
Estimating a parametric lifetime distribution from superimposed renewal

process data

by

Ye Tian

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Statistics

Program of Study Committee:

William Q. Meeker, Major Professor

Huaiqing Wu

Ulrike Genschel

Ranjan Maitra

Vivekananda Roy

Iowa State University

Ames, Iowa

2013

Copyright c© Ye Tian, 2013. All rights reserved.

ii

DEDICATION

To my family.

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . x

ABSTRACT . xi

CHAPTER 1. GENERAL INTRODUCTION 1

1.1 General Introduction . 1

1.1.1 Background . 1

1.1.2 Data Structures . 2

1.1.3 Motivation . 3

1.1.4 Dissertation Organization . 5

References . 5

CHAPTER 2. ESTIMATING A PARAMETRIC LIFETIME DISTRI-

BUTION FROM SUPERIMPOSED RENEWAL PROCESS DATA

BASED ON NONHOMOGENEOUS POISSON PROCESS MOD-

ELING . 6

2.1 Introduction . 7

2.1.1 Background and Motivation . 7

2.1.2 Problem Formulation . 9

2.1.3 Related Work . 10

2.1.4 Overview . 13

iv

2.2 Proposed Method . 13

2.2.1 Proposed Model . 13

2.2.2 Renewal ECF and Renewal Intensity Function for a Single Renewal

Process . 15

2.2.3 Likelihood . 16

2.3 Comparison of the Proposed NHPP Estimator with Alternatives 17

2.3.1 Design of the Simulation Experiment 17

2.3.2 Simulation Experiment Results 18

2.4 Interval Estimation . 21

2.5 Application to the Simulated Gearbox Data 24

2.6 Concluding Remarks and Areas for Future Research 25

References . 27

CHAPTER 3. ESTIMATING A PARAMETRIC COMPONENT LIFE-

TIME DISTRIBUTION FROM A COLLECTION OF SUPERIM-

POSED RENEWAL PROCESSES . 29

3.1 Introduction . 30

3.1.1 Background . 30

3.1.2 Example . 30

3.1.3 Related Work . 31

3.1.4 Overview . 33

3.2 Data and Model . 34

3.2.1 Data Structure . 34

3.2.2 Model . 34

3.3 Likelihood . 34

3.3.1 Data Configurations . 35

3.3.2 Partitions . 38

3.3.3 Data Configuration for a Given Partition 39

v

3.3.4 The Likelihood for a Single SRP 41

3.3.5 Computation of the Slot Combination Probabilities πi 43

3.3.6 Computation of Conditional Configuration Probabilities pij 44

3.3.7 Fleet Likelihood . 45

3.3.8 Estimation and Computational Issues 45

3.4 Performance of the idML Estimator . 48

3.4.1 Design of Simulation Study . 48

3.4.2 Simulation Results . 51

3.5 Bias of the idML Estimator . 54

3.6 Interval Estimation . 59

3.6.1 Wald Interval . 59

3.6.2 LRT Interval . 60

3.6.3 Comparison of Interval Estimation Methods 60

3.7 Application to the Engine Cylinder Replacement Data 61

3.8 Conclusions and Future Work . 63

3.A Computation of the pi . 66

3.B Proof of the Probability of a Certain Number of Events in a Slot 67

References . 68

CHAPTER 4. IMPLEMENTATION OF A MAXIMUM LIKELIHOOD

PROCEDURE FOR MODELING THE SUPERPOSITION OF RE-

NEWAL PROCESS DATA . 70

4.1 Introduction . 71

4.1.1 Data Structure . 71

4.1.2 Maximum Likelihood Formulation 71

4.2 Likelihood for an SRP . 72

4.2.1 Expression for the Likelihood . 72

4.2.2 Reparameterization . 74

vi

4.2.3 Estimation Algorithm . 75

4.3 Implementation and Code . 76

4.3.1 Computation of πi . 76

4.3.2 Estimation of pij by Simulation 77

4.3.3 Main Function . 81

4.4 Computational Efficiency of the Procedure 83

4.5 Some Results Based on Cylinder Data 85

4.6 Discussion . 87

References . 88

CHAPTER 5. GENERAL CONCLUSIONS 89

vii

LIST OF TABLES

Table 2.1 Point estimates and PTBT confidence intervals for parameters

and quantiles . 25

Table 2.2 Recommendations for choosing estimators of aggregated data . . 27

Table 3.1 Examples, SRP with m = 16 slots 37

Table 3.2 All data configurations for the partition E35 = (3, 2) 40

Table 3.3 All data configurations for the partition E4i = (2, 1, 1) 40

Table 3.4 Point estimates and LRT confidence intervals for parameters and

quantiles of cylinder data . 62

Table 4.1 All data configurations for the partition E32 = (2, 1) 74

Table 4.2 Computation time for likelihood evaluation, likelihood maximiza-

tion and simulation for one SRP with different nEvent 85

Table 4.3 Effect of nMin on the simulation result to estimate pij values . . 85

viii

LIST OF FIGURES

Figure 2.1 Event plot for the simulated gearbox data 8

Figure 2.2 Event plot for the observed event history for the whole fleet . . . 9

Figure 2.3 Renewal ECF and renewal intensity function for RP’s with dif-

ferent β values. Left: β = 1; Middle: β = 3; Right: β = 5. Top

row: renewal ECF plots; bottom row: renewal intensity plots . . 16

Figure 2.4 Comparison of the performance of the estimators 20

Figure 2.5 Coverage probabilities for PTBT confidence intervals with Er =

20 and nSlot = 20, 50, 200, 800 22

Figure 2.6 Coverage probabilities for PTBT confidence intervals with nSlot

= 200 and Er = 20, 40, 80, 320 23

Figure 2.7 Weibull probability plot of the NHPPMLE estimates and the 90%

confidence bands . 25

Figure 2.8 Empirical and fitted ECF plot of the simulated SRP with non-

parametric confidence bands . 26

Figure 3.1 Event plot of diesel engine cylinder replacement 31

Figure 3.2 All 32 data configurations for the SRP with m = 3 and r = 2 . . 35

Figure 3.3 idML estimates for β (left) and tp (right) at each iteration for dif-

ferent combinations of nSys, m and Er. Here β = 3 (3 realizations) 49

Figure 3.4 idML estimates for β (left) and tp (right) at each iteration for dif-

ferent combinations of nSys, m and Er. Here β = 1 (3 realizations) 50

ix

Figure 3.5 Relative efficiency of estimators w.r.t. cdMLE (top-left: nSys

= 5, m = 4, Er = 4; top-right: nSys = 5, m = 16, Er = 4,

bottom-left: nSys = 15, m = 4, Er = 4; bottom-right: nSys =

15, m = 16, Er = 4) . 54

Figure 3.6 Comparison of bias, variance and MSE for 1000 samples among

cdML, idML and NHPP estimates when nSys = 5, m = 16 and

Er = 4 . 55

Figure 3.7 Contour plots (0.9 level) for all partition-data configuration com-

bination and idML likelihood for a SRP with 3 events and 4 slots 57

Figure 3.8 wij and profile likelihood values for all five partition-data config-

uration combinations for a simulated SRP with different β values

(Top: m = 4, r = 3. Bottom: m = 16, r = 3. Left: wij. Right:

Profile likelihood) . 58

Figure 3.9 Coverage probability for Wald and LRT intervals (nSys = 5,m =

16, Er = 4) . 61

Figure 3.10 Coverage probability for Wald and LRT intervals (nSys = 5,m =

4, Er = 4) . 62

Figure 3.11 Weibull probability plot of the idML estimates and the 90% con-

fidence bands for cylinder data 63

Figure 3.12 Empirical and fitted MCF plot for the subset of cylinder data . . 64

Figure 4.1 Event plot of diesel engine cylinder replacement 72

Figure 4.2 Effect of nMin on simulation efficiency and accuracy 86

x

ACKNOWLEDGEMENTS

I am extraordinarily grateful to my advisor, Dr. William Q. Meeker, for his insightful

guidance, generous support and enthusiastic encouragement during my graduate study.

I would like to express my sincere gratitude to my committee members, Drs. Huaiqing

Wu, Ulrike Genschel, Ranjan Maitra and Vivekananda Roy for their valuable suggestions

and precious help. I am also very thankful to Dr. Luis A. Escobar from Department of

Experimental Statistics, Louisiana State University for his collaborations and help over

these years.

A lot of thanks to the faculty members in the department for offering great graduate

courses on various topics that broadened my knowledge, sharpened my technical skills

and get me well prepared for my career. I am very grateful to all my friends who have

been supporting me all these years. My life would have been much less colorful without

their accompanies.

Last but not least, none of these would have been made possible without my family.

My parents have always believed in me and supported me to chase my dreams. Special

thanks go to my wife, Yunyun. No matter how difficult the situation was, she always

trusted me and supported me. I was able to explore my study free of worry and fear,

because I knew she would be with me for every moment.

xi

ABSTRACT

Maintenance data provides information about the reliability of systems and compo-

nents. For reparable systems, a failed component will be replaced with a new one, which,

in some cases, can be assumed to have the same lifetime distribution as the old com-

ponent. Estimation of the lifetime distribution is particularly complicated if there are

multiple copies of a component installed in multiple locations (different systems and dif-

ferent slots within a system) and information on exactly which component was replaced

is not available. In such applications, the replacement history for a collection of loca-

tions forms a superposition of renewal processes (SRP). In this dissertation, statistical

models and methods motivated by real applications with SRP data were developed for

estimating component failure-time distribution. In Chapter 2, the SRP data were mod-

eled by a nonhomogeneous Poisson process (NHPP). This method is motivated by the

data structure that can be formulated as a single SRP. The NHPP approximation to the

SRP is more adequate as the number of slots in the SRP gets larger. When the SRP has

a large number of slots, the ML estimator based on NHPP assumption performs well and

the interval estimation procedure based on transformed parametric bootstrap-t method

has coverage probabilities close to the nominal values. By comparing the NHPP estima-

tor with an alternative estimator, we make recommendations about which estimator to

use for analyzing SRP data. We hope the recommendation provides some guideline for

statisticians and engineers for better reliability analysis. In Chapter 3, the exact likeli-

hood for the SRP data is derived. This likelihood-based method is motivated by the data

structure that can be formulated as a fleet of independent SRP’s. All SRP’s in the fleet

are assumed to correspond to a same component lifetime distribution. By considering

xii

all possible data configurations that could lead to the observed event history, the likeli-

hood can be computed as a weighted sum of conditional likelihoods corresponding to all

unique data configurations, with weights being probabilities for each data configuration.

We use an ML estimation procedure that starts with a crude estimate of the weights

and updates them iteratively. In Chapter 4, we describe an R function that implements

the maximum likelihood estimation procedure described in Chapter 3. The need to enu-

merate all possible data configurations makes the estimation procedure complicated and

computationally intensive. We developed an R function that implements the estimation

procedure. The function takes the recurrence event data as the input and returns the

ML estimates and the estimated covariance matrix of the parameter estimates. Details

about the function implementation and how to use the function are discussed.

1

CHAPTER 1. GENERAL INTRODUCTION

1.1 General Introduction

1.1.1 Background

Failure data from repairable systems arise and are of interest in many industrial

applications. One feature for a repairable system is that once there is a component

failure, the part replacement will restore the system operation. Often it is appropriate

to assume that the replaced component has the same lifetime distribution as the old

component. Then the failures at a particular location (which we call a “slot”) can be

modeled by a renewal process. Monitoring such systems provides recurrent event data

. Examples of these systems include engine valve seats in a locomotive, gearboxes in a

wind turbine, light bulbs in an aircraft, etc. Nelson (2003) and Cook and Lawless (2007)

present many examples of the recurrent event data and describe several modeling and

analysis methods for such data.

In practice, it is common that what is observed is a collection of similar repairable

systems (e.g., multiple cars/locomotives/aircrafts in a fleet). Typically the failure data

are available in an aggregate form, which means we know the event times for replace-

ments, but the information about the system identity for the replacement or component

within a system is unavailable. The reason this can happen is because many databases

exist for financial reasons (e.g., the management would like to monitor and track the re-

placement cost for the fleet of vehicles), but the missingness of either system or slot level

identity information causes difficulty in the reliability analysis to estimate the underlying

2

failure-time distribution of components.

1.1.2 Data Structures

There are two major types of data structures corresponding to the failure data in

the aggregated form, described in Section 1.1.1. These types of data structures can be

described by two scenarios, which we call scenario 1 and scenario 2. The following two

subsections briefly describe these two scenarios.

1.1.2.1 Scenario 1: A SRP of Multiple Slots

For a fleet of wind turbines, an event of interest is gearbox failure and replacement.

Each wind turbine has one gearbox and for any replacement, we do not know which

wind turbine the gearbox belongs to. Then the replacement history for the whole fleet

can be represented by a superposition of renewal processes (SRP) that lacks of slot-level

information. Usually an SRP like this has a large number of slots, corresponding to a

large number of wind turbines that a company operates.

1.1.2.2 Scenario 2: A Fleet of SRP’s

Meeker and Escobar (1998, page 401) describe a fleet of locomotives that has 120

diesel engines, each having 16 cylinders. Then each engine, which can be considered as

a system, corresponds to an SRP. The whole fleet then is a union of 120 SRP’s. Here

the system-level information is available for each cylinder replacement, but it it unknown

which cylinder within the engine (slot within the system) had the replacements. In many

applications the SRP in this scenario will have a relatively small number of slots, and

only a few events before the end-of-observation time. The entire data set will usually

consist of a number of SRP’s, one from each system in the fleet.

3

1.1.3 Motivation

As pointed out in Condra (1993), reliability can be defined as “quality over time”.

Therefore the component lifetimes are of particular interest to the manufactures. Man-

ufacturers have incentive to develop long-lasting and highly reliable products to have a

strong competitive advantage in the market. One important topic in reliability analy-

sis is to estimate the component’s failure-time distribution. The failure data described

in Sections 1.1.2.1 and 1.1.2.2 contain information about the component’s failure-time

distribution. A simple distribution study, however, is not possible due to the missing in-

formation. Therefore there arises the need to develop alternative methods that can deal

with the above-described failure data with missing information and estimate the lifetime

distribution of the component. The following subsections describe the three major parts

in this dissertation.

1.1.3.1 Nonhomogeneous Poisson Process Modeling of an SRP

This project is motivated by the scenario described in Section 1.1.2.1. In this project,

we described a procedure for estimating the component lifetime distribution from the

aggregated event data for a collection of repairable systems. We formulated the observed

event process as a superposition of renewal processes (SRP) and modeled the SRP by

a nonhomogeneous Poisson process (NHPP). Monte Carlo simulations show that when

the number of slots in the SRP is relatively large, the proposed estimator performs well

and, in some settings, can recover most of the unavailable information about the slot

identity. In addition, we discussed an interval estimation procedure for the distribution

parameters and quantiles, based on the parametric transformed bootstrap-t method.

This procedure produces coverage probabilities close to the desired nominal values when

the number of slots in the SRP is large.

We compared the performance of the proposed NHPPMLE estimator with that of

the alternative renewalEquation estimator and we showed that the proposed estimator

4

outperforms the alternative in general. Based on the result, we made recommendations

about which estimator to use for analyzing the SRP data. We hope the recommendation

provides some guidance for statisticians and engineers, allowing better reliability analysis

from SRP data.

1.1.3.2 Maximum Likelihood Estimation for a Collection of Independent

SRP’s

This project is motivated by the scenario described in Section 1.1.2.2, but is useful

for dealing with both types of data structures.

We derived the likelihood function for the observed recurrent data for each SRP by

considering all unique data configurations that could lead to the observed data, and

then computing the likelihood for the observed events of the whole fleet as a weighted

sum of the conditional likelihoods. By starting from a crude estimate of the weights

and updating iteratively, we were able to obtain the ML estimates in an efficient way.

