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A note on regression estimation with unknown
population size

Michael A. Hidiroglou, Jae Kwang Kim and Christian Olivier Nambeu'

Abstract

The regression estimator is extensively used in practice because it can improve the reliability of the estimated
parameters of interest such as means or totals. It uses control totals of variables known at the population level
that are included in the regression set up. In this paper, we investigate the properties of the regression estimator
that uses control totals estimated from the sample, as well as those known at the population level. This estimator
is compared to the regression estimators that strictly use the known totals both theoretically and via a simulation
study.
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1 Introduction

Regression estimation has been increasingly used in large survey organizations as a means to improve
the reliability of the estimators of parameters of interest (such as totals or means) when auxiliary variables
are available in the population. A comprehensive overview of the regression estimator in survey sampling
can be found in Cassel, Sarndal and Wretman (1976) and Fuller (2009) among others. We next illustrate
how the regression estimator can be used to estimate the total, Y = Zieu y; where U = {1,..., N} denotes
the target population. A sample s of expected size n is selected according to a sampling plan p(s) from
U, where m; is the resulting probability of inclusion of the first order. In the absence of auxiliary variables,
we use the Horvitz-Thompson estimator given by \fﬁ = Ziesdiyi (Horvitz and Thompson 1952) where
d, = 1/=; isreferred to as the weight survey associated with unit i. The regression estimator is given by

A

Ve =V, +(X-X,) B, (1.1)

RE

where X =" x, X, =Y dx;, % =(LX,,....x;) , and B isa p-dimensional vector of

estimated regression coefficients, which is computed as a function of the observed variables (yi : xiT)T in
the sample s.

Note that the components of the vector of population total X are known for each of the corresponding
components variables in the vector x; = (1, Xoiyeens xpi)T used to compute B. However, there are instances
when we have more observed auxiliary variables in the sample than in the population. Assume that the
sample has q observed variables (q > p), and that the p variables in the population are a subset of the
g variables observed in the sample. Furthermore, suppose that some of the extra q — p variables in the

sample are well correlated with the variable of interest y. Can these extra variables be incorporated in the
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regression estimator so as to make it more efficient? Singh and Raghunath (2011) attempted to respond to
that question for the case where g = p + 1. Their extra variable in the sample was the intercept. They used
it to estimate the unknown population size N by N = Z

ies di-
In this article, we compare the estimator proposed by Singh and Raghunath (2011) to other regression
estimators when N is known or unknown. In Section 2, we describe standard regression estimators for
estimating totals when N is known as well as the regression proposed by Singh and Raghunath (2011)
when N is unknown. In Section 3, an alternative estimator is proposed for the case where N is unknown.
A simulation study is carried out in Section 4, to illustrate the performance of the various estimators studied
in terms of bias and mean square error. Overall conclusions and recommendations are given in Section 5.

2 Regression estimators
Under general regularity conditions (Isaki and Fuller 1982; Montanari 1987), an approximation to the
regression estimator (1.1) is

Veeo =V, + (X - X,)' B, (2.1)

where B is the limit in probability of B when both the sample and the population sizes tend to infinity. For
large samples, the variance of regression estimator (1.1) can be studied via (2.1). Note that Y, is unbiased
under the sampling plan p(s) and can be re-expressed as:

Yees = X'B+ ) diE;, (2.2)

where E, = y, — x/B.
The design variance for \?REG can be approximated by

( REG) ZZA !

71
ieU jeU i TE

m

, (2.3)

F]

where A; = m; — mn; and m; is the second order inclusion probability for units i and j. Both the model-
assisted (Sarndal, Swensson and Wretman 1992) and the optimal-variance (Montanari 1987) approaches
can be used to estimate B. They both yield approximately unbiased estimators. In the case of the model-
assisted approach, the basic properties (bias and variance terms) are valid even when the model is not

correctly specified. Under the optimal-variance approach no assumption is made on the variable of interest.

