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A note on regression estimation with unknown  
population size 
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Abstract 

The regression estimator is extensively used in practice because it can improve the reliability of the estimated 
parameters of interest such as means or totals. It uses control totals of variables known at the population level 
that are included in the regression set up. In this paper, we investigate the properties of the regression estimator 
that uses control totals estimated from the sample, as well as those known at the population level. This estimator 
is compared to the regression estimators that strictly use the known totals both theoretically and via a simulation 
study. 
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1  Introduction 

Regression estimation has been increasingly used in large survey organizations as a means to improve 

the reliability of the estimators of parameters of interest (such as totals or means) when auxiliary variables 

are available in the population. A comprehensive overview of the regression estimator in survey sampling 

can be found in Cassel, Särndal and Wretman (1976) and Fuller (2009) among others. We next illustrate 

how the regression estimator can be used to estimate the total, = ii U
Y y

  where  = 1, ,U N  denotes

the target population. A sample s  of expected size n  is selected according to a sampling plan  p s  from 

,U  where i is the resulting probability of inclusion of the first order. In the absence of auxiliary variables,

we use the Horvitz-Thompson estimator given by ˆ = i ii s
Y d y   (Horvitz and Thompson 1952) where 

= 1i id  is referred to as the weight survey associated with unit .i  The regression estimator is given by

 REG
ˆ ˆ ˆ ˆ= ,X X BY Y



   (1.1) 

where = ,ii UX x  ˆ = ,i ii s
d X x  2= 1, , , ,i i pix x


x   and B̂  is a p  dimensional vector of 

estimated regression coefficients, which is computed as a function of the observed variables  ,i iy
x  in 

the sample .s  

Note that the components of the vector of population total X  are known for each of the corresponding 

components variables in the vector  2= 1, , ,i i pix x


x   used to compute ˆ .B  However, there are instances 

when we have more observed auxiliary variables in the sample than in the population. Assume that the 

sample has q  observed variables  > ,q p  and that the p  variables in the population are a subset of the 

q  variables observed in the sample. Furthermore, suppose that some of the extra q p  variables in the 

sample are well correlated with the variable of interest .y  Can these extra variables be incorporated in the 
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regression estimator so as to make it more efficient? Singh and Raghunath (2011) attempted to respond to 

that question for the case where = 1.q p   Their extra variable in the sample was the intercept. They used 

it to estimate the unknown population size N  by ˆ = .ii s
N d

  

In this article, we compare the estimator proposed by Singh and Raghunath (2011) to other regression 

estimators when N  is known or unknown. In Section 2, we describe standard regression estimators for 

estimating totals when N  is known as well as the regression proposed by Singh and Raghunath (2011) 

when N  is unknown. In Section 3, an alternative estimator is proposed for the case where N  is unknown. 

A simulation study is carried out in Section 4, to illustrate the performance of the various estimators studied 

in terms of bias and mean square error. Overall conclusions and recommendations are given in Section 5. 

 
2  Regression estimators 
 

Under general regularity conditions (Isaki and Fuller 1982; Montanari 1987), an approximation to the 
regression estimator (1.1) is  

  REG
ˆ ˆ= ,X X BY Y



    (2.1) 

where B  is the limit in probability of B̂  when both the sample and the population sizes tend to infinity. For 

large samples, the variance of regression estimator (1.1) can be studied via (2.1). Note that REGY  is unbiased 

under the sampling plan  p s  and can be re-expressed as:  

 REG = ,X B i i
i s

Y d E



   (2.2) 

where = .i i iE y  x B  

The design variance for REGŶ  can be approximated by  

  REG
ˆAV = ,ji

p ij
i U j U i j

EE
Y

 


   (2.3) 

where =ij ij i j      and ij  is the second order inclusion probability for units i  and .j  Both the model-

assisted (Särndal, Swensson and Wretman 1992) and the optimal-variance (Montanari 1987) approaches 

can be used to estimate .B  They both yield approximately unbiased estimators. In the case of the model-

assisted approach, the basic properties (bias and variance terms) are valid even when the model is not 

correctly specified. Under the optimal-variance approach no assumption is made on the variable of interest.  

