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Abstract. In earlier work, we showed that the AspectJ notions of aspect and class
can be unified in a new module construct that we called the classpect, and that
this new model is simpler and able to accommodate a broader set of requirements
for modular solutions to complex integration problems. We embodied our unified
model in the Eos language design. The main contribution of this paper is a case
study, which considers the implementation of the Gang-of-Four (GOF) design
patterns [1] in Eos to analyze the effect of new programming language constructs
on these implementations. We also compare these implementations with the As-
pectJ’s implementation. Our result shows that the Eos implementation showed
improvement in 7 out of 23 design patterns, and are no worse in case of other
16 patterns. These improvements were mainly manifested in being able to realize
the intent of the design patterns more clearly. The design structures realized in
the Eos implementation provide supporting evidence for the potential benefits of
the unified model.

1 Introduction

In prior work, we showed that the notions of aspect and class in the AspectJ language
model [2] can be unified in a new module construct that we called the classpect [3].
We also showed that this new model is significantly simpler, more compositional, and
able to accommodate a broader set of requirements for modular solutions to complex
integration problems [4, 5].

We embodied our unified model in the Eos language design [3, 6–9], in which the
basic unit of modularity is a classpect. We demonstrated the benefits of the unified
language design in the context of small but representative examples and case stud-
ies [10]. These demonstrations did provide some basis for further speculations about
the language model’s potential to solve large-scale problems. The representative ex-
amples, however, does not provide direct evidence that the unified model is beneficial
beyond the challenge problems and the case studies. The concerns to which we have
applied the unified model are largely component integration concerns, in that they co-
ordinate the behavior of two or more components. Component integration concerns are
extremely important class of concerns; however, they are not the only crosscutting con-
cerns aspect-oriented programming addresses.

In earlier work, Hannemann et al. [11] described the crosscutting concerns in the
OO implementations of the Gang-of-Four (GoF) patterns and showed that an AspectJ-
based solution modularizes these concerns. They argued that the concerns represented
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by these patterns are scattered and tangled across several classes in the software sys-
tem that play various roles in the patterns’s implementation. Hannemann and Kiczales
described an aspect-oriented implementation of these patterns with the intent to modu-
larize these crosscutting concern.

The main contribution of this paper1 is a case study in a similar vein, which con-
siders the implementation of the Gang-of-Four (GoF) design patterns [1] in the Eos
language to analyze the effect of new programming language constructs on these im-
plementations. GoF design patterns are design structures commonly occurring in and
extracted from real software systems. The benefits observed in the context of these
models could be —to some extent— extrapolated to modularity benefits that might be
perceived in real systems.

Three properties of this evaluation make it more valuable from an empirical stand-
point. First, GoF design patterns are standard well-documented design structures. Se-
lecting a standard problem for evaluation allows others to reproduce the results inde-
pendently. Second, a prior implementation of these patterns in AspectJ is available.
Having a prior independent implementation in the AspectJ language provides an op-
portunity to present a careful un-biased analysis. Third, we are not the first to argue
that the AspectJ-based solution could be improved. Sakurai et al. [13] briefly observed
that the type-level aspect-oriented implementation of the design patterns described by
Hannemann et al. [11] exhibit the design problems and performance overhead of the
form described by Rajan and Sullivan [7].

We evaluated the Eos implementations using the set of metrics proposed by Hanne-
mann et al. [11] namely locality, reusability, composition transparency, and (un) plugga-
bility. These metrics showed that Eos implementation has similar modularity properties
that the AspectJ implementation enjoys. Our further evaluation also showed that for 7
out of 23 design patterns the Eos implementation was able to better realize the intent of
the design patterns. Eos implementation was also more concise in terms of the line of
code. For other 16 patterns, AspectJ and Eos implementation were the same. In other
words, Eos constructs did not offer any additional improvements for these patterns.

The result that all GoF pattern implementations in Eos were at least as good as the
pattern implementations in AspectJ, was not surprising since the Eos language model
is a superset of the AspectJ language model. Moreover, the 7 GoF patterns, where the
new Eos constructs did show benefits provides insight into their potential utility. Ap-
plying the language model to standard problems demonstrates that the benefits of the
unified aspect language model are not limited to component integration concerns. Our
assessments of the resulting designs provide evidence for the design structuring benefits
of the Eos model, and the usability of the Eos language. In a nutshell, we contribute a
demonstration of the immediate practical value of our conceptual work.

The rest of this paper is organized as follows. The next section gives background on
aspect-oriented programming and the unified model. Section 3 describes the case study
setting in detail. Section 4 describes the Eos implementation of the design patterns and
compares it with the AspectJ implementation. Section 5 discusses related work, and
Section 6 concludes.

1 A previous version of this article appeared at PLOP 2007 [12].
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2 Background

In this section, we briefly review the AspectJ2 and unified language model embodied by
Eos3. The focus is on their key differences. The AspectJ language model is described in
detail by Kiczales et al. [2]. The unified language model is described in detail by Rajan
et al. [3].

2.1 The AspectJ Language Model

In this subsection, we will review basic concepts in the AspectJ model. AspectJ [2] is an
extension to Java [14]. Other languages using AspectJ’s model include AspectC++ [15],
AspectR [16], AspectWerkz [17], AspectS [18], Caesar [19], etc. While Eos [7] is not
AspectJ-like, it is in the broader class of Pointcut-Advice-based AO languages [20]. The
central goal of such languages is to enable the modular representation of crosscutting
concerns, including the representation of concerns conceived after the initial system de-
sign. The programs in these languages are typically developed in two phases [21]. The
concerns that can be modularized using the traditional object-oriented modularization
techniques are put in classes. Aspects then modularize the crosscutting concerns by ad-
vising these classes. Differentiating between classes and aspects makes these languages
asymmetric.

