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CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT 

Private, government and commercial sectors of the manufacturing world are plagued 

with imperfect materials, defective components, and aging assemblies that continuously 

infiltrate the products and services provided to the public. Increasing awareness of public 

safety and economic stability has caused the manufacturing world to search deeper for a 

solution to identify these mechanical weaknesses and thereby reduce their impact. 

The areas of digital image and signal processing have benefited greatly from the 

technological advances in computer hardware and software capabilities and the develop

ment of new processing methods resulting from extensive research in information the

ory, artificial intelligence, pattern recognition and related fields. These new processing 

methodologies and capabilities are laying a foundation of knowledge that empowers the 

industrial and academic community to boldly address this problem and begin designing 

and building better products and systems for tomorrow. 

The Nondestructive Evaluation (NDE) community has been actively involved in 

utilizing these developments to improve existing inspection techniques that measure a 

material's characteristics to detect, size, and classify defects in the material without 

destroying it. NDE is becoming increasingly important as competition forces businesses 

to improve the efficiency of the manufacturing process by identifying and removing 

defective materials and components from the process before valuable resources such as 

time, labor and material have been invested. NDE is also a valuable tool for inspecting 
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the various components of the end-product throughout its lifetime. This is especially true 

when public safety is dependent on the product's ability to operate reliably. 

Several NDE inspection techniques are commonly used in industry today. These 

include ultrasonic, eddy current, and X-ray inspection techniques. Less commonly 

used techniques include acoustic emissions, fluorescent dye penetrants, holography, and 

shearography. Some of these techniques are limited by their performance and feasibility 

outside of the laboratory setting. 

X-ray inspection techniques perform effectively in a variety of NDE applications 

and can benefit significantly from the advances in image and signal processing. In 

the X-ray imaging process, a specimen is illuminated by an electromagnetic field that 

propagates through the specimen to project a 2-D image on the film plane lying below. 

This projection represents the spatial density distribution of the material in the direction 

of the ray. Higher material densities or thicker material attenuate the ray and limit the 

number of X-ray quanta reaching the film plane. This yields a brighter film density. 

Conversely, lower material densities or thinner material yield darker film intensities. 

Hence, material with a crack or void type flaw yields a darker film area, associated with 

the flaw, superimposed on a lighter background associated with the material surrounding 

the flaw. 

Radiographs are inspected by persons who are thoroughly trained to recognize these 

variations in film density due to flaws in the presence of nonuniform background and other 

unwanted image features. The operator's success in detecting the flaw signals is limited 

by the sensitivity of his/her eyes. Additional factors affecting successful inspection 

include eye strain and operator fatigue which result in poor detection performance. 

These and other factors contribute to the fluctuating quality of inspection achieved in 



3 

the conventional radiographic inspection process. 

Image processing techniques possess the ability to enhance the visual quality of the 

images for human inspection and interpretation. Image restoration, feature extraction, 

pattern recognition, and scene interpretation techniques have been successfully applied to 

a variety of different imaging applications. These applications include radio astronomy, 

remote sensing, machine vision, medical diagnostics, commercial photography, and X

ray applications. 

Image processing techniques are able to aid the operator in successfully inspecting 

the radiograph by enhancing the flaw signal in the presence of high noise, low contrast, 

and nonuniform background. Nonetheless, manual radiographic inspection is still a 

time consuming process. The utilization of NDE radiography in an increasing number 

applications and the volume of radiographs requiring visual inspection in each particular 

application place a great strain on the conventional inspection process. 

The objective in this research was to develop version 1 of a general automated 

radiographic inspection scheme capable of detecting, measuring, and classify flaws with 

minimal human interaction. This was achieved through the utilization of existing image 

interpretation and measurement techniques and the development of new techniques that 

are presented herein. 

This thesis presents some background information in Chapter 2 on radiography and 

film characteristics and discusses digital image acquisition and processing tools found 

useful in that area. Chapter 3 discusses the requirements of a general automated flaw 

detection scheme, considers the problems faced in developing such a scheme, surveys 

existing schemes, and presents the proposed scheme. The three chapters following present 

the automated processing techniques contained in the scheme. Specifically, Chapter 4 
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focuses on automated noise reduction processes, Chapter 5 presents automated trend 

reduction techniques, and Chapter 6 presents techniques for automatically reducing the 

effects of the specimen's nonuniform geometry. Chapter 7 then comments on specialized 

processing methods for automatically extracting and classifying candidate flaws. A 

summary of the automatic flaw detection scheme is presented in Chapter 8 which also 

suggests areas of further investigation. 
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CHAPTER 2. RADIOGRAPHY AND IMAGE PROCESSING OVERVIEW 

2.1 Introduction 

The first section of this Chapter presents a brief discussion of the X-ray imaging 

process and the image characteristics associated with radiography. This is followed by 

an overview of image acquisition process and system requirements. The later portion 

ofthe Chapter is dedicated to reviewing both general image processing techniques and 

techniques with special application to the radiographic image processing field. 

2.2 X-ray Imaging Process 

The X-ray image formation processes [15] is attributed to both controlled and 

uncontrolled physical processes and conditions. The X-ray image formation process 

is a complicated process based on the attenuation of an electromagnetic field propagating 

through an object. The strength of the electromagnetic field and the time of exposure 

is controlled to yield a radiographic image with optimal contrast sensitivity and noise 

characteristics. A radiographic image is formed by measuring the number of photons 

passing through the material at a particular location on the film plane. The measurement 

device can be an X-ray film that is sensitive to photons or an image intensifier tube that 

converts the invisible photons to visible light. X-ray film is most commonly used in 

industrial radiography today. 
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Some of the industrial applications encountered include inspection of welds, railroad 

rails, valves, turbine blades, and other crucial components. The ability to control the 

strength of the electromagnetic field enables one to utilize X-ray techniques in a variety 

of industrial inspection applications independent of the diversity in material absorption 

or attenuation characteristics. However, uniform signal sensitivity throughout the image 

suffers when extremes in material absorption are present in a single specimen. 

2.3 Radiographic Image Characteristics 

The image content produced by the X-ray image formation process includes image 

features such as flaw signal, noise, background trends, and intricate image background 

structure due to complex specimens. The radiograph is viewed as an image of a 

flaw corrupted by these three unwanted image features; noise, background trends, and 

intricate image background structure. To achieve accurate inspection results, successful 

interpretation of the image is crucial. The origin of each of the unwanted image features 

is discussed below. 

Noise within the film is one of the uncontrolled processes in the X-ray image 

formation process and is due to the quantum nature of the electromagnetic radiation. 

Additional noise is signal dependent according to the Poisson statistics model of the 

image formation process. Radiographic noise characteristics are further discussed in 

Section 4.2. 

Background trends are variations in film density due to nonuniform variations in 

material density or thickness. These slow global changes result from continuous variations 

in material density or thickness that span across the radiographed specimen. The 
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characteristics of these trends, background trend examples, and the problems associated 

with them are presented in Section 5.2. 

Background structure or geometric structure of the material can cause local variations 

in film density. Unlike background trends with global characteristics, these variations can 

be attributed to local changes in material thickness or density that are associated with the 

shape of the radiographed specimen. The general characteristics of the variations due to 

geometrical structures, radiographic image examples, and the problems associated with 

them are presented in Section 6.2. 

2.4 Image Acquisition 

The process of transforming the X-ray films into digital images which can be 

interpreted by computers is known as image acquisition. The quality of the equipment 

used in this process has a significant role in controlling the quality of the digitized image. 

An image acquisition system consists of three main devices, a light box, a video camera, 

and a frame grabber board. The light box is used to illuminate the film which is then 

imaged by the television camera and captured by the frame grabber board. Each of these 

devices plays an important part of the image acquisition process. 

A good quality light box will possess uniform lighting characteristics across its 

surface and have a variable brightness control [9]. The range of brightness should 

enable viewing of film densities ranging from 1.0 to 4.5. Different radiographs will 

emphasize different film density ranges and require different light box brightness levels 

to enhance the film information. The video camera used to image the illuminated film 

requires flexibility in obtaining the optimal image settings. The camera lens should 

possess zooming capabilities and several aperture settings to adjust to the needs of the 



8 

radiograph. The camera stand should also be capable of vary the camera to film distance. 

Other adjustable settings found on the camera control unit may include white balance and 

black level control. The COHU 5300 Camera Control unit used in the image processing 

laboratory in the Electrical Engineering and Computer Engineering department at Iowa 

State University has automatic white balance and black level control capabilities. The 

automatic control may be helpful in an industrial setting, but manual control was found 

to be more reliable in obtaining the optimal image settings for each particular radiograph. 

The imaging process converts the spatially varying film intensity into a 2-D array 

of numerical values that can be processed by a computer. The size of the 2-dimensional 

array is determined by the size of the image device. The dimensions of the CCD array 

in the camera used at Iowa State University's Image Processing Laboratory is 512 units 

wide by 480 units long. These dimensions relate to the number of discrete spatial samples 

used to quantize the width and length of the X-ray film image being captured. 

Each discrete sample location on the film is represented by a corresponding location 

on the imaging array called a pixel. The amount of light from each sample location on the 

illuminated film is quantized into a finite intensity value called a grey level. This finite 

value is assigned to the corresponding pixel location in the image array. The number 

of possible grey levels is limited by the resolution of the device. Hence, an 8-bit image 

device has 256 possible grey levels and a 12-bit device has 4096. The higher resolution 

devices are more sensitive to variations in contrast and therefore yield a more accurate 

representation of the original radiograph. However, higher resolution devices are also 

more sensitive to noise and require greater storage capacity. 

An array of values representing an image is called a frame. It takes approximately 

1/30 of a second for the frame grabber board to acquire a frame from the television 
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camera. The light quantization process introduces quantization noise into the image by 

mapping the observed continuous light into discrete grey levels. Frame grabber boards 

can reduce the effects of this noise by averaging together several frames to obtain a 

more accurate approximation of the light levels transmitted from the original radiograph. 

When averaging N frames, the RMS noise value is proportional to ljsq1·t(N) when each 

sample frame is statistically independent. The acquired image can then be viewed by 

converting the pixel values into light intensity and displaying the digitized image array 

on a video screen. 

When the proper settings are made on the digitizing system, the resulting digital image 

can be enhanced and interpreted by intelligent image processing algorithms that aid in 

the accurate identification and classification of features in industrial radiogr~phic images. 

2.5 Review of Image Processing Techniques Useful to Radiography 

The development of image processing routines for industrial radiographic applica

tions is a time consuming and complicated venture. Although many image processing 

techniques can be adopted from other application areas such as medicine, astronomy, and 

remote sensing, the nature of the radiograph and features within it requir~ some special 

enhancement functions not common in other areas. Some image enhancement processes 

found to be applicable to a variety of application areas including radiographic images 

have been implemented by the image processing group in the Electrical Engineering 

and Computer Engineering department at Iowa State University. The following will be 

a review of both general and specific image enhancement processes. These processes 

have been divided into three categories, general image enhancement, noise filtering, and 

feature extraction techniques. 
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2.5.1 General image enhancement 

Many enhancement techniques involve simple manipulation of the intensities within 

an image. These techniques are based on either global pixel characteristics or relationship 

among pixels in local neighborhoods. In many cases these techniques are performed 

on the image data in both the spatial and frequency domains. The goal of all these 

general enhancement techniques is to enhance the image's appearance without introducing 

artifacts. 

Some of the simplest forms of image enhancement are performed using histogram 

modification techniques [19, 34]. These techniques take advantage of the information 

present in the histogram, a function describing the distribution of intensity levels in 

an image. When an image is mostly dark or mostly bright, the distribution of the 

intensity levels is somewhat concentrated and the contrast in these images is low. In 

these situations, histogram modification techniques are very effective in improving the 

images appearance. 

Histogram modification techniques include contrast stretching and histogram equal

ization. Contrast stretching redistributes the recorded image intensities throughout the 

range of possible grey levels. Histogram equalization is a technique used to obtain a 

uniform histogram. This process spreads the recorded values throughout the entire range 

of grey levels in such a way that every intensity level occurs with equal probability. 

This has the effect of increasing the contrast between consecutive intensity values occur

ring with higher probability. Histogram modification techniques are useful in enhancing 

details not so evident to the human eye. 

Other methods proposed to enhance the image contrast have been based on local 

contrast information. Recently, a new contrast enhancement approach was introduced 
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by Khellaf et al. [22]. This method was derived from entropy concepts in information 

theory and uses local contrast information to determine the entropy for each individual 

pixel. The method incorporates both median filter and histogram equalization techniques 

to obtain superior results over other histogram-based methods. 

Image contrast is closely related to the gray-level gradient. Large gray-level gradients 

correspond to large changes in image information. Therefore, local contrast can be 

enhanced by amplifying these local changes. Discrete methods used to measure gradient 

information are commonly referred to as edge detection techniques since they emphasize 

the large gradients occurring at edges. Common edge detection operators include the 

Roberts, Prewitt, and Sobel operators [14]. The gradient information in digitized images 

is approximated by differences. The magnitude of the gradient at f(x,y) in a digital 

image can be found using the relation 

{ 
2 2}1/2 II fxy(x~ Y) II~ [f(x, :IJ) f(x + 1, Y)] + [f(x, Y) f(x, Y + 1)] . (2.1) 

A better approximation of the magnitude of the gradient can be found by including 

more distant neighbors in the approximation. The calculation of the gradient over larger 

regions also reduces the effects of noise. However, this also tends to blur the edge 

positions and requires a significant amount of additional computations. 

The magnitude of the gradient reflects the sharp variations due to edges independent 

of their direction. This results in identifying edges with high gray-level values and smooth 

regions with low gray-level values. Other useful edge detection methods are based on 

image entropy [38] and mathematical morphology [36]. 
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In general, the above enhancement techniques do not discriminate against noise, and 

therefore amplify the noise as well as other image features. One form of image enhance

ment involves reducing these spurious effects by smoothing the image. Neighborhood 

averaging is one such common smoothing technique. It is performed in the spatial domain 

and works on the basis that neighboring pixels have similar intensities. The averaging 

process tends to blur out small distracting image features and enhances the global or 

larger scale features. Another effective smoothing technique is low pass filtering. This 

technique is performed on images in the frequency domain and can be used to attenuate 

high frequency content in the image commonly attributed to noise and edges. 

High pass filtering works on the same principle except that it is used to attenuate the 

low frequency content of the image. This results in enhancing edges and other abrupt 

changes in intensity that are associated with high frequency components. 

Unsharp masking is yet another general enhancement technique applied to emphasize 

image details. Unsharp masking is achieved by first applying neighborhood averaging 

and then subtracting the resulting image from the original. The residual image reflects 

the sharp transitions or variations not easily distinguished in the original image. This 

technique often accentuates the image's noise content making it a valuable noise char

acterization tool. 

Most of the general image enhancement techniques described above require few if 

any input parameters. These nonparametric techniques can be easily performed on a great 

variety of images to aid in the interpretation process. 

2.5.2 Noise filtering techniques 

Many enhancement techniques are focused on image restoration in terms of reducing 

noise and enhancing true image signals. The image restoration problem involves esti-
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mating the original image from a distorted image based on information about the type 

of noise and the image formation process in terms of the point spread function (PSF). 

Because there is no unique restoration solution, there are a tremendous number of journal 

articles concerning noise filtering techniques and hence a great number of approaches to 

the problem. 

Many of the noise filters are based on mathematical model given by 

g(i,j) = s{H[f(i,j)]} ~ n(i,j) (2.2) 

where g(ij) is the recorded image, s is the imaging system response, H represents the 

image formation process, f(i,j) is the original image, and n(i,j) is the noise process that 

may be additive, multiplicative, or a combination of the two. 

Basic assumptions about the image formation process and type of noise present in 

an image allow one to tailor a noise filtering technique to images with those particular 

characteristics. Examples of such techniques include inverse, Weiner, power spectrum 

equalization, and Kalman filters [25, 47, 46]. Zheng developed an adaptive Kalman filter 

to distinguish between two or more additive stochastic processes whose spectra overlap. 

In this filter, the parameters are adapted to the local features in each segmented region 

of an image. 

Some techniques are not based on an image model. These include median filters 

which are nonlinear and like most spatial filters are applied using windowing techniques. 

Windowing techniques assume a special relationship among neighboring pixels and 

therefore limit the filtering operation to local neighborhoods. Windowing is performed 

by centering a (2n+l) x (2n+l) window on the pixel that will receive the result of the 

filtering operation. Each pixel in the image is processed independently in the windowing 
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technique. Because of this independence, filters based on windowing techniques are 

readily adaptable to real-time image processing applications. 

In median filtering, the operation involves selecting the median value from the pixel 

values lying in the 2-D window and assigning this value to the center pixel. Many 

variations of this nonlinear filter exist. The median filter is useful in radiographic image 

processing and many other applications due to its ability to smooth out spurious noise 

while preserving edge boundaries. 

Other nonlinear methods that smooth an image while preserving discontinuities are 

based on iterative weighted averaging methods [26, 44, 35]. Unlike the others, the method 

proposed by Saint-Marc et al. [35] guarantees convergence. This technique is performed 

by iteratively convolving the image with a small weighted averaging mask whose weights 

reflect, at each point, the continuity of the local region. At convergence, the image will 

consist of constant intensity regions separated by step edges. Prior to convergence the 

process sharpens the edges and smooths regions surrounding the edges. This technique 

was an integral part of the modified adaptive smoothing filter mentioned in Section 4.3. 

Other adaptive noise filtering techniques are model based. Lee developed some of 

the first successful model based techniques using local statistics [26]. These techniques 

are robust in that they adapted to applications where the signal mean and noise variance 

are spatially varying and unknown. The local statistics used are local mean and local 

variance. The algorithms are based on the assumption that the sample mean and variance 

of a pixel are equal to its local mean and variance which are calculated from pixels lying 

in a local window. Continued use of these assumptions by others [27, 24] to developing 

new noise filtering algorithms shows the significance of local statistics. These techniques 

display the ability to smooth out the noise while preserving edges within the image. The 
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basic form used by Lee and others is shown in Eq. (2.3), where f(U) is the filtered 

image, f(i,j) is the original image, g(i,j) is the degraded image, vr(i,j) is the local spatial 

variance of f(i,j), and O" n 2 is the noise variance found from a priori measurements. Lee 

refers to this as a nonstationary mean nonstationary variance (NMNV) image model. 

f(' ') f(' ') vr( ij) ( (' . ) 
1,J = 1,.] + (' ') + 2(' ') g 1:.] Vf 1,.) O"u 1d 

g(i,j)) (2.3) 

The performance of the noise filter depends greatly on the accuracy of the methods 

used to calculate the local spatial means of f(i,j) and g(i,j), which are represented by 

f(ij) and g(i,j) and the local spatial variance vr(i,j) from the degraded image g(i,j). 

Various methods of computation perform differently based on the image characteristics. 

Noise filtering techniques based on these local statistics have been developed for both 

additive and multiplicative noise [24]. In their paper, Kuan et al. [24] develop a similar 

noise filtering model for images with Poisson noise. This filter is especially useful in 

radiographic image processing applications. 

2.5.3 Feature extraction techniques 

Thus far, the discussion of image processing techniques has not been limited to 

any specific application. The previously mentioned techniques are applicable to most 

all areas of image processing. However, feature extraction implies that the information 

of interests within the image contains certain attributes associated with the application 

at hand. Therefore, the feature extraction techniques discussed here are based on a 

prior knowledge concerning the characteristics of the image features to be extracted in 

radiographic images. 
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Feature extraction techniques can be used to enhance a particular feature within 

an image by two methods. One method is to perform an operation that will enhance 

the desired image feature, feature enhancement. The other method involves removing 

unwanted image features, feature suppression. As mentioned before, there are four main 

features present in radiographic images. These features include flaws, noise, background 

trends, and geometrical structure. The approach in this thesis is to use feature extraction 

techniques to enhance the flaw signal and suppress the other unwanted image features 

within the radiographic image. 

In nondestructive evaluation using radiography, the desired image feature is the flaw. 

Flaw enhancement can be performed by several different techniques. Each technique may 

vary depending on the amount and type of a prior information necessary to successfully 

enhance the flaw. Correlation techniques [14], also known as matched filter techniques 

[43], are used to determine if an image contains a region similar to the one described 

by a 2-D mask. The mask incorporates prior information concerning physical flaw 

characteristics such as shape, size, and orientation of the flaw. When these three 

parameters are properly defined, the matched filter is a very successful feature extraction 

technique. 