The model-assisted estimator of Särndal et al. (1992) assumes a working model between the variable of 

interest  y  and the auxiliary variables   .x  The working model is denoted by : =i i im y   x β  where 

β  is a vector of p  unknown parameters,   = 0,m i iE  x    2= ,m i i iV  x  and  Cov , , =x xm i j i j   

0, .i j  Under this approach, B  in equation (2.1) is the ordinary least squares estimator of β  in the 

population and it is given by  

 
1

GREG = ,B x x xi i i i i i
i U i U

c c y




 

  
   
  
   (2.4) 



Survey Methodology, June 2016 123 
 

 
Statistics Canada, Catalogue No. 12-001-X 

where 2= .i ic   This yields the following estimator for the total Y  

  GREG GREG
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.5) 

where 

 
1

GREG
ˆ = .B x x xi i i i i i i i

i s i s

c d c d y




 

  
   
  
   (2.6) 

The optimal estimator of Montanari (1987), obtained by minimizing the design variance of  

  REG
ˆ ˆ= ,Y Y



  X X B   

is 

  OPT OPT
ˆ ˆ= ,X X BY Y



    (2.7) 

where 

 

    1

OPT

1

ˆ ˆ ˆ= Cov ,

= .

B X X

xx xj ji i
ij ij

i U j U i U j Ui j i j

V Y

y



  



   

  
        

 
 (2.8) 

The optimal estimator for the total Y  is estimated by  

  OPT OPT
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.9) 

where 

 

1

OPT
ˆ = .

xx x
B ij j ij ji i

i s j s i s j sij i j ij i j

y


   

   
         

   (2.10) 

Note that the computation of the regression vectors requires that the first component that defines them 

is invertible. We can ensure this by reducing the number of auxiliary variables that are input into the 

regression if not much loss in efficiency of the resulting regression estimator is incurred. If, on the other 

hand, there is a significant loss in efficiency, then we can invert these singular matrices using generalised 

inverses. 

As mentioned in the introduction, not all population totals may be known for each component of the 

auxiliary vector .x  The regression normally uses the auxiliary variables for which a corresponding 

population total is known. Decomposing ix  as  *1, i

x  where  *
2= , , ,i i pix x


x   Singh and Raghunath 

(2011) proposed a GREG-like estimator that assumes that the regression is based on an intercept and the 

variable * ,x  even though only the population total of the *x  is known.  

For the case that N  is not known and that the population total of *x  is known, their estimator is  
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  * *
SREG 2,GREG
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.11) 

where * *= ii UX x  and * *ˆ = .i ii s
d X x  The regression vector of estimated coefficients 2,GREGB̂  is 

obtained from  GREG 1,GREG 2,GREG
ˆ ˆ ˆ= ,B

B B  given by (2.6). The approximate design variance for SREGŶ  takes 

the same form as equation (2.3), with *
2,GREG= ,i i iE y  x B  where  

      
1

* * * * * *
2,GREG = i i N i N i i N i

i U i U

c c y




 

    
 
 B x X x X x X   

and * *= .N ii U
N

X x  

The properties of (2.11) can be obtained by noting that  

 
 
     

* *
SREG 2,GREG

* * * *
2,GREG 2,GREG 2,GREG

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ= .

Y Y Y Y

Y Y



 

 

  

   

     

X X B

X X B X X B B
  

Since  1 2
2,GREG 2,GREG

ˆ = pO nB B  under some regularity conditions discussed in Fuller (2009, 

Chapter 2), the last term is of smaller order. Thus, ignoring the smaller order terms, we get the following 

approximation  

 SREG
ˆ ,i i i

i s i U

Y Y d E E
 

     (2.12) 

where *
2,GREG= .i i iE y  x B  Thus, SREGŶ  is approximately design-unbiased. The asymptotic variance can 

be computed using  

 
2

= .i i i i i i
i s i U i s i U

V d E E E d E E
   

        
    
      

As we can see, the asymptotic variance can be quite large unless = 0.ii U
E

  
 