The model-assisted estimator of Sarndal et al. (1992) assumes a working model between the variable of
interest (y) and the auxiliary variables (x). The working model is denoted by m : y, = x/B + &, where
B is a vector of p unknown parameters, E, (¢, [x;) = 0, V, (¢ |x;) = o7, and Cov, (g, ¢, |x;,x;) =
0,i # j. Under this approach, B in equation (2.1) is the ordinary least squares estimator of B in the
population and it is given by

Biree = (Z C/X, J_l (Z C,X, yiJ, (2.4)

ieU ieU
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where ¢, = o;°. This yields the following estimator for the total Y

A~

~ A~ T A~
YGREG = Yn + (X - Xn) BGREG' (2-5)

where

Bgree = (Z c,dx,x; j 1(Zcidixiyi). (2.6)

ies ies

The optimal estimator of Montanari (1987), obtained by minimizing the design variance of

YOPT =Y, + (X - Xn)T Bopr, (2.7)

where

Bor =V (X,) Cov(X,,Y,)

[ZU:ZU: % ][ZZA j (2.8)

ieU jeU
The optimal estimator for the total Y is estimated by

::‘_H

A

Yorr = Y, + (X - Xn)T Bopr, (2.9)

where

ics jes TGj T0 T ics jes Ly T T

B =[N j (Zxhni) @10)

Note that the computation of the regression vectors requires that the first component that defines them
is invertible. We can ensure this by reducing the number of auxiliary variables that are input into the
regression if not much loss in efficiency of the resulting regression estimator is incurred. If, on the other
hand, there is a significant loss in efficiency, then we can invert these singular matrices using generalised
inverses.

As mentioned in the introduction, not all population totals may be known for each component of the
auxiliary vector x. The regression normally uses the auxiliary variables for which a corresponding
population total is known. Decomposing x; as (l,yc?T)T where x; = (x2i,...,xpi)T , Singh and Raghunath
(2011) proposed a GREG-like estimator that assumes that the regression is based on an intercept and the
variable x”, even though only the population total of the x™ is known.

For the case that N is not known and that the population total of x” is known, their estimator is
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-~ *

~ * ~ T ~
YSREG = Yn + (X - Xn) BZ,GREG’ (2-11)

where X" = > x; and X = )" dx]. The regression vector of estimated coefficients B, sacq is
obtained from Bpee = (BLorecs Bicres) Given by (2.6). The approximate design variance for Y, takes

the same form as equation (2.3), with E, = y, — x;'B where

i 2,GREG

-1
B = (S5 - X055 ] Do - X
v ieU
and Xy = > xf/N _
The properties of (2.11) can be obtained by noting that

YSREG -Y

(X* - X, )T B, grec + (X* - X;)T (ﬁZ’GREG - BZ’GREG)'

Since ﬁz,GREG ~ B,gree = Op(n‘l/z) under some regularity conditions discussed in Fuller (2009,
Chapter 2), the last term is of smaller order. Thus, ignoring the smaller order terms, we get the following
approximation

Y- Y + (X = X)) B, ene
\fﬁ -Y +

Yeres =Y = D d.E; = D E,, (2.12)
ies ieU
where E; =y, — X; "B, gpes. ThUS, Yereo IS approximately design-unbiased. The asymptotic variance can
be computed using

V{édiEi —gEi} = E{(édiEi —EEJZ}.

As we can see, the asymptotic variance can be quite large unless Zieu E, =0.

Remark 2.1 If y, = a+bx, we have Yoo —Y = (N, - N)a and this implies that V (Ygues) =
a’V (N, ). This means thatif vV (N ) > 0, we can artificially increases a’V (N ), the variance of Ygu;,
by choosing large values of a.

Note that the optimal regression estimator using x = (xz,...,xp)T is also approximately design
unbiased because

ok

YOPT_Y :YAn_Y"'( *_X*)Tﬁ:)PT
-Y + B

X
Y’\n (X* - 5(; )T :;PT + (X* - 5(; )T (ﬁ;PT - B:)PT)’

where By, is obtained by replacing x; by x| in equation (2.8). Since Bg,; — Bo.r = O, (n™?) under
some regularity conditions discussed in Fuller (2009, Chapter 2), ignoring the smaller order terms we get
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ok

Yoor =Y =Y, —Y + (X = X})' Bgr.

