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ABSTRACT 19 

Hillslope elements have considerable potential in predicting soil attributes and types in 20 

the landscape, making them likely to be a useful basis for detailed soil mapping. The 21 

goal of this research was to apply a previously developed digital hillslope position 22 

(DHP) model, calibrate it as needed to a Brazilian landscape, and test its utility as a 23 

basis for identification of detailed soil map units. The study area covers 2,500 ha and 24 

is located on the border between the municipalities of Piracicaba and Santa Bárbara 25 

d'Oeste, São Paulo state, Brazil. A digital elevation model (DEM), with spatial 26 

resolution of 5 meters, was used to obtain slope gradient, profile curvature and relative 27 

elevation with different analysis scales. Hierarchical rules for these digital terrain 28 

derivatives were used to segment the landscape into hillslope positions. The user-29 

calibrated hillslope position model was verified against local experience by identifying 30 

the hillslope position in the field and comparing it with the model classification using 31 

the Kappa statistic and a confusion matrix. Soil samples were collected across multiple 32 

hillslopes with different lithologies. The samples were analyzed for chemical 33 

composition and particle size distribution. The measured soil properties were assessed 34 

for statistical significance by variance analysis among hillslope position, parent 35 

material, and the interaction between the two. Student’s t-tests were performed 36 

iteratively across each hillslope position within a given parent material to identify 37 

specifically which soil properties were significantly different among the hillslope 38 

position map units. Variance analysis of soil samples located within the respective 39 

parent material map units identified significant differences for all soil properties 40 

measured, but only for some soil properties when categorized by DHP. Focusing on 41 

the parent material with a sufficient quantity of samples, there was always at least one 42 

hillslope position that was significantly different from the others for each soil property. 43 
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Because each of these map units presented a significant difference in at least one soil 44 

property, they are useful for detailed soil mapping. 45 

 46 

Keywords: digital terrain analysis; decision tree; hillslope elements; map units; soil 47 

property; Oxisols 48 

 49 

1. Introduction 50 

The goal of soil mapping is to communicate as much soil variation in the 51 

landscape as appropriate for the map scale. Because soil profile properties cannot be 52 

observed directly from above ground, soil maps have an assemblage of areas of the 53 

same nature, known as map units (Legros, 2006), that associate sets of soil profile 54 

properties with features that can be delineated from more readily observable 55 

information. Therefore, the challenge is to find the best basis for identifying the map 56 

units to differentiate the variation of soil properties in the landscape. 57 

There are only exploratory or reconnaissance soil maps covering most of the 58 

Brazilian territory and soil types corresponding to the soil series concept are not yet 59 

established (Lepsch, 2013; Carvalho et al., 2015). Because of the available soil maps’ 60 

coarse cartographic scale, they are not useful for farming and civil engineering 61 

management decisions at field or catchment scales (Sanchez et al., 2009). Only 0.25% 62 

of the Brazilian territory is covered by 1st or 2nd order soil maps (scale ≤1:35,000) 63 

(Carvalho et al., 2015; Mendonça-Santos and Santos, 2007). This coverage is much 64 

less than other countries of similar size, such as the USA, where the National 65 

Cooperative Soil Survey (NCSS) has mapped the soils of nearly every county at the 66 

2nd order scale (1:15,840 - 1:24,000), identifying map units at the soil series level.  67 
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These soil maps were produced from a combination of soil-landscape 68 

relationships based on the tacit knowledge of field experienced pedologists, with field 69 

observations and point measured soil properties (Hudson, 1992). Because this 70 

knowledge is based on the mapper's experience, it is not explicit for other mappers 71 

and it is difficult to quantify and reproduce for detailed scale (Shi et al., 2009). Although 72 

the soil-landscape paradigm has been a useful qualitative predictor of similar soil 73 

forming environments (Hudson, 1992), the many quantitative relationships between 74 

soil profile attributes and environmental covariates have yet to be fully elucidated.  75 

Slope gradient and profile curvature are known to affect the soil attributes’ 76 

spatial distribution (MacMillan et al., 2000; Mohammadi et al., 2016; Park et al., 2001; 77 

Pennock, 2003). However, these digital terrain derivatives do not always appear to 78 

correlate with soil properties as expected. This potential mismatch is likely due to the 79 

wrong analysis scale being selected for analysis, among other things (Drăguţ et al., 80 