Remark 2.1 If = ,i iy a bx  we have  SREG
ˆ ˆ=Y Y N N a   and this implies that  SREG

ˆ =V Y  

 2 ˆ .a V N   This means that if  ˆ > 0,V N   we can artificially increases  2 ˆ ,a V N   the variance of SREG
ˆ ,Y  

by choosing large values of .a  
 

Note that the optimal regression estimator using  *
2= , , px x


x   is also approximately design 

unbiased because  

 
 
     

* * * *
OPT OPT

* * * * * * *
OPT OPT OPT

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ= ,

Y Y Y Y

Y Y



 

 

  

   

     

X X B

X X B X X B B
  

where *
OPTB  is obtained by replacing ix  by *

ix  in equation (2.8). Since  * * 1 2
OPT OPT

ˆ = pO nB B  under 

some regularity conditions discussed in Fuller (2009, Chapter 2), ignoring the smaller order terms we get  
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  * * * *
OPT OPT

ˆ ˆ ˆ .Y Y Y Y


     X X B   

The asymptotic variance of *
OPTŶ  is smaller than the one associated with SREG

ˆ .Y  The reason for this is 

that the optimal estimator minimizes the asymptotic variance among the class of estimators of the form  

  * *ˆ ˆ ˆ ˆ= X X BBY Y


    (2.13) 

indexed by ˆ .B  

 
3  Alternative regression estimator 
 

We now consider an alternative estimator that does not use the population size  N  information. Rather, 

it uses the known inclusion probabilities i  provided that they are known for each unit in the population. 

Given that = ,ii U
n


  we can use  *= ,i i i

z x  as auxiliary data in the model  

 = ,i i iy e z   

where  
ind

20, .i ie    This means that the incorporation of the variance structure ic  of the error in the 

regression vector is given by 2= .i ic d   The resulting estimator is given by  

  KREG KREG
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.1) 

with = ,ii UZ z  ˆ = i ii s
d

Z z  and  

 
1

KREG
ˆ = .B z z zi i i i i i i i

i s i s

c d c d y




 


 
 
   (3.2) 

This estimator corresponds exactly to the one given by Isaki and Fuller (1982). 
 

Remark 3.1 By construction,  

  2
KREG

ˆ = .i i i i
i s

d y 



 z B z 0   

Since i  is a component of ,iz  we have  KREG
ˆ = 0,i i ii s

d y 


 z B  this leads to  

 KREG KREG
ˆ ˆ= .Y Z B   

Thus, KREGŶ  is the best linear unbiased predictor of 
=1

=
N

ii
Y y  under the model  

 *
1 2= ,i i i iy e   x β   

where  20, .i ie    
 



126 Hidiroglou, Kim and Nambeu: A note on regression estimation with unknown population size 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Note that KREGB̂  can be expressed as GREGB̂  by setting 2=i ic d   and = .i ix z  Thus, the proposed 

regression estimator can be viewed as a special case of GREG estimator. Using the argument similar to 

(2.12), we obtain  

 * *
KREG

ˆ ,i i i
i s i U

Y Y d E E
 

     (3.3) 

where *
KREG=i i iE y  z B  and 

 
1

KREG = .i i i i i i
i U i U

c c y




 


 
 
 B z z z   

The proposed estimator is approximately unbiased and its asymptotic variance  

  
**

KREG = ji
i i i ij

i s i U j U i j

EE
V d y 

  

      
 z B   

is often smaller than the asymptotic variance of Singh and Raghunath (2011)’s estimator. 

The optimal version of KREGŶ  uses  *= ,i i i

z x  as auxiliary data. It is given by  

  KOPT KOPT
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.4) 

where KOPTB̂  is obtained by substituting ix  by iz  in equation (2.10). 
 

Remark 3.2 For fixed-size sampling designs, we have   = 0.p i ii s
V d


  In this case, the optimal 

regression coefficient vector    1

KOPT
ˆ ˆ ˆ= Cov ,p pV Y



  B Z Z  cannot be computed because the variance-

covariance matrix  ˆ
pV Z  is not invertible. Thus, the optimal estimator with  *= ,i i i

z x  reduces to 

the optimal estimator (2.9) only using * .ix  
 

Remark 3.3 For random-size sampling designs,   0.p i ii s
V d


   In this case, all of the components of 

 *= ,i i i

z x  can be used in the design-optimal regression estimator (2.9). 
 

