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Abstract

Increasing production of corn masa for tortillas, chips, and related snack foods is resulting

in large quantities of organic residuals requiring environmentally sound management. These

byproduct streams appear suitable for use as livestock feed material, thus eliminating

landfilling costs. Possibilities for developing livestock feed include direct shipping to livestock

feeding facilities, blending prior to shipping, extrusion processing, pellet mill processing, and

dehydration. To assess the viability of these options for reprocessing masa byproducts as

livestock feed materials, an economic model was developed and applied to each of these

alternatives. Through a series of simulation runs with this model, it was determined that direct

shipping was by far the most inexpensive means of recycling masa processing residuals (10�/57

$/Mg). Other alternatives examined in increasing order of costs included blending prior to

shipping, extrusion, pellet mill processing (3�/15, 5�/18, and 4�/18 times greater than direct

shipping, respectively), while dehydration was clearly cost-prohibitive (33�/81 times greater).

Bagged feed was slightly more expensive to produce than bulk feed (1.1 times greater), and

reprocessing costs increased as delivery distance increased, due to increased labor, equipment,

and fuel costs, but decreased as byproduct generation rate increased, due to the development

of the economies of scale. Alternately, based on a tipping fee of 50 $/Mg, the total estimated

cost to landfill ranged from 65 to 112 $/Mg. Based on this cost analysis, direct shipping and
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feeding to livestock is the recycling option of choice for masa processing byproducts. Although

specific details of process configurations and associated costs will vary, similar results are

likely for other high moisture food processing residuals destined for utilization as livestock

feed or components thereof.

Crown Copyright # 2003 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The flow of materials and energy in industrial systems has important implications

for both pollution control and economic efficiency (Ayers and Ayers, 1996; Vellinga

et al., 1998). One of the larger categories of material flows is renewable organic

matter, including agricultural and forest products such as food, clothing, paper, and

building materials (Graedel and Allenby, 1995). These sectors generate large volumes

of pre- and post-consumer organic residuals (Kashmanian et al., 2000), which have

potential value as energy, nutrients, fiber, and industrial chemicals (NRC, 2000).

Several recent studies have applied life cycle analyses, simulation modeling, and

other analytical industrial ecology tools to recycling opportunities for post-consumer

organic residuals, such as waste paper and packaging (Finnveden and Ekval, 1998;

Byström and Lönnstedt, 2000) and other organic materials (Sonesson et al., 1997;

Sonesson, 1998; Sonesson et al., 2000). Studies of pre-consumer residuals are

typically less comprehensive since system boundaries are smaller, but these analyses

can provide important information about tradeoffs among alternative processing

and utilization strategies (Allen and Behamanesh, 1994; CAST, 1995). This study

examines reprocessing options for a pre-consumer organic residual generated in the

food processing sector. It may, in fact, serve as a model for similar organic residuals

from other bio-based industrial processes.

Alternative recycling and utilization strategies for agricultural and food processing

residues include reprocessing and recycling within the manufacturing plant itself,

resale for other end uses, incineration, biomass energy production, and use as a

nutrient source for fermentation (Derr and Dhillon, 1997; Ferris et al., 1995; Glatz et

al., 1985; Godfrey, 1983; Smith et al., 1974; Wang et al., 1997). Composting, yet

another byproduct recycling option, converts organic waste streams into soil

conditioning and fertilizing amendments, and has gained popularity in recent years

as an effective disposal method for organic and food residuals (Kashmanian et al.,

2000). Composting has been successfully used for a variety of food wastes, including

gelatin extraction residues (Hyde and Consolazio, 1982), cranberry mash residuals

(Steuteville, 1992), tomato processing byproducts (Vallini et al., 1984), brewery

sludges (Beers and Getz, 1992), grape pomace from wineries (Logsdon, 1992), and

food service organics (Goldstein, 1992; Shambaugh and Mascaro, 1997).

While composting and other innovative approaches have clearly demonstrated

applicability, one traditional approach that should not be overlooked is the use of

food processing residues as livestock feed. The economic value of organic residuals is
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higher in feeding applications, where both the energy and nutrients are used, than in

conversion to fuels or fertilizers, which typically utilizes only one of these categories

at a time (Fontenot, 1998). Many research efforts have focused on incorporating

food manufacturing byproduct streams into livestock diets. One aspect of this work

has included the direct feeding of food service and food processing wastes (Glenn,

1997; Polanski, 1995; Price et al., 1985). Another area has included the development

of feed ingredients from slaughterhouse byproducts (Luzier and Summerfelt, 1995;
Martins and Guzman, 1994; Wang et al., 1997). Additionally, many livestock feed

materials have been developed in the grain processing industry, especially within

corn dry milling, corn wet milling, and corn alcohol distillation (Trenkle and

Ribeiro, 1999; Trenkle, 2002).