1 class TracedClass{
2 public void TracedMethod(){
3 System.out.println("In Traced Method");
4 }
5 }
6 aspect Tracing { // An aspect
7 pointcut tracedExecution(): //A pointcut
8 execution(public void TracedMethod());
9 before(): tracedExecution() {//A before advice

10 System.out.println("Before Traced Method");
11 }
12 after(): tracedExecution() {//An after advice
13 System.out.println("After Traced Method");
14 }
15 Object around(): tracedExecution() {
16 System.out.println("Around Traced Method - 1");
17 proceed(); //Proceeding the join point
18 System.out.println("Around Traced Method - 2");
19 }
20 }
21 Output Trace:
22 Before Traced Method
23 Around Traced Method - 1
24 In Traced Method
25 Around Traced Method - 2
26 After Traced Method

Fig. 1. A Simple Example Aspect

2 The language manual and compiler for AspectJ is available from
http://www.eclipse.org/aspectj as of this writing.

3 The language manual and the compiler for Eos is available from
http://www.cs.iastate.edu/∼eos as of this writing
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These languages add five key constructs to the object-oriented model: join points,
pointcuts, advice, inter-type declarations, and aspects. A simple example is shown
in Figure 1 to make these concepts concrete. The aspect Tracing, modifies the
behavior of the class TracedClass before, after, and around certain selected
execution events exposed to such modification by the semantics of the program-
ming language. These events are called join points. The execution of the method
TracedMethod in the class TracedClass is an example of a join point.

A pointcut is a predicate that selects a subset of join points for such modification —
here, execution of the method TracedMethod in the class TracedClass. An
advice is a special method-like construct that effects such a modification at each join
point selected by a pointcut. An aspect is a class–like module that uses these constructs
to modify behaviors defined by the classes of a software system. In the example, we
have three different types of advice in the aspect: before, after, and around that affect
the behavior of the method TracedMethod as shown in the output trace in the figure.

Like classes, aspects also support data abstraction and inheritance, but they do differ
from classes in the following ways.

– Aspects can use pointcuts, advice, and inter-type declarations. In this sense, they
are strictly more expressive than classes.

– Instantiation of aspects and binding of advice to join points are wholly controlled
by the Aspect language runtime. There is no new for aspects. Aspect instances are
thus not first-class, and, in this dimension, classes are strictly more expressive than
aspects.

– Although aspects can advise methods with fine selectivity, they can select advice
bodies to advise only in coarse-grained ways.

2.2 The Unified Language Model

Rajan et al. addressed the limits of aspects in a new language model that unifies aspects
and objects as follows4 [3].

– It unifies aspects and classes as classpects. A classpect has all the capabilities of
classes, all of the essential capabilities of aspects in AspectJ–like languages, and
the extensions to aspects needed to make them first class objects.

– The unified model eliminates advice in favor of using methods only, with a separate
and explicit join-point-method binding construct.

– It supports a generalized advising model. To the usual object-oriented mechanisms
of explicit or implicit method call and overriding based on inheritance, the unified
model adds implicit invocation using before and after advice, and overriding using
around advice.

To make these points concrete we revisit the example presented in the previous
section in Figure 2. A classpect (lines 1-8), similar to the aspect in the previous sec-
tion, declares a pointcut (lines 2-3) to select the execution of any method, exactly as
in AspectJ. It then composes the pointcut with the within(Trace) pointcut ex-
pression to exclude its own methods, to avoid recursion. A static binding (line 4)

4 This language model has also been adopted by languages like Ptolemy [22, 23].
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1 class Tracing {
2 pointcut tracedExecution():
3 execution(* *(..))&& !within(Trace);
4 static before tracedExecution(): Trace();
5 public void Trace() {
6 /* Trace the methods */
7 }
8 }

Fig. 2. A Simple Example Classpect

binds the method Trace (lines 5-7) to execute before all join points selected by the
pointcut tracedExecution. Note that, by statically binding, join points in all
instances are affected. A non-static binding would bind to instances selectively. The
key difference in this implementation is that all concerns are modularized as classpects
and methods. The crosscutting concerns, however, use bindings to bind the method
containing the implementation of the crosscutting concerns to join points. In the next
section, we demonstrate that this unification shows benefits in the Gang-of-Four design
patterns.

3 Case Study Setting

The results described in this work are based on a case study that we conducted to com-
pare the implementation of 23 GoF patterns in AspectJ and Eos. The AspectJ implemen-
tation that we compared against is described in detail by Hannemann and Kiczales [11].
The implementation provided by Hannemann and Kiczales uses these design patterns
in the context of small examples. The first step was to translate the AspectJ implemen-
tation to Eos, adjusting for minor differences in underlying languages (Java and C#).
In this step, no change in the Eos implementation was attempted. Eos language is a su-
perset of AspectJ, which means that all constructs were available in the host language.
Unlike the study setting by Garcia et al. [24], we did not modify the implementation
examples. This translation was done by hand.

In the next step, patterns in Eos were improved by utilitizing the new mecha-
nisms, namely: unified language model, instance-level advising, and first-class aspect
instances.

In earlier work, we showed that translation of programs from the AspectJ language
model to their equivalent in the proposed unified model is possible [25]. This translation
does not require any non-local changes. The design space of the modular solutions using
unified model is essentially a super set of the design space of the modular solutions in
the AspectJ-like language model. Based on that observation one would expect to be
able to translate the implementation of design patterns from AspectJ to Eos, which is
indeed the case. The pattern implementations provided by Hannemann et al. can be
translated to Eos without any non-modular changes. By non-modular changes we mean
changes that are localized within a module boundary, but rather fragmented and spread
across the system. The translation of pattern protocols is straightforward. The examples
provided with the pattern implementation, however, are heavily dependent upon the
platform. As a result, their translation is not quite direct owing to the host framework
differences. AspectJ operates on Java Virtual Machine (JVM), whereas Eos operates on
.Net Framework.
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The translation rules from AspectJ model to Eos model do not require any non-
modular changes, preserving the modularity of AspectJ based solution, and implying
that the results in the Hannemann and Kiczales [11] may apply to the Eos implemen-
tation as well. To measure that we used the four metrics applied by Hannemann and
Kiczales, namely: locality, reusability, composability, and (un)pluggability. We also ap-
plied some metrics used by Garcia et al. [24], such as Line of Code (LOC), to measure
size. We also used an additional metric Close Match to Pattern Intent (CMPI) that eva-
lutes to true for a pattern implementation, if the intent of the implementation closely
matches the pattern specification.