A difficulty with using the optimal estimator KOPTŶ  is that it requires the computation of the joint 

inclusion probabilities :ij  these may be difficult to compute for certain sampling designs. An estimator 

that does not require the computation of the joint inclusion probabilities is obtained by assuming that 

= .ij i j    We refer to this estimator as the pseudo-optimal estimator, POPT
ˆ .Y  It is given by  

  POPT POPT
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.5) 

where 

 
1

POPT
ˆ = i i i i i i i i

i s i s

c d c d y




 


 
 
 B z z z   
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and 

 = 1.i ic d    

In general, the pseudo-optimal estimator POPTŶ  should yield estimates that are quite close to those 

produced by KREGŶ  when the sampling fraction is small. Note that POPTŶ  is exactly equal to the optimal 

estimator KOPTŶ  in the case of Poisson sampling. In this sampling design the inclusion probabilities of units 

in the sample are independent. The approximate design variance for KREG
ˆ ,Y  KOPTŶ  and POPTŶ  have the same 

form as the one given in equation (2.3) with the ’siE  respectively given by KREG
ˆ ,i iy  z B  KOPT

ˆ
i iy  z B  

and POPT
ˆ .i iy  z B  

 
4  Simulations 
 

We carried out two simulation studies. The first one used a dataset provided in the textbook of Rosner 

(2006) and the second one was based on an artificial population created according to a simple linear 

regression model. The first simulation assessed the performance of all of the estimators with respect to 

different sample schemes while the second simulation study focused on the impact of changing the intercept 

value in the model. 

The parameter of interest for these two simulations is the total of the variable of interest :y  

= .ii U
Y y

  All estimators were used  GREG OPT POPT SREG KREG
ˆ ˆ ˆ ˆ ˆ, , , ,Y Y Y Y Y  and KOPTŶ  with the available 

auxiliary data. Table 4.1 summarizes the auxiliary data and the variance structure of the errors (when 

applicable) associated with the estimators used in the two studies. 

 
Table 4.1 
Estimators used in simulation 
 

N  known  N  unknown  

GREG2Ŷ  as defined by (2.5) with  2= 1,i ix x  and =ic c  SREG1Ŷ  as defined as special case of (2.11) with  *
2=i ixx   

OPT2Ŷ  as defined by (2.9) with  2= 1,i ix x  OPT1Ŷ  as defined by (2.9) with  2=i ixx   

OPT3Ŷ  as defined by (2.9) with  2= 1, ,i i ix x  KREG2Ŷ  as defined by (3.1) with  2= ,i i ix z  and 2=i ic d   

POPT3Ŷ  as defined by (3.5) with  2= 1, ,i i ix z  and = 1i ic d   KOPT2Ŷ  as defined as (3.4) with  2= ,i i ix z   

 POPT2Ŷ  as defined as (3.5) with  2= ,i i ix z  and = 1i ic d    

 
The performance of all estimators was evaluated based on the relative bias, the Monte Carlo relative 

efficiency and the approximate relative efficiency. Expressions of these quantities as shown below. 
 

1. Relative bias: 
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                     EST
EST

=1

ˆ100ˆRB = ,
R

r

i

Y Y
Y

R Y


  (4.1) 

where  EST
ˆ

rY  represents one of the estimators presented in Table 4.1 as computed in the thr  

Monte Carlo sample. 

