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Abstract: Determination of time-weighted average (TWA) concentrations of volatile organic
compounds (VOCs) in air using solid-phase microextraction (SPME) is advantageous over other
sampling techniques, but is often characterized by insufficient accuracies, particularly at longer
sampling times. Experimental investigation of this issue and disclosing the origin of the problem
is problematic and often not practically feasible due to high uncertainties. This research is aimed
at developing the model of the TWA extraction process and optimization of TWA air sampling by
SPME using finite element analysis software (COMSOL Multiphysics, Burlington, MA, USA). It was
established that sampling by porous SPME coatings with high affinity to analytes is affected by slow
diffusion of analytes inside the coating, an increase of their concentrations in the air near the fiber tip
due to equilibration, and eventual lower sampling rate. The increase of a fiber retraction depth (Z)
resulted in better recoveries. Sampling of studied VOCs using 23 ga Carboxen/polydimethylsiloxane
(Car/PDMS) assembly at maximum possible Z (40 mm) was proven to provide more accurate results.
Alternative sampling configuration based on 78.5× 0.75 mm internal diameter SPME liner was proven
to provide similar accuracy at improved detection limits. Its modification with the decreased internal
diameter from the sampling side should provide even better recoveries. The results obtained can be
used to develop a more accurate analytical method for determination of TWA concentrations of VOCs
in air using SPME. The developed model can be used to simulate sampling of other environments
(process gases, water) by retracted SPME fibers.

Keywords: solid-phase microextraction; air sampling; air analysis; volatile organic compounds;
COMSOL; time-weighted average

1. Introduction

Analysis of time-weighted average (TWA) concentrations of volatile organic compounds (VOCs)
in outdoor and indoor (occupational) air is an important part of environmental monitoring programs
aiming at chronic exposure or background concentrations. Such analysis is commonly conducted using
gas chromatography (GC) in combination with various sampling and sample preparation approaches.
Passive sampling is a common approach for determination of TWA concentrations because of its
simplicity and low cost. However, most techniques require additional sample preparation and thermal
desorption in a separate unit connected to a GC [1].
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Solid-phase microextraction (SPME) is the only TWA sampling technique, that does not require
additional stages and/or equipment [2]. It is based on sampling via the passive VOCs extraction
by a fiber coating retracted inside a protecting needle followed by thermal desorption inside a GC
injection port [3,4]. Desorption of VOCs from the SPME coating is fast and does not require cryogenic
or another type of focusing as is the case with whole air- or sorbent tube-based samples [5]. In the
TWA mode, the SPME device with retracted fiber is deployed into a sampling location for the desired
period (e.g., 24 h for daily average sampling), then isolated from possible interferences during storage
and transport to a laboratory and analyzed (Figure 1). The method can be considered “green” because
it fulfills all the requirements of green analytical chemistry [6,7].
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Figure 1. The typical procedure of time-weighted average sampling and analysis using retracted
solid-phase microextraction fiber.

Calibration is relatively simple compared with a “classic” exposed SPME fiber that is subject to
variable thickness of the boundary layer that affects the rate of extraction [8,9]. TWA sampling by
retracted SPME fibers is described by the simplified version of the Fick’s law of diffusion [3]:

C =
n× Z

A× D× t
(1)

where C—TWA concentration of an analyte, mol·m−3; n—amount of an analyte extracted by a coating,
mol; Z—diffusion path length (distance between the needle opening to the tip of the retracted fiber), m;
A—internal cross-section area of a protecting needle, m2; D—gas-phase molecular diffusion coefficient
for a VOC, m2·s−1; t—sampling time, s.

Equation (1) can also be interpreted by an extraction process, i.e., the amount of analyte extracted
is proportional to TWA concentration outside of the SPME needle opening, needle opening area,
sampling time, and the gas-phase molecular diffusion coefficient, and inversely proportional to
retraction depth.

Several important assumptions are made with the application of Equation (1) to TWA-SPME, i.e.,
(1) the fiber coating acts as a “zero sink” (without desorption of analytes) and does not affect the rate of
sampling; (2) the SPME fiber coating is consistent and reliably responding to changing concentrations
in the bulk gas-phase outside of the needle opening; and (3) the gas-phase concentration in the bulk
are the same as at the face of the fiber needle opening.