The proposed estimation method is especially useful when the number of events for each

SRP is relatively small, so that likelihood computation is feasible despite the complex

combinatorial nature of the problem, but the number of systems is sufficiently large, so

that the total number of events is large enough to give adequate statistical precision.

In addition, we evaluated the performance of two interval estimation procedures. One

is based on the Wald approximation, and the other is based on the likelihood ratio test

(LRT). Our simulations show that the LRT-based procedure tends to outperform the

Wald-based procedure in producing better coverage properties.

1.1.3.3 Implementation of a Maximum Likelihood Procedure for Model-

ing the Superposition of Renewal Process Data

The estimation method described in Section 1.1.3.2 is complicated because we have to

systematically decompose the problem into several levels and enumerate all the possible

5

partition-data configuration combinations. The method is computationally intensive.

We developed an R function to implement the estimation procedure. The function takes

the recurrence event data as the input and returns the ML estimates and the estimated

covariance matrix of the parameter estimates. The function allows the users to specify

algorithm-control parameters in an flexible way. In this paper we describe the important

building blocks of the function and give examples to show how to use the function.

1.1.4 Dissertation Organization

This dissertation consists of three main chapters, preceded by this general introduc-

tion and followed by a general conclusion. Each of these main chapters corresponds to a

paper to be submitted for publication. Chapter 2 describes the modeling of the super-

position of renewal processes by a nonhomogeneous Poisson process. Chapter 3 presents

the estimation of a parametric component lifetime distribution from a collection of super-

imposed renewal processes using maximum likelihood estimation. Chapter 4 documents

an R implementation of a maximum likelihood algorithm for estimating the component

lifetime distribution from a collection of superimposed renewal processes.

References

Condra, L.W. (1993). Reliability Improvement with Design of Experiments. New York:

Marcel Deeker.

Cook, R.J., Lawless, J.F., (2007), The statistical analysis of recurrent events. New York:

Springer.

Nelson, W.B., (2003), Recurrent Events Data Analysis for Product Repairs, Disease

Recurrences, and Other Applications, ASA-SIAM, Philadelphia, ASA, Alexandria.

6

CHAPTER 2. ESTIMATING A PARAMETRIC LIFETIME

DISTRIBUTION FROM SUPERIMPOSED RENEWAL

PROCESS DATA BASED ON NONHOMOGENEOUS

POISSON PROCESS MODELING

A paper to be submitted

Ye Tian and William Q. Meeker

Department of Statistics

Iowa State University

Ames, IA 50014

Abstract

This paper proposes a procedure for estimating the component lifetime distribution

from the aggregated event data from a collection of repairable systems. The observed

event data are assumed to be a superposition of renewal processes (SRP). We model

the SRP with a nonhomogeneous Poisson process (NHPP) model. In addition, we pro-

pose and evaluate an interval estimation procedure for the renewal process distribution

parameters and quantiles. Extensive Monte Carlo simulations show that when the num-

ber of slots in the SRP is relatively large, the proposed estimator performs well. Also,

the interval estimation procedure has coverage probabilities close to the desired nominal

values.

7

Keywords

Bootstrap-t; Lifetime analysis; Maintenance data; Maximum likelihood estimation;

Superposition of renewal processes; Warranty data

2.1 Introduction

2.1.1 Background and Motivation

Failure data from repairable systems are of interest in many industrial applications.

One feature for a repairable system is that once there is a component failure, the part

replacement will restore the system operation. Often it is appropriate to assume that

the replaced component has the same lifetime distribution as the old one. Then the

failures at a particular location (which we call a “slot”) can be modeled by a renewal

process. Monitoring such systems provides recurrent event data that can be used to

estimate the underlying failure time distribution of the component. Examples of these

systems include engine valve seats in a locomotive, gearboxes in a vehicle, light bulbs in

an aircraft, etc. In practice, it is common that what is observed is a collection of similar

repairable systems (e.g., multiple cars/locomotives/aircrafts in a fleet). Typically the

failure data are available in an aggregate form, which means we know the event time

for replacements, but the information about the system identity for the replacement or

component within a system is unavailable. A common data structure corresponding to

the above scenario is a fleet of many systems with each system comprised of one or more

slots and neither the slot or system level information is available. In the following we use

an example to describe the situation we described above. Here we have the replacement

history of transmission gearboxes for a fleet of 200 vehicles. Each vehicle has one gearbox

(i.e., one slot) and when the gearbox fails, it is replaced by a new one. The actual data

are proprietary, so we have simulated similar data with scaled time to protect sensitive

information. Figure 2.1 shows what really happens for each vehicle, with each line

8

representing a vehicle and each cross symbol representing a replacement. To make the

plot easy to read, we only show a subset of 40 vehicles from the whole fleet in Figure 2.1.

Note that in practice, we do not have detailed information about individual vehicles

because many databases exist for financial reasons and will not record the exact location

(i.e., system or slot within a system) of replacements. Instead, what we can observe is

a superposition of the renewal processes in the individual slot(s) across all systems in

the fleet, as shown in Figure 2.2. For any replacement (denoted by cross symbol) in

this event plot, we don’t know which vehicle it comes from. This missing information

about failed system imposes difficulty in reliability analysis when there is need to study

the lifetime distribution of the component. The understanding of the lifetime feature is

important for many purposes, including maintenance planning for individual units and

improving product design.

Figure 2.1 Event plot for the simulated gearbox data

In this paper we describe an efficient estimation method for estimating the lifetime

distribution of a single component in a repairable system (e.g., a gearbox in a vehicle),

9

Figure 2.2 Event plot for the observed event history for the whole fleet

based on the aggregated failure data for a collection of similar systems without system

identity information for the events.

2.1.2 Problem Formulation

From now on we focus on the event history for a fleet of multiple systems and each

system has m ≥ 1 slots with a component. If a component fails, it is replaced with a

new one in the same slot, with the assumption that

1. The component replacement time is negligible compared to the lifetime

2. The component lifetime distribution remains for each replacement.

Then the event history of this slot can be represented by a renewal process (RP). Math-

ematically, for i = 1, 2, 3, · · · , Ti ∼ iid F (t;θ), the sequence of {Tj} =
∑j

i=1 Ti forms

a renewal process (RP), where Tj’s are the observed renewal times (recurrence times).

Here we assume the end-of-observation time is specified/fixed for each slot while the

number of events before the end-of-observation time is random. The end-of-observation

time may vary from slot to slot, usually due to staggered entry (or retirement) of slots

into (from) the risk set. Usually the end-of-observation time for slots are the same within

a system. The union of all the event histories forms a superposition of renewal processes

(SRP). Denote the number of slots in the SRP by nSlot and the number of events by r.

10

Also, the observed recurrence times for the SRP are recorded as t1 < t2 < · · · < tr and

for i = 1, 2, · · ·, nSlot, the ith renewal process has an end-of-observation time tic.

2.1.3 Related Work

Several approaches have been explored to analyze the recurrence data from an SRP

and estimate the component failure time distribution. These methods are described

briefly here.

2.1.3.1 Renewal Equation Method

Trindade and Haugh (1979, 1980) proposed a nonparametric estimator of the lifetime

distribution from an SRP, based on the deconvolution of the renewal equation. The

renewal equation states that, for any time point t > 0

F (t) = M(t) +

∫ t

0

M(x) dF (t− x) (2.1)

where M(t) is the renewal expected cumulative function (ECF) of a renewal process.

The ECF is defined as M(t) = E[N(t)], where N(t) is the number of events observed in

the interval (0, t]. This method starts with the renewal equation, replaces the renewal

ECF M(t) by the nonparametric estimator, M̂(t), then solves for F (t) using numerical

deconvolution, as shown below.

For simplicity, we assume a common end-of-observation time for all slots, denoted

by tc. Then we can divide (0, tc] into n small intervals, i.e., (0, tc/n], (tc/n, 2tc/n], · · ·,

((n-1)tc/n, tc]. If n is large enough, M(t) can be well approximated by a constant in each

interval and the integral can be approximated by a summation of terms. Then we can

substitute the empirical estimate of M(t) evaluated at the midpoint (or endpoints) of

each interval for M(t) and calculate the CDF estimates recursively. Here M(t) estimate

of the kth interval is U(ktc/n) = U((k − 1)tc/n) + ∆U , where ∆U is the number of

events in the interval ((k − 1)tc/n, ktc/n] for all the slots (∆N), divided by the number

11

of slots in the risk set (nrisk). The following equations demonstrate how to derive the

CDF estimates, F̂n,

• t = tc/n

Fn(tc/n) = U(tc/n) +

∫ tc/n

0

U(x) dFn(tc/n− x)

≈ U(tc/n) + U(0)[Fn(0)− Fn(tc/n)] = U(tc/n) (2.2)

• t = 2tc/n

Fn(2tc/n) = U(2tc/n) +

∫ 2tc/n

0

U(x) dFn(2tc/n− x)

= U(2tc/n) +

∫ tc/n

0

U(x) dFn(2tc/n− x) +∫ 2tc/n

tc/n

U(x) dFn(2tc/n− x)

= U(2tc/n) +

∫ 2tc/n

tc/n

U(x) dFn(2tc/n− x)

≈ U(2tc/n) + U(tc/n)[Fn(0)− Fn(tc/n)]

= U(2tc/n)− U(tc/n)Fn(tc/n) (2.3)

• t = i× tc/n, for i = 3, 4, · · · , n

Fn(itc/n) = U(itc/n)−
i−1∑
j=1

Fn(jtc/n)[U((i− j)tc/n)− U((i− j − 1)tc/n)]. (2.4)

One problem associated with this approach is that the F̂ values may not be mono-

tonically nondecreasing, which violates the definition of a CDF.

2.1.3.2 Quasi life table estimation

Baxter (1994) discussed a similar problem where periodically (e.g., every month), a

group of N new components was put into operation. Direct observation of the component

lifetimes is not available, only the number of failed components returned by the customers

12

is reported at a sequence of equally spaced time intervals (e.g., each month). In the

paper, the author derived a nonparametric estimator of the lifetime distribution function

in a discretized manner. Let Yn denote the number of failed components among all N

slots in the nth time interval, that is, (n − 1, n), and let un denote the corresponding

failure probability. It is obvious that Yn ∼ Bin(N, un) and a natural estimator of un

is Ûn = Yn/N . However, Y1, Y2, · · · , Yn are unobservable. What is observed is Xn, the

number of failed components in the nth time interval for all components in operation.

It can be shown that Xn has the same distribution as Y1 + · · · + Yn, so the estimator

of Un = u1 + u2 + · · · + un is Ûn = (Y1 + Y2 + · · · + Yn)/N = Xn/N , where Un is the

probability of failing in the interval (0, n). Based on the recursive result shown in Feller

(1968, p.311) and the definition of the discretized pdf, fn = Fn − Fn−1, Baxter (1994)

calculated a nonparametric estimator of Fn as

F̂n = Ûn −
n−1∑
j=1

F̂j(Ûn−j − Ûn−j−1) (2.5)

This result is in good agreement with what Trindade and Haugh (1979, 1980) derived.

Note that it is possible for F̂n to decrease over time. To remove the “violators”, the

author used monotone regression. Then a parametric distribution can be fit to the non-

parametric CDF estimates. Baxter (1994) used a Weibull distribution, but as Tortorella

(1996) has pointed out, one should use a probability plot to choose a distribution that

best describes the estimates. This method provides a means to estimate the lifetime

distribution parameters, but it only works well when the largest value of the F̂n’s are

considerably less than 1, as shown in the example in Baxter (1994). After a point in

time when F̂n ≈ 1, the parametric estimation result will become inaccurate.

2.1.3.3 Other Methods

Cox (1962) showed that when the time is far away from the time origin, the interar-

rival times for the SRP begin to behave like iid and the asymptotic distribution in this

13

limiting situation was derived. Kallen, Nicolai and Farahani (2010) modeled the time

between repair in imperfect maintenance of coating with this asymptotic distribution.

One limitation associated with this method is that it requires the system to be running

for a long time before the asymptotic result becomes valid.

Tortorella (1996) proposed an estimation procedure by building a pooled discrete

renewal process model and estimating the component reliability based on a maximum

likelihood-like method. The author suggested a way to choose the weights required in

the method, but did not provide any related results.

2.1.4 Overview

The remainder of this article is organized as follows. Section 2 describes our proposed

estimation method based on NHPP modeling. Section 4 shows the performance of the

proposed estimator and compares the efficiency with that of two other estimators. Section

4 gives an interval estimation method based on the parametric transformed bootstrap-t

procedure. Section 5 applies the proposed quantity and interval estimation procedures

to the simulated data set we discussed in Section 2.1.1. Some conclusions and the

recommendations for future research are given in Section 6.

2.2 Proposed Method

Due to the limitations of existing methods described Section 2.1.3, it is desirable to

develop an alternative estimation method.

2.2.1 Proposed Model

We start with the assumption that the lifetime distribution for a single component

in a slot is Weibull with CDF

F (t; β, η) = 1− exp

[
−
(
t

η

)β]
. (2.6)

14

According to Khinchin’s theorem as described in Khinchin (1956), an SRP behaves

like a nonhomogeneous Poisson Process (NHPP) if it has a large number of superimposed

renewal processes (corresponding to many slots in our problem). One appealing property

of this result is that the SRP does not need to have been running for a long time to reach

the steady state, as required by the asymptotic distribution method described in Cox

(1962). Based on this theorem, we propose to model the SRP with an NHPP. This will

provide a method to obtain a likelihood function of the observed SRP and allow the use

of maximum likelihood estimation.

The NHPP is characterized by its ECF or its recurrence rate. The ECF is used to

describe the expected cumulative history of a repairable system. Mathematically, the

process ECF is µ(t) = E [N(t)], where N(t) is the observed number of events occurring

before time t. In the NHPP framework, the ECF represents the expected number of

events observed in the interval (0, t], as

µ(t) =

∫ t

0

ν(t) dt (2.7)

where ν(t) is the NHPP recurrence rate at time t. There are several commonly-used

NHPP recurrence rate functions including the power law model and the loglinear model,

as described in Meeker and Escobar (1998). In our model we will use a particular

functional form that corresponds to an SRP with an underlying Weibull distribution for

time between failures in each renewal process. Note that an SRP is a union of multiple

single renewal processes (RP’s) and so the ECF and recurrence rate function of the SRP

can be computed as the sum of renewal ECFs and sum of renewal intensity functions

from single RP’s. For an SRP where all slots have a common end-of-observation time,

µ(t;θ) = E [N(t;θ)] = E

∑
i∈R(t)

Ni(t;θ)

 =
∑
i∈R(t)

E [Ni(t;θ)] =
∑
i∈R(t)

Mi(t;θ), (2.8)

where Mi(t;θ) is the renewal ECF for the ith renewal process (slot) and R(t) is the

index of slots in the risk set at time t. The recurrence rate function of the SRP, as the

15

derivative of the ECF, according to Meeker and Escobar (1998, page 395) and Cook and

Lawless (2007, page 12 and 40), is

ν(t;θ) =
∑
i∈R(t)

mi(t;θ), (2.9)

wheremi(t;θ) is the renewal intensity function for ith renewal process. Note the risk set in

(2.8) may change over time if different slots in the SRP have different end-of-observation

times. In this situation, the expression (2.9) is unchanged. We need expressions for

functions Mi(t) and mi(t) for a single RP. In Section 2.2.2 we will introduce an approx-

imation algorithm for computing mi and Mi, and in Section 2.2.3 we will derive the

likelihood for the SRP as a function of the two Weibull parameters, based on the NHPP

approximation assumption.

