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ABSTRACT

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to con-
duct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to
develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs
of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a
model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical
representation of the system, termed the physics-driven surrogate, is created based on the sensor network con-
figuration. The representation consists of a state-space model, coupled with an adaptive mechanism based on
sliding mode theory, to update the stiffness matrix to best match the measured responses, assuming knowledge of
the mass matrix and damping parameters. Second, the physics-driven surrogate model is used to conduct a series
of numerical simulations to map damages of interest to relevant features extracted from the synthetic signals
that integrate uncertainties propagating through the physical representation. The capacity of the algorithm at
detecting and localizing damages is quantified through probability of detection (POD) maps. It follows that such
POD maps provide a direct quantification of the DSNs’ capability at conducting its SHM task. The proposed
approach is demonstrated using numerical simulations on a cantilevered plate elastically restrained at the root
equipped with strain gauges, where the damage of interest is a change in the root’s bending rigidity.

Keywords: Structural health monitoring, dense sensor network, strain, sliding mode observer, probability of
detection

1. INTRODUCTION

Structural health monitoring (SHM) is the automation of the structural integrity assessment task. Of interest
to this paper are SHM strategies based on dense sensor networks (DSNs), which have recently been empowered
through advances in smart materials and signal processing.1–4 The promise of DSNs lies in their high spatial
resolution that yields rich spatio-temporal information about the monitored component.5 If properly harnessed
through strategically tailored signal processing algorithms, such information could dramatically improve struc-
tural condition assessment capabilities, directly enabling condition-based maintenance decisions.

However, linking monitoring data to decisions is not an easy task. The condition assessment capabilities highly
depends on the quality of the integrated design of the SHM solution, which is hard to evaluate. In this paper, we
propose a framework for the validation of DSN design, therefore enabling the optimization of DSN configurations,
including the number of sensing units and their locations within a network. The methodology leverages a
physical surrogate model that gets updated from field data. The idea of numerical model updating is not new.
There exist several examples in the literature of model updating based on vibration data to relate to changes in
stiffness.6–8 However, such model updating techniques are difficult to apply, because they require computationally
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appropriate optimization procedures, precise numerical models, uncertainty quantification, etc.9–11 A solution
is to leverage iterative procedures and simplified models that are more applicable in real-time, yet at the cost of
lower accuracy.12,13

Here, the physical surrogate is a simplified representation of the monitored system that is constructed based
on a given DSN configuration. The performance of the DSN is quantified using the probability of detection (POD)
metric,14,15 which allows assessing the capability of a DSN to quantify damage in an uncertain environment.
Originally developed for nondestructive evaluation applications, the concept of POD has been extended to
SHM applications.16 For instance, Kabban et al.17 proposed a statistical method for analyzing dependent
measurements and demonstrated the method on a representative aircraft structural component. Forsyth et al.18

investigated how POD could be generated from multiple sets of repeated measurements.

Work presented in this paper is a continuation of preliminary studies.19,20 We use the physical surrogate
model to compute POD (or Model Assisted POD - MAPOD) based on user-defined detection requirements
and algorithms. The application of interest is a strain-based DSN previously developed by the authors. The
remainder of the paper is organized as follows. Section 2 describes the DSN assessment framework, including a
description of the DSN of interest, the construction of the reference model and its adaptation, and the MAPOD
process. Section 3 presents and discusses results from numerical simulations conducted on a cantilevered plate
to verify the proposed framework. Section 4 concludes the paper.

2. DENSE SENSOR NETWORK ASSESSMENT FRAMEWORK

The proposed DSN assessment framework is illustrated in Figure 1. For a DSN measuring strain (Sect. 2.1) ε
produced by an input acting on the monitored dynamic system, a least squares estimator (LSE) algorithm is
used to fit strain data and extract displacement and velocity states X. States X along with their estimations
from the reference model, denoted by the hat, are used to update a reference model (Sect. 2.2), here using sliding
mode theory (Sect. 2.3). After the reference model is appropriately updated, it is used to create a responses
bank by simulating uncertainties of interest in the reference model. Note that such a bank requires the including
of a user-defined damage discovery algorithm that links signal to damage assessment. This response bank is used
in generating the POD metrics (Sect. 2.4) to quantify the performance of the DSN configuration.
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Figure 1. Schematic of the DSN assessment framework.