To date, all published research on TWA-SPME has used Equation (1) as the basis of
quantification [3,4,10–19] of VOCs in an outdoor air, laboratory air, pyrolysis reactor air, engine
exhaust, and process air. Equation (1) predicted measured gas concentrations with reasonable accuracy
and precision. However, more evidence suggests that the discrepancies between the model and
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experimental data exist. Woolcock et al. [17] reported a significant departure from the zero-sink
assumption and from Equation (1) suggesting “apparent” diffusion coefficient (D) dependent on both
sampling time (t) and retraction depth (Z). Baimatova et al. [11] reported significant differences in
the extracted mass of naphthalene gas for different SPME coatings, i.e., that Equation (1) does not
incorporate. Recent research by Tursumbayeva [20] shows that the discrepancy between Equation
(1) and experimental data are amplified when a wide-bore glass liner is used for passive sampling
with SPME fiber retracted inside it. Work by Tursumbayeva [20] suggests that not only the tip of the
fiber coating (at the physical retraction depth Z) is involved in extraction, but the whole fiber coating
surface with an “apparent” Z that is ~55% longer. Apparent saturation sorption kinetics might also be
involved as predicted by Semenov et al. (2000) [21]. Thus, research is warranted to address apparent
problems with the use of Equation (1).

Despite the simplicity, quantification of TWA concentrations of VOCs in ambient air using
SPME can be associated with poor accuracy and precision [19]. Possible problems are variability
of extraction efficiencies associated with inherent and acquired variability between individual
SPME fibers, adsorption of analytes by metallic surfaces [16,19], effects of sampled air temperature
and humidity.

Experimental optimization of the gas sampling process is very time-consuming, particularly at
longer extraction times (>24 h). Such experimental setups are quite complex, and difficult to build and
properly maintain in steady-state conditions (e.g., without leaks and with minimal impact of sorption
onto the system itself). During experiments, the sensitivity of the analytical instrument can change
leading to additional uncertainties. Uncertainties during experimental method optimization do not
allow studying effects of parameters having potentially minor impacts on accuracy and precision.

Numerical simulation could provide useful data at various sampling parameters in a much faster
and more accurate way. It could also allow modeling of the sensitivity of Equation (1) to ranges of
practical (user controlled) parameters for air sampling with retracted SPME. COMSOL Multiphysics
allowed efficient numerical modeling of the SPME process using a finite element analysis-based
model [22–27] for liquid-phase extraction and absorption by SPME coating. Using this approach, it was
possible to predict sampling profiles of analytes, which were consistent with experimental data.

The goal of this research was to develop a model for SPME with both absorptive and adsorptive
fibers located (retracted) inside a protecting needle using a finite element analysis-based model
(COMSOL Multiphysics) and use it to disclose potential sources of inaccuracies in the quantification
of time-weighted average concentrations of VOCs in ambient air. Specifically, the effects of SPME
sampling time, coating type, diffusion coefficient, fiber coating-gas distribution constant, the internal
diameter of protecting needle, and SPME retraction depth on extraction were modeled for several
common VOCs. Based on the results of the modeling, alternative sampling geometries were proposed.

2. Results and Discussion

2.1. Time-Weighted Average (TWA) Sampling Profiles of Benzene from Air Using Different Coatings

A sampling of VOCs from the air via retracted SPME has been described using a simplified form
of the Fick’s first law of diffusion (Equation (1)). However, this equation works only when a SPME
fiber acts as a “zero sink” sorbent. Modeling using COMSOL Multiphysics software (methodology
is provided in the Materials and Methods section) allowed obtaining sampling profiles for benzene
(Figure 2). Closer inspection of Figure 2 illustrates that none of the studied coatings behave as “zero
sink” sorbent adhering to Equation (1), an effect amplified by extended sampling time. After 100,000 s
of sampling, Carboxen/polydimethylsiloxane (Car/PDMS), polydimethylsiloxane/divinylbenzene
(PDMS/DVB), and polydimethylsiloxane (PDMS) extracted 77, 38 and 2.7%, respectively, of the
theoretically required for a passive sampling technique. Even if sampling time is decreased to 10,000 s,
recoveries for these three SPME fiber coatings were 91, 69 and 12.6%, respectively. At sampling time
1000 s, recoveries were 97, 88 and 32% for Car/PDMS, PDMS/DVB and PDMS, respectively.
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One possible explanation for the departure from Equation (1) is that it can be caused by the increase
of the analyte concentration in the air near the fiber tip (Figure 3a), which is directly proportional to
the analyte concentration in the fiber tip continuously increasing during the sampling. The increase
of analyte concentration in the air near the fiber tip results in the decrease of the analyte flux (i.e.,
the number of moles of analyte entering protecting needle per cross-sectional area and time) from the
sampled air with time. This affects the sampling rate (i.e., number of moles of an analyte extracted by
a coating per unit of time), which was previously assumed to be constant [3,4,10–19].