2009; Miller, 2014). A way to improve this situation is to document and make explicit 81 

all aspects of defining landscape features mapped according to the tacit knowledge 82 

acquired over the years by soil survey experts (Bathgate and Duram, 2003). Thus, a 83 

quantitative approach to generate and store information of the landscape 84 

characteristics would be useful for soil mapping in an objective, consistent, updatable, 85 

and reproducible method. 86 

Among the detailed landscape features, hillslope elements have considerable 87 

potential to predict the soil attributes and types because they identify functional zones 88 

in the context of water and sediment flow in a landscape (Gerrard, 1992; Ruhe, 1960; 89 

Ruhe and Walker, 1968; Wysocki et al., 2011). Hillslope position as defined by Ruhe 90 

(1960) and Wysocki et al. (2011) consists of five elements: summit, shoulder, 91 

backslope, footslope, and toeslope. Summits and shoulders are located in the highest 92 
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part of a hill. Backslopes are zones of transport where materials are removed and 93 

transported through the most inclined part to the lower hillslope elements, which are 94 

the footslopes and toeslopes (Wysocki et al., 2011). In certain geomorphic conditions, 95 

some hillslope elements may be absent and/or occur in an alternating pattern, such as 96 

a footslopes below a shoulder, lacking a backslope in between. An example of this 97 

type of hillslope element pattern is observed when complex slopes are mapped with a 98 

high level of detail (Figure 1) (Wysocki et al., 2011). 99 

 100 

Figure 1. Diagram of simple slopes versus complex slopes based on the hillslope 101 

position model by Ruhe (1960) (after Wysocki et al., 2011). SU: Summit, SH: Shoulder, 102 

BS: Backslope, FS: Footslope, and TS: Toeslope. 103 

 104 

Several studies have carried out a quantitative categorization of general 105 

landscape features (Burrough et al., 2000; Cunha et al., 2018; Drăguţ and Blaschke, 106 

2006; Drăguţ and Dornik, 2016; Etzelmüller et al., 2007; Iwahashi and Pike, 2007; 107 

Jasiewicz and Stepinski, 2013; Jasiewicz et al., 2014Vannametee et al., 2014;), and 108 

some others at the sub-landform or hillslope scale (Gökgöz and Baker, 2015; 109 
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MacMillan et al., 2003; Qin et al., 2009; Zhu et al., 2018). In this regard, Miller and 110 

Schaetzl (2015a) captured the tacit knowledge of soil scientists to quantify the analysis 111 

scales and thresholds of the digital terrain derivatives equivalent to soil scientists’ 112 

assessment of hillslope position in the field. This digital hillslope position (DHP) model 113 

used slope gradient, relative elevation, and profile curvature at different analysis scales 114 

to apply the hillslope position concept to a digital elevation model (DEM). The validation 115 

of this model showed 59% agreement between soil scientists’ field assessments and 116 

the final DHP model’s prediction, which was considered reasonable given the potential 117 

variability between different soil scientists. 118 

The digital segmentation of hillslope elements is promising for soil mapping for 119 

several reasons, among them: (a) consistent selection of representative sites for 120 

morphological description and collection of soil samples (Drăguţ and Dornik, 2016; 121 

Park and Van De Giesen, 2004; Yang et al., 2012; Zhu et al., 2008; Zhu et al., 2010), 122 

(b) delineation of mapping units (Moravej et al., 2012), (c) disaggregation of complexes 123 

in the soil map units with more than one soil type, improving both the detail and the 124 

applicability (Miller and Schaetzl, 2015a; Odgers et al., 2014), and (d) support in the 125 

prediction of soil properties in areas that present similarity of soil formation factors, 126 

highlighting both parent material and relief (MacMillan et al., 2000; Pennock and Corre, 127 

2001). 128 

The goal of this research was to calibrate the DHP model developed by Miller 129 

and Schaetzl (2015a) as needed for a Brazilian landscape. After that, this model was 130 

tested to verify its effectiveness for identification of detailed soil map units. 131 

2. Methods 132 

2.1 Location and characterization of the study area 133 



7 
 

The study area covers 2,500 ha and is located on the border between the 134 

municipalities of Piracicaba and Santa Bárbara d'Oeste, São Paulo state, Brazil. The 135 

climate is classified as Cwa in the Köppen classification system, which is characterized 136 

by a humid subtropical mesothermic temperature regime with dry winters between 137 

June and August, and rainy summers between November and January (Alvares et al., 138 

2013). The area is mostly cultivated with sugarcane, with some remnants of native 139 

vegetation and exotic species such as Pinus and Eucalyptus trees. 140 

The area is geomorphologically located within the Paulista Peripheral 141 

Depression, which has an area approximately 100 km wide and 400 km long (Bigarella 142 

et al., 1965; Penteado, 1969). Parent materials are from members of the Irati, Tatuí, 143 

and Itararé formations (Figure 2) (Vidal-Torrado, 1994). During the Upper Neogene 144 

and Quaternary periods, unconsolidated clayey sediments recognized as from the Rio 145 