2.2.2 Renewal ECF and Renewal Intensity Function for a Single Renewal

Process

Jiang (2008) introduced a simple way to compute the renewal ECF M(t) and the

renewal intensity function m(t) for a Weibull renewal process, based on a Gamma-normal

series truncation approximation. Under the Weibull assumption in (3.1),

M(t) ≈ F (t) +
Nε∑
n=2

[
pG (t; a, b) + qΦ

(
t− nµ√
nσ

)]
(2.10)

m(t) =
dM(t)

dt
≈ f(t) +

Nε∑
n=2

[
pg (t; a, b) + q

1√
nσ

φ

(
t− nµ√
nσ

)]
, (2.11)

where

• G(·, a, b) and g(·, a, b) are the CDF and the pdf, respectively, of the Gamma distri-

bution with shape parameter a and scale parameter b,

• Φ(·) and φ(·) are CDF and pdf of the standard normal distribution,

16

• µ = E(Ti), σ =
√

var(Ti), Nε = inf
{
n : Φ

[
t−nµ√
nσ

]
< ε
}

, and

• a = µ/σ2, b = σ2/µ, p = 1 + 0.41149× (1− β), p+ q = 1.

Here ε controls the accuracy of the approximation and Jiang (2008) suggested the

value 10−6.

The renewal ECF and renewal intensity function for renewal processes with β values

1, 3 and 5 are shown in Figure 2.3.

Figure 2.3 Renewal ECF and renewal intensity function for RP’s with different β values.
Left: β = 1; Middle: β = 3; Right: β = 5. Top row: renewal ECF plots;
bottom row: renewal intensity plots

2.2.3 Likelihood

With the algorithm available for computing the (approximate) recurrence rate func-

tion and ECF of the NHPP, we are able to write out the likelihood for the observed

SRP, which is approximately the likelihood of the NHPP. Following Meeker and Escobar

(1998), the NHPP with recurrence times t1 ≤ t2 ≤ · · · ≤ tr and unique end-of-observation

17

times (for different slots) 0 = t0c < t1c · · · < t
Ntc
c has the likelihood of

LNHPP =
r∏
j=1

ν(tj; β, η)× exp

−
Ntc∑
j=1

 ∑
i∈R(tjc)

[
Mi(t

j
c; β, η)−Mi(t

j−1
c ; β, η)

] (2.12)

where Ntc is the number of unique end-of-observation times in the SRP.

We then use the maximum likelihood estimation procedure to obtain the estimates

of the Weibull parameters, as well as quantiles of interest.

2.3 Comparison of the Proposed NHPP Estimator with

Alternatives

In this section we describe a simulation experiment that we conducted to study and

compare the performance of three methods for estimating the renewal process parame-

ters. The three estimators in comparison are:

1. NHPPMLE: The proposed estimator based on NHPP modeling, which depends on

all recurrence data from the SRP

2. renewalEquation: An estimator based on the method described in section 2.1.3.2,

which also needs the recurrence data from the SRP

3. cdMLE: The complete-data ML estimator assuming that we know the slot infor-

mation for each event (i.e., we have complete data). This is used as a reference

estimator.

2.3.1 Design of the Simulation Experiment

The simulation experiment is designed to study the effect of the following factors on

the performance of the NHPP estimator:

• β: the Weibull shape parameter

18

• nSlot: number of slots in the SRP

• Er: expected total number of events in the SRP

To simplify the simulation, we assume that all slots have the same end-of-observation

time. The levels of factors used were

• β = 1, 1.5, 3, 4

• nSlot = 20, 200, 800

• Er = 20, 80, 160, 800

For each combination of the factor levels shown above we simulated and computed the

cdMLE, NHPPMLE, and renewalEquation estimates for 5000 data sets. The quantities

of interest include the Weibull shape parameter β and a sequence of quantiles tp, where

p = 0.01, 0.1 ∼ 0.9.

2.3.2 Simulation Experiment Results

This section provides a summary of the simulation results. The primary comparison is

between the NHPPMLE and the renewalEquation estimators. Figure 2.4 shows relative

efficiency (ratio of MSE, relative to the MSE of cdMLE) of these two estimators for

different combinations of nSlot and Er when β is 3. Because different β values produce

similar results, we only show results based on one β. In all but exceptional cases, the

NHPPMLE and renewalEquation estimator will be less efficient than the cdMLE because

of the information lost by not having slot identification information for the events. In all

the four plots, the line at 1 represents the relative efficiency of the cdMLE, the triangle

symbols represent the proposed NHPPMLE estimator and the cross symbols correspond

to the alternative estimator based on the renewal equation. We will compare these

triangles and crosses with the line.

19

The top-left plot in Figure 2.4 describes the situation where nSlot is large (e.g.,

200) and Er is small (e.g., 20). In this situation, the NHPPMLE estimator shows

very strong performance for estimating all quantities of interest, in terms of high relative

efficiency. Note in this situation, nSlot is far larger than Er, which means there is a high

chance that no slots in the SRP will have more than one event. This leads to the trivial

situation where the cdMLE estimator is computed. Therefore the NHPPMLE estimator

has comparable performance to the cdMLE estimator. The alternative renewalEquation

estimator does well in estimating β and some small quantiles (e.g., t0.01, which is close

to the fraction of failing), but the efficiency drops dramatically for higher quantiles,

probably due to extrapolation.

The bottom-left plot in Figure 2.4 describes the situation where both nSlot and Er

are small. The performance of the NHPPMLE estimator drops off, as shown in the

decreasing relative efficiency when compared with the performance in the top-left plot.

This finding is in good agreement with the Khinchin’s theorem, which suggests that

the behavior of the SRP resembles the NHPP better as nSlot is larger, and therefore

the likelihood shown in (2.12) becomes a better approximation to the real likelihood of

the SRP. In this case, the renewalEquation estimator has comparable (or even slightly

better) performance than the NHPPMLE estimator.

The top-right plot in Figure 2.4 describes the situation where nSlot is large (e.g.,

200) and Er is relatively large (e.g., 160). Both the proposed NHPPMLE estimator and

the renewalEquation estimator perform relatively well, because the expected number

of events in the SRP is large enough for adequate estimation. The performance of

NHPPMLE estimator is not as strong as shown in the top-left plot, compared to the

cdMLE estimator, because with such a large number of events occurring, the cdMLE,

which is based on the complete information, is theoretically optimal in the limiting

situation. Here the NHPPMLE has better performance than renewalEquation, by a

small amount.

20

In the bottom-right plot in Figure 2.4, we can see that when nSlot is small (e.g.,

20) but Er is large (e.g., 160), neither NHPPMLE estimator nor the renewalEquation

estimator shows high efficiency. The relatively poor performance of the NHPPMLE

estimator is a result of the small number of slots in the SRP, which leads to inadequate

NHPP modeling. The poor performance of the renewalEquation estimator is due to

the reason that the expected number of events per slot is far greater than one, in which

situation many of the nonparametric F̂n’s exceeding one will be modified to be below one.

This means all information after the first event in each slot will be essentially ignored.

On contrary, the NHPPMLE estimator can take all information into consideration, and

therefore it shows slight advantage over the renewalEquation estimator.

Overall, the proposed NHPPMLE estimator performs consistently better than the

renewalEquation alternative over nearly all situations. The efficiency of NHPPMLE

estimator is usually high when nSlot is large, because the NHPP modeling of the SRP is

adequate. Even when nSlot and Er are small, the NHPPMLE estimator performs well

relative to the alternative.

Figure 2.4 Comparison of the performance of the estimators

21

2.4 Interval Estimation

This section presents an interval estimation procedure based on the parametric trans-

formed bootstrap-t method (PTBT). The quantities of interest include β and quantiles

(tp). Because all quantities of interest are positive, the bootstrap is conducted on the

log scale of these quantities. The PTBT procedure is as follows:

1. Calculate the NHPPMLE estimates, log(β̂) and log(η̂), and the corresponding

estimates of standard errors, ŝelog(β̂) and ŝelog(η̂), by evaluating the square root of

the diagonal elements of the inverse negative Hessian matrix at NHPPMLE. For

any p ∈ (0, 1), the NHPPMLE of tp on log scale can be computed as

log(t̂p) = log(η̂) +
1

β̂
log [− log(1− p)] (2.13)

and the estimate of the standard error of log(t̂p) can be computed based on the

estimate of the variance covariance matrix of
[
log(β̂), log(η̂)

]′
by delta method.

This standard error is denoted by ŝelog(t̂p)

2. Simulate nBoot independent SRPs according to Weibull distribution with param-

eters β̂, η̂ and the end-of-observation times. For each bootstrap SRP, compute

Zlog(θ̂∗j)
=
[
log(θ̂∗j)− log(θ̂)

]
/ŝelog(θ̂∗j)

, where log(θ̂∗j) is the jth bootstrap NHPPMLE

estimate of log(θ̂) and ŝelog(θ̂∗j)
is the corresponding standard error estimate. Here

θ can be β, η, or tp.

3. The 100(1− α)% confidence interval for θ is{
exp

[
log(θ̂) + zlog(θ̂∗)(α/2) × ŝelog(θ̂)

]
, exp

[
log(θ̂) + zlog(θ̂∗)(1−α/2) × ŝelog(θ̂)

]}
(2.14)

where zlog(θ̂∗)(α/2) is the α/2 quantile of the empirical distribution of Zlog(θ̂∗)

The coverage probabilities of the two-sided 90% confidence intervals and (both lower

and upper) one-sided 95% confidence intervals are studied based on 4000 Monte Carlo

22

simulations. The quantities of interest include β, t0.01, t0.1, t0.632 ≈ η, t0.9. Four sets of

experiments were conducted, where Er = 20, and nSlot = 20, 50, 200, 800. The Weibull

shape parameter β under study is 3.

Figure 2.5 Coverage probabilities for PTBT confidence intervals with Er = 20 and
nSlot = 20, 50, 200, 800

Figure 2.5 shows four plots of the coverage probabilities where the circles represent

the coverage probabilities associated with two-sided 90% intervals, while triangles and

crosses represent the coverage probabilities for lower and upper one-sided 95% intervals.

The dashed and dotted horizontal lines show the desired coverage probabilities of 0.9

and 0.95 for the one-sided bounds and two-sided intervals, respectively. The plots from

the top-left corner to the bottom-right corner describe situations where Er is fixed while

nSlot increases from 20 to 800. We can see that as the number of slots in the SRP (nSlot)

increases, the coverage probabilities (both two-sided and one-sided) become closer to the

23

nominal values. When nSlot is large enough (e.g., 200 or 800), the observed coverage

probabilites have good agreement with the desired values for all quantities except the

quantile near the fraction of failing. The good agreement is due to the fact that the

approximation of NHPP to the SRP becomes adequate as the number of slots gets larger,

and this makes the likelihood more accurate. The exceptions are due to the discreteness

in the data sample space, leading to an approximate discreteness in the sample space

for the ML estimator of some quantities. For example, when nSlot = 200 and Er = 20,

the fraction of failing will be around 0.1, and correspondingly the coverage probabilities

observed for confidence intervals for t0.1 deviate from the desired values. A detailed

description of this discreteness problem, in a different setting, is given in Section 7 of

Jeng and Meeker (2000).

Figure 2.6 Coverage probabilities for PTBT confidence intervals with nSlot = 200 and
Er = 20, 40, 80, 320

24

We also studied how the coverage properties behave when the SRP has more data.

Figure 2.6 shows four plots of coverage probabilities for scenarios with increasing Er

but constant nSlot. The plots from top-left corner to the bottom-right corner describe

situations where nSlot = 200 and Er is increased from 20 to 320. As the expected number

of events in the SRP (i.e., Er) becomes larger, the corresponding coverage probabilities

get closer to the nominal values. This is because as Er gets larger, the distribution of

Zθ∗ becomes more continuous. Therefore the discrete behavior begins to disappear and

the asymptotic theory provides a better description of the behavior of the procedure.

2.5 Application to the Simulated Gearbox Data

In this section, we apply the proposed NHPPMLE estimator and the PTBT-based

interval estimation procedure to the simulated gearbox SRP data shown in Figure 2.2.

Here is a description of the data

• The fleet has 200 slots

• There are 37 events in the SRP. Thus the mean number of events per slot is 37/200

= 0.185

The point estimates and the confidence intervals for the two Weibull parameters, β

and η, as well several quantile of interest, t0.001, t0.01, t0.1 and t0.2, are shown in Table 2.1.

In this example the number of slots in the SRP is 200, large enough for the NHPP

modeling to be adequate, thus the points estimates should be of high quality.

Figure 2.7 is the Weibull probability plot of the NHPPMLE estimates for a series of

quantiles, together with the 90% confidence bands.

The empirical ECF in solid curve and the fitted ECF based on the NHPP modeling,

in dotted curve, are shown in Figure 2.8. The confidence bands are also shown in the

plot in dashed curves. The fitted ECF fits the empirical ECF well.

25

Table 2.1 Point estimates and PTBT confidence intervals for parameters and quantiles

Quantities Estimate 5%PTBT CI 95%PTBT CI
β 3.009 2.399 4.026
η 1136.3 905.9 1311.8

t0.001 114.4 81.3 209.3
t0.01 246.3 198.5 348.0
t0.1 537.9 492.4 602.6
t0.2 690.2 628.1 755.4

Figure 2.7 Weibull probability plot of the NHPPMLE estimates and the 90% confidence
bands

2.6 Concluding Remarks and Areas for Future Research

In this paper, we described a procedure for estimating the component lifetime dis-

tribution from the aggregated event data for a collection of repairable systems. One

feature for this type of data is that we do not have the slot identity for the events. We

formulated the observed event process as a superposition of renewal processes (SRP) and

modeled the SRP by a nonhomogeneous Poisson process (NHPP). Monte Carlo simula-

tions show that when the number of slots in the SRP is relatively large, the proposed

26

Figure 2.8 Empirical and fitted ECF plot of the simulated SRP with nonparametric
confidence bands

estimator performs well for some exceptional situations (e.g., when the number of slots

in the SRP is large while the number of events is relatively small). The performance

can be nearly as good as when complete data are available. In addition, we discussed

an interval estimation procedure for the distribution parameters and quantiles, based

on the parametric transformed bootstrap-t method. This procedure produces coverage

probabilities close to the desired nominal values when the number of slots in the SRP is

large.

We compared the performance of the proposed NHPPMLE estimator with that of

the alternative renewalEquation estimator. As discussed in Section 2.3.2, we make the

following recommendations about which estimator to use for analyzing the aggregated

data we have discussed. The Recommendations are formed in Table 2.2. Here nSlot

27

still denotes the number of slots in the SRP and nSample denotes the total number

of events in the observation. We hope the recommendation provides some guideline for

statisticians and engineers for more precise reliability analysis.

Table 2.2 Recommendations for choosing estimators of aggregated data

Small nSlot Large nSlot
Small nSample renewalEquation NHPPMLE

(if nSample/nSlot ≤ 1)
Large nSample NHPPMLE NHPPMLE

Some possible areas for future research include:

1. Development of alternative methods for situations with small nSlot, or modification

of the NHPP procedure to allow for adequate estimation when nSlot is small.

2. Application of the NHPP procedure to distributions other than Weibull. The

NHPP procedure can be easily adapted to other distributions if the renewal ECF

expression for the renewal process is available under the specified distributional

assumption.

References

Baxter, L., (1994), Estimation from quasi life tables, Biometrika, 81, 3, 567-577

Cook, R.J., Lawless, J.F., (2007), The Statistical Analysis of Recurrent Events. New

York: Springer.

Cox, D. R., (1962), Renewal Theory,London: Methuen & Co.

Feller, W., (1968), An Introduction to Probability Theory and Its Applications, vol.1,

New York: John Wiley

Jeng, S.L., Meeker, W.Q., (2000), Comparisons of approximate confidence interval pro-

cedures for type I censored data. Technometrics, 42, 135-148

28

Jiang, R., (2008), A Gamma-normal series truncation approximation for computing the

Weibull renewal function. Reliability Engineering and System Safety, 93, 616-626

Khinchin, A.Ia.,(1956). On Poisson streams of random events. Theory of Probability and

Its Applications, 1, 248-255

Meeker, W.Q., Escobar, L.A., (1998), Statistical Methods for Reliability Data New York:

John Wiley & Sons.