SPME fiber coating can affect the apparent rate of sampling. This was previously assumed to
be negligible. According to Figure 3, Car/PDMS is the most efficient coating for TWA sampling of
benzene because it provides the highest benzene extraction effectiveness indicated by the highest
distribution constant. However, sampling by this coating is limited by the slow diffusion of an analyte
via pores of the adsorbent (Figure 3b). At sampling time 100,000 s, the closest 1 mm of the Car/PDMS
coating to the needle opening contains 41% of the total extracted analyte. Benzene concentration
in the fiber tip is about 500 times higher than in its other end (furthest from the needle opening).
For PDMS/DVB coating, the concentration in the tip is only about 24% higher. Slower diffusion of
benzene via pores of Car/PDMS fiber is caused by the higher affinity of benzene to the surface of
the solid phase (higher distribution constant), and lower porosity. Such non-uniform distribution of
analytes in the Car/PDMS may be the reason of their slow desorption after TWA sampling and highly
tailing peaks, particularly for most volatile analytes, which cannot be cold-trapped and refocused in a
column front without cryogens. This problem also decreases the accuracy of the method.

The accuracy of the model was validated by increasing the pore diffusion coefficient of benzene
inside Car/PDMS coating by three orders of magnitude. In this case, the benzene sampling profile was
the same as predicted by Equation (1). This also confirms that an analyte diffusion coefficient inside a
coating affects sampling profile and the accuracy of its quantification using TWA SPME. The model
has also been validated in the 3D mode of COMSOL software, which is much slower compared to
2D. The difference between the results of 2D and 3D modeling were below 2%, which confirms the
accuracy of the 2D model.
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Figure 3. Concentrations of benzene in diffusion path air (a) and coating (b) of the retracted solid-phase
microextraction (SPME) device after 100,000 s of time-weighted average (TWA) air sampling at Z = 10 mm.

2.2. Effect of the Diffusion Coefficient and Distribution Constant on Sampling of Analytes by 85-µm
Carboxen/Polidimethylsiloxane Coating

The Car/PDMS coating was used for simulating extraction of other common VOCs associated
with a wide range of diffusion coefficients and distribution constants. During 100,000 s, 3.3, 3.9,
3.5 and 3.3 pmol of dichloromethane, acetone, toluene, and benzene, respectively, were extracted,
which corresponds to 68, 65, 82 and 77% of the theoretical values predicted by Equation (1) (Figure 4).
The lowest value was observed for acetone having a distribution constant close to dichloromethane,
and the highest diffusion coefficient among studied compounds. Highest recovery was observed
for toluene having the lowest diffusion coefficient and the highest distribution constant. Thus, both
diffusion coefficient and distribution constant affect the recovery of sampled analytes. Highest recovery
can be achieved at the lowest diffusion coefficient and highest distribution constant. At sampling
times 1000 and 10,000 s, recoveries are greater (95–98 and 85–93%, respectively) and less affected by
the analyte’s properties.
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Figure 4. Effect of sampling time of TWA recoveries of analytes having different diffusion coefficients
and distribution constants using 85-µm Car/PDMS fiber (T = 298 K, Z = 10 mm, 24 ga needle, p = 1 atm,
C = 0.641 µmol·m−3).
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2.3. Effect of a Protecting Needle Gauge Size