Claro Formation (Neo-Cenozoic coverage) were deposited in the study area from other 146 

parts. These sediments were reworked and subjected to pedogenesis cycles that 147 

occurred during the semiarid phases in Brazil, coinciding with the Late Pleistocene 148 

glacial periods of North America (Penteado, 1969). These clayey superficial deposits 149 

remain on summits, at altitudes around 600-630 meters (Penteado, 1976), and 150 

correspond to thick depositions (from five to ten meters), mainly with soils classified as 151 

Oxisols (polygenetic soil) (Vidal-Torrado et al., 1999). This area was selected for this 152 

study because of its diversity of parent material and geoforms. Another reason for 153 

selecting this area was the availability of a geologic map at the scale of 1:25,000 154 

(Figure 2), which allowed us to compare the variation of soil attributes between hillslope 155 

positions within areas mapped as the same parent material. 156 

 157 
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 158 

Figure 2. Geologic map of the study area (after Vidal-Torrado, 1994). 159 

 160 

2.2 Digital segmentation of hillslope position at a detailed level by digital terrain 161 

analysis 162 

Contour lines with 5-meter equidistance and specific elevation at some points 163 

were digitized from planialtimetric maps at the 1:10,000 scale obtained from the 164 

Geographic and Cartographic Institute of the São Paulo state. These data were 165 

interpolated to obtain a DEM with spatial resolution of 5 meters in GRASS GIS 7.0.4 166 

(Geographic Resources Analysis Support System, 2015). The interpolation method 167 

used was the Regularized Spline with Tension, because it is considered to be the most 168 

suitable for vector data (Mitášová and Hofierka, 1993; Neteler and Mitášová, 2008). 169 

The resulting DEM was used to obtain the following digital terrain derivatives: 170 

slope gradient and profile curvature with an analysis scale of 15 m (3x3 neighborhood) 171 

and 65 m (13x13 neighborhood), respectively (Miller, 2014), using the r.paramscale 172 
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function in GRASS GIS. Relative elevation was calculated with the analysis scale at 173 

435 m (87x87 neighborhood), using ArcGIS 10.3, per the equation proposed by Miller 174 

(2014). Instead of the 135 m analysis scale for relative elevation proposed by Miller 175 

(2014), the analysis scale was adjusted for this study based on comparison between 176 

field observations and the results obtained with different analysis scales for relative 177 

elevation. These digital terrain derivatives were selected and used because of their 178 

ability to provide a hillslope position segmentation based on their geometry and 179 

semantics, i.e. they express both the shape and the position of these elements in the 180 

landscape, and they are the most similar to the terrain variables used in pedologists’ 181 

mental model in the field (Miller, 2014; Miller and Schaetzl, 2015a). 182 

The hillslope position segmentation follows the DHP model of Miller and 183 

Schaetzl (2015a), in which hierarchical rules were used with the three digital terrain 184 

derivatives described above. The rules established in the decision tree started with 185 

slope gradient, subdividing it into: high (>6.4°), medium (1.4° - 6.4°), and low (<1.4°). 186 

Subsequently, the medium slope gradient was subdivided, considering the slope 187 

shape, into: convex (positive values) and concave (negative values). Likewise, the low 188 

slope gradient was subdivided by relative elevation into: high (positive values) and low 189 

(negative values) (Figure 3). The original DHP model was calibrated to landscapes in 190 

the Central Lowlands of the USA and had a threshold between medium to high slope 191 

gradients at 2.9º. To adapt the DHP model to the Brazilian landscape, the upper 192 

threshold of slope gradient was adjusted to 6.4º based on standard values used in the 193 

Brazilian soil survey. This adjustment was not necessary for the lower threshold, since 194 

it already corresponded to the one used in the Brazilian soil survey (Santos et al., 195 

2015). 196 

 197 
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 198 

Figure 3. Decision tree used to segment the hillslope position through digital terrain 199 

derivatives (after Miller and Schaetzl (2015a). 200 

 201 

The indicated sequence of the decision tree may not necessarily correspond 202 

to all aspects of the pedologist's thought process, since many of them can determine 203 

the hillslope position more by intuition than a stepwise decision process. However, 204 