4 Design Patterns

In this section, we will describe some patterns in which we noticed major improvements
compared to other patterns. These improvements were in metric (CMPI) and (LOC),
while other metric values largely remained unchanged.

4.1 Observer Pattern

The intent of the observer pattern is to define a one-to-many dependency between
objects so that on an object’s state change, all dependents are notified and updated
automatically [1, p.293]. The AspectJ implementation divides the pattern implemen-
tation into two parts: parts that are common to all instantiations of the pattern and
parts specific to an instantiation. The implementation abstracts the common part as
a reusable aspect ObserverProtocol as shown in Figure 3. It provides an
abstract pointcut subjectChange (lines 23–24) to represent observable
state change of the subject. A concrete observer implementation defines this pointcut.
The implementation also provides an abstract method; update (lines 24–25) to be
redefined in concrete observers to implement the observer’s logic.

The AspectJ language model does not fully support aspect instantiation and se-
lective advising of object-instances [6]. In the Observer pattern, an instance of Ob-
server needs to selectively advise instances of Subject. To emulate instance-level advis-
ing using type-level aspects, Hannemann and Kiczales’s implementation of the Ob-
server protocol needs to manipulate instances of participants. To be able to do so
without coupling the ObserverProtocol with participants, it defines two new in-
ner interfaces that are introduced by the concrete observers into participants so that
ObserverProtocol can manipulate them. The pattern’s implementation therefore
modifies the implementation of the participants using declare parents constructs
such that they not implement two new interfaces subjects (line 2) and observers (line
3). An example of the declare parents construct is shown in Figure 6.

The implementation also keeps a HashMap (line 4) of observers corresponding
to an instance of the subject. It provides methods to add (lines 17–19) and remove
(lines 20–22) observers corresponding to a subject. It also provides methods to retrieve
observers for a subject (lines 5–16). The observer protocol logic is implemented by
the advice (line 26–31). This advice is invoked by each instance of the class being
advised, even if no observer is observing the instance. On being invoked, the advice
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1 public abstract aspect ObserverProtocol{
2 protected interface Subject {}
3 protected interface Observer {}
4 private WeakHashMap perSubjectObservers;
5 protected List getObservers(Subject s){
6 if(perSubjectObservers == null){
7 perSubjectObservers = new WeakHashMap();
8 }
9 List observers =

10 (List)perSubjectObservers.get(s);
11 if ( observers == null ){
12 observers = new LinkedList();
13 perSubjectObservers.put(s, observers);
14 }
15 return observers;
16 }
17 public void addObserver(Subject s, Observer o){
18 getObservers(s).add(o);
19 }
20 public void removeObserver(Subject s,Observer o){
21 getObservers(s).remove(o);
22 }
23 protected abstract pointcut
24 subjectChange(Subject s);
25 protected abstract void
26 update (Subject s, Observer o);
27 after(Subject s): subjectChange(s){
28 Iterator iter = getObservers(s).iterator();
29 while ( iter.hasNext()){
30 update (s, ((Observer)iter.next()));
31 }
32 }
33 }

Fig. 3. Observer in AspectJ

looks up the invoking instance and retrieves the list of observers. It then iterates through
the list to invoke each observer. In summary, the AspectJ implementation tangles the
instance-level advising and instance-emulation concern [7] with the observer pattern
concern. The need for roles and for maintaining a hash map are examples of design-
time overheads incurred due to the asymmetry of the language model.

1 public abstract class ObserverProtocol {
2 protected abstract pointcut
3 subjectChange();
4 protected abstract void
5 update ();
6 after subjectChange(s): update(Subject s);
7 }

Fig. 4. Observer in Eos 78% Smaller

The AspectJ implementation of the observer pattern is localized, reusable, compo-
sitionally transparent, and (un) pluggable. The Eos implementation mimics the imple-
mentation strategy by similarly partitioning the pattern implementation into abstract
classpect ObserverProtocol and concrete realization of observers inheriting from this
classpect. The abstracted pattern is shown in Figure 4.

The Eos implementation does not tangle emulation concern with observer proto-
col concern. It clearly abstracts the behavior of the pattern. It clearly (and more con-
cisely) conveys the intent of the pattern, which is to update an observer when a sub-
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ject changes. The binding (Line 6) states that after the join points selected by the
abstract pointcut SubjectChange, the method Update should be called.
All the interfaces and additional code required to emulate instance-level behavior is
not necessary in the Eos implementation. With respect to the metrics used by Garcia
et al. [24], Eos implementation of the Observer pattern achieves nearly 78 percent re-
duction in LOC (Line of Code) of the observer protocol concern without increasing the
complexity of the remaining concerns. Each line in Eos implementation corresponds to
a line in AspectJ implementation. The Eos implementation, however, does not require
the emulation code in the pattern implementation since it utilizes the instance-level con-
structs in the language. This implementation is also localized, reusable, compositionally
transparent, and (un) pluggable. It also decreases the Number of Attributes (NOA) [24]
of the Observer protocol concern to zero from one.

