a non-terminal in a 3-d grammar, then outsel is a set of sets of 2-d

selectors.

LEMMA 5-18. Suppose G is a 3DNF grammar ,5>3. If A ê A', then

there is an effective procedure for constructing outsel {A).

PROOF. The algorithm given here constructs outsel (A) for every non-terminal in

the grammar. The construction proceeds by taking a rule A-* ^ from R, selecting

the appropriate case depending on the form of j3, and adding elements to

137

outscUA). The case slaU'incnl is given as a procedure which is repeatedly invoked

a s r u l e s a r e t a k e n f r o i n R . A s s u m e t h a t A . B , a n d C a r e e l e m e n l s o f A ' , a e I ,

and A- e E2.

Procedure addcl {A , 3).

Begin

Case 3 of

a B], r ^1 ; add the elements of outsel {B) to outsel {A).

:c [j 5]; add {z } IJ ? to outsel (A) for each s in outsel {B).

X : add {x } to outsel {A).

a [r -B][i C], /• > 1: add s [J ? to outsel (A) for each s in

outsel {B) and t in outsel (C).

a [3 -S][? C]: add the elements of outsel (C) to outsel (A).

End case.

End addel.

The selection of rules from R is undertaken according to the following algorithm;

Repeat

Take a rule A—^ I3f rem R .

If A is not in a cycle then

Use the current method to form outsel iB) and outsel (C), where B

and/or C are in /B.

Call oddc/ (A , g).

Remove .4 —» /3 from R.

Else if A is in a cycle (.4 j, A 2 A „ } then

138

Find every rule for .4,, 1 < z

Use the currenl method to form ouîsel {B) for each B which is nol

in the cycle, but is in the right-hand side y of a rule

A , - > y , 1 ^ / ^ m .

Repeat

For i = 1 to 77Z

Call addel , y) for each rule of Ai.

Until nothing new is added to any out sel set.

Remove the rules Aj -»y from R, 1 ̂ z

Until R is empty.

The size of every outsel set is bounded by the number of possible subsets of

=2' SO the construction algorithm halts. It can be shown by induction on the size

of a forest Ç, that if A =i>* then outsel outsel (A). It can also be shown by

induction on the number of addel steps in the construction of outsel (A) that if

outsel (A) contains selector set s, then A =5>* 4 where s = outsel (^). QED.

Definition 4-16 defined overlapping selectors for n-dimensional forests. The

definition requires that the external selectors of a forest be known. If the external

selectors are not known, the outside selectors can be used instead.

During the frontier operation on 3-d forests, entire subforests can be deleted.

This is also true with 2-d forests, but it is relatively easy to remove such truncat

ing steps from 2-d grammars. With 3-d grammars, however, the elimination of all

truncating steps is more difficult. The following definition distinguishes between

139

complelc and truncalins f r o n t i e r s t e p s .

DEFINITION 5-19. Let g = be a forest in Hj (I, El The 2-d fron

tier of |3 is complete if and only if fi'2iy) is complete, /r'iCS) is complete,

and for each subtree S' of 5, the path from the root of 8 to 8' is either

1) o where <2, o> e outsel (y),

2) o2tt where <2, o>e outsel (y), or

3) a where <2, a> e oziTseKy), and 8'e I.

DEFINITION 5-20. Let G be a 3-d grammar < 1 . , E , N , R , S > i . G is com

plete if for every ae) there is a g such that À =5>* (3, /r^CjS) is com

plete, /r2(j3) = a, and A e N. If G is not complete, then it is truncating.

LEMMA 5-21. Let G be a 3-d grammar < Z , E , N , R , S >3. If G is complete,

then G has deletion constant c, and c is no greater than the sum of the

lengths of the paths on the selectors in =2.

PROOF. This lemma follows directly from the definition of a complete grammar.

If a non-terminal derives a forest)3 = #[3 y][2 8] and an entire subtree of 8 is not

selected for copying during the 2-d frontier operation, then is not complete,

and neither is G . The only nodes that are deleted are the terminals along the selec

tor paths, and so the number of deleted nodes cannot exceed the sum of the lengths

of the selector paths for any single frontier step. QED.

During the frontier operation on a 2-d forest, only one selection/substitution

process is active. This results from the i act that each subtree has only one external

selector. Subtrees in 3-d forests, however, can have several external selectors. So

several selection/substitution processes may be occurring simultaneously during

140

the 2-d frontier operation. Some of the terminology used in ihe analysis of 2-d

cycles will have to be broadened or generalized. Cycles, roots of cycles, essential

non-terminals, and cycle steps will not need to be redefined, but it will be useful

to speak of /ull cycle steps for 3-d grammars. A full cycle step is one expansion

of a cycle from root to root.

DEFINITION 5-22. Let G be a grammar ,R ,S>i which contains a

cycle {A 1, A 2, } with root A j. A full cycle step is any structural

form j3 derived from Aj such that)3 contains A ^ and no non-terminals

other that A,,..., A^ are expanded in the derivation.

The leading and trailing non-terminals of a cycle were previously defined only

for cyclic 2DNF grammars. The following definitions redefine these terms for 3-d

cycles.

DEFINITION 5-23. Let G be a grammar < Z , E , N , R , S > 3 which contains a

cycle whose root is A, and suppose /3 is a full cycle step derived from A

which contains a non-terminal B. If the path from the root node of ^ to A

is o3tt and the path to B is a2i', then 5 is a leading non-terminal of the

cycle. If the path to A is alv and the path to B is o3z/, then 5 is a trail

ing non-terminal of the cycle.

The concept of deletion cycles in 2-d grammars will be replaced with overlap

cycles in 3-d grammars. The term "deletion" is abandoned because it is quite com

mon in 3-d grammars for overlap cycles to show net growth in spite of the

repeated deletion. This happens when an overlap cycle has several outside selec

tors, some overlapping and some non-overlapping.

141

DEFINITION 5-24. Suppose G is a grammar <1.E,N .R ,S>^ which con

tains a cycle whose root is A. The cycle is an overlap cycic if and only if

there is a full cycle step j3 derived from .4 such that

1) /3 has leading non-terminals B], Bn Bi,

2) < 2 , T T j > € outsel[Bi) for 14 f ,

3) 5, and sel (<2, o, >,)) = <2, > for 1 ̂ z , and

4) O i • O t • . . . • O ; i s a p r o p e r p r e f i x o f 7 7 - 2 • ^ - 3 • . . . • t t - ; • t t j .

A set of integers called gain can be associated with each full cycle step, and,

depending on the values in the gain sets, cycles can be classified as increasing,

decreasing, 0-gain, or mixed.

DEFINITION 5-25. Suppose G is a grammar < ' L , ~ , N , R , S > i which con

tains a cycle whose root is A , and j3 is a full cycle step such that A =?>* j3.

The integer g belongs to gain {A) if and only if g = I /r2(S) I — I I

where 8 e H3 (I , E) , 3 = > * 8 , a n d 8 ' i s t h e l a r g e s t s u b f c r e s t o f 8 s u c h t h a t

A =>* 8'.

DEFINITION 5-26. Suppose G is a grammar < Z , E , N , R , S > 3 which con

tains a cycle whose root is A. The cycle is increasing if g >0 for every

g e gain {A }, decreasing if g <0 for every g e gain {A), 0-gain if

gairi (A) = {0}, and mixed otherwise.

It will eventually be shown that any 3-d forest grammar which does not have

overlapping selectors can be converted to an increasing grammar which has the

same string yield. This will be accomplished by eliminating subforests which will

be truncated during the frontier operation. Before truncation can be eliminated,

however, a grammar must be partitioned according to the outside selector sets of

the non-terminals.

142

LEMMA 5-27. Let G be a 3DNF grammar < Z , £ , N , R , S > i which has non

terminal A. There is an effective procedure for constructing a subgrammar

; s such that A' in G^ : s derives jS if and only if A derives j3 and

oixtsel ()3) = s.

PROOF. Given a set of selectors, ^ = { < 2 , p i > , < 2 , p { > , . . . , < 2 , p k > } ,

G a'- s = <T,=',N',R',S '>3 can be constructed f rom the subgrammar G.^

according to the steps below. Assume A,B,C,DeN,a,be E U=i' ^ =2-

1) Set I' = I, E' = H, = N, and R' = R.

2) Put A' in N' andA'—>Aj in/?'.

3) Add non-terminals Bt to N' for every non-terminal B of G^ and every 1

which is a subset of s.

4) Select a non-terminal B^ from N' for which there are no rules and make rules

for it as follows;

a) If R has B a [„ C] for m ^ 3, put 5^ -» a C,] in R'.

b) If R has 5 -» X [j C] and x e t , then add -» x [j Q] and B ^ -> x Q] to

R , where u = r — {x }. If x is not in t, then do not add a rule to R'.

c) I f / ? h a s B - > a a n d r = (j) , p u t 5 j - > a i n / ? ' .

d) I f / ? h a s B - » X a n d r = { x } , p u t B j - ^ x i n / ? ' . I f r ^ { x } , t h e n a d d

nothing to /?'.

e) If R has B -» û [3 C][2 Z)], put 5; a [3 C][2 A1 in /?'-

f) If /? has B-»a[^C][i D] for m. = 2 or 3, put B,-ia[^ C„][i in /?' for

every u and a' such that u IJv = ?.

g) If none of cases a) through f) result in the addition of a rule for B^,

143

remove B. from A''.

5) Repeat slep 4 until all the non-terminals in N' have rules.

It is clear that the algorithm above halts. Each non-terminal is processed

by step 4 only once. The lemma can be proven by induction on the size of jS. The

induction is not shown here. QED.

In order to eliminate truncating frontier steps from a grammar, it is necessary

to trace a 2-d selector path in a 3-d forest. The trace function below accomplishes

this, provided the forest to be traced does not have overlapping selectors.

DEHNITION 5-28. The function frace(% , g): =2% A/j CZ, (1,5) is

defined as follows:

r r a c e (< 2 , X > , 3) = 1 3 ,

trace (jc , #[3 y]) = trace {x , y),

trace (x , #[3 yJL; 5]) = trace (z , y),

trace (< 2 , A ' a > , « [„ y]) = trace (<2, A" a>, a) for m < , and

trace{<2,k o>, aL^-y]) = trace{<2, o>, y).

LEMMA 5-29. Suppose G is a 3DNF grammar < I . , E , N , R , S > i with no over

lapping selectors. There is a grammar G' = < I', E', N',R',S '>3 such that

y ^lG) = F ilG') and G' is complete.

PROOF. The grammar G' can be constructed by the steps below. Assume

A,B,C,D,EeN, and a, Z (JS.

1) Set G' =G and partition G' according to outside selector sols.

2) Find a rule ^ » a [3 5 C] in R'.

3) L e t s = outsel iB). Generate all the m distinct structural forms j3, which have

144

t h e f o l l o w i n g c h a r a c t e r i s l i c s f o r 1 ̂ / ^ m :

a) C =^* gj,

b) no non-terminal D in 3, is expanded unless D = t r a c e { < 2 , o > ,), where

a is a prefix of the path on some .v e s , and

c) no rule in a 3-d cycle which does not produce a 2-node is applied more

than once in deriving g,.

4) For each 3; generated in step 3, if jS, = aLjElIi y], a[3-y][i£], a[2£][i-y],

a [2 ylli £], or a [j £], where trace (z , g,) #£ for any ;c in s , then delete £

and the arc pointing to it in <3; •

5) For each J3i, add a rule 7,-• # [3 512 3,] to/?' where T, is a new non-terminal.

Also, replace A -> a [3 5 H2 C] in i?' with i rules A ̂ T;, 1 ̂ f < m. If s = 0

land m = 0), replace A a [3 5][2 C] with A—^B.

6) Repeat steps 2 through 5 for every rule A 0 [3 5][2 C] in /?'.

7) Remove unreachable non-terminals and rules from G'.

Since G has no overlapping selectors, it is possible to expand the non-terminal

C in a rule A -» a [3 B][3 C] until all the paths of the set of outside selectors of B

are visible. Then it is evident what subforests will be truncated, and the rules can

be modified so that the truncated forests are never derived. The algorithm above

accomplishes this without making any other changes to the grammar, so any 3 in

Y jiG) is also in YliG'), and vice versa. This can be proven rigorously by induc

tion on the size of 3. The induction is not shown here. QED.