Mathematical morphology has also been found effective in extracting flaws. The tech

nique is called morphological filtering [6, 41] and, like matched filtering, it is performed 

using a mask to describe the shape, size, and orientation of the flaw. Morphological 

filtering requires additional information concerning the relationship between the inten

sity of the flaw and its surroundings. Morphological techniques are effective when the 

images are not very noisy. 

Techniques used to reduce unwanted image features, and thereby enhance the desired 
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feature, have also been successful in radiographic image processing applications. Such 

specialized techniques include trend removal [11] and background subtraction [6]. Trend 

removal and background subtraction remove the global image intensity variations caused 

by continuous changes in material density or thickness within the specimen. These 

intensity variations inhibit automatic flaw detection algorithms from producing accurate 

results. Trend removal is performed by fitting a polynomial model to the image by least

squares, and then subtracting the approximated model from the original image to obtain 

a residual image. The polynomial model is based on the expected trend characteristics. 

The polynomial model can be either one or two dimensional and may possess up to 

third order polynomial terms. Variations of the polynomial trend removal technique are 

thoroughly discussed by Doering [11]. Background subtraction is based on the idea that 

the small flaws will be suppressed by a large neighborhood averaging filter. The residual 

image found by subtracting the smoothed image from the original is found void of large 

scale background features and better prepared for automatic flaw detection. In addition 

to smoothing techniques, background estimates can also be found using morphological 

techniques. Trend removal and background subtraction techniques are only effective on 

images void of intensity variations due to geometric structure. 

Image segmentation is another feature extraction method found useful in many image 

processing applications including radiography. Image segmentation is a process that 

organizes image pixels into connected regions such that each region contains pixels with 

similar properties. The earliest form of image segmentation involved grouping pixels in 

the histogram with approximately equal intensities. This histogram-based form of image 

segmentation is commonly referred to as thresholding [43]. Different approaches for 

selecting the optimal thresholding value include the identification of a global thresholding 
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value [28, 31] and a spatially varying threshold value found using either contrast measures 

[37, 29] or iterative techniques [33]. The similarity measure used to group pixels in 

these algorithms is equivalent gray level. Therefore, histogram-based techniques are 

only useful when a range of intensity levels is unique to a region representing a desirable 

image feature. This is most often not the case in radiographic images corrupted by trends 

and geometric structure. However, these techniques have been found to be quite useful 

in a multitude of applications including the final stages of flaw detection. 

Image segmentation based on region growing techniques [14, 45, 18, 43] has been 

studied extensively in the image processing and pattern recognition community. Region 

growing techniques are useful in partitioning an image into meaningful regions. The 

main idea behind region growing techniques is simple. After starting points are identified 

within an image, adjacent pixels are examined one by one and tested to see if they possess 

properties similar to those of the current region. The pixels are accepted into the region 

if their properties are similar or rejected if their properties are inconsistent. Testing for 

similar properties is achieved via a uniformity predicate P( ). A common definition of 

segmentation by Horowitz and Pavlidis [18] states that if I is the set of all image pixels 

and P( ) is a uniformity predicate defined on groups of connected pixels, a segmentation 

of I is a partitioning set of image regions {RJ,•••,RN} such that 

i.Y 

URi= I where Ri n Ri = 0 vi f.= j, (2.4) 
i=l 

the uniformity predicate P(R;) = TRUE for all regions, and 

(2.5) 

whenever Ri is adjacent to R1. The uniformity predicate is simply a test that is performed 

on a group of connected pixels to determine if they possess similar image characteristics. 
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Hence, image segmentation applications based on different image characteristics are de

veloped using different uniformity predicates. These uniformity predicates are determined 

by knowledge about the type of scene being viewed and the image formation process. 

The simplest form of uniformity predicate would be equivalent intensity leveL A 

region growing procedure based on intensity level alone [32] would be comparable to 

a histogram-based technique. A uniformity predicate found successful in classifying 

terrain in Landsat images is texture [4, 39, 7]. A uniformity predicate developed for 

range imaging applications is based on the idea of approximating the pixel data in a 

region by a surface function [16, 13, 30]. The approximated surface functions are used 

to identify relevant structure within the ranges images. In the same way, these surface 

functions can be used to identify the intensity variations in a radiographic image resulting 

from geometrical structure. After approximating the image intensity variations due to 

geometrical structures via region growing techniques, feature suppression techniques can 

be applied to reduce the effects of the unwanted structures and enhance the flaw signals. 

Image segmentation techniques based on region growing and surface estimation hold 

much promise in the goal to develop automatic procedures capable of identifying and 

reducing the effects of geometrical structure in radiographic images. 

2.6 Future of Image Processing in Radiography 

Within the area of industrial radiography there are an enormous number of differ

ent applications that each produce a variety of radiographic images requiring manual 

inspection. Some of the main features common to these radiographic images have been 

identified and commented on above. In addition, image processing techniques have 

demonstrated the ability to enhance radiographic images for improved inspection perfor-
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mance. This has been achieved through the development of image processing techniques 

capable of reducing the unwanted features and enhancing the desirable features. Contin

ued research and development in the area of image interpretation algorithms will pave 

the way for automated radiographic inspection systems. 
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CHAPTER 3. A GENERAL AUTOMATED FLAW DETECTION SCHEME 

3.1 Introduction 

This Chapter begins with a discussion on the requirements of an automated flaw 

detection scheme and the difficulties and complications encountered in the planning 

process. It then reviews previous approaches to the automated inspection problem. The 

following sections present important items considered in the development of the initial 

scheme and describes the scheme itself. The last section comments on the importance of 

each individual part of the scheme and states the main contribution of this thesis. 

3.2 Attributes of an Automated Inspection System 

I will illustrate the problem faced in developing an automated inspection system. In 

the radiographic inspection process, the operator is required to analyze a particular set 

of radiographs and identify candidate flaws. Imagine for a moment that the operator is 

not aware of the type of geometry or structure associated with the radiographed area of 

the specimen. Nor is the operator familiar with the appearance of the types of flaws 

most likely encountered. Without this knowledge, the likelihood that the operator will 

successfully interpret just one radiograph is not favorable. Under these circumstances, 

the inspection process would be sufficiently more difficult and the operator would most 

likely misinterpret variations in material structure and overlook candidate flaws. This is 

the situation presented to the computer in an automated flaw detection problem. In fact, 
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the situation looks even worse for the computer when you consider that the operator has 

the added capability of interpreting a scene through the astoundingly powerful human 

vision system. 

An automated inspection system requires intelligent image interpretation software. 

The system will execute the commands programmed into the computer by the software 

developer. The system's interpretation of the features in the radiographic image are 

based wholly on the image measurements that the developer has considered relevant. 

The system is developed in the hope that all significant image information has been 

acquired to enable the system to make an accurate interpretation of the radiograph. This 

type of system is commonly referred to as an 'expert system'. 

An expert system designed to detect flaws in radiographic images would perform 

the same basic steps that are performed in the manual inspection process. The manual 

inspection process involves more than a relatively quick glance at the radiograph. It 

involves preliminary examination of the global features within the image. This review 

of the image provides the inspector with a general idea of the type of background trends 

and geometrical structure present in the image. From this analysis, the inspector is better 

able to discriminate between intensity variations produced by flaws and those due to 

background trends or geometrical structure. 

In the same way, an automated inspection system would also be required to accurately 

discriminate among the various features found in an arbitrary radiographic image and 

process the image in such a way that a flaw visually present within the image would 

not go undetected. In addition to detecting all possible flaws, the system should also 

achieve low false alarm ratings. Furthermore, the system should perform the inspection 

in as little time as possible. 
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3.3 Difficulties and Complications Faced in 
Developing an Automated Inspection Scheme 

The previous section states the requirements of an automated inspection system. To 

achieve this, the inspection scheme must be flexible in providing for the incorporation 

of prior information concerning the image or flaw characteristics. The scheme must 

also be designed in a manner that provides for intelligent decision making procedures 

that automatically decides which processes are necessary and which techniques would 

be most effective and efficient. These requirements present a number of problems in 

developing such a system. 

Some of the most difficult tasks are faced when trying to determining which image 

processing functions are necessary and which particular method would be most effective 

and efficient in performing that function. Formidable tasks are encountered in the devel

opment of the automated decision making procedures and the creation of relevant image 

measurements that provide the necessary image information for selecting the appropriate 

processing techniques. It is difficult to know how to go about inventing mathematical 

measurements that can quantitatively describe a physical image characteristic. Many 

times a measurement is not consistent in fully describing a particular image characteris

tic. Other times the measurement may not be able to differentiate between the desired 

image characteristic and another similar, but unimportant, characteristic. 

This process is further complicated by the need for accurate and reliable image 

processing techniques capable of performing the desired function. The field of image 

processing has come a long way in developing new techniques, but many image interpre

tation problems are far from being solved. Problems encountered in the techniques used 

in automated X-ray inspection include both sensitivity of feature extraction methods to 
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noise and insufficient discrimination between local flaw features and regular geometric 

structures. 

These are some of the complications encountered in developing adequate measure

ments, reliable decision making procedures, and useful image interpretation techniques. 

3.4 Review of Existing Automated Flaw Detection Schemes 

Automatic inspection of industrial parts with X-rays has been pursued by many people 

in recent years. In addition, the machine vision community has also become strong in the 

area of automated industrial inspection and monitoring systems. However, both of these 

areas are plagued by application specific systems that require significant modification 

when adapted for other applications. This is also the case for the automated radiographic 

inspection systems reviewed here. 

3.4.1 Knowledge based scheme 

One of the greatest demands for automated radiographic inspection is in the area 

of weld defect identification. A knowledge based system was developed in Japan [23] 

for this particular application. The system is based on the interactive adjusting of 40 

different parameters that are used to control everything from extracting the weld boundary 

to selecting the appropriate threshold for feature extraction. After an exhaustive process 

of iteratively adjusting the parameters and monitoring the systems performance, a fixed 

set of parameters is saved to disk and used to automatically process a given set of 

radiographic weld images. 

The method begins by extracting the weld area and filtering it with two modified 

versions of an unsharp masking filter. After thresholding the processed images, some of 

the parameters are used to eliminate smaller candidate flaws based on their size and shape. 
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Limited results showed that the system could properly classify the defects after they had 

been identified using the proper parameter settings. This processing approach suggests the 

use of simple techniques for extracting the weld boundary and simple filtering techniques 

for identify the candidate flaw locations. The controlling factors of this processing 

approach come into play in finding the optimal settings for the 40 different parameters 

used in the system. These settings are dependent on the application at hand and may 

vary significantly for different X-ray exposure settings or material characteristics. 

3.4.2 Intensive processing based scheme 

A similar software package was developed for Martin Marietta Corporation by 

the Image Processing Group in the Electrical Engineering and Computer Engineering 

department at Iowa State University. This system was designed to read ·in an image, 

process the image to identify candidate flaw locations, classify and assign a confidence 

level to candidate flaws, and then record the results in a data base. The processing portion 

of the program was divided into three main steps .. First, like above, the weld boundary 

was identified. Extensive work was performed in this area to developing techniques to 

accurately identify the weld boundary that could easily vary depending upon the width of 

the weld bead. Next, the portion of the image within the weld area was divided into three 

overlapping sections that would then be exposed to a series of filters designed to extract 

the defects lying in each particular section. These filters were designed to extract the flaws 

without enhancing features due to noise or other phenomena, within the weld area, such as 

intensity variations due to the changing material thickness along the weld bead edge. The 

third step involved thresholding the filtered images to identify candidate flaw locations. 

Sometimes, additional processing was performed on the immediate area surrounding a 

candidate flaw to better determine a flaws presents. The thresholded flaw characteristics 



26 

such as size, location, and shape were then calculated to help in determining a confidence 

level for each flaw. This information was then stored in a database for later reference. 

This software package was developed on a SUN SPARCstation using a MC68030 

based microprocessor. The time involved for processing a single image was approxi

mately 10 minutes. The processing time could be significantly reduced by implementing 

the scheme on a parallel processing machine. The processing portion of the program had 

adjustable parameters, but they were not made easily accessible by the end user and thus 

the system was found to be unsuccessful in accurately identifying flaws while minimizing 

the number of false flaw identifications. Knowledge acquired from this package is being 

used by Martin Marietta to develop a faster and more reliable inspection system on a 

parallel processing platform. 

3.4.3 Discriminate feature based scheme 

Another example of an automated radiographic inspection system is found in Boerner 

[3]. Like the others, this system was designed with a single application in mind. This 

system automatically inspects aluminum wheels for flaws by rotating them around their 

axis and inspecting them at three different test positions: one for the hub, one for the 

spokes, and one for the road wheel. The system was designed with some features that 

could be very useful in other inspection applications. One of these features was that of 

calibrating the image so that there resulted a linear relationship between the gray value 

in the image and the thickness of the material being analyzed. This proved beneficial 

in sizing candidate flaws. 

Another feature of interests was discussed in the identification or extraction of 

flaws. Their method involved the combined use of orthogonal and rotationally invariant 

discriminate features to identify the flaws. The discriminate features were identified 
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using one training set of expected flaw signals and another set including the remaining 

signals due to unwanted features in a single test image of the hub. After calculating 

the features based on the training sets, the features were used to successfully classify 

each pixel in a different hub image into one of two classes: pixels possessing flaw-like 

characteristics and those without. In addition to properly identifying flaws in a similar 

image, the features were also used to successfully identify flaws in the more geometrically 

complicated spoke image. This demonstrates the power of orthogonal and rotationally 

invariant feature discrimination techniques. However, it should be noted that these results 

could not be obtained with image corrupted by a significant amount of noise. 

This review of various approaches to an automated X-ray inspection system reveal 

some of the difficulties and complications discussed above in developing such a system. 

3.5 Development of an Initial Scheme 

In the process of developing a valid general automated flaw detection scheme, there 

are many factors to consider. One of the main factors is that of being applicable 

to a wide variety of radiographic applications. This would require the scheme to be 

robust in dealing with radiographs containing a literally innumerable kinds of geometrical 

structures, background trends, noise processes and flaw types. 

In developing the present scheme, an attempt was made to identify image features 

common to most of the radiography applications. A significant amount of research in 

this area has already been performed by the Image Processing Group in the Electrical 

Engineering and Computer Engineering department at Iowa State University. The 

common image features identified include flaws, noise, background trends, and variations 

due to geometrical structure. A large portion of their work has been focused on developing 
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processing routines capable of enhancing flaw features and reducing the effects of noise 

and background trends. 

After identifying various techniques useful in reducing unwanted image features, 

the next step involved formulating specialized flaw detection approaches that utilized 

these techniques and result in the accurate interpretation of flaws in a particular class 

of images. Information gained from studying several different approaches that work 

well for different types of images was then used to develop a more generally applicable 

scheme. Evaluation of the different approaches resulted in. grouping images based on 

the features they contained and identifying the processes that sufficiently reduced the 

unwanted features in each group. The evaluation also revealed the commonality in 

locating and extracting the flaw after unwanted features had been sufficiently reduced. 

This work provided a basis for proposing an initial scheme. 

3.6 Description of Automated Flaw Detection Scheme 

The scheme presented here has evolved into a two stage approach. The first stage, 

General Processing, performs the processes deemed necessary in reducing the contribu

tions from unwanted features within the image. These are undesirable features common 

to radiographic images that tend to confuse flaw extraction and identification algorithms. 

The later stage, Specific Processing, is tailored for each application and performs flaw 

detection and classification procedures by incorporating information concerning flaw char

acteristics relevant to that particular application. A flow diagram of the automated flaw 

detection scheme is shown in Figure 3.1. 

The general processing stage represents the most complex stage since it must identify 

and sufficiently reduce unwanted image features from the radiograph without influencing 
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Figure 3.1: Flow diagram of proposed automated flaw detection scheme. 

flaw characteristics or introducing flaw-like artifacts. For this reason, the general 

processing stage is the most crucial stage in the development of the general automated 

flaw detection system. Therefore, the focus of this thesis is on the automated feature 

reduction processes in the general processing stage. 

The general processing stage shown in Figure 3.1 contains a subprocess for each 

of the three unwanted image features discussed in section 2.3; background trends, 

geometrical structure, and noise. Each subprocess perfonns measurements on the image 

to detennine a features presence in the image. Based on these and other measures of 

the image characteristics, each subprocess then proceeds in reducing the effects of that 
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feature using the most efficient and effective technique. Image processing techniques 

addressing the reduction of noise and background trends in images have been research 

and developed for many years. Therefore, the work presented in these areas focuses on 

automated identification of these features and selection of the appropriate techniques and 

corresponding parameters required to automatically reduce them. Although techniques 

for reducing the effects of noise and background trend in images are well established, the 

development of techniques to identify and reduce the intensity variations resulting from 

geometrical structure has not been researched as thoroughly. Therefore, a significant 

portion of the research presented in this thesis will cover the topic of developing a 

technique to accurately identify and reduce the effects of geometrical structure in NDE 

radiographic images. 

The proposed automated flaw detection scheme introduced here and covered in more 

detail in Chapters 4-7 represents an initial scheme that will evolve into a more surely 

founded scheme as continued research develops improved processing techniques for 

industrial image interpretation applications. 
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CHAPTER 4. AUTOMATIC NOISE REDUCTION 

4.1 Introduction 

Noise is present to some degree in every radiographic image. Comments on the 

problem of noise in images are given in this Chapter and some successful noise reduction 

techniques are reviewed. Research performed in measuring the noise and determining 

the appropriate noise reduction technique are presented in Section 4.4. Automated noise 

reduction results are discussed and followed by a summary of the process and suggestions 

for future work in the area of automated noise reduction. 

4.2 Noise Reduction Problem 

Noise in a digitized radiographic image can originate from many different sources. 

Significant amounts of system noise can be introduced by low quality Vidicon and CCD 

cameras, lenses and inadequate film illumination devices [9]. Other noise sources are 

associated with the physical process involved in using film. This type of noise is signal 

dependent and can be described by a Poisson statistics model. Each finite film location 

is controlled by this model. In the Poisson model, the standard deviation of the signal is 

proportional to the square root of the average signal. Additional noise may be introduced 

to the film due to the specimen's material characteristics. 

No matter the source of the image noise, it has the effect of reducing the detection 

performance of the system. Therefore, the goal of the noise reduction subprocess is 
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to automatically reduce the effects of noise within the image to improve detection 

performance. This can be a very difficult task for the system when the SNR is small and 

the flaw is barely visible to the human eye. In these cases, the automated noise reduction 

subprocess may have difficulty improving the detection performance and might degrade 

the performance by removing the flaw signal altogether. The automated noise reduction 

subprocess works reliably when the SNR is larger and the flaw signal varies slower than 

the noise. This is the case for the images shown in Figure 4.1. The image in Figure 

4.la is a radiographic image of a weld and the image in Figure 4.lb is a radiographic 

image of a railroad frog. The weld image has an overall SNR of 1.27 and the frog image 

has an overall SNR of 8.5. These SNR's were found by visually determining the flaw 

signal region and calculating the power of the signal in this region and dividing by the 

variance outside this region 

(a) (b) 

Figure 4.1: Examples of digitized radiographic images possessing different noise 
characteristics: (a) weld area (Courtesy of Martin Marietta); (b) railroad 
frog (Courtesy of American Association of Railroads) 
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4.3 Successful Noise Reduction Techniques 

Several applicable noise filtering techniques were reviewed in Section 2.5.2. Most 

of these technique require few parameters, and thus are more easily incorporated into an 

automated noise reduction process. Filtering techniques providing a number of adjustable 

parameter will often yield better results when optimized for a particular image, but these 

filters require excessive human interaction and therefore would not be as beneficial to 

an automated inspection system. Conversely, nonparametric filtering techniques tailored 

for a less general application may not perform as well, but are more desirable due to 

their robust nature. 

Recent research in the area of noise filter performance has been conducted by Brown 

[5]. Brown's work compared the performance of various noise filters in improving the 

detectability of the position of a step edge in an image corrupted by noise with various 

characteristics. The study included performance comparisons between the median, root, 

sigma, and adaptive smoothing filters among others. The median filter was found to be 

a consistently better performer in his study. Although a step edge corrupted by noise is 

not an accurate representation of the flaw signals and noise signals found in radiographs, 

the results of the study can be found useful in identifying successful noise reduction 

techniques. 