Fig. 5. The Figure Element System

1 public aspect ColorObserver
2 extends ObserverProtocol{
3 declare parents: Point implements Subject;
4 declare parents: Screen implements Observer;
5 protected pointcut subjectChange(Subject s):
6 call(void Point.setColor(Color))&& target(s);
7 protected void update(Subject s, Observer o){
8 ((Screen)o).display("Color->Screen.");
9 }

10 }

Fig. 6. Color Observer Implementation in As-
pectJ

1 public class ColorObserver
2 : ObserverProtocol{
3 Point p; Screen s;
4 public ColorObserver(Point p, Screen s){
5 addObject(p); this.p=p; this.s=s;
6 }
7 override pointcut subjectChange():
8 execution(void Point.setColor(Color));
9 public override void update(){

10 s.display("Color->Screen update.");
11 }
12 }

Fig. 7. Color Observer Implementation in Eos

Moreover, the composition of the participants into observing relationships becomes
more intuitive in the Eos implementation. To illustrate let us consider the example sys-
tem presented by Hannemann et al. shown in Figure 5. In this example, a figure element
system, we have two potential subjects a point, a line, and an observer screen. Instances
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of the class Screen observe change in the color and co-ordinates of instances of
the class Point. A subject-observer relationship between Point and Screen in
which Screen instance observes change in color of the Point instance is shown in
Figure 6. The ColorObserver relationship implementation does not clearly com-
municate the specification that it involves two object instances, an observer instance
and an observed instance. Instead, this part of the specification is hidden in the parent
class, ObserverProtocol. Understanding the behavior of the parent class is neces-
sary to deduce how to put two objects instances, a Screen and a Point into a color
observing relationship. As a result, even though the pattern protocol achieves a physical
separation of code, separation of concern between parent ObserverProtocol and
the relationship ColorObserver is not achieved.

The implementation of the same ColorObserver relationship is shown in Fig-
ure 7. The implementation clearly represents the intent of the pattern. By declaring a
constructor that takes a point and a screen as an argument, it depicts the observing re-
lationship between these two entities. Compared to the AspectJ implementation where
relationship instances are emulated implicitly using hash tables, in the Eos implementa-
tion one explicit instance of ColorObserver exists for each point and class instance
that participate in the observing relationship.

The Eos implementation does not require code for instance-level weaving emula-
tion [7]. It represents the ColorObserver as a class containing an instance variable
screen to store reference to the observer Screen instance and the subject Point
instance (line 3), a constructor (lines 4–6), definition of what it means for a subject to
change (lines 7–8) and method to update the observer (Line 9–11). For comparison, the
listing in Figure 8 shows the key parts of the client code. AspectJ code is preceded by
the comment AspectJ and Eos code is preceded by the comment Eos.

/* Construct Point p and Screens s1, s2 here */
/* Begin AspectJ Code */
ColorObserver.aspectOf().addObserver(p, s1);
ColorObserver.aspectOf().addObserver(p, s2);
/* Begin Eos Code */
ColorObserver cobs1 = new ColorObserver(p, s1);
ColorObserver cobs2 = new ColorObserver(p, s2);

Fig. 8. Observer Clients in AspectJ and Eos

The client code in Figure 8 shows that Eos achieves modular component composi-
tion. As opposed to calling a special aspectOf method on ColorObserver mod-
ule and then calling addObserver on that module, now subjects and observers are
composed by creating new instances of observing relationship. In summary, Eos im-
plementation of the Observer pattern closely mimics the design compared with the AO
implementation of the Observer pattern. This straightforward mapping from the design
to the implementation results from the instantiation and instance-level advising features
of a classpect. A side effect of eliminating the need for additional design time over-
head to emulate instantiation and instance-level weaving is a reduction in the size and
complexity of the implementation.
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4.2 Chain of Responsibility Pattern

The intent of the Chain of Responsibility pattern is to avoid coupling the sender of a
request to its receiver by giving more than one object a chance to handle the request.
The idea is to chain the receiving objects and pass the requests along the chain until an
object handles it. [1, p.223].

Similar to the Observer implementation, the AspectJ implementation of the Chain
of Responsibility pattern provided by Hannemann et al. divides the pattern imple-
mentation into two parts: parts that are common to all instantiations of the pattern
and parts specific to an instantiation. The implementation abstracts the common part
as a reusable aspect CORProtocol as shown in Figure 9. The aspect intro-
duces two roles, Handler (line 2) and Request (line 3) corresponding to a han-
dler and a request as interfaces. It further uses the inter-type declaration feature to
introduce acceptRequest (lines 18–20) and handleRequest (line 21) meth-
ods into the interface Handler as default behavior. The aspect provides an
abstract pointcut eventTrigger (lines 22–23) to represent the event that
is to be handled by the chain. A concrete implementation defines this pointcut.

1 public abstract aspect CORProtocol{
2 protected interface Handler {}
3 protected interface Request {}
4 private WeakHashMap successors = new WeakHashMap();
5 protected void receiveRequest
6 (Handler h, Request r){
7 if(h.acceptRequest(r)){
8 h.handleRequest(r);
9 }else{

10 Handler s = getSuccessor(h);
11 if(s == null){
12 throw new CORException("End of chain reached)");
13 }else{
14 receiveRequest(s, r);
15 }
16 }
17 }
18 public boolean Handler.acceptRequest(Request r){
19 return false;
20 }
21 public void Handler.handleRequest(Request r){}
22 protected abstract pointcut eventTrigger
23 (Handler h, Request r);
24 after(Handler h, Request r):
25 eventTrigger(h, r){
26 receiveRequest(h, r);
27 }
28 public void setSuccessor
29 (Handler h, Handler s){
30 successors.put(h, s);
31 }
32 public Handler getSuccessor(Handler h){
33 return ((Handler) successors.get(h));
34 }
35 }

Fig. 9. Chain of Responsibility in AspectJ

The aspect CORProtocol keeps a HashMap (line 4) to keep track of the suc-
cessors of a given handler. It provides methods to set the successor of a handler (lines
28–31) and to retrieve the successors of a given handler (lines 32–34). The main logic
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of the chain of responsibility pattern is in method receiveRequest (lines 5–17).
This method first checks whether a supplied handler can handle this request. If not, it
tries the successors of the handlers. If there is a successor, it passes the request to the
successor. Otherwise, it throws an exception to signify end of the chain (lines 11–13).
The method receiveRequest is triggered by a delegating advice (line 24–27). This
advice is triggered at the join points selected by the pointcut eventTrigger
(line 22–23).