The asymptotic variance of Y, is smaller than the one associated with Y. The reason for this is
that the optimal estimator minimizes the asymptotic variance among the class of estimators of the form

Yo =Y. +(X -X))'B (2.13)

indexed by B.

3 Alternative regression estimator

We now consider an alternative estimator that does not use the population size (N) information. Rather,
it uses the known inclusion probabilities =; provided that they are known for each unit in the population.

Given that Zieu T, = N, wecanuse z, = (n- xT”T)T as auxiliary data in the model

Y, = zp+e,
ind
where e, ~ (O,Gzni). This means that the incorporation of the variance structure c, of the error in the

regression vector is given by ¢, = d, /c®. The resulting estimator is given by

~

-~ A \T ~
Yires = Vi + (Z - Zn) Byrec (3.1)

with Z = >z, Z=7 dz and

1
ﬁKREG = (Zcidizizrj Zcidiziyi' (3.2)

This estimator corresponds exactly to the one given by Isaki and Fuller (1982).

Remark 3.1 By construction,

Zdiz (Yi - ZiTﬁKREG)Zi = 0.

ies
Since m, is a component of z;, we have " d, (¥, — z/Byges ) = 0, this leads to
YAKREG = ZTﬁKREG'
Thus, Y, is the best linear unbiased predictor of Y = Z.Nzl y;, under the model
y, =B, +x B, +€,

where e ~ (0,6%m;).

Statistics Canada, Catalogue No. 12-001-X



126 Hidiroglou, Kim and Nambeu: A note on regression estimation with unknown population size

Note that B, can be expressed as B, by setting ¢, = d, /o® and x, = z,. Thus, the proposed
regression estimator can be viewed as a special case of GREG estimator. Using the argument similar to
(2.12), we obtain

KREG -Y = zdIEI Z EI*’ (33)

ies ieU

where E; =y, — 2] B,qee and

Byres = (ZC. jlzciziyi.

ieU ieU

The proposed estimator is approximately unbiased and its asymptotic variance

V{5000~ )| = T30, 55

ies ieU jeU i

is often smaller than the asymptotic variance of Singh and Raghunath (2011)’s estimator.

The optimal version of Y, uses z, = (m;,x;")" as auxiliary data. It is given by

~ ~ ~ T A~
YKOPT = Yn + (Z - Zn) BKOPT’ (3-4)

where BKOPT is obtained by substituting x; by z; in equation (2.10).

Remark 3.2 For fixed-size sampling designs, we have V| (ziesdini) = 0. In this case, the optimal
regression coefficient vector By gy =V, (Zn)f1 Cov, (Z,,Y,) cannot be computed because the variance-
covariance matrix V, (Zn) is not invertible. Thus, the optimal estimator with z, = (ni,xfT)T reduces to
the optimal estimator (2.9) only using x; .

Remark 3.3 For random-size sampling designs, V, (Ziesdini) > 0. In this case, all of the components of
z, = (ni , xfT)T can be used in the design-optimal regression estimator (2.9).

A difficulty with using the optimal estimator VKOPT is that it requires the computation of the joint
inclusion probabilities r;: these may be difficult to compute for certain sampling designs. An estimator
that does not require the computation of the joint inclusion probabilities is obtained by assuming that

m; = mn;. We refer to this estimator as the pseudo-optimal estimator, Yoopr- ILis given by

~

~ ~ T A~
YPOPT = Yn + (Z - Zn) BPOPT' (3-5)

where

-1
L (zcuduzuzuj Y.cdizy,

ies ies
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and
c, =d, —1.

In general, the pseudo-optimal estimator Y., should yield estimates that are quite close to those
produced by Y,qec When the sampling fraction is small. Note that Y, is exactly equal to the optimal
estimator YKOPT in the case of Poisson sampling. In this sampling design the inclusion probabilities of units
in the sample are independent. The approximate design variance for Y,qes, Yeopr and Ypger have the same
form as the one given in equation (2.3) with the E,’s respectively given by y, — z/ B aes, Vi — 2 Byopr
and y; - ZiTﬁPopT-

4 Simulations

We carried out two simulation studies. The first one used a dataset provided in the textbook of Rosner
(2006) and the second one was based on an artificial population created according to a simple linear
regression model. The first simulation assessed the performance of all of the estimators with respect to
different sample schemes while the second simulation study focused on the impact of changing the intercept
value in the model.