Corn masa processing, however, is one area of the grain industry that generates

large quantities of waste materials, but that to date, has received little attention vis-à-

vis byproduct disposal alternatives. Corn masa is used to produce corn tortillas and

corn tortilla chips. Tortillas have been a staple in the diets of Mexican and Central
American peoples for centuries. Common foods made with tortillas include tacos,

tamales, quesadillas, and enchiladas (Krause et al., 1992; Ortiz, 1985; Serna-Saldivar

et al., 1990). Currently, Mexican-style foods and corn-based snacks are booming in

popularity. Tortilla sales in the United States alone were estimated at $4 billion in

2000 (Solganik, 1997), and are expected to reach $5.5 billion by 2003 (TIA, 2001).

Corn masa is produced by simulating, on an industrial-scale, the ancient Aztec art

of lime-cooking corn. Whole corn is cooked with 120�/300% water (original corn

weight basis) and 0.1�/2.0% lime (original corn weight basis) for 0.5�/3.0 h at 80�/

100 8C, and is then steeped for up to 24 h. This process, called ‘nixtamalization’, can

be either a batch process or a continuous process, depending on production

equipment. The cooked grain (known as ‘nixtamal’) is then separated from the steep

liquor (called ‘nejayote’), which is rich in lime and corn pericarp tissues which were

loosened during cooking and steeping. The nixtamal is washed to remove any excess

lime and pericarp, and is then stone ground to produce a dough called ‘masa’. The

masa is molded, cut, or extruded, and is then baked or fried to make tortillas, tortilla

chips, or corn chips. The masa can also be dried and milled into masa flour, which is
later reconstituted and made into fresh tortillas at food service establishments

(Serna-Saldivar et al., 1990; Gomez et al., 1987; Parades-Lopez and Saharopulos-

Parades, 1983; Ramirez-Wong et al., 1994; Rooney and Serna-Saldivar, 1987).

Nejayote, the steeping liquid byproduct, contains approximately 2% total

(dissolved and suspended) solids. Typically the suspended solids (50�/60% of the

total solids) are removed by screening, centrifugation, or decanting, and are then

disposed of in landfills. The remaining water and dissolved solids are generally sent

to municipal water facilities for treatment. These solids in the waste stream, which
consist primarily of fiber-rich corn pericarp tissues, represent corn dry matter losses

that occur during processing. Estimates of this dry matter loss have ranged from 5.0

to 17.0% of the original corn mass (Serna-Saldivar, et al., 1990; Rooney and Serna-

Saldivar, 1987; Bressani et al., 1958; Gonzalez de Palacios, 1980; Katz et al., 1974;

Khan et al., 1982; Pflugfelder, et al., 1988). The corn mass loss during nixtamaliza-

tion is affected by many processing parameters, including corn hybrid, kernel

K.A. Rosentrater et al. / Resources, Conservation and Recycling 39 (2003) 341�/367 343



hardness, lime concentration, cooking and steeping times and temperatures, friction

and damage during washing and transport, and production equipment used. These

processing losses can be economically significant due to lost masa yield, waste

processing and disposal costs, potential environmental pollution, and subsequent

legal penalties (Serna-Saldivar, et al., 1990; Rooney and Serna-Saldivar, 1987; Khan

et al., 1982).

Although limited in number, a few studies have been conducted into alternative

disposal options for masa byproduct streams. Four biological treatment options for

nejayote were investigated on a laboratory-scale (Gonzalez-Martinez, 1984),

including activated sludge processing, anaerobic contact processing, submerged

aerobic fixed-film cascade processing, and anaerobic packed-bed processing. This

study found that the activated sludge and anaerobic packed-bed reactors were

effective treatment options for these waste waters. (Pflugfelder et al., 1988) studied

the composition of masa processing dry matter losses, and included these losses in a

mass balance of the masa manufacturing system. Rosentrater et al. (1999) conducted

an extensive physical and nutritional characterization of typical masa byproduct

solids (i.e. suspended solids removed from the nejayote stream), and results indicated

that such byproducts are amenable to incorporation into livestock rations. Velasco-

Martinez et al. (1997) investigated the suitability of implementing nejayote solids

into poultry broiler diets, and found no differences in performance between control

diets and diets utilizing nejayote solids. Rosentrater (2001) developed and

characterized livestock feed ingredients by mixing nejayote solids with soybean

meal at various blend ratios, and then extruding the blends at different processing

conditions, both on a laboratory-scale and on a pilot-scale.

Before any recycling or reuse alternative is adopted for a given byproduct stream

on an industrial-scale, each technically-viable option should be examined for

feasibility, with special consideration given to the economics of each choice. This

type of assessment is necessary for managers’ decision-making processes, so that the

most cost-effective disposal method can be chosen for a given facility (Clarke, 2000;

Huang, 1979; Kuchenrither, et al., 1984; McCartney, 1998; Schulte and Kroeker,

1976; Stapleton, et al., 1984). One means of accomplishing this is to develop a

computer model of the production system. Many models have been developed for

the food and grain processing industries to assess or simulate production (Bandoni et

al., 1988; Flores, et al. 1991). Some models have also been developed to model and

assess the economics associated with various processing systems (Flores et al., 1993;

Liu et al., 1992).