145

Any 3-d grammar without overlapping sclcclors can also he modified 1o make

a grammar with the same string yield which is strictly increasing. One approach

of this modification would be expanding the right-hand sides of grammar rules and

taking partial frontiers to write new rules that combine the decreasing steps with

larger increasing steps. A less complicated approach (but also more wasteful) is

shown here which takes advantage of the fact that 2-nodes disappear during the

1-d frontier operation. Using this approach, extra 2-nodes are added to any rules

which produce decreasing frontier steps. These additional nodes increase the size of

the 2-d yield, but they are eliminated during the 1-d frontier operation.

LEMMA 5-30. Let G be a complete 3DNF grammar < Z , E , N , R , S > i without

overlapping selectors. There is an increasing grammar G' =

<r,E\N\R\S->i such that y i(G) = V iCC).

PROOF. The grammar G' can be constructed by the steps below. Assume

A , 5 , C e , and a € r Us.

1) Set G' = G and partition G' according to the outside selector sets.

2) Find a rule A -> a [3 5][2 C] in /?'.

3) Let 5- = outsel (B). Generate all the m distinct structural forms /3, as in step 3

in the proof of lemma 5-29.

4) If trace (x , jS,) = a is in I Ue f o r e v e r y z i n s , t h e n r e p l a c e o n e s u c h a in (3,

w i t h # [2 ^] . D o t h i s f o r e v e r y 1 ̂ 2

5) Choose one of the outside selectors x in s and replace it in the rules for B in

G/i with #[2 #[? ... #[2 A"]...]] to form G'g , where the number of 2-nodes

added is the sum of the lengths of the paths on every selector in s.

6) Replace .A -»a [3 5][, C] with rules .4 ^ B'][; <3,]. 1 < / 4. m.

7) Repeal sieps 2 through 6 until every .4 a [3 5 C"] rule has been modified.

It is apparent that the above algorithm halts. The largest sum of path-lengths

in any outside selector set is a constant, and no selectors are modified by the algo

rithm. So step 5 does not have to be repeatedly applied for any single grammar

rule. It is also apparent that the changes made will not affect the string yield of

the grammar, since fr-iia) = a]) for any set a. The 2-d yield will contain

larger forests, but the 1-d yield is the same. So Fi(G) = 7i(G').

It remains to be verified that G' is increasing. Suppose G' generates /3 =

#[3 y][2 8]. It is always the case that I /;"2(/3) I ^ I friiy) I, and I/nC/S) I =

I fi'iiy) I only occurs when every subtree selected from fr^ih) during the frontier

operation has size 1. Step 4 above ensures that at least one selected subtree has size

2. So I I > I //"aCy) I •

It happens that I /raCjS) I ^ I I when a subforest of 8 is deleted during

the frontier operation, or when the number of interior nodes in 8 along the selec

tion paths is larger than the number of non-selector nodes in y, so that the frontier

operation deletes more interior nodes than il adds. But G and G' are complete

grammars, and step 5 increased the number of nodes in y to exceed the sum of the

path-lengths of the outside selectors. So no subforests are truncated, and the

number of interior nodes added always exceeds the number deleted, giving

l/r2(|3)l> 1/7-2(8)1. OED.

147

If a 3-d forest grammar contains overlapping selectors, but no overlap cycles,

then the selector paths can be changed so that they do not overlap one another.

Suppose /3 = #[3 #[2 -x #[3 #[2y]][2 y]]. where -x is a selector <2, 221 > and y is

<2, 121 >. The selector overlaps y. As the path of x is traced, y is encountered

after traversing one 2-arc. We can form /3' by replacing % with z' = <2,2> and

y with y' = <2,12121>, The path of y' is formed by attaching the unused por

tion of the X path to the end of the y path. The selector x' does not overlap y' in

the newly formed /3', and friW') = This method will be used to prove

that if a grammar has no overlap cycles, then there is a complete, increasing gram

mar with the same yield.

LEMMA 5-31. Let 8 = aj/jOrjl/j... 0-;^ /3]...]] be a forest in H). If

seli<n , 7r>, sel{<n ,v>, 8)) = /3 where tt, vi. {1,2,..., n]'^, then

sd{<n , vtt>, 6) = <3.

PROOF. If sel (<n , ir>, sel (<n , v>, 8)) = 3, then it must be true that

V = l i ' I t - . . . • I j , T T = I j + i ' . . . - Z ^ , a n d s e l i < n , v > , 8 ') = . . .

oi^ j3]...] where I j + i = n . But since it is also true that

seZ (</2, Z1 •... • Zm >, 8) =)3, we have sel (<n , i>7r>, 8) = i3. QED.

THEOREM 5-32. Suppose G is a 3DNF grammar < Z , E , N , R , S > ^ without over

lap cycles. There is a complete, increasing grammar G' = < £', E',N', R ',S'>^

such that Y jCG) = Y liG').

PROOF. The grammar G' can be construcled by the steps below. Assume that

A , B , C e N , and a e I (J E.

1) Set G' =G and partition G' according to outside selector sets.

2) Find a rule A —>0 [35 K2C] in i?'.

3) Let s = ovtsel {B). Generate all the m distinct structural forms /S; as in step 3

in the proof of lemma 5-29.

4) Find jS, such that trace (<2, a>, /Sj) = y where >' € Ei and a is a proper prefix

of a path on one selector x in s. Suppose y ~ <2, v> and x = <2, av>.

Then let y = <2, i'7r> and .t' = <2, a>. Replace y in 3, with y' to form

3'j, and replace the outside x in Gg with x' to form Gg . Add a rule

Tj-> #[3 5;][% /3'i] where T, is a new non-terminal.

5) Find /S; such that t r a c e { < 2 , a > ,) = y where ; > 1, y e =2. and a is a proper

pre&x on r selectors Xj in s, 1 ̂ ; < r. Suppose y = <2, v> and x^ =

<2, aiTj > Then let y'j = <2, vvj > and x'j = <2, ff21^~^>. Replace y in

jSj with #[2 y' ill y' 2[i • • • [1 yV]•••]]] to form 3':. Replace the outside x^ in

Gs with x'j to form Gg_. Add a rule T;#[3 B; K2 0';], where Tj is a new

non-terminal.

6) Add a rule Tj -> #[3 5][2 /B;] for every jS; that was not processed by step 4 and

step 5, and replace A [3 SKj C] with rules A-^T^, ^m.

7) Repeat steps 2 through 6 until no overlapping selectors are left in G'.

The above algorithm is guaranteed to halt if there are no overlap cycles, and

the resulting grammar G' has no overlapping selectors. Every j3 in V'lCG) is also

in I'tIG'), and vice versa. This can be proven rigorously by induction on the size

of jS. The induction is not shown here. The proof appeals to the previous lemma

to establish that the selector compositions in steps 4 and 5 do nol affcci the yields

of the derived forests. If G' is not complete, it can be converted to a complete

grammar by the method of lemma 5-29. QED.

3-d Explicit Grammars

For an increasing 3-d forest grammar, the size of a derived 3-d forest is

linearly related to the size of its 2-d yield. It must also be shown that a linear

relationship exists between the size of the 2-d yield and the 1-d yield of a forest.

To eliminate some of the complexity of the frontier operation, a class of grammars

called explicit forest grammars will be defined.

The 1-d yield of a 3-d forest is the result of a two-pass frontier operation.

The first pass does selection and substitution mandated by the selectors in =2. The

second pass uses the selectors in Ei- In explicit grammars, A. is the only path

allowed for 1-d selectors, so that all the deletion occurs during the first pass of the

frontier operation. Restrictions on the placement of 1-d selectors are also made to

prevent substitution of trees whose string yield is A. during the 1-d frontier opera

tion. The definitions that follow formally define explicit forests and grammars.

DEFINITION 5-33. Suppose jSeHo (I,H). /3 is cxpUcit if and only if jS has

no subforests bliz], b{2z\iy], b{2y]{\z\ or y, where z = <1,X>,

ye Hi (E. E) , 6 e I U E j , and y e I (J E j - {z }.

DEFINITION 5-34. Let G be a 3-d forest grammar <E, E , yV , / ? , S > 3 . G is

expli(. i(if and only if every forest in) is explicit.

It is an open question whether explicit 3-d grammars retain all the power of

non-explicit grammars. It will be shown, however, that explicit grammars arc

more powerful than grammars with only standard selectors. Explicit grammars

have properties which make it easier 1o establish a linear relationship between the

sizes of the 1-d and 2-d frontiers of a derived forest. These properties are

described below, first as properties of 2-d forests, and then as properties of 3-d

forests grammars.

The length of the string yield of a 2-d forest can be predicted by counting the

1-nodes in the forest. The sien function does this, and if the 1-d frontier of a 2-d

forest 3 is defined, then sl&i ()3) = I /ri(3) I •

DEFINITION 5-66. The function sien (/3): /-/2 (I, H)-^ is defined as follows:

sien (z) = 0 for z e Hj,

slei (x) = 1 for X e E U Ei,

sien (a [j y]) = 1 + sien (y) for a e I |J E?,

sien (a [2 y]) = sien (y) for a e I, and

sien (a [2 yJl; 8j) = sien (yj + sien (8) for a el.

LEMMA 5-67. Suppose lie H2 (I, H) and ^8 is explicit. If jS where

z = < 1, X>, then sien (j3)> 0.

PROOF. The smallest possible explicit non-r forest has 2 nodes: dljz]. a

A- [] z], X [1 A"], a U X], or x [; X] where a el and x e Ei. The string length is 1 or

2 in each case.

Every larger forest contains at least one of these 2-node forests, and since

non-A. paths on 1-d selectors are prohibited, no deletion occurs during the 1-d

151

frontier operation. Therefore, every larger forest also has string length greater

than zero. QED.

LEMMA 5-68. If jS = o [3 y][i 5]e H\ is explicit, then sien (y) and

s[0i (3)> slat CS).

PROOF. Neither y nor 8 can be <1, \>, since <3 is explicit. So by the previous

lemma, sien (y)> 0 and slai (6)> 0. sien ()3) is just sleiï Cy) + sien (6), so sleji ()3)>

slai (y) and sien C|8)> sien (8). QED.

As a result of lemma 5-67, <1, X,> is the only explicit forest whose string

frontier is X. Lemma 5-68 guarantees that substitution steps in the 1-d frontier

operation always result in larger strings. These results on 2-d forests can be dupli

cated for 3-d forests.

LEMMA 5-69. If /Be H3 Cl, H) is explicit and ^ where z = < 1 , k > , then

sZen (/r2(i3))>0.

PROOF. Proof by induction on h , the number of 3-nodes and 3-2-nodes in j3.

Base. /? = 0.

In this case, = j3, and lemma 5-67 establishes the desired result.

Inductive hypothesis. Assume the lemma is true for h <n.

Inductive step. Show the lemma is true for A = n.

Case 1.)8 = ^[3 or a [3 182].

It is not possible that)3i = r , since z is not in H} (I, E). So we can apply the

inductive hypothesis to establish that slei ())> 0. Bui

or fr-ji^OU //'zCjS?)], so slei^ (/7-2(3))> 0.

Case 2. i3 = a [3 ^2^.

Let /72(i3i) = ctj, = cti. and = subsiUt:-^. a,). jSj cannot be

The inductive hypothesis establishes that slm (q;i)>0. If aj has no 2-d selec

tors, then — fri^oi]), and the lemma is proven. Suppose Œ, has a 2-d

selector x , and = sel (.Y , 0-2). «3 cannot be z , since z is not in HI (I, H).

According to lemma 5-67 then, sien (q '3)> 0. So sien (/rjC/S)) =

slm isvbs 2 (0 ^ 1 , oc-2)y^slm (o - j) > 0 .

Case 3. j3 = a[* jSj or a [2)3i][i ^2] and or ^2 has a 3-d subforest.

Let the largest 3-d subforest of /Sj be /S'j, the largest 3-d subforest of ^2 be ^'2,

= a'l. and /r2(/3'2) = «'2- Cases 1 and 2 demonstrate that

sien (a'i)> 0 and sien (a;'2)> 0. But a'l (and a'2) is a subtree of fr2{0), so

sien (/r2(i3))> 0. QED.

LEMMA 5-70. If jSe Hi (I, =),)3 is explicit, and /r2(j3) = a = a U ylj 8], then

sien ia)>sle!i (y) and slai io:)>sle7i (8).

PROOF.

Case 1. j3 = aU j8j][j gi].

We have /r2(i8) = a, = y, and — 8. Since jS is explicit, neither

iSj nor ^2 is z. By lemma 5-69, slei (y)> 0 and slai (8)> 0. But sien (a) =

slai (y)+ sien (8), so sien (a)> slai (y) and sle?! [a)> slmi (8).