The parameter of interest for these two simulations is the total of the variable of interest y:
Y =3 V. All estimators were used (Yogeq,Yopr: Yoopr: Ysneo s Yires @Nd Yyopr ) With the available
auxiliary data. Table 4.1 summarizes the auxiliary data and the variance structure of the errors (when
applicable) associated with the estimators used in the two studies.

Table 4.1
Estimators used in simulation

N known N unknown

Yoreo, S defined by (2.5) with x, = (1,x,)" and ¢, = ¢ Vsnec, 8 defined as special case of (2.11) with x| = (x,;)
Yoor, as defined by (2.9) with x; = (1, x,,)" Yoor, as defined by (2.9) with x; = (x,,)

Yoy, as defined by (2.9) with x; = (1, 7;, X, )" Yireoo @S defined by (3.1) with z, = (m;,%,)" and ¢, = d; /o

Yooprs s defined by (3.5) with z, = (1,7,,%,)" and ¢, = d, =1 | Y,opr, asdefined as (3.4) with z, = (m;, X, )"

Yoopr, s defined as (3.5) with z, = (m;,%,)" and ¢, = d, -1

The performance of all estimators was evaluated based on the relative bias, the Monte Carlo relative
efficiency and the approximate relative efficiency. Expressions of these quantities as shown below.

1. Relative bias:
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. 100 &, (Yesrn - Y
RB (Yesr) = RZ(EST(Y))’ (4.1)
i=1

where VESW) represents one of the estimators presented in Table 4.1 as computed in the r®"

Monte Carlo sample.
Monte Carlo Relative efficiency

7 MSE (YAEST )

RE(Y = , (4.2)
( EST) MSEMC (YGREGZ)
where
1 R
MSEMC( EST) - ﬁZ( EST(r) )
r=1
The RE measures the relative efficiency of the estimator Y., with respect to Y qcc,-
Approximate Relative efficiency
R AV (Y,
AR (Voo ) = M (4.3)

AVp (YAGREGZ)

where

ATASED» W=

ieU jeU

is the approximate variance of Yo, with E, =y, — XiTBEST- The approximate relative efficiency
(AR) measures the relative gain in efficiency of VEST with respect to VGREGZ using the population

residual obtained by Taylor linearisation. It is expected that RE and AR give comparable
results. However, as we will see, this may not be the case.

4.1 Simulation 1

The population was the dataset (FEV.DAT) available on the CD that accompanies the textbook by

Rosner (2006). The data file contains 654 records from a study on Childhood Respiratory Disease carried
out in Boston. The variables in the file were: age, height, sex (male female), smoking (indicates whether the
individual smokes or not) and Forced expiratory volume (FEV). Singh and Raghunath (2011) used the same
data set. The parameter of interest is the total height (y) of the population. The variable age (x;) was used
as auxiliary variable in the regression. The variable FEV (X,) was chosen as the size variable to compute
probabilities of selection for the sampling schemes that are considered in this simulation. The two variables
sex and smoking were discarded from the simulation. Table 4.2 summarizes the central tendency measures
of the three variables in the population. For each variable, the mean and median were similar. This indicates
that the three variables have a symmetrical distribution.
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Table 4.2
Descriptive statistics of y, X, and X,
Min Q1 Median Mean Q3 Max
y 46 57 61.5 61.14 65.5 74
X, 3 8 10 9.931 12 19
X, 0.79 1.98 255 2.64 3.12 5.79

Figure 4.1 displays the relationship between the variable of interest y and the auxiliary variable x,. The
relationship between Height (y) and the age (x,) appears to be linear but does not go through the origin.
The Pearson correlation coefficient between y and x, was 0.79.
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Figure 4.1 Relationship between the variable of interest Height and the auxiliary variable Age.