2.1 Strain-based Dense Sensor Network

In this paper, the DSN of interest consists of a network of flexible electronics, termed soft elastomeric capacitors
(SECs), previously proposed by the authors. The SEC technology is a low-cost large area electronics suitable
for strain sensing over large-scale surfaces. Figure 2(a) shows a picture of an SEC measuring 3 x 3 in2. Details
on the fabrication process and derivation of the electromechanical model can be found in Reference.21 Briefly,
the capacitance (C) of an SEC can be estimated from the equation for a parallel plate capacitor assuming a low
sampling rate (< 1000 Hz):
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C = ε0εr
A

h
(1)

where ε0 is the vacuum permittivity (ε0 = 8.854 pF/m), εr is the relative permittivity of the dielectric, A is the
electrode’s surface area of width d and length l, and h is the thickness of the dielectric, as illustrated in Figure
Fig. 2(b). Assuming small strain, Equation 1 can be written:

4C
C0

= λ(εx + εy) (2)

where λ ≈ 2 is the gauge factor, and εx and εy are the strains along the x and y planes, respectively. It
follows from Equation 2 that the sensor measures the additive in-plane strain. Applications of the SEC in
DSN configurations are demonstrated in References,4,22 which demonstrations include the decomposition of
measurements into unidirectional strain maps.

(a)                                                                                                         (b)
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Figure 2. (a) picture of an SEC; and (b) SEC schematic with key components annotated.

2.2 Reference Model

The reference model is constructed as a linear system of the following form

Mq̈(t) + Dq̇(t) + Kq(t) = Bf f(t) (3)

where t denotes time, the dot a time derivative, q(t) ∈ Rn×1 the displacement vector, M ∈ Rn×n,D ∈ Rn×n, and
K ∈ Rn×n the mass, proportional damping, and stiffness matrices, respectively, Bf ∈ Rn×n the force application
vector, and f(t) ∈ Rn×1 the vector of external forces for an n degrees-of-freedom (nDOF) representation. The
dynamic parameter matrices are constructed following a finite element method as a function of sensor locations,
presented in Sect. 3.

Equation 3 is adapted in a state space formulation

Ẋ = AX + Bf
Y = CX

(4)

where X = [q, q̇]T is the state vector, Y is the measurement output, and C the observation matrix, with

A =

[
0 I

−M−1K −M−1D

]
,B =

[
0

−M−1

]
(5)

and C will be defined later for strain measurements.
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2.3 Model Adaptation

The reference model is sequentially updated from measurement inputs using sliding mode theory. Assume that
the system’s stiffnesses K are the only adjustable parameters, and consider the real system and estimated systems:

Ẋ = AX + Bf
˙̂
X = ÂX̂ + Bf

(6)

with

Â =

[
0 I

−M−1K̂ −M−1D

]
(7)

The error between both systems can be written Ã = A− Â, where the tilde denotes the estimation error. The
estimation error matrix Ã can be written Ã = θ̃Q, where θ is the vector of adjustable parameters, and Q is the
matrix containing the non-adjustable parameters. Consider the sliding surface s

s =

(
d

dt
+ c

)
e = Pe (8)

where e = X− X̂ is the state error, P = [1, c] is a user-defined vector, and c is a strictly positive constant, and
take the following Lyapunov function

V =
1

2
(s2 + θ̃Γ−1

θ
˙̃
θT) (9)

where Γθ is the positive definite diagonal matrix representing learning parameters. Function V is positive definite
and contains all time-varying parameters. Taking its time derivative and substituting Equations 6, 8 and 9 yields:

V̇ = sTPė+ θ̃Γ−1
θ

˙̃
θT

= sTP
[
AX− ÂX̂

]
+ θ̃Γ−1

θ
˙̃
θT

= sTP
[
AX− (A− Ã)X̂

]
+ θ̃Γ−1

θ
˙̃
θT

= sTP
[
Ae + ÃX̂

]
+ θ̃Γ−1

θ
˙̃
θT

= eTPTPAe + sTPÃX̂ + θ̃Γ−1
θ

˙̃
θT

(10)

The first term in Equation 10 is negative semi-definite. The adaptation rule is selected such that

sTPÃX̂ + θ̃Γ−1
θ

˙̃
θT < 0 (11)

Using

˙̂
θ = Γθs

TPQX̂ (12)

into Equation 10 and noting that
˙̂
θ = θ̇ − ˙̃

θ = − ˙̃
θ yields

V̇ = eTPTPAe + sTPÃX̂− θ̃Γ−1
θ (Γθs

TPQX̂)

= eTPTPAe + sTPÃX̂− sTPÃX̂

= eTPTPAe

(13)
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showing the stability of the adaptation rule (Equation 12) under persistent excitation.23,24 In the discrete time
form, Equation 12 becomes:

θk+1 = θk − Γθ∆ts
TPQX̂k (14)

2.4 Model Assisted Probability of Detection

MAPOD is used to quantify the performance of a given DSN. The process starts by defining the uncertain
model parameters as random variables with specific probability distributions. Here, we consider the aleatory
uncertainties from the applied load and sensor noise. Uncertainties are introduced in the updated reference
model, and several realizations are generated. For each damage case, maps of dimension Ra×m are produced,
where a is the number of sensors and m is the number of sample points, and concatenated in a response bank.