Miller and Schaetzl (2015a) observed that this model performed consistently well in 205 

three different landscapes, supporting what King (1957) considered as the 206 

uniformitarian nature of hillslopes. Nonetheless, the need to calibrate the model in 207 

different landscapes cannot be ruled out. For example, this DHP model assumes that 208 

all areas with a slope gradient greater than 6.4° should be classified as a backslope, 209 

which is associated with linear curvatures. This may or may not be the case for different 210 

landscapes for multiple reasons, such as the possibility that physical properties of 211 

different parent materials may affect slope shape stability. 212 
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2.3 Validation of the hillslope position digital map 213 

The validation of the hillslope position digital map was performed by the 214 

identification of the hillslope position through several field observations and their 215 

comparison with the user-calibrated model prediction. For this, a concordance analysis 216 

was performed, which includes the Kappa statistic (K) (Eq. 1) and its standard error, 217 

along with analyzing the confusion matrix that includes the global, producer’s, and 218 

user’s accuracy. 219 

 220 

𝐾𝐾 = 𝑁𝑁∑ 𝑋𝑋𝑋𝑋𝑋𝑋−∑ (𝑋𝑋𝑖𝑖+  ∗  𝑋𝑋+𝑖𝑖)𝑟𝑟
𝑖𝑖=1

𝑟𝑟
𝑖𝑖=1
𝑁𝑁2−∑ (𝑋𝑋𝑖𝑖+  ∗   𝑋𝑋+𝑖𝑖)𝑟𝑟

𝑖𝑖=1
       Eq. 1 221 

 222 

Where: N is the total number of observations, 𝑟𝑟 is the number of lines in the matrix, 𝑥𝑥𝑥𝑥𝑥𝑥 223 

is the number of observations in the line 𝑖𝑖 and row 𝑖𝑖, respectivelly, and 𝑥𝑥𝑖𝑖+ and 𝑥𝑥+𝑖𝑖 are 224 

the total quantity in the line 𝑖𝑖 and row 𝑖𝑖, respectively. 225 

 226 

The Kappa statistic is a measure of interobserver agreement that quantifies 227 

the degree of agreement beyond what would be expected by chance alone. This 228 

measure has a maximum value of 1, representing total agreement, and minimum 229 

values close to or below 0, which indicates no agreement or a level of agreement that 230 

would be expected by chance (Table 1) (Agrestini, 2007; Landis and Koch, 1977). A 231 

total of 191 field observations were recorded by GPS to carry out this validation, 232 

covering all the positions on multiple hillslopes and different lithologies. 233 

 234 

Table 1. Values of the Kappa statistic for assessing the degree of agreement (after 235 

Landis and Koch, 1977). 236 

Kappa statistic Degree of agreement 
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<0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost perfect 

2.4 Soil sampling and analysis 237 

A total of 96 soil surface (0-20 cm) samples were collected with an auger on 238 

selected sites to cover both the five hillslope elements on multiple hillslopes and 239 

different lithologies present in the study area. Sample locations included 26 sites on 240 

summits, 28 on shoulders, 17 on backslopes, 17 on footslopes, and 8 on toeslopes. 241 

These soil samples were air-dried, sieved (2-mm mesh), and analyzed. Chemical 242 

analyses consisted of pH in water and exchangeable cations. Aluminum (Al3+), calcium 243 

(Ca2+), and magnesium (Mg2+) were extracted by KCl solution 1 mol L-1, which Ca2+ 244 

and Mg2+ were quantified by atomic absorption spectrophotometry and Al3+ by titration 245 

with NaOH solution 0.025 mol L-1. Sodium (Na+) and potassium (K+) were extracted by 246 

Mehlich-1, which were quantified by flame photometry. Potential acidity (H + Al) was 247 

extracted by calcium acetate solution 0.5 mol L-1 at pH 7 and determined by titration 248 

with NaOH solution 0.025 mol L-1. These analyses were performed according to current 249 

Brazilian Soil Survey methods (EMBRAPA, 2011). These results allowed calculating 250 

the cationic exchange capacity at pH 7.0 (CEC = Ca2+ + Mg2+ + K+ + Na+ + H+ + Al3+), 251 

and base saturation (V = [Ca2+ + Mg2+ + K+ + Na+/CEC]*100). Analysis of particle size 252 

by soil separates was performed according to Gee and Or (2002), where clay fraction 253 

(<0.002 mm) was measured by the hydrometer method, total sand fraction (2 - 0.05 254 

mm) by sieving, and silt fraction (0.05 - 0.002 mm) obtained by the difference. The 255 

dispersing agent used was a mixture of sodium hexametaphosphate 0.1N and sodium 256 