The objective of this simulation study was to evaluate the performance of the estimators presented in
Table 4.1 using different sampling designs. We considered the Midzuno, the Sampford and the Poisson
sampling designs. The variable x, were used as a size measure for the three sampling schemes to compute
the inclusion probabilities. These sampling designs are as follows:

1. Midzuno sampling (see Midzuno 1952): The first unit is sampled with probability p, and the
remaining n — 1 units are selected as a simple random sampling without replacement from the
remaining N — 1 remaining units in the population. The probabilities of selection p, for unit i
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is given by p, = x2i/zieU X,; . The first order inclusion probability for unit i is given by
7 = (N =17 [(N—n)p, +(n-1)].

2. Sampford sampling (see Sampford 1967): The algorithm for selecting the sample is carried out
as follows. The first unit is selected with probability p, = x2i/zieU X,; and the remaining
n —1 units are selected with replacement with probability X, = (1 - np, )‘l p,. If any of the
units are selected more than once, the procedure is repeated until all elements of the sample are
different. The probability of inclusion of the first order is given by «; = np,.

3. Poisson sampling: Each unit is selected independently, resulting in a random sample size. The
probability of selecting unit i is p, = x2i/zieu X,; . The inclusion probability associated with
unit i is m; = np,. A good description of this procedure can be found in Sérndal et al. (1992).

The total of Y = zieu y, was the parameter of interest. Based on each of these sampling schemes, we
selected R = 2,000 Monte Carlo samples of size n = 50. Estimators in Table 4.1 were then computed for
each sample. The performance of the estimators was then assessed using the Relative Bias, the Monte Carlo
Relative Efficiency and the Approximate Relative Efficiency as described by the equations (4.1), (4.2) and
(4.3) respectively.

4.2 Simulation 1 results

Simulation results are presented in Table 4.3. All estimators studied are approximately unbiased, and
their relative bias is smaller than 1%. We discuss separately the approximate relative efficiency (AR) and
the relative efficiency (RE) of the estimators when the population size N is known and unknown.

Case 1: Population size N is known

We compare the AR and the RE for the following estimators in Table 4.3: Yepeqs» Yorrar Yorrs aNd Yogers
for each of the three sampling designs. We can do so for almost all these estimators except for Y., for the
Midzuno and the Sampford sampling schemes. In this case, we cannot compute B, for a similar reason
as the one described in Remark 3.2.

On the basis of both AR and RE, the pseudo-optimal estimator Y,,., is the most reliable estimator
regardless of the sampling scheme. It is close to the optimal estimator \fom only in terms of AR. Both the
RE and the AR of the optimal estimator Y., were not as close as expected under the Midzuno sampling
design. The poor behaviour of the RE of the optimal estimator Y., has also been observed by Montanari
(1998). Figure 4.2 explains what is happening. We observe that most estimates obtained for the optimal
estimator Vom for the 2,000 Monte Carlo samples are close to the mean. However, in some samples, the
estimates are quite far from it. This is in contrast to Y,,,;, Where the values are tightly centered around the
mean: note that the associated RE and AR are quite close to one another.
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Figure 4.2 Scatter plots of Monte Carlo estimators under the Midzuno Sampling Design.

The optimal estimator Y., is equivalent to the pseudo-optimal estimator Y,..., in the case of Poisson
sampling scheme. Recall that the optimal estimator Y., used x;, = (1,X,,)" asauxiliary data. The optimal
estimator Y., used x, = (1,m,, X, )" asauxiliary data. The addition of the =, has significantly improved
the efficiency of the optimal estimator for the Poisson sampling scheme.

Singh and Raghunath (2011) used YSREGl when N was known, but did not include it as a control count.
Nonetheless, they observed that Yeu.s, Was quite comparable to Yqq.., in terms of AR and RB for the
Midzuno sampling design. The reason for this is that this sampling scheme is quite close to simple random
sampling without replacement. However, using these two measures, Ysecc; is by far the worst estimator for
the other two sampling schemes.