Similar to the AspectJ implementation, the Eos implementation shown in Figure 10
defines two roles, Handler (line 2) and Request (line 3) corresponding to a handler
and a request as interfaces. It further uses the inter-type declaration feature to intro-
duce the methods acceptRequest (lines 5–7) and handleRequest (line 8) into
the interface Handler as default behavior. In addition, it also introduces a method
receiveRequest to receive requests in all handlers (lines 9–16). In the AspectJ im-
plementation the aspect CORProtocol had a similar method (lines 5–17 in Figure
9). The difference is now in the implementation technique that can be realized due to
the new instance-level advising features in Eos [7]. The method receiveRequest in
the Eos implementation first checks whether the current Handler object can handler
the request, otherwise it throws an exception of type CORException.

1 public abstract class CORProtocol{
2 protected interface Handler {}
3 protected interface Request {}
4 introduce in Handler{
5 public bool acceptRequest(Request r){
6 return false;
7 }
8 public void handleRequest(Request r){}
9 public void receiveRequest

10 (Request r){
11 if (acceptRequest(r)){
12 handleRequest(r);
13 }else{
14 throw new CORException("End of chain reached");
15 }
16 }
17 after throwing(CORException)
18 execution(Handler.receiveRequest(..))
19 && args(r): receiveRequest(Request r);
20 public void setPredecessor(Handler h){
21 addObject(h);
22 }
23 }
24 protected abstract pointcut eventTrigger
25 (Handler h, Request r);
26 after eventTrigger(h, r):
27 TriggerRequest(Handler h, Request r);
28 public void TriggerRequest
29 (Handler h, Request r){
30 handler.receiveRequest(r);
31 }
32 public void setTrigger(Handler h){
33 addObject(h);
34 }
35 }

Fig. 10. Chain of Responsibility in Eos
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In addition to the method receiveRequest, the classpect CORProtocol
introduces a binding (lines 17–19) and another method setPredecessor
(lines 20–22). This binding selects the join point execution of the method
Handler.receiveRequest when an exception is being thrown and calls the
method receiveRequest on the current Handler instance. Note that this bind-
ing is a non-static binding and that would not be easy to simulate in AspectJ. A non-
static binding affects object instances selectively. The effect of this binding is to call
the method receiveRequest on the current handler if the previous handler threw
an exception. The method setPredecessor is provided to set a handler’s predeces-
sor. It calls the implicit method addObject to advise the predecessor instance. The
effect of calling the implicit method addObject is to register the bound methods in
the Handler instance with the join points in the object instance supplied as argument.
The Eos implementation thus eliminates the need to keep a HashMap to represent the
chain of responsibility, instead the chain is now implicit in the advising structure. The
code for hash table lookup for each successor invocation is also eliminated. In addition,
the Eos implementation also allows events to be triggered on an instance-level basis,
which required complex emulation code when written in AspectJ. We will describe this
difference in more detail in the context of a concrete example.

1 public aspect ClickChain extends CORProtocol{
2 declare parents: Frame implements Handler;
3 declare parents: Panel implements Handler;
4 declare parents: Button implements Handler;
5 declare parents: Click implements Request;
6 protected pointcut eventTrigger
7 (Handler h, Request r):
8 call(void Button.doClick(Click)) &&
9 target(h) && args(r);
10 public boolean Button.acceptRequest(Request r){
...
17 }
18 public void Button.handleRequest(Request r){
...
20 }
...
43 }

Fig. 11. Concrete Aspect ClickChain in AspectJ

To illustrate the difference in the implementation technique let us look at the
example system presented by Hannemann et al. This example system has three
type of GUI objects Buttons, Panels, and Frames. The objective is to handle the
request Button.Click and propogate it through the chain Button-to-Panel-to-
Frame if required. The concrete implementation of this example system in As-
pectJ declares another aspect ClickChain (Figure 11) that inherits from the
aspect CORProtocol. This concrete aspect modifies the inheritance hierarchy of
Button, Panel, and Frame to include the interface Handler and the inheri-
tance hierarchy of the event Click to include the interface Request. It provides
concrete implementation of the methods acceptRequest and handleRequest
for these classes. The concrete aspect ClickChain also provides a concrete defini-
tion for the abstract pointcut eventTrigger. The effect of defining this pointcut is
that for all instances of the button class, whenever the method doClick is called the
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delegating advice (line 24–27 in Figure 9) will be invoked. However, this invocation
is desired only when the method doClick is called in the context of a specific but-
ton instance that is the supplier of the request. Thus commitment to type-level advice
invocation fails to achieve the desired objective in this case.

1 public class ClickChain : CORProtocol{
2 declare parents: Frame: Handler;
3 declare parents: Panel: Handler;
4 declare parents: Button: Handler;
5 declare parents: Click: Request;
6 protected pointcut eventTrigger
7 (Handler h, Request r):
8 execution(void Button.doClick(Click))&&
9 this(h) && args(r);
10 introduce in Button {
11 public bool acceptRequest(Request r){
...
18 }
19 public void handleRequest(Request r){
...
21 }
22 }
...
49 }/*6 more lines for inter-type declarations*/

Fig. 12. Concrete Classpect ClickChain in Eos

The Eos implementation (Figure 12) of this example system is similar. The
concrete classpect ClickChain in Eos also modifies the inheritance hierarchy of
Button, Panel, Frame, and Click, provides concrete implementation of the meth-
ods acceptRequest and handleRequest for these classes, and a concrete def-
inition for the abstract pointcut eventTrigger. However, the effect of defining
this pointcut is that for a specified instance of the button class, whenever the method
doClick is called the delegating method TriggerRequest (line 24–27 in Figure
10) will be invoked. This instance is specified using the method SetTrigger defined
in the abstract classpect CORProtocol. The client code for AspectJ and Eos shows
this difference clearly. For comparison, the listing in Figure 13 shows the key parts
of the client code. The common code is preceeded by Common:, the AspectJ code is
preceded by AspectJ:, and the corresponding Eos code is preceded by Eos:.