After, sensor measurements are linked to a damage indicator through a user-defined damage discovery algo-
rithm. Here, for illustrative purposes, we use a simple algorithm that discovers damage based on signal differences
over a period T , assuming a stationary load. To do so, strain measurements are segmented into different streams
S with a size of Ra×m. Let Sk denote the kth stream of the signal. The damage indicator J is defined by the
difference between the initial stage S0 (assumed as ”healthy”) and current measurements Sk

J =
1

T

a∑
i=1

m∑
j=1

∣∣∣Skij − S0
ij

∣∣∣ (15)

Lastly, the MAPOD process is conducted by constructing the J - α plot where α is the damage severity by
drawing the samples and using linear regression to plot the damage indicator versus the degree of damage

ln α̂ = β0 + β1 lnα+ ε (16)

where coefficients β0 and β1 can be determined by a least squares estimator, and the ε has a Normal distribution N (0, σ2
ε )

¯with zero mean and standard deviation σε. For a given threshold ᾱ, the POD is computed as follows:

POD(α) = P (log(α) > ᾱ) = 1− Φ

(
log ᾱ− β0 + β1 logα

σε

)
(17)

3. RESULTS AND DISCUSSION

3.1 Numerical Model

The DSN assessment framework is verified through numerical simulations of a cantilevered plate of length lx = 276
mm, width ly = 33 mm, and thickness lh = 1 mm, illustrated in Figure 3. The plate is Grade 316 stainless steel,
with an assigned Young’s modulus E = 193 GPa, density ρ = 8027kg/m3, and Poisson’s ratio ν = 0.3.

The study starts with the plate virtually equipped with five SECs, and synthetic data were produced in
MATLAB by discretizing the plate into 100 elements and applying a point load at the tip. This MATLAB model is
taken as the real or true system. A white noise excitation with a bandwidth of 100 Hz and magnitude of 20 N
(Figure 3(b)) was used to produce synthetic measurements S0 for the reference model verification stage, and a
harmonic excitation of magnitude 10 N and frequency of 5 rad/s (Figure 3(c)) was used for the MAPOD-based
DSN assessment. An arbitrary 20% Gaussian noise was added to the simulated measurements.
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Figure 3. (a) Virtual system under investigation; (b) white noise excitation; and (c) harmonic excitation.

3.2 Reference Model Verification

The reference model was discretized into six elements, consistent with the number of SECs installed plus an
additional element linking to the fixity. The system’s matrices were constructed by assembling the element mass
Me, stiffness Ke, and damping De matrices

Me =
ρAl

420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2



Ke =
EI

l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2


De = ηKe

(18)

where, for each element, A is the cross-sectional area, l is the length, I is the moment of inertia, and η = 0.0001
is the stiffness proportionality term. Each element comprises two DOFs at each end, one translational and one
rotational, as illustrated in Figure 4. This gives rise to the following state vector

Xe =
[
q1,1 q1,2 q2,1 q2,2 q̇1,1 q̇1,2 q̇2,1 q̇2,2

]T
(19)
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Figure 4. One element displacement notation.

and the element observation matrix Ce is constructed for strain measurement

Ce =
lh
2l

[
0 − 1 0 1

]T
(20)

The assembled state vector X has a total of 24 states. To verify the reference model updating mechanism,
a time history of measurements was produced while changing the bending rigidity of the fixity (element one)
by 20% between simulation time t = 60 and t = 120 sec. The state space matrix A was updated by searching
parameter θ that pre-multiplies bending rigidity EI for that element, with

Ã = −θ

M−1
1 K1 · · · 0 ηM−1

1 K1 . . . 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

 (21)

The displacement and velocity feedback used in the adaptation rule is obtained from the measured strain by
fitting and integrating spatial strain measurements using a kth order polynomial function ε = ξ0 +

∑k
j=1 ξjx

j .
For this study, a polynomial of size k = 3 was utilized. The fitting coefficients ξj are obtained through a least
squares estimator

ξ = (HTH)−1HTε (22)

where H

H =


1 x1 x21 x31
1 x2 x22 x32
...

...
...