13 
 

hydroxide 0.1N. These soil analyses were selected because they are the primary tests 257 

used for soil classification according to the Brazilian Soil Classification System 258 

(EMBRAPA, 2013). 259 

2.5 Evaluation of hillslope position’s effectiveness to identify detailed soil map 260 

units 261 

The purpose for any kind of map unit is to express variation as appropriate to 262 

the map scale. Ideally, each map unit should have something different about it with 263 

respect to each of the other map units. Given the multi-dimensional characteristic of 264 

soil, it is reasonable for some soil map units to be similar or the same in some respects, 265 

but different in another. As long as respective map units are significantly different in 266 

one soil property of value to the map user, the division is worthwhile. 267 

To evaluate the effectiveness of soil map unit identification based on the DHP 268 

calibrated in this study, we expect that samples in the respective DHP delineations 269 

should be significantly different for at least one measured soil property. Statistical 270 

significance was tested first by variance analysis (ANOVA) to assess if there were 271 

significant differences between any of the DHP-based map units for a given soil 272 

property. 273 

Parent material is an important factor of soil formation and therefore areas 274 

differentiated by geologic map unit should also reflect differences in soil properties. 275 

Considering the hierarchy of phenomenon scale recognized by soil scientists, 276 

topographic units should sub-divide parent material units (Miller and Schaetzl, 2015b). 277 

In other words, topographic processes are modifying parent materials to contribute to 278 

the resulting soil pattern. To consider the interaction between parent material and 279 

topography, statistical analysis was also conducted on parent material map units and 280 

then the two together.  281 
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To further explore DHP as a useful subdivision of parent material for soil 282 

mapping, student’s t-tests were performed iteratively across each hillslope position 283 

within a given parent material. To minimize the issue of too few samples in a map unit, 284 

this analysis focused on the Itararé Formation (CPi) parent material, where the majority 285 

of the soil samples were taken (n=52) because of its greater occurrence in the study 286 

area (Figure 2). 287 

3. Results and discussion 288 

3.1 Validation of the hillslope position map 289 

Application of the customized DHP classification model to the study area 290 

presented many delineations of hillslope elements (Figure 4). This complexity in the 291 

landscape is likely related to the intense degree of dissection in the area, promoted by 292 

the proximity to its local base level, i.e the Piracicaba River. Local relief reaches 293 

approximately 120 meters.  294 

 295 
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Figure 4. Digital map of the hillslope position obtained from the customized DHP 296 

classification model. 297 

 298 

The digital segmentation of hillslope position showed a substantially high 299 

agreement with the field observations, with a Kappa of 0.7, and a global accuracy of 300 

77% (Table 2). Miller and Schaetzl (2015a), using a similar model to segment hillslope 301 

position in Ottawa county, Michigan, USA, obtained a Kappa of 0.49 and global 302 

accuracy of 59%. The authors argued that disagreements between model prediction 303 

and field observations could be related to the combination of noise in the DEM, 304 

positional uncertainty, and the subjectivity associated with human judgment of hillslope 305 

position. It is worth noting that the variability in human judgment was reduced in this 306 

study by having a few soil scientists working together in the field. Indeed, Dikau (1989) 307 

and Williams et al. (2012) also pointed out that tacit and manual categorization of relief 308 

units is influenced by the individual's experience in landscape interpretation. 309 

 310 

Table 2. Confusion matrix for the validation of the customized digital hillslope position 311 

model (Kappa = 0.7 and standard error = 0.04) 312 

  Field observation  

 
Hillslope position SU SH BS FS TS User’s accuracy 

(%) 

D
ig

ita
l m

od
el

 Summit 52 1 0 1 0 96 
Shoulder 12 33 3 7 0 60 

Backslope 0 0 38 4 0 90 
Footslope 5 7 0 14 3 48 
Toeslope 0 0 0 1 10 91 

 
Producer’s accuracy 

(%) 75 80 93 52 77  

 Global accuracy (%) 77  
SU: Summit, SH: Shoulder, BS: Backslope, FS: Footslope, and TS: Toeslope. 313 

 314 
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In the few places where there were discrepancies in the classification of 315 

hillslope position for the present study area (Figure 5), they were likely associated with 316 

the data source that generated the DEM. The elevation contour lines were obtained 317 

from old planialtimetric maps that were elaborated by an aerophotogrammetric 318 

restitution process. Errors may have occurred in this process where the soil surface 319 

was covered by some denser and taller vegetation. In these places, the change in the 320 

contour lines’ value may have promoted errors in the generation of the DEM, which 321 

consequently influenced an erroneous calculation of the slope gradient. For example, 322 

where there are two extensive and almost flat summits, the slope gradient was 323 

erroneously calculated to be greater than 1.4°, due to differences of 5 to 15 meters in 324 

the DEM that were observed to not exist in the field (Figure 5). The existence of these 325 

false elevation changes in the DEM resulted in the model classifying part of these areas 326 

as shoulders or footslopes instead of summits, since the steeper slope gradient 327 

calculation moved the classification from the low to the medium slope gradient category 328 