/* Common Code Begins */
Frame frame = new Frame(...);
Panel panel = new Panel(...);
Button button1 = new Button(...);
Button button2 = new Button(...);
/* AspectJ Code Begins */
ClickChain.aspectOf().

setSuccessor(button1, panel);
ClickChain.aspectOf().

setSuccessor(panel, frame);
/* Eos Alternative Code Begins */
ClickChain chain = new ClickChain();
chain.SetTrigger(button1);
panel.SetPredecessor(button1);
frame.SetPredecessor(panel);

Fig. 13. Chain of Responsibility Clients in AspectJ and Eos
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The client code creates an instance of Frame, an instance of Panel, and two in-
stances of Button. In the AspectJ code, the instance panel is set as a successor to
the Button instance button1 and the Frame instance frame is set as a succes-
sor to the Panel instance panel. In this implementation, on each button click,
complete chain of responsibility pattern is executed for both buttons because the aspect
ClickChain ends up advising both instances of the button. The objective is to execute
the chain of responsibility for only the Button instance button1.

In the Eos code, first an instance of the ClickChain is created. The method
SetTrigger is called on this instance with the Button instance button1 as ar-
gument to set the event method call doClick on button1 as the request trigger. The
Button instance button1 is then set as predecessor of the Panel instance panel
in the chain of responsibility by calling the method SetPredecessor on the Panel
instance panel.

The effect is that the binding in the instance panel bounds the method
receiveRequest to execute in the context of the instance panel whenever the
method receiveRequest executing in the context of the instance button1 throws
an exception of type CORException, i.e. whenever button1 is not able to accept a
request. Similarly, the Frame instance frame is set as the predecessor of the Panel
instance panel in the chain of responsibility. No instance is setting the Frame instance
frame as a predecessor, as a result if this instance is unable to handle the request the
exception CORException is finally thrown to denote unhandled requests.

The implementation strategy in Eos completely realizes the intent of the chain of re-
sponsibility pattern without the need to maintain the chain of successors in a HashMap.
The chain is implicitly maintained in the recursive advising structure in the classpect
Handler. A key property of this design structure is that an instance of a classpect ad-
vises another instance of the same classpect. This benefit is observed as a result of the
generalized advising mechanism provided by our unified aspect language model [3].
In the AspectJ language model, realization of such design structures requires aspect-
instance emulation and instance-level weaving emulation, adding addition complexity
to the solution. In addition, the Eos implementation strategy also overcomes the prob-
lem with the AspectJ implementation where the intention is to advise one Button
instance but the ClickChain aspect ends up advising all Button instances.

4.3 Mediator Pattern

The intent of the Mediator pattern is to define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by keeping objects from referring
to each other explicitly, and it lets you vary their interaction independently [1, p.273].

Similar to the Chain of Responsibility and the Observer pattern’s implementation,
the AspectJ implementation provided by Hannemann and Kiczales divides the pattern
implementation into two parts: parts that are common to all instantiations of the pattern
and parts specific to an instantiation. The implementation abstracts the common part as
a reusable aspect MediatorProtocol as shown in Figure 14. It provides an abstract
pointcut change (lines 14–15) to represent state change of the colleagues. A concrete
mediator implementation defines this pointcut. The implementation provides an abstract
method; notify (lines 19–20) to be redefined in concrete mediators to implement the
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1 public abstract aspect MediatorProtocol{
2 protected interface Colleague{}
3 protected interface Mediator{}
4 WeakHashMap ColToMed = new WeakHashMap();
5 Mediator getMediator(Colleague colleague){
6 Mediator mediator = (Mediator)
7 ColToMed.get(colleague);
8 return mediator;
9 }

10 public void setMediator(Colleague colleague,
11 Mediator mediator){
12 ColToMed.put(colleague, mediator);
13 }
14 protected abstract pointcut
15 change(Colleague colleague);
16 after(Colleague c): change(c){
17 notify (c, getMediator(c));
18 }
19 protected abstract void
20 notify (Colleague c, Mediator m);
21 }

Fig. 14. Mediator in AspectJ

notification logic. The aspect MediatorProtocol also keeps a HashMap (line 4)
to keep track of the colleague instances that are being mediated by a mediator instance.
It provides methods to set (lines 10–13) and get (lines 5–9) mediator corresponding
to a colleague.

This implementation does not work in cases where a colleague instance is partic-
ipating in more then one mediating relationship. Let us assume a scenario where a
colleague instance c is involved in two mediating relationships, m1 and m2. To put the
colleague in the mediating relationships the method setMediator will call with pa-
rameters (c, m1) and (c, m2) in any order. The method setMediator in turn will
call the method put on WeakHashMap ColToMed with Colleague c as the key.
When these calls are completed, the last mapping from colleague to mediator remains
in the WeakHashMap as it replaces the value supplied in the old mapping.

1 public abstract class MediatorProtocol{
2 protected abstract pointcut
3 change();
4 after change() : notify();
5 protected abstract void
6 notify();
7 }

Fig. 15. Mediator in Eos, 66% Smaller.