Because masa processing byproducts show potential for incorporation into

livestock rations, the objective of this investigation was to develop a computer

model to simulate and assess the economics involved with the production of

livestock feed ingredients from these residual streams. Specifically, direct shipping,

blending prior to shipping, extrusion processing, pellet mill processing, and

dehydration were compared to landfilling, the traditional method of masa residue

disposal, and were subsequently examined for economic feasibility.
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2. Model development

Before delving into the details of the model’s framework, it is important to

qualitatively describe each of the proposed reprocessing options. Each operation,

described below, is based upon the authors’ experience and upon information found

in literature (AFIA, 1985; Barbosa-Canovas and Vega-Mercado, 1996; Mercier et

al., 1989). A process flow diagram is provided for each option (Figs. 1�/5), and a
complete equipment listing, based on the appropriate flow diagram, is also provided

(Table 1). It should be noted that each operation has been designed to minimize the

equipment and processing steps necessary to collect dewatered masa residues,

process the residues into value-added byproduct feed materials, and deliver the

resulting products to livestock feeding operations (i.e. a ‘minimal processing’

philosophy was used (Gunjal et al., 1999)).

2.1. Reprocessing options

2.1.1. Landfilling

This traditional approach has been included in the model to provide baseline
results with which all other recycling options can be compared. The equipment used

for this disposal method is identical to that used for direct shipping, and will be

discussed in that section.

2.1.2. Direct shipping

Landfilling and direct shipping (Fig. 1) are the simplest disposal methods for masa
residuals vis-à-vis processing steps and equipment required. For the purposes of this

model, the same equipment can be used for each of these options; only the final

destination of the byproduct differs (livestock facility or landfill). With this method,

Fig. 1. Process flow diagram for direct shipping and landfilling options.
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dewatered masa byproduct slurry is transported via a belt conveyor into a surge

(holding) bin for loading onto a delivery truck at a later point in time. The major

constraint with this recycling alternative is that masa byproduct steams have a very

high moisture content (:/90% (w.b.) (Rosentrater et al., 1999). This limits holding

time prior to delivery due to a higher risk of microbial spoilage (Barbosa-Canovas
and Vega-Mercado, 1996); high moisture byproducts should be delivered within 24 h

to avoid this degradation (Price et al., 1985).

2.1.3. Blending

Blending (Fig. 2) masa byproducts with a dry carrier material, such as a high-

protein source (e.g. soybean meal) or possibly another, less expensive byproduct (e.g.

grain dust), prior to shipping can both enhance the nutritional properties of the masa

byproduct and increase the shelf-life of the final feed product due to a decreased

mixture moisture content. Essentially, the process of blending prior to shipping
entails transporting the dewatered slurry with a belt conveyor to a surge bin, which

serves as an inlet scale for a mixer. After a batch of the masa byproduct have been

mixed with the carrier material, a conveyor transports the feed mixture to a bucket

elevator, which conveys the feed into another holding (surge) bin, which is then used

to fill a bulk feed delivery truck.

Fig. 2. Process flow diagram for blending option.
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2.1.4. Extrusion

Extrusion processing (Fig. 3) of masa byproducts is very process intensive. A

major constraint with this type of processing, however, is the moisture content range

which is amenable to extrusion (i.e. the raw masa byproduct stream must be mixed

with a dry carrier material to reduce the moisture content to approximately 25%

(w.b.) for the extruder to process this material). Similar to blending prior to

shipping, the masa residues are transported via a belt conveyor to a scale/surge bin

above a mixer. After a batch of the masa byproducts have been mixed with a dry

blending agent, the feed mixture is transported to a bucket elevator, and then placed

in another holding/surge bin. The material is then metered out of the bin, using a

screw conveyor, to a preconditioner, where steam and water are added so that the

material is properly prepared for extrusion. After exiting the extruder, the feed