2. Monte Carlo Relative efficiency 

                    
 

MC EST
EST

MC GREG2

ˆMSE
ˆRE = ,

ˆMSE

Y
Y

Y
 (4.2) 

where 

                     2

MC EST EST
=1

1ˆ ˆMSE = .
R

r
r

Y Y Y
R

   

The RE  measures the relative efficiency of the estimator ESTŶ  with respect to GREG2
ˆ .Y  

3. Approximate Relative efficiency  

                    
 

EST
EST

GREG2

ˆAV
ˆAR = ,

ˆAV
p

p

Y
Y

Y
 (4.3) 

where 

                  EST
ˆAV = ,ji

p ij
i U j U i i

EE
Y

 


    

is the approximate variance of ESTŶ  with EST= .x Bi i iE y   The approximate relative efficiency 

 AR  measures the relative gain in efficiency of ESTŶ  with respect to GREG2Ŷ  using the population 

residual obtained by Taylor linearisation. It is expected that RE  and AR  give comparable 
results. However, as we will see, this may not be the case.  

 

4.1  Simulation 1 
 

The population was the dataset (FEV.DAT) available on the CD that accompanies the textbook by 

Rosner (2006). The data file contains 654 records from a study on Childhood Respiratory Disease carried 

out in Boston. The variables in the file were: age, height, sex (male female), smoking (indicates whether the 

individual smokes or not) and Forced expiratory volume (FEV). Singh and Raghunath (2011) used the same 

data set. The parameter of interest is the total height  y  of the population. The variable age  1x  was used 

as auxiliary variable in the regression. The variable FEV  2x  was chosen as the size variable to compute 

probabilities of selection for the sampling schemes that are considered in this simulation. The two variables 

sex and smoking were discarded from the simulation. Table 4.2 summarizes the central tendency measures 

of the three variables in the population. For each variable, the mean and median were similar. This indicates 

that the three variables have a symmetrical distribution. 
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Table 4.2 
Descriptive statistics of 1,y x  and 2x  
 

 Min Q1 Median Mean Q3 Max 

y  46 57 61.5 61.14 65.5 74 

1x  3 8 10 9.931 12 19 

2x  0.79 1.98 2.55 2.64 3.12 5.79 

 
Figure 4.1 displays the relationship between the variable of interest y  and the auxiliary variable 1.x  The 

relationship between Height  y  and the age  1x  appears to be linear but does not go through the origin. 

The Pearson correlation coefficient between y  and 1x  was 0.79. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Relationship between the variable of interest Height  and the auxiliary variable .Age  

 
The objective of this simulation study was to evaluate the performance of the estimators presented in 

Table 4.1 using different sampling designs. We considered the Midzuno, the Sampford and the Poisson 

sampling designs. The variable 2x  were used as a size measure for the three sampling schemes to compute 

the inclusion probabilities. These sampling designs are as follows: 

1. Midzuno sampling (see Midzuno 1952): The first unit is sampled with probability ip  and the 

remaining 1n   units are selected as a simple random sampling without replacement from the 

remaining 1N   remaining units in the population. The probabilities of selection ip  for unit i  
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is given by 2 2= .i i ii U
p x x

  The first order inclusion probability for unit i  is given by 

      1= 1 1 .i iN N n p n      

2. Sampford sampling (see Sampford 1967): The algorithm for selecting the sample is carried out 

as follows. The first unit is selected with probability 2 2=i i ii U
p x x

  and the remaining 

1n   units are selected with replacement with probability   1= 1 .i i inp p   If any of the 

units are selected more than once, the procedure is repeated until all elements of the sample are 

different. The probability of inclusion of the first order is given by = .i inp  

3. Poisson sampling: Each unit is selected independently, resulting in a random sample size. The 

probability of selecting unit i  is 2 2= .i i ii U
p x x

  The inclusion probability associated with 

unit i  is = .i inp  A good description of this procedure can be found in Särndal et al. (1992).  

 

The total of = ii U
Y y

  was the parameter of interest. Based on each of these sampling schemes, we 

selected = 2,000R  Monte Carlo samples of size = 50.n  Estimators in Table 4.1 were then computed for 

each sample. The performance of the estimators was then assessed using the Relative Bias, the Monte Carlo 

Relative Efficiency and the Approximate Relative Efficiency as described by the equations (4.1), (4.2) and 

(4.3) respectively. 