Trindade, D.C. and Haugh, L.D., (1979), Nonparametric estimation of a lifetime distri-

bution via the renewal function, IBM Burlington Technical Report TR 19.0463

Trindade, D.C. and Haugh, L.D., (1980), Estimation of the reliability of components

from field renewal data, Microelectronics Reliability, 20, 205-218

Tortorella, M., (1996), Life estimation from pooled discrete renewal counts, in Jewell,

N.P. et al. (Eds), Lifetime Data: Models in Reliability and Survival Analysis, Kluwer

Academic, Dordrecht, pp. 331-8.

29

CHAPTER 3. ESTIMATING A PARAMETRIC

COMPONENT LIFETIME DISTRIBUTION FROM A

COLLECTION OF SUPERIMPOSED RENEWAL

PROCESSES

A paper to be submitted

Ye Tian and William Q. Meeker

Department of Statistics

Iowa State University

Ames, IA 50014

Luis A. Escobar

Department of Experimental Statistics

Louisiana State University

Baton Rouge, LA 70808

Abstract

This paper proposes a procedure for estimating the component lifetime distribution

using the aggregated event data from a fleet of systems. Typically a fleet contains

multiple systems, with each system a set of replaceable components. For each component

replacement event, we have the system-level information that components were replaced,

but do not know which particular components were replaced. Thus the observed data is

30

a collection of superpositions of renewal processes (SRP), one for each system in the fleet.

We show how to compute the likelihood function for the SRP and provide suggestions

for more efficient computations. We compare performance of this incomplete-data ML

estimator with an alternative method that is based on a nonhomogeneous Possion process

approximation and with the complete-data ML estimator.

Keywords

Likelihood ratio test; Maximum likelihood estimation; Recurrence data; Superposi-

tion of renewal processes; Wald approximation

3.1 Introduction

3.1.1 Background

Repairable systems arise and are of particular interest in many industrial reliability

applications. Normally when there is a failure of a repairable system, a component

replacement will restore the system operation. If we assume that a replaced component

has the same lifetime distribution as the old one, then the observed recurrent event data

can be represented by a renewal process. In practice, it is common that the system under

observation contains a collection of similar replaceable components (e.g., valve seats or

cylinders in a diesel locomotive engine). Typically the replacement data are available in

an aggregate form (i.e., event time for each replacement is available, but we do not know

which component underwent the replacement). In this case the aggregate data form a

superposition of renewal processes (SRP).

3.1.2 Example

Nelson (2003) presents the recurrence data of a fleet of 120 diesel engines. Each

engine has 16 cylinders and the cylinders can develop problems leading to leaks or low

31

compression. Figure 4.1 shows the event plot for the cylinder replacement for a subset

of 30 engines. The event plot tells us which engine (system-level information) each

replacement comes from, but not the information about which cylinder position (or

“slot”) inside the engine. The missing slot-level information makes it difficult to estimate

the component failure-time distribution.

Figure 3.1 Event plot of diesel engine cylinder replacement

In this paper we propose a method for estimating the component lifetime distribution

from the aggregated event data consisting of an SRP for each system. With an assump-

tion of component lifetime, we derive the likelihood function for the observed recurrent

data for the SRP, by considering all possible allocations of the recurrent events to slots

in the SRP. Then we obtain the ML estimates by maximizing the derived likelihood

function.

3.1.3 Related Work

Several other approaches have been explored to analyze the recurrence data of an SRP

and estimate the component failure-time distribution. Cox (1962) showed that when the

32

time is far away from the time origin, the interarrival times for the SRP begin to behave

like they are iid with a particular given asymptotic distribution. Kallen, Nicolai and

Farahani (2010) modeled the time between repair in imperfect maintenance of coating

by using this asymptotic distribution. The asymptotic result, however, can only be used

when the system has been running for a long time, which is not possible in most practical

applications. Trindade and Haugh (1979, 1980) proposed a nonparametric estimator of

the lifetime distribution, based on the deconvolution of the renewal equation. Baxter

(1994) discussed a problem where periodically (e.g., every month), a group of new com-

ponents is put into operation. In this problem, the direct observation of the component

lifetimes is not available and what is recored is the number of failed components returned

by the customers at a sequence of equally spaced time intervals (e.g., each month). The

author derived a nonparametric estimator of the lifetime distribution function in a dis-

cretized manner and the result is in good agreement with that described in Trindade and

Haugh (1979, 1980). Then he fit a Weibull distribution to the nonparametric estimates.

The methods proposed in Trindade and Haugh (1979, 1980) and Baxter (1994) perform

poorly if the nonparametric estimates of the distribution approach 1 (e.g., if the expected

number of events per slot approaches or exceeds 1). Tortorella (1996) proposed an es-

timation procedure by building a pooled discrete renewal process model and estimating

the component reliability based on a maximum likelihood-like method.

Khinchin (1956) showed that if the number of slots in an SRP is large, the SRP

behaves like a nonhomogeneous (NHPP). By modeling the SRP with an NHPP and

estimating the expected cumulative function (ECF) and recurrence rate function of the

NHPP by those of the observed SRP, Tian and Meeker (2013) showed how to place

the problem in a likelihood framework. Maximum likelihood estimation was used to

produce estimates of the distribution parameters and quantiles. Their results showed

that when the SRP has a large number of slots, the estimators perform well. When the

number of slots is relatively small, the estimator can perform poorly, because the NHPP

33

approximation is not adequate.

Due to the limitations discussed above, there was need to develop a new estimation

method that works in applications with a small number of slots. In the following section,

we describe an estimator that does not require a large number of slots in the SRP, nor

does it need the system to be running for a long time. The only limitation may come

from the number of events in the SRP, that is, the computationally intensive nature of

the estimation method makes it difficult to deal with SRPs that have a large number of

events. Considering this, we know that the proposed method will be especially useful

for dealing with a fleet of SRPs where each SRP only has a relatively small number of

events. When the number of systems in the fleet is relatively large, the expected total

number of events becomes large enough to enable precise estimation.

3.1.4 Overview

The reminder of this article is organized as follows. Section 2 will describe the data

structure and the proposed model. Section 3 derives the likelihood function for the SRP

by considering all possible data configurations. Based on the SRP likelihood, we can

compute the likelihood for a whole fleet of SRPs. Section 4 compares the performance

of the proposed estimator with that of the other two estimators. Section 5 describes and

compares the performance of two interval estimation procedures. Section 6 applies the

proposed parameter and interval estimation procedures to analyze the engine cylinder

replacement data. Some conclusions and the discussion of future work will be given in

Section 7. An appendix at the end of this paper will give some technical details required

in the derivation of the likelihood.

34

3.2 Data and Model

3.2.1 Data Structure

We consider a fleet of nSys systems where each system contains m components

operating in m slots. When a component fails, the failed component is replaced by

a new one on the same slot. For each replacement, we only know the system index

(identifying the system), but not the slot where the replacement was made within the

system.

3.2.2 Model

We assume that the lifetime of a component, T , follows a distribution with CDF

F (t;θ), where θ is a vector of unknown parameters. For example, the Weibull distribu-

tion has CDF

F (t; β, η) = 1− exp

[
−
(
t

η

)β]
(3.1)

With an iid assumption, the event history for a single slot is a renewal process

(RP). Let Ti denote the lifetime for the component before replacement i, i = 1, 2, 3, · · ·.

The observed recurrence times, {Tj} =
∑j

i=1 Ti, form a renewal process (RP). Here

we consider a mechanism where the end-of-observation time is specified/fixed and the

number of events before the end-of-observation time is random. A data set will consist

of an SRP for each system in the fleet. Here we assume that all slots have the same

end-of-observation times within one system.

3.3 Likelihood

Initially we define a likelihood for an SRP from a single system. Then likelihood for

the whole fleet is the product of all SRP likelihoods. The maximization of the likelihood

gives the idML estimates where “id” refers to “incomplete data,” because the slot-level

information is not available.

35

3.3.1 Data Configurations

An SRP arises of m statistically independent renewal processes in m slots within a

system. First we identify different data configurations leading to the observed r events

for the SRP.

Result 1 For a system (SRP) with r events, the number of all possible data configura-

tions leading to r observed events is equal to mr

Proof: Any of the r events can come from all the m slots in the SRP. Then according to

the “counting principle” there are mr possible data configurations that could generate

those r events. For example, Figure 3.2 shows all 32 data configurations for the situation

where there are m = 3 slots and r = 2 events.

Figure 3.2 All 32 data configurations for the SRP with m = 3 and r = 2

In the next two subsections, we will show how to enumerate all data configurations

that lead to the observed event history. This enumeration provides a basis to compute

36

the likelihood for an SRP. Section 3.3.2 will discuss partitions of the observed r events in

the SRP and all the slot combinations (i.e., the number of ways one can select slots from

all m slots to which the r events can be assigned). Section 3.3.3 will describe all unique

ways to allocate recurrence times to the selected slots, given one particular partition.

37

Table 3.1 Examples, SRP with m = 16 slots

Partitions of r Slot Combination Unique Data Configuration
r i Eri ki =

(
m
li

)
ui si

2 1 (2)
(
16
1

)
× 1 1

2 (1, 1)
(
16
2

)
× 1 1

3 1 (3)
(
16
1

)
× 1 1

2 (2, 1)
(
16
2

)
× 2 3

3 (1, 1, 1)
(
16
3

)
× 1 1

4 1 (4)
(
16
1

)
× 1 1

2 (3, 1)
(
16
2

)
× 2 4

3 (2, 2)
(
16
2

)
× 1 3

4 (2, 1, 1)
(
16
3

)
× 3 6

5 (1, 1, 1, 1)
(
16
4

)
× 1 1

5 1 (5)
(
16
1

)
× 1 1

2 (4, 1)
(
16
2

)
× 2 5

3 (3, 2)
(
16
2

)
× 2 10

4 (3, 1, 1)
(
16
3

)
× 3 10

5 (2, 2, 1)
(
16
3

)
× 3 15

6 (2, 1, 1, 1)
(
16
4

)
× 4 10

7 (1, 1, 1, 1, 1)
(
16
5

)
× 1 1

6 1 (6)
(
16
1

)
× 1 1

2 (5,1)
(
16
2

)
× 2 6

3 (4,2)
(
16
2

)
× 2 15

4 (4,1,1)
(
16
3

)
× 3 15

5 (3,3)
(
16
2

)
× 1 10

6 (3,2,1)
(
16
3

)
× 6 60

7 (3,1,1,1)
(
16
4

)
× 4 20

8 (2,2,2)
(
16
3

)
× 1 15

9 (2,2,1,1)
(
16
4

)
× 6 45

10 (2,1,1,1,1)
(
16
5

)
× 5 15

11 (1,1,1,1,1,1)
(
16
6

)
× 1 1

38

3.3.2 Partitions

Definition 1 A partition of a positive integer r is a way of writing r as a sum of positive

integers.

In our application, a partition indicates how the r events could have occurred in the m

slots, without regard to time order or slot label. Table 3.1 lists examples of partitions of

the integer r for 1 ≤ r ≤ 6. For a given value of r, there are h partitions. The notation

Eri indicates partition i out of the h partitions for the r events. Note the sum of the

elements in each partition Eri is r, corresponding to the number of event(s) occurring in

all m slots. For slots that have no events, the corresponding elements are 0, but they

are not listed. We use a shorter representation that only lists slots with at least one

event. Specifically, Eri represents a partition (r1, r2, . . . , rli), li ≤ m, where li ≤ m is the

length of the partition, corresponding to the number of slots with at least one event, as

illustrated in Table 3.1.

Let ui denote the number of unique permutations of Eri . The unique elements of Eri

are denoted by (r∗1, · · · , r∗q), and (n∗1, · · · , n∗q) denotes the number of times each of the q

unique elements appear in Eri . Then ui can be computed as

ui =
li!

n∗1! · · ·n∗q!
. (3.2)

Given a partition with length li, the number of ways that one can choose li slots from

the m slots in the SRP can be computed as

ki =

(
m

li

)
× ui.

Thus partition Eri has ki equivalent (except for slot labeling) slot combinations, de-

fined as Ari,j. Then

Eri = ∪kij=1Ari,j.

39

For example, for r = 5 and partition E53 = (3, 2), from Table 3.1, there are ki = 240

possible slot combinations. These are

A5
3,1 = {(Three events in slot 1, two events in slot 2)}

A5
3,2 = {(Two events in slot 1, three events in slot 2)}

...

A5
3,k3=240 = {(Two events in slot 15, three events in slot 16)} (3.3)

All of these 240 Ari,j’s are essentially equivalent, as they only differ in slot labels.

3.3.3 Data Configuration for a Given Partition

For each slot combination described in Section 3.3.2 (i.e., each Ari,j), the number of

ways that the observed r events could be allocated to the selected li slots is

s∗i =

(∑li
j=1 rj

)
!

r1! r2! . . . rli !
=

r!

r1! r2! . . . rli !
.

Note that for fixed r

∑
i

kis
∗
i = mr.

To illustrate this, consider r = 5 and the partition is E35 = (3, 2). In this partition,

there are two slots with events, say slot A and slot B. Let slot A take three events and

slot B take the other two events. All s∗i = 10 data configurations corresponding to this

partition are given in Table 3.2.

For a partition that has at least two elements of Eri that are the same, some of the

s∗i data configurations are equivalent in the sense that they produce exactly the same

likelihood and differ only in the slot index. Table 3.3 illustrates this equivalence for the

partition E44 = (2, 1, 1) when there are m = 16 slots and r = 4 events. According to the

partition, there are three slots with at least one event. One slot has two events and the

other two slots have one event each. Suppose slot A has two events, and that slots B and

40

Table 3.2 All data configurations for the partition E35 = (3, 2)

j slot A slot B
1 t1, t2, t3 t4, t5
2 t1, t2, t4 t3, t5
3 t1, t2, t5 t3, t4
4 t1, t3, t4 t2, t5
5 t1, t3, t5 t2, t4
6 t1, t4, t5 t2, t3
7 t2, t3, t4 t1, t5
8 t2, t3, t5 t1, t4
9 t2, t4, t5 t1, t3
10 t3, t4, t5 t1, t2

C have one each. Then the number of all data configurations is s∗i = 12, corresponding

to the data configurations shown in Table 3.3.

Table 3.3 All data configurations for the partition E4i = (2, 1, 1)

j slot A slot B slot C
1 t1, t2 t3 t4
2 t1, t2 t4 t3
3 t1, t3 t2 t4
4 t1, t3 t4 t2
5 t1, t4 t2 t3
6 t1, t4 t3 t2
7 t2, t3 t1 t4
8 t2, t3 t4 t1
9 t2, t4 t1 t3
10 t2, t4 t3 t1
11 t3, t4 t1 t2
12 t3, t4 t1 t1

Note, however, that data configurations 1 and 2 shown in Table 3.3 correspond to

the same situation that t1 and t2 take place in one slot and t3, t4 occur in two other

slots and thus will have the same likelihood. The other indicated pairs in Table 3.3 are

similarly equivalent. For this partition, there are six unique data configurations.

41

The number of unique data configurations for partition Eri , si, can be calculated as

si =
s∗i

n∗1! · · ·n∗q!
,

where (n∗1, · · · , n∗q) are the frequencies of the q unique elements in Eri .

Table 3.1, for 1 ≤ r ≤ 6 and m = 16, shows examples of partitioning integers and

values of li, ki, ui and si. Results for SRPs with larger values of r can be computed by

following the same algorithm.