Case 2: Population size N is unknown

Five estimators are reported in Table 4.3 for this case. However, as Y,qee, is quite close to Y,opr, and
Yooprs, WE comment on the results obtained for Yeues;, Yopr, aNd Yypea,. EStimators Yeees;, Yopr, and
Y, rea, Were very similar in terms of relative efficiency and approximate relative efficiency for the Midzuno
sampling design. For the Sampford sampling scheme, Yoor;, Yiree, and Yooy, Were comparable and
slightly better than Yg..,. Under the Poisson sampling scheme, Yo, and Y,qeq, OUtperformed Ypeq;.
We can also see that Yoo, Was very inefficient with an RE at least 10 times larger than those associated
With Yypee, OF Ypgpr,. Note that Y,..., was better than Y., this is reasonable as Y,qes, USES two
auxiliary variables whereas Y., uses the single auxiliary variable x,,.
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Table 4.3
Comparison of estimators in terms of relative bias and relative efficiencies

Population size known Population size unknown

YGREGZ YOPTZ YOPT3 YPOPT3 YSREGI YOPTI YKREGZ YKOPTZ YPOPTZ

Midzuno RB (in %) 0.08 0.04 0.07 0.07 0.07 0.07 0.07
RE 1.00 5.84 0.54 0.94 0.93 0.93 0.93

AR 1.00 0.55 0.55 0.94 0.93 0.93 0.93

Sampford RB (in %) 0.11 0.11 0.07 -0.01 0.07 0.02 0.02
RE 1.00 0.59 0.58 14.72 13.69 13.55 13.56

AR 1.00 0.55 0.56 15.77 14.39 14.39 14.40

Poisson  RB (in %) 0.11 0.11 0.08 0.08 0.09 0.14 0.16 0.16 0.16
RE 1.00 0.96 0.57 0.57 160.47 15.49 13.85 13.85 13.85

AR 1.00 0.96 0.55 0.56 180.36 16.73 14.40 14.39 15.73

Note: We do not provide results for Yy.,, and Y,..r, for the Midzuno and Sampford designs because the variance-covariance
matrix is not invertible.

4.3 Simulation 2

The performance of the estimators was assessed for different values of the intercept in the model. We
restricted ourselves to the Poisson sampling design to illustrate Remark 2.1 in Section 2: that is the efficiency
of VSREG deteriorates as the intercept gets bigger. The population was generated according to the following
model

y, =a+x +e. (4.4)

The e, values were generated from a normal distribution with mean 0 and variance o7 = 1. The Xx
values were generated according to a chi-square distribution with one degree of freedom. Three populations
of size N = 5,000 were generated using (4.4) with different values of the intercept a. Note that x — values
were re-generated for each population. The three populations were labelled as A, B and C depending on the
intercept used. The intercept values were set to 3, 5 and 10 respectively for populations A, B and C. From
each of these populations we drew R = 2,000 Monte Carlo samples with expected sample size n = 50
using the Poisson sampling design. The first inclusion probability was set equal to =, = nzi/zieu z, for
each unit i. The z values were generated according to the following model

z, = 0.5y, +u,,

where u; was a random error generated according to an exponential distribution with mean k equals to 0.5
orl.

4.4 Simulation 2 results

Numerical results are given in Table 4.4 for k = 1 and Table 4.5 for k = 0.5. All estimators are
approximately unbiased with relative biases smaller than 1%.
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Case 1: Population size N is known

As expected, both optimal estimators Y., and Y., are more efficient than Y ...,. The optimal estimator
Yopr, based on (1,x,,)" is slightly better than Yqeq,. The inclusion of the additional variable r, resulting
in Ygsq, yields significant gains in terms of RE and AR : these gains decrease as the intercept gets larger.
Once more, Yqueq, i quite inefficient, and as noted in Remark 2.1, this inefficiency increases as the intercept
gets larger. The previous observations are valid regardless of k. The efficiency of both optimal estimators
Yopr, and Y,,;, decreases as k gets smaller.

Case 2: Population size N unknown

The most efficient estimator is Y,qc¢,. It outperforms Y., as it uses more auxiliary variables. Estimator
Yerea, IS by far the most inefficient one. As the intercept in the population model increases, the relative
efficiency (both in terms of RE and AR) is fairly stable for Y,q..,. On the other hand, the relative
efficiencies associated with Y., and Y,,., deteriorate rapidly, as the intercept in the population model

increases. The effect of k on the efficiencies of the estimators is as described when the population size is

known.