Commercial SPME fiber assemblies are available with two different sizes of a protecting needle
24 ga and 23 ga having an internal diameter (I.D.) 310 and 340 µm, respectively. A cross-section
area of the 23 ga needle is 20.3% greater than that of 24 ga needle, which (according to Equation (1))
should result in the proportionally greater amount of an analyte extracted by a 23 ga SPME assembly.
However, as shown above, faster extraction rates result in a faster saturation of the coating and lower
recovery at longer sampling times. According to the results of COMSOL simulations, despite ~19%
greater amounts of extracted analytes compared to a 24 ga assembly, sampling with a 23 ga assembly
provided similar recoveries of analytes. Such results can be explained by considering the effect of
a greater space between the coating and the internal wall of the protecting needle allowing faster
diffusion of analytes to the side and rear sides of the coating (Figure 5). This is consistent with recent
experimental observations where straight glass GC liners were used (actual measured I.D. is ~0.84 mm
compared with the nominal 0.75 mm I.D.) instead of SPME needle for sampling with retracted fiber [20].
Thus, TWA sampling using 23 ga SPME assembly is recommended over 24 ga for achieving lower
detection limits without negative impact on the accuracy. All further modeling was conducted using a
23 ga SPME device.

Molecules 2018, 23, x FOR PEER REVIEW  6 of 14 

 

2.3. Effect of a Protecting Needle Gauge Size 

Commercial SPME fiber assemblies are available with two different sizes of a protecting needle 
24 ga and 23 ga having an internal diameter (I.D.) 310 and 340 μm, respectively. A cross-section area 
of the 23 ga needle is 20.3% greater than that of 24 ga needle, which (according to Equation (1)) should 
result in the proportionally greater amount of an analyte extracted by a 23 ga SPME assembly. 
However, as shown above, faster extraction rates result in a faster saturation of the coating and lower 
recovery at longer sampling times. According to the results of COMSOL simulations, despite ~19% 
greater amounts of extracted analytes compared to a 24 ga assembly, sampling with a 23 ga assembly 
provided similar recoveries of analytes. Such results can be explained by considering the effect of a 
greater space between the coating and the internal wall of the protecting needle allowing faster 
diffusion of analytes to the side and rear sides of the coating (Figure 5). This is consistent with recent 
experimental observations where straight glass GC liners were used (actual measured I.D. is ~0.84 
mm compared with the nominal 0.75 mm I.D.) instead of SPME needle for sampling with retracted 
fiber [20]. Thus, TWA sampling using 23 ga SPME assembly is recommended over 24 ga for achieving 
lower detection limits without negative impact on the accuracy. All further modeling was conducted 
using a 23 ga SPME device. 

 
Figure 5. Effect of protecting needle gauge size concentration profile of benzene in the Car/PDMS 
coating after 100,000 s sampling. 

2.4. Effect of Diffusion Path (Z) at Constant Analyte Concentration in Sampled Air 

Diffusion path length is one of the two parameters that can easily be adjusted by users for 
achieving the optimal sampling conditions (the other one being sampling time). The increase of Z 
decreases the rate of sampling. It slows down the saturation of the fiber tip and increases the 
recoveries of analytes (Figure 6) at longer sampling times. For all studied analytes, at t = 100,000 s 
and Z = 40 mm, recovery was 86–93% compared to 66–82% at Z = 10 mm (Figure 6). The only major 
drawback of the increase of Z is the decrease of an analyte amount extracted by a coating and a lower 
analytical signal, which result in the increased detection limits. At Z = 40 mm, C = 50 μg·m−3 (0.641 
μmol·m−3) and t = 100,000 s, 23 ga Car/PDMS assembly extracts ~100 pg of benzene. For GC-mass 
spectrometry (MS), the detection limit of benzene is less than 2 pg [28] meaning that the detection 
limit will be ~1 μg m−3, which is five times lower than the maximum permissible annual average 
concentration of benzene in ambient air in the European Union (5 μg·m−3). In other countries, 
permissible concentrations are even higher. 
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2.4. Effect of Diffusion Path (Z) at Constant Analyte Concentration in Sampled Air

