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Momentum Transfer Between
Polydisperse Particles in Dense
Granular Flow
We perform molecular dynamics (MD) simulations (based on the soft-sphere model) of a
model dry granular system consisting of two types of spherical particles differing in size
and/or density to characterize particle-particle momentum transfer (solid drag). The
velocity difference between two types of particles is specified in the initial conditions, and
the evolution of relative mean velocity and the velocity fluctuations in terms of granular
temperature are quantified. The dependence of the momentum transfer is studied as a
function of volume fraction, size and density ratio of the two types of particles, inelas-
ticity, and friction coefficient. An existing continuum model of particle-particle momen-
tum transfer is compared to the MD simulations. A modified continuum solid drag model
is suggested for a limited range of parameters. �DOI: 10.1115/1.2140803�
Introduction

Granular flows as well as dispersed particle flows �particles in
fluid� are widely seen in nature and applied in industrial pro-
cesses. Two approaches are currently used to model the motion of
particle phase: particle �Lagrangian� approach and multiphase
fluid model �continuum approach�. In a particle approach, indi-
vidual particles are tracked by solving for particle motion in a
discrete element method �DEM� based on the soft-sphere contact
model �1–3�, which is popularly being called molecular dynamics
�MD� �4,5� simulation in recent years. The capability of this ap-
proach is largely limited by the computational expense incurred in
simulating a large number of particles. In a multiphase fluid
model, the particle phase is approximated as a continuum fluid,
and thus a set of continuum equations �conservation of mass, mo-
mentum, energy� for a control volume is obtained from granular
gas kinetics. The advantage of the continuum approach is that it is
capable of computing large systems. Particle number is not rel-
evant in the continuum approach. One widely used numerical
code, MFIX �6�, developed at the National Energy Technology
Laboratory �NETL�, is based on the continuum approach, and this
work is partially motivated by the modeling questions that arise
during application of the code.

MFIX is a hydrodynamic model for fluid-solids flows, based on
conservation laws of mass, momentum, energy, and species for
describing the hydrodynamics, heat transfer, and chemical reac-
tions in dense or dilute fluid-solids flows. The conservative equa-
tions must be closed by several constitutive relations including the
particle-particle momentum transfer relation we are studying in
this work. The model treats the fluid and solid phases as interpen-
etrating continua. Each solid phase consists of particles with iden-
tical particle properties such as density, diameter, and so on. Phase
volume fractions are introduced to track the fraction of the aver-
aging volume occupied by various phases. The code is used as a
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“test-stand” for testing and developing multiphase flow constitu-
tive equations. More about MFIX can be found from the website
of www.mfix.org.

The development of kinetic theory �7� of dense granular flows
encounters a tremendous difficulty from the fact that particle col-
lisions in granular flows are inelastic. The basic assumptions on
which solving the Boltzmann equation �8� for ideal gas molecules
�elastic collision� are based do not hold for granular flows. The
continuum models have to be closed by employing approxima-
tions and empirical relations.

A real granular system consists of several kinds of particles
with different sizes, densities, or other properties. For continuum
models, each kind of particles is denoted as one solid particle
phase and is described by one set of governing equations of con-
tinuum mechanics. Each particle phase has to experience internal
“fluid-dynamics” �4,9�, fluid-particle interaction, and particle-
particle interaction, so that the fluid-particle momentum transfer
term �also called fluid drag� and particle-particle momentum
transfer term �also called solid drag� appear in the momentum
equations of each particle phase. In this work, we focus on
particle-particle momentum transfer through the study of a dry
bidisperse granular mixture.

Existing models for particle-particle momentum transfer are
semi-empirical and applicable to a limited range of flows �7� �di-
lute flows in most cases�. In efforts to explore the characteristics
of granular flows and enhance predictive ability of continuum
models, lots of direct simulations of granular systems have been
done. There are in general two methods in such MD simulations:
soft-sphere model and hard-sphere model. The soft-sphere contact
model is pioneered by Cundall and Strack �1�. In recent years
several MD simulations of bidisperse granular systems �10,11�
based on hard-sphere model are very attractive to the study of
momentum transfer between particle phases.

In this work, we perform MD simulations of a dry bidisperse
granular mixture in the soft-sphere framework �1–5� to character-
ize the solid drag for the simple system and compare the results to
an existing continuum model, specifically the model used in
MFIX �although other continuum models can also be used for

comparison�. We compare results from the two approaches, pro-
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pose a modified model based on the original MFIX model, and
discuss ideas for improving the continuum model for solid drag.