(Figure 3). 329 

 330 

 331 
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 332 

Figure 5. Examples of concordant and discordant points between observations of 333 

hillslope position in the field and determined by the DHP calibrated for this study. 334 

Several of the discordant points tended to coincide with areas on summits (a) that field 335 

observation revealed to not have the relief indicated by the DEM. The landscape in (b) 336 

shows that there is a smooth inclination towards the river, but not sufficient to change 337 

the type of hillslope element. SU: Summit, SH: Shoulder, and BS: Backslope. 338 

 339 

The quality of the DEM depends mainly on the data used for its generation 340 

(Hutchinson and Gallant, 2000). Miller (2013) when using LiDAR data (with 3 m spatial 341 

resolution) for digital terrain analysis found some "noise" in the DEM such as striped 342 
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patterns, which they attributed to the orientation of agricultural crop rows. Therefore, 343 

even using a DEM obtained from other sources and with higher spatial resolution, there 344 

may be other sources of interference for deriving the desired digital terrain attributes. 345 

The DHP model classified some parts of the study area as shoulder and 346 

footslope alternations (Figure 4), which could not be confirmed explicitly in the field. 347 

These parts can be generically identified as being 'gently undulating' along the hillslope 348 

with slope gradients between 1.4 and 6.4º. On complex slopes, a 'gently undulating' 349 

relief would correspond to this type of alternation of hillslope elements based on the 350 

model of Ruhe (1960) (Figure 1). In this study, shoulders and footslopes were defined 351 

as having slope gradients between 1.4 and 6.4º and the difference between them being 352 

their profile curvature. As these elements occur subtly in the landscape, their 353 

identification in the field was very difficult, potentially resulting in their erroneous 354 

categorization from the human observation (Table 2). Nonetheless, the classification 355 

of the study area as having the pattern of complex hillslopes by the DHP model 356 

corresponds with understanding of the landscape. Although similar patterns could be 357 

produced from the influence of digitized contour lines from the topographic map, they 358 

do not directly coincide with the shoulder to footslope undulations. 359 

In the hillslope position model described by Ruhe (1960) and Wysocki et al. 360 

(2011), the elements are interconnected and express the dominant surface process 361 

that act on each of them. In part, this is a question of analysis scale and sorting the 362 

effective size of topographic features needed to influence the distribution of soil 363 

properties. Also, the ‘gently undulating’ relief that was observed in the field was in both 364 

the profile and plan directions of the hillslope. Because hillslope position only describes 365 

the slope profile, it does not account for the full three-dimensional geometry of the 366 

hillslope (Santos et al., 2015; Young, 1980). 367 
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The classification metric of user's accuracy describes the inclusion of areas 368 

within a predicted class to which they do not belong in reality. The higher the user's 369 

accuracy value, the less inclusion in an improper class. User's accuracy values above 370 

90% for summit, backslope, and toeslope were obtained (Table 2), which 371 

demonstrates that the model has a good ability to separate contrasting hillslope 372 

positions. However, for the identification of shoulders and footslopes, the user's 373 

accuracy was 60% and 48%, respectively, mainly because they were confused with 374 

summits and shoulders, respectively (Table 2). The model used for this study tended 375 

to classify more hillslope elements as shoulders and footslopes than those observed 376 

in the field. Miller and Schaetzl (2015a) obtained a user's accuracy of 33% and 8% for 377 

shoulders and footslopes, respectively, which suggests some challenges in defining 378 

those hillslope positions. 379 

The producer's accuracy is the exclusion of areas for a class that should be 380 

included. The higher the producer's accuracy value, the lower the occurrence of this 381 

exclusion. The lowest value was obtained for the footslopes at 52% (Table 2). 382 