Case 2. /3 = «[3/Sjli jSiJ-

In this case, /^(jS) = a, fr2i^i) = a [2 y]. and = 8. Since neither /3j

nor jSi can be r, slai (8)> 0 and sien (a [2 y])> 0 (by lemma 5-69). It follows

153

that slcji (y)>0. Bui slai (a) = slai (y)+ slm (.6), so slat {.o!)>slrn (y) and

slai ia)> slcji (6).

Case 3. |3 = jSi].

This is impossible: must be a tree.

Case 4. 3 = a [3 jS^].

Now we have /72(/3) = = a. The lemma is established by analysis of

j3i, to which case 1 or 2 will eventually be applied. QED.

The previous two lemmas can be applied to forests which are produced by

explicit 3-d forest grammars. This will help establish a linear relationship

between the 2-d and 1-d yields. It is still possible, however, for an arbitrarily

large 2-d forest to yield a short string. Consider, for example, the explicit tree)3 =

#[2 #[2 #[2 ... #[2 a [1 z]]...]]]. The 1-d frontier of)3 is just a [j z], regardless of

how many 2-nodes /3 has. It is certainly possible to write a grammar with a cycle

with arbitrarily increases the number of consecutive 2-nodes in a forest. But it is

also true that if there were such a cycle, it need never be applied more than a fixed

number of times. Arbitrarily repeated cycle steps add nothing to the 1-d yield of

the grammar. If we are interested in the smallest 3 which yields a particular

string, then we can establish a constant upper bound on the number of consecutive

2-nodes in /3 by analyzing the rules of the grammar. This is formalized in the next

lemma.

LEMMA 5-71. Suppose G is an explicit 3DNF grammar <I.,=,N ,R ,S>^ such

that e N . A =?>* /3, = y, and jS is the smallest forest derived from .4

such thai /ri(3) = Then y has no more than 2'^ consécutive 2-nodes on

any path from its root to a leaf, where c is the number of non-terminals in

N.

PROOF. Let y have the form a i[2 o aU • • • ^2 y']- • •]]]. with m consecutive 2-

nodes. The forest /3 which yields y is a forest with y' as its rightmost subforest

and 3-, 3-2-, or 2-nodes everywhere else. If m is greater than c, then some non

terminal has been applied more than once in generating the 3-2 portion of)3, and

there is a smaller forest with the same yield. The largest possible subforest

without such repetition has 2*^ nodes or less, and the largest possible number of

consecutive 2-nodes in the 2-d yield of a forest of 2'^ nodes is 2'^. So y has no

more than 2'^ consecutive 2-nodes. QED.

If a 2-d forest is explicit and there is a constant bound on the number of con

secutive 2-nodes, then the size of a forest and its 1-d frontier are linearly related.

The next lemma formalizes this result, and the theorem that follows extends it to

sets of 2-d forests which are the yields of explicit 3-d forest grammars.

LEMMA 5-72. Let jS be a forest over HI (E, 5) such that /3 is explicit and there

are no more than m consecutive 2-nodes on a path from its root to a leaf. If y

i s a s u b f o r e s t o f / B , y ̂ r , a n d s l m (y) = Z , t h e n l y I ^ m [2 l — l) + 3 l — I .

PROOF. The lemma is proved by induction on 1.

Base. 1 = 1.

The largest possible y is a ,[2 a 2-.. 0;^ [j [j r]]...]] and /r,(y) = è [] z]. If

there were any 2-1-nodes, then I would be at least 2 (by lemma 5-68). So

155

I = 1 and I y I = /?; + 2 ̂ /?! + 3— 1.

Inductive hypothesis. Assume the lemma is true for I < n .

Inductive step. Show the lemma is true for I = n.

The most expensive way to add a 1-node, ^, to an existing forest y' is to insert

m consecutive 2-nodes at every opportunity. If y' is the largest possible forest

whose frontier has 77—1 nodes, then y is no larger than a ilza 2(2 - - -

<^m [2 ^ tl - • • Ml 7']]- • •]]- So

I y I ^7n+ 1+ m + 2+ m (2(Z— 1)— 1)+ 3(/ — 1)— 1

^2/71 + 3+ 2mZ — 3m + 3/ — 3— 1

^ 2mZ — 771 + 3Z — 1

^ m C2Z — 1)+ 3Z — 1.

QED.

THEOREM 5-73. Suppose G is an explicit 3DNF grammar < Z , E , N , R , S > ^ such

that A € N, A =>*)3, — y, and /3 is the smallest forest derived from A

such that = V. If I is the length of iv and c is the number of non

terminals in N, then 1 y I ^ 2^^ (2Z — 3)+ 3/ — 4.

PROOF. Consider YilG)', the subset of y ilG) which contains only the smallest

forests which yield a string in Y](G). Each of these forests is explicit and has a

constant bound of 2*^ on the number of consecutive 2-nodes (by lemma 5-71). If

y in)' yields w, then slai (y) = hv I — 1. The value sien (y) corresponds to

\ ft'iiy) I when the 1-d frontier is defined, provided we subtract 1 from the size of

u'. We need to subtract 1 because the sleii function does not count the <1, \> at

156

the end of the 1-d frontier. For cach y in i'lCG we can apply lemma 5-72 lo get

I y I ^2'^ (2(Z — 1)— 1)+ 3(/ — 1)— 1

^ 2*^ (2Z — 2— 1)+ 3Z — 3— 1

<2H2Z-3)+ 3/-4.

QED.

It was shown in lemma 5-29 that every 3-d forest grammar with standard

selectors has a yield-equivalent complete grammar. It can now be shown that

every standard 3-d grammar has a yield-equivalent explicit grammar. A grammar

which is complete allows no truncation during the 2-d frontier operation, but

truncation may still occur during the 1-d frontier. This happens if a forest has a

leaf which is a terminal, not a selector. If terminal leaves are eliminated, then no

truncation will occur. The following two lemmas prove for 2 and 3 dimensions

that a forest which contains a terminal leaf has no external 1-d selector.

LEMMA 5-74. If jSe Hi (Z, H) and has a leaf which is a terminal, then |3 has no

external selector.

PROOF. This can be proven by induction on I jS I = Z.

Base. I = \.

/3 is just a terminal a , so |3 has no external selector.

Inductive hypothesis. Assume the lemma is true for I = n—\.

Inductive Step. Show the lemma is true for Z = n.

If i3 = a 3i] for = 1 or 2, then jS, has a terminal leaf. The inductive

hypothesis establishes that jS, has no external selector, so /3 has no external

151

selector.

If /3 = a [i i3]][i gi], then either /3i or g, has a terminal leaf. If 3i has a

terminal leaf, then, by the inductive hypothesis, it has no external selector and

= /7"i(/3j). SO 3 has no external selector. If (Sj has no terminal leaves

and ^2 has a terminal leaf, then the inductive hypothesis establishes that

has no external selector. /rj(/3) is formed by attaching a suffix of /'"iCiSz) to

the end of /rj(3i), so 3 has no external selector. QED.

LEMMA 5-75. If jSe (2, B), fr2i.&) is complete, and /3 has a leaf which is a ter

minal, then /r2C/3) has no external selector.

PROOF. This can be rigorously proven by induction on the size of)3. The most

interesting case is jS = a I3 j8j[2 ^2). If jSj has a terminal leaf, then so does

and /r2(j3). The fact that /r^C/S) is complete assures us that the terminal leaf will

not be truncated during the 2-d frontier operation. But if has a terminal

leaf, then , by lemma 5-74, it has no external selector. The logic is similar if ^2

has a terminal leaf. QED.

If a subforest has no external 1-d selector, then any subforest connected to its

root by a 1-arc will be truncated during the 1-d frontier operation. A 3-d gram

mar can be modified to remove the subforests that will be truncated from the

grammar rules. Once these subforests have been removed, selectors < 1, \> can be

attached to the terminal leaves, and the modified grammar will have the same

yield as the original grammar.

158

LEMMA 5-76. Let G be a 3DNF grammar < Z , E , N , R ,5 >3 such that E contains

only standard selectors. There is a 3DNF grammar G' such that G' is com

plete, G' has no productions A —>a where A e N and a eZ, and

yi(G) = riCG').

PROOF. G' can be constructed according to the steps below. Assume A , B , C, D,

E, F, 1 e N, a ,b , c iZ, and z e 5.

1) Set G =G'.

2) Partition G' according to outside selectors, make G' complete, and restore it to

3DNF.

3) Partition G' again to isolate subforests with terminal leaves. This process

replaces each non-terminal A in G' with A % and Ax •

a) Replace A-^x with Ax ->

b) Replace A — y a with A a .

c) Replace a [i B] , l 43, with A a B and Ax-* ali Bx]•

d) Replace Q 5][;.C], 1 Z 4 3, 14 r < 3, with A ̂ —> <2 [; 5G;^], A ̂ —>

a [; 5 %][r Cx]. A X—> a Bx][r G %], and Ax —» û [/ Bx][r Cx]•

4) Find a rule A a 511^ C in R'.

5) Let s = outsel {B), and form all the m distinct structural forms jSv derived

from by the method of step 3 in the proof of lemma 5-29. Form rules

7; —» a [3 fi][? i3,] and A for each 14 z" 4m , and remove A >

t ? I j 5 I I T C J] .

6) If 1 here is a rule A C], then replace it with A-^-^ a [, B 2].

7) If there is a rule 7", -» c [3 5][; jS,] and Gg contains a rule D -• y [] F] or D -»

159

^ [; £] [] F] where the forest derived from E conlains y . y e .v, and

sel (y . /3,0 = c or c [,/ %], replace the rule for D with D -» y or D -» /^ [/£] to

form Gb ,• Then replace T, -4 a [3 5 Mi <3,] with Ti—t a [, B,][? 3i I-

8) Remove useless rules from G' , return it to 3DNF. and repeal steps 2 through 6

until no further changes can be made.

9) Replace every rule A-* a in R' with A where z = < 1, \>.

Each pass through the algorithm has the net effect of eliminating some forests

with 1-arcs pointing to them, so the algorithm certainly halts. The goal of the

algorithm is to eliminate rules which produce subforests that will be truncated

during the 1-d frontier operation. Then the selector < 1, X.> is attached to any

remaining terminal leaf, so the resulting grammar is complete and produces forests

which have only selectors as leaves.

Step 2 is a partitioning step which does not affect the yield of the grammar.

A non-terminal A ̂ derives forests which have at least one terminal as a leaf. Ax

derives forests which have only selectors as leaves. Steps 4 and 5 also rewrite

some rules without affecting the yield of the grammar.

Steps 6 and 7 eliminate subforests which will be truncated during the 1-d

frontier operation. Lemma 5-75 can be cited to prove that the 1-d yields will not

be affected.

The steps are repeated until no further changes occur. At this point, the

grammar has been effectively pruned so that no subf orests are produced which will

be truncated during the 2-d or 1-d frontier operations. Step 9 attaches the selector

160

< 1, À> to any terminal leaves which remain, so the requirements of the lemma are

satisfied. QED.

Once terminal leaves have been eliminated from a grammar, it can be further

modified so that it will not produce subforests of the form a [3 s], a [2 z][i j3], or

a [2 /3][i z], where z = < 1, X>. When these modifications have been made, the

resulting grammar is explicit.

THEOREM 5-77. Suppose G is a 3DNF grammar < Z , E , N , R , S > i which has

only standard selectors. There is a complete, explicit grammar C =

<Z',E',N\R',S'>3 with standard selectors such that VjCG) = i'lCG').

PROOF. Construct G' according to the steps below. Assume

A,B,C,D,E,FeN',aeZ',xe H'2, and z e E'l-

1) Set G' = G , make G' complete, remove terminal leaves, and partition G'

according to outside selectors.

2) Partition G' again to form A %, Ax , and Az for every A in N'. Rules are

invented as follows:

a) Replace A -» z with

b) Replace A—^x with A^-*x.

c) Replace A —> u [j] with A ̂ —> c2 [j 5 j], A ̂] , a n d A ̂—> û [j]•

d) Replace A -» .v [j 5] with Ay .t [j Bx Bz], and A x-> a" [j 5 %].

e) Replace A-^al^B] where r > 1 with A2—»a[^B j], Ax —» aBx], and

A2 —» fl Bz]•

f) Replace A -4 a fi][i C] where r > 1 with A a 5 jlLj C j], A 2—»

161

iJ [f-SjlLj Cy]. ^4 T—» a 5 j][]], .4 J—> a [^Bij][j C j], A j—>

0 [r Bx][i C j], Ax —• Û [p Bx][i Cx], Ax —> û [r Bx][i Cz]. and —»

a { f B z][]].

g) Replace ^4 —• a [3 fi][2 C] with A J—> a ^ Z""* a [j jB C^'],

A %—» û [3 5 %][2 Cz]. A X—> a [3 Bx Hz C %], Ax —» ^ [3 Bx][%], and Ax —>

a Is-^x].