 
4.2  Simulation 1 results 
 

Simulation results are presented in Table 4.3. All estimators studied are approximately unbiased, and 

their relative bias is smaller than 1%. We discuss separately the approximate relative efficiency (AR) and 

the relative efficiency (RE) of the estimators when the population size N  is known and unknown. 
 

Case 1: Population size N  is known  

We compare the AR  and the RE  for the following estimators in Table 4.3: GREG2
ˆ ,Y OPT2

ˆ ,Y OPT3Ŷ  and POPT3Ŷ  

for each of the three sampling designs. We can do so for almost all these estimators except for OPT3Ŷ  for the 

Midzuno and the Sampford sampling schemes. In this case, we cannot compute OPT3B  for a similar reason 

as the one described in Remark 3.2. 

On the basis of both AR  and RE,  the pseudo-optimal estimator OPT3Ŷ  is the most reliable estimator 

regardless of the sampling scheme. It is close to the optimal estimator OPT2Ŷ  only in terms of AR.  Both the 

RE  and the AR  of the optimal estimator OPT2Ŷ  were not as close as expected under the Midzuno sampling 

design. The poor behaviour of the RE  of the optimal estimator OPT2Ŷ  has also been observed by Montanari 

(1998). Figure 4.2 explains what is happening. We observe that most estimates obtained for the optimal 

estimator OPT2Ŷ  for the 2,000 Monte Carlo samples are close to the mean. However, in some samples, the 

estimates are quite far from it. This is in contrast to POPT3Ŷ  where the values are tightly centered around the 

mean: note that the associated RE  and AR  are quite close to one another. 
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Figure 4.2 Scatter plots of Monte Carlo estimators under the Midzuno Sampling Design. 

 
The optimal estimator OPT3Ŷ  is equivalent to the pseudo-optimal estimator POPT3Ŷ  in the case of Poisson 

sampling scheme. Recall that the optimal estimator OPT2Ŷ  used  2= 1,i ix x  as auxiliary data. The optimal 

estimator OPT3Ŷ  used  2= 1, ,i i ix x  as auxiliary data. The addition of the i  has significantly improved 

the efficiency of the optimal estimator for the Poisson sampling scheme.  

Singh and Raghunath (2011) used SREG1Ŷ  when N  was known, but did not include it as a control count. 

Nonetheless, they observed that SREG1Ŷ  was quite comparable to GREG2Ŷ  in terms of AR  and RB  for the 

Midzuno sampling design. The reason for this is that this sampling scheme is quite close to simple random 

sampling without replacement. However, using these two measures, SREG1Ŷ  is by far the worst estimator for 

the other two sampling schemes.  
 

Case 2: Population size N  is unknown 

Five estimators are reported in Table 4.3 for this case. However, as KREG2Ŷ  is quite close to KOPT2Ŷ  and 

POPT2
ˆ ,Y  we comment on the results obtained for SREG1

ˆ ,Y  OPT1Ŷ  and KREG2
ˆ .Y  Estimators SREG1

ˆ ,Y  OPT1Ŷ  and 

KREG2Ŷ  were very similar in terms of relative efficiency and approximate relative efficiency for the Midzuno 

sampling design. For the Sampford sampling scheme, OPT1
ˆ ,Y  KREG2Ŷ  and POPT2Ŷ  were comparable and 

slightly better than SREG1
ˆ .Y  Under the Poisson sampling scheme, OPT1Ŷ  and KREG2Ŷ  outperformed SREG1

ˆ .Y  

We can also see that SREG1Ŷ  was very inefficient with an RE  at least 10 times larger than those associated 

with KREG2Ŷ  or POPT2
ˆ .Y  Note that KREG2Ŷ  was better than OPT1

ˆ :Y  this is reasonable as KREG2Ŷ  uses two 

auxiliary variables whereas OPT1Ŷ  uses the single auxiliary variable 2 .ix  
 

O
P

T
2 

es
ti

m
at

or
s 

 2
0,

00
0 

   
   

   
   

   
   

   
   

 3
0,

00
0 

   
   

   
   

   
   

   
 4

0,
00

0 
   

   
   

   
   

   
   

 5
0,

00
0 

   0         500                  1,500                                                     0        500                 1,500 
                      Replicates                                                                               Replicates 