1 x5 x25 x35

 (23)

Integrating Equation 23 and assigning the proper boundary conditions yield an expression for q

q = − 2

lh
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ξ1
ξ1
ξ2
...
ξ5
ξ5


(24)

In this paper, the learning rate Γθ was set to 1e−10, and c was set to be 2 for the adaptation mechanism.
Figure 5 plots the results from the adaptation, showing the estimated (red dashed line) versus real (black solid
line) bending rigidity (Figure 5(a)) and the estimation error between referenced model strain ε̂ and measured
strain ε (Figure 5(b)). The offset between the estimated and real bending rigidities is attributed to the level
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of noise in the sensor, observable in the strain difference time histories, to the LSE algorithm used to convert
strain into displacements and velocities, and to the level of simplification using six elements for constructing
the simplified physical surrogate model. Nevertheless, the algorithm was capable of tracking changes in bending
rigidity, which can be used as a measure of damage.
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0 20 40 60 80 100 120 140 160 180 200

time (s)

-2

0

2 10-3
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(a)

Figure 5. (a) adaptation mechanism performance; (b) adapted output tracking error in presence of parameter variation.

3.3 Model Assisted Probability of Detection

We verify the proposed framework by assessing the performance of the DSN configuration using MAPOD and
subjecting the plate to a harmonic load at its tip. Two sources of uncertainties were considered. One is an
uncertainty on the input, where a Gaussian variation of 10% was added to its magnitude. The other is an
uncertainty an the strain measurements, with the 20% added Gaussian noise. A total of 20 damage patterns
were simulated by reducing the bending rigidity of the fixity to represent damage at the cantilever root. Damage
cases were generated by reducing the bending rigidity randomly between α = 0.02 and α = 0.4. Damage is
considered ”discovered” when the damage indicator J becomes larger than the threshold value J = 1e−5. The
analysis conducted using 1000 realizations of synthetic data sets for each damage. The Latin hypercube sampling
technique25 was used to produce independent samples from the uncertainty distributions.

Figure 6(a) is the J − α plots showing the simulated values, linear regression, 95 % confidence bounds on
the linear regression, and damage detection bound. Figure 6(b) is the resulting POD plot and the black curve
represents the upper (conservative) 95% confidence bound of the linear regression. Results show that for the
particular DSN configuration and damage detection algorithm, there is a 50% probability with 95% confidence of
detecting a change of bending rigidity greater than α50/95 = 0.081 at the cantilever’s root (bottom black dashed
arrow), and a 90% probability with 95% confidence of detecting a change greater than α90/95 = 0.113 (upper
black dashed arrow).

The DSN assessment procedure is repeated on different DSN configurations to demonstrate how the proposed
framework can be leveraged in designing a DSN. A total of six DSN scenarios were considered: 5, 6, 7, 8, 9 and
10 SECs. Figure 7(a) illustrates the DSN configuration with 5, 7 and 10 SECs. POD curves were generated
using the same methodology as for the five SECs. Figure 7(b) reports the resulting POD surface plot for damage
detection with a 95% confidence. Results in Figure 7(c) shows that, by increasing the resolution of the network,
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the 90% damage detection with 95% improves substantially from a 11.3% change in bending rigidity using 5
SECs to a 3.1% change in rigidity using 10 SECs.
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Figure 7. (a) Different DSN configurations under investigation (5 SECs (left), 7 SECs (center), and 10 SECs (right)); and
(b) 95% POD surface plots; and (c) 90%/95% damage detection under different DSN configurations.

4. CONCLUSIONS

This paper presented a preliminary investigation of a performance assessment framework for structural health
monitoring solutions leveraging dense sensor networks (DSNs). The framework consists of constructing a physical
surrogate model based on a given DSN configuration, sequentially adapting the model from field data using sliding
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mode theory, and using a model-assisted probability of detection (MAPOD) to assess the DSN’s capability at
detecting user-defined damage cases of varying degrees of severity.

A numerical study was conducted to verify and demonstrate the framework on a simple cantilevered plate
equipped with a DSN measuring strain. Uncertainties considered in the model included uncertainties in the
applied load and sensor noise. Results showed that MAPOD was capable of assessing the performance of the
DSN at detecting damage at the root. Other DSN configurations were considered in the simulations, and the
MAPOD-based assessment showed that it was possible to quantify the performance of each DSN configuration.

Such results could be used to conduct a cost-benefit analysis of the SHM system to select an optimal DSN
resolution. Future work includes the extension of the framework to two-dimensional systems of arbitrary con-
figuration for which soft elatomeric capacitors could be fully leveraged, and the incorporation of multi-location
damage cases.
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