Radiographs containing high to moderate noise levels were used in this study to 

test the performance of several noise filtering techniques. The filters used in the test 

required few input parameters. The robustness of the filters was tested by using two 

different images, one with a void type flaw and one with a crack type flaw, since some 

filtering techniques tend to work well on one flaw type and poor on the other. The 

ability of the noise filters to perform sufficiently well on both flaw types is crucial since 
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prior knowledge concerning the possible flaw types may not always be available. The 

noise filters were compared on the basis of their overall performance in improving the 

detectability of flaws in the radiographic images. The tested filters included the median, 

an adaptive smoothing filter [24], and a modified adaptive smoothing filter (MASF). 

Various window sizes were tested for each of the three filtering techniques. The MASF 

resulted from studying the techniques of existing filters and improving upon them. 

Figure 4.2 shows the two test images used to evaluate the filters. The image on the 

left was produced by superimposing an actual radiographed crack on a noisy background 

and the image on the right, containing a void, is a subimage extracted from Figure 4.la. 

The dimensions of the crack image are lOOxlOO pixels and the void image is 120x100. 

Table 4.1 lists the standard deviation of the noise and the signal-to-noise ratios for these 

two images. 

(a) (b) 

Figure 4.2: Radiographic images used to evaluate noise filter performance: 
(a) crack type flaw; (b) void type flaws 

The median filter's performance was tested using windows with 3, 5, 7 and 9 pixels 

on a side. The adaptive smoothing and MASF filters were tested with square windows 

of dimensions 3, 5, and 7 pixels. Figure 4.3 shows the noise filtering results for the void 

type flaws. Starting from the left, the top row shows the results of the adaptive smoothing 
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Table 4.1. Standard deviation of the noise and SNR's for test images in Figure 4.2 

Crack Void 

Standard deviation 
of noise 2.08 8.04 

Signal-to-noise ratio 
2.36 1.13 

Signal-to-noise 
ratio (dB) 8.57 1.25 

filter using window sizes of 3, 5, and 7, respectively. The last result in the top row is 

that of the MASF using a 3x3 window. The results using 5x5 and 7x7 windows were 

not significantly different and therefore are not shown here. The second row contains the 

residuals found by subtracting the filtered image from the original. The residual images 

correspond to the filtered image lying directly above them and provide a valid comparison 

among the other residual images within Figure 4.3. The third row contains the median 

filtered images using windows sizes of 3, 5, 7, and 9, respectively. The corresponding 

residuals are found in the bottom row. 

A visual comparison of the filtered images can lead to a variety of conclusions each of 

which may be based on a subjective criterion. Table 4.2 provides a quantitative assessment 

of the noise filtered results in Figure 4.3. This table lists the standard deviation (a) of 

the noise remaining in the filtered images. Based on the figure, one would subjectively 

conclude that the 7x7 and 9x9 median filters along with the MASF yielded superior 

results. This conclusion is supported by the table which shows SNR's of 3.30, 4.31 and 

4.51 and a's of 2.48, 2.08, and 3.01 for the 7x7 and 9x9 median and MASF filters, 

respectively. This conclusion is further verified by the automated thresholding results 

shown in Figure 4.4. These thresholded images were found using Otsu's automatic 
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threshold selection algorithm [31] for the corresponding filtered images in Figure 4.3. 

Otsu's algorithm selects a global threshold based on the images histogram. This is 

an example of the type of feature discrimination and extraction techniques that would be 

used in the Specific Processing stage to identify candidate flaws in the post-processed 

image. Additional processing would involve locating and sizing of the larger connected 

groups of pixels in these thresholded images. The flaw regions in the thresholded images 

corresponding to the three superior filters could be easily identified in this manner. 

Figure 4.5 shows the noise filtering results for the crack type flaw. As before, the top 

row shows the results of the adaptive smoothing filter using window sizes of 3, 5, and 

7, respectively. The last result in the top row is that of the modified adaptive smoothing 

Figure 4.3: Noise filtering results for void type flaws 
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Table 4.2. SNR and standard deviation of noise in filtered results for void type flaws 

Original ASF MASF Median filter 

3x3 5x5 7x7 3x3 3x3 5x5 7x7 9x9 

SNR 1.13 1.47 1.71 1.82 4.51 1.54 2.30 3.30 4.31 

(J 8.04 5.44 4.81 4.63 3.01 4.68 3.15 2.48 2.08 

Figure 4.4: Automated thresholding results for filtered images 

filter using a 3x3 window. The second row contains the residuals found by subtracting 

the filtered image from the original. The residual images correspond to the filtered image 

lying directly above them and provide a valid comparison among the other residual within 

the figure. The third row contains the median filtered images using windows sizes of 

3, 5, 7, and 9, respectively. The corresponding residuals are found in the bottom row. 

The 3x3 ASF, the MASF, and the 3x3 median filter were the only filters that adequately 

preserved the flaw's features while sufficiently reducing the noise content. The other 

filters removed a significant portion of the flaw signal as can be seen in the residual 

images. This can be quantitatively observed from Table 4.3 where the SNR's have 
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become worse in all cases except those mentioned above. The outstanding performance 

of the MASF in this situation is noted in the table which lists a SNR of 14.66 for the 

filtered image. Its performance is further verified by the automated thresholding results 

shown in Figure 4.6. Again, these thresholded images were found using Otsu's automatic 

threshold selection algorithm [31] for the corresponding filtered images in Figure 4.5. The 

automatic flaw detection system would have a very difficult time identifying flaws in all 

of these thresholded images with the exception of the MASF result. 

Figure 4.5: Noise filtering results for crack type flaw 
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Table 4.3. SNR and standard deviation of noise in filtered results for crack type flaw 

Adaptive Smoothing filter MASF Median filter 

3x3 

SNR 3.15 

(J 1.43 

5x5 

2.10 

0.87 

7x7 

4.43 

0.55 

3x3 

14.66 

0.78 

3x3 

3.20 

1.08 

5x5 

1.32 

0.77 

Figure 4.6: Automated thresholding results for filtered images 

7x7 

0.93 

0.65 

9x9 

0.85 

0.58 

In comparing the performance of these filters based on the improved detectability 

of the two flaw types after filtering, the modified adaptive smoothing filter was found 

to yield the best overall performance. Although the median filter may have produced 

slightly better results with the test image containing voids, it failed to preserve the flaw 

signal in the image containing the crack. It should also be noted that the processing 

time involved for the adaptive smoothing filters is an order of magnitude greater than 

the median filters processing time. The 3x3 modified adaptive smoothing filter requires 
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about 40 seconds of processing time when filtering a 256x256 floating point image using 

a DEC 5000, whereas the 7x7 median requires a little over 1 ·second of processing 

time. This presents a trade-off between processing time and performance that may not 

be significant, depending on the particular application. 

4.4 Automated Identification and Measurement of Noise Characteristics 

As mentioned in Section 3.3, the automated noise reduction subprocess requires 

intelligent decision making procedures that can automatically decide whether noise 

reduction is necessary and if the filtering techniques improved detection performance. 

These decisions are based on image measurements that provide the necessary image 

information. 

Appropriate image measurements were developed by first visually identifying the 

noise characteristics within the images and then setting out to quantitatively describe 

them via numerical image measurement models. To develop a measurement for deter

mining when noise reduction is necessary, several images containing undesirable noise 

characteristics were selected. Then, based on these images, a technique was developed 

to objectively measure the noise level. Many times the proposed measurement was not 

consistent in fully describing the noise content or was not able to properly discriminate 

between the noise and other image features. The noise measure developed here consis

tently yields an objective quantitative value for the noise level of the images studied here. 

The proposed measure is based on the local variance calculations within an image. 

The measurement is found by first calculating the local variance for each non-overlapping 

nxn window in the image (8x8 windows used here). The square root of these sample 

variances (a) are then normalized by dividing by the intensity range of the image data. 
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Next, the average and standard deviation of the normalized O"'s corresponding to the 

non-overlapping windows is calculated. The noise level is then calculated by averaging 

together the normalized O" that are less than the average O" plus two standard deviations. 

This is done to help reduce the higher local variance bias due to fluctuating flaw signals. 

The resulting value is then multiplied by ten for ease of handling. 

Other noise measures were found useful in characterizing the noise after processing. 

One measure, referred to as sigma of the noise, is the standard deviation of the unsharp 

masking result. Recall that unsharp masking is perfoll'lled by subtracting a 3x3 boxcar 

smoothed image from the input image. The other measure is referred to as the zero 

crossing count. This measure involves counting the number of zero-crossings that occur 

in the first derivative of the selected rows and columns. The number of zero-crossings 

are calculated from 10 unifromly spaced rows and columns in the input image and a 3x3 

boxcar smoothed version. The zero-crossing measure is then found by subtracting the 

total count found for the smoothed image from the original image. These measures are 

useful in· evaluating the success of the noise filtering technique applied. 

The average local variance (ALV) measure was calculated for the images shown in 

Figure 4.7 which is the source of the void type flaw test image mentioned earlier. In this 

figure, the upper left image is the original, the upper right is the adaptive smoothing filter 

result, the lower left was filtered with a 3x3 MASF and followed by a 3x3 median to 

help remove impulse-like noise, and the lower right image is the result of a 7x7 median 

filter. The noise measures calculated for these images are found in Table 4.4. Applying 

a 3x3 median filter improved the ALV measure very little in these particular images. 

However, the zero-crossing measure can be very useful in identifying situations when a 

3x3 median filter would be helpful in reducing impulse type noise. This is evident in 
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both of the following tables. 

Table 4.4 illustrates the consistency of the nmse measure to objectively quantify 

the image noise level within the group of images shown in Figure 4.7. Through visual 

inspection, one notices the correlation between observed noise content and calculated 

noise level. To gain a better feel for the noise and flaw signal fluctuation found in these 

images, a row of data was extracted from each of the images listed in Table 4.4 and 

Figure 4.7: Images used to illustrating ALV noise measure; clockwise from the upper 
left corner is the original, the adaptive smoothing filter result, 7x7 median 
filter result, and the result of the 3x3 MASF followed by a 3x3 median 
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Table 4.4. Noise measures found for images in Figure 4.7 

Adaptive (3x3) Modified (3x3) (7x7) 
Smoothin Median Adaptive Median of Median 

Original Filtered of ASF Smoothing MASF Fitlered 
(AS F) (MAS F) 

ALV 7.236 6.313 5.778 4.416 4.380 4.226 

Std. Dev. 
of noise <J 6.783 6.304 3.569 4.391 2.947 4.110 

Zero 
crossing 2.637 2.875 1.484 3.557 1.337 1.680 

plotted in Figure 4.8. The data plotted here intersect the darkest portion of the largest 

flaw. The same row position was extracted from each of the images. Starting at the top 

of the figure, the first slice is from the original image, the remaining slices· are from the 

ASF, MASF, 3x3 median of MASF, and 7x7 median filtering results, respectively. 

The plotted slices provide a good comparison for the effectiveness of the filters 

in reducing the noise and preserving the flaw signal. The inherent noise suppression 

abilities of the filters are more easily perceived from the plots than the signal preservation 

characteristics. When closely examined, one notices differences in the magnitude of 

the filtered flaw signals which lie between 100 and 130 on the horizontal axis. The 

adaptive smoothing filter and the median filter reduced the magnitude of the flaw signal 

significantly, compared to the original. However, the MASF performed exceptionally 

well in both preserving the flaw's characteristics and suppressing the noise. 

Another example of images quantified by the ALV measure is shown in Figure 4.9. In 

this figure, the upper left image is the original, the upper right is the adaptive smoothing 

filter result, the lower left was filtered with the modified adaptive smoothing filter and 

followed by a 3x3 median to help remove impulse-like noise, and the lower right image 
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Figure 4.8: Slices of image data illustrating noise and signal suppression for different 
noise filtering techniques; plot shows same row position; the top slice is 
from the original image, the remaining slices are from the ASF, MASF, 
3x3 median of MASF, and 7x7 median filtering results, respectively 
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is the result of a 7x7 median filter. The noise measures calculated for these images are 

found in Table 4.5. 

The ALV noise measure has been found to be a practical noise measurement tool 

in application to the automated noise reduction identification process. The ALV noise 

measurement was successful in accurately quantifying the image noise content when 

the image intensity was relatively uniform across the image. The other noise measures 

Figure 4.9: Images used to illustrating ALV noise measure; clockwise from the 
upper left corner is the original, the adaptive smoothing filter result, 
7x7 median filter result, and the 3x3 MASF result 
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Table 4.5. Noise measures found for images in Figure 4.9 

Original (3x3) (3x3) (7x7) 
ASF Median of MASF Median of Median 

ASF MASF Fitlered 

ALV 5.570 3.504 3.189 3.328 3.030 3.599 

Std. Dev. 
of noise u 3.115 1.514 0.668 1.259 0.634 0.928 

Zero 
crossing 3.559 3.871 1.555 3.996 1.305 1.336 

studied here were not found as effective in accurately quantifying the noise content. The 

u noise measure was not sensitive to the "grainy" type of noise observed in the weld 

image in Figure 4.7. The zero crossing count was also ineffective in detecting this type 

of noise, but was found to be quite sensitive to small impulse type noise that can be 

sufficiently reduced by a 3x3 median filter. 

After developing reliable noise measurement tools, decision rules for the automated 

noise reduction subprocess must be established. The first decision in the noise reduction 

subprocess is to determining if noise reduction will improve the flaw signal detection 

performance. This decision is based on the ALV noise measure results. Based on 

experimentation, a proper threshold level can be selected to determine when noise 

filtering would most likely improve detection performance. The second decision in the 

noise reduction process is to evaluate ·the noise filtering result to determine if it was 

sufficient in reducing the noise. This can be done by comparing the ALV and other 

noise measures before and after filtering. The noise reduction subprocess can be easily 

modified to accommodate additional noise measures and filtering techniques relevant to 

the application at hand. 
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4.5 Automated Noise Reduction Results 

In addition to the noise filtering results shown in previous sections where the 

proposed noise reduction techniques were evaluated, Figure 4.10 shows an example of a 

simulated image containing a large range of noise levels superimposed on a nonstationary 

background. As mentioned before, the ALV noise measure is reliable only when the input 

image has uniform intensity across the entire image. However, the modified adaptive 

smoothing filter introduced earlier and found to be superior to other noise filter techniques 

is a reliable noise reduction technique in images possessing nonuniform intensities. This 

is illustrated in Figure 4.10. The first row shows the input image corrupted by decreasing 

noise levels. The second row shows filtering results from the modified adaptive smoothing 

filter. The bottom row show filtering results from a 7x7 median filter. The SNR's 

corresponding to these images are recorded in Table 4.6. As observed in the images and 

recorded in the table, the MASF and Median filters did not improve the calculated SNR 

for the 1st image. However, they did perform rather well in suppressing the noise content 

and preserving the flaw signal in the 3rd and 4th images. The MASF was the superior 

performer in preserving the sharp discontinuities. The program listing for the modified 

adaptive smoothing filter can be found in Appendix A. 

The automated noise identification and reduction process described here is reliable 

in quantifying the noise content in images containing relatively uniform intensities and 

has demonstrated its robustness in sufficiently reducing the noise characteristics present 

in the range of radiographic images presented here. Future work in the area of automated 

noise reduction would benefit from the development of additional noise measurement 

tools capable of reliable noise quantification in images possessing nonuniform intensity 

variations across the image. This work could be based on the radiographic image 
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Figure 4.10: Nonuniform images containing a large range of noise levels 
which are listed in Table 4.6 

Table 4.6. SNR's for images shown in Figure 4.10 

1 st 2nd 3 rd 4th 

Originals 0.963 1.17 1.41 1.56 

3x3 MASF 0.660 3.42 6.05 11.15 

7x7 Median 0.693 2.13 3.96 6.52 

formation model and result in more accurate identification of the image's Poisson noise 

characteristics. 
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CHAPTER 5. AUTOMATIC TREND REDUCTION 

5.1 Introduction 

Background trends are present in many NDE X-ray images. This chapter focuses on 

the problem of trends in images and reviews some successful trend-reduction techniques. 

Research performed on identifying trend characteristics and on developing an automated 

trend removal subprocess is presented in Section 5.4. Some trend reduction results are 

then presented and followed by suggestions for future work in the area of automated 

trend reduction. 

5.2 Trend Reduction Problem 

As mentioned in Section 2.3, trends are global changes in image intensity due to 

nonuniform variations in material density or thickness. These background trends are 

represented in digitized radiographic images as smooth continuous variations in image 

intensity. In this form, they can be addressed by digital image processing algorithms. 

These slow continuous variations introduce nonstationarity and make it difficult to 

accurately segment the flaws from the background. Images containing a large intensity 

range, attributed to large variations in the specimens material thickness or density, tend 

to hide the minute details associated with a small flaw signal embedded in the trend. 

Furthermore, reliable histogram-based segmentation techniques used to identify candidate 

flaws are thoroughly_ confused by background trends and yield unacceptable results. 
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Radiographic images containing trends are common in industrial radiography. Therefore, 

trend reduction is a necessary step in preparing a radiographic image for automatic flaw 

detection algorithms. 

Examples of images with these characteristics are found in Figure 5.1. The top image 

in this figure shows a radiograph of an oil pipe containing a crack. The trend in this 

image is mostly vertical in that the film density along the top of the radiograph is low 

and steadily increases to a higher film density along the bottom. The middle radiographic 

image is from a composite material. The trend varies slowly down the image until close 

to the bottom of the image where a sharper transition in material density or thickness 

yields an abrupt increase in the film density. The bottom radiographic image is from a 

railroad frog. The trend in this image varies in intensity in a diagonal fashion from the 

upper left-hand comer to the lower right. This trend is rather subtle but still presents 

problems to the automated flaw detection programs. 

As seen in Figure 5.1, background trends can take on different shapes and contain 

swift or gradual changes in intensity across the image. Most often the background trend 

characteristics can be modelled by 1st and 2nd order polynomials or step-like transitions. 

These assumptions are adequate in describing the global film density variations most 

often encountered in the industrial radiographic images studied here. 

5.3 Review Trend Reduction Techniques 

Several techniques have been developed to effectively reduce background trends 

without modifying the flaw signal or introducing additional artifacts. These techniques 

include bivariate polynomial surface fitting discussed in Doering [11], one-dimensional 

polynomial fitting [11], and mathematical morphology discussed in Chackalackal and 
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Figure 5.1: Examples of radiographic images containing background trends: Courtesy 
of Atlantic Richfield, Westinghouse, and American Association of Railroads 

Basart [6] and Skolnick [41]. All of these techniques have been found to yield similarly 

useful results. However, the techniques do differ in the amount of processing time 

involved and the type of a priori knowledge necessary to produce successful results. 

Surface fitting techniques are computationally intensive and require substantial pro

cessing time. Both one-dimensional polynomial fitting and morphology are relatively 

quick methods. Chackalackal and Basart [6] have shown mathematical morphology to 
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be a powerful tool in this area, but the technique requires prior knowledge of the flaw's 

shape, size and orientation in determining the appropriate structuring element. 

The technique found most suitable in reducing the background trends was one

dimensional polynomial fitting. In addition to the polynomial model, one other as

sumption applies. The maximum flaw width must be less than one-fifth of the images 

dimensions to avoid remove the flaw signal using polynomial fitting. This is a reason

able assumption for the majority of the NDE X-ray imaging applications. The polynomial 

fitting technique is very fast and effective in reducing the trends encountered most of

ten in NDE X-ray images. Furthermore, this technique requires no a priori knowledge 

concerning the flaws characteristics. 

Polynomial fitting is performed on the individual rows or column within the image 

after determining the appropriate polynomial order and deciding whether to fit in the row 

or column direction. Once the parameters are selected, a least squares approximation 

of the background trend is found for each row or column and subtracted from the 

corresponding row or column to yield a residual image. This residual image represents the 

variations due to flaw signals and noise and can be successfully processed by noise filters 

and traditional histogram-based segmentation techniques to identify candidate flaws. 

5.4 Automatic Identification and Measurement of Trend Characteristics 

Automation of the one-dimensional polynomial fitting technique involves the identi

fication of the trend characteristics and the parameters required for successful reduction. 