3.3.4 The Likelihood for a Single SRP

In this section we drive the likelihood function for a single SRP (correponding to one

system in the fleet). Then total log likelihood for the fleet is the sum of the log likelihood

for the SRPs in the fleet.

Given an SRP with m slots, there are many ways to allocate observed recurrence

times to all m slots, as shown in Section 3.3.1. Our goal is to consider all unique data

configurations and compute the likelihoods, conditional on the particular data configura-

tions, and the corresponding probabilities for these data configurations. Then the SRP

likelihood can be computed as a weighted sum of these conditional likelihoods.

Let the observed event history be Htc = (t1, t2, . . . , tr, tc), with recurrence times t1 <

· · · < tr, and end-of-observation time tc. Denote by L the likelihood of the data. Consider

an SRP with r events and let R = {r observed events}. Then all slot combinations (i.e.,

Ari,j’s) have the same probability because they correspond to the same partition and

differ only in the slot label. Thus, we have

πi = Pr(Ari,1 ∩R) = Pr(Ari,2 ∩R) = · · · = Pr(Ari,ki ∩R).

42

Result 2 Conditional on R, the likelihood for the observed SRP is

L = Pr(Htc|R) = Pr
[
Htc ∩

(
∪hi=1Eri

)
|R
]

= Pr
[
∪hi=1 (Htc ∩ Eri) |R

]
=

h∑
i=1

Pr (Htc ∩ Eri |R)

=
h∑
i=1

Pr
[
Htc ∩

(
∪kij=1Ari,j

)
|R
]

=
h∑
i=1

ki Pr
(
Htc ∩ Ari,1|R

)
=

h∑
i=1

ki Pr
(
Htc ∩ Ari,1 ∩R

)
/Pr(R)

=
h∑
i=1

ki Pr
(
Htc ∩

{
∪sij=1Bri,j

}
∩R

)
/Pr(R)

=
h∑
i=1

ki

si∑
j=1

Pr
(
Htc ∩ Bri,j ∩R

)
/Pr(R)

=
h∑
i=1

ki

si∑
j=1

Pr
(
Htc |Bri,j ∩R

)
Pr
(
Bri,j ∩R

)
/Pr(R)

=
h∑
i=1

ki

si∑
j=1

Pr
(
Bri,j ∩R

)
Pr
(
Htc|Bri,j ∩R

)
/Pr(R)

=
h∑
i=1

ki

si∑
j=1

Pr
(
Bri,j ∩ Ari,1 ∩R

)
Pr
(
Htc|Bri,j ∩R

)
/Pr(R)

=
h∑
i=1

ki

si∑
j=1

Pr
(
Bri,j|Ari,1 ∩R

)
Pr
(
Ari,1 ∩R

)
Pr
(
Htc|Bri,j ∩R

)
/Pr(R)

∝
h∑
i=1

ki

si∑
j=1

pij
πi

Pr(R)
Lij

=
h∑
i=1

ki
πi

Pr(R)

(
si∑
j=1

pijLij

)

where Bri,j refers to the jth unique data configuration within partition i with Ar =

∪sij=1Bri,j, πi = Pr(Ari,1 ∩ R) and thus πi/Pr(R) = Pr(Ari,1|R). pij is the probability of

Bri,j conditional on Ari with
∑si

j=1 pij = 1. Lij is the likelihood for a data configuration.

43

In Section 3.3.5 and 3.3.6, we will discuss the computation of the πi and pij values,

respectively.

Note that Pr(R) is the probability of observing exactly r events in the m slots in the

(0, tc] interval. It can be shown that Pr(R) =
∑h

i=1 kiπi. In particular,

Pr(R) = Pr(R ∩
(
∪hi=1Eri

)
)

=
h∑
i=1

Pr(R ∩ Eri)

=
h∑
i=1

Pr(R ∩
(
∪sij=1Ari,j

)
)

=
h∑
i=1

si∑
j=1

Pr(R ∩ Ari,j)

=
h∑
i=1

ki Pr(R ∩ Ari,1)

=
h∑
i=1

kiπi.

For a given data configuration, it is easy to write out the corresponding likelihood

function, Lij. For example, one data configuration corresponding to the partition E53 is

shown in the first row of Table 3.2. The data configuration describes the situation where

t1, t2, t3 occur in slot 1, and t4, t5 occur in slot 2. There are no events in any of the other

(m− 2) slots. Then the corresponding likelihood, L31, is

L31 = [f(t1)f(t2 − t1)f(t3 − t2)S(tc − t3)] [f(t4)f(t5 − t4)S(tc − t5)] [S(tc)]
m−2 (3.4)

3.3.5 Computation of the Slot Combination Probabilities πi

Let us illustrate the computation of the slot combination probabilities πi with an

example. Consider the case where r = 5 and the partition is E52 = (3, 2) from Table 3.1.

44

Then

(3.5)

π2 = Pr(Ar2,1 ∩R)

= Pr(Three events in slot 1, two events in slot 2, no events in other slots)

= Pr(Three events in slot 1, two events in slot 2)p
(m−2)
0

= p3p2p
(m−2)
0

where p0 is the probability of zero events in a slot, p3 is the probability of three events

in a slot, and p2 is the probability of two events in a slot.

In general, given Eri = (r1, . . . , rli), the probability of one slot combination, πi, can

be computed as

πi = pm−li0

li∏
u=1

pru , (3.6)

where pru is the probability of ru events in a slot. The computation of (3.6) involves

recursive-numerical evaluation of convolutions. See the Appendix for technical details.

3.3.6 Computation of Conditional Configuration Probabilities pij

The conditional probability of unique data configuration j given partition i is pij =

Pr(Brij|Ari,1). The computation of the pij values appears to be extremely complicated. For

each possible data configuration the probability can be expressed as a multiple integral

where the dimension of the integral is r+m, corresponding the r+m random variables

involved in the needed probabilities (i.e., all of the event times and the unobserved

next event times in each of the slots), conditional on the r observed events in an SRP.

Furthermore the integrals need to be evaluated over a complicated region corresponding

to the orderings of the random variables for the given data configuration. Given the

computational complexity of this exact evaluation, we use, instead, simple simulation to

do the evaluations. The simulation scheme is as follows:

Algorithm 1: Simulation of configuration probabilities

45

1. Simulate an SRP with m slots using the specified distribution parameters, and the

given end-of-observation time, tc.

2. If the observed number of events in the simulated SRP is not r, go to Step 1.

Otherwise, check which data configuration, Brij, it belongs to, and update the

count for that data configuration by 1.

3. Repeat Steps 1 and 2 until some specified number of SRPs corresponding to the

second highest-probability partition have been simulated.

4. Compute pij as the observed relative frequency of each data configuration within

the partition. Some partition(s) may have zero counts in the simulation because

this partition has a very small probability to happen. Then we assign equal proba-

bilities to all data configurations within this partition (i.e., pij = 1/si, i = 1, · · · , si).

This will not change the result too much because any such partition is rare.

3.3.7 Fleet Likelihood

For a fleet of nSys systems, indexed by k, the number of slots in system k is mk and

the end-of-observation time is tkc . The number of recurrent events for system k is rk and

the recurrence times are tk = (tk1, tk2, · · · , tkrk). Then the log likelihood for system k,

Lk(θ; tk, t
k
c), can be computed according to Section 3.3.4. Assuming that all systems in

the fleet are independent, the total log-likelihood for the fleet data is

Ltotal(θ) =

nSys∑
k=1

Lk(θ; tk, t
k
c). (3.7)

3.3.8 Estimation and Computational Issues

The idML estimates are obtained by maximizing the log likelihood function shown

in Equation 3.7.

The simulation procedure described in Section 3.3.6 can be computationally inten-

sive. One approximate method is to start by assigning equal pij to all unique data

46

configurations within a partition. This approximation works because SRPs with rela-

tively small r but relatively large m have some dominant partition corresponding to the

scenario where no slot has more than one event. In this case, there is only one unique

data configuration within that dominant partition, so assigning equal pij to each data

configuration gives an exact result to that partition. Also, assigning equal pij’s to other

less dominant partitions will not change the likelihood too much because those partitions

have a small probability and thus contribute little to the likelihood. This approximation

simplifies the computation to begin the idML iterations. Based on this idea, we propose

an iterative procedure to obtain the approximate idML estimates, as described below.

For simplicity, we focus on one SRP. The procedure can be easily generalized to a fleet

of multiple SRPs.

Algorithm 2: Approximate idML Estimation

1. Set k = 0

2. Give equal pij to every data configuration within a partition, and compute the first

approximation to the ML estimates by maximizing (3.7). Denote the estimates by

θ̂k = θ̂0.

3. Simulate SRPs with m slots and end-of-observation time tc, according to the life-

time distribution with parameters θ̂k. Then use the simulated SRPs to estimate

pij’s.

4. Substitute the simulated pij values obtained in last step to the likelihood function

and by maximizing (3.7), compute the ML estimate, denoted by θ̂k+1.

5. Set k = k + 1. If k < nIter, go to Step 3.

6. The approximate idML estimate is θ̂nIter.

The estimate θ̂nIter is expected to be close to real idML estimates. In order to eval-

uate the performance of this iterative procedure, we studied how the estimate evolves in

47

each iteration for maxIter = 10 steps. In this experiment we assume that the component

lifetime distribution is Weibull, with CDF shown in Equation 3.1. This experiment uses

three factors:

• β: the Weibull shape parameter

• m: the number of slots in the SRP

• Er: the expected number of events for each SRP

The number of SRPs in the fleet, nSys is constrained such that nSys×Er = 20 (i.e.,

the expected number of events for the whole fleet is 20). The factor levels considered in

this experiment are:

• β: 1, 3

• m: 4, 16

• Er: 4, 1

Note that because for a total expected number of events of 20, the fleet has nSys = 5

SRPs when Er = 4 and nSys = 20 SRPs when Er = 1.

Figure 3.3 describes the situation where β = 3 and Figure 3.4 corresponds to the

situation where β = 1. Each figure has eight plots in four rows. The four rows correspond

to the four combinations of the factor levels of m and Er and the two plots on the

same row correspond to the estimate of β and one quantile of interest. The quantile is

selected to be close to one half of the fraction of failing (or fraction of slots with events).

For example, if m = 16 and Er = 4, then about 1/4 of the slots have events, and

therefore we focus on t0.1. Each plot shows iterative estimates from three realizations,

denoted by different symbols. Iteration 0 represents the estimator based on equal pij

specification (i.e., θ̂0). These figures suggest that when β is relatively large (e.g., 3), the

estimate usually becomes stable after a few iterations, for both β and quantile. When

48

β is small (e.g., 1), we can see larger fluctuations in the estimates, probably due to the

larger variability in pij’s within a data configuration, computed by simulations. Note

the distributional variability is larger for β = 1 than β = 3. Therefore, it may take

more steps for the estimates to stabilize. In overall, the observed trend of the iterative

estimate is converging for large β values and it is expected that the convergence point

is the desired idML estimate. Because the wearout failure mode (i.e., relatively large

β) is of particular interest in our research, the above result indicates that this iterative

procedure may lead us to some stable estimate, as an approximation to the desired idML

estimate, in a few steps.

3.4 Performance of the idML Estimator

3.4.1 Design of Simulation Study

This section describes a simulation study to compare the performance of the proposed

idML estimator with two other estimators. The three estimators in comparison are

described below:

1. cdML: which requires the knowledge of the lifetimes of all units. This is equiva-

lent to knowing not only the SRP information, but also the slot location for all

replacements. This is used as a comparison reference.

2. idML: the proposed incomplete data estimator, θ̂idMLE, which depends on having

individual SRP data from each system.

3. NHPPML: which treats the whole fleet as a single SRP and applies the NHPP

modeling to this SRP, as described in Section 3.1.3 and Tian and Meeker (2013).

49

Figure 3.3 idML estimates for β (left) and tp (right) at each iteration for different
combinations of nSys, m and Er. Here β = 3 (3 realizations)

50

Figure 3.4 idML estimates for β (left) and tp (right) at each iteration for different
combinations of nSys, m and Er. Here β = 1 (3 realizations)

51

3.4.1.1 Other Experimental Factors

The simulation was designed to mimic the replacement history for a fleet of nSys

systems (SRPs). For simplicity, we assume that all systems have m slots, and the end-

of-observation times for all systems are the same, as determined by the expected number

of events per system. We assume a Weibull component lifetime distribution with shape

parameter β = 3 and scale parameter η = 1.

The particular factors used were:

• nSys: the number of SRPs in the fleet

• m: the number of slots in the SRP

• Er: the expected number of events for each SRP

3.4.1.2 Factor Levels

We conducted simulations at all combinations of the following levels of the factors.

• nSys: 5, 15

• m: 4, 16

• Er: 4

Note that the total expected number of events for the fleet would be nSys×Er (i.e.,

either 20 or 60).

For each combination of the factor levels we simulated and computed idML, cdML

and NHPP estimates for 1000 data sets. The quantities of interest include the Weibull

shape parameter β and a sequence of quantiles tp, where p = 0.01, 0.1 ∼ 0.9.

3.4.2 Simulation Results

For each quantity of interest, we calculate the Monte Carlo estimate of MSE based on

the 1000 samples and quantify the relative efficiency of idML and NHPPML estimators,

52

with regard to the cdML estimator, which is based on the complete data information.

We use the cdML estimator as the reference because with all information available, this

estimator is expected to perform well. The relative efficiency (ratio of MSE error, relative

to the MSE of the cdML estimator) indicates how much information is lost if we do not

know the slot identity for component replacements.

Figure 3.5 shows the relative efficiency plots for all the four factor-level combinations

in Section 3.4.1.2. In all the four plots, cdML reference estimator is indicated by a

horizontal line with an efficiency of 1.

The top-left plot in Figure 3.5 corresponds to the situation where the fleet has nSys =

5 systems with each system has m = 4 slots and the expected number failing per system

is Er = 4. From the plot we can see that the idML estimator has high efficiency for

estimating large quantiles (e.g. t0.5, t0.7). This is because each slot has one event on

average, and therefore larger quantiles will be well estimated. The efficiencies for small

quantiles drop gradually as they move away from t0.5 toward small probabilities. The

relative efficiency of β estimate is about 0.5. The NHPP estimator, denoted by cross

symbols, does not compare well with the idML estimator, especially in estimating large

quantiles and β. The performance of the NHPP estimator is comparable to that of

the idML estimator in estimating small quantiles, for example, t0.01 and t0.1. The poor

performance of the NHPP estimator can be explained by the small number of slots

(nSys×m = 20) in the whole fleet. With such a small number, the NHPP model does

not provide an adequate description of the SRP, as mentioned in Section 3.1.3.

The bottom-left plot in Figure 3.5 describes the situation where nSys = 15, m = 4,

and Er = 4. In this case the idML and NHPP estimators have comparable performances.

The idML estimator has better performance than NHPP estimator in estimating large

quantiles (e.g., t0.5, t0.7, t0.9), but NHPP is slightly better than idML estimator in es-

timating small quantiles (e.g., t0.01, t0.1 and t0.3) and β. The reason why the idML

estimator does not do as well, relative to the NHPP estimator, is because the total num-

53

ber of slots in the fleet is 15× 4 = 60, large enough for the the NHPP model to provide

an adequate model for the collective SRP.

The top-right plot in Figure 3.5 corresponds to the situation where nSys = 5, m = 16,

and Er = 4. The idML estimator of β has a slightly larger MSE than that of the cdML

and NHPP estimators. The MSE for the idML estimator of the lower tail quantile, t0.01,

is larger than that of the corresponding cdML estimator, but smaller than the NHPP

estimator. For quantiles from t0.1 to t0.9, the idML estimator has a smaller MSE than

the other two estimators. After in-depth analysis of these three estimators, we learned

that the idML estimator has a smaller magnitute of bias for larger quantiles (e.g., t0.3 to

t0.9) and a somewhat smaller variance for all quantiles of interest, than the cdML and

NHPP estimators. The comparison of bias, variance and MSE among cdML, idML and

NHPP estimator for this situation is given in Figure 3.6, with three estimators denoted

by cross, circle and triangle symbols, respectively. The idML estimator of t0.1 has larger

bias than the other two estimators, but because the variance is smaller, the MSE is still

smaller than both cdML and NHPP estimators. The bias for the idML estimator of β is

also larger than the other two estimators. But because the variance for idML estimator

is only slighly smaller than that of cdML and NHPP estimators, the MSE is slightly

larger for idML than the ther two estimators.