Study System and Solution in Continuum Approach. A
simple case, two types of dry particles in a control volume with
periodic boundary conditions on all sides, and without external
force, but with an initial velocity difference in one velocity com-
ponent, is a good starting point for the study of particle-particle
momentum transfer �or solid drag�. The homogeneous and peri-
odic conditions make the system simple for modeling in the con-
tinuum approach. The constitutive relations for dynamics inside a
solid phase are not involved. In most continuum multiphase mod-
eling �6�, the governing equations for such a homogeneous case
can be written as

d

dt
��1�1u1� = − F12�u1 − u2� �1�

d

dt
��2�2u2� = F12�u1 − u2� �2�

where �1,2, �1,2, u1,2 are the volume fraction, particle mass den-
sity, and number-weighted mean velocity for particles of type 1
and 2, respectively, and F12 is the solid drag coefficient. Due to
the periodic conditions on all sides, the volume fractions in the
control volume are fixed. Therefore, the velocity difference is ob-
tained from the above equations as

d

dt
�u1 − u2� = − � 1

�1�1
+

1

�2�2
�F12�u1 − u2� �3�

F12 is usually a linear function of magnitude of relative mean
velocity in the form of

F12 = C12�u1 − u2� �4�

Here C12 is a coefficient that is independent of velocity. The gov-
erning equation then becomes

d

dt
�u1 − u2� = − � 1

�1�1
+

1

�2�2
�C12�u1 − u2�2

The solution is

�u1 − u2� = �� 1

�1�1
+

1

�2�2
�C12t + 1/�u1 − u2�0	−1

The system shares some properties with the homogeneous cool-
ing state such as the asymptotic decay rate of the velocity is like
1/ t, a fact that follows from the lack of inherent time scales. For
easy description of the current work, we normalize the solution
using a velocity scale as the initial velocity difference u0
= �u1−u2�0 /2.0, a length scale as the average diameter of two
types of particles d0= �d1+d2� /2, and a time scale as t0=d0 /u0.
We use the notation u12 to denote the velocity difference �u1

−u2� and C̃12 to symbolize the term in dimensionless form, but we

drop off the ˜ on other terms such as velocity and time for sim-
plicity. According to the MFIX model �6,12�, we have the dimen-
sionless momentum equation as well as its solution in our final
form:

du12

dt
= − C̃12u12

2 �5�

u12 =
1

C̃12t + 0.5
�6�

C̃12 = � 1
+

1 �d1 + d2C12 �7�

�1�1 �2�2 2
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C12 =
3�1 + e���/2 + ��2/8��1�1�2�2�d1 + d2�2g0

2���1d1
3 + �2d2

3�
�8�

g0 =
1

1 + �s
+

3d1d2

�1 − �s�2�d1 + d2�
� �1

d1
+

�2

d2
� �9�

�s = �1 + �2 �10�

where e, � are two microscale particle material properties during
contacts: restitution and friction coefficient, �s is the total volume
fraction of particles, d1,2 is the particle diameter for particles of
type 1 and 2, respectively, and g0 is the radial distribution function
at contact originated by Lebowitz �13�.

It can be seen that the dimensionless solution is a function of e,
�, �1, �2, d2 /d1, �2 /�1, namely

C̃12 = f�e,�,�1,�2,d1/d2,�1,�2� �11�
The solid drag coefficient is a function of many parameters. We
cannot exhaust all the conditions to cover the full range of varia-
tion of every variable. In this work, we focus on the equal volume
fractions of two particle phases and on medium to dense particle
volume fraction.

The coefficient C12 in Eq. �8� is derived in MFIX �6,12� by
considering two colliding particles located at r1, r2 with velocities
c1, c2, and diameters d1, d2, respectively. The average momentum
transfer per unit volume between the two types of particles is

I12 = d12
2 


c12·n�0

J�c12 · n�f12�r1,c1,r1 + d12n,c2�dndc1c2

�12�

where I12 is average momentum transferred per unit volume, d12
= �d1+d2� /2, the relative velocity c12=c1−c2, n is the unit vector
from the center of particle 1 to the center of particle 2, J is the
momentum transferred between particles 1 and 2, and f12 is the
pair distribution function which is assumed to be the product of
two single velocity distribution functions

f12 = g0f1f2 �13�
The single velocity distribution functions take the form of a delta
function

f1 = 6�1��c1 − u1�/�d1
3 �14�

f2 = 6�2��c2 − u2�/�d2
3 �15�

Following Walton �14�, a collision is divided into sticking colli-
sion part and sliding collision part, so that the formulation of J
will take into account the repulsion, dissipation, and friction ef-
fects.