Table 1

Equipment list for reprocessing options

Process Direct Blending Extrusion equipment tag Pelleting Drying

Item

Belt conveyor 001 101 201 301 401

Soy storage bin �/ 102 202 302 �/

Gate �/ 103 203 303 �/

Screw conveyor �/ 104 204 304 �/

Scale/surge bin 002 105 205 305 402

Vibrator 003 106 206 306 403

Gate 004 107 207 307 404

Mixer �/ 108 208 308 �/

Drag conveyor �/ 109 209 309 �/

Bucket elevator �/ 110 210 310 �/

Scale/surge bin �/ 111 211 311 �/

Vibrator �/ 112 212 312 �/

Gate �/ 113 213 313 �/

Screw conveyor �/ �/ 214 314 �/

Conditioner �/ �/ 215 315 �/

Extruder �/ �/ 216 �/ �/

Pellet mill �/ �/ �/ 316 �/

Cyclone �/ �/ 217 �/ �/

Fan �/ �/ 218 �/ �/

Dryer/cooler �/ �/ 219 317 405

Screw conveyor �/ �/ �/ �/ 406

Drag conveyor �/ �/ 220 318 �/

Bucket elevator �/ �/ 221 319 407

Scale/surge bin �/ �/ 222 320 408

Bagging scale �/ �/ 223 321 409

Bagger �/ �/ 224 322 410

Sewer �/ �/ 225 323 411

Palletizer �/ �/ 226 324 412

Fork lift truck �/ �/ 227 325 413

Delivery truck 005 114 228 326 414

Gate �/ �/ 229 327 415
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material is pneumatically conveyed to a dryer/cooler, where water is removed until

the feed product is at an appropriate moisture content level. The feed is then cooled.

It is generally recommended that feed materials have a final moisture content below

15% (w.b.), because this moisture level is microbiologically stable (Beauchat, 1981;

McEllhiney, 1985). A bucket elevator then transports the dried and pelleted feed

material into a surge bin for temporary storage.

At this point, there are two possible alternatives that could be implemented: the
processed feed can either be delivered in bag form or in bulk form to the farm. If a

bagged form is chosen, the feed will then exit the surge bin into a bagging scale, and

then will enter an automatic bagging and palletizing system. Then, a forklift will

place the bagged and palletted feed onto a delivery truck. If, however, a bulk feed is

desired, the surge bin will empty directly into a bulk feed delivery truck.

2.1.5. Pelleting

Producing feed materials from a pellet mill processing line (Fig. 4) is very similar
to extrusion processing vis-à-vis equipment required. As with extrusion, pellet mill

processing of feedstocks is confined to a limited moisture content range and, thus,

the masa byproduct slurry must be blended with a dry material, to achieve 25% m.c.

(w.b.) prior to processing. The major difference between pellet mill and extrusion

processing, other than using a pellet mill instead of an extruder, is that the pelleted

feed discharges directly from the pellet mill into the dryer/cooler, and does not

require an air lift to transport the material. Once again, the resulting dry feed can

either be bagged or left in bulk form.

2.1.6. Dehydration

Dehydration (Fig. 5) of masa byproduct slurries is not as process intensive as

either extrusion or pelleting, but it does have substantial fuel costs, because the slurry

has such a high moisture content (:/90% (w.b.) (Rosentrater et al., 1999). To

achieve a microbiologically-stable feed product, substantial amounts of water must

be removed from the byproduct stream. For this model, the final moisture content of

the masa byproducts was set at 10% (w.b.), a moisture stable level to prevent
spoilage. After dewatering, masa residues are transported via a belt conveyor to a

surge bin, and then are fed directly into a dryer. After exiting the dryer, the resulting

feed can either be bagged or left in bulk form, which is similar to both the extrusion

and pelleting options.

2.2. Economic model heuristics

2.2.1. Scope of model

The overall purpose of this model was to compare the costs of landfilling masa
residues with the economics of producing value-added byproduct feed material using

five unique reprocessing alternatives. The options incorporated into the model

included direct shipping, blending, extrusion, pelleting, and dehydration, as

described in the previous section. Recycling options that deserve investigation, but

were not examined here, include composting, direct land application, and incinera-
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tion. Additionally, some potential for fiber separation from the byproduct stream

exists (Rosentrater et al., 1999), and this too deserves future attention.

Specifically, the objective of this economic model was to determine byproduct feed

sales price ($/Mg) required for each option to reach the breakeven point each year of

plant operation, and then to compare these results with the costs of landfilling ($/

Mg). The intent in developing this model was to provide a tool to assist masa

manufacturers in choosing the most appropriate option for a given production
facility.

2.2.2. Processing capacities

Industrial corn masa production occurs on a variety of scales, and variable

characteristics include size of facility, plant location, availability of raw materials,

type and composition of raw corn supplies, and ability to ship processed products.

Masa production rates can range from less than 12 000 to over 300 000 Mg/year at a

single site (Minsa, 2000). Corn matter loss due to the nixtamalization process ranges
from 5.0 to 17.0% of the original corn mass. These production ranges are coupled

together to produce a large variation in masa byproduct generation rates across the

corn masa industry. Thus, the ensuing economic model had to be flexible enough to

accommodate a wide spectrum of masa byproduct generation rates.

To cover as broad a range as possible, the model bypassed both potential masa

production levels and possible waste production fractions, and instead directly

utilized byproduct production rates. Using this approach, not only was the modeling

procedure simplified, but the later use of the model by production facility managers
was also simplified, because waste generation rate is easily measurable at a given

facility. The model incorporated 10 possible byproduct generation rates (Mg/yr):

1000; 2500; 5000; 10 000; 20 000; 30 000; 40 000; 50 000; 60 000; and 70 000.