However, more areas were classified in the field as summits than detected by the 383 

model. These discrepancies may be related to the difficulty in separating them - both 384 

by the field observation and digital methods - where they present gradual limits in the 385 

landscape (Bathgate and Duram, 2003). For footslopes, there was a lower producer's 386 

accuracy due to field observations of this position often being classified as shoulders 387 

by the DHP model. Possible explanations of this discrepancy were previously 388 

discussed. Specifically, alternating shoulders and footslopes in the study area can 389 

occur subtly in the landscape, which hinders recognition in the field. Backslopes 390 

presented the highest producer's accuracy, with 93% (Table 2). Similar values were 391 
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found for the user's accuracy of backslopes, which suggests a good capacity of the 392 

model for distinguishing this hillslope position. 393 

 394 

3.2 Effectiveness of hillslope position to identify detailed soil map units 395 

The pre-existing geologic map of the study area identified six map units 396 

(Figure 2). ANOVA of soil samples located within those respective parent material map 397 

units identified significant differences for all of the soil properties measured (Table 3). 398 

ANOVA performed on the same soil samples categorized by only DHP were not 399 

significant for all soil properties, but were significant for soil depth, pH, Mg2+, H + Al, 400 

Al3+, and clay content. Because both parent material and topographic factors can 401 

cause differences in soil properties, the significant differences between map units 402 

based on these factors individually suggests they are both reasonable criteria to 403 

identify detailed soil map units. 404 

 405 

Table 3. Statistically significant differences between map units based on parent 406 

material (PM), this study’s calibrated hillslope position model (DHP), and those two 407 

criteria combined (PM+DHP). Significance coded by *** = 0, ** = 0.001, * = 0.01, . = 408 

0.05. 409 

  Soil depth pH Na+ K+ Ca2+ Mg2+ Bsat H + Al Al3+ CEC Sand Silt Clay 
PM *** ** *** . * *** *** *** * *** *** *** *** 
DHP * *    .  *** **    ** 
PM + DHP ***   **     *     *       *** 

Bsat: base saturation; CEC: cationic exchange capacity 410 

 411 

Subdividing the available soil sample points by both parent material and DHP 412 

reduced the quantity of samples in the respective categories of comparison, which 413 

limited the conclusions that could be made by the statistical analysis. However, 414 
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differences for the combined parent material and DHP map units remained statistically 415 

valid for soil depth, Na+, Mg2+, Al3+, and clay content (Table 3). Ovalles and Collins 416 

(1986) also found relation of soil properties with both hillslope position and parent 417 

material. A relevant result to be noticed is that the clay content was highly significant 418 

for all three stratification criteria used. This soil attribute is one of the most important 419 

for soil mapping and it is sensitive to variation in soil formation factors. 420 

The Itararé Formation parent material dominated the study area and contained 421 

sufficient soil samples to compare digitally classified hillslope positions within that 422 

parent material. Results from comparing each hillslope position with the other positions 423 

in that parent material map unit for the measured soil properties indicated multiple 424 

statistically significant differences (Table 4). 425 

The summit hillslope position is the most geomorphically stable and least 426 

erosive part of a hillslope (Wysocki et al., 2011). The soil developed in this position 427 

tends to be deep, well-drained, dominated by vertical water movement, and have 428 

strong horizon development (Hall, 1983; Schoonover and Crim, 2015). Generally, soil 429 

in this hillslope position has low pH due to the intense leaching. However, in this study 430 

the pH was higher here than all the other positions (Table 4). This difference between 431 

what would be expected pedologically and the observed result may be related to the 432 

correction of acidity by liming. Flat areas in this region are more favorable for 433 

agriculture and are frequently managed for that purpose. Ovalles and Collins (1986) 434 

also related higher pH values in summit positions with agricultural use. 435 

 436 

Table 4. Matrices of t-test results comparing hillslope positions within the Itararé 437 

Formation (CPi) parent material by measured soil chemical properties and soil particle 438 

size separates in the surface layer (0-20 cm). 439 
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pH 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 

Shoulder p<.05   no no no 

Backslope p<.05 no   no no 

Footslope p<.05 no no   no 

Toeslope p<.05 no no no  

Na+ 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 
Shoulder no   no no p<.05 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no  

K+ 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no p<.05 
Shoulder no   no no no 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Ca2+ 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 
Shoulder p<.05   no no no 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Mg2+ 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 

Shoulder no   no no p<.05 

Backslope no no   no p<.05 
Footslope no no no   no 
Toeslope no no no no   

Al3+ 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no p<.05 p<.05 p<.05 

Shoulder no   no no p<.05 

Backslope no no   no p<.05 

Footslope no no no   p<.05 
Toeslope no no no no   

H + Al 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 
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Summit   no p<.05 p<.05 p<.05 
Shoulder no   no no p<.05 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Cationic exchange capacity 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no p<.05 

Shoulder no   no no p<.05 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Base saturation 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 
Shoulder p<.05   no no no 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Sand 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 
Shoulder no   no no no 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no p<.05 no no   