Soft-Sphere MD Model. GranFlow is a parallel MD simulation
code for granular flows that has been developed at Sandia Na-
tional Lab. and has been evaluated, verified, and applied in many
publications �3,5�. Readers who are interested in high-
performance numerical algorithms are referred to Ref. �15�. The
MD simulation is based on a 3D soft-sphere contact model �1–3�
where small deformations and multiple contacts on a sphere are
allowed, and friction and rotation are also taken into account.
Contact force is first calculated from the deformation through a
microscale spring-dashpot model, then is used in Newton’s second
law for every particle �spherical shape is assumed throughout this
work� to update the velocity and angular velocity of each particle.
The implementation of contact forces is essentially a reduced ver-
sion of that employed by Walton and Braun �2�, developed earlier
by Cundall and Strach �1�.

The spheres interact on contact through a Hookean �linear� con-
tact law �1,2�. For two contacting particles �i , j�, at position
�ri ,r j�, with velocities �vi ,v j� and angular velocities ��i ,� j�, a

relative normal compression is
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�n,ij = ��di + dj�/2 − rij�nij �16�

where rij =ri−r j, rij = �rij� and the normal direction nij =rij /rij. The
normal and tangential contact forces for particle i are given by

Fn,ij = kn�n,ij − �nmeffvn,ij �17�

Ft,ij = − kt�t,ij − �tmeffvt,ij �18�

where meff= �mimj� / �mi+mj�, vn and vt are the normal and tangen-
tial components of the relative surface velocity, and kn,t and �n,t
are spring and damping coefficients, respectively. �t is the elastic
tangential displacement between spheres, obtained by integrating
surface relative velocities over time during deformation of the
contact. The magnitude of �t is truncated as necessary to satisfy a
local Coulomb yield criterion �Ft����Fn�. Frictionless particles
can be simulated by setting zero friction coefficient, �=0.

The presented simulations follow the same framework of Grest
et al. �3,5� regarding the particle material parameters. The spring
constants are set to kn=2	105m*g /d0, where m* and d0 are mass
and diameter of the particle in monodisperse mixtures, respec-
tively, g is the gravity acceleration, and kt=2kn /7. The �n is re-
lated to restitution coefficient e. Such a correlation can be found
in Ref. �3�. For a reference particle, physical experiments often
use glass spheres of d=100 �m with �=2	103 kg/m3.

For the present polydisperse systems with two types of par-
ticles, when we investigate size or density effects, we wish to
maintain contact parameters kn, �n unchanged for better under-
standing and comparisons of results. For this purpose, the diam-
eter and mass �or density� of a particle are varied proportionally
relative to the corresponding particle. We maintain d0= �d1
+d2� /2 unchanged, so that d0 is also equal to the diameter of
particles when the two types of particle are the same.

The movement of particle i is described by Newton’s second
law in dimensionless form based on the normalization scales of
m*, d0, g as

mi

m*

dvi

dt
= 

j

�k̃n�n,ij − �̃n
meff

m*
vn,ij� + 

j

�− k̃t�t,ij − �̃t
meff

m*
vt,ij�

�19�

0.4
mi

m*

d�i

dt
= −

1

2
j

dinij 	 �− k̃t�t,ij − �̃t
meff

m*
vt,ij� �20�

The numerical simulation directly solves the above dimensionless
equations, and input and output parameters are all in dimension-

less form. We take k̃n=2	105, kt=2kn /7, and �̃n=0,50 �corre-
sponding to e=1,0.88�. For the Hookean contact model �t=0.
Detailed discussion about contact parameters is available in
Ref. �3�.

To compare to a continuum model based on kinetic theory, the
macroscopic terms �average variables� must be obtained from
simulation results for the particle mixtures. The phase velocity
u1,2 appearing in the continuum approach is equivalent to the
average velocity over all particles of a type in the system. For
example, for solid phase 1,

u1 = �u1,v1,w1� = 
i=1

N1

vi/N1 �21�

N1 is the number of particles of type 1. The granular temperature
is defined as


1 = 
i=1

N1

��ui − u1�2 + �vi − v1�2 + �wi − w1�2�/3N1 �22�

where u1, v1, w1 are three average velocity components. In this
work, the volume of the simulation cell is V=243d0

3. The particle

volume fractions for particle types 1 and 2 are calculated as
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�1,2 = ��d1,2
3 N1,2/6�/V

Note that the normalization used here in simulations is different
from that used in the previous section. The resultant terms of
simulation must be transformed to the same normalization system
on which the continuum model is based before any comparison is
performed.