Additionally, a planned benefit is that this model can be applied to similar

byproduct utilization scenarios for other food processing residual streams.

The blending, extrusion, and pelleting options require the addition of a dry carrier

material. Soybean meal was used in this analysis because of the high protein value

and common use in the feed industry. For the purposes of this model, soybean meal
addition was based on a 30% masa byproduct/70% soybean meal blend ratio for each

of these reprocessing options. This mixture ratio was used because it utilized the

greatest byproduct amount, and could still be processed via these operations;

Rosentrater, 2001 for more details. If an alternative blending agent is desired,

however, this mixture ratio could be easily adjusted when using the model.

2.2.3. Model assumptions and parameters

The premise of this model is that a masa production facility already exists. The

intent in constructing this model in this fashion is to provide the facility planner or
manager with a tool that can be used to help decide upon optimum waste

management options. This model examines the costs associated with installing and

operating a reprocessing line in the existing corn masa production plant. This model

also examines the costs associated with landfilling the masa byproduct stream to

provide baseline results that can be compared to the results of the various
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Table 2

General balance sheet implemented by model

Model input variables

Delivery radius (km; mi)a

Electricity price ($/kW h)b

Gasoline price ($/l; $/gal)b

Interest rate (decimal)b

Landfill tipping fee ($/Mg; $/ton)b

Masa byproduct generation rate (Mg/yr; tons/yr)a

Raw ingredient (blending agent) price ($/Mg; $/ton)b

Recycling/reprocessing optionb

Type of feed produced (bulk sludge, dry bulk, dry bagged)b

Annual fixed costs ($)c

Initial capital investment

Buildings

Equipment

Other (spouting, wiring, engineering, etc.)

Total initial capital investment

Annual equivalent capital investment

Depreciation

Insurance

Interest

Overhead

Taxes

Annual variable costs ($)d

Delivery truck insurance

Energy (boiler fuel for steam generation)

Energy (dryer fuel)

Energy (electricity)

Feed bag breakage losses

Feed delivery

Feed storage bags

Fork lift truck operation

Gasoline

Labor

Maintenance and repairs

Miscellaneous supplies

Other variable costs

Pallet repairs and replacement

Raw ingredients (blending agents)

Water

Annual benefits ($)

Byproduct feed sales revenue

Equipment salvage value

Annual equivalent salvage value

a Input variables intrinsic to model.
b User-specified input variables.
c Values are dependent on processing option and production rate.
d Values are dependent on processing option, production rate, and delivery distance.
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reprocessing options. The assumptions and parameters incorporated into the model

are explained in extensive detail elsewhere (Rosentrater, 2001).

The model utilized both intrinsic and extrinsic (e.g. user-specified) variables.

Intrinsic variables included the various disposal options (i.e. the five reprocessing

options and landfilling), byproduct generation rate (Mg/yr; ton/yr), at the 10 levels

discussed previously, and delivery distance (0�/100 miles (161 km) by 10-mile (16-km)

increments). User-specified variables included interest rate, electricity price ($/kW h),
gasoline price ($/l; $/gal), blending agent price ($/Mg; $/ton), and landfill tipping fee

($/Mg; $/ton). Additionally, when using the model, the user can readily specify which

disposal option to examine, and for the appropriate options, whether bulk or bagged

feed will be produced.

For each waste disposal option, equipment and building facilities were sized to

adequately meet processing requirements. Costs to purchase, ship, install, and

operate these lines were determined. Using a service life of 15 years (n�/15), the

model accounted for all annualized costs and benefits for each option. Annualized
fixed costs included equipment, buildings, engineering, depreciation, overhead, and

taxes, to name but a few. The model also accounted for annualized variable costs,

such as electricity, gasoline, dryer fuel, labor, raw ingredients (blending agents),

water, maintenance, etc. Annual benefits included only the sale of byproduct feed

materials and the annualized salvage value of equipment and structures. Table 2

itemizes all annualized costs and benefits included in the model; greater detail

regarding the model, as well as a full reference list, is found in (Rosentrater, 2001).

2.2.4. Economic analysis

A general balance sheet (Table 2) was implemented within the model to account

for all annualized fixed and variable costs, as well as all annualized benefits, for each

reprocessing option, as well as for landfilling. By determining these values, the

required byproduct feed sales price ($/Mg) needed for each reprocessing option to

reach the annual breakeven point could be determined via Eq. (1):

BBSP�
P

AFC �
P

AVC �
P

AB

AMBP
(1)

where BBSP is the byproduct breakeven sales price ($/Mg), AFC is the annualized

fixed costs ($/yr), AVC is the annualized variable costs ($/yr), AB is the annualized

benefits ($/yr), and AMBP is the annual masa byproduct production rate (Mg/yr).

For the landfilling case, however, the only annualized benefit was salvage value.

Consequently, total annualized costs to landfill were determined (i.e. breakeven

never occurs for the landfilling scenario).