Diffusion path length is one of the two parameters that can easily be adjusted by users for
achieving the optimal sampling conditions (the other one being sampling time). The increase of Z
decreases the rate of sampling. It slows down the saturation of the fiber tip and increases the recoveries
of analytes (Figure 6) at longer sampling times. For all studied analytes, at t = 100,000 s and Z = 40 mm,
recovery was 86–93% compared to 66–82% at Z = 10 mm (Figure 6). The only major drawback of the
increase of Z is the decrease of an analyte amount extracted by a coating and a lower analytical signal,
which result in the increased detection limits. At Z = 40 mm, C = 50 µg·m−3 (0.641 µmol·m−3) and
t = 100,000 s, 23 ga Car/PDMS assembly extracts ~100 pg of benzene. For GC-mass spectrometry (MS),
the detection limit of benzene is less than 2 pg [28] meaning that the detection limit will be ~1 µg·m−3,
which is five times lower than the maximum permissible annual average concentration of benzene
in ambient air in the European Union (5 µg·m−3). In other countries, permissible concentrations are
even higher.
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2.5. Effect of Diffusion Path (Z) at Variable Analyte Concentration in Sampled Air (Worst-Case Scenario)

Time-weighted average sampling is conducted during long time periods (e.g., 24 h), during
which concentrations of analytes in the sampled air can vary significantly. The apparent worst-case
scenario can be when in the first half of sampling, concentration is much higher than during the second
half. When the concentration of an analyte in the sampled air becomes close to or lower than the
concentration near the fiber tip, the flux of analytes inside a protecting needle can go to a reverse
direction resulting in desorption of analytes from a coating. However, this violates the main principle
of TWA sampling: the rate of sampling should depend only on the concentration of an analyte in a
sampled air. It means that if an analyte concentration in sampled air is zero, a rate of extraction should
also be equal to zero. Thus, the aim of this part of the work was to model such a case and estimate the
highest possible uncertainty of the TWA SPME sampling approach.

As was assumed, desorption of dichloromethane, acetone, and benzene from a fiber started after
concentrations of analytes dropped from 1.176 to 0.1176 µmol·m−3 in the middle of the extraction
process (Figure 7). Desorption of toluene was not observed because it has the highest distribution
constant among all studied analytes. However, the toluene sampling rate after the drop of its
concentration in sampled air was lower than theoretical. Recoveries of analytes at Z = 10 mm dropped
from 65–82 to 52–70%, at Z = 20 mm from 78–90 to 67–79%, at Z = 30 mm from 85–93 to 73–82,
at Z = 40 mm from 86–93 to 75–82% (Figure 7). Only at Z = 40 mm, it was possible to keep recovery of
all analytes above 75%. Thus, if possible, for greater accuracy, sampling must be arranged so that no
significant drop in concentration takes place. Such a drop can be observed, e.g., if the end of sampling
is planned for the night when VOCs concentrations in ambient air are typically lower due to much
lower road traffic and other human activities. Also, using shorter sampling times can minimize the
risk of the reverse diffusion when ambient concentrations are predicted to drop significantly.
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2.6. Alternative Geometries for TWA SPME Sampling

As was shown above (Figure 5), an increase of the internal diameter of a protecting needle
provides more space for analytes to diffuse around the coating and better reach the side of the
coating. It decreases the controlling role of the fiber coating tip and should lead to more accurate and
reproducible results.

Tursumbayeva [20] proposed using SPME liner for TWA SPME to avoid sorption of analytes onto
metallic walls of a protecting needle. The same approach can be used to avoid equilibration of analytes
between the fiber tip and the surrounding space after sampling over longer time periods. At variable
concentrations of analytes (as simulated in the previous section), calculated recoveries for VOCs using
Z = 67 mm (Figure 8a) are 73–84%, which are close to the values obtained using retracted fiber at
Z = 40 mm. No improvement was observed because of 0.75-mm I.D. SPME liner has 4.9 times greater
cross-sectional area than 23 ga protecting needle, which results in 2.9 times greater theoretical flux of
analytes from sampled air to the coating under the set Z (67 and 40 mm, respectively). To decrease the
flux of analytes, the liner can be manufactured with a lower I.D. (e.g., 0.34 mm as for 23 ga needle)
from the sampling side almost to the expected location of the fiber as shown in Figure 8b. Under these
conditions, recoveries increased to 88–91% (Figure 9).
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Figure 9. Effect of TWA SPME sampling geometry on recoveries (t = 100,000 s, C0–49,000 s = 1.176 µmol·m−3,
C49,000–51,000 s = 1.176–0.1176 µmol·m−3, C49,000–100,000 s = 0.1176 µmol·m−3).