                      OPT2                                                                                     POPT3 

P
O

P
T

3 
es

ti
m

at
or

s 
 2

0,
00

0 
   

   
   

   
   

   
   

   
 3

0,
00

0 
   

   
   

   
   

   
   

 4
0,

00
0 

   
   

   
   

   
   

   
 5

0,
00

0 



132 Hidiroglou, Kim and Nambeu: A note on regression estimation with unknown population size 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 4.3 
Comparison of estimators in terms of relative bias and relative efficiencies 
 

  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

Midzuno  RB (in %)  0.08 0.04  0.07 0.07 0.07 0.07  0.07 
 RE  1.00 5.84  0.54 0.94 0.93 0.93  0.93 
 AR  1.00 0.55  0.55 0.94 0.93 0.93  0.93 

Sampford  RB (in %)  0.11 0.11  0.07 -0.01 0.07 0.02  0.02 
 RE  1.00 0.59  0.58 14.72 13.69 13.55  13.56 
 AR  1.00 0.55  0.56 15.77 14.39 14.39  14.40 

Poisson  RB (in %)  0.11 0.11 0.08 0.08 0.09 0.14 0.16 0.16 0.16 
 RE  1.00 0.96 0.57 0.57 160.47 15.49 13.85 13.85 13.85 
 AR  1.00 0.96 0.55 0.56 180.36 16.73 14.40 14.39 15.73 
 

Note: We do not provide results for OPT3Ŷ  and KOPT2Ŷ  for the Midzuno and Sampford designs because the variance-covariance 
matrix is not invertible. 

 
4.3  Simulation 2 
 

The performance of the estimators was assessed for different values of the intercept in the model. We 

restricted ourselves to the Poisson sampling design to illustrate Remark 2.1 in Section 2: that is the efficiency 

of SREGŶ  deteriorates as the intercept gets bigger. The population was generated according to the following 

model  

 = .i i iy a x e   (4.4) 

The ie  values were generated from a normal distribution with mean 0 and variance 2 = 1.i  The x  

values were generated according to a chi-square distribution with one degree of freedom. Three populations 

of size 5,000N   were generated using (4.4) with different values of the intercept .a  Note that x  values 

were re-generated for each population. The three populations were labelled as A, B and C depending on the 

intercept used. The intercept values were set to 3, 5 and 10 respectively for populations A, B and C. From 

each of these populations we drew = 2,000R  Monte Carlo samples with expected sample size = 50n  

using the Poisson sampling design. The first inclusion probability was set equal to =i i ii U
nz z


   for 

each unit .i  The z  values were generated according to the following model  

 = 0.5 ,i i iz y u   

where iu  was a random error generated according to an exponential distribution with mean k  equals to 0.5 

or 1. 

 
4.4  Simulation 2 results 
 

Numerical results are given in Table 4.4 for = 1k  and Table 4.5 for = 0.5.k  All estimators are 

approximately unbiased with relative biases smaller than 1%.  
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Case 1: Population size N  is known  

As expected, both optimal estimators OPT2Ŷ  and OPT3Ŷ  are more efficient than GREG2
ˆ .Y  The optimal estimator 

OPT2Ŷ  based on  21, ix   is slightly better than GREG2
ˆ .Y  The inclusion of the additional variable i  resulting 

in OPT3Ŷ  yields significant gains in terms of RE  and AR :  these gains decrease as the intercept gets larger. 

Once more, SREG1Ŷ  is quite inefficient, and as noted in Remark 2.1, this inefficiency increases as the intercept 

gets larger. The previous observations are valid regardless of .k  The efficiency of both optimal estimators 

OPT2Ŷ  and OPT3Ŷ  decreases as k  gets smaller. 
 

Case 2: Population size N  unknown 

The most efficient estimator is KREG2
ˆ .Y  It outperforms OPT1Ŷ  as it uses more auxiliary variables. Estimator 

SREG1Ŷ  is by far the most inefficient one. As the intercept in the population model increases, the relative 

efficiency (both in terms of RE  and AR  is fairly stable for KREG2
ˆ .Y  On the other hand, the relative 

efficiencies associated with SREG1Ŷ  and OPT1Ŷ  deteriorate rapidly, as the intercept in the population model 

increases. The effect of k  on the efficiencies of the estimators is as described when the population size is 

known. 