2.2.5. Model implementation

All processing, equipment, structure, energy consumption, and cost information

was programmed into a FORTRAN computer model (Lahey Computer Systems, Inc.,

1995). The complete model is given in (Rosentrater, 2001). The user must specify

input values for the five extrinsic variables: interest rate, electricity price, gasoline
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price, blending agent (soybean meal for this study) price, and landfill tipping fee.

Additionally, the user must specify which recycling option to use, as well as type of

feed product desired (bagged or bulk) for the extrusion, pelleting, and dehydration

options. The model then calculates total annualized costs ($/Mg) (for the landfilling

Fig. 6. Effect of byproduct generation rate and delivery distance on landfilling cost.

Fig. 7. Effect of byproduct generation rate and delivery distance on byproduct sales price for direct

shipping option.
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option) or feed sales price required to breakeven ($/Mg) (i.e. for all five other

reprocessing options).

The current study entailed a series of simulation runs with the model. Values of the

five user-specified variables were chosen based on values representative of those
found in the central United States during the summer of 2000. Values chosen

included an interest rate of 9.50% (Federal Reserve, 2000; HSH Associates, 2000), an

electricity price of 0.07 $/kW h (EIA, 2000a, EIA, 2000b), a gasoline price of 1.50 $/

gal (0.40 $/l) (EIA, 2000c), a soybean meal price of 150.00 $/ton (165.35 $/Mg) (TFC,

2000), and a tipping fee of 50.00 $/ton (55.12 $/Mg) (Goldstein, 1992; Ackerman,

1997; Johnson and Carlson, 1991; Jones, 1992).

2.2.6. Sensitivity analysis

A sensitivity analysis was subsequently conducted with the model by altering the

values of three input variables (interest rate, electricity price, and gasoline price);

each were changed, in turn, by 9/10%, and the resulting model outputs were
compared with the previous results.

3. Results and discussion

Output results from the economic model simulation runs (i.e. byproduct feed sales

price ($/Mg) required for each recycling option to reach the breakeven point

annually), using the aforementioned values for the input variables, are presented in

Figs. 6�/11. The results are given as a function of the two intrinsic variables,

Fig. 8. Effect of byproduct generation rate and delivery distance on byproduct sales price for blending

option.
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Fig. 9. Effect of byproduct generation rate and delivery distance on byproduct sales price for landfilling and direct shipping options.

K
.A

.
R

o
sen

tra
ter

et
a

l.
/

R
eso

u
rces,

C
o

n
serva

tio
n

a
n

d
R

ecy
clin

g
3

9
(

2
0

0
3

)
3

4
1
�

/3
6

7
3

5
7



Fig. 10. Effect of byproduct generation rate and delivery distance on byproduct sales price for blending, extrusion, and pelleting options.
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byproduct generation rate and delivery distance, which varied at the same rate for all

recycling options.

3.1. Landfilling

Landfilling results are shown in Fig. 6. As the results show, breakeven will never

occur for the landfilling option, because the only annualized benefit derived from

this process is the annualized salvage value from equipment and facilities (i.e. the

byproduct is never sold). Additionally, the results show that as distance to the

landfill increases the total cost for landfilling ($/Mg) increases. This occurs due to
increased gasoline consumption and labor costs associated with transporting the

byproduct. As generation rate increases, at a given delivery distance, however, the

total cost to landfill decreases, because economies of scale are achieved at the higher

production rates. This occurs because production costs and capital investments vis-

à-vis byproduct output are comparatively lower (McConnell, 1987). Because the

costs associated with landfilling are usually considered ‘avoided’ costs, the breakeven

sales price calculated for the subsequent recycling options could, in fact, potentially

be reduced to this amount and still be considered economically feasible.

3.2. Direct shipping

The only difference between direct shipping and landfilling option is the final

destination for the byproduct (i.e. landfill or livestock feeding facility). Of all

Fig. 11. Effect of byproduct generation rate and delivery distance on byproduct sales price for blending,

extrusion, and pelleting options, using a blending agent at 50 $/Mg.
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reprocessing options in this study, direct shipping resulted in the lowest sales price

required to reach breakeven (i.e. this was the most economical option for any masa

production facility, because capital investment and production costs were mini-

mized). These results are shown in Fig. 7. As the results show, the required sales price

slightly increased as delivery distance increased, but drastically decreased as

byproduct generation rate increased (i.e. economies of scale occurred). ‘Ripples’,

however, can also be seen in the graph; these are actually due to the competing
effects of the economics of scale and the ‘diseconomies of scale’, which occur due to

increased equipment costs at increased production rates.

3.3. Blending

Blending and shipping results (Fig. 8) are similar to that of direct shipping, but the

levels of required sales price are considerably higher, due to both the higher

equipment investments, energy consumption, and the costs associated with the
acquisition and addition of a blending agent. Required sales prices are between 3 and

15 (with an average of 10) times greater than those of direct shipping alone.