3) Find a rule A -»a [3 B][? C] (where A , B , and C can have any subscript) in

R ' .

4) Let 5 = ouîsel {B), and form all the m distinct structural forms jS; derived

from C as in step 3 of the proof of lemma 5-29. Form rules 7,—» a[3B][% <3;]

and A^Tj for each 1 ̂ , and remove —» a [3 5][2 C].

5) If trace (x , jS,) = 6 [2] for an a: in s such that Gg has a rule E—, remove

Dz from i3, and replace the .x inG# which selects with 2 to form G^,. If

Gs has a rule £-+ x [j F] for the z which selects Dz , replace it with E-*F.

Then, replace T, a [3 5][2] with T^-t a [3 B^ E2 <3,] .

6) Repeat steps 3, 4, and 5 for each rule A ->a [3 B][2 C].

7) If i?' has a rule —» <3, replace it with -» z.

8) If R ' has a rule A -» a 5][i C2], replace it with A - ^ a l ^ B] .

9) If R' has a rule A -• o 5^ l[i C], replace it with .4 -$ C.

The purpose of the algorithm is to isolate and eliminate rules which produce

only trees whose 1-d frontiers are r. Step 2 partitions the grammar so that a

non-terminal Ai derives forests which contain at least one terminal 1-node. Ax

162

derives forests which have only selectors as 1-nodes and leaves, and derives

forests which have only z as leaves and no 1-nodes. The 1-d frontier of any

forests derived from Ax is z.

Steps 3, 4, and 5 expand the right-hand sides of rules for 3-2 non-terminals

so that 2-d selectors which select z -forests can be eliminated. The modifications

made in step 5 do not affect the 1-d yield, since /ri(a[2z][i j8]) = /ri(/3). The

replacement of a: [, E] with E shortens the path to E. This would cause a problem

if some selector of a containing forest had a path to E, but this is impossible with

standard selectors. Standard 2-d selectors have.paths in T and cannot penetrate a

tree which results from a 2-d frontier step.

Step 7 replaces any z -forest with a single z. Steps 8 and 9 eliminate z -

forests without affecting the 1-d yield. The resulting grammar is complete and it

produces no subforests a [2 z], a z i3], or a [1 /3][i z]. QED.

A Subclass of 1Y3F within Context-Sensitive

It has been demonstrated that for many 3-d forest grammars, there is a linear

size relationship between forests in the 3-d yield and the 2-d yield. It has also

been shown that many grammars have a linear size relationship between the 2-d

yield and the 1-d yield. We now define a subclass of 1Y3F for languages which

exhibit both relationships.

163

DEFINITION 5-78. 1Y3F. is a subset of IY3F. A language L belongs to

1Y3F/ when L =y'i(G) for some 3-d forest grammar G, and if

u-€ }'](G), then there is /3 in }'j(G) such that vVjC/S) = w and l/3l<

/ (I1) for some linear function /.

THEOREM 5-79. If G is a 3-d forest grammar which is increasing, explicit, and

has a deletion constant, then Yi(G)e 1Y3F i.

PROOF. G has a deletion constant and is increasing, so by lemma 5-14, if

a € y), then there is a)3 in F ̂CG) such that lj3l^/(lal)fora linear func

tion / , and /rzljS) = a. G is explicit, so by lemma 5-73, if w e >'j(G), then there

is an oi in ¥2(0) such that /riCa) = w and I a I (Iw I) for a linear function g.

So if w e Yi(C), then there is <3 in y 3CG) such that friiP) = w and 1 jS I ^

A (I w I) where ft is the linear function which is the composition of / and g. QED.

Any explicit 3-d forest grammar with strictly increasing cycles yields a

language in 1Y3F i. The cycles in the grammar can even be overlap cycles as long

as they show a net gain. Certain 0-gain overlap cycles can also be included in a

grammar which yields a 1Y3F ̂ language. If a 0-gain cycle is consistently deleting

in one of its selection processes, then the number of possible cycle steps is limited

by the size of the pre-cycle forest. If too many cycle steps are applied, a path error

occurs when the frontier is taken.

DEFINITION 5-80. Let G be a 3-d forest grammar < 1 , E , N , R , S > i which

contains a cycle whose root is A , A è N. If A =^* j3 and no other cycle

non-terminals are used to derive |3. then /3 is an input forest of the cycle.

164

DEFINITION 5-81. Lei G be a 3DNF grammar with a deletion constant which

contains a cycle. The cycle is linear- if it is a 0-gain overlap cycle such that

the maximum number of cycle steps which can be applied without intro

ducing a path error for an input forest /3 is / (1), where / is a

linear function.

THEOREM 5-82. If G is an explicit 3DNF grammar <Z,E,N ,R ,S>3 which has

a deletion constant and every cycle in G is increasing or linear, then 7 j(G)e

lYSF^.

PROOF. Suppose G has a linear cycle whose root is A , 5 is outside the cycle, and

B derives the input forest j3 for the cycle, A , B ^ N. Suppose also that if

a e y 2(Gb), then YgCGg) has |3 such that /rzCiS) = or and 131 (I a 1). G is

explicit, so if u- e Y jCG), then Y jCG) has S such that /rjCô) = a and IS I ^

/ (I w I). The A -cycle is linear, so there is a linear function h such that if

j4 =>* y and <3 is the input tree which is a subforest of y, then the maximum

number of cycle steps is A (I I). Finally, assume y is the smallest forest

derivable from A such that /ri(/r2Cy)) = = w. Since G has a deletion con

stant and the A -cycle is 0-gain, we know that 18 I = I a I and each step of the

cycle adds no more than a constant number of nodes to the derived 3-d forest. If

this constant is c and the number of steps is s, then

I y 1 ^ 131-I- s X c

(la I)+/! C la I)xc

^ g (16 I)-t- /? (IÔ l)x c

(/ (I l))+A(/(l If I))x c.

Thus, we have established that I y 1 ^g' (I •«' I) where g' is a linear composition of

f , g , and h. Such a composite fund ion can be constructed for each linear cycle

in G . Since the number of cycles in G is ûnite, we can establish a composite func

tion for the whole grammar. We do not have to worry about an infinite composi

tion of functions if there is a cycle of cycles. A cycle of linear cycles can be

analyzed as a single linear cycle. A cycle of increasing cycles can be analyzed as a

single increasing cycle. A mixed cycle of linear and increasing cycles is neither

increasing nor linear, so it is ruled out by the requirements of the theorem. QED.

Linear overlap cycles are significant because the example grammars at the

beginning of this chapter employ them to perform list-processing operations. The

grammar MERGE performs the task of merging two lists into one. The cycle gen

erated by non-terminal M does the merging. Each step in this cycle deletes two

interior nodes and adds two interior nodes without truncating any subforests. So

the cycle has a net gain of 0. Each step of the cycle removes an element from one

of two input lists. So the largest possible number of cycle steps is no greater than

the sum of the elements in the two lists, and this sum is smaller than the number

of nodes in the 2-d input forest.

The grammar SQUASH can be subjected to a similar analysis. It performs the

task of converting a complex list of elements to a simple list. The grammar has

consecutive overlap cycles generated by non-terminals R and W. These cycles

operate on a complex list of elements #[2 a z]], which is initially a full binary

tree. The W -cycle repeatedly splits the leftmost subtree into two subtrees and

attaches them to the front of the list. Each steps adds two interior nodes and

166

deletes two interior nodes without truncating and subtrees. The W-cycle ter

minates when the first element of the old list is moved to become the first element

of the new list. Then, the R -cycle continues the processing of the old list by either

splitting the first element of the old list or by moving an element from the old list

to the new list. Each step of the R -cycle adds the same number of interior nodes

as it deletes, and no step truncates any subforests. The total number of element-

splitting steps over the two cycles is no larger than the number of interior nodes in

the original binary tree. If a full binary tree has n leaves, then it has — 1 inte

rior nodes. So the number of splitting steps is no more than n — I. The number of

element-moving steps is no more than the number of leaves in the original tree.

The number of cycle steps for R and W combined is less than 2n , where n is the

number of leaves in the original tree, and the number of leaves is half the total

number of nodes in the tree. So the number of cycle steps is linearly bounded in

terms of the size of the 2-d frontier of the input tree.

The grammar BA2N yields the subset of {a I ô j"*" such that each string has

2" a's, n > 0. It can now be demonstrated that the language yielded by BA2N is in

1Y3F;.

LEMMA 5-83. \\[BA2N)e 1Y3F;.

PROOF. The grammar BA2N is a composite of the grammars SQUASH, MERGE,

BLIST, and A2N. Inspection of the grammar rules verifies that BA2N is explicit.

No rule generates any of the forbidden subforests. The overlap cycles in BA2N

corne 1 roni SQUASH and MERGE. By the analysis in the paragraphs preceding this

lemma, these cycles are linear and complete. All the other cycles in the grammar

167

are complété, non-overlapping, and increasing. It follows from theorem 5-82 thai

yi(BA2N)e 1Y3F,.QED.

THEOREM 5-84. ALG 3 is a proper subset of 1Y3F i.

PROOF. If L belongs to ALG I , then there is a 3-d forest grammar G such that

Yi(G) = L and G has only standard selectors. There is a grammar G' such that

Yi(G') = Yi(G), G' is complete and explicit (theorem 5-77), and G' is increasing

(lemma 5-30). By theorem 5-79, then, L e 1Y3F i. Lemma 5-83 shows that

Yi(BA2N) is in 1Y3F i, but Yi(BA2N) is not in ALG I (see theorem 5-1). So

ALG 3 is a proper subset of 1Y3F ̂ . QED.

Baldwin (1983) has shown that a linear-bounded grammar can be written

which simulates the frontier operation on a forest in H^(I, E) with standard selec

tors. This grammar can be used for forests with extended selectors if the search

routine on page 241 of Baldwin's dissertation is modified to accommodate them.

Below is a search subgrammar written specifically for 3-d forests. It demonstrates

that the required modification in Baldwin's grammar will not violate the linear

space bound. The non-terminal set for this subgrammar is (<sp2>, ,

<sprn > <rc >, <lb > <llb >, <move >}. The non-terminals <sp^ > are the

search non-terminals. There is one for every sufSx ^ of a path on a 2-d selector of

the input forest. <rc > is a non-terminal which carries a search non-terminal to

the right over a 2-d tree. <lb > and <llb > are symbols representing left brackets

that have been passed over during a carry operation. The initial configuration for

the search is <sp >iS where j3 is the 2-d forest to be traversed. The final

168

configuration is /Bj <move>^2 ̂ 3. where (S, is the tree selected for copying. The

steps which precede and follow these configurations are unchanged from Baldwin's

dissertation. Let the symbol a represent any element of I . The rules for search

are given below.

1) <sp >a -»a <sp > iî p

2) <sp >a <move >a iî p = k,

3) <sp >[2 -» <sp > <rc >[2 if p = Ip',

4) <sp >[2 -»[2<s/)' > if p =2p',

5) <SyD >[i > if = 1/)',

6) > <rc >[2 -^[2<ZZ6 > > <rc >,

7) <llb > <sp > <rc >a -*a <llb > <sp > <rc >,

8) <ltb > <sp > <rc >[^ -> [^ <Ub > <lb > <sp > <rc >,

9) <llb > <sp Xrc >] ̂] <sp >,

10) <lb > <sp > <rc >a -» a <lb > <sp > <rc >

11) <lb> <sp > <rc >[j -* [; <lb > <lb > <sp > <rc >,

12) <Z6 > <5';; > <rc >] —»] <sjO > <rc >,

13) <lLb>a -,a<llb>,

14) <llb >]-*]<llb >,

15) <llb>[j ^[j<llb>,

16) <lb>a —ta<lb>,

17) <Z6>]-»]</6>, and

18) <lb>{j -^{j <lb>.

169

The first 5 rules consume the path p , switching from <sp > to <sp' > when

appropriate. Rules 6 through 12 carry an <sp > to the right over a subtree. Each

time a left bracket is passed over, an <lb > (or <llh > for the first left bracket] is

added. Whenever a right bracket is passed over, an <lb > is erased. When a right

bracket is encountered and only an <llb > marker is present, the carry operation is

complete. Rules 13 through 18 are auxiliary to the carry operation. They just

move the left bracket markers to the right. It is clear from the examination of the

rules above that the number of symbols required to implement the search opera

tion on |3 is 2 + I (31 + 6. where b is the number of left brackets in 3- So the space

required for the operation is linear in the size of the input tree.