The use of alternative geometries (Figure 10) resulted in a more uniform distribution of the
analytes in the coating; for 0.75-mm I.D. SPME liner concentrations of analytes near the fiber tip were
only 1.1–2.7 times greater than at another side of the coating. This should result in faster desorption of
analytes, less pronounced peak tailing and greater accuracy of the method. A similar effect is achieved
when using Radiello® passive air sampler [29], which provide a greater surface area of an adsorbent
available for the diffusive air sampling.
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for 100,000 s using the geometry presented in Figure 8a.

3. Materials and Methods

3.1. General Parameters of Modeling

Simulations were completed using COMSOL Multiphysics 5.3a (Burlington, MA, USA) on a
desktop computer equipped with quad-core Core i5 processor and 8 Gb of random-access memory.
For modeling, “Chemical Species Transport” module (“Transport of diluted species” or “Transport of
diluted species in porous media” physics) was used in “Time-Dependent” mode in two dimensions
(axisymmetric). Fick’s second law of diffusion was used by the module:

∂ci
∂t

= ∇× (Di ×∇ci) (2)

Benzene, a ubiquitous air pollutant, was used as a model analyte for most initial calculations.
Diffusion coefficients of benzene in the air and PDMS coating were set to 8.8 × 10−6 and 10−10 m2·s−1,
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respectively [30]. Distribution constant (Kd) for benzene and common SPME coatings was set to 150,000
(85 µm Car/PDMS) [31], 8300 (65 µm PDMS/DVB) [31], and 301 (PDMS) [5]. For dichloromethane,
acetone and toluene, distribution constants between 85 µm Car/PDMS coating and air were set to
72,000, 71,000 and 288,000, respectively [31].

The geometry of a fiber assembly was built in as inputs based on the data provided by
Pawliszyn [5]. Simulations were conducted for Stableflex® (Supelco, Bellefonte, PA, USA) fibers
with a core diameter of 130 µm. For 85 µm Car/PDMS and 65 µm PDMS/DVB, total fiber diameters
were set to 290 and 270 µm, respectively. Calculations were conducted for 24- and 23 ga coatings
having internal diameter of 310 and 340 µm, respectively.

The extra fine free triangular mesh was used for the modeling. To provide better meshing at
the coating−air interface, the resolution of narrow regions was increased to “2”. The computation
was completed in the range between 0 and 100,000 s at the step of 1000 s. The concentration of an
analyte at the tip of the protecting needle was set to 0.641 µmol·m−3, which corresponds to 50 µg·m−3

of benzene.

3.2. Sampling Using Absorptive Coatings

Inward (and outward) fluxes from (or backward to) air into an absorptive coating (Flux1 and
Flux2, respectively) at the boundaries (marked by red lines in Figure 11) were simulated using the
equation, previously proposed by Mackay and Leinonen [32] for the water−air interface:

Flux1 = k×
(

Ca −
C f

Kd

)
; Flux2 = k×

(C f

Kd
− Ca

)
(3)

where: k—flux coefficient, m·s−1; Ca and Cf—concentrations of an analyte in air and coating at the
boundary layer, respectively, mol·m−3; Kd—distribution constant for a VOC between SPME coating
and air.
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Figure 11. The geometry of SPME device (retracted inside a protective needle for TWA sampling) used
for modeling. Note: red lines indicate the boundaries between air and coating.

The true value of the flux coefficient was unknown, but in this research, it was assumed to be
sufficiently high for not affecting the flux, as was recently proposed by Alam et al. [23]. Thus, the flux
coefficient was set to 1000 m·s−1. A further increase of the flux coefficient did not affect the results of
the modeling.

3.3. Sampling Using Adsorptive Coatings

For adsorptive coatings, the “Adsorption” mechanism was activated in the model. The isotropic
diffusion coefficient (in the air inside pores) was the same as for air (set to 8.8, 8.7, 12.4 and 10.1 mm2·s−1

for benzene, toluene, acetone, and dichloromethane, respectively). The approach proposed by Mocho
and Desauziers [33] involving Knudsen diffusion in micro-pores was also tested. However, it was
later rejected for model simplification because the diffusion of analytes inside coating is mainly driven
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by molecular diffusion inside macro-pores. The presence of PDMS binder was not considered in the
model because: (1) it has much weaker affinity to analytes than Carboxen; and (2) the layer of PDMS
in the coating is very thin and should not affect the diffusion of analytes [5]; (3) there is not enough
published information about the exact structure of the coating.