Diseconomies of scale can also be seen in the graph, primarily due to increased

equipment costs at greater production rates.

Because all reprocessing options exhibited similar behavior (i.e. slightly increased

costs as delivery distance increased (at a given byproduct generation rate) and

substantially decreased costs as byproduct generation rate increased (at a given

delivery distance)), all results have been subsequently projected into two-dimensional
scatterplots (Figs. 9�/11) to simplify the presentation of the simulation results. In

these graphs, the entire range of byproduct generation rates are presented, but only

two delivery radii are presented: 0 and 161 km (0 and 100 miles).

3.4. Extrusion

Extrusion processing, as Fig. 10 shows, exhibits behavior similar to the previous

options (slightly increased costs at increased delivery distances and drastically

decreased costs at increased byproduct generation rates). Additionally, a few
diseconomies of scale can be seen; but, the majority of behavior can be attributed

to the economies of scale being achieved, and thus lower production costs as

byproduct generation rate is increased. Due to the equipment-intensive nature of this

processing option, however, production costs are considerably greater than those for

the direct delivery option. Extrusion processing, with the bagged feed option, has

production costs 5�/18 (with an average of 12) times greater than those of direct

shipping alone. Extrusion processing with the bulk feed option has production costs

between 5 and 17 (with an average of 11) times the costs of direct shipping alone. The
results also indicate that bagged feed has production costs 1.1 times greater than the

bulk feed option. This is due to increased capital expenditures for bagging equipment

and the associated energy costs to operate these machines. Because the costs

associated with extrusion processing are so high, this reprocessing option may be

cost-prohibitive, especially because the marginal nutritional gain resulting from this
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process is relatively small compared to the inherent composition of raw soybean

meal (i.e. the masa byproduct slurries alter the nutrient content minimally, due to

their high moisture content) (NRC, 2000)

3.5. Pelleting

Pellet mill processing is also very process-intensive. In fact, this option is very

similar to extrusion processing vis-à-vis equipment and energy required. The

simulation results for this option also reflect the trends shown by all previous

options, as shown in Fig. 10. The graph also shows both economies of scale being

achieved and slight diseconomies of scale occurring. Pellet mill processing, with the

bagged feed option, has production costs 5�/18 (with an average of 12) times greater

than those of direct shipping alone, while pellet mill processing with the bulk feed
option incurs production costs 4�/16 (with an average of 11) times the costs of direct

shipping. As with the extrusion processing option, bagged feed is 1.1 times more

expensive to produce than bulk feed. Although pellet mill processing is slightly less

expensive than extrusion processing, this reprocessing option is also cost-prohibitive

compared to direct shipping of the masa byproduct stream.

3.6. Dehydration

Dehydration, or drying, was by far the most expensive reprocessing option

studied. Although this option was not as equipment-intensive as either extrusion

processing or pellet mill processing, the major cost factor associated with this option

was the quantity of dryer fuel required to dry the wet byproduct slurry (i.e. from :/

90% m.c. (w.b.) to :/10% m.c. (w.b.)). Compared to direct shipping, drying with the

bagged feed option incurred production costs 46�/81 (with an average of 60) times
greater, while drying with the bulk feed option had costs 33�/79 (with an average of

55) times greater, respectively. As with the extrusion and pellet mill processing

options, bagged feed was 1.1 times more expensive to produce than bulk feed. Thus,

dehydration is not an economical choice for the recycling of corn masa byproducts.

These results were so high, in fact, compared to all other reprocessing options, that

the values were not plotted in Fig. 10, because it would have adversely impacted the

readability of the graph. Although not shown graphically, the dehydration results

exhibited similar trends vis-à-vis generation rate and delivery distance as all other
reprocessing options studied.

Table 3

Sensitivity analysis of direct shipping option (9/10% of original variable values)

Avg. change (%) Max. change (%) Min. change (%) Range (%)

Interest rate 0.89 2.40 0.25 2.15

Electricity price 0.11 0.18 0.06 0.12

Gasoline price 0.72 1.61 0.00 1.61
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3.7. Sensitivity analysis

Sensitivity analysis is used to examine the effects of changes in input variables on

model outputs. Results from a sensitivity analysis are important because it gives an

indication of the relative robustness of the model to changes in the input economic

parameters, which are due, in reality, to exogenous factors in the actual, greatly

fluctuating, marketplace. Because only direct shipping was economically feasible in
this study, a sensitivity analysis was conducted on this option only. To conduct the

sensitivity analysis, the three appropriate input variables (interest rate, electricity

price, and gasoline price) were each changed by 9/10%, and the resulting model

outputs were compared with the baseline results. Table 3 summarizes the results of

this sensitivity analysis, and as shown in the table, interest rate, electricity price, and

gasoline price each had only a small effect on model output (2.15, 0.12 and 1.61%,

respectively). Thus, the model was fairly robust vis-à-vis the input (i.e. economic)

variables.
Along a similar vein, the effect of using a lower-cost blending agent (such as grain

dust or other dry processing byproducts, was investigated, because the relatively high

cost of soybean meal (165.35 $/Mg) led to high breakeven values for the blending,

extrusion, and pelleting options, which could thus preclude their implementation in a

production setting. To examine this scenario, an arbitrary blending agent price of 50