The particle mixture must be initialized to be spatially homo-
geneous. It is difficult to place all particles by random number
generation methods, especially for dense mixtures. We use another
way to initialize the system in this study. We first set all the
particles in a form of lattice arrangements and assign an arbitrary
velocity to each one, and then run the simulation to equilibrate the
mixture. Because relative velocities of particles in a cooling sys-
tem decay very fast, one run of the simulation may not result in
the homogeneous condition. To ensure homogeneity, the output of
a simulation is used as the input of particle positions to the next
simulation, but the velocity of each particle is reset to a random
value. The output-input procedure may be repeated several times.
Finally, the input of particle positions from the homogeneous state
is used to study cases with the velocity set to u0 for one type of
the particles and −u0 for the other type.

Results and Discussion

Effects of e, �, �s. The results are presented in dimensionless
form and the units are omitted. The normalization scales have
been given in the second section of deriving continuum solution
of the granular system.

We first investigate the dependence of particle-particle momen-
tum transfer on the total volume fraction and on the microscale
properties e, �. The particles in two phases are actually the same
with d2 /d1=1, �2 /�1=1. Four combinations of e= �0.88,1�, �
= �0.5,0� are considered. According to the MD model, e=1.0 rep-
resents no energy loss during collision, �=0 represents no
rotation.

The velocity differences u12 varying with time are plotted in
Figs. 1 and 2, respectively, for total particle volume fraction �s
=0.524, 0.304. The initial momentum rapidly decays as the mo-
mentum of particles is redistributed isotropically through colli-
sions �contacts�. The granular temperature of the system immedi-
ately reaches its maximum. We can see the microscale parameters
do make a difference on the momentum transfer, but the differ-
ence is relatively small compared with the difference between the
MFIX model and MD simulation.

MFIX has captured the basic feature of contact parameters. The

Fig. 1 Velocity difference u12 for �1=�2=0.262, d2 /d1=1/1, and
�2 /�1=1/1
MFIX model follows the same trend as the MD simulations. The
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order of lines respective to different e, � values from MFIX is the
same as that from MD simulation. However, what concerns us
most is the prominent gaps between the MFIX model and the MD
simulation in Figs. 1 and 2, which overshadow the differences the
microscale parameters make. It is clearly shown that the MFIX
drag model underestimates the momentum transfer. Similar mis-
matches were observed for a wide range of total volume fractions.
Agreement with the MFIX prediction becomes worse as the den-
sity of granular mixture increases.

The continuum solid drag model can be improved by separating
the drag coefficient into two parts: a velocity-dependent part and a
velocity-independent part as follows:

du12

dt
= − C̃12u12�1 + b/u12�u12 �23�

The solution to this equation is

u12 = − b + b�1 −
2.0

2.0 + b
exp�− bC̃12t��−1

�24�

In fact, we found that b is a function of total volume fraction �s,
which is shown in Fig. 3. The curve fit gives the linear function

b = �s + 0.42 �25�

The model constant b is a correction to the original dilute granular
flow solid drag model. Equation �25� indicates that the correction
increases linearly with the total volume fraction.

The comparison of the suggested model and MD simulation for
different volume fractions is shown in Fig. 4. The agreement is
very good.

Fig. 2 Velocity difference u12 for �1=�2=0.152, d2 /d1=1/1, and
�2 /�1=1/1
Fig. 3 b as a function of total volume fraction �s
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Effects of Density Ratio. The velocity differences at different
particle density ratios but with all other parameters the same �e
=0.88, �=0.5, �1=�2, d1=d2� are plotted in Fig. 5. The results
show that both MD and Eqs. �23�–�25� are not sensitive to varia-
tion of density. But, we must point out that the density effects
could be important if the particle sizes are not the same, or the
volume fractions of two particle phases are not equal, or the con-
tact parameters change with the density. The present MD simula-
tion uses the same contact coefficients for colliding particles,
which deviates from the reality that material properties have much
difference, especially when the densities are different.