THEOREM 5-85. If L = 7 i(G) and L e 1Y3F/ then there is a linear bounded

automaton M which accepts L.

PROOF. Construct M by incorporating in its finite control the 3-d forest grammar

G and the linear bounded grammar which simulates the frontier operation. We

know there is a function / such that if u- e L , then G =>* jS, /7-j(/3) = w, and

I i31 ^ / (IM' I). We also know that the frontier simulator requires space not to

exceed g (1 v I + 131). where g is also a linear function. This space bound is

expressed in terms of I w I + I /31 because the 1 -d f rentier of 3 may be smaller or

larger that 3- If /r,l3) is smaller than 3, then the simulator operates in g (131)

space. If the frontier of 3 is larger, then the simulator operates in g (hv I) space.

In either case, g (I w I + 13 i) is a safe upper bound. M operates according to the

steps below:

170

1) Start with m' on the tape.

2) Mark a working area on the tape of size g (Iv 1 + 1 j31) + / CI u- I + I)31) next

to

3) Generate the next largest |3 derivable from the start symbol of G (or the smal

lest j3 if this is the first time this step is executed). Write)3 in the working

area, replacing what was there before.

4) If j8 will not fit in the working area, then reject ai- and stop.

5) Simulate the frontier operation on /3, replacing it with w' = /riCj3).

6) If the working area is not large enough for the simulation of the frontier, then

go to step 4.

7) Compare w and w'. If they are the same, then accept u- and stop. If they are

not the same, then go to step 3.

M is guaranteed to halt, accepting or rejecting w. The amount of tape required is

on the order of hv 1 + g (I w I +/ (hv I)). QED.

COROLLARY 5-86. If G is a 3-d forest grammar such that y'j(G 1Y3F;, then

there is a context-sensitive grammarG' such that L{G') = ,(G).

PROOF. This follows immediately from the previous theorem and the fact that a

context-sensitive grammar exists for any language which is accepted by a linear

bounded automaton. QED.

This chapter has defined a subclass of 1Y3F whose languages are recognizable

in linear space. 3-d forest grammars must be restricted to achieve this result,

171

but some interesting grammars which simulate list processing can be written

within the restrictions. Grammars with decreasing cycles have not been considered

here. It is an open question whether 1Y3F = 1Y3F/.

172

CHAPTER 6.

OUTSIDE-IN LANGUAGES IN 0Y3F

The 3-d forest grammar BA2N of the previous chapter is an example of a

03YF; language which yields an outside-in macro language. This chapter demon

strates that 0Y3F^ contains some simple 01 macro languages as well as all the 10

macro languages.

DEFINITION 6-1. A simple macro grammar is an 10 or 01 macro grammar

<1., F ,V, p, S, P> such that each cycle has only one non-terminal and

e v e r y r u l e h a s o n e o f t h e f o l l o w i n g f o r m s f o r A , B e F , i F (J z y ,

Xi e V, and e F (JZIJV, 1 :

1) A -^5 (ofj, a,,

2) A (x J, ^^2? • • • > ^B (.0^, O2, • • • , 0;7I

3) or

4) A—^oi.

The definitions of 10 and 01 macro grammars are defined by Fischer (1968).

A simple macro grammar does not have any non-terminals which are arguments of

other non-terminals. Baldwin (1983) has demonstrated that ALGI corresponds

to the class of 10 macro languages, and it immediately follows that simple 10

macro c 10 macro c 0Y3F/.

The 10 Conversion Method

10 macro grammars can be converted directly to 3-d forest grammars. The

direct conversion method replaces a macro rule A ix , y , B {ax , by, cz) with

a forest rule A #[3 B llo #[ia x]][] #[3 &[i y]][, z]]]]], for selectors

173

X = <2,X>, y = <2,1>, and r = <2, 11>. Consider a macro grammar M whose

rules are the following:

1) S ^ A i a l

2) A { x] - ^ A { x x), and

3) Aix^-^xx.

The language L CM) is the set {a^"}, n ^1. We can convert this directly to a 3-d

forest grammar, A2N', whose rules are shown below. Let x = <2,X>and

z = < 1 , X > .

1) 5-4 #[371][2 #[2<2 [l 2]]],

2) a -» #[3 a][2 #[2 ib. and

3) A-» #[2X'[i A-]].

Figure 12 contains a derivation of the grammar A2N' and its frontiers. Con

trast these forests with those of figure 5. The grammars A2N and A2N' have the

same 1-d yield, but they produce different shaped forests. During the 2-d frontier

operation on the forest of A2N', multiple copies of 2-d selectors are made before

the a's replace the selectors. With the corresponding forest of A2N, no 2-d selec

tors are copied. Rather, the a's are copied with each step of the frontier operation.

These examples illustrate that if a simple 3-d grammar generates its yield by copy

ing 2-d selectors, there is a simple 3-d grammar with the same yield which does

not involve the copying of 2-d selectors.

Another method for converting simple macro grammars to 3-d forest gram

mars is presented here which can be generalized to accommodate 01 as well as 10

174

derived 3-d forest
-—2

I

I I
^ 2 1 4^ 2

I I I
a — 1 ^ — 2 ^ — 2 1

I I I I
z a—1 a— 1 —2

I I I
z z a — 1

2-d frontier

a — 1
I
a — 1

I
a — 1

I
z

1-d frontier

FIGURE 12. 3-d forest and yields produced by A2N'.

grammars. This method will be called the 10 construction method. The resulting

grammar will produce forests which look like those of A2N instead of A2N'. It

175

will be useful to have a function which turns a string into a 1-d forest and con

verts macro variables to 2-d selectors. This function is call imap.

DEFINITION 6-2. Suppose M is a macro grammar with terminal set I and

variable set V. The function imap (a): E » Hi Cl, £) is defined as

imap [a o) = a [j imap (a)] and

imap (a] = a for a e Z,

imapixj o') = <2,21-'~^>li imap (o')] and

imap {Xj)= <2,2V~^> for e V.

Let M be a simple 10 macro grammar. A 3-d forest grammar G =

<1,E,N ,R ,S>i can be constructed such that Y o(G) = Z. (M) by the steps

below:

1) Set I equal to the terminal set of M, and add # to I.

2) Set equal to the non-terminal set of M, and make S the same as the start

symbol of M.

3) Set El = { <2,2>, <2,21>,..., <2, 21'""^>), where m is the cardinality of

the variable set of M. Also, set E] = {< 1, A.>} and E3 = (t>-

4) Add rules to R as follows:

a) If M has a rule A -> a, ae (I IjA^)•*", and no non-terminal in a has any

arguments, then put a corresponding rule .4 -» #[? o'] in R, where o' is the

1-d forest such that a' = imap (o).

b) If M has A («i, a;,...), where the a's are strings of terminals and

non-terminals, put A —> #[, a'JE, #[1 a-SK] • - • #[% «'m 1 •••]]] in /?

where a',- = imap (.a,) for each 14: 4m.

176

c) If M has .4 (a- 1, A-2 -V,)-> 5 (aj, a,,...,), where the a's are string

of terminals, non-terminals, and variables, put 5-»

#[3 #[2 ^[2 o'i][] #[2 c r 2][i • • • ^[2 "m] • • • - A] i n R , where cj'; =

imap (o;), l^i ̂ m.

d) If M has A {x j, .v 3,..., o where a is a string of terminals, non

terminals, and variables, then add the rule S—^ #[3 #[2 a']][2^ 1- where

o' = imap (a).

The construction method above is the inversion of Baldwin's direct method.

The inversion of a 3-d grammar relies on a 3-d generalization of lemma 4-48 to

establish that different shaped 3-d forests can have the same yield. Specifically,

/7-i(#[3 #[3 a][2 j3]][2 y]3 = /ri(#[3 ala #[3 j3][2y]]), where a, jS, and y are in

f/3 (I, H) and have no overlapping selectors. The lemmas and culminating

theorem that follow prove that the 10 construction method produces a 3-d forest

grammar which is yield-equivalent to the original macro grammar. The first

lemma establishes the correspondence of the macro substitution operation and the

2-d frontier operation.

LEMMA 6-3. Suppose 3-d forest grammar G is constructed from a simple 10

macro grammar M by the 10 construction method, and M has a derivation

5=^* ^C'yi,-y2----.'ym)=^* 3m)-whereAUi,JC2.

-)5 (oj, 02,...,) is the last type 2 rule applied (see definition 6-1). Sup

pose also that 3-d forest grammar G has a derivation 5 ^ and (=

#[3 #[2 #[2 ̂ i][i #[2 ... #[2] • • •]]]][2 yl where /r2Cy') =

I l l

^^2 ^^2 y JCl *^2 y • • • ^[2 y m] • • • /^'2(C)— #[2^[2^J[l^[2^2^[l •••

#[2 g'm] . . -]]] , o \ = i m a p [O i), o\ =>* Tr,, and /riCy'j) = ijnap (y^),

l^z ^m. Then j3; =#>* "vv,- if and only if fr^i^'i) = w',, where u'', is a string

of terminals and w', = imap (v,).

PROOF. 3t is the string of terminals and non-terminals which results when

(yi, y2,..., y^) is substituted into O;. Let have the form pjv 1P2V 2...

P ; V ; P i + i , where the p's are strings of terminals and non-terminals and the v's are

variables. When the substitution is performed, each Vj, , selects y^ where

Vj refers to the ft th macro argument. So)3i = PiyvjPayvj • P/VvjPi+i- If the p's

contain non-terminals, they are context-free non-terminals which have no argu

ments. They can be expanded to obtain a terminal string jS, =^* u iyvi"2yv2 • • •

The frentier operation on (gives subs2ifr2{^[2 #[2 ^i][] #[2 ̂ 2]^! • • •

...]]]), /raCyO) = #[2 *\.i 3'Jti *\-2 . #[2] • • •]]], where g, is

subs2(7^1, /roCy')), a'; = imap (a,), and o'l =5>* tt; . a', is a bracketed version of O;

with the same p's, and the v's converted to selectors. Let o', be represented as

p'i[].tj[] ... p';[ixjip';+i]] ...]]]]. Each selectoris <2,21^"'>, where v ̂ in

Oj refers to the h th macro argument, a'j is expanded before the 2-d frontier

operation to give = u' jlj z Jj ... u'l [j [j +1]] ...]]]]. The rules in G used to

derive u'j from p'j correspond exactly to rules in M which derive from pj. So

) is a bracketed version of Uj. When fr^iy') is substituted into r,, each Xj

is replaced with #[2 y^]. where = <2,21^~^>. The frontier substitution,

therefore, has the same effect as the macro substitution. The result is =

ill y'x •••"'; [] y'lji u';+i]] ...]]]], and) is iv , a bracketed version of

Wj. QED.

LEMMA 6-4. Suppose 3-d forest grammar G is constructed from a simple 10

macro grammar M by the 10 construction method. M has a derivation S =>*

^ (yi. 72 Ym) =^* 5 (/3i, 182,..., jSm), where A (.v j,

) is the last type 2 rule applied, and g, =>* Wj l<z ,

if and only if G has a derivation B =^* ^ = #[3 #[; #[2 #[; 7r2][i ...

^[2] • • • 8], = #[2 #[1 3'l] [) #[2 ^ 2][l • • • ^[2 ̂ m 1 • • •]]], SOd

/rjC/B';) = w ' i , w h e r e o \ = i m a p (a^), and w', = z'ma/j (w;), l^i <m.

PROOF. The lemma is established by proving the propositions (A) and (B) below.

(A) If S =$>* A (yi, yj.•••. ym)=^ 182 jS^) and JS; =^* w,, l<z ,

then 5 =>* i, fViiO = #[2 #[2#[2... #[2 •••]]]. and /nCg'J =

M-';.

Proof of (A) by induction on n , the number of type 2 macro rules applied to

deriveBCjS'i, /SS,..., 3^).

Base. 7Î = 1.

The macro derivation is 5 .4 (»], an,...,) =>* .4 (y^, y^,..., y^)

(iSj, j32 i3m). using rules 5-» ,4 la], a?) and

.4 (a- J, X 2,...,)-» 5 (O), 02). By steps 4b and 4c of the 10 con

struction method, G has rules 5 —> #[3 #[2 #[2 cr'ili #[2 o • • • #[2 <7'm]

...]]]][2 A] and -» #[2 #[2 a'JLi #[2 aSlCi - - - #[2 1 • • •]]]- If some o'.

179

contains non-terminals, then a'j can be expanded to -, using rules supplied by

step 4a of the construction. Similarly, if some o-'j has non-terminals, it can be

expanded to y, by rules corresponding to those in M which expand a,- to y,.