The trends characteristics can be identified by developing measurements based on the 

allowable background trend characteristics mentioned above. 
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Two measures were developed to identify the trend and determine the appropriate 

fitting parameters. The first measure is used to determine if adding an offset to each 

individual row and column would be sufficient in reducing the background trend. This 

is achieved by calculating two values representing the variation in the background for 

both the rows and columns. Each value is found by selecting ten uniformly spaced rows 

and columns within the image and calculating the slope of the least squares line for each 

of the ten rows and columns. The variance of the ten slopes for each direction is then 

calculated. This measure is normalized by multiplying by the number of pixels in the 

corresponding direction. The result is a measure of the complexity of the background 

trend. This measurement can be more clearly described using an example. 

Figure 5.2a shows a radiographic image, which will be referred to as Mart, that 

contains a noticeable background trend. The surface plot of Mart in Figure 5.3 provides 

a useful illustration of the overall trend present. Ten uniformly spaced rows and columns 

were extracted from Mart. The slopes of the least squares lines approximating the data 

in these selected rows and columns were then used to calculate the measures. Figure 

5.4 shows a reconstructed plot of the approximated lines for the selected rows (a) and 

columns (b). 

The normalized variance was 4.2 for the row slopes and 8.2 for the column slopes. A 

measure of normalized variance below 50 is considered low. A low variance among both 

the row and column slopes implies a simple trend that can be reduced using Eq. (5.1). 

This equation can be interpreted as a zero order fit to the image rows and columns where 

ne'W Xi = (xi- row mean) +global mean. (5.1) 

In Eq. (5.1), Xi is the intensity value of a pixel in the current row, row mean is the average 

of all the pixel values in that row, and global mean is the average of all the pixel values 
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(a) (b) 

Figure 5.2: Radiographic image of a fuel tank weld (Courtesy of Martin · 
Marietta): (a) before; (b) after trend removal 

in the original image. The new intensity value for x;, new x;, is found by subtracting 

the row mean and adding the global mean. The zero order fit is extremely fast since it 

requires no matrix computation, but rather the average of the row's intensity values and 

a few additions. Because of its speed, this technique has been implemented by Doering 

in a real-time radiography system to enhance the observed image in real-time [10]. 

After determining that zero order fitting is applicable, two additional measurements 

can be calculated to determine if it should be applied to the rows, the columns or both. 

These measurements are found by calculating the standard deviation of the mean values 

calculated for the rows, and then for the columns. A high standard deviation in the 

selected row mean's implies the need for zero fit to the rows and the same goes for the 

columns. The standard deviation measured for the row and column mean's was 56.6 
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Figure 5.3: Smface plot of intensities in Mart 

and 70.1, respectively. Therefore, zero order fitting was applied to both the rows and 

columns in Mart. 

Figures 5.5 and 5.6 show intermediate results of the zero order fit for the columns 

and rows, respectively. As can be seen in these figures, the zero order fit is a line by 

line shifting process that offsets the recorded intensities in each line by a unique constant 

determined by Eq. (5.1). 

The smface plot in Figure 5.6b is plotted with the same axis scaling that was used 

in the previous smface plots. This allows one to accurately compare the surface plots 

showing the nonuniform background trend before and after trend reduction. The surface 

plot in Figure 5.6b depicts the trend-reduced image shown in Figure 5.2b. The zero 
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Figure 5.4: Reconstructed plot of the least squares lines calculated for 
the selected rows (a) and columns (b) 

order trend removal technique used here has been an effective enhancement technique 

in many radiographic images. 

When a high variance is measured among either the row slopes or the column slopes, 

it implies that a complex trend exists. These trends require higher order polynomial fitting. 

When higher order fitting is found necessary, a second measure is used to determine the 

polynomial order required and whether the fit should be applied to the rows or columns. 

This is done by evaluating the errors incurred by fitting 1st and 2nd order polynomials to 
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(b) 

Figure 5.5: Intermediate surface plots of Mart demonstrating the zero order fittirig 
technique: (a) half done with column fitting; (b) completed column fitting 

the ten selected rows and columns. The order and coordinate direction combination that 

incurs the minimum error is selected as the parameter set for the trend removal process. 

Since 1st order fitting is faster, it is used when the error is not significantly greater than 

that found using 2nd order polynomials. Higher order polynomial fitting works basically 

the same way as the zero order fitting example with the exception that each row or 

column is approximated by a 1st or 2nd order polynomial which is then subtracted from 

the original image intensities to yield a residual image. 

Based on these measurements, the automatic trend reduction diagram shown in Figure 
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(a) (b) 

Figure 5.6: Intermediate surface plots of Mart demonstrating the zero order fitting 
technique: (a) half done with row fitting; (b) completed row fitting 

5.7 was developed. The first block encountered by the image, Trend Measure 1, calculates 

the magnitude of the normalized slope variance measures to determine if the background 

trend is complex. If the variances are too large, the trend is identified as complex and the 

appropriate parameters are found and used to reduce the trend based on the polynomial 

model. If the trend is not identified as complex, the variance of the row and column 

means is calculated to determine if the zero order fitting technique would be usefuL This 

is performed in the block labeled Trend Measure 2. 

Within the trend reduction subprocess, preselected thresholds are compared with 
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each measurement to determine the appropriate trend reduction technique. The proposed 

diagram provides for situations when 1st or 2nd order polynomial fitting are found to be 

inadequate. In these cases, fitted polynomials poorly approximate the background trend 

and more powerful methods such as mathematical morphology [6, 41] are required. 

Determine polynomial 
order of trend. 

Morphological processing 

Next Stage 

Reduce trend with 
quicker method. 

Figure 5.7: Flow diagram of automatic trend reduction subprocess 
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5.5 Automatic Trend Reduction Results 

The two images in Figure 5.8a were processed by the automatic trend reduction 

procedure. When analyzing the top image in this figure, the normalized slope variance 

measures found for both the rows and columns were much less than the threshold of 50, 

therefore the trend was not identified as complex. To determine if zero order fitting was 

necessary, the standard deviation of the row and column means were calculated. They 

were found to be 63.5 and 6.7, respectively. This tells us that the background trend varies 

with the rows, or in the vertical direction. Therefore, the trend was removed by applying 

the zero order fit to the rows only. The resulting image is shown at the top of Figure 5.8b. 

The background trend in the bottom image was found to be more complex. In 

addition to the simple method used above, 2nd order polynomial fitting to the columns 

was also necessary. Polynomial orders higher than 2nd order are not used since they 

tend to introduce artifacts [11]. 

Figure 5.9 shows another example of trend reduction using the automated trend 

removal procedure. The image in the upper left corner is the original radiographic 

image of a pipe weld. The image to the right is the histogram equalized version of the 

original. The lower left image shows the background trend identified by the automated 

trend reduction procedure. The result of trend removal is shown in the lower right image. 

Measurements from the original image suggested that 2nd order polynomial fitting should 

be performed on the columns of the image. The row and column slope variances were 

54.5 and 53.0, respectively. 

The background features in all of these images were sufficiently reduced using the 

automated trend removal procedure. This is visually verified by comparing the original 
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(a) (b) 

Figure 5.8: Radiographic images before and after trend removal: (a) 
originals; (b) results after trend removal; top image is from the 
fuel tank weld referred to previously, and bottom image is a 
composite material (Courtesy of Westinghouse) 

image to the trend-reduced result and quantitatively verified by comparing the trend 

measures before and after trend reduction. 

Although the automatic trend reduction procedure works well on many images, the 

introduction of prominent artifacts can occur in some situations. This is most often due 

to the fact that the 1st or 2nd order polynomial model does not apply to the observed 

background trend. In these situations, a different background trend model is required. 

For this reason, further work in the area of automatic trend reduction could focus on 

the development of a more general model or a model that more readily adapts to the 

observed background trend. 
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Figure 5.9: Radiographic image of pipe weld before and after trend removal: 
top left image is original; image to the right is histogram equalized 
version of original; bottom left is approximated background 
trend; bottom right is result after trend removal 
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CHAPTER 6. GEOMETRICAL STRUCTURE REDUCTION 

6.1 Introduction 

Many NDE X-ray imaging applications involve the inspection of a specimen pos

sessing local variations in material thickness due to the specimens' shape or geometrical 

structure. This Chapter discusses the problems associated with inspecting digitized ra

diographs that possess intensity variations due to geometrical structure and presents the 

research conducted in developing a technique to automatically reduce these unwanted 

variations. The approach to solving this problem is presented in Section 6.3. Section 6.4 

presents a description of the technique along with an example for each of the main steps 

involved. This is followed by a more detailed discussion of the technique in Section 6.5. 

Some results are then presented and followed by a discussion the techniques deficiencies 

and suggestions for future work. 

6.2 Geometrical Structure Problem 

Intensity variations due to geometrical structure come in many different shapes 

and forms. The number of different geometrical structures is as numerous as the 

number of different X-ray imaging applications. Unlike background trends with global 

characteristics, these variations are locally defined and attributed to local changes in the 

material thickness or material density which are often associated with the shape of the 

radiographed specimen. The effects of geometric structure in the film can be minimized 
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by choosing the position and orientation of the object such that the resulting projection 

yields the least complicated geometrical structure. 

Examples of variations due to geometrical structure in radiographic images are found 

in Figure 6.1. The structure of interest in the top image results from a section of a 

circular ring of thicker material. The magnitude of the local variations occurring on 

the outside radius boundary are approximately 100 grey levels per 10 pixels. The "T

shaped" structure in the lower left image is lying on a nonuniform background. This 

yields an image with a multitude of local variations possessing a large range of sharp 

intensity changes. The largest change is 220 grey levels over 7 pixels, however, most 

local variations involved 40-80 grey levels over 7 pixels. The lower right image contains 

a ridge of thicker material bridged across a relatively uniform background. This particular 

structure contains local variations in intensity of about 40-140 grey levels over 10 pixels. 

These are examples of typical radiographic images containing variations due to the 

specimen's geometrical structure. 

Like background trends, images containing a large intensity range, attributed to 

geometrical structure, tend to hide the minute details associated with a small flaw 

signal. Edge detection techniques are not able to discriminate between sharp variations 

in flaw signal and variations due to geometrical structure. Furthermore, normally reliable 

histogram-based segmentation techniques used to identify candidate flaws are thoroughly 

confused by background trends and yield unacceptable results. Radiographic images 

containing geometrical structures are common in industrial radiography. Therefore, 

geometrical structure reduction is another necessary step in preparing a radiographic 

image for automatic flaw detection algorithms. 

As mentioned before, little research has been performed m NDE concerning the 
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Figure 6.1: Examples of radiographic images containing geometrical 
background structures 

estimation and removal of features due to geometrical structure. However, the image 

processing and pattern recognition community has research the general problem of 

segmentation for many years [8, 12, 2, 42], as discussed in Section 2.5.3. Morphological 

processing techniques [6, 41] have been successful, but require prior knowledge of 

the flaw's shape, size and orientation. Part registration and subtraction techniques 

[ 40] yield promising results also, but require prior knowledge of part geometry and 

precise registration constraints. The author has studied the application of smoothing and 
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subtraction techniques to the problem and shows some results below. 

Figure 6.2 shows results from some of these techniques. The original image is shown 

in the top left comer. The image to the right, generated by Siwek [ 40], is the residual 

found by registration and subtraction of a simulated radiographic image from an actual 

digitized radiographic image. The simulated image was generated by an X-ray simulation 

program called XRSIM [20] that requires a CAD model of the specimen. This is an 

ongoing area of research at Iowa State University's Center for Nondestructive Evaluation. 

The remaining images were generated by the author using smoothing techniques. The 

corresponding residuals were generated by subtracting the smoothed image from the 

original. The residual images are scaled and provide a valid comparison among the 

other residuals in the figure. The last two images in the top row are the smoothed 

image generated by one pass of a 6x6 Gaussian convolution mask and the corresponding 

residual. The first image pair in the second row is the smoothed image generated by 

two passes of a 6x6 Gaussian convolution mask and the corresponding residual. The 

next image pair includes the results from one pass of a 7x7 boxcar smoothing filter and 

the corresponding residual. The first image pair on the bottom row was generated by 

two passes of a 7x7 boxcar smoothing filter. The last image pair was generated by the 

modified adaptive smoothing filter. 

The various smoothing techniques were studied to determine if they were capable 

of discriminating between variations due to flaws and variations due to geometrical 

structures. The techniques used above differ by the distribution of weights placed on 

the pixels when smoothing. The Gaussian mask places greater significance on the pixels 

closer to the center. This results in a smaller point spread function and thus a more 

accurate approximation at sharp transitions. The 7x7 boxcar places equal weights on all 
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pixels in the mask. This results in a larger point spread function and a greater blurring 

effect. Two passes of a particular filter result in a smoother image that is insensitive to 

locally concentrated intensity variations, such as those characteristic of flaws or sharp 

transitions due to geometrical structure. These items can be observed from the figure 

when comparing the residuals found between the first and second pass of a particular 

filter and when comparing the residuals produced by different masks. 

The residual images reveal a prominent artifact caused by the techniques' inability to 

accurately approximate intensities at abrupt transitions. This is not a significant problem 

when inspecting the images visually. However, this is a significant problem when 

implementing this method in an automatic flaw detection system since the algorithms 

will easily mistake these artifacts for candidate flaws. 

6.3 Geometrical Structure Reduction Approach 

The figure mentioned above demonstrates the need for a robust image processing 

technique that provides a reliable estimate of the abrupt intensity variations due to an 

arbitrary geometrical structure and remains insensitive to flaw signals. This problem 

reflects the ever-present uncertainty associated with segmentation and boundary identi

fication problems. That is, one needs to accurately identify the boundaries of the geo

metrical structure automatically without mistaking flaw signals for geometrical structure. 

The approach taken here then is to develop a technique that approximates the intensity 

variations due to geometrical structure by piecewise-smooth surface functions. 

The technique presented here is robust and requires no information concerning mate

rial geometry or flaw characteristics. Rather, it requires that the image comply with three 

assumptions: 1) image can be modeled as piecewise-smooth surface functions corrupted 
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Figure 6.2: Results from existing techniques used to reduce variations 
due to geometrical structures 

by noise and flaws, 2) large regions described by continuous smooth surface functions 

accurately approximate the image intensities due to geometrical structures within those 

regions, and 3) flaw areas are smaller than the smallest geometrical structure. Based on 

these assumptions, the approach involves segmenting the image into continuous surface 

regions via region growing and surface estimation techniques. Proper segmentation is 

achieved when regions representing relevant structure within the image are accurately 

identified. After the image is properly segmented, the unwanted features are reduced by 

subtracting the estimated intensities due to geometrical structures from the original im-

age. The residual image is then assumed to contain intensity variations due to flaws and 
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I Class I Image I 

Identify Seed Regions: 

Divide image into regions 
of identical surface type . 

• Grow Seeds into piecewise-smooth 
surface regions: 

Simulataneously grow regions and 
estimate geometrical surfaces. 

Form estimate of geometrical structure 
within image by combining piecewise-smooth 
surface regions. 

Subtract estimate 
from original image. 

• Residual image may contain noise, 
background trends and f I a w signals. 

Figure 6.3: Flow diagram of four main steps in the approach to reduce 
the effects of geometrical structure 

noise only. A flow diagram outlining specific steps performed in the removal process 

Is shown in Figure 6.3. 

In reference to the diagram, a Class I image is defined as an image that contains 

intensity variations due to geometrical structure. The remainder of the flow diagram will 

be described in the following section. 

This approach is adapted from the algorithm developed by Besl and Jain [2] and 
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similar to the technique described by Taubin in [42]. Their algorithm is robust in properly 

segmenting images in a variety of applications including radiography. The segmentation 

algorithm is based on the assumption that the image data exhibits surface coherence in 

the sense that the data may be interpreted as noisy samples of a piecewise-smooth surface 

function. This assumption is consistent with the data acquired in the radiographic image 

formation process. 

6.4 Description of Geometrical Structure Reduction Technique 

Successful reduction of the variations resulting from geometric structures can only 

be achieved through accurate segmentation and approximation of the intensities in the 

digitized radiograph. Therefore, segmenting requires intelligent image interpretation 

procedures capable of successfully executing each processing step. The first step, as 

shown in Figure 6.3, involves identification of seed regions which are locally concentrated 

regions representative of the geometrical structures. Armed with seed regions, the second 

step attempts to grow the seeds into several large adjoining regions containing surface 

functions representative of the image intensities due to geometrical structures. The 

third step combines the individually estimated surface functions into a piecewise-smooth 

surface function approximating the intensities due to geometrical structures throughout 

the entire image. The final step involves subtracting the approximated surface intensities 

from the original image to produce a residual image that is void of these unwanted 

intensity variations. 

To gain a better understanding of this procedure, we will discuss each one of the 

individual steps more thoroughly as they are applied to an actual digitized radiograph. 

A region of interest ha.s been selected for testing and is outlined by the white box that 
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has been superimposed on the simulated radiographic image found in Figure 6.4. This 

simulated radiographic image shows the expected image intensities due to the specimen's 

geometrical structure. It should be noted that the reduction technique will be illustrated 

using digitized data from the selected region in an actual radiographic image. The selected 

region in the actual radiograph includes a ridge of thicker material that contains some 

porosity. The remainder of this section qualitatively discusses the steps shown in Figure 

6.3. In Section 6.5, the steps are again discussed, but this time the explanation is 

quantitative. 

Figure 6.4: Simulated radiographic image of air conditioner part 
showing region of interest 

6.4.1 Identifying seed regions 

A difficulty encountered in all region growing based segmentation algorithms is 

that of selecting initial regions or seeds. Accuracy of the results and time involved 

are very dependent on the starting points selected. Due to the surface based nature of 

the algorithm, the seed regions are identified by finding locally concentrated regions 

possessing identical topological surface type characteristics. This is done by classifying 

each pixel in the image as belonging to one of eight fundamental surface types. The 
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classification is performed by analyzing the horizontal and vertical gradient information 

surrounding each pixel as described by Besl and Jain in [2]. Figure 6.5 shows the digitized 

region of interest and the result of classifying the image into the eight fundamental surface 

types represented by different grey levels. After classification, candidate seed regions are 

found by grouping pixels in the classified image with similar surface characteristics or 

grey levels. The final seeds are found by eroding the regions and selecting the larger 

remaining regions to guarantee the seeds are the interiors of the relevant structure. Figure 

6.6 shows the four main seed regions identified in the test image. 

6.4.2 Growing regions 

In this region growing application, we want to approximate the pixel data in a region 

by a surface function that represents the relevant structure in an image. After seed 

100 

so 

so 

.... o 

... s 

(a) (b) 

Figure 6.5: Results from classifying pixels into fundamental surface types: (a) surface 
plot of intensities in region of interest; (b) pixel classification results 
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Figure 6.6: Image showing the four main seed regions identified. 

regions have been identified, adjacent pixels are examined one by one and tested to 

see if they possess properties similar to those of the current region. The similarity 

property measured here is based on how well the surface function in the current region 

approximates the adjacent pixels. Adjacent pixels are accepted into the region if they 

are well approximated, and rejected if not. The region stops growing when no adjacent 

pixels are added. Additional growth constraints were introduced to limit the amount of 

uncertainty experienced in the model. 

One of the growth constraints used by Besl and Jain involves a surface normal 

similarity measure. This similarity measure is found by comparing the angle between 

the approximated surface normal and the estimated surface normal. The approximated 

surface normal is determined by the polynomial coefficients for the approximating surface 

function and the image coordinates. The estimated surface normal is calculated using 

the horizontal and vertical gradient information generated by the seed identification 

algorithms. If the difference between the normals is too large then the candidate pixel 

is not added to the region. 

Another growth constraint involves monitoring the shape of the growing region. This 
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constraint was introduced to encourage the seeds to grow into well defined continuous 

surface patches rather than narrow paths or a sparsely connected patterns of points. To 

eliminate these undesirable growth patterns, a topological descriptor was introduced into 

the region growing process. The descriptor is a function of the perimeter and the area of 

the region [1]. It is invariant to scale, translation, and rotation and therefore very useful 

in monitoring changes in the shape of the growing regions. The descriptor value V is 

calculated by dividing the area of a region N by the perimeter squared of that region P2 

and multiplying by 1000 for easy of handling where 

(6.1) 

Some sample shapes and descriptor values are shown below in Figure 6.7. From the 

examples, we see that large values of the descriptor are preferred to avoid narrow paths 

that fail to accurately segment the image. 