Polydispersity. The size ratio plays a critical role in the solid
drag model. This can be seen from the cubic power on particle
diameters in Eqs. �7� and �8�, but the drag model depends on other
parameters only to the first power.

Figures 6–8 show the results for particles at different size ratios
but with the same particle density �1=�2 and volume fraction �1
=�2=0.152 for the case of e=0.88, �=0.5. The velocity differ-
ence u12 and granular temperature 
 are plotted in Figs. 6 and 7,
respectively. It is interesting to see that the phenomenon of mo-
mentum transfer between particle phases exhibits a nearly delta
functional dependence on particle size. If the particle size ratio is
just a little bit away from 1, specifically d2 /d1�1.1/0.9, all the
velocity difference curves settle down on nearly the same decay
curve. However, near equal size, here 1�d2 /d1�1.05/0.95, the
velocity difference profiles are quite different from the group with

Fig. 4 Velocity difference u12 at various total volume fractions
for d2 /d1=1/1, �2 /�1=1/1, e=0.88, and �=0.5

Fig. 5 Velocity difference u12 at various densities for �1=�2

=0.152 and d2 /d1=1/1
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d2 /d1�1.1/0.9: they decay much faster than those with larger
size ratios. From the comparison of the result of d2 /d1=1.1/0.9 to
that of d2 /d1=1.05/0.95, we can see that a small change of par-
ticle size ratio results in a jump of velocity profiles between the
two cases. But, in each group �1�d2 /d1�1.05/0.95 or d2 /d1
�1.1/0.9�, the velocity profiles stay close together without obvi-
ous gaps among them.

It is encouraging to see that the agreement between Eq. �23�
and MD simulation is very good for the particle size ratios which
are a little bit away from 1, although the agreement is the worst at
d2=d1. The suggested model of Eq. �23� still holds but needs
further modification on b to address the particle size dependence
issue:

du12

dt
= − C̃12�1 + b/u12�u12

2 �26�

b = ��s + 0.42�� dmin

dmax
�n

�27�

where dmin is the smaller diameter and dmax is the larger. In Eq.
�27�, the power n may need to be very large to account for the
jump feature of solid drag. We found that n=10 gives satisfactory
fit to the MD simulations.

As we have seen, the original MFIX modeling does not capture
the discontinuity. So, the next question is what are the major con-
tributors to the mismatch of the multiphase model with the MD

Fig. 7 Granular temperature � at different sizes for e=0.88, �

Fig. 6 Velocity difference u12 at different sizes for e=0.88, �
=0.5, �1=�2=0.152, and �2 /�1=1
=0.5, �1=�2=0.152, and �2 /�1=1. P1 denotes particle phase 1.
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simulation. The parameter g0, the radial distribution function at
contact, is worth studying. The MD simulation can be used to
validate the independency at the specific conditions or to improve
the form of g0 since g0 is the pair correlation function �16� that is
equal to the radial distribution function g12�r� between particle
types 1 and 2 evaluated at contact r=d0.

The form of g0 defined in Eq. �9� is originally from the work of
Lebowitz �13�. Another form of g0 was suggested by Mansoori et
al. �17� and is known �18� to be more accurate. However, the
inability of present models to predict particle-particle momentum
transfer is not because of the form of g0. As a matter of fact, both
forms predict that g0 is not a function of particle size ratio when
the volume fractions of two phases are equal.

The pair velocity distribution function of two particles at con-
tact is generally assumed in the term of product of two single
particle velocity distribution functions �6,12,18�, namely f12
=g0 f1 f2. Thus, g0 appears in the collision term calculation in
kinetic theory.

In the case of spatially homogeneous systems as in the present
study, g12�r� can be calculated by counting the pairs of separation
�16� between particles of type 1 and particles of type 2 with r
−� /2� �rij��r+� /2. We use the numerical kernel function
method �19� for this work. The g0 relations given by Lebowitz
�13� and Mansoori et al. �17� concern equilibrium states, but the
study system in this work is dynamic at early times. We have
calculated g12�r� of the granular assembly outputs from MD simu-
lation at several moments. From the calculation, it is indeed found
that g12�r� is statistically not a function of time as we expected,
although fluctuations with time are found. We also found that the
peak of g12�r� is not always exactly at contact distance, but at a
slightly larger separation. Figure 8 gives the g12�r� averaged over
five time points for two different particle systems. It shows the
shape of g12�r� curves is weakly associated with particle sizes at
�1=�2 condition. But, for both cases g0=g12��d1+d2� /2��2.5.
The form used in the MFIX model, Eq. �9�, gives g0=2.37.