Like the Observer pattern, the Eos implementation shown in Figure 15 does not
tangle the emulation concern with the mediator protocol concern, resulting in a modular
implementation of the mediator protocol. The implementation clearly represents the
behavior of the pattern, decreasing the conceptual gap between the specification and
implementation of the pattern. It clearly (and only) conveys the intent of the pattern.
The intent of the pattern is that after change in a colleague mediator notifies the changes
to other colleagues. The binding states that after the join points selected by the abstract
pointcut change, the method notify should be called. No interfaces and additional
code required to emulate instance-level advising is required.
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4.4 Decorator

The intent of the decorator pattern is to attach additional responsibilities to an ob-
ject dynamically. Decorators provide a flexible alternative to subclassing for extend-
ing functionality [1]. Decorator pattern implementation in AspectJ exposed the lim-
itations of advising all instances of classes, a typical advising model in the As-
pectJ language. In the AspectJ implementation, shown in Figure 16 the decorator
aspect BracketDecorator decorates all the call to the method print of the
class ConcreteOutput such that a Bracket is printed around the string.

public aspect BracketDecorator {
protected pointcut printCall(String s):

execution(public void ConcreteOutput.print(String))
&& args(s);

void around(String s): printCall(s) {
s = "[" + s + "]"; // Decorates the string
proceed(s);
}
}

Fig. 16. Decorator in AspectJ

This version has two limitations. First, after this aspect is inserted in the system, all
instances of the class ConcreteOutput are decorated. That may not be a desir-
able effect. One may want to decorate only certain instances of ConcreteOutput. Sec-
ond, this version does not allows for dynamic composition of decorators, which is one
of the most useful uses of the decorator pattern.

public class BracketDecorator {
public BracketDecorator(){}
...
}
ConcreteOutput o = new ... //Creating object
BracketDecorator dec = new ... //Creating decorator
dec.addObject(o); //Adding decorator to object
dec.removeObject(o);//Removing decorator from object

Fig. 17. Decorator in Eos (Pointcut and advice similar to Figure 16)

On the other hand, the Eos decorator implementation uses instance-level advis-
ing to affect only the specified instances of ConcreteOutput. In the construct, the
classpect BracketDecorator starts decorating the ConcreteOutput instance
by calling the implicit method addObject on that instance and stops decorating by
calling complementary method removeObject. Eos version thus does allow for dy-
namic composition of decorators.

4.5 Bridge Pattern

It is worth discussing and analyzing a pattern, where we did not get any design struc-
turing benefits from using Eos. In this case, AspectJ’s implementation also did not have
any design structuring benefits. The intent of this pattern is to separate an abstraction
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from its implementation, so that they can be varied independently. The implementation
strategy followed by the AspectJ (and that we followed in Eos as well) is to separate out
common members from various versions of abstraction into a separate aspect, represent
the abstraction as an interface, specify the variations as concrete classes that implement
that interface, and have the aspect insert the commonalities into theses classes. Similar,
design structuring benefits would have been obtained by representing common parts of
the abstraction as an abstract OO class, therefore, the AO solution did not advance over
the OO solution. Eos solution was also similar to AspectJ Solution.

4.6 Other Patterns

We observed similar design structuring benefits in the Eos implementation of the Com-
posite, Command, Strategy, and Singleton patterns. For example, in case of the Com-
posite pattern, the AspectJ implementation represents the Composite-Child containment
relationship using a visitor pattern that triggers operations on the components of a com-
posite. In the Eos implementation, this pattern is not needed. Instead, the Composite-
Child containment relationship is implicitly represented as an advising relationship. In
addition, the emulation code in the CompositeProtocol aspect to keep a list of children
is not needed. Instead, first class aspect instances model the composition relationships
in the system, which more clearly represents the design intent in the runtime structure.

Similarly, in case of the Strategy pattern the emulation code to store the relationship
between a strategy and it’s context is replaced by implicit instance-level advising rela-
tionship. In case of other 16 design patterns, the Eos implementation was the same as
the AspectJ implementation, so we are no worse off then before in these cases as well.

4.7 Analysis

The implementation of design patterns in Eos showed that the unified language model
eliminates the need for emulation strategies in 7 patterns making the resulting imple-
mentation much simpler. The simplification in these cases is the result of including in-
stantiation and instance-level advising as language features, unifying aspect and class,
and unifying method and advice. The composition of participants and patterns is also
much more intuitive now.

Figure 18 shows the results of the case study for the patterns that we considered
previously in the work and others. The rows in the figure represent the patterns and the
column represents the metrics that we considered for this case study.

In particular, we considered four metrics used by Hannemann et al.namely: local-
ity, reusability, composition transparency, and (Un) pluggability. They used these met-
rics to measure the modularity properties of the pattern implementations. Informally,
a pattern implementation has locality if the code for the pattern is syntactically local-
ized in a module. It is reusable, when most of the implementation can be imported in
other application without much effort. It is composition transparent, if using one pattern
implementation in an application does not hinder the option to use other patterns and
finally, if it (Un) pluggable, if the pattern implementation can be put in the application
and taken out with ease.
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Modularity Properties CMPI Size Constructs responsible for major improvements
Pattern
Name

Locality Reusab-
ility

Compos-
ition
Trans-
parency

(Un)
plug-
gability

LOC Ra-
tio (Eos /
AspectJ)

after
advice

around
advice

inter-type
declara-
tions

declare
parents

first-
class
aspect
in-
stances

instance-
level
advis-
ing

Facade Similar for Java, AspectJ and Eos A/E 1 - - - - - -
Abstract
Factory

Similar for Java, AspectJ and Eos A/E 1 - - - - - -

Bridge Similar for Java, AspectJ and Eos A/E 1 - - - - - -
Builder Similar for Java, AspectJ and Eos A/E 1 - - - - - -
Factory
Method