99 64.3 56.6 39.1 30.9 

Figure 6.7: Sample region shapes and corresponding topological descriptor values 

Based on this constraint, the two middle seeds in Figure 6.6 grew into a region 

possessing the surface function shown in Figure 6.8a. This approximated surface function 

can be compared with the actual image surface intensities show in Figure 6.8b. The 

growth process continues for the remaining seed regions. 
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(a) (b) 

Figure 6.8: Surface plot of intensities in grown region: (a) least squares 
approximation of actual image surface in (b) 

6.4.3 Merging grown regions 

After the seeds have grown into large regions representative of the intensity variations 

due to geometrical structure, the corresponding surface functions are combined to form 

an estimate of the geometrical structure within the image. Often, there are gaps between 

the regions that were not accepted into any of the growing regions. These gaps may 

be areas experiencing abrupt transitions in image intensity due to geometric structure or 

noise. Larger gaps should be eroded, identified as seeds and sent back through the region 

growing process. Smaller gaps should be approximated by smoothly joining the region 

boundaries. Besl and Jain make reference to a region refinement technique and a one-

step region merging method that can be found in [17]. A simple refinement technique 

has been developed for our application and is discussed in Section 6.5.3. Figure 6.9 

shows the original region of interest and the estimated image found by merging the 
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piecewise-smooth surface functions using this technique. The image in Figure 6.9b 

gives no quantitative information concerning the accuracy of the VOSS technique in 

approximating the intensity variations due to geometrical structure. Rather, a quantitative 

assessment of the technique is performed after subtracting the approximated intensities 

from the original as discussed in the next subsection. 

(a) (b) 

Figure 6.9: Comparison of original (a) and reconstructed images (b) 

6.4.4 Subtracting the estimate 

The final step in the geometrical structure reduction approach involves subtracting the 

estimated image, that represents intensity variations due to geometrical structures, from 

the original image. When the region growing based image segmentation algorithm has 

been successfully executed, the residual image will contain minimal intensity variations 

due to geometrical structure, but may possess features such as noise and flaw signals. 
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(a) (b) 

Figure 6.10: Geometrical reduction results: (a) residual image; (b) noise processed image 

The residual image produced by processing the test image is shown in Figure 6.10a. Low 

contrast artifacts introduced by the sharp transitions in the original image can be seen 

on either side of the ridge of thicker material. The high contrast flaws, represented by 

the darker intensities, appear near the top and middle of the residual image and are very 

pronounced. Further processing in the Specific Processing stage (discussed in Chapter 7) 

will provide additional enhancement such as that shown in Figure 6.10b. A quantitative 

assessment of the technique is performed in the Specific Processing stage where the 

residual image will be thresholded to obtain the location and size of the candidate flaws. 

6.5 Algorithm Description and Implementation 

The technique described above is relatively simple in concept. The task of identifying 

the boundaries of the regions that outline the geometrical structures is not so difficult for 



78 

the human vision system. Rather, it is a trivial task for someone, trained or otherwise, 

to recognize the different patches or regions within the image that describe individual 

structures. The region of interest in the air conditioner part, for example, is easily 

partitioned by the eye into three individual regions; the lower intensity region on the left, 

the higher intensity ridge in the middle and the lower intensity region on the right. No 

matter how simple this task may seem, it is far from trivial when attempting to develop 

a computer algorithm to perform these operations using the input image data alone. 

The subsections below describe the algorithms used to perform the different steps 

in the variable-order surface segmentation (VOSS) technique. The technique was imple

mented in the data analysis package called PV-wave [21]. 

The main driver program, called strt itr(in img, sd lmt), is listed in Appendix B. This - - -

program initializes the necessary variables and provides the programs discussed below 

with the necessary inputs. The program also records the parameters of the segmented 

regions in a file for later reference. 

6.5.1 Identifying seed regions 

Seed regions are identified in the follow way. First, a surface type label image 

is generated from the original image. Appendix C shows the program listing called 

surf_type(in_img, gu, gv) that performs this function. Within this program, each pixel is 

classified as belonging to a particular surface type. This is done using partial derivative 

images (gu, gv, guu, gvv, guv) which are calculated by convolving a smoothed version 

of the original image with convolution masks. The original image is smoothed to reduce 

the adverse effects of noise in determining the surface type. The first partial derivative 

images, gu(ij) and gv(i,j), are calculated by one pass of the horizontal and vertical 

convolutions masks, respectively. The second partial derivative images, guu(i,j), gvv(i,j), 
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and guv(iJ), are found by a second pass of the correspond masks. Besl and Jain [2] suggest 

using a combination of the Mean and Gaussian curvature to obtain surface features that 

are invariant to rotations and translations within the image. The Mean curvature (H) 

and the Gaussian curvature (K) are found using the partial derivative images calculated 

above where 

H(i,j) = (1 + g~(ij))guu(i:.i) + (1 + g~(i:.i))gvv(i:.i)- 2gu(ij)gv(i,j)guv(ij) (6_2) 
2(1 + g;a(i,j) + g~(i,j))3/2 

and 

(6.3) 

Eight fundamental surface types can be identified using only the sign of the Mean 

and Gaussian curvature. This is shown in Table 6.1. Figure 6.11 shows the eight 

fundamental surface types referred to in this table. 

The signs of the Mean and Gaussian curvature values at each pixel location are used 

with the table above to label each pixel with the corresponding surface type value T. 

Table 6.1. Surface type labels and values from H and K curvature signs 

K> 0 K= 0 K> 0 

H < 0 Peak Ridge Saddle Ridge 
T=l T=2 T=3 

H=O none Flat Minimal Surface 
T=4 T=5 T=6 

H>O Pit Valley Saddle Valley 
T=7 T=8 T=9 
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FLAT 

SADDLE 
VALLEY 

Figure 6.11: Eight fundamental surface types used to classify each pixel 

After a surface type label image T(i,j) has been generated, it must be processed 

to isolate interior seed regions possessing the same topological surface types. These 

seed regions are representative of the intensity variations due to geometrical structures. 

Appendix D lists the program that identifies the interior seed regions. 

The task of identifying interior seed regions begins in procedure seed_rgns(in_img, 

timg, sd_lmt, gm_lmt). First, the surface type label image T(i,j) is processed by two 

passes of a 5x5 median filter. This eliminates small islands that lay within the boundaries 

of a larger region. These small regions originate from noise and flaws in the original 

image. This is followed by an erosion operation that ensures neighboring seed regions are 

not touching one another. The next step involves identifying all the individual regions 

! 
I 
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that contain more than sd_lmt pixels, where sd_lmt is the minimum number of pixels 

required to represent a seed. The candidate seed regions are then sorted according to 

size. This information is used later in the region growing procedure. At this point Besl 

and Jain suggested eroding each candidate seed region until it was less than or equal to 

the minimum seed size. This method was not found to be reliable in providing the best 

candidate seed regions for our application. Instead, an iterative method was developed 

to find the best candidate seed regions. 

The iterative method used here is designed to identify the smallest seed regions 

possessing the most favorable shape characteristics. For this reason, the topological 

descriptor mentioned in Section 6.4.2 was implemented here to help characterize the 

seed's shape. The threshold value gm_lmt was defined as the minimum allowable 

topological descriptor value for a seed region. The algorithm iteratively erodes each 

candidate seed region. Between successive erosions, the algorithm finds the largest 

remaining region lrgn and processes it with the procedure xpnd(lrgn,rgn). The xpnd() 

function grows lrgn out to the boundary of the original seed until it's topological descriptor 

decreases, xpnd then returns the grown region to the iterative loop. The algorithm 

compares the candidate seed's size and topological descriptor value with sd_lmt and 

gm _lmt throughout the iterative procedure and quits as soon as the seed contains fewer 

than sd _lmt pixels or achieves a topological descriptor value greater than gm _lmt. This 

iterative procedure is performed on each candidate seed region and provides the region 

growing procedure with reliable seed regions. 

6.5.2 Growing regions 

Region growing is a crucial component of the VOSS technique. The regions must 

grow out to the boundaries of the geometrical structure while staying insensitive to 
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noise and fluctuations in flaw signals. The algorithm must know when the regions 

should stop growing and when higher order bivariate polynomials should be used. The 

algorithm must also determine when to increase the allowable fitting error threshold for 

adding additional pixels. All of these factors are implemented into the region growing 

procedures. Appendix E list the code used for this portion of the VOSS technique. 

The region growing algorithm grower(in_img, c_rgn, coef, rgn_yarm) is the central 

control program for the region growing procedure. This program will iteratively call 

the function rgn_grwr() which grows the region specified by c_rgn into a larger region. 

This larger region, called new _rgn, is made up of c _rgn and adjacent pixels that are 

compatible with the surface function approximating the original image intensities. An 

adjacent pixel is defined as compatible when the magnitude of the difference between the 

observed intensity and the approximated intensity is less than the current allowable fitting 

error ns _lmt and the pixel satisfies the surface normal constraint. A check for compliance 

with surface normal constraint is performed in the procedure nrml() as outlined in Besl 

and Jain [2]. An additional constraint was applied to the region growing algorithm to 

improve the segmentation results for NDE X-ray applications. This constraint involves 

monitoring the growth of the region to determine when the region is not growing in a 

well defined manner as described in Section 6.4.2. 

The algorithm monitors the region's growth between successive calls to rgn_grwr() 

by measuring two of the region's characteristics; size and topological descriptor value. 

As the region grows, the change in size and the change in the topological descriptor value 

are monitored to help the algorithm establish when the region's growth has slowed or 

its shape has started to developed peculiar characteristics. Undesirable growth patterns 

are detected by a combination of significant decreases in the topological descriptor value 
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and small growth rates. 

The percent change in size, rg, is calculated by dividing the number of new pixels 

added, new _pix, by the total number of pixels occupying the region, ar. Two separate 

measures are implemented to monitor the region's shape. The first, ctd, measures the 

change in the topological descriptor value and is calculated by dividing new _pix by the 

change in the perimeter squared. The second, rtd, measures the percent change in the 

topological descriptor value. This measure is calculated by subtracting the current value 

from the previous value and dividing by the previous value. 

These measurements were plotted on a chart as they were calculated to provide a 

visual relationship between the measurements and the behavior of the growing region. 

This was extremely beneficial to the process of empirically selecting the appropriate 

thresholds to signal abnormal growth patterns and slowing growth rates. This threshold 

selection process has undergone several refinements. The current thresholds have been 

established after observing the growth of many different regions within several different 

images. The established decision rules for accepting a group of compatible pixels are 

shown in Figure 6.12. 

The variable-order nature of this "data driven" technique enables it to adapt to the 

image data. The number of approximating functions required and their complexity are 

dependent on the types of variations experienced in the image data. The number of 

approximating functions is limited to three in our application. 

The functions used here include planar, biquadratic, and bicubic functions where 
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Figure 6.12: Flow diagram showing decision rules for accepting newly grown region 
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The programs that prepare the image data for the least squares fitting and approxi

mating procedures are called crt_mtrx() and rgn_appx(), respectively. The program that 

performs the least squares fitting is called lssfit(). These programs are listed in Appendix 

F. 

When no additional pixels are found to be compatible with the function describing 

the intensities in the current region, the algorithm selects the next higher order bivariate 

polynomial and sends the current region back into the region growing procedure. The 

region terminates the growing process when the next higher order function fails to achieve 

a region much larger than the previous or the highest order function has been reached. 

This process continues for the remaining seed regions. 

After a seed region is grown, the approximated surface function is subtracted from 

the original image to obtain the fitting error for each pixel location within that region. A 

residual image, called err _img, is maintained for the succeeding growth processes. As 

a new region is grown and overlaps a previous region, this image is used to compare 

previous fitting errors with the fitting errors incurred by the new region. Overlapping 

pixels will be accepted into the new region if they provide a better fit than that recorded 

in err _img. This allows the algorithm to correct any erroneous region boundaries created 

earlier. 

6.5.3 Merging Grown regions 

Following the termination of the last region, the algorithm checks to see if all the 
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pixel locations have been accepted into one of the grown regions. Most often, there are 

gaps between some of the regions. These gaps may represent areas experiencing abrupt 

transitions in image intensity or areas possessing noise and flaw signals that were not 

compatible with the adjacent regions. Larger gaps are identified as seed regions in the 

program next _rgn() and sent back through the region growing process. This program is 

listed in Appendix G. 

After growing the larger gaps, the remaining gaps can be dealt with using the region 

refinement approach suggested by Besl and Jain [17] or the simple approach developed 

here. The approach discussed here associates the pixels in the gap with one of the adjacent 

regions. The algorithm that performs this operation can be found in Appendix H. 

The name of the program is fi/J_holes(f_rgns, in_img,f_coef, his). The .program fills 

the pixels in each gap with the neighboring approximating function that best matches the 

original image data. This is done in an efficient and speedy manner that yields useful 

results in most situations. 

6.5.4 Subtracting the estimate 

After the approximated image has been reconstructed by merging the grown regions 

together, the algorithm attempts to reduce the effects of geometrical structure by subtract

ing the reconstructed image from the original. Some results obtained using the VOSS 

technique to reduce the intensity variations due to geometrical structures as show in the 

following section. 

6.6 Geometrical Structure Reduction Results 

This VOSS technique has been tested on several radiographs possessing a variety of 

unique intensity variations due to the geometrical structures of the specimen. Some of 
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these examples are shown below. 

Figure 6.13a shows a portion of a radiograph with a large dynamic range of film 

densities. The feature of interest, buried in the image background, is a long thin crack that 

extends diagonally from top to bottom in the image. The noise variance within the image 

is 3.7 and the flaw signal is approximately 4 grey levels off the average background signal. 

This is illustrated in Figure 6.14 which shows a plot of two horizontal slices through the 

middle of the original image. The thicker line is the average of six consecutive rows. The 

flaw signal can be found in this plot between horizontal positions 50 and 55 on the x-axis. 

The thinner line is offset from the previous and shows the data found in one of the six 

consecutive rows. Figure 6.13b shows the result of reducing the geometrical background 

structure using the VOSS technique developed here. Several different features of interest 

(a) (b) 

Figure 6.13: Geometrical reduction results: (a) original image; (b) residual image 
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are observed in this image. The flaw that extends diagonally from top to bottom is more 

easily detected. On either side of the flaw, there are small circular features introduced 

by foreign objects such as dust or water spots lying on the lens or Vidicon imaging 

device. The presence of these features stresses the importance of maintaining the image 

capturing equipment. A third feature noticed through visual inspection is the diagonal 

line in the upper half of the image. This feature contains a smooth background that 

is clearly different than the noisy background observed elsewhere. This is due to the 

inherent noise characteristics of the original image data within this transitional area. 

Figure 6.15 shows slices through the residual image corresponding to the same row 

positions plotted in the previous figure. The technique approximated the variations due 

to geometrical structure with piecewise-smooth surface functions that are not affected by 

the small variations due to the flaw signal. Because of this, the geometrical structure 

reduction technique demonstrated the ability to reduce the intensity variations due to 

geometrical structures without introducing significant artifacts or altering the flaw signal. 

This was due in part to the absence of abrupt transitions due to geometrical structures. 

The variations due to flaws and structure varied less than 20 intensity level over 5 

pixels. After additional feature extraction processing in the Specific Processing stage, 

the residual image will be thresholded and candidate flaws will be identified. Figure 

6.16 shows the results of thresholding the processed image to find the candidate flaw 

locations. Although the flaw signal was only 4 grey level off of the noisy background 

signal, the VOSS processing technique adequately preserved the flaw signal so that the 

Specific Processing stage could find the flaw using a simple thresholding technique as 

shown in Figure 6.16. 

Figure 6.17 shows a region of interest from the air conditioner part used in Section 
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Figure 6.14: Plot of row data in original image 
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Figure 6.15: Plot of row data in residual image 

6.4. Like the previous example, this image also possesses a large dynamic range of film 

densities. The image also contains some sharp transitions in intensity due to the specimens 

geometrical structure. The approximated intensities due to geometrical structures found 

using the VOSS technique are shown in Figure 6.18. This image seems to provide an 

accurate piecewise-smooth approximation of the intensity variations due to geometrical 

structures. However, the sharp intensity variations presented some problems for the 
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Figure 6.16: Thresholding results for image in Figure 6.13b 

segmentation algorithm. This can be seen in the residual image shown in Figure 6.19 

which was found by subtracting the approximated image from the original. The residual 

image contains some artifacts that were introduced by the subtraction process. These 

artifacts resulted from a poor approximation of the original image intensities in the 

neighborhood of the abrupt changes due to geometrical structures. Figure 6.20 show the 

quantitative results that would be analyzed by the computer in the Specific Processing 

stage. The various islands within this image would be identified as candidate flaws and 

more thoroughly analyzed by feature extraction and statistical decision making algorithms 

to determine their significance as discussed in Chapter 7. 

The VOSS technique accurately approximated the original image intensities in transi-

tional areas experiencing variations less than 35 grey levels over 5 pixels. The technique 

was not able to accurately approximate these areas when the variation was greater than 40 
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Figure 6.17: Portion of original radiographic image of air conditioner part 

grey levels over 5 pixels. This is mainly due to the inability of the bivariate polynomial 

functions to approximate these sharp transitions between grown regions. In an automated 

flaw detection system, these poor approximations would be identified as candidate flaws. 

The Specific Processing stage would be required to distinguish between artifacts intro

duced by this technique and variations due to flaw signals. This could be achieved by 

providing the Specific Processing stage with information concerning the· grown region 

boundaries and by analyzing the original image intensities in these areas as discussed 

in Chapter 7. The effect of these undesirable artifacts may be reduced by using more 

sophisticated region merging techniques. This would be the focus of future research 
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Figure 6.18: Approximated image intensities found using VOSS technique 

concerning the VOSS technique and its application to reducing the effects of geometrical 

structures within radiographic images. 
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Figure 6.19: Residual image intensities found by subtracting approximated 
image from original 
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Figure 6.20: Candidate flaw locations found by thresholding the residual 
image in Figure 6.19 
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CHAPTER 7. SPECIFIC PROCESSING STAGE 

The proposed automatic flaw detection scheme is divided into two separate stages 

as mentioned in Section 3.6 and shown in Figure 3.1. The General Processing stage 

includes the processes discussed in Chapters 4-6. These processes are used to reduce 

the contributions from unwanted features within the image. The success of the General 

Processing stage relies on the ability of these processes to accurately identify and remove 

the intensity variations resulting from the unwanted features without introducing artifacts 

or altering information concerning flaws in the image. 

Based on this idea, the Specific Processing stage is designed to identify, classify 

and assign a confidence level to candidate flaws found in the processed image. The 

Specific Processing stage can be tailored to each particular application by incorporating 

information concerning flaw characteristics and other relevant information. The Specific 

Processing stage would also use statistical measurement techniques and apply detection 

and estimation theory principles to develop probability of detection and probability of 

false alarm models for flaws in the post-processed images. The visual quality of the 

processed image will not be factor in· determining the acceptability of radiographed 

specimen, rather, the automated system will base its decision on quantitative information 

alone. Therefore, these quantitative measurements and models will play a major role 

in developing a successful automated flaw detection system. Some quantitative analysis 

methods used to numerically asses the qualitative results are discussed below. 
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7.1 Quantitative Assessment of Processed Image 

Quantitative assessment of the processed image is the principle role of the Specific 

Processing stage. This section will focus on the quantitative measurements and processes 

that will interpret the features remaining in the processed image. 

The first step in this interpretation process would be to enhance the suspect flaw 

features in the processed image. This would be performed by specialized feature extrac

tion techniques that incorporate a priori information concerning the flaws' characteristics. 

Some of the feature extraction techniques discussed in Section 2.5.3 would be applied 

here. These techniques would most likely include matched filtering, mathematical mor

phology, and convolution operations. 

After enhancing the processed image, automatic thresholding algorithms would be 

used to identify candidate flaw locations. These candidate flaw locations would provide an 

initial guess concerning the location of flaws within the image. Candidate flaw locations 

would then be more thoroughly scrutinized by applying statistical analysis algorithms that 

analyze the data in both the original and processed images. Statistical analysis techniques 

used to discriminate between variations due to flaws and variations due the material's 

characteristics would be performed here. This cross validation method of analyzing areas 

corresponding to candidate flaw locations in both the processed and original image would 

also be helpful in distinguishing between introduced artifacts and valid flaw features. 

These results could then be processed by artificial neural network based algorithms that 

have been trained to identify flaw characteristics common to each particular application. 