Table 4.4

Relative bias and relative efficiencies of the estimators for kK = 1 under Poisson sampling design

Intercept Population size known Population size unknown

YGREGZ Y()PTZ Y()PT3 YPOPT3 YSREGI Y()PTI YKREGZ YKOPTZ YPOPTZ

3 RB (in %) 0.23 0.38 0.56 0.56 0.18 0.77 0.22 0.22 0.22

RE 1.00 0.95 0.67 0.67 7.72 5.42 0.94 0.94 0.94

AR 1.00 0.94 0.60 0.98 7.08 5.01 0.85 0.85 0.91

5 RB (in %) 0.04 0.07 0.18 0.18 -0.01 0.67 -0.07 -0.07 -0.07

RE 1.00 0.99 0.76 0.76 23.91 16.63 1.50 1.50 1.50

AR 1.00 0.98 0.70 0.73 23.48 16.20 1.45 1.45 1.52

10 RB (in %) -0.01 -0.02 0.06 0.06 -0.57 0.79 -0.02 -0.02 -0.02

RE 1.00 1.00 0.80 0.80 88.30 67.47 2.20 2.20 2.20

AR 1.00 0.99 0.73 0.74 97.92 66.13 2.15 2.15 2.20

Table 4.5
Relative bias and relative efficiencies of the estimators for k = 0.5 under Poisson sampling design
Intercept Population size known Population size unknown

YGREGZ YOPTZ YOPT3 YPOPT3 YSREGI YOPTl YKREGZ YKOPTZ YPOPTZ

3 RB (in %) 0.13 0.25 0.42 0.42 -0.18 0.54 -0.02 -0.02 -0.02

RE 1.00 0.99 0.89 0.89 8.42 5.93 1.78 1.78 1.78

AR 1.00 0.96 0.83 0.95 8.30 5.83 1.79 1.79 2.10

5 RB (in %) 0.03 0.09 0.22 0.22 0.72 1.49 0.18 0.18 0.18

RE 1.00 1.00 0.91 0.91 24.35 17.39 3.26 3.26 3.26

AR 1.00 0.98 0.88 0.94 23.83 16.41 3.15 3.15 3.54

10 RB (in %) 0.06 0.07 0.12 0.12 0.33 1.42 0.13 0.13 0.13

RE 1.00 1.00 0.96 0.96 98.69 73.93 6.26 6.26 6.26

AR 1.00 0.99 0.91 0.92 98.65 66.20 5.89 5.89 6.24
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5 Conclusions

The regression estimator can be quite efficient if the auxiliary data that it uses are well correlated with
the variable of interest. Furthermore, it requires that population totals corresponding to the auxiliary
variables are available. In this article, we investigated the behavior of the regression estimator (?SREG)
proposed by Singh and Raghunath (2011). This estimator uses estimated population count as a control total
and the known population totals for the auxiliary variables. We compared it to the Generalized Regression
estimator (Ygqc ). its optimal analogue (Yop; ), and to an alternative estimator (Y, ) that uses the first-
order inclusion probabilities and auxiliary data for which the population totals are known. As the optimal
regression estimator requires the computation of second-order inclusion probabilities, we also included a
pseudo-optimal estimator (VPOPT) that does not require them. We investigated the properties of these
estimators in terms of bias and efficiency via a simulation that included various sampling designs, and
different values of the intercept in the model for a generated artificial population. We compared the results
when the population size was known and unknown.

When the population size is known, the most efficient estimator is the optimal estimator Y, . However,
since this estimator can be unstable, the pseudo-optimal estimator Y., is a good alternative to it. This is
in line with Rao (1994) who favoured the optimal estimator Y..,, over the Generalized Regression
estimator Y,qes. The Singh and Raghunath (2011) proposition to use Y is not viable, as it can be quite
inefficient. When the population size is not known, the alternative regression estimator Y, ... is the best
one to use.
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