The bottom-right plot in Figure 3.5 refers to the situation where nSys = 15, m = 16,

and Er = 4. The performance of the idML estimator, relative to the other two estimators,

is similar to that is observed in the top-right plot. The idML estimator also has smaller

MSE in quantiles from t0.3 to t0.9 than the other two estimators, but the difference in

MSE between idML and cdML estimators is smaller than what is observed in the top-

right plot. This is because the expected number of events for the whole fleet in this

situation is three times the situation described in the top-right plot, allowing the cdML

estimator to have decreased bias, thus smaller MSE.

Overall, the proposed idML estimator tends to outperform the NHPP estimator,

54

especially when the number of slots is far greater than the number of event in the SRP

(corresponding to the cylinder data). The advantage of idML over NHPP estimator

diminishes as the number of slots in the whole fleet gets large.

Figure 3.5 Relative efficiency of estimators w.r.t. cdMLE (top-left: nSys = 5, m = 4,
Er = 4; top-right: nSys = 5, m = 16, Er = 4, bottom-left: nSys = 15, m
= 4, Er = 4; bottom-right: nSys = 15, m = 16, Er = 4)

3.5 Bias of the idML Estimator

Section 3.4.2 showed that the idML estimator of β and some lower tail quantiles has

larger (positive) bias than the cdML estimator. When the expected number of events is

small (e.g., 4) relative to the number of slots (e.g., 16) in an SRP, the bias is small. But

when the expected number of events (e.g., 4) is close to the number of slots (e.g., 4), the

idML estimation procedure can have significant bias. In the following analysis we will

55

Figure 3.6 Comparison of bias, variance and MSE for 1000 samples among cdML, idML
and NHPP estimates when nSys = 5, m = 16 and Er = 4

focus on the comparison of the idML and cdML estimators and explain why the idML

estimator can have a larger bias than the cdML estimator.

The likelihood (3.4) can be expressed as a weighted sum of the likelihood for a data

configuration Lij. That is,

L(θ) =
h∑
i=1

si∑
j=1

wij(θ)Lij(θ), (3.8)

where wij = kiπipij/
∑h

i=1 kiπi is the probability for the jth unique partition-data config-

uration combination within partition i and
∑h

i=1

∑si
j=1wij = 1. Each Lij corresponds to

one possible partition-data configuration combination that could lead to the observed r

56

events. The cdML estimate is obtained by maximizing the single Lij corresponding to

the known partition-data configuration combination that actually happened behind the

simulation. In order to show why the idML estimator tends to have large bias, we use a

simulated example to illustrate what the likelihoods (Lij) look like for all partition-data

configuration combinations. In the example we use a single simulated SRP with r = 3

events and m = 4 slots. In this situation, there are
∑h=3

i=1 si = 5 unique partition-data

configuration combinations and the 0.9 level relative likelihood contour plots (t0.3 vs β)

for all the five partition-data configuration combinations and the idML are shown in

Figure 3.7. The circle symbol represents the center of the idML 0.90 relative likelihood

contour and the other five symbols indicate the center of the 0.90 relative likelihood con-

tours for the other five partition-data configuration combinations that could occur. The

partition-data configuration combination with label ‘1.1.1 1.2.3’ (denoted by inverted

triangle) represents the highest-probability (for any reasonable values of the Weibull pa-

rameters) data configuration, which means the observed three events take place in three

different slots. In a long sequence of simulated SRPs, the cdML estimator would, with

high probability, correspond to this data configuration. The first part of the label, ‘1.1.1’,

represents the partition, and the second part of the label, ‘1.2.3’, corresponds to the data

configuration within the partition. Interestingly, the idML estimate is not in the range of

the five possible cdML estimates. The idML estimate would be in the range of the other

five estimates if the weights (i.e., wij) in (3.8) were to be fixed (i.e., not a function of

the Weibull parameters). Instead, the idML relative likelihood contour is shifted to the

right of the other 0.90 relative likelihood contours. The idML relative likelihood contour

shifts to the right because the weights wij depend on the parameters (e.g., β and t0.3)

and, in an effort to maximize the likelihood, the idML procedure pulls the β estimate

to a higher value region in order to increase the weight for the highest-probability data

configuration, even though the corresponding Lij will decrease somewhat. The top-left

and bottom-left plots in Figure 3.8 show wij values for all of the five partition-data con-

57

figuration combinations as a function of β (while, for simplicity, fixing η as the cdML

estimate), showing the effect that β has on the wij values for SRPs with m = 4 and

m = 16 slots, respectively. Note that the wij value for the highest-probability partition-

data configuration combination (i.e., ‘1.1.1 1.2.3’) increases as β increases. The top-right

and bottom-right plots of Figure 3.8 show the profile likelihoods as a function of β for

the corresponding SRPs. The shift in the profile likelihood curves from the cdML to the

idML procedure corresponds to the positive bias for β. The bias is smaller for an SRP

with m = 16 slots (i.e., bottom-right plot) than that for an SRP with m = 4 slots (i.e.,

top-right plot).

Figure 3.7 Contour plots (0.9 level) for all partition-data configuration combination
and idML likelihood for a SRP with 3 events and 4 slots

The likelihood Lij for the highest-probability partition-data configuration combina-

tion (i.e., ‘1.1.1 1.2.3’) is much larger than that for the other four Lij values because this

58

Figure 3.8 wij and profile likelihood values for all five partition-data configuration com-
binations for a simulated SRP with different β values (Top: m = 4, r = 3.
Bottom: m = 16, r = 3. Left: wij. Right: Profile likelihood)

partition-data configuration combination is much more likely to take place. According

to the top-left plot in Figure 3.8, when β is 2.5, wij for the highest-probability partition-

data configuration combination is about 0.82. When β is 3, the wij value increases to

0.90, putting more weight to the largest Lij. The increase in β will cause a decrease in

the Lij value, but because of the substantial increase in the wij, the total likelihood still

increases. This is the reason why the idML β estimator tends to be larger (and thus

more biased) than cdML estimator. Because the estimator of β is positively correlated

with the estimators of some lower tail quantiles, the estimators of these quantiles also

have positive bias.

59

As seen in the bottom-right plot of Figure 3.8, when the SRP has r = 3 events and

m = 16 slots, the observed biases for β are much smaller than those for an SRP with

m = 4 events. This is because in this case, a β value of 3.5 already gives a wij value

of 0.989 to the highest-probability data configuration. If β is increased from 3.5 to 4,

the wij value only increases from 0.989 to 0.994, not too much improvement relative to

the corresponding decrease in Lij value. Therefore there is no strong incentive for β to

become larger and the idML estimate of β will be only slightly larger than the cdML

estimate of β.

3.6 Interval Estimation

This section compares two interval estimation methods, based on the Wald approxi-

mation and based on inverting the likelihood ratio test (LRT).

3.6.1 Wald Interval

Let θ be a particular quantity of interest on the log scale. For example, θ can be

log(β) or log(tp), where β and tp are the shape parameter and p quantile of the Weibull

distribution. We use the log scale because all the quantities of interest are positive, so on

log scale, the range of the quantity is unrestricted. Also, there is an expectation that the

normal distribution approximation underlying the Wald method will be better on the

unrestricted log scale. Denote the idML estimate of θ by θ̂. Let ŝeθ̂ denote an estimate of

the standard error of θ̂, computed as a function of the elements of the observed Hessian

matrix. Then the 100(1 - α)% Wald confidence interval for θ is

[
θ̂ ± z1−α × ŝeθ̂

]
(3.9)

where α is the confidence level and z1−α is the 1 − α quantile of the standard normal

distribution.

60

3.6.2 LRT Interval

Let θ = (θ1, θ2) be the unknown parameters, where θ1 is the parameter of interest

and θ2 is a nuisance parameter. Then in our examples θ would be [log(β), log(tp)] or

[log(tp), log(β)]. If the likelihood function is L(θ1, θ2), then the profile likelihood for θ1 is

R(θ1) = max
θ2

[
L(θ1, θ2)

L(θ̂1, θ̂2)

]
(3.10)

where θ̂1 and θ̂2 are the idML estimates of θ1 and θ2, respectively. The likelihood-ratio

statistics is LRT(θ1) = −2 log R(θ1) and the asymptotic distribution of LRT(θ1), when

evaluated at the true θ1, is χ2
1. If the roots to the equation

LRT(θ1)− χ2
1,(1−α) = 0 (3.11)

are θ1L ≤ θ1U , then the LRT interval with a confidence level α for θ1 is

[θ1L, θ1U] . (3.12)

3.6.3 Comparison of Interval Estimation Methods

The coverage probabilities for confidence interval procedures were studied for both

Wald and LRT based intervals. Figure 3.9 shows the coverage probabilities for the

situation where nSys = 5, m = 16, and Er = 4. The left plot corresponds to the Wald

interval result and the right plot is associated with the LRT interval result. In both

the two plots, the circles represent the two-sided 90% interval, the triangles and crosses

represent the lower and upper one-sided 95% intervals. In this case, the quantities of

interest include β, t0.1, t0.3, t0.632 ≈ η, and t0.9. By comparing the two plots, we conclude

that LRT-based intervals produce coverage probabilities that are much closer to the

desired nominal values than the Wald intervals. This is true for both two-sided intervals

and one-sided bounds.

Figure 3.10 shows the coverage probabilities for the situation where nSys = 5, m = 4,

and Er = 4. In this case, the quantities of interest are β, t0.1, t0.2, and t0.632 ≈ η. The

61

two plots show that neither of the two methods give coverage probabilities that are very

close to the desired values. This is because the idML estimator has rather serious bias

when the SRP has m = 4 slots and Er = 4 events. The performance for estimating the

quantile t0.632 seems to be the best among all the quantities of interest. This finding is

consistent with what is shown in Figure 3.5, where the relative efficiency for estimating

quantiles around t0.7 is the highest.

Figure 3.9 Coverage probability for Wald and LRT intervals
(nSys = 5,m = 16, Er = 4)

3.7 Application to the Engine Cylinder Replacement Data

In this section, we applied the proposed idML estimation and LRT-based interval

estimation procedures to analyze the diesel engine cylinder replacement data shown in

Figure 4.1, corresponding to a fleet of 30 engines. Here is some description of the data

• The fleet has 30 engines (systems)

• Each engine has 16 cylinders (slots)

62

Figure 3.10 Coverage probability for Wald and LRT intervals
(nSys = 5,m = 4, Er = 4)

• There is a total of 59 events. The fraction of slots with failure ≈ 59/[30× 16] ≈

0.123. Therefore we expect to have good estimation up to and a little beyond t0.1.

The point estimates and the 90% LRT confidence intervals for the shape Weibull β

and some quantiles of interest, including t0.001, t0.01, t0.05, t0.1 and t0.632 ≈ η are shown in

Table 3.4.

Table 3.4 Point estimates and LRT confidence intervals for parameters and quantiles
of cylinder data

Quantities Estimate 5%CI 95%CI
β 3.95 3.21 4.79

t0.001 478.22 358.35 597.62
t0.01 858.20 731.50 971.61
t0.05 1297.20 1198.50 1385.28
t0.1 1556.84 1471.51 1646.94

t0.632 ≈ η 2753.93 2482.75 3154.23

Figure 3.11 is the Weibull probability plot of the idML estimates for a series of quan-

tiles, together with the 90% confidence bands, obtained from the LRT-based procedure.

63

Figure 3.11 Weibull probability plot of the idML estimates and the 90% confidence
bands for cylinder data

Figure 3.12 shows the empirical and fitted mean cumulative function (MCF) plot for

the cylinder data. The solid curve represents the nonparametric estimate of the MCF,

the dashed curve corresponds to the fitted MCF based on the idML estimates. The two

dotted curves represent the 90% confidence bands. The fact that there is a high degree

of agreement between the observed MCF and the fitted MCF, and that the whole fitted

MCF curve falls inside the 90% confidence bands indicates that the idML estimate is a

good candidate for describing the cylinder data.

3.8 Conclusions and Future Work

In this paper we proposed a method for estimating the lifetime distribution of a

component from the aggregated event data for a fleet with multiple systems. Each

system contains a set of identical replaceable components and the event history for each

system is represented by an SRP. We derived the likelihood function for the observed

64

Figure 3.12 Empirical and fitted MCF plot for the subset of cylinder data

recurrent data for each SRP, by considering all unique data configurations, and then

showed how to compute the likelihood for the observed events of the whole fleet as a

weighted sum of the conditional likelihoods. By starting from a crude estimate of the

weights and updating iteratively, we were able to obtain the idML estimates in an efficient

way. The proposed estimation method is especially useful when the number of events

for each SRP is relatively small, so that likelihood computation is feasible despite of the

complex combinatorial nature, but the number of systems is sufficiently large, so that

the total sample size is large enough to give adequate precision and for large sample

theory to be adequate.

In addition, we evaluated the performance of interval estimation methods, based on

Wald approximation and the LRT. We have shown that the LRT-based procedure can

65

outperform the Wald-based procedure in producing better coverage properties.

Some possible areas for future are:

1. In the estimation procedure, we use simulations to estimate the data configuration

probabilities conditional on the partition (i.e., pij), as part of the likelihood func-

tion. This is time-consuming and may lead to inaccuracy. It might be possible to

derive the expression or an approximation for pij and compute these probabilities

numerically, instead by simulations. This might produce more accurate result of

the idML estimates.

2. It would be useful to conduct a larger simulation study to investigate the properties

of the idML estimator over a wider range of parameters.

3. It is well known that the cdML estimator of the Weibull shape parameter β is

biased. In some cases, the idML estimator has even more bias (e.g., when the

number events is close to the number of slots in the SRP). It may be worthwhile

to include a bias-correction step in the estimation.

4. An approximate likelihood computation could be developed that uses only high-

probability partitions. A reasonable range of β values can be used to compute

the partition probabilities. Then the partitions with high probabilities (e.g., larger

than some specified threshold) can be identified and used to compute the likelihood.

This could make the likelihood evaluation more efficient.

66

3.A Computation of the pi

Here we describe how to compute the pi’s (i = 0, 1, · · ·) shown in Equation 3.6 in

Section 3.3.5. Let T1, T2, . . . be the lifetimes for components in one renewal process

(i.e., in one slot) where the lifetime distribution has CDF F (t) and survival function

S(t). The recursive sequence to compute the probability of given number of events in a

specific component is as follows:

p0 = Pr (Zero events in the slot)

= Pr (T1 > tc) = 1− F (tc) ≡ F (0)(tc)− F (1) (tc)

p1 = Pr (One event in the slot)

= Pr (T1 ≤ tc, T1 + T2 > tc)

=

∫ tc

0

S(0)(tc − u)f(u)du

= F (tc)−
∫ tc

0

F (tc − u)f(u)du

=

∫ tc

0

F (0)(tc − u)f(u)du−
∫ tc

0

F (1)(tc − u)f(u)du.

= F (1)(tc)− F (2) (tc)

p2 = Pr (Two events in the slot)

= Pr (T1 + T2 ≤ tc, T1 + T2 + T3 > tc)

=

∫ tc

0

S(1)(tc − u)f(u)du

= F (2)(tc)− F (3) (tc)

...

pj+1 =

∫ tc

0

S(j)(tc − u)f(u)du

= F (j+1)(tc)− F (j+2) (tc)

where F (i)(t) denotes the i-fold convolution of the CDF and F (0)(t) = 1, F (1)(t) =

F (t), etc. The proof of this results is given in Appendix B and the numerical algorithm

67

for computing the convolution can be found in Halil (2005).