Flaw sizing and classification would be the next step in numerically analyzing the 

information remaining in the processed images. Edge detection algorithms could be 

used here to identify the flaws boundaries. Then, existing flaw sizing algorithms would 
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be implemented. These sizing algorithms could be modified to utilized information 

gained by the feature identification processes in the General Processing stage. For 

example, the approximated background trend intensity at a specific location in the image 

could be converted to a film density value or part thickness value when the material 

absorption coefficients and X-ray generator settings are known. This material thickness 

value could then be used along with local intensity variation measurements to determine 

the actual thickness of the candidate flaw. Flaw classification procedures could also use 

this information to determine the severity of the candidate flaw. 

Probability of detection models could also be developed to predict flaw detection 

and flaw characterization performance in the processed images. These models would be 

based on estimation and detection theory principles and would also utilized information 

gained by the feature identification processes in the General Processing stage. Criterion

of-goodness measurements should also be developed and implemented in these models to 

generate quantitative measures of the scheme's performance for each particular radiograph 

inspected. Furthermore, these statistical measurements will be a significant factor in 

assigning confidence levels to the candidate flaws. 

The Specific Processing stage will make the final decision concerning the acceptability 

of the inspected radiograph in a fully automated flaw detection system. Therefore, careful 

consideration must be given to determining the accuracy and reliability of the processes 

and decision making procedures involved. Future work in this area should focus on the 

investigation and development of statistical measurement models that will complement 

the feature identification and reduction processes in the General Processing stage. 
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CHAPTER 8. SUMMARY AND CONCLUSIONS 

A general automatic flaw detection scheme has been developed to automatically 

reduce the effects of unwanted image features and thereby prepare an arbitrary digitized 

NDE radiographic image for flaw extraction, sizing and classification algorithms. This 

scheme is based on the idea of removing the undesirable image features so that all that 

remains is the pertinent information such as candidate flaw signals. The scheme has 

been divided into two separate stages. The first stage, General Processing, performs the 

processes deemed necessary in reducing the contributions from unwanted features within 

the image. These are undesirable features common to radiographic images that tend to 

confuse flaw extraction and identification algorithms. The later stage, Specific Processing, 

is tailored for each application and performs flaw detection and classification procedures 

by incorporating information concerning flaw characteristics relevant to that particular 

application. This stage involves processes that will quantitatively asses the information 

remaining in the processed image to determine the specimens acceptability. This thesis 

focuses on the automated feature reduction processes in the General Processing stage. 

8.1 Analysis of Processing Results 

Existing image processing techniques were modified and new techniques were devel

oped to achieve accurate and reliable feature reduction results. In particular, the modi

fied adaptive smoothing filter was developed to automatically reduce the effects of noise 

within the image without influencing the existing flaw signals. Existing nonparametric 
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noise filtering techniques tested on void and crack type flaws produced inferior results. In 

addition to identifying successful noise filtering techniques, normalized noise measures 

were developed to quantitatively characterize the images noise content. These measure

ments were then used to determine the appropriate techniques required to suppress the 

noise in an arbitrary radiographic image. Future work in the area of automated noise 

reduction would benefit from the development of additional noise measurement tools 

capable of reliable noise quantification in images with complex background structures. 

Current trend removal techniques, based on a fixed background trend model, were 

sufficient in reducing the effects of background trends. Normalized image measurements 

were developed to identify the trend and determine the appropriate model parameters for 

reducing it. This technique was successful in removing 90% of the unwanted intensity 

variations within the noisy Martin Marietta weld image in Figure 5.2 by performing 

automated trend reduction. The remaining unwanted intensity variations were mainly due 

to noise. The image of the pipe weld in Figure 5.9 had 88% of the unwanted intensity 

variations removed using this technique. The resulting images contained much smaller 

ranges in intensities by removing the unwanted background trends. This allows the flaw 

detection algorithms to better discriminate between flaw signals and other image features. 

Both of the examples yielded favorable results since the trends were adequately described 

using the one-dimensional polynomial model. Automated trend reduction performs well 

in many situations. Future work in this area should focus on trend reduction techniques 

that adapted to the observed background trends which are not adequately described by 

the fixed polynomial model. 

Due to the lack of existing techniques, a totally new approach was pursued in 

developing a robust technique to automatically identify and reduce the intensity variations 
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due to the specimen's geometrical structure. The approach involves segmenting the image 

into piecewise-smooth surface functions that approximate the intensity variations due to 

geometrical structure. Although the variable-order surface segmentation concept involved 

is relative simple, the modelling uncertainty associated with non-ideal data experienced in 

NDE radiography presents a challenging problem. This technique was implemented and 

additional algorithms and measurements were developed to improve its performance in 

NDE X-ray applications. The technique performed relatively well on images containing 

less complicated geometrical structures. However, images possessing extremely sharp 

intensity variations presented some problems since the abrupt changes in intensity were 

not easily forgiven by the bivariate polynomial models. 

The automated geometrical structure reduction technique performed well on several 

examples as shown in Chapter 6. The results can be qualitatively measured by calculating 

the percent of unwanted intensity variations removed by the technique. For the selected 

region of the air conditioner part shown in Figure 6.17, it was found that 98% of 

the unwanted intensity variations due to geometrical structure were removed. This is 

confirmed by a change in intensity range of 140 grey levels for the original to a range of 

20 for the residual. The flaw sizes for this image ranged from 10x10 to 10x40. Becuase 

of its size, the largest flaw was identified as an intensity variation due to geometrical 

structure. This resulted in altering the flaw signal. This can be avoided by selecting a 

larger threshold for the smallest allowable geomtrical structure. Abrupt transitions within 

this image were not accurately approximated and therefore the residual image contained 

artifacts with intensities varying from 10 to -10 as shown in Figure 6.19. Future work in 

this area should focus on the development of additional region merging techniques that 

adapt to these abrupt changes. Subsequent noise processing may also help to reduce the 
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affects of these artifacts, but it will not eliminate them. More powerful discrimination 

techniques that consider the size and shape of these artifacts may also be necessary in 

discriminating between true flaws and introduced artifacts as discussed in Section 7.1. 

Another image shown in Figure 6.13 was successfully processed by the automated 

geometrical structure reduction technique. The technique was able to remove 99% of the 

intensity variations due to geometrical structures. The range of the original image was 

230 grey levels and the processed image possessed only 24 grey levels. This significant 

reduction in unwanted intensity variations prepared the image for flaw detection and 

sizing techniques that could quantitatively assess the radiographic image for flaws. The 

width of the crack-like flaw in this particular image was only 5 pixels across and was 

not much stronger than the surrounding noise. This type of situation requires sensitive 

processing techniques that do not alter the flaws' characteristics. 

The processing techniques performed by the General Processing Stage were found 

to be very effecting in reducing the unwanted intensity variations and preparing the 

arbitrary radiographic images for automatic flaw detection processing. The processed 

images were quantitatively assessed by applying simple automatic thresholding algorithms 

that provide a preliminary discrimination between flaws and other image features. The 

threshold examples found in Chapters 4-6 illustrate the effectiveness of the noise, trend, 

and geometric structure reduction subprocesses in sufficiently reducing the unwanted 

intensity variations so that the Specific Processing stage can accurately identify and size 

the candidate flaws. 

The processed image produced by the subprocesses in the General Processing scheme 

must be quantitatively analyzed by the automatic flaw detection system. This analysis 

would be performed in the Specific Processing stage by algorithms based on statistical 
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estimation theory principles and models. These algorithms would be capable of incorpo

rate a priori information concerning the expected flaw characteristics for each particular 

application. Probability of detection models would also be an important part of the quan

titative assessment and would utilized information gained by the feature identification 

processes in the General Processing stage. In addition to the sizing and classification 

information calculated for the candidate flaws, the system would use various statistical 

measurement models to assign a confidence level to each candidate flaw. Future work in 

this area should focus on the investigation and development of statistical measurement 

models that would complement the feature identification and reduction processes in the 

General Processing stage. This work would be an integral part of the automated flaw 

detection scheme and facilitate the integration of the scheme into reliable automatic flaw 

detection systems. 

The general automatic flaw detection scheme developed here demonstrates the ability 

of digital image processing techniques to automatically identify candidate flaws in 

arbitrary radiographic images. This scheme is capable or reducing the effects of a variety 

of confusing image features that inhibit traditional thresholding methods from accurately 

discriminating between a flaw and other image features. This scheme accommodates a 

variety of NDE radiographic inspection applications by providing for the integration of a 

priori knowledge concerning flaw characteristics and other image features in the Specific 

Processing stage. This thesis demonstrates the feasibility of developing reliable automatic 

flaw detection systems for a variety of NDE applications. 
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APPENDIX A: NOISE FILTERING PROGRAM 

This appendix lists the computer code for the modified adaptive smoothing filter used 
to suppress noise and preserve flaw signals within a radiographic image. The algorithm 
suppresses the noise via an adaptive scaling approach. The filtered pixel intensity is the 
estimate of the local mean added to a scaled version of the original pixel intensity with 
the local mean subtracted out. The scaling factor is the estimate of the signal variance 
divided by the sum of the estimated noise and signal variance. 



FUNCTION masf, in_img, sz 

if not keyword_set(in_img) then begin 
print, 'FUNCTION masf, in_img, sz' 
print, '-------------------------
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print, 'This function will noise filter the input image.' 
print, 'This filter is a variation of the adaptive smoothing filter.' 
print, 'sz is the dimensions of the square window used for' 
print, 'calculating the local statistics.' 
print, 'Default: sz = 3' 
return, -1 
end if 

if not keyword_set(sz) then sz 3 

chksz 
x_dim 
y_dim 

size(in_img) 
chksz ( 1) 
chksz(2) 

; Create array for result 
rslt = double(in_img) 

; Make input image dimensions an integer mutiple of sz 
x_rgns = x_dim/sz 
y_rgns = y_dim/sz 
if x_rgns ne x_dim/float(sz) then x_dim 
if y_rgns ne y_dim/float(sz) then y_dim 
img = in_img(O:x_dim-1, O:y_dim-1) 

(x_rgns)*sz 
(y_rgns)*sz 

; Find the approximate image of signal only 
img = float (img) 
avg_org = avg(img) 
img = img - avg_org 

; This is the approx signal used to calculate signal variance 
imgf = adp_smf(img, sobel(img), 6, 5) 

; Make the signal zero mean 
imgf = imgf - avg(imgf) 

; Initialize variables 
vrsg fltarr(x_rgns,y_rgns) 
vrns = fltarr(x_rgns,y_rgns) 

Calculate the local statistics 
signal mean- rgno(i,j) 
signal variance- vrsg(i,j) 
noise variance- vrns(i,j) 

for i=O,x_rgns-1 do $ 
for j=O,y_rgns-1 do begin 

rgns = imgf(i*sz:i*sz+sz-1,j*sz:j*sz+sz-1) 
rgno = img(i*sz:i*sz+sz-1,j*sz:j*sz+sz-1) 
vrsg(i,j) sigma(rgns)'2 
vrns(i,j) = sigma(rgns-rgno) '2 

end for 

Smooth the local noise variance 
vrns = smootha(median(vrns, 3), 3) 

; Correct for the shifting experienced in the rebin function 
sz2 = sz/2 
vrns_img shift(rebin(vrns, x_dim, y_dim), sz2, sz2) 
vrsg_img = shift(rebin(vrsg, x_dim, y_dim), sz2, sz2)+1 

; Subtract out the signal mean 
img_mean adp_smf(imgf, sobel(imgf),15,10) 
rgnf_img = img - img_mean 
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; Multiply the image signal by local statistics 
rgnf_img = rgnf_img•vrsg_img/(vrsg_img+vrns_img) 

; Add the signal mean back in 
rgnf_img = rgnf_img + img_mean 

; Rescale the ouput to have same range as input 
and add image offset 

rgnf_img = rgnf_irng*range(in_img)/range(rgnf_img) + avg_org 

; Place filtered image in result 
rslt(O,O) = rgnf_img 

; Return result 
return, rslt 
end 
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APPENDIX B: MAIN DRIVER PROGRAM FOR VOSS TECHNIQUE 

This computer program is the main driver program for the Variable-Order Surface 
Segmentation technique described in Section 6.4. The program calls the various pro
cedures that identify the initial seed regions, grow these regions, and approximated the 
intensities within the grown regions. This program also performs various house keeping 
task that organize the information concerning the location of the grown regions and the 
parameters associated with the approximated surface function within these regions. 
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FUNCTION strt_itr, in_img, timg, sd_rgns, sd_lmt, gu, gv 

print, 
print, 
print, 
print, 
print, 
print, 

*** 

if not keyword_set(in_img) then begin 
FUNCTION strt_itr, in_img, timg, sd_rgns, sd_lmt, gu, gv' 

' This function will iteratively grow seed regions found in the' 
surface type image (timg) until all seed regions gt sd_lmt' 

'have been grown. After each seed region terminates growth,' 
the region's parameters are recorded in the surface-fit-list. 
return, 1 
endif 

INPUT 
in_img - original image 
sd_lmt - minimum number of pixels in a seed region 

; * * * RETURNED 
rcn_img - Residual image found by reducing effects 

of geometrical structures 

nimg in_img 
mimg median(nimg, 5) 
imsz size(nimg) 
xdim imsz ( 1) 
ydim imsz(2) 
vnm = [ [ 0 , 1 , 0 ] , [ 1 , 1 , 1] , [ 0 , 1 , 0 J J 
fl t = [ [ 0' 0' 1' 0' 0 l ' [ 0' 1' 1' 1' 0 l ' [ 1' 1' 1' 1' 1] ' [ 0' 1' 1' 1' 0 l ' [ 0' 0' 1' 0' 0 l l 
new_rgn bytarr(xdim, ydim) + 1 
grw_cnt = intarr(5) 

Lower noise limit ( no need for higher order suface fit) 
lwr_ns lmt = 10 

Upper noise limit ( don't add pixels with noise larger than this) 
ns lmt = 10 

Upper polynomial order limit for surface fitting 
ordr_lmt = 3 

Maximum number of coefficient for describing a surface 
mx_cf = 3 +(ordr_lmt eq 2)*3 +(ordr_lmt eq 3)*7 +(ordr_lmt eq 4)*12 

Identify surface types in original img 
timg = surf_type(mimg, 2, gu, gv) 

Identify seed regions 
sd_rgns = seed_rgns(mimg, timg, sd_lmt) 

Initialize variables for surface regions 
sfl_coef fltarr(mx_cf, 2*max(sd_rgns)+1) 
sfl_ordr bytarr(2*max(sd_rgns)+1) 
sfl_rgns bytarr(xdim, ydim) 
sfl_errs fltarr(xdim, ydim) + 999.0 
rcn_img = intarr(xdim, ydim) 

Initialize variable for the current region iteration 
rgn_coef fltarr(mx_cf, 4) 
rgn_errs = fltarr(4) 

Number of the current region 
rgn_num 1 

Extract first seed region 
c_rgn next_rgn(sd_rgns, sfl_rgns, timg, rgn_num, sd_lmt) 

Start the iterative variable-order surface segmentation procedure 
- continue until no valid seeds are found 



while total(c_rgn) do begin 
tvscl, c_rgn 

•• Set the surface fit order 
s_ordr = 0 
grw_cnt(*) = 0 
grw_cnt(O) = 2 
rgn_errs ( *) 0 
rgn_errs(O) = 999.0 
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** Find initial surface sit order for seed region 
rgn_parm = [0.0, 31, 0, topo_dim(c_rgn, ar, per), 0, 0, per] 
while (rgn_parm(l) gt lwr_ns_lmt)and(s_ordr lt ordr_lmt) do begin 

s_ordr s_ordr + 1 
o_mtrx = crt_mtrx(mimg, c_rgn, s_ordr, o_ysol) 
b_coef = lssfit(o_mtrx, o_ysol, s_ordr, errs) 
appx_rgn = rgn_appx(c_rgn, s_ordr, b_coef) 
rgn_parm(l) = 3*sigma((appx_rgn-nimg) (where(c_rgn))) 
print, rgn_parm(l) 
grw_cnt(s_ordr) = 2 

end while 
if rgn_parm(l) gt ns_lmt and rgn_parm(l) lt l.S*ns lmt chen $ 

rgn_parm(l) = ns_lmt -.01 

** Prepare screen for visual monitoring of regions 
wset,2 
erase 
tv, bytarr(512)+255,0,400 
tv, bytarr(512)+255,0,300 
tv, bytarr(512)+255,0,150 
ngrwth = [O,s_ordr,O] 
wset,O 

** Grow the current region until highest order is reached or 
- no more pixels are added 

while (rgn_parm(l) lt ns_lmt) and (s_ordr lt ordr_lmt+l) $ 
and (grw_cnt(s_ordr-1) gt 1) do begin 
a_coef = b_coef 
ngrwth = [O,s_ordr,ngrwth(2)] 
wset, 2 
tv, bytarr(l,512)+255,ngrwth(2) ,0 
wset, 0 

**** Find piecewise-smooth surface fuction for current region 
repeat begin 

prv_rgn = c_rgn 
if rgn_parm(l) lt ns_lmt then $ 

new_rgn grower(in_img, c_rgn, a_coef,$ 
rgn_parm, sfl_errs, ngrwth, gu, gv) 

rgn_grw total(new_rgn- prv_rgn) 
if (rgn_grw ne 0 and (rgn_parm(l) lt lwr_ns_lmt/2)) or $ 

(rgn_grw gt 10) then begin 

********** Recalculate coefficients for best fit 
e_mtrx 
o_mtrx 
o_ysol 
a_coef 

endif 

crt_mtrx(mimg, new_rgn-c_rgn, s_ordr, e_ysol) 
[ [o_mtrx], [e_mtrx]] 
[o_ysol,e_ysol] 
lssfit(o_mtrx, o_ysol, s_ordr, errs) 

c_rgn = new_rgn 
endrep until not total(new_rgn- prv_rgn) 

rgn_coef(O,s_ordr) = a_coef 
rgn_errs(s_ordr) = rgn_parm(l) 
grw_cnt(s_ordr) = ngrwth(O) 
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**** Check to see if significant growth occured 
- if it did then increase the order and continue 

s ordr = s ordr + 1 
if (s_ordr lt (ordr_lmt+1) and $ 

grw_cnt(s_ordr-1) gt 1) then begin 
o_mtrx = crt_mtrx(mimg, c_rgn, s_ordr, o_ysol) 
b_coef = lssfit(o_mtrx, o_ysol, s_ordr, errs) 
appx_rgn = rgn_appx(c_rgn, s_ordr, b_coef) 
rgn_parm(O) = 0 
rgn_parm(1) = 3*sigma((appx_rgn-nimg) (where(c_rgn) l) 
rgn_errs(s_ordr) = rgn_parm(1) 
if rgn_parm(1) gt ns_lmt then rgn_parm(1) ns lmt -.01 
print, rgn_parm 
print, 'Fitting higher order surface' 

endif 
end while 

Region terminated growth 
Lower the order of the fit if less than 2 pixels were added 
i = s_ordr 
while grw_cnt(i) lt 2 do i = i - 1 

Lower the order of the fit if less than 4% growth took place. 
if grw_cnt(i) lt .04*total(c_rgn) then i = i - 1 

** Determine if higher order fit is significantly better 
if i lt ordr_lmt then $ 

if rgn_errs(i+1) lt rgn_errs(i)/3. then i=i+1 

** Update the region's parameters in the surface_fit list 
sfl_ordr(rgn_num) = i 
sfl_coef(*,rgn_num) = rgn_coef(*,i) 
if i ne s_ordr then appx_rgn = rgn_appx(c_rgn, i, rgn_coef(*,i)) 
rsdl_err = abs(appx_rgn- nimg) 
bst_fit = where(rsdl_err lt sfl_errs and new_rgn gt 0) 
rcn_img = rcn_img*(1-c_rgn) + appx_rgn*c_rgn 
tvscl, rcn_img, 1 
tvscl, (nimg-rcn_img)*(rcn_img ne 0), 2 
sfl_rgns(bst_fitl = rgn_num 
tvscl, sfl_rgns, 3 
sfl_errs(bst_fit) = rsdl_err(bst_fit) 

** Print info concerning region 
print, 'seed region terminated with order ', i 
print, '----coefs = ', sfl_coef(*,rgn_num) 