So B =>* (where ̂ = #[3 #[2 -JLi #[2 ... #[2]. ••]]]]

[2 #[2 #[2y2][] ••• #[2 y'm] •••]]]• and /7-](yi) = imapiyi). Let fviiO

be #[2 #[2... #[2)3'm]...]]]. We are given that <3, w/.so

we can apply lemma 6-3 to get /7"i(i3',) = w',, I < z ^ m.

Inductive hypothesis. Assume (A) is true for n < r .

Inductive step. Show (A) is true for n = r.

The macro derivation is 5 A (aj, a2,...,)=^* A (yi, yz, - - -, Ym)

=>5 ()3i, jSz X and the last type 2 rule applied is A (.r j, x 2,...,)->

jB (Oi, 02,...,). By step 4c of the 10 method, G has a rule B —y

#[3 #[2 #[2 a'lXi #[2 a'2][i ... #[2 o'm] ...]]]][2^]- By the inductive

hypothesis, A =>* 6, /r2(8) = #[2 #[? «'jllj #[2 a'2][i ... #[2 ck''^] ...]]], and

/;-](»';) = irnap iy)). If any o) has non-terminals, it can be expanded to r,

using rules supplied by step 4a of the 10 method. So B =^>* ^ where ^ =

#[3 #[? #[2 ^[2 • • • ^[2] • • •]]]][2 8]' Let /7" 2(4) =

#[? *\.i i3'i][] #[2 ... #[] jS'm] • • •]]], and apply lemma 6-3 lo establish

that /riC3'i) = imap (u-j), 1 ̂ i ^ m.

(B) If a =>* (, MO = #[2 #[2 |8'i][i #[2 g'zJti ... #[2 3';.]...]]]. and) =

v',, then 5 =5>* 5 (jSj, /Sj,..., 3^) and jS, =>* W;, 1 < i

The proof of (B) is similar to the proof of (A). QED.

180

THEOREM 6-5. Suppose a 3-d forest grammar G is constructed from a simple 10

macro grammar M by the 10 construction method. M has a derivation

S a where a is a string of terminals if and only if G has a derivation

5 =>* 3 and /^'jCjS) = imap (a).

PROOF.

First, assume that M has 5 =i>* B (/3i, ...,) =>* a, the last macro

rule applied is B (Zj, ^2 x^) -* o, and)3,- =^* W;, l^r By lemma 6-4,

G has B #[1 ̂ [2 3'i][i ^'m 1 • • •]]] ' 5od) =

imap (wj). By construction step 4d of the 10 method, G has a rule S -y

[3 #[2 o'WiB]. So S => jS where /3 = #[j #[2 o']]!? ^]- By an argument similar

to that in the proof of lemma 6-3, it can be shown that /rjC/B) = oc' where

a' = imap (a).

Now assume G has 5 =?>* #[3 #[% o'EiB] =>* j3 and = imap (a).

Then M must have a rule 5 (x j, a-2, •..,) -^ a. Suppose B can be expanded in

G to give #[3 #[2 #[2 #[2 o'2][i ... #[2 o'm] - - -]]]][2^ i' where

/7-2CO = ^[2y'2]ti ••• #[2y'm] •••]]]. and /riCy,) = may? (iv,),

l ^ i ^ j n . By lemma 6-4, m has5=^* 5(/3i,)32,., i3;„ 3 and |3=^* AV;. AS

discussed in the proof of lemma 6-3, the substitution of (/Sj, jS? /3n,) into o

has the same effect as the substitution of /'"2(4) into o'. So imap (.a) = a' =

/7-,CJ3). QED.

181

The 01 Conversion Method

A generalization of the 10 conversion method can be used to construct 3-d

forest grammars which simulate simple 01 macro grammars. 01 processing allows

non-terminals to be copied before they are expanded. This is simulated by generat

ing a list of possible expansions of each argument. If two copies of some argument

are required, then two distinct elements are taken from the list of possible expan

sions. This method will be called the 01 construction method.

As before, a function will be employed to add 1-brackets to strings and con

vert macro variables to 2-d selectors. This function is similar to imap , except that

the mapping of variables to selectors is more complicated. The symbol will

represent the j th occurrence of the i th argument in the argument list of a macro

non-terminal.

DEFINITION 6-6. Suppose M is a macro grammar with terminal set I and

variable set V. The function omap (o): (I (Jv (I, H) is de&ned as

omap (a a) = a [j oma/) (o)] and

omap (a) = a for o € I,

omap o') = <2. 2V~^22(l2y~^>[i omap [c7')l, and

omap = <2, 21'~^22(l2y for e 7.

Let M be a simple 01 macro grammar. A 3-d forest grammar G =

< I, H, , ̂ , S >3 can be constructed such that FqCG) = L (M) by the steps

below:

1) Set I equal to the terminal set of M and add # to I.

2) Add A , A l , and A 2 t-O N for each non-terminal A of A'/.

3) Add selectors to H and rules to as follows:

a) If M has a rule A — t O , o e (Z(JA^y, and no non-terminal in o has any

arguments, then put a corresponding rule A -» #[2 a'] in /? , where 0' =

omap (o).

b) If A7 has 5-+.4 Caj, «2,... where the a's are strings of terminals and

n o n - t e r m i n a l s , p u t A — » # [2 # [2 ^ i l l l i ^ [2 ^ 2 ! ^ l - i • • • ̂ [2 ̂ l - i]]

...]]] in 7?, where each T, is a newly invented non-terminal. Add rules

Fi-t #[2#[2Q;',][i7'J] and Tj-» #[2 #[2 a';]], for each 141 4m , where

a ' j = o m a p (o f j) .

c) If M has A [x j , X 2 , . 5(oj, 0 2 o ^) , where the o's are string

of terminals, non-terminals, and variables, put B B i, B

^[3 ^[2 y]][2 -S1], jB 1—» #[3 #[2 ylltz ̂ 2]' ^2~^ ^[3 ̂ 1-2 ^]][2-A] in /?.

y is the subforest #[2 0i[i #[2 #[2 o'l^i "J]]] Ii • • • #[30^ [] *{2 #[2 o'm]

[1 ?V.]]]]...], where 0; = <2. 21'-'2(2l/'>, = <2,21'-'21>, is

the number of occurrences of x^ over (aj, 02,^nd o', =

omap Coj), 14 / 4m. 8 is the subforest #[2" i[] #[2 ̂]]]

[1 #[2n it] #[2-]]] [] ... #[2/2^11 #[2-]]]...]].

d) If M has A {x ,, A 2)—> 0 where a contains no non-terminals with

arguments, then add the rule S-> #[3 #[2 o']][2 A] to 7? , where o' =

o m a p (a) .

This construction incihod is an extension of the method for 10 grammars.

Instead of maintaining a lis! of single arguments for a non-terminal, a list of lists

183

of arguments is generated. When copying occurs, multiple distinct versions of an

argument are selected. If a non-terminal derives a forest which will become an

argument of another non-terminal, then an arbitrarily long list of distinct possible

derivations is generated.

Step 3b initializes the argument list for a non-terminal A which has argu

ments aj, «2,..., . New non-terminals are added to generate a list for each

argument which contains an arbitrary number of versions of the argument.

Step 3c produces rules to simulate an 01 derivation step which will involve

the copying of arguments. The new forests, which are created from the old argu

ments, are themselves arguments of another non-temiinal, so multiple versions of

each new forest are generated. List processing techniques are applied to create new

argument lists from the old ones. Repeated occurrences of some .r, in the a's of

the macro rule are replaced with distinct selectors .r, . These selectors will retrieve

distinct versions of argument i from the old argument lists. The work of repeat

edly adding new elements to the argument lists is done by non-terminal B,.

Non-terminal 5 2 initializes the structure by moving the new argument lists gen

erated by the previous macro derivation step to the position of the old argument

lists for the processing of the current macro derivation step. Step 3d terminates

the 01 processing by joining the &rst arguments from each of the argument lists, as

required by a.

The two lemmas below and the theorem that follows verify that the 01

method produces a grammar which is yield-equivalent to the original. The first

184

lemma analyzes the rules generated in step 3c of the method.

LEMMA 6-7. Suppose 3-d forest grammar G is generated from a simple 01 macro

grammar M by the 01 construction method. Assume M has a derivation

5 A («], Qfj....,)=>* 5(/3i, iS, /3m) with A (x,, x,

Bioi, Oi Om) as the last type 2 rule applied, and terminal strings ,

1 ^^, are independently derived from ^m. Let be the number

of occurrences of X; over (aj, o?). Also, assume G has a derivation

A =>* i such that = #[2 I'lLzCjLi #[2 z^2[2^2][i

. .. #[2 V j n [2 4m]] • • •]]]]' (i = *[2 ̂ [2 8; J [1 #[2 ^[2

... #[2 #[28;^]...]]]], and/rjCôiP = oma/? Coj J. G also has a derivation

5j =>*)3 which applies r rules for 5 j, one rule for B1. and which has (as a

subforest. Then = #[2 Y J] U #[2C'2[i y2l][i

- - - *[2 4 m [1 Ym -]]]], y'i = ^[2 J t] ^[2 ̂ ^2

... #[2 # [2 Y i ,]] • • •]]]], for 1 </ ^m, 4'i is with r Xelements removed

from the front, and = omapiwij if and only if 1 ̂ 7 , are

independently derived strings of terminals such that jS, =>* i»', .

PROOF. The lemma is established by proving propositions (A) and (B) below.

(A) If <3; =4>* , 1 < /• , 1 </•, then /r2(i8) =... and) = omap).

Proof of (A) by induction on r.

Base, r = 1.

The derivation of j3 is =^#[3 *[3 ® K2U] where è =

#[2 ^[2 il-i *[2 1 " 1]]]] [] • • • ^[2 f 1 * ̂2 * 1-2 ^'m 1 [] • lli and

185

0 = #[2 #[2 !1 i[i ^[2 ̂]]] tl *[2 2fl ^1-2 - 113 [j • • • ^[2 ^1-2 •']]]••• ID- For

each l^z , o', = omap (Oj), = <2, 21'"'2(2!)'''>, and /%, =

< 2 , 2 1 ' - ' 2 1 > . / ; - 2 C 3) = # [2 # [2 4 ' I [] • • •

#[2 #[2 y m] [1 #[2'^]1]]]...]]. The tree is selected from ^ by com

posing selectors o, and n, . The path of n, leads to the i th argument list ,

and the path of o, removes the first Pi elements from . The forest -y;^ is

formed by substituting ^ into 6 and then into o\. a\ has selectors Z;, of the

form <2,21ft_i22(12y~^> forl</2<m andl<;^/)j. The path leads

to the selector • The composition of X;,^ and forms the path

2l''~^21 •2(12)-'~\ which selects 8^^ from

It needs to be shown that if <3, =#>* u-;^, then /rjCyjj) = omap (w^). j3; is

the macro substitution of (ai, 0:2,.... «m) into o, to form a string of termi

nals and non-terminals. Let j3; have the form •••Pi o'viPi+i. where

Oi = pjv 1P2V2 - • • Pi^iPi+i- The p's are possibly empty strings of terminals

and non-terminals, and the v's are possibly distinct macro variables. Each v

is replaced by some a to form jS, from . The fully expanded g, has the

form = yju,.jy2"vj---y;"v,yi+/. where p, =>* V/ and a.,^ =>* for

1^/ There are several possible versions of AVjJ, resulting from different

expansions of the p's and a's. Each is a version of % , where Vf refers to

the h th macro argument.

Now consider /r,(yij). is built from o\ , the bracketed version of a,.

All the terminals and non-terminals of 0, are in o\. The non-terminals of a\

186

are context-free, and they can be expanded just as in a. Therefore, has

subtrees which yield _v i,... y^+i. Between each pair of these subtrees is a sub

tree 6^ , selected from ^ using selector Xf^^. Selector corresponds to the

j th occurrence of a variable v in o, which refers to the h th macro argument.

So if j has a substring where Vf is the j th occurrence of a selec

tor which refers to the h th macro argument, then y,-^ has a corresponding sub

tree S;, selected by . It is given that J = omap (s/j J. So if jS;

At':,, then there's a corresponding -y^ such that /riCy^) = omap

Inductive hypothesis. Assume (A) is true for r <n.

Inductive step. Show (A) is true for r = n.