3.B Proof of the Probability of a Certain Number of Events in

a Slot

In this appendix, we will show why pj can be expressed as the difference of convolution

of CDF’s, as described in Appendix A.

p0 = Pr(T1 > tc) = 1− F (1) (tc) ≡ F (0)(tc)− F (1) (tc)

p1 = Pr(T1 < tc, T1 + T2 > tc)

= Pr(T1 < tc, T2 > tc − T1)

=

∫ tc

0

∫ ∞
tc−t1

f(t1)f(t2)dt2 dt1

=

∫ tc

0

f(t1)

∫ ∞
tc−t1

f(t2)dt2 dt1

=

∫ tc

0

f(t1)S(tc − t1)dt1

=

∫ tc

0

f(t1) [1− F (tc − t1)] dt1

=

∫ tc

0

f(t1)dt1 −
∫ tc

0

f(t1)F (tc − t1)dt1

= F (tc)− F (1) (tc) ≡ F (1) (tc)− F (2) (tc)

Now consider the case of p2. To facilitate the development, define V = T1 + T2. Denote

by fV (v) and SV (v) the density and the survival of V, respectively.

p2 = Pr(T1 + T2 < tc, T1 + T2 + T3 > tc)

= Pr(V < tc, V + T3 > tc)

=

∫ tc

0

∫ ∞
tc−v

fV (v)f(t3)dv

=

∫ tc

0

fV (v)

∫ ∞
tc−v

f(t3)dt3 dv

=

∫ tc

0

fV (v) [1− F (tc − v)] dv. (3.13)

68

It can be shown that

fV (v) =

∫ v

0

f(w)f(v − w)dw. (3.14)

Using (3.14) in (3.13) and exchanging the order of integration, one gets

p2 =

∫ tc

0

∫ v

0

f(w)f(v − w)S(tc − v)dw dv

=

∫ tc

0

f(w)

∫ tc

w

f(v − w) [1− F (tc − v)] dv dw. (3.15)

Changing variables z = v − w, in (3.15)

p2 =

∫ tc

0

f(w)

∫ tc−w

0

f(z) [1− F (tc − w − z)] dz dw (3.16)

=

∫ tc

0

f(w)
[
F (1)(tc − w)− F (2)(tc − w)

]
dw ≡ F (2)(tc)− F (3)(tc). (3.17)

The generalization of the proof to the case pj+1 is straightforward. It suffices to trace

the proof for p2.

References

Baxter, L., (1994), Estimation from quasi life tables, Biometrika, 81, 3, 567-577

Cox, D. R., (1962), Renewal Theory, London: Methuen & Co.

Feller, W., (1968), An Introduction to Probability Theory and Its Applications, vol.1,

New York: John Wiley

Halil, A., (2005), A pointwise estimator for the k-fold convolution of a distribution

function, Communications in Statistics-Theory and Methods, 34, 1939-1956

Khinchin, A.Ia.,(1956). On Poisson streams of random events. Theory of Probability and

Its Applications, 1, 248-255

Meeker, W.Q., Escobar, L.A., (1998), Statistical Methods for Reliability Data New York:

John Wiley & Sons.

69

Nelson, W.B., (2003), Recurrent Events Data Analysis for Product Repairs, Disease

Recurrences, and Other Applications, ASA-SIAM, Philadelphia, ASA, Alexandria.

Tian, Y., Meeker, W.Q., (2013), Estimating a parametric lifetime distribution from

superimposed renewal process data based on nonhomogeneous poisson process modeling,

to be submitted

Tortorella, M., (1996), Life estimation from pooled discrete renewal counts, in Jewell,

N.P. et al. (Eds), Lifetime Data: Models in Reliability and Survival Analysis, Kluwer

Academic, Dordrecht, pp. 331-8.

Trindade, D.C. and Haugh, L.D., (1979), Nonparametric estimation of a lifetime distri-

bution via the renewal function, IBM Burlington Technical Report TR 19.0463

Trindade, D.C. and Haugh, L.D., (1980), Estimation of the reliability of components

from field renewal data, Microelectronics Reliability, 20, 205-218

70

CHAPTER 4. IMPLEMENTATION OF A MAXIMUM

LIKELIHOOD PROCEDURE FOR MODELING THE

SUPERPOSITION OF RENEWAL PROCESS DATA

A paper to be submitted

Ye Tian and William Q. Meeker

Department of Statistics

Iowa State University

Ames, IA 50014

Abstract

This paper documents an R implementation of a maximum likelihood algorithm for

estimating the component lifetime distribution from a collection of superimposed renewal

processes. The R function calls a C program for computationally intensive parts of the

algorithm. The main R function receives a data frame with recurrence times as the input,

together with some algorithm-control specifications. The function returns the Weibull

parameter estimates and an estimate of the estimator’s covariance matrix.

Keywords

C; Covariance matrix; Maximum likelihood estimation; R; Superposition of renewal

processes (SRP)

71

4.1 Introduction

Tian, Escobar and Meeker (2013) described an estimation procedure for the data

structures that can be described by a superposition of renewal process (SRP) or a fleet

of systems, yielding multiple SRP’s. In this article, we describe how the procedure is

implemented using the computational tools in the implemented R and C programming

languages. Major pieces of code are explained, including their input/output, as well how

to call them appropriately.

4.1.1 Data Structure

The data structure for the multiple SRP’s is illustrated using example data in Fig-

ure 4.1. This plot shows the cylinder replacement history for a fleet of 30 diesel engines,

with each engine having 16 cylinders. In this example, each cylinder position can be

considered as a slot and the event history for each slot can be described by a renewal

process. The fleet has 30 independently running systems. The event plot tells us the

engine where a cylinder replacement takes place (i.e. system-level information), but not

the exact cylinder position (i.e. slot-level information). Therefore what is available for

each system is a sequence of recurrence times with no slot identity.

4.1.2 Maximum Likelihood Formulation

Because the data are independent from system to system, the total log likelihood

can be expressed as the sum of log likelihoods for each system (SRP). For each SRP, we

identify all possible data configurations that could lead to the observed SRP. In other

words, we enumerate all of the ways that these recurrences can be allocated to all the slots

in the SRP. Then according to the law of total probability, the likelihood for a particular

SRP is the weighted sum of all individual conditional likelihoods corresponding to all

unique data configurations. The weights are probabilities (conditional on the observed

72

Figure 4.1 Event plot of diesel engine cylinder replacement

number of events) for these data configurations.

4.2 Likelihood for an SRP

4.2.1 Expression for the Likelihood

When the SRP has no events or one event, the estimation problem is trivial and the

likelihood derivation is straightforward. In the following, we derive the likelihood where

the SRP has at least two events.

Following Tian, Escobar, Meeker (2013), the likelihood for the observed SRP with

R = {r observed events}, event history Htc = (t1, t2, . . . , tr) and the end of observation

time tc is

L = Pr(Htc |R) =
h∑
i=1

kiπi

[
si∑
j=1

pijLij

]
/

h∑
i=1

kiπi (4.1)

Here πi is the probability for a partition slot combination within partition i. A partition

is a way to write r as a sum of positive integers. The partition indicates which slots in

73

the SRP may have had events and how those events might have been allocated to the

slots. A partition is denoted by Eri = (r1, · · · , rli). For example, for an SRP with r = 3

events and nSlot = 16 slots, there are three different partitions: (3), (2, 1), (1, 1, 1).

For example, (2, 1) indicates that one slot in the SRP has two events and another slot

has one event. All other slots have no events occurring. There are ki = 240 equivalent

slot combinations associated with this partition, corresponding to the ways those two

slots with events are selected from all of the nSlot = 16 slots in the SRP. These 240 slot

combinations are:

A3
2,1 = {(Two events in slot 1, one event in slot 2)}

A3
2,2 = {(One event in slot 1, two events in slot 2)}

...

A3
2,240 = {(One event in slot 15,Two events in slot 16)} (4.2)

Let ki denote the number of ways that one can choose li slots from the m slots in the

SRP, given a partition with length li. The value of ki can be computed as

ki =

(
m

li

)
× li!

n∗1! · · ·n∗q!
,

where (n∗1, · · · , n∗q) are the frequencies of the q unique elements in Eri .

The value pij is the probability of jth (out of si) unique data configuration, conditional

on partition i, with
∑si

j=1 pij = 1. Here a data configuration corresponds to the way the

observed recurrence times can be allocated to the selected li slots. For example, for the

partition E32 = (2, 1) corresponding to an SRP with r = 3 events, there are si = 3 unique

data configurations, shown in Table 4.1.

The data configuration j = 1 in Table 4.1 indicates the situation where the first

two recurrence times take place in the same slot (which we call slot A) and the third

recurrence time occurs in another slot (which we call slotB). Here the number of unique

data configurations within a partition, si, can be computed as

74

Table 4.1 All data configurations for the partition E32 = (2, 1)

j slot A slot B
1 t1, t2 t3
2 t1, t3 t2
3 t2, t3 t1

si =
r!

[r1! r2! . . . rli !]
[
n∗1! · · ·n∗q!

] . (4.3)

where the ri values are the elements of the partition Eri and again the n∗i values are

the frequencies of the q unique elements of Eri .

Lij is the likelihood for the jth data configuration within partition i. For example,

data configuration 1 in Table 4.1 has a likelihood:

Lij = [f(t1)f(t2 − t1)S(tc − t2)] [f(t3)S(tc − t3)] [S(tc)]
nSlot−2 (4.4)

4.2.2 Reparameterization

Reparameterization can be beneficial in the optimization. For example, if we assume

a Weibull distribution for the component failure time, then a common parameterization

is (β, η), the usual shape and scale parameters. Here η is approximately 0.632 quantile

of the Weibull distribution. For a problem with heavy censoring, let’s say an expected

fraction of failing of 0.1, we have good information about t0.1, but not upper tail quantiles.

Any attempt to estimate larger quantiles will involve extrapolation. In addition, as

pointed out by Meeker and Escobar (1996), β and tp with small p will be approximately

independent in this case. Usually p is selected as one half of the observed fraction of

failing. In the SRP problem, we can quantify the fraction of components that have failed,

as

pfail =
nEvent

nEvent+ nSlot
(4.5)

Then we reparameterize the problem into [log(β), log(tp)], where p ≈ pfail/2. The

reason why the parameters are estimated on log scale is because all the quantities of

75

interest are positive, so on log scale, the range of the quantity is unrestricted. Also,

there is an expectation that the normal distribution approximation underlying the Wald

method will be better on this unrestricted log scale.

4.2.3 Estimation Algorithm

Because closed form expressions for the pij values are not available, we use simulations

to estimate these values. The simulation is computationally intensive. One approximate

method is to start by assigning equal pij to all unique data configurations within a

partition. This approximation works because SRP’s with relatively small r but relatively

large m have some dominant partition corresponding to the scenario where no slot has

more than one event. In this case, there is only one unique data configuration within

that dominant partition, so assigning equal pij to each data configuration gives an exact

result to that partition. Also, assigning equal pij’s to other less dominant partitions will

not change the likelihood too much because those partitions have a small probability and

thus contribute little to the likelihood. This approximation simplifies the computation

to begin the idML iterations. Based on this idea, we propose an iterative procedure to

obtain the approximate idML estimates, as described below. For simplicity, we focus on

one SRP. The procedure can be easily generalized to a fleet of multiple SRP’s.

Algorithm 1: Approximate idML Estimation

1. Set k = 0

2. Give equal pij to every data configuration within each partition, and compute the

first approximation to the ML estimates by maximizing (4.1). Denote the estimates

θ̂k = θ̂0.

3. Simulate SRP’s with nSlot slots and end-of-observation time tc, according to the

lifetime distribution with parameters θ̂k. Then use the simulated SRP’s to estimate

pij’s.

76

4. Substitute the simulated pij values obtained in last step to the likelihood function

and by maximizing (4.1), compute the ML estimate, denoted as θ̂k+1.

5. Set k = k + 1. If k < Niter, go to Step 3.

6. The approximate idML estimate is θ̂
Niter

.

Here NIter is an input to the algorithm. In practice we found that a very small number

(e.g., 1) is usually good enough, if the estimate of β is not too small.

4.3 Implementation and Code

4.3.1 Computation of πi

As described in Tian, Escobar, Meeker (2013), the probability of any slot combination

(Ari,j) corresponding to partition i, πi, can be calculated as

πi = pm−li0

li∏
u=1

pru (4.6)

where pru is the probability of ru events in a slot,

pj = F (j)(tc)− F (j+1) (tc) (4.7)

and F (j)(tc) is the j-fold convolution of the Weibull distribution function, evaluated at

tc. That is,

F (j)(tc) =

F (tc) j = 1 (4.8)∫ ∞
0

F (j−1)(tc − x)dF (x) j > 1 (4.9)

This convolution can be obtained numerically, as shown in Halil (2006). A simple

explanation of this algorithm is given below. Divide the interval (0, tc] into m equally-

spaced intervals, with the division points ti, where i = 1, · · · ,m. Then F (n)(ti) can be

77

recursively calculated as

F (n)(ti) =
i∑

j=1

F (n−1)(ti − tj−1) + F (n−1)(ti − tj)
2

[F (tj)− F (tj−1)] (4.10)

According to this algorithm, F (j)(tc) can be computed recursively as F (j)(tm). The

numerical convolution is implemented in C and called in R to improve the computational

efficiency. The function approxConvolution calculates the desired convolution, that is,

F (n)(tc). The details are shown below:

void approxConvolution(int m, double Tc, int n, double bet, double eta)

/*

Args:

m: Number of subintervals to divide (controls the accuracy)

Tc: The end-of-observation time for the SRP

n: To compute the n-fold convolution

bet: Weibull shape parameter

eta: Weibull scale parameter

Returns:

The n-fold convolution evalauted at Tc

*/

4.3.2 Estimation of pij by Simulation

We simulate a large number of SRP’s to estimate the pij values. The R function

simulateDataConfig() does the bookkeeping, stores all the counts in a two-level list

and writes out the estimated pij’s for all partitions into .dat files. These files will be

read in later steps and the saved pij values will be used in the objective function in the

iterative procedure. Important inputs to this function include:

78

1. nEvent: The number of events we want to observe in the SRP. In the simulation,

we only bookkeep simulated SRP’s with exactly nEvent events, corresponding to

the number of events in the observed SRP.

2. θ: The parameters for the distribution used to simulate the SRP

3. tc: The end-of-observation time for the SRP.

4. nMin: Stopping rule for the simulation. We stop the simulation whenever the

second most dominant partition has more than nMin counts. The larger nMin is,

the more counts are gained for all partitions, and as a result, the pij values should

be more accurately estimated. But a larger nMin will also take the simulation

procedure longer time to complete.

We can enumerate all possible partitions of nEvent by calling the parts() function

in the R package partitions, according to Hankin (2013). Let the number of possible

partitions be denoted by nPart. Then the returned list has nPart components, with each

component corresponding to a specific partition. Given partition i = 1, · · ·, nPart, we

can obtain all of the unique data configurations, by calling the setparts() function in the

R package partitions. Let the number of unique data configurations in partition i be si.

Then the ith component of the returned list is a list itself with si components, with each

component recording the number of SRP’s corresponding to each data configuration,

as Nij, for j = 1, · · · , si. Then the Monte Carlo estimate of pij can be calculated as

Nij/
∑si

j=1Nij. Here nMin controls when to stop the simulation. Because the most

dominant partition will always have enough counts, what is more important is to get

enough counts for less dominant partitions, in order to get accurate estimates of pij’s

for these less dominant partitions. Currently we stop the simulation whenever the total

count for the second dominant partition exceeds nMin. Larger nMin will increase the

accuracy, but will take more time for the simulation to complete.