Silt 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no no 
Shoulder no   no no no 
Backslope no no   no no 
Footslope no no no   no 
Toeslope no no no no   

Clay 
1 tail: Col mean > Row mean? Summit Shoulder Backslope Footslope Toeslope 

Summit   no no no p<.05 

Shoulder no   no no p<.05 

Backslope p<.05 no   no p<.05 

Footslope no no no   p<.05 
Toeslope no no no no   

 440 

Shoulders are less stable and are subject to more erosion than summits 441 

because of their convex shape and greater slope gradient. Soil in this hillslope position 442 
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tends to be similar to summit soil but is thinner and may appear to be vertically 443 

compressed or truncated (Wysocki et al., 2011). The shoulders in this study had lower 444 

Ca2+ and base saturation than summits and higher sand contents than toeslopes. Malo 445 

et al. (1974) also found the highest sand content on shoulders and they stressed that 446 

this hillslope position has more erosional activity than toeslopes, which effectively 447 

concentrates the coarse material by removal of the fines. 448 

Backslopes experience greater surface runoff and erosional transport. 449 

Because of this, soil developed in this position are generally shallower than the other 450 

positions. Aluminum and potential acidity (H + Al) were higher in this position than 451 

summits, which may be related to the absence of management practices for 452 

improvement of acidic conditions. Agricultural management of backslopes in this area 453 

is not common because the steep slopes are not favorable for crops. Another notable 454 

difference of soil properties within backslopes was that clay content was lower than the 455 

summit soil, which we associate with the erosional potential of this position. 456 

In footslope and toeslope positions, the decrease in slope gradient reduces 457 

the carrying capacity of flowing water and increases sediment accumulation. 458 

Footslopes merge downslope with toeslopes in the simple slopes models. The 459 

comparatively low slope gradient and low-lying position of toeslopes allows for the 460 

combined influence of sedimentation from upslope and alluvial processes from 461 

adjacent streams (Wysocki et al., 2011). Thus, soil in toeslope positions are highly 462 

variable and normally present clay content higher than all the other positions (Hall, 463 

1983; Malo et al., 1974). In this study, toeslopes had significantly higher cation 464 

exchange capacity than the summits and shoulders as well as higher clay content than 465 

all other positions (Table 4). 466 
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It is probable that the pattern of processes operating on hillslopes and the 467 

pedologic reflection of those processes will exist on other landscapes under similar 468 

conditions. For example, we identified similar patterning of multiple soil properties in 469 

our study area as Ovalles and Collins (1986) identified in north central Florida and Malo 470 

et al. (1974) identified for a landscape in North Dakota with a closed drainage system. 471 

In Malo et al. (1974), the authors noted a degree of universality in the relationships 472 

between hillslope position and soil properties observed in studies conducted in Iowa, 473 

Angola, Russia, among others (Prill and Riecken, 1958; Dan and Yaalon, 1964; 474 

Walker, 1966; Dalrymple et al., 1968; Diniz and Aquiar, 1972; Guidilin, 1973; 475 

Spiridonov, 1973). While the DHP model offers a quantitative, repeatable approach for 476 

classifying hillslope positions, it was necessary to calibrate the model to the 477 

geomorphic geometry of the landscape examined in this research. Therefore, with 478 

proper calibration, the DHP model tested in this study could be a basis for predicting 479 

the spatial distribution of soil attributes in multiple landscapes. This study 480 

demonstrated the model’s potential to contribute to the detailed digital soil mapping of 481 

a tropical landscape. 482 

4. Conclusions 483 

When calibrated to local knowledge of the landscape, the model proposed by 484 

Miller and Schaetzl (2015a) allowed segmentation of hillslope position with high 485 

accuracy in this Brazilian study area. Summit, backslope, and toeslope were the 486 

hillslope elements best identified by the method used. There were some discrepancies 487 

in the shoulder and footslope identification, which was probably associated with issues 488 

in the DEM generated from inaccurate planialtimetric maps. Misclassifications 489 

occurred in limited areas that were prone to errors in the elevation data due to tall 490 

vegetation. 491 
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Variance analysis of soil samples located within the respective parent material 492 

map units identified significant differences for all the soil properties measured. When 493 

performed on the same soil samples categorized by only DHP, not all soil properties 494 

were significantly different. However, when differences in soil properties between 495 

hillslope positions were examined within a single parent material, at least one hillslope 496 

position was significantly different than the others for each soil property. These results 497 

suggest that the DHP map associated with geologic information can be useful for 498 

identifying detailed soil map units and to support future digital soil mapping. 499 
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