The derivation of0is^i=>* #[3 ̂][2 /3'] where ̂ =

#[2 #[2 0 i[i #[2 ^[2llMHi . .. #[2 Om ^[2 ̂ [2] [1]]]] 3 is

derived in r — 1 steps, so the inductive hypothesis an be applied to establish

that is #[2 #{2 Citi y J] [1 ^[2 ̂ 2^1 y 2^1 [1 • • • ^[2 C m ti y"m]] • • •]]]'

y"i — *!^2 7; ,jh 'L2 #[2 • • • ^L2 ^1^2 JJ • • • ("i fei With

(/• — 1)xPi elements removed, and //'iCyi^) = omap), 2^? To get

/'"iC/B), /;2()3') is substituted into The selector Ov selects a sublist of

with/5, elements removed, giving which is 4; with r xelements missing.

The selector 72,- selects y",. By an argument similar to that used for the induc

tive base above, the substitution into a'; results in y;, such that //"iCy,-,) =

omapiw,^). So = #[2 y'J] U *[2r2[i y'l^l ••• '^[2^'mti y'm]]

...]]] where y'; = #[2 #[2yi][i #[2 ^[2ya^ti • • • #[2 ^[2yr]5 • • • and

187

) = omap], for 1 ̂ and 1 ^ ? 4r.

(B) If/7"2t3) = #[2 C'lti y ill C zli 7 2]! [] • • • ^[2 4'm [1 y'm]] • • • 111 Where

. . . a n d f r - i i y i ^) = o m a p { ^ v ^ ^) , t h e n) 3 , = ? > * f o r l ^ z , a n d l ^ r

The proof of CB) is similar to the proof of (A). QED.

LEMMA 6-8. Suppose a 3-d forest C is constructed from a simple 01 macro

grammar M by the 01 construction method. M has a derivation 5 =i>*

5(jSj, iSj,..., /3n,) in which the last type 2 rule applied is

Aixi, X2,---, Bioi, 02,..., o^), and Kz and l<r 4r, are

independently derived strings of terminals such that /3, =?>* if and only

if G has a derivation B =^* 15 where frjUS) = #[2 YiH ti *[2C'2[i 72H

Il • • • ^[2 (m II ym 11 • • • 111' yi = #[2 yi,l[i ^[2 *[2 yijlfi

... #[2 #[2 yi, 11 • • • 1111. and /rjCyj^) = omap).

PROOF. The lemma is established by proving propositions (A) and (B) below.

(A) If M has S =>* 5 (i3j, /32,..., i3;n) in which . .. , and . . . jS; =>* v,., then

G has B =>* /3, //iCyS) = ... , and /riCy,.) = omapiw^).

Proof of (A) by induction on r, the number of type 2 macro rules applied to

derive 5 (/Sj, g?)-

Base, r = 1.

The macro derivation is 5 =?> ^ (a^, «2 B (Bj, ̂ 2- • • • • ^ using

rules iS—> /i (»], Q2— , and j4 (xj, x2, 5 (oj, 03,..., o^).

The a's and jS's are strings of terminals and context-free non-terminals. Let

Sy 1 ̂ z and l^J^q.he terminal strings such that a,- =^* s, , and let

188

be terminals strings such that /3. =?>* 1^? ^r. By steps 3b and 3c of

the 01 construction method, G has rules A -» #[2 #[3 #[% T J] [j T,]]

[] . . . # [2 ^]] . . .]]] , T ; — * ^ [3 ̂ [2 O : ' I] []]] ' ^ [2 ^ [2 B — * B I ,

B] — * ^ [3 ̂ [2 ̂]] [2 ̂ - 8 ^ [3 # [2 ̂]] [2 2 I ' 2 ~ ^ # [3 # [2 6]] [2 1 '

where ^ = #[2 0 jl, #[2 #[2 o'JL, n J]]] [^ ... 0^ [j #[2 #[? o'm] li "m M • • • 1.

6 = # [2 ; 2] [] # [2 r]]] [j # [2 / Z 2 ^ 1 ^ [2 ̂]]] L • • • ^ 1 - 2 [1 ^ [2 3]] • • .]] > O ; =

<2,2r"^2(2iy'>, = <2, 21'"^21>, and pi is the number of occurrences

of macro variable Z; in (oj, Oi,...,)• The rules for A can be tised to derive

(= *[2 ̂ [2 ^[1 (1]] fi #[2 ^ti (2]] fi — #[2 ̂ ti Cm]] • • •]]] where =

#[2 #[2 ^[2 ̂ [2 • • • ^[2 ̂ 1-2 • • •]]]], BOd fr 1(0;';^ =

omap Csj J, 1^7 Let B Bi =^* (3, applying the Sj rule r times, the

Bi rule once, and rules for A to derive Now apply lemma 6-7 to establish

the desired result.

Inductive hypothesis. Assume (A) is true for r <n.

Inductive step. Show (A) is true for r = n.

The macro derivation is 5 => Cai, a? "m) 5 (jS,, j32,..., 3^) where

the last rule applied is .4 ? 5 (oj, a,,...,). The as and

3's are strings of terminals and context-free non-terminals. Let s, ,

and 1 ^y ^^ , be terminal strings such that a. =>* . and let be termi

nals strings such that /3, =>* l^r By step 3c of the 01 construction

method, G has rules 5-»5,, 5,-+ #[3 J' -G]-» #[3 #[2^]][2^2]'

and 51—» #[3 #[2 6]][2-4]. where £ = #[2 ^^[3 ^[2 ^

189

[l #[2 ^[2]]]]...]. 6 = #[2 #[2:]]]

[1 # [2 /Î 2^1 ^1-2 f 1 ••• ^[2 "m tl ^ ̂ 2 ^ •••]]' —*^2,21' '2(2 1 y* >, 71; =

<2, 21'~^21 >, and is the number of occurrences of macro variable in

(aj, 02,..., Ojji). The inductive hypothesis can be applied to establish that

A =4>* (such that fr2iO= #[2 #[21'lti (iD U #[2 ^'2^1 LB U • • • *[2]]

...]]], ~ ^[2 ^[2 *^2 ^^2 • • • ^[2 ^^2 B ~

omap [s; J, ^q. There is a derivation B ^ =^*)3, which applies the

rule for S1 r times, the 5 2 rule once, and rules for ^4 to derive Now

lemma 6-7 can be applied to establish the desired result.

(B) If G has 5 =^* 3,~ ̂̂2 ^[24'iti yj] ti ^ 1-2^2^1'y2ll •••

#[2 Cm li Ym]] • • •]]]' • • • and) = omap), then M has S =>*

B (/Sj, 02,..., <3;^) in which . .. , and jS, =>* for 14 i and 1

The proof of (B) is similar to the proof of (A). QED.

THEOREM 6-9. Suppose a 3-d forest grammar G is constructed from simple 01

macro grammar M by the 01 construction method. M has a derivation

S =>* w , where u- is a terminal string, if and only if G has a derivation

S =4>* 3 and = omap (w).

PROOF. First, assume M has 5-»5 (jSj, 1S2,..., |3,„) ^* Af , and the last macro

rule applied is 5 (.t j, x 2,.. •,)-» a. Let u, be strings of terminals such that

jSj =>* , for l^i 4m and 14 j By lemma 6-8, G has a derivation

B ^ where = #[2 #[2 (J; Yi]] ti ^[2 C zCi 7:]] ti • • • ^[2 Cm Ym]]

...]]], Ji = ...#[2 #[27:,]]---]]]]. and/ri(yi_) =

190

omap), 1 ^r. By step 3d of the 01 method, G has a rule 5 —>

#[3 So 5 =5>* #[3 #[2 o']][2(]- By the same argument as in the proof

of lemma 6-7, it can be shown that the frontier substitution of fr2ii) into the

expansion of o' yields the same string as the macro substitution of

(/3i, 02 3m) into a.

A similar argument can be developed from the initial assumption that G has

S =$>* #[2 a']][2 B] =>* <3. In both cases, we find that /rjC3) = omap {w).

OED.

Consider the 01 macro grammar M which has the following rules;

1) S - * F i A) ,

2) F \ x x) ,

3) F { x) - ^ x x ,

4) A - * b A ,

5) A —^ Ai) J and

Ô3 A —• £2.

The language generated by M is the same as yo(BA2N) from the grammar BA2N

of chapter 5. We can construct a new version of this grammar, BA2N', to illus

trate the 01 construction method. Much of the detail of the 01 nieihod is

unneeded since the macro non-terminal F takes only one argument. Consequently,

occurrences of the macro variable x are converted to selectors whose paths do not

have the prefix 21 '"^2. The rules of BA2N' are the following:

1) F ^ * { 2 * U T] 1

191

2) T - ^ t U ^ l A l ^ T]] ,

3) r^#[2#[2A]],

4) F-.fl,

5) f 1—> #[3 #[2 0 [l ^[2 ^[2251^11]'

6) F #[3 #[2o[i ^[2 ̂ [2^ itl ̂ z]]^!]]]]][2 F 2],

7) F2-»#[3#[2n[l#[2 2]l2F],

8) S —» #[3 #[2 jLi F2].

9) >i-»#[2ft[i^]],

10) A^#[2A[ib[iz]]], and

11) A-> #[2a[i z]].

The selectors are r = <1,\>, 0 = <2,22121>, ;? = <2,21>, .V] = <2,22>,

and X2 = <2,2212>. Rules 1 through 3 come from step 3b of the 01 method

applied to rule 1 of M. Rules 4 through 7 result from applying step 3c to rule 2

of M. Rule 8 is produced when step 3d is applied to rule 3 of M. Rules 9

through 11 result from applying step 3a to rules 4,5, and 6 of M.

The cycle introduced in rule 2 and 3 is strictly increasing. The cycle of rules

5 and 6 is a 0-gain cycle which penetrates deeper into an old argument list with

each step as it generates a new argument list. The new argument Hst is shorter by

half than the old list, since two elements are removed from the old list every time

an element is added to the new list. When rules 4 and 7 are combined with rules 5

and 6, we have a nested cycle. Rule 7 changes a new list to an old list for further

processing by the inside cycle. If I is the size of the initial argument list generated

b y T . t h e n t h e m a x i m u m n u m b e r o f F , - c y c l e s t e p s i s / / 2 + / / 4 + / / 8 +

192

. . . + I I I = I — \ , and the maximum number of full F-cycle steps is log? l - So it

must be true that the number of derivation steps involving rules 4 through 7 does

not exceed 3 log2 I + I — I, which is less than 41. The F-cycle, therefore, is a

linear cycle.

If the T -cycle or F-cycle is applied more times than necessary, some sub-

forests will be truncated when the frontier is taken. It is also true, however, that

each forest in the 2-d yield is the frontier of a 3-d forest which is complete. So

the grammar has a deletion constant of zero.

As a matter of convenience, non-explicit subtrees #[2^] are introduced by

step 3c. These serve as end-of-list markers. An equivalent explicit grammar can

be written without these by adding separate end-of-list rules. As a result of

analyzing the grammar BA2N', we conclude that F](BA2N) e 1Y3F;. This result

is generalized to hold for any 3-d forest grammar constructed by the 10 or 01

conversion method.

THEOREM 6-10. If G is a 3-d forest grammar constructed from an 10 or 01

macro grammar using either the 10 or 01 construction method, then)'i(G

1Y3F;.

PROOF. It needs to be established that there is G' such that Y j(G') = >'i(G) and

G' is explicit, G' has a deletion constant, and every cycle in G' is increasing or

linear. Macro grammars can be written so that no arguments are deleted, so we

will assume that the initial macro grammar is non-deleting. If the 10 method is

used, then the resulting grammar has no overlapping selectors, and previous

theorems assure us that G' can be constructed to meet the above requirements.

193

Suppose the 01 method is used. Non-explicit subtrees are introduced in step

3c, but they can be easily eliminated by adding separate rules to process the last

elements on argument lists. Subforests may be truncated during the frontier

operation if the argument lists are too long, but for every string yielded, there is a

derivation of a forest whose argument lists are exactly the right lengths. So each

string in the 1-d yield can be produced by a complete forest, and the grammar has

deletion constant 0.

The cycles generated by step 3b of the 01 method are strictly increasing. A

cycle introduced by step 3c for a non-terminal B j generates new argument lists

from old argument list's. For each new argument created, a certain number, say r ,

of arguments are removed from one of the old argument lists. "We only need to

consider the case where r > 1 for some argument list. If never exceeds 1, then

the grammar is non-copying, and an equivalent 10 grammar can be written for the

language. So the number of steps in each B i-cycle (and the length of the new

argument list) is no more than I I r, where I is the number of arguments in the

longest argument list. Step 3c also creates a cycle for B which contains 5 j as a

subcycle. At the beginning of each repetition of the B -cycle, the previous new

argument lists become the current old argument lists. Since the new argument list

is always shorter than the old list by a factor of 1 / , the maximum number of

B -cycle repetitions is log^Z. Each full B -cycle step applies 3 rules plus the

number of B,-cycle steps. So the maximum number of rules applied in the B -

cycle is

194

log./ ,
= 3 logX + z —

; = 1 ^ i

logr/ ,
= 3 10g,Z + / Z —

1=1 'i

^3 logr/ + /

<4 Z.