79

Function simulateDataConfig also enables writing the estimated pij’s into external

files. The file name is related to the partition because within one partition,
∑si

j=1 pij = 1.

Here we use the example of nEvent = 3 and nSlot = 3 to illustrate the ideas. In this case,

there are three partitions, with labels ‘3’, ‘2.1’, and ‘1.1.1’, respectively. Here ‘3’ refers

to the partition where all the three events take place on the same slot, ‘2.1’ indicates

that two events occur on one slot and the other single event occurs on another slot,

and ‘1.1.1’ refers to the situation where the three events take place on three different

slots. The corresponding partition name is part of the the file name. To accommodate

the multi-system data structure and the iterative nature of the procedure, we also make

the system label (sysLab) and iteration label (iterLabel) part of the file name. For

example, if the system label is 1 and current iteration is 1, then the file name for the

partition ‘3’ will be system1 iter1 3.dat.

Because the pij values only depend on the number of events in the SRP (i.e., nEvent)

and the end-of-observation time (e.g., tc), if two SRP’s have the same nEvent and tc, we

only need to do simulation once and the estimated pij’s can be reused by other SRP’s

with same nEvent and tc.

An example of calling this function is shown below. Here nEvent is 3 and nMin is

20. The returned list, called res, is a list of three components, corresponding to the three

partitions induced by nEvent. Within each component, we have a list (secondary level),

corresponding to the data configurations within a partition (e.g. ‘1 2 1’ in partition

‘2.1’). Here the data configuration ‘1 2 1’ gives the slot index for the observed three

events. That is, t1 and t3 occur in slot 1, t2 takes place in slot 2. This partition has a

total of 10 + 5 + 6 = 21 counts, so the pij’s can be estimated as (10/21, 5/21, 6/21) =

(0.4761905, 0.2380952, 0.2857143), and are written to the .dat files.

> res <-

simulateDataConfig(BETA = 3, ## Weibull shape parameter

ETA = 1, ## Weibull scale parameter

80

sysLab = 1, ## System label

iterLab = 1, ## Iteration label

censorT = 1.2, ## End-of-observation time

nSlot = 3, ## Number of slots in the SRP

nEvent = 3, ## Number of events in the SRP

nMin = 20 ## Miminum number of counts for the second

dominant partition before stopping

simulation

)

> res

$‘3‘

$‘3‘$‘1_1_1‘

[1] 0

$‘2.1‘

$‘2.1‘$‘1_2_1‘

[1] 10

$‘2.1‘$‘1_1_2‘

[1] 5

$‘2.1‘$‘2_1_1‘

[1] 6

81

$‘1.1.1‘

$‘1.1.1‘$‘1_2_3‘

[1] 85

4.3.3 Main Function

The main R function, idMLE(), implements the incomplete data maximum likelihood

estimation procedure.

4.3.3.1 Input and Output of the Main Function

The input of the main idMLE() function is described below:

• Data: a data frame with three columns, recording the system ID, event (recur-

rence/censoring) time and censoring status, respectively. Use 1 to denote replace-

ment and 0 to denote the end of observation. The snapshot of the cylinder data

looks like:

EngineID Time Censor

806 1696 0

809 870 1

809 986 1

809 1193 1

809 1229 1

809 1676 1

809 1702 0

812 1640 1

812 1719 0

82

815 1156 1

• p: Specifies which quantile (tp) to estimate together with β.

• betInit: The initial value for β. The default value is 2. It can be changed according

to user’s knowledge about the failure mode.

• tpInit: The initial value for tp. The algorithm computes a heuristic starting value

for tp automatically, but it also allows the users to specify this initial value according

to their knowledge about the their data.

• nSlot: Number of slots for each system (SRP)

• m: A parameter controlling the accuracy of the numerical convolution in computing

the slot combination probability, πi. Larger values of m provide more accuracy,

but require more computing time. Usually m = 100 is good enough.

• nMin: Stopping rule for the simulation for pij’s. We stop until the second most

dominant partition has have more than nMin counts.

• Niter: Number of iterations in the iterative procedure.

The main function typically returns two components as the output.

• idML estimates

• the estimated variance-covariance matrix of the idML estimates (on the log scale),

determined from the observed Hessian matrix evaluated at the last iteration of

estimates.

4.3.3.2 Log-likelihood and Estimation

The function logLikelihood.equalORgivenProb() computes the log-likelihood func-

tion of the SRP, following Equation 4.1. This log-likelihood function is the objective

83

function to be maximized in order to obtain the idML estimates and can be called in the

following way:

logLikelihood.equalORgiveProb(para, nSlot, censorT, recurTime, m,

equalProb = TRUE, sysLabel, iterLabel)

Here is a description of the arguments to the function logLikelihood.equalORgivenProb().

1. para: a vector of parameters to estimate. For example, if the component failure

time distribution is Weibull, then para will be the vector of [log(β), log(tp)]

2. nSlot: the number of slots in the SRP

3. censorT: the end-of-observation time of the SRP

4. recurTime: the sequence of recurrence times for the SRP

5. m: the parameter that controls the accuracy of the numerical convolution approxi-

mation, as described in Section 4.3.1.

6. equalProb: if TRUE, then give equal pij to every unique data configuration within

a partition, as described in Step 2 of Algorithm 1. If FALSE, then read in the pij

values that are obtained by simulation from a previous step and saved in .dat files,

as illustrated in Step 4 of Algorithm 1.

7. sysLabel, iterLabel: the system and iteration labels used in the .dat file name

that we write pij values into.

4.4 Computational Efficiency of the Procedure

In this section we show how much computational time is needed for major steps of

the proposed maximum likelihood estimation procedure. There are two steps that can

84

be computationally expensive, including the likelihood maximization and the simulation

(in order to estimate pij values).

Table 4.2 gives computation times for SRP’s with number of events from nEvent = 2

to nEvent = 8 and nSlot = 16 (one SRP for each nEvent). For each nEvent value, we

record the time (sec) needed to evaluate a likelihood, to maximize the likelihood and to

use the simulation to estimate pij values. As we can see when nEvent gets larger, the

time required to evaluate and maximize the likelihood increases, corresponding to the

fact that the combinatorics becomes much more complicated. The overall trend for the

time needed for simulation is increasing, but it is not monotonic. This is because for all

the nEvent values, we use the same simulation stopping criterion with nMin = 20. That

is, we stop the simulation whenever the second most dominant partition has reached 20

counts. Note that when an SRP has two events, there are only two partitions, and one

partition generally has a much larger probability than the other partition. Therefore we

need to wait for a relatively long time in order to get enough counts for the second most

dominant partition. When the SRP has four, five or six events, there are a lot more

partitions and the probabilities for the most dominant and the second most dominant

partitions are not significantly different, therefore it is much easier to get enough counts

for the second dominant partition for cases with four to six events. Correspondingly the

required time for simulation is shorter than the situation where nEvent = 2. Another

finding is that the simulation is much more computationally intensive than the likelihood

maximization.

Table 4.3 studies the effect of the parameter nMin on the time and accuracy in

estimating pij’s. In this study, we focus on one SRP with nSlot = 3 slots and nEvent = 3

events. The nMin values from 20 to 2560 were used and for each nMin value, we record

the time needed to complete the simulation, and the computed pij values for the three

data configurations for partition ‘2.1’, denoted as ‘1 2 1’, ‘1 1 2’ and ‘2 1 1’. The pij

values in Table 4.3 are rounded to three digits. The last row of the table, denoted by

85

Table 4.2 Computation time for likelihood evaluation, likelihood maximization and sim-
ulation for one SRP with different nEvent

nEvent Likelihood Maximization Simulation for pij
2 0.007 0.351 89.6
3 0.016 1.257 30.6
4 0.033 2.487 16.5
5 0.064 4.741 12.9
6 0.148 10.222 16.4
7 0.416 32.891 96.9
8 2.062 138.093 6778.5

‘True value’, gives the pij values obtained from a large scale simulation, which is expected

to give relatively accurate estimates of pij’s. The time needed for the simulation is close

to being proportional to the nMin value. This table gives some idea about the accuracy

of the simulation for different stopping criteria (i.e., nMin).

Table 4.3 Effect of nMin on the simulation result to estimate pij values

nMin time (sec) p1.2.1 p1.1.2 p2.1.1
20 1.06 0.619 0.190 0.190
40 1.78 0.610 0.293 0.098
80 3.23 0.617 0.235 0.148
160 6.36 0.602 0.242 0.155
320 11.97 0.583 0.259 0.159
640 24.20 0.583 0.259 0.158
1280 46.88 0.594 0.252 0.154
2560 96.91 0.601 0.246 0.152

True value 0.609 0.237 0.153

Figure 4.2 shows how the simulation time (top-left plot) and pij values (the other three

plots) change as a function of nMin, for this realization of SRP. The red horizontal lines

in the three pij plots represent the ‘True value’ shown in the last row of Table 4.3.

4.5 Some Results Based on Cylinder Data

This section illustrates the use of the main function idMLE() with the engine cylinder

replacement data, as described in Figure 4.1. The returned results are shown below,

86

Figure 4.2 Effect of nMin on simulation efficiency and accuracy

including the idML estimates and the estimated covariance matrix of the estimators on

the log scale.

> res.cylinder <-

idMLE(dataFrame = dataCylinder, ## The data frame

p = 0.1, ## Which quantile to estimate with beta

betIni = 3, ## Initial value for beta

tpIni = 1600, ## Intial value for tp

m = 100, ## Controls accuracy for

numerical convolution

nMin = 20, ## Simulation stopping rule

nIter = 1 ## Number of iterations needed

87

)

> res.cylinder

$idMLE

beta t0.1

3.945413 1556.835172

$covariance matrix

log(beta) log(t0.1)

log(beta) 0.0148707362 0.0007170855

log(t0.1) 0.0007170855 0.0011230124

4.6 Discussion

This paper provides an detailed description of how the idML estimation procedure

is implemented. The procedure is implemented using a collection of R and C functions.

This collection includes a main R function receiving the data and producing the idML

estimates and estimated covariance matrix, and several building block R and C func-

tions to perform different tasks. The functions allow users to specify different parameter

settings in a flexible way. For example, the users can specify the number of iterations to

proceed in Algorithm 1 (i.e., Niter), how accurate they would like the numerical convolu-

tion to be (i.e., m), and how efficient they expect the simulation be conducted to get the

pij estimates (i.e., nMin). All of these parameters should be given according to user’s

knowledge about the problem and the time constraint.

88

References

Tian, Y., Escobar, L.A., Meeker, W.Q., (2013), Estimating a parametric component

lifetime distribution from a collection of superimposed renewal processes, in preparation

Meeker, W.Q., Escobar, L.A., (1998), Statistical Methods for Reliability Data New York:

John Wiley & Sons.

Hankin, R. K. S., (2013), Additive partitions of integers, Manual for R package: parti-

tions

89

CHAPTER 5. GENERAL CONCLUSIONS

In this dissertation, we developed statistical models and methods for estimating com-

ponent failure-time distribution from data structures that can be formulated as super-

position of renewal processes (SRP) or a collection of independent SRP’s.

In Chapter 2, we modeled the SRP data by a nonhomogeneous Poisson process

(NHPP) with a particular MCF and recurrence rate function. We show that when the

SRP has a large number of slots, the proposed NHPP estimator performs well and the

interval estimation procedure based on transformed parametric bootstrap-t method has

satisfactory coverage properties. By comparing the NHPP estimator with an alternative

estimator, we make recommendations about which estimator to use for analyzing the

SRP data. We hope the recommendations provide some useful tools for statisticians and

engineers for better reliability analysis.

In Chapter 3, we derive the exact likelihood for the SRP data, by considering all

possible data configurations that could lead to the observed event history. The likeli-

hood can be computed as a weighted sum of conditional likelihoods corresponding to

all unique data configurations, with weights being probabilities for each data configura-

tion. We proposed an ML estimation procedure that starts from a crude estimate of the

weights and updates iteratively. The bias and variance of the proposed ML estimator

are analyzed. We show that when the number of events per slot in the SRP is relatively

small, the ML estimator has relatively small bias, and the interval estimation procedure

based on the likelihood ratio test has coverage probabilities close to the nominal values.

In Chapter 4, we developed an R function that implements the maximum likelihood

90

estimation procedure described in Chapter 3. The estimation procedure is complicated

and computationally intensive because of the need to enumerate all possible data con-

figurations. The R function takes the recurrent event data as the input and returns the

ML estimates and the estimated covariance matrix of the parameter estimates. Details

about the implementation of the estimation procedure and how to use the function are

discussed.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	1.1 General Introduction
	1.1.1 Background
	1.1.2 Data Structures
	1.1.3 Motivation
	1.1.4 Dissertation Organization

	References

	2. ESTIMATING A PARAMETRIC LIFETIME DISTRIBUTION FROM SUPERIMPOSED RENEWAL PROCESS DATA BASED ON NONHOMOGENEOUS POISSON PROCESS MODELING
	2.1 Introduction
	2.1.1 Background and Motivation
	2.1.2 Problem Formulation
	2.1.3 Related Work
	2.1.4 Overview

	2.2 Proposed Method
	2.2.1 Proposed Model
	2.2.2 Renewal ECF and Renewal Intensity Function for a Single Renewal Process
	2.2.3 Likelihood

	2.3 Comparison of the Proposed NHPP Estimator with Alternatives
	2.3.1 Design of the Simulation Experiment
	2.3.2 Simulation Experiment Results

	2.4 Interval Estimation
	2.5 Application to the Simulated Gearbox Data
	2.6 Concluding Remarks and Areas for Future Research
	References

	3. ESTIMATING A PARAMETRIC COMPONENT LIFETIME DISTRIBUTION FROM A COLLECTION OF SUPERIMPOSED RENEWAL PROCESSES
	3.1 Introduction
	3.1.1 Background
	3.1.2 Example
	3.1.3 Related Work
	3.1.4 Overview

	3.2 Data and Model
	3.2.1 Data Structure
	3.2.2 Model

	3.3 Likelihood
	3.3.1 Data Configurations
	3.3.2 Partitions
	3.3.3 Data Configuration for a Given Partition
	3.3.4 The Likelihood for a Single SRP
	3.3.5 Computation of the Slot Combination Probabilities _i
	3.3.6 Computation of Conditional Configuration Probabilities p_ij
	3.3.7 Fleet Likelihood
	3.3.8 Estimation and Computational Issues

	3.4 Performance of the idML Estimator
	3.4.1 Design of Simulation Study
	3.4.2 Simulation Results

	3.5 Bias of the idML Estimator
	3.6 Interval Estimation
	3.6.1 Wald Interval
	3.6.2 LRT Interval
	3.6.3 Comparison of Interval Estimation Methods

	3.7 Application to the Engine Cylinder Replacement Data
	3.8 Conclusions and Future Work
	3.A Computation of the p_i
	3.B Proof of the Probability of a Certain Number of Events in a Slot
	References

	4. IMPLEMENTATION OF A MAXIMUM LIKELIHOOD PROCEDURE FOR MODELING THE SUPERPOSITION OF RENEWAL PROCESS DATA
	4.1 Introduction
	4.1.1 Data Structure
	4.1.2 Maximum Likelihood Formulation

	4.2 Likelihood for an SRP
	4.2.1 Expression for the Likelihood
	4.2.2 Reparameterization
	4.2.3 Estimation Algorithm

	4.3 Implementation and Code
	4.3.1 Computation of _i
	4.3.2 Estimation of p_ij by Simulation
	4.3.3 Main Function

	4.4 Computational Efficiency of the Procedure
	4.5 Some Results Based on Cylinder Data
	4.6 Discussion
	References

	5. GENERAL CONCLUSIONS