Now, after g0 has been excluded, we reason that a possible
contributor to the disagreement is the assumed delta velocity dis-
tribution function during derivation �12� of the drag model in
MFIX as shown in Eqs. �14� and �15�. The largest momentum
transfer happens when two identical particles collide. Due to the
delta velocity distribution function, some of size information may
be canceled out, leading to underestimation of the momentum
transfer at the equal size condition. Other forms for the velocity
distribution function could be checked against the simulations.
Some models �18� use the Maxwellian distribution function or
log-Maxwellian distribution function. Almost all continuous ve-
locity distribution functions are functions of granular temperature

Fig. 8 Radial distribution function g12„r… for two cases of
d2 /d1=1 and d2 /d1=1.25/0.75
in an effort to find out more accurate and general constitutive
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relations. Note that when granular temperature is involved and a
continuous distribution function applied, the near equilibration is
often assumed from the point of view of kinetic theory. The ap-
plication of such a model to a fast decay region starting with zero
granular temperature needs to be examined, and the study system
here may need to be redesigned in order to validate and explore
continuum models.

To better understand the role of granular temperature, it may be
helpful to consider frictionless elastic spheres �e=1.0, �=0�. The
results are shown in Figs. 9 and 10. Oscillation appears in the
velocity difference profile when the relative mean velocity ap-
proaches zero, since the decay is due to the redistribution of en-
ergy in three directions, not to the energy loss. From the compari-
son of Fig. 9 with Fig. 6, we do see that granular temperature must
play a role in the solid drag modeling formulation. For e=1.0,
�=0, the velocity profiles from MD simulations diverge from the
modeled curves after one time unit. Correspondingly, the granular
temperatures increase from zero to the peaks in t= �0,1� and re-
main at the peaks thereafter as shown in Fig. 10. However, granu-
lar temperatures rapidly decay after one time unit for the frictional
and inelastic case e=0.88, �=0.5 as shown in Fig. 7. We will
continue this work in the future. Note that a discontinuity feature
like in Fig. 6 is always a difficult point for continuum modeling.
Another discontinuity problem is referred to free-surface flows
with surface tension on interfaces �20�. The discontinuity may
imply some degree of crystallization at the equal size and equal
volume fraction conditions. Away from the condition, crystalliza-
tion is more unlikely to develop.

Fig. 9 Velocity difference at different sizes for e=1.0, �=0, �1
=�2=0.152, and �2 /�1=1 “model” means modified model in this
work

Fig. 10 Granular temperature � at different sizes for e=1.0, �

=0, �1=�2=0.152, and �2 /�1=1. P1 denotes particle phase 1.
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Conclusion and Future Work
We have investigated momentum transfer between particle

phases in a limited range of variation of parameters from MD
simulation and MFIX continuum drag model and have provided
the comparison between them. We found a discontinuous behavior
of particle-particle momentum transfer at equal particle sizes from
the MD simulation. This discontinuity may point to some degree
of crystallization at the condition of equal sizes and equal volume
fractions and presents a difficulty in continuum modeling. The
current MFIX model is in good agreement with the simulation
when particle sizes are different, but underestimates the momen-
tum transfer for particles of equal size. A tentative modified drag
model based on the original MFIX model is proposed.

The current model of solid drag has not included the informa-
tion of granular temperature due to an assumed delta velocity
distribution function. Other solid drag models connecting to
granular temperature should be considered and compared with
simulation data in the future. At the same time, we also need to
examine if the model is independent of initial conditions and
whether implementation of initial conditions influences results.
The study case may need redesign to avoid the zero granular
temperature at the initial state. Moreover, all the cases we consid-
ered in this work have equal volume fractions for two particle
phases. Further detailed study of two-particle phases with differ-
ent volume fractions is encouraged, and the crystallization or dis-
continuity that happened at equal sizes and equal volume fractions
may disappear. It is perhaps better to rewrite the dependence of
solid drag on the governing parameters as

C̃12 = f�e,�,�s,�1/�2,d1/d2,�1/�2� �28�

Future work should give attention to the solid drag model varying
with �1 /�2. Indeed, the density ratio may not be negligible if �1
��2. In addition, contact mechanics between different material
particles should be taken into account in the MD simulation.
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