Increment number of regions grown 
rgn_num = rgn_num + 1 

** Extract next seed region 
c_rgn = next_rgn(sd_rgns, sfl_rgns, timg, rgn_num, sd_lmt) 
new_rgn = c_rgn 

endwhile 

save the surface segmentation info for later use 
save, filename= 'rcn.out',sfl_ordr,rgn_num,xdim,ydim,sfl_coef,sfl_rgns 

; Merge grown regions 
mrg_img fill_holes(nimg, sfl_coef, sfl_rgns eq 0) 

rcn_img rcn_img + mrg_img 

; Subtract reconstructed image from original and return result 
return, float(nimg) - rcn_img 
end 
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APPENDIX C: SURFACE TYPE CLASSIFICATION PROGRAM 

This appendix list the code for identify the topological surface types associated with 
each pixel in the original image. The resulting image contains eight different intensity 
levels that correspond to one of the eight possible topological surface types as described 
in Section 6.4. 
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FUNCTION surf_type, in_img, num_levs, gu, gv 

print, 
print, 
print, 
print, 
print, 

••• 

if not keyword_set(in_img) then begin 
FUNCTION prim_seg, in_img, num_levs, gu, gv' 

This function will attempt to classify each pixel into one' 
' of 8 different surface type labels found using the slope and' 

and curvature. Num_levs is the # of times to subsample in_img 
return, 1 
endif 

INPUT 
in_img Original image 
num_levs - Number of times to subsample orignial image 

OUTPUT 
gu - Horizontal gradient image of original 
gv - Vertical gradient image of original 

*** RETURNED 
timg - Surface type labeled image 

nimg = in_img 
img = float(in_img) 
imsz size(nimg) 
xdim = imsz ( 1) 
ydim = imsz ( 2) 
if not keyword_set(num_levs) then num_levs 2 
qlevs = num_levs-1. 
led = fix(2'qlevs) 
if xdim/lcd ne float(xdim)/lcd then nxdim = (xdim/lcd + 1)*lcd 
if ydim/lcd ne float(ydim)/lcd then nydim = (ydim/lcd + 1)*lcd 
if keyword_set(nxdim) or keyword_set(nydim) then $ 

img = congrid(nimg, nxdim, nydim) 

vnrn [ [0, 1, 0], [1, 1, 1], [0, 1, 0]] 
sqr [ [ 1, 1, 1] , [ 1, 1, 1] , [ 1, 1, 1] ] 

; Determine the dimensions of the subsampled image 
ss_xdim xdim/2'(num_levs-1) 
ss_ydim = ydim/2'(num_levs-1) 

; Reduce the image to conserve computation time 
and eliminate noise 

st_img = rebin(img,ss_xdim,ss_ydim) 

; Determine the size of the smoothing template 
tmp_sz = min([ss_xdim, ss_ydim])/15 -1 

; Calculate the smoothed image 
sbl = sobel(img) 
simg1 = adp_smf(img, sbl, 6, 5) 

; Create least-squares derivative estimation window operators 
dO 1.!7*[1,1,1,1,1,1,1] 
d1 1./28*[-3, -2, -1, 0, 1, 2, 3] 
d2 1. I 84 * [ 5, 0, -3, -4, -3, 0, 5] 

du dl#dO 
dv dO#d1 
duu d2#d0 
dvv d0#d2 
duv dl#d1 

; Calculate the partial derivative estimate images 
gu convol(simg1, du) 
gv = convol(simg1, dv) 



guu convol(simg1, duu) 
gvv convol(simg1, dvv) 
guv convol(simg1, duv) 
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; Compute the mean (H) and Gaussian (K) curvature images 

th = 0.03 
tk = 0.015 
h = ((1+gv'2)*guu+(1+gu'2)*gvv- 2*gu*gv*guv)/( 2*sqrt(1+gu'2+gv'2)'3) 
hs = smootha(h, tmp_sz) 
k = guu*gvv-guv'2/(1+gu'2+gv'2) '2 
ks = smootha(k, tmp_sz) 

; Compute the suface type image based on the sign of H and K 
timg = 1 + 3*(1 + (abs(hs) gt th)*(-1)'(hs lt 0)) + $ 

(1- (abs(ks) gt tk)*(-1) '(ks lt 0)) 

Return the surface type classified image 
return, timg 
end 
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APPENDIX D: INITIAL SEED REGION IDENTIFICATION PROGRAMS 

The programs used to obtain an initial guess of the seed regions representing 
the relevant geometrical structures within the image are listed here. The main seed 
identification program is seed_rgns(). This program calls upon the others to perform 
tasks that are required to accurately identify these seed regions. These programs are 
mentioned in Section 6.5.1. 
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FUNCTION seed_rgns, in_img, timg, sd_lmt, gm_lmt, parm 

if not keyword_set(in_img) then begin 
print, ' FUNCTION seed_rgns, in_img, timg, sd_lmt, gm_lmt' 
print, ' ------------------------------------------------
print, This function will identify seed regions within the image by' 
print, processing and grouping the surface type image (timg).' 
print, ' The function will return an image of seed regions with more' 
print, ' than sd_lmt pixels.' 

return, 1 
endif 

*** INPUT 
in_img - Original image 
timg - Image containing surface type classification results 
sd_lmt - Minimum number of pixels needed to be a seed region 
gm_lmt - Minumum topological descriptor value required for seeds 

*** RETURNED 
fin_rslt - Image containing valid seed regions 

nimg in_img 
imsz size(nimg) 
xdim imsz(1) 
ydim imsz(2) 
vnm [[0,1,0],[1,1,1],[0,1,0]] 
flt = shift (dist (3), 1, 1) lt 1.1 

; Create an image for preliminary results 
rslt = intarr(xdim,ydim) 

; Create an image for final results 
fin_rslt = intarr(xdim,ydim) 
rgn_sz = intarr(pxdim,pydim) 

Determine number of pixels represented in one pixel from timg 
rgn_scl = 4'(xdim/pxdim- 1) 

Identify seed regions in surface type image by removing 
small interior regions 

rgns = bytarr(pxdim, pydim) 
for i=1,9 do rgns= rgns + erode(median(median(timg eq i,5) ,5)*i,flt) 

Fix problem around the edges of image 
rgns(*,1) = 0 
rgns(*,pydim-2) 0 
rgns(pxdim-2,*) 0 
rgns(1,*) = 0 

Identify each candidate region with a unique number 
nrgns = f_isl4n(rgns gt 0, sd_lmt/rgn_scl+1) 

Number the seed regions according to size 
pix_rgn = histogram(nrgns) 
num_rgns = max(nrgns) 
pix_rgn = pix_rgn(1:num_rgns) 
sort_sz = sort(pix_rgn) + 1 
for i=O, num_rgns-1 do $ 
rgn_sz = rgn_sz + (nrgns eq sort_sz(i))*(num_rgns-i) 

Iterative method for identifying reliable seed regions 
rgn_num = 0 
for i=1, num_rgns do begin 

rgn = rslt eq i 
area = sd_lmt + 1 
repeat begin 

s_rgn = rgn 



d1 = gm_lmt-1 
area = sd_lmt + 1 
print, 'region: ', i 
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while d1 lt gm_lmt and area gt sd_lmt do begin 
s_rgn = erode(s_rgn, vnm) 
lrgn = largest(s_rgn, mx_sz) 
tvscl, lrgn, pxdim, pydim 
lrgn = xpnd(lrgn, rgn) 
print, 'max:', mx_sz 
tvscl, lrgn 
d1 = topo_dim(lrgn, areal 
print, d1 

end while 
print, 'area, sd_lmt', area, sd_lmt 
if area gt sd_lmt then begin 

rgn_num = rgn_num + 1 
sdrgn = shrink(lrgn, sd_lmt, gm_lmt) 
x_rgn = xpnd(sdrgn, rgnl 
tvscl, sdrgn+lrgn+x_rgn, 0, pydim 
fin_rslt = fin_rslt + x_rgn*rgn_num 
tvscl, fin_rsl t gt 0, 0 

endif 
rgn = (rgn - lrgn) eq 1 
tvscl, rgn, 128, 0 

endrep until area lt sd_lmt 
end for 

Display final and preliminary results 
tvscl, [fin_rslt gt 0, rslt gt 0] 

; Return image of the valid seed regions 
return, fin_rslt 
end 



FUNCTION xpnd, rgn, bndry 

if not keyword_set(rgn) then begin 
print, FUNCTION xpnd, rgn, bndry• 
print, ' -------------------------
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print, ' This function will grow rgn out to bndry under the condition' 
print, ' that its topological descriptor does not decrease.' 

return, 1 
endif 

*** INPUT 
rgn - Binary image showing the smaller region to be expanded 
bndry - Binary image showing 

*** RETURN 
n_rgn - Binary image showing the expanded region 

vnm = [ [ 0 , 1 , 0 ] , [ 1 , 1 , 1] , [ 0 , 1 , 0 ] ] 
n_rgn = rgn 

area= total(n_rgn) 
d_rgn = dilate(n_rgn, vnm) 
perim = total(d_rgn- n_rgn) 
new_td area/(perim*perim) 
old_td = new_td - 1 

while new_td gt old_td do begin 
n_rgn = d_rgn and bndry 
area= total(n_rgn) 
d_rgn = dilate(n_rgn, vnm) 
perim = total(d_rgn- n_rgn) 
old_td new_td 
new_td = area/(perim*perim) 

endwhile 

Return expanded region 

return, n_rgn 
end 
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FUNCTION largest, rgns, sz 

if not keyword_set(rgns) then begin 
print, ' FUNCTION largest, rgns, sz' 
print, ' --------------------------
print, ' This function will return the largest adjoined region within' 
print, the input image rgns. sz is the number of pixels in it.' 

return, 1 
endif 

INPUT 
rgns - binary image showing the pixels to consider 

*** OUTPUT 
sz - area of the largest region in rgns 

vnrn = [ [0, 1, OJ. [1, 1, 1]. [0, 1, OJ] 

if no pixel are on in rgns then return rgns 
if not total(rgns) then return, rgns 

label each 4-connected region with a unique number 
i_rgn = f_isl4n(rgns, 1) 

count the number of pixels in each unique region 
pix_rgn = histogram(i_rgn) 
n_rgns = max(i_rgn) 

get the largest area 
sz = max(pix_rgn(1:n_rgns)) 
lrgst = !c + 1 

return the largest unique region 
return, i_rgn eq lrgst 
end 



FUNCTION f_isl4n, img, lmt_sz 

if not keyword_set(img) then begin 
print, FUNCTION f_isl4n, img, imc_sz' 
print, ' ---------------------------
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print, ' This function will label the individual islands in the binary 
print, ' image (img) that contain at least (lmt_sz) pixels. The' 
print, ' function returns an image with the islands labeled with ' 
print, 'consequecive numbers.' 
print, ' 4-nearest neighbors connectivity is used.' 
return, 1 
endif 

*** INPUT 
img binary image showing the regions to be identified 
lmt_sz - Minumum number of pixels required to make an island 

*** RETURNED 
rslt - image of consecutively numbered islands 

; Convert input image (img) into binary image 
if n_elements(where(histogram(img))) gt 2 then begin 

print, 
print, 'The input image muse be binary!!' 

return, -1 
endif 

;define variables 
;store isl_elements here 
xbndry = intarr(90000) 
ybndry = intarr(90000) 
dims = size(img) 
ox_dim = dims(1) 
oy_dim = dims(2) 
n_isl = 0 
minval = min(img) 

Expand image by one pixel for border 
e_img = bytarr(ox_dim+2, oy_dim+2l 
e_img(1,1) = img 
fi_img = e_img 
fi_img(*,*l = 0 
x_dim ox_dim+2 
y_dim oy_dim+2 

b_img (e_img lt 100) and e_img 
nzvals = where(b_img) 

Start the find islands procedure 
repeat begin 

starty = nzvals(O)/x_dim 
startx = nzvals(O)-x_dim*starty 
x startx 
y = starty 

The search matrix looks like this 
x is the current location 

1 
4 X 2 

3 

The first direction to check after moving is determined 
by the chart below. This causes the program to trace out 
the regions in a clockwise direction. 
got there by ----- then start with 



1 4 
2 1 
3 2 
4 3 

Initialize variables for each new island 
1 = 1 
xbndry(0:1) = x 
ybndry(0:1) = y 
n_isl = n_isl + 1 
fi_img(x,y) n_isl 
ddend = 0 

repeat begin 

if b_img(x,y-1) then Y=Y-1 else $ 
if b_img(X+1,y) then X=X+1 else $ 
if b_img(x,y+1) then y=y+1 else $ 
if b_img(x-1,y) then x=x-1 else $ 

begin ; dead end - back up 
ddend = 1 
1 1 - 1 
x = xbndry(l) 
y = ybndry(l) 

endelse 

if not ddend then 1 1 + 1 
ddend = 0 
xbndry(l) = x 
ybndry(l) = y 
fi_img(x,y) n isl 
b_img(x,y) = 0 

endrep until 1 eq 0 

new_isl= where(fi_img eq n_is1) 
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Check to see if island contains minimum number of pixels 
if n_elements(new_isl) lt lmt sz then begin 

n_isl = n_isl -1 
fi_img(new_isl) = 0 

end if 
nzvals = where(b_img) 

endrep until n_elements(nzvals) eq 1 

; Return image of numbered islands 
return, fi_img(1:ox_dim, 1:oy_diml 

end 
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APPENDIX E: REGION GROWING PROGRAMS 

The appendix lists the programs used to grow the seed regions into piecewise-smooth 
surface function that approximate the intensity variations due to geometrical structures. 
The main program for growing the region is grower(). This program will iteratively grow 
a seed based on the constraints discussed in Section 6.5.2 and implemented in rgn_grwr(), 
topo _dim() and nrml(). When a region has terminates growth, grower() returns the 
grown region and the corresponding parameters that describe the approximating surface 
functions to strt _itr( ). 
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FUNCTION grower, in_img, c_rgn, coef, rgn_parm, err_img, ngrwth, gu,gv 

if not keyword_set(in_img) then begin 

print, 'FUNCTION grower, in_img, c_rgn, coef, rgn_parm, $ 
err_img, ngrwth, gu, gv• 

print,'------------------------------------------------------' 
print,' This function will iteratively grow c_rgn using coef' 
print,' from the surface fit of new_rgn and the std dev found from' 
print,' this fit. After the region terminates growth, the grown' 
print,' region is returned.' 

return, 1 
endif 

*** INPUT 
in_img - original image 
c_rgn - The region being grown 
s_ordr - The order of the polynomial : max value of c_rgn 
coef - The last coefficients calculated for that region 
rgn_parm - Array of previous and current region parameters 

(0) Previous fitting error. 
(1) current fitting error. 
( 2) Previous topological descriptor. 
(3) Current topological descriptor. 
(4) Number of pixels added last time. 
(5) Number of pixels added time before that. 
(6) Perimeter of current region. 

err_img - Image containing errors from best fits co actual surface 
ngrwth - Array 

(0) Running total of pixels added to seed 
(1) = s_ordr - The order of the polynomial 
(2) = total number of growth itterations*2 

gu - Horizontal gradient of original image 
gv - Verticle gradient of original image 

nimg in_img 
imsz size(nimg) 
xdim imsz(l) 
ydim imsz ( 2) 
mrk = [ [ 1, l] , [ 1, 1]] 

Upper noise limit don't add pixels with noise larger than this) 
ns_lmt 10 
s_ordr = ngrwth(1) 

• Approximate the current region to determine fitting error 
appx_rgn = rgn_appx(c_rgn, s~ordr, coef) 
tvscl, appx_rgn, 0, ydim 

• Get previous fitting error 
rgn_parm(O) = rgn_parm(1) 

• Get current fitting error 
rgn_parm(1) = 3*sigma((appx_rgn-nimg) (where(c_rgn))) 
if rgn_parm(4) lt 40 then rgn_parm(l) = l.OB*rgn_parm(O) 
if rgn_parm(l) lt 1.5 then rgn_parm(1) = 2.0 
if rgn_parm(1) gt ns_lmt then rgn_parm(l) = ns_lmt-.01 
print, 'Limit for adding to rgn : ' , rgn_parm ( 1) 
new_rgn = c_rgn 

• Allow tst_rgn to be everywhere that new_rgn is not. 
tst_rgn = byte(1-new_rgn) 

• Set a limit on the maximum number of new growths allowed 
grw_lmt total(c_rgn)/5.0 
new_pix = 0 



127 

* Grow region until no new growths occur or the number of 
* new growths exceeds the growth limit grw_lmt. 

repeat begin 
grwths = 0 
g_rgn = new_rgn 
new_rgn rgn_grwr(nimg, g_rgn, s_ordr, coef, rgn_parm(1), $ 

tst_rgn, err_img, grwths, gu, gv) 
new_pix new_pix + grwths 

endrep until not grwths or (new_pix gt grw_lmt) 
rgn_parm(4) = new_pix 

* Fill in the small noisy holes that occurred in the growing process 
new_rgn = fill(new_rgn) 
tvscl, new_rgn 

* Update the topological descriptors for the new region 
rgn_parm(2) rgn_parm(3) 
rgn_parm(3) = topo_dim(new_rgn, area, per) 

* Measure change in topological descriptor (ctd) 
ctd = new_pix/(per-rgn_parm(6) )'2 

* Rate of growth 
rg = new_pix/area 
ans = 0 

* Rate ot decay of the topological descriptor 
rtd = (rgn_parm(2)-rgn_parm(3) )/rgn_parm(2) 
grw_tst = (new_pix + rgn_parm(4) + rgn_parm(5)) gt 10 

* Plot chart to monitor progress 
plot_chart, ngrwth(2), rg, rtd, rgn_parm(3), rgn_parm(1), mrk 

* Monitor the regions size and shape to detect undesirable growth 
if not grw_tst then ans = 1 $ 
else if rgn_parm(1) lt ns_lmt/2 then ans = 3 $ 
else if rgn_parm(3) lt 50 then begin 

print, 'Rate :',rg, rtd 
if rg lt rtd then begin 

tvscl, 2*new_rgn - c_rgn 
if ctd lt .2 then $ 

end if 

if (rgn_parm(2)-rgn_parm(3)) gt 1.5 and not grw_tst $ 
then ans = 2 $ 

else if 1.5*rg lt rtd then ans 1 $ 
else if not grw_tst then ans = 1 

print, 'ANS : ',ans 
endif 
if ans eq 3 then rgn_parm(1) 1.1*rgn_parm(1) $ 
else if ans gt 0 then begin 

rgn_parm(3) = rgn_parm(2) 
per = rgn_parm(6) 
new_rgn c_rgn 
new_pix = o 

endif 

*Update the current region's parameters 
rgn_parm(6) per 
rgn_parm(S) = rgn_parm(4) 
rgn_parm(4) = new_pix 
ngrwth(O) = ngrwth(O) + new_pix 
ngrwth(2) = ngrwth(2) + 4 

; * Return the region 
return, new_rgn 

end 
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FUNCTION rgn_grwr, in_img, o_rgn, podr, coef, err_lmt, S 
tst_rgn, err_img, num_added, gu, gv 

if not keyword_set(in_img) then begin 
' FUNCTION rgn_grwr, in_img, o_rgn, podr, coef, err_lmt, S 

tst_rgn, err_img, num_added' 
print, 
print, 
print, ' 
print, ' This function will determine which pixels neighboring o_rgn' 
print, ' satisfy an error test for a bivariate polynomial of order' 
print,' (podr).' 

return, 1 
endif 

*** INPUT 
in_img - original image 
o_rgn - region in which to grow 
podr - order of surface fit (1,2 or 3) 
coef - coefficients found from previous surface fit 
gu - Horizontal gradient of original image 
gv - Vertical gradient of original image 

* * * INPUT AND OUTPUT 
err_lmt - allowable error between approximated and actual surface 
tst_rgn - region where new pixels have not been tested 
err_img - Image containing error for best fit to actual surface 

*** OUTPUT 
num_added - Total number of points added co region this time 
*** RETURNED 
n_rgn - binary image showing the grown region 

in_img 
size(nimg) 
imsz(1) 
imsz(2) 

nimg 
imsz 
xdim 
ydim 
vnm = [[0,1,0], [1,1,1], [0,1,0]] 

e_rgn 
g_rgn 

bycarr(xdim, ydim) 
bytarr(xdim, ydim) 