Adsorption was set to “User defined” with a distribution constant (Kp, m3·kg−1) calculated
as a dimensionless distribution constant divided by a coating density (Kd/ρ). Coating porosities
(ε = 0.685 for Car/PDMS and 0.775 for PDMS/DVB) were calculated using intra-particle porosities
(0.37 for Car, and 0.55 for DVB [34]) and inter-particle porosity. The exact value of the latter is
proprietary and not available in the open literature. Taking into account, the spherical shape of
particles and available scanning electron microscope (SEM) photos, the inter-particle porosity of both
coatings was set to the maximum possible value (0.50). A particle porosity (ε) was calculated as the
total volume of pores (0.78 mL for Car, and 1.54 mL for DVB) divided by the total volume of one gram
of material (2.13 mL for Car, and 2.78 mL for DVB). Densities of the coatings were calculated using
free fall densities of the particles (470 kg·m−3 for Car, and 360 kg·m−3 for DVB) [34] and inter-particle
porosity. Effective diffusion coefficients were calculated during the calculations by the COMSOL
software using the Tortuosity model [33]:

De =
ε× Dp

τ
(4)

where: ε—porosity; τ—tortuosity calculated from the porosity [33]:

τ = ε + 1.5× (1− ε) (5)

For Car/PDMS and PDMS/DVB coatings, tortuosity was set to 1.16 and 1.1125, respectively.

4. Conclusions

A finite element analysis-based model (based on COMSOL Multiphysics software) allowed
efficient simulation of TWA air sampling of VOCs using retracted SPME fibers. It was possible to
model the effects of sampling time, coating type (including adsorptive coatings for the first time)
and composition, diffusion coefficient, the distribution constant, the internal diameter of a protecting
needle and diffusion path on the recovery of analytes, their concentration profiles in the air inside
protecting needle, and the coating. The advantages of such a simulation compared to an experiment
are: (1) time and cost savings; (2) lower uncertainty and the possibility to discover minor impacts
of sampling parameters on its performance; and (3) the possibility to understand and optimize a
sampling process in greater detail. The results of this research allowed disclosing potential sources of
the apparent departure from Fick’s law of a diffusion-based model used for quantification of VOCs
with retracted SPME.

It was established that sampling by porous coatings with high affinity to the analyte (Car/PDMS)
is affected by the saturation of the fiber tip and slow diffusion of analytes in the coating.
Highest recoveries are achieved for analytes having lowest diffusion coefficients and highest affinities
to a coating. The increase of an internal diameter of a protecting needle from 24 to 23 ga allows
proportionally greater responses to be obtained at similar recoveries.

The most important parameter of a sampling process that users can control is a retraction depth.
The increase of Z allows slowing down the sampling and achieving higher recoveries of analytes.
In this study, at Z = 40 mm and constant analyte concentration in a sampled air, recoveries of studied
analytes reached 86–93% compared to 65–82% at Z = 10 mm. The developed model allowed simulation
of the worst sampling case when analyte concentrations significantly drop in the middle of sampling.
For the first time, it has been proven that at such sampling conditions and Z = 40 mm, recoveries of
analytes can drop by ~10%, while at Z = 10 mm by ~15%.
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According to the results of the simulation, it is optimal to conduct sampling of studied VOCs
using a 23 ga Car/PDMS assembly at Z = 40 mm. Expected detection limits at these parameters are
about 1 µg·m−3.

Alternative geometries of a protective TWA SPME sampling devices could be used to increase
recoveries of analytes. Sampling using 0.75-mm I.D. SPME GC liner at Z = 67 mm provides similar
recoveries compared to sampling using a protecting needle at Z = 40 mm, but it provides greater
amounts of analytes extracted and lower detection limits. To achieve greater recovery, part of the liner
should have narrower I.D. (e.g., 0.34 mm). The increase of the diameter of the extraction zone where
the coating is located results in a more uniform distribution of analytes, which should lead to faster
desorption, less pronounced peak tailing and greater accuracy. Specific sampler parameters should be
selected for particular sampling time and environmental conditions (temperature and atmospheric
pressure) using the developed model.

The methodology used in this study could also be used for more accurate and simpler calibration
of the method. It can be used to model the sampling of other environments (process gases, water)
by retracted SPME fibers. Further modification of this model could allow simulation of soil and soil
gas sampling.
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