$/Mg was selected, with all other model input variables set at the original levels. The

simulation results from this case are shown in Fig. 11. As shown, the data curves for

the blending, extrusion, and pelleting options were all shifted downward substan-
tially, but were still much higher than the direct shipping option results: blended

byproduct feed (2�/7 times greater, with an average of 5 times), extruded/bagged feed

(4�/11 times, with an average of 8 times), extruded/bulk feed (3�/9 times, with an

average of 6 times), pelleted/bagged feed (3�/10 times, with an average of 7 times),

and pelleted/bulk feed (3�/9 times greater, with an average of 6 times). Thus, these

simulation results still show that direct shipping is the economically-optimal option

for recycling masa processing byproducts.

4. Conclusions

This study modeled the economics associated with the recycling/reprocessing of

corn masa byproducts using a computer program developed specifically for this

purpose. The costs associated with traditional disposal (i.e. landfilling) are actually

‘avoided’ costs and, thus, the breakeven sales price calculated for all recycling

options considered could potentially be reduced to this amount and still be
considered economically feasible. Through use of this model, it was determined

that direct shipping of masa byproducts is the most economical choice for the corn

masa manufacturer. Blending masa byproducts is a more expensive recycling option,

but still may be economically feasible, depending on the blending agent used.

Extrusion processing and pellet mill processing are substantially more expensive.
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Thus, these options are cost-prohibitive. Furthermore, dehydration is far too

expensive to justify economically.

With regard to the blending, extrusion, and pelleting options, because masa

byproducts are approximately 90% water (w.b.), even blending at a ratio of 30%/70%

with a dry blending agent, such as soybean meal, the addition of the byproduct alters

the nutrient makeup of the blending agent minutely (i.e. only 3% of the blend’s solids

originate from the masa byproduct). Thus, the byproduct feed is essentially soybean
meal, or whatever blending material has been used, and has been altered very little.

Blending may be economically feasible because it only adds 4 $/Mg (at most) to the

original cost of the blending agent. The benefits of this option can be realized if the

masa byproduct is blended with a low-cost dry material, instead of high-cost soybean

meal. Extrusion adds a maximum cost of 94 $/Mg (bulk feed) and 132 $/Mg (bagged

feed), while pelleting adds a maximum cost of 64 $/Mg (bulk) and 103 $/Mg (bagged)

over the original cost of the blending agent. Thus, the increase in costs utilizing

extrusion and pelleting is exorbitant relative to the costs of direct shipping, and is not
economically warranted at current feed prices. It must be mentioned, however, that

dry feed (e.g. extruded or pelleted) has a long shelf-life, whereas blended or raw (i.e.

directly shipped) materials have very limited storability due to higher moisture

content. The ability to store feed for a length of time may indeed be a benefit to

livestock producers.

Even so, the most economically feasible recycling option for corn masa

byproducts is direct delivery. Blending may also be feasible, just somewhat more

costly, depending on the blending agent used. Both options should be studied further
in a real manufacturing setting. However, extrusion, pelleting, and dehydration are

too cost-prohibitive to implement.

The intent of this project was to examine the economics associated with the

development of a livestock feed ingredient produced from corn masa processing

byproducts. Because the scope was limited to the production of a single feed

ingredient only, the development of an entire feed ration for a particular animal

species is left to future studies, and may possibly entail the incorporation of corn,

vitamins, minerals, etc., and will require feeding trials before the effectiveness of this
type of feed ration is known.

It should also be noted that the price of soybean meal, as with all other

agricultural commodities, fluctuates drastically over time (TFC, 2000). Conse-

quently, these changes will need to be taken into consideration, and can be easily

inputted into this model to accommodate these price changes, and should shift the

results slightly up or down the price scale. The fundamental behavior exhibited

should remain the same: recycling costs increase as delivery distance increases, and

costs decrease as masa byproduct generation rate increases.
Reuse of organic residuals as livestock feed captures both the energy and nutrient

value of these byproducts and, thus, offers important benefits from both economic

and environmental perspectives. The cost advantages identified by this study, for

both direct shipping and proximity to livestock feeding operations, suggest there is

an opportunity for closer integration of food processors and other bio-based

industries with livestock producers. This is particularly important for high moisture
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residual generation, due to both inherent material biodegradability and the high

costs for water removal or transport. Organizational strategies, ranging from

contractual agreements to cooperative ownership, have historically been used to

support such integration in the agricultural and food processing sectors, most

recently in the rapidly expanding ethanol industry. Such integration, if structured in

an equitable and environmentally sound manner, can offer significant benefits for

organic byproduct recycling and reuse.
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