Identify neighboring pixels that haven't been tested yet (n_pix) 
o_rgn = o_rgn gt 0 
do_rgn = dilate(o_rgn, vnm) 
n_pix = do_rgn and tst_rgn 
tn_pix = tocal(n_pix) 
if tn_pix lt 10 then pr inc, 'U ' , tn_pix 
if tn_pix lt 7 then return, o_rgn 
tst_rgn tst_rgn and (not do_rgn) 

Get the element numbers for the pixels in n_pix 
elnums = where(n_pix) 
if elnums(O) eq -1 then begin 

num_added = 0 
return, o_rgn 

endif 

How many pixels in n_pix 
szrg = n_elements(elnums) 
Determine the cooresponding image coordinates 
x_c = lonarr(szrg) 
y_c = lonarr(szrg) 
for j:O, szrg-1 do begin 

y_c(j) elnums(j)/xdim 
x_c(j) = elnums(j) mod xdim 

end for 

Create the regression matrix 
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Which order polynomial 
mdim = 2 + (podr eq 2)*3 + (podr eq 3)*7 +(podr eq 4)*12 
mtrx = dblarr(mdim+1, szrg) 
mt rx ( 0, *) = 1. 0 

1st order fit 
for j=O, szrg-1 

mtrx(l,j) 
mtrx(2,j) 

end for 

2nd order fit 
if podr gt 1 then $ 

for j =0, szrg-1 
mtrx(3,j) 
mtrx(4,j) 
mtrx(S,j) 

end for 

3rd order fit 
if podr gt 2 then $ 

do begin 
x_c(j) al*x 
y_c(j) ; a2*y 

do begin 
x_c(j)*y_c(j) 
x_c(j)'2 
y_c(j)'2 

a3*xy 
a4*x'2 
a5*y'2 

for j=O, szrg-1 
mtrx(6,j) 
mtrx(7,j) 
mtrx(8, j) 
mtrx(9,j) 

do begin 
mtrx(3,j)*y_c(j) 
mtrx(3,j)*x_c(j) 
mtrx(4,j)*x_c(j) 
mtrx(S,j)*y_c(j) 

a6*xy'2 
a7*yx'2 
a8*x'3 
a9*y'3 

end for 

4th order fit 
if podr gt 3 then S 

for j=O, szrg-1 
mtrx(10, j) 
mtrx(ll, j) 
mtrx(12,j) 
mtrx(13,j) 
mtrx(14, j) 

end for 

do begin 
mtrx(8,j)*y_c(j) 
mtrx(4,j)*mtrx(5,j) 
mtrx(9,j)*x_c(j) 
mtrx(8,j)*x_c(j) 
mtrx(9,j)*y_c(j) 

a10*yx'3 
all*x'2y'2 
a12*xy'3 
a13*x'4 
al4*y'4 

Evaluate the fit for the neighboring pixels 
er.rs = double(in_img(elnums)) - coef#mtrx 

Compare the fit to previous fitted regions 
bsfit = abs(errs) lt err_img(elnums) 

Create binary image for pixels satisfying fit 
; Add these to the region no matter the normal constraints 
g_rgn(x_c, y_c) = (abs(errs) lt .3*err_lmt) * bsfit 

Check these for normal constraints 
e_rgn(x_c, y_c) = (abs(errs) lt err_lmt) * bsfit 

Create binary image for compatible pixels satisfying normal test 
en_rgn = nrml(e_rgn-g_rgn, podr, coef, gu, gv) 

Define new region for surface fit 
n_rgn = o_rgn + en_rgn + g_rgn 

These pixels were compatible but didn't satisfy normal criterion 
tvscl, e_rgn-en_rgn,O 

; Count number of pixel added this iteration 
num_added = total(en_rgn+g_rgn) 

; Return the grown region 
return, n_rgn 
end 
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FUNCTION topo_dim, rgn, area, perim 

if not keyword_set(rgn) then begin 
print, ' FUNCTION topo_dim, rgn, area, perim' 
print, ' -----------------------------------
print, ' This function will return the topological dimension of rgn.' 

return, i 
endif 

*** INPUT 
rgn - binary image specifying region to be measured 

*** OUTPUT 
area Calculated area of the region 
perim - Calculated perimeter of the region 

*** RETURNED 
td - topological descriptor value for region 

vnm = [[0,1,0],[1,1,1],[0,1,0]] 

e_rgn = erode(rgn, vnm) 
perim = total(rgn- e_rgn) 
area= total(rgn) 
td = area*1000/(perim*perim) 

; Return the calculated topological descriptor 
return, td 
end 



FUNCTION nrml, img, podr, coefs, gu, gv 

if not keyword_set(img) then begin 
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print, 'FUNCTION nrml, img, podr, coefs, gu, gv' 
print, '----------------------------------------------
print, ' This function checks the compatible pixels in img for' 
print, ' surface normal criteria with the approximated surface.' 
print, ' The function returns an image containing satisfying pixels.' 
return, -1 
end if 

*** INPUT 
img - Binary image where surface normal criteria should be checked 
podr - Order of the polynomial used to approximate the surface 
coef - Coefficients used to approximate the surface 
gu - Horizontal gradient of original image 
gv - Vertical gradient of original image 

RETURN 
rslt - Binary image where checked pixels meet criterion 

imsz 
xdim 
ydim 

size(img) 
imsz(1) 
imsz(2) 

Create image to store the results 
rslt = bytarr(xdim, ydim) 
Thresho.ld angle used to check surface normal agreement 
theta = 15 + podr*10 
Identify location of pixels that need to be checked 
elnums = where(img) 
if elnums(O) eq -1 then return, rslt 
How many pixels need to be checked 
szrg = n_elements(elnums) 
Determine the cooresponding elements in gu and gv 
gcu = gu(elnums) 
gcv = gv ( elnums) 
Determine the cooresponding image coordinates 
x_c = lonarr(szrg) 
y_c = lonarr(szrg) 
for j:O, szrg-1 do begin 

y_c(j) elnums(j)/xdim 
x_c(j) = elnums(j) mod xdim 

end for 

Calculate the estimated surface normals for the candidate pixels 
gpu = replicate(coefs(1), szrg) 
gpv = replicate(coefs(2), szrg) 
if podr gt 1 then begin 

gpu gpu + coefs(3)*y_c + 2.*coefs(4)*x_c 
gpv = gpv + coefs(3)*x_c + 2.*coefs(5)*y_c 

end if 
if podr gt 2 then begin 

gpu gpu + coefs(6)*y_c'2 + 2*coefs(7)*x_c*y_c + 3*coefs(8)*x_c'2 
gpv gpv + coefs(7)*x_c'2 + 2*coefs(6)*x_c*y_c + 3*coefs(9)*y_c'2 

endif 

tst = ((gcu-gpu)'2 + (gcv-gpv)'2 + (gcu*gpv- gcv*gpu)'2)/ $ 
( (1+gcu'2+gcv'2)*(1+gpu'2+gpv'2)) 

Find pixel locations that meet surface normal criterion 
rslt(x_c, y_c) = tst lt sin(theta/!radeg)'2 

; Return the image showing the pixels that satisfy the normal test 
return, rslt 
end 
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APPENDIX F: LEAST SQUARES FITTING PROGRAMS 

This appendix lists the various programs used to approximate the surface intensities 
within the original image. The first program, crt_mtrx(), lists the code that transforms 
the image data into the matrix form that is used by lssfit() to calculate the least squares 
fit coefficients. The last program, rgn_appx(), uses these coefficients to calculate the 
approximated surface intensities for a specified region. 
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FUNCTION crt_mtrx, in_img, rgn, podr, y_sol 

if not keyword_set(in_img) then begin 
print, ' FUNCTION crt_mtrx, in_img, rgn, podr, y_sol' 
print, ' -----------------------------------------------
print, This function will extract the coordinates of the pixels lying' 
print, in (rgn) and return an array representing the data for the' 
print, ' polynomial order being fit (podr).' 

nimg 
imsz 
xdim 
ydim 
zro = 

return, 1 
endif 

in_img 
size (nimg) 
imsz (1) 
imsz(2) 

long ( 0) 

Get the element numbers for the pixels in rgn 
elnums = where(rgn) 
How many pixels in rgn 
szrg = n_elements(elnums) 

Determine the cooresponding coordinates 
x_c = intarr(szrg) 
y_c = intarr(szrg) 
for j=zro, szrg-1 do begin 

y_c(j) elnums(j)/xdim 
x_c(j) elnums(j) mod xdim 

end for 

Create the regression matrix 
Which order polynomial 
mdim = 2 + (podr eq 2)*3 + (podr eq 3)*7 +(podr eq 4)*12 
mtrx = dblarr(mdim+l, szrg) 
mtrx ( 0, *) = 1. 0 

1st order fit 
for j=zro, szrg-1 do begin 

mtrx(l,j) x_c(j) al*x 
· mtrx(2,j) = y_c(j) ; a2*y 

end for 
2nd order fit 

if podr gt 1 then $ 
for j=zro, szrg-1 do begin 

mtrx(3,j) x_c(j)*y_c(j) 
mtrx(4,j) x_c(j)'2 
mtrx(S,j) y_c(j)'2 

end for 
3rd order fit 

if podr gt 2 then $ 

a3*xy 
a4*x'2 
a5*y'2 

for j=zro, szrg-1 do begin 
mtrx(6,j) mtrx(3,j)*y_c(j) 
mtrx(7,j) mtrx(3,j)*x_c(j) 
mtrx(8,j) mtrx(4,j)*x_c(j) 
mtrx(9,j) mtrx(S,j)*y_c(j) 

a6*xy'2 
a7*yx"2 
a8*x'3 
a9*y"3 

end for 
, 4th order fit 

if podr gt 3 then $ 
for j=zro, szrg-1 do begin 

mtrx(lO,j) mtrx(8,j)*y_c(j) 
mtrx(ll,j) mtrx(4,j)*mtrx(5,j) 
mtrx(12,j) mtrx(9,j)*x_c(j) 
mtrx(13,j) mtrx(8,j)*x_c(j) 
mtrx(14,j) mtrx(9,j)*y_c(j) 

end for 

a10*yx"3 
all *x"2y "2 
a12*xy"3 
al3 *x' 4 
al4*y'4 
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Create array of solutions for each set of coordinates 
y_sol = double(in_img(elnums)) 

return, mtrx 
end 
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FUNCTION lssfit, mtrx, yfit, podr, errs 

if not keyword_set(mtrx) then begin 
print, 
print, 
print, 
print, 
print, 
print, 

*** 

' FUNCTION lssfit, mtrx, yfit, podr, errs' 

' This function will perform a linear least sqaures fit to yfit 
using the data in mtrx.Y will be estimated by a 2-dimensional 
polynomial of order(podr). The fit parameters are in coef and 

' the error measurement of the fit is in errs. • 
return, 1 
end if 

INPUT 
mtrx - Input array containing the matrix values for each (x,y) point 
yfit - Input array of solutions to the polynomial equations 
podr- Order of the polynomial (1,2, or 3) 
errs - Array containing goodness of fit values 

*** RETURNED 
coef - array of least squares fit coefficients 

Use uniform weighting function 
wt = dblarr(n_elements(yfit)) + 1 

len= (size(mtrx))(l)-1 

Calculate the LS fit coefficients 
coef regress(mtrx(1:len, *), yfit, wt, yf, aO, sig, ft, r, rm, c) 
coef = [aO, reform(coef)] 

Create array of error measurements 
errs = [ft, c] 

return, coef 
end 
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FUNCTION rgn_appx, o_rgn, podr, coef 

if not keyword_set(o_rgn) then begin 
print, ' FUNCTION rgn_appx, o_rgn, podr, coef' 
print, ' -------------------- -------------
print, ' This function will evaluate the bivariate polynomial for' 
print, ' the specified region (o_rgn) using the coefficients (coefl' 
print, 'and the polynomial order (podr) .' 

return, 1 
endif 

*** INPUT 
Binary image of region to approximate 
Polynomial order to use in approximation 

coef - Coefficients to use in approximation 

*** RETURNED 
e_rgn - Image containing approx intensities for specified region 

imsz 
xdim 
ydim 

size(o_rgn) 
imsz(1) 
imsz(2) 

e_rgn = fltarr(xdim, ydiml 

Get the element numbers for the pixels in the specified region 
elnums where(o_rgn) 
if elnums(OJ eq -1 then return, o_rgn 

How many pixels in the specified region 
szrg = n_elements(elnums) 

Determine the cooresponding coordinates 
x_c lonarr(szrg) 
y_c lonarr(szrg) 
for j=Ol, szrg-1 do begin 

y_c(j) elnums(j)/xdim 
x_c(j) = elnums(j) mod xdim 

end for 

Create the regression matrix 
Which order polynomial 
mdim 2 + (podr eq 2)*3 + (podr eq 3)*7 +(podr eq 4)*12 
mtrx = dblarr(mdim+l, szrg) 
mt rx ( 0 , * ) = 1. 0 

1st order fit 
for j=Ol, szrg-1 do begin 

mtrx(1,j) x_c(j) a1*x 
mtrx(2,j) = y_c(j) ; a2*y 

end for 
2nd order fit 

if 1 then S 

if 

, szrg-1 do begin 
mtrx(3,j) = x_c(j)*y_c(j) 
mtrx(4,j) x_c(j)'2 
mtrx(S,j) y_c(j)'2 

end for 
3rd order fit 

gt 2 then $ 
j:Ol, szrg-1 do begin 
mtrx(6,j) mtrx(3,j)*y_c(j) 
mtrx(7, j) mtrx(3 ,j) •x_c(j) 
mtrx(S,jJ mtrx(4,j)*x_c(j) 
mtrx(9,j) mtrx(S,j)*y_c(j) 

end for 

a3*xy 
a4*x'2 
a5*y'2 

a6*xy'2 
a7*yx'2 
a8*x'3 
a9*y'3 



4th order fit 
if podr gt 3 then $ 

for j=Ol, szrg-1 
mtrx(lO, j) 
mtrx(ll,j) 
mtrx(12,j) 
mtrx(13, j) 
mtrx(14,j) 

end for 

do begin 
mtrx(8,j)*y_c(j) 
mtrx(4,j)*mtrx(5,j) 
mtrx(9,j)*x_c(j) 
mtrx(8,j)*x_c(j) 
mtrx(9,j)*y_c(j) 

Use the proper number of coefficients 
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a10*yx'3 
a11*x'2y'2 
a12*xy'3 
a13 *x' 4 
a14*y'4 

ntrms = 2 + (podr eq 2)*3 + (podr eq 3)*7 +(podr eq 4)*12 
coef = coef(O:ntrms) 

Evaluate the function for the specified region 
f_int = coef#mtrx 

Create image containing approx intensities for specified region 
e_rgn(x_c, y_c) f_int 

return, e_rgn 
end 
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APPENDIX G: SEED EXTRACTION PROGRAM 

This appendix lists the program that is called by strt _itr() to obtain the next seed 
region to grow in the region growing process. The program finds the largest remaining 
seed region that does not occupy an area already covered by the previously grown regions. 
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FUNCTION next_rgn, sd_rgns, fit_rgns, rgn_num, sd_lmt 

if not keyword_set(sd_rgns) then begin 
print, ' FUNCTION next_rgn, sd_rgns, fit_rgns, rgn_num, sd_lmt' 
print, ' -----------------------------------------------------
print, This function will extract the next seed for region growing' 
print, from the image of valid seed regions(sd_rgns). The next seed' 
print, must be larger than sd_lmt and not reside in fit_rgns.' 

return, 1 
endif 

*** INPUT 
sd_rgns - image of valid seed regions 
fit_rgns - Binary image showing pixels covered by previously 

grown regions 
rgn_num - Number of seed regions already grown 
sd_lmt Limit for minimum size of seed regions 

*** RETURNED 
nxt_rgn - the next valid seed region to be grown 

vnm = [[0,1,0]. [1,1,1].[0,1,0]) 

Find remaining seed regions that are not within grown regions 
rm_sd = sd_rgns*(sd_rgns gt rgn_num-1)*(fit_rgns eq 0) 
if total(rm_sd) eq 0 then return, rm_sd 

Find largest remaining seed gt sd_lmt pixels 
pix_rgn = histogram(rm_sd) 
n_rgns = max(rm_sd) 

Find the largest number of pixels in any one seed 
lrgst = max(pix_rgn(1:n_rgns)) 
if lrgst lt sd_lmt then return, 0 
lrgst1 = !c + 1 
nxt_rgn = rm_sd eq lrgst1 

if seed is to large then erode it 
while total(nxt_rgn) gt 2*sd_lmt do begin 

r_rgn = erode(nxt_rgn, vnm) 
i_rgn = f_isl4n(r_rgn, 11 
pix_rgn = histogram(i_rgn) 
n_rgns = max(i_rgn) 
lrgst = max(pix_rgn(1:n_rgns)) 
lrgst = ! c + 1 
nxt_rgn = largest(r_rgn) 

end while 

if seed was erode too much then dilate it 
while total(nxt_rgn) lt sd_lmt do$ 

nxt_rgn = dilate(nxt_rgn, vnm) 
if total(rm_sd eq lrgst11 gt total(nxt_rgn) then rgn_num 

;Return the next valid seed region 
return, nxt_rgn 
end 

rgn_num-1 
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APPENDIX H: REGION MERGING PROGRAM 

This program was design to fill the gaps remaining between grown regions. The 
program determines which of the grown regions neighboring the gap would provide the 
best fit to the original intensities within each gap. 
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FUNCTION fill_holes, f_rgns, in_img, f_coef, hls 

if not keyword_set( then begin 
print, ' FUNCTION fill_holes, , in_img, f_coef, hls' 
print, ' ----------------------------------------
print, ' This function will fill in the holes with the neighboring' 
print, ' surface that best matches the void region.' 
print, The function then returns the completed reconstructed image.' 

return, 1 
end if 

*** INPUT 
- region labeled image 

original image 
list of coefficients found for each region 

hls binary image showing where gaps exists 
* * * RETURNED 
rcn_img reconstructed image containing approximated intensities 

for the gaps 

nimg float(in_img) 
sz size(nimg) 
xdim sz ( 1) 
ydim SZ(2) 
szlmt 30 
vnm [ [ 0, 1, 0 J , [ 1 , 1 , 1] , [ 0 , 1 , 0 l l 
; Define array to label pixels with a number correspoding 

to the region it resides in 
fin_rgns = f_rgns 

= fltarr(xdim, ydim) 
the location of pixels not belong to a grown region 

flt f_rgns eq 0 
flt(O,O) = 0 
l_pix = where(hls) 
; Create a matrix for approximating intensities in these regions 
mtrx = crt_mtrx(nimg, hls, 3, ) 
; Total number of pixels not 
;nhls = max(hl_rgns) 

= n_elements(l_Rix) 
number of regions fit to 

nrgns = max(f_rgns) 
; Array of approximated values for holes 
tst_rgns = fltarr(tn_pix, nrgns) 
tst_rgns(*) = 99 

= bytarr(tn_pix, nrgns) 
t = fltarr(tn_pix) 

Find regions neighboring the holes 
for rg = 1, nrgns do begin 
chl hls 
tmp_rgn = f_rgns eq rg 

repeat begin 
;tvscl, tmp_rgn, 4 
;tvscl, chl, 5 
neigh_rgn =dilate( vnm)*chl 
tmp_rgn = tmp_rgn + 
flg_rgns(*,rg-1) = flg_rgns(*,rg-1) + (neigh_rgn) (l_pix) 
chl = chl - neigh_rgn 
print, total(neigh_rgn) 

endrep until total(neigh_rgn) eq 0 
rcn_img(l_pix) = flg_rgns(*, rg-l)*rg 
tst_rgns(*, rg-1) = f_coef(*,rg)#mtrx 
;tvscl, rcn_img eq rg, 6 

end for 

Find the best approximation for each region 



p 0 

while p lt tn_pix-3 do begin 
repeat begin 

p = p + 1 
posb = where(flg_rgns(p,•)) 

endrep until posb(O) ne -1 
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bst_fit(p) = min(abs((tst_rgns(p, *)) (posb)-y_sol(p)), rg) 
fin_rgns(l_pix(p)) = (posb) (rg) + 1 

endwhile 
rcn_img(l_pix) = tst_rgns(indgen(tn_pix), fin_rgns(l_pix)-1) 

; Find pixels that were not assigned to a region 
ndef = where(fin_rgns eq 0) 
rcn_img(ndefl = in_img(ndef) 
return, rcn_img 
end 
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