It has been established that G' , the explicit equivalent of G , has a deletion

constant and only increasing or linear cycles. By theorem 5-51, Vi(G')(1Y3F;.

QED.

The 10 and 01 conversion methods have been described for very simple macro

languages to keep the level of detail at a managable level. These methods can be

generalized to allow various-sized argument lists, larger cycles, multiple non

nested macro non-terminals in the right-hand sides of rules, and context-free non

terminals and terminal strings arbitrarily placed between macro non-terminals.

The methods cannot be generalized in a straightforward manner to accommodate

nested macro variables. Baldwin's conversion method assures us that every 10

macro grammar has a corresponding 3-d forest grammar, but conversion methods

for nested 01 macro grammars have not been investigated. Thus, it remains an

open question whether 1Y3F; contains all or just some of the 01 macro languages.

The 01 conversion method can be adapted to operate on 10 macro grammars as

well as 01 macro grammars. To simulate 01 expansion, the 01 method maps

repeated occurrences of macro variables in a single rule to distinct 2-d selectors. If

repeated macro variables are mapped to the same 2-d selectors, then the new

195

grammar simulates 10 expansion. This raises the possibility of using the adapted

01 method to convert simple quoted macro grammars to 3-d forest grammars. The

forest grammars that result, however, may have mixed 0-gain and increasing over

lap cycles. So the present analysis does not guarantee that these 3-d grammars

will yield languages in 1Y3F,.

196

CHAPTER 7.

CONCLUSIONS AND FURTHER WORK

The question which has motivated this research is the following: What is the

simplest formal system that is capable of completely describing common high-

level programming languages? Context-free languages are too simple; context-

sensitive languages are too complicated. The answer is somewhere in between.

Several extensions of the context-free languages have been investigated which

permit the copying and deletion of substrings. The ALG^ language hierarchy is

such an extension in which each level of the hierarchy has more copying power. A

formal system must have the ability to copy substrings in order to model the pas

sage of arguments to subroutines. ALGI has this ability, and it is unlikely that

the increased copying power of higher levels of the hierarchy is useful for describ

ing programming languages.

The 1 YnF hierarchy defined in this thesis has the same copying power as the

ALGn hierarchy, but the ability to delete subforests is enhanced by extended

selectors. As a result of this modification, I YnF broadens the ALG^ language

classes for n > =2 (and perhaps for n = 2). and IY3F is more capable of describ

ing programming languages than ALGI. If 1Y3F is to be truly useful for this pur

pose, however, it must be proven that IY3F is not too broad.

The use of extended selectors allows 3-d forest grammars to specify cycles

which delete arbitrarily long sequences of charaders from yielded strings. There is

little support in the Computer Science literature for analysis of this kind of

197

deletion. Context-sensitive grammars are commonly defined with the restriction

that the left-hand side of a rewriting rule must not be larger than the right-hand

side. This characterization is somewhat misleading, for it seems to imply that

deletion is not tolerated at all in context-sensitive langauges. It is known that

deletion is tolerated if no more than a constant number of consecutive symbols are

deleted from a derived word. Chapter 4 goes further than this, demonstrating that

context-free languages tolerate the deletion of arbitrarily long substrings, provided

there is a regular grammar which describes the deleted substrings, and the deleting

and increasing operations are independent. There is, however, a subset of 1Y2F

which has not been shown to be within context-f ree. These languages are gen

erated by grammars which have complex cycles that intermix simultaneous

decreasing/increasing steps with increasing steps. It seems likely that further

analysis will show these grammars also to have context-free equivalents, or at

worst context-sensitive equivalents.

When 3-d forest grammars are analyzed, it becomes apparent that even a res

tricted subclass of 1Y3F has more languages that ALG 3 . This subclass, 1Y3F;, is

shown in chapter 5 to be a subset of the context-sensitive languages. This is

shown in spite of the fact that the grammars which yield 1Y3F, languages can

have cycles which delete arbitrarily large subforests. The result in chapter 6 that

1Y3F; contains some 01 as well as 10 languages is particularly encouraging. All

high-level programming languages exhibit both 01 and 10 phenomena. Evaluation

of arithmetic expressions and parameter passage using call-by-value are common

examples of 10 phenomena. The passage of functions as parameters, call-by-name

• 198

in Algol, and quoted arguments in Lisp are examples of 01 phenomena. A formal

system which fully describes high-level programming languages must clearly have

both 01 and 10 capabilities. It remains to be investigated whether 1Y3F/ is power

ful enough for this application.

Opportunities for further research in multidimensional forest languages are

plentiful. With regard to 2-d forest languages, it needs to be determined whether

1Y2F =CF. If these classes are not equivalent, then it should be determined

whether 1Y2F cCS. For 3-d forest languages, it is unknown whether 1Y3F =

1Y3F,. If they are not equivalent, then a study could be made to determine if

1Y3F - 1Y3F; contains any interesting languages. It may be true that languages

outside the linear subclass have no forseeable applications, and in that case,

modifications of the forest grammar and frontier definitions might lead to a more

precise characterization of 1Y3F^. In any case, it will be interesting to discover

whether 1Y3F; shares the properties that are known to hold for context-free

and/or context-sensitive languages.

Further research will also be required to determine whether 1Y3F; contains

all the 01 macro languages. If 1Y3F; is to be useful for describing programming

languages, then it will have to contain at least some of the nested 01 and quoted

macro languages. II is likely that IY3F^ can also be shown to contain the yields of

top-down and bottom-up tree transducers on regular sets of trees, and perhaps

even the yields of compositions of tree transducers.

199

The 1 YnF languages share the copying power of the ALG^ languages. Further

work can be done to verify that lYnF forms a proper hierarchy of languages paral

lel to and to generalize the results for 1Y3F to lYnF, n ^3.

Finally, there are a number of other variations of the frontier function which

raise intrig-uing questions. One such variation would allow whole forests to be

copied during the frontier operation. With both standard and extended selectors,

only trees can be selected for copying. If selectors were redefined to allow

specification of a degree, k , as well as a dimension, n , then the selection path could

be traced to retrieve a forest in (I, H) for copying. This is a natural generaliza

tion of standard selectors. It is likely to produce a language hierarchy distinct from

ALGn and perhaps from lYnF as well.

200

BIBLIOGRAPHY

Aggarwal, Sarwan K., and James A. Heinen. 1979. "A General Class of Non-
context-free Grammars Generating Context-free Languages." Information
and Conij-ol 43: 187-194.

Aho, Alfred V. 1968. "Indexed Grammars." Journal of the Association for Com
puting Machinery 15: 647-676.

Aho, Alfred V. 1969. "Nested Stack Automata." Journal of the Association for
Computing Machinery 16: 383-406.

Aho, Alfred V., and Jeffrey D. Ullman. 1977. Principles of Compiler Design.
Addison-Wesley Publishing Company, Reading, Mass.

Bader, Christopher, and Arnaldo Moura. 1982. "A Generalization of Ogden's
Lemma." Journal of the Association for Computiiig Machinery 29: 404-407.

Baker, Brenda S. 1974. "Non-context-free Grammars Generating Context-free
Languages." Information and Control 24: 231-246.

Baker, Brenda S. 1975. "Tree Transducers and Tree Languages." Information and
Control 37: 241-266.

Baker, Brenda S. 1978. "Generalized Syntax Directed Translation, Tree Transduc
ers, and Linear Space." SIAM Journal on Computing 7: 376-391.

Baker, Brenda S. 1979. "Composition of Top-down and Bottom-up Tree Trans
ducers." Information and Control 41: 186-213.

Baldwin, William A. 1983. "Hypertrees — A Study in Language Specification."
Ph. D. dissertation, Iowa State University.

Book, Ronald. 1972. "Terminal Context in Context-sensitive Grammars." SIAM
Journal on Computing 1: 20-30.

Choffrat, Christian, and Kavel Cuhk II. 1983. "Properties of Finite and Pushdown
Transducers." SIAM Journal on Computing 12: 300-315.

Engelfriet, Joost. 1975a. "Bottom-up and Top-down Tree Transformations — a
Comparison." Mathematical Systems Theoiy 9: 198-231.

Engelfriet, Joost. 1975b. "Tree Automata and Tree Grammars." Unpublished
course notes. Department of Computer Science, University of Aarhus, Den
mark.

201

Engelfriet. Joost. 1977. "Top-down Tree Transducers with Regular Look-ahead."
Information and Control 10: 289-303.

Engelfriet, Joost. 1981. "Three Hierarchies of Transducers." Mathematical Systems
Theory 15: 95-125.

Engelfriet, Joost, and Erik Meineche Schmidt. 1977. "10 and 01. Part I." Journal
of Computer and System Sciences 15: 328-353.

Engelfriet, Joost, and Erik Meineche Schmidt. 1978. "10 and 01. Part II." Journal
of Computer and System Sciences 16: 67-99.

Engelfriet, Joost, and S. Skyum. 1982. "The Copying Power of One-state Tree
Transducers." Journal of Computer and System Sciences 25: 418-435.

Engelfriet, Joost, Grzegorz Rozenberg, and Giora Slutzki. 1980. "Tree Transducers,
L-systems, and Two-way Machines." Journal of Computer and System Sci
ences 20: 150-202.

Engelfriet, Joost, Erik Meineche Schmidt, and Jan Van Leeuwen. 1980. "Stack
Machines and Classes of Non-nested Macro-languages." Journal of the Asso
ciation for Computing Machinery 27: 96-117.

Fischer, Michael J. 1968. "Grammars with Macro-like Productions." lEEEConfer-
ence Record 9th Annual Symposium on Switching Automata Theory 131-142.

Ginsburg, Seymour, and Sheila A. Greibach. 1966. "Mappings which Preserve
Context-sensitive Languages." Information and Control 9: 563-582.

Ginsburg, Seymour, and Sheila A. Greibach. 1969. "Abstract Families o f

Languages." Pp. 1-32 in Studies in Abstract Families of Languages. Memoir
no. 87, American Mathematical Society, Providence, R. 1.

Ginsburg, Seymour, and Barbara Partee. 1969. "A Mathematical Model of
Transformational Grammars." Information and Control 15: 297-334.

Ginsburg, Seymour, and Gene F. Rose. 1966. "Preservation of Languages by
Transducers." Information and Control 9: 153-176.

Greibach, Sheila A. 1981. "Formal Languages: Origins and Directions." Annals of
the History of Computing 3(1): 14-41.

Herman, Gabor T., and Grzegorz Rozenberg. 1975. Developmental Systems and
Languages. North-Holland Publishing Company, Amsterdam.

202

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Inîroducuon to Automata Theory.
Languages, and Computation. Addison-Weslcy Publishing Company, Read
ing, Mass.

Horowitz, Ellis, and Sartaj Sahni. 1976. Fundamentals of Data Structures. Com
puter Science Press, Inc., Woodland Hills, California.

Lewis, P. M., and R. E. Stearns. 1968. "Syntax Directed Transduction." Journal of
the Association for Computing Machinery 15: 465-488.

Liu, L., and P. Weiner. 1973. "An Infinite Hierarchy of Intersections of Context-
free Languages." Mathematical Systems Theory 7: 185-192.

Platek, Martin, and Petr Sgall. 1978. "A Scale of Context-sensitive Languages:
Applications to Natural Language." Information and Control 24: 155-162.

Rounds, William C. 1969. "Context-free Grammars on Trees." 1st Theory of Com
puting 143-148.

Rounds, William C. 1970. "Mappings and Grammars on Trees." Mathematical
Systems Theory 4(3): 257-287.

Savitch, Walter J. 1973. "How to Make Arbitrary Grammars Look Like
Context-free Grammars." SI AM Journal on Computing 2: 174-182.

Siromoney, Rani, and Kamala Krithivasan. 1974. "Parallel Context-free
Languages." Information and Control 24: 155-162.

Strawn, George 0. 1982. "Hypertrees and the Modified Chomsky Hierarchy."
Unpublished manuscript. Department of Computer Science, Iowa State
University, Ames, Iowa.

Thatcher, James W. 1973. "Tree Automata: An Informal Survey." Pp. 143-147
in Currents in the Theory of Computing. Prentice Hall, Englewood Cliffs, N.
J.