 
Table 4.4 
Relative bias and relative efficiencies of the estimators for = 1k  under Poisson sampling design 
 

Intercept  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

3 RB (in %)  0.23 0.38 0.56 0.56 0.18 0.77 0.22 0.22 0.22 
 RE  1.00 0.95 0.67 0.67 7.72 5.42 0.94 0.94 0.94 
 AR  1.00 0.94 0.60 0.98 7.08 5.01 0.85 0.85 0.91 

5 RB (in %)  0.04 0.07 0.18 0.18 -0.01 0.67 -0.07 -0.07 -0.07 
 RE  1.00 0.99 0.76 0.76 23.91 16.63 1.50 1.50 1.50 
 AR  1.00 0.98 0.70 0.73 23.48 16.20 1.45 1.45 1.52 

10 RB (in %)  -0.01 -0.02 0.06 0.06 -0.57 0.79 -0.02 -0.02 -0.02 
 RE  1.00 1.00 0.80 0.80 88.30 67.47 2.20 2.20 2.20 
 AR  1.00 0.99 0.73 0.74 97.92 66.13 2.15 2.15 2.20 

 
Table 4.5 
Relative bias and relative efficiencies of the estimators for = 0.5k  under Poisson sampling design 
 

Intercept  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

3 RB (in %)  0.13 0.25 0.42 0.42 -0.18 0.54 -0.02 -0.02 -0.02 
 RE  1.00 0.99 0.89 0.89 8.42 5.93 1.78 1.78 1.78 
 AR  1.00 0.96 0.83 0.95 8.30 5.83 1.79 1.79 2.10 

5 RB (in %)  0.03 0.09 0.22 0.22 0.72 1.49 0.18 0.18 0.18 
 RE  1.00 1.00 0.91 0.91 24.35 17.39 3.26 3.26 3.26 
 AR  1.00 0.98 0.88 0.94 23.83 16.41 3.15 3.15 3.54 

10 RB (in %)  0.06 0.07 0.12 0.12 0.33 1.42 0.13 0.13 0.13 
 RE  1.00 1.00 0.96 0.96 98.69 73.93 6.26 6.26 6.26 
 AR  1.00 0.99 0.91 0.92 98.65 66.20 5.89 5.89 6.24 
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5  Conclusions 
 

The regression estimator can be quite efficient if the auxiliary data that it uses are well correlated with 

the variable of interest. Furthermore, it requires that population totals corresponding to the auxiliary 

variables are available. In this article, we investigated the behavior of the regression estimator  SREGŶ  

proposed by Singh and Raghunath (2011). This estimator uses estimated population count as a control total 

and the known population totals for the auxiliary variables. We compared it to the Generalized Regression 

estimator  GREG
ˆ ,Y  its optimal analogue  OPT

ˆ ,Y  and to an alternative estimator  KREGŶ  that uses the first-

order inclusion probabilities and auxiliary data for which the population totals are known. As the optimal 

regression estimator requires the computation of second-order inclusion probabilities, we also included a 

pseudo-optimal estimator  POPTŶ  that does not require them. We investigated the properties of these 

estimators in terms of bias and efficiency via a simulation that included various sampling designs, and 

different values of the intercept in the model for a generated artificial population. We compared the results 

when the population size was known and unknown.  

When the population size is known, the most efficient estimator is the optimal estimator OPTŶ . However, 

since this estimator can be unstable, the pseudo-optimal estimator POPTŶ  is a good alternative to it. This is 

in line with Rao (1994) who favoured the optimal estimator POPTŶ  over the Generalized Regression 

estimator GREG
ˆ .Y  The Singh and Raghunath (2011) proposition to use SREGŶ  is not viable, as it can be quite 

inefficient. When the population size is not known, the alternative regression estimator KREGŶ  is the best 

one to use. 
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