Similar for Java, AspectJ and Eos A/E 1 X - - - - -

Interpreter Similar for Java, AspectJ and Eos A/E 1 - - - - - -
Template
Method

X - - X A/E 1 - - - - - -

Adapter X - X X A/E 1 - - - X - -
State X - - X A/E 1 X - - - - -
Decorator X - X X E 1 X X - - X X
Proxy X - X X A/E 1 - X - X - -
Visitor X X X X A/E 1 - - X X - -
Command X X X X E 0.31 X - - X X X
Composite X X X X E 0.82 - - X X X -
Iterator X X X X A/E 1 - - - - - -
Flyweight X X X X A/E 1 - - X X - -
Memento X X X X A/E 1 - - - X - -
Strategy X X X X E 0.58 - X - X X X
Mediator X X X X E 0.34 X - - X X X
Chain of Re-
sponsibility

X X X X A/E 0.84 X - X X - X

Prototype X X X X A/E 1 - - X X - -
Singleton X X - X A/E 1.41∗ - X - X X -
Observer X X X X E 0.22 X - - X X X
X in a cell represents a property holds for Eos Implementation of the Pattern.
CMPI means close match to pattern intent. A/E means that both AspectJ and Eos implementation match the intent.
Either A or E means that only the AspectJ or Eos’s implementation closely matches a pattern’s intent.
∗: an alternative implementation of singleton utilizing first-class aspect instances.

Fig. 18. Qualitative Analysis Results for Java, AspectJ [11] and Eos

We also studied the size of the pattern implementation in both Eos and AspectJ. In
particular, we report on the size of the reusable part of the pattern in Figure 18. All lines
of code were measured after ignoring comments and ignore closing braces that often
consitute a single line by themselves.

The third metrics we considered is Close Match to Pattern Intent (CMPI). This
metric can take true or false value. By close match to pattern intent, we mean whether
the implementation in the language closely matches the original intent of the pattern.
For example, the intent of Class Adapter pattern is to convert the interface of a class into
another interface clients expect so that classes can work together that couldn’t otherwise
because of incompatible interfaces. The implementation of the Class Adapter pattern in
a language without multiple inheritance (such as Java) will have CMPI value of false.
In other words, CMPI demonstrate the naturalness of the pattern representation in the
language.

Finally, we also studied the aspect-oriented language constructs and their role in
enabling better representation of GoF patterns. In particular, we looked at the role of
AspectJ specific constructs around advice, before advice, inter-type declaration, and
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declare parent construct. Eos also has these constructs. In addition, Eos has features for
creating aspect instances, and for advising other object instances on a selective basis.

The key observations from our case study are as follows:

– Implementations for Facade, Abstract Factory, Bridge, Builder, and Factory method
remained almost the same for Java, AspectJ and Eos. This is because the primary
purpose for these patterns is to provide a passive abstraction. There implementation
is already well-modularized.

– The declare parents constructs played a key role in both AspectJ’s and Eos’s AO
implementation of GoF patterns. This construct allows one to impose another type-
hierarchy on an existing type hierarchy. In the implementation of GoF patterns, it
was mostly used to impose roles on pattern participants.

– Most usages of the advice construct in the GoF pattern implementation turned out
to be for creating relationships between objects rather than for creating relation-
ship between classes. In order to mimic the relationships between objects, AspectJ
implementation used a hash map to store and retrieve these relationships.

– Eos implementation and the instance-level advising feature was able to avoid the
need to mimic the relationships between objects. Instead, it had a direct represen-
tation such that the design mirrored the runtime struture.

– In some cases, savings in terms of code size (LOC) were as much as 78 % in case
of Eos.

– Eos implementation for six patterns namely, decorator, command, composite, strat-
egy, mediator, and observer closely followed the original intent of the paer, whereas
the AspectJ implementation did not. This is primarily because AspectJ did not pro-
vide a mechanism to efficiently represent relationships between pattern participant
instances as advising relationships. The advising relationships between participant
instances had to be emulated on top of the advising relations between participant
classes.

– In most cases, improvement in Eos’s implementation was due to the combination
of instance-level advising and first-class aspect instances e.g. decorator, command,
strategy, etc, although in some cases, e.g. composite and singleton, design structur-
ing benefits were largely due to first-class aspect instances.

5 Related Work

Most closely related to this work is the evaluation of aspect-oriented implementation of
the Gang-of-Four design patterns [1] conducted by Hannemann and Kiczales [11] and
Garcia et al. [24]. Hannemann and Kiczales compared the object-oriented implementa-
tion in Java with aspect-oriented implementation in AspectJ using qualitative metrics.
Garcia et al. [24] used a set of quantitative metrics to compare the object-oriented and
aspect-oriented implementations. Our work compares the design structures realized in
an aspect-oriented implementation in Eos with another aspect-oriented implementation
in AspectJ.

The subject of this evaluation, the unified aspect language model [3], is related
to AspectJ [2], AspectWerkz [17], and Caesar [19]. In at least one early version of
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AspectJ, there was no separate aspect construct. In this version, the class was extended
to support advice. To the best of our knowledge, the synthesis of OO and AO techniques
achieved by our unified model was not present there. Advice bodies and methods were
still separate constructs; and it is unclear to what extent advising as a general alternative
to method invocation and implicit invocation was supported. In addition, flexible aspect
instantiation and instance-level weaving were not supported. Rajan and Sullivan showed
that first-class aspect instances and instance-level advising improved the modularization
of integration concerns [4, 7]. This work reinforces our earlier findings.

Another closely related design is that of AspectWerkz [17]. The aim of As-
pectWerkz is to provide the expressiveness of AspectJ [2] without sacrificing pure Java
and the supporting tool infrastructure. The solution is to use normal Java classes to rep-
resent both classes and AspectJ-like aspects, with advice represented in normal meth-
ods, and to separate all join-point-advice bindings either into annotations in the form of
comments, or into separate XML binding files. AspectWerkz provides a proven solution
to the problem of AspectJ-like programming in pure Java, but it does not achieve the
unification that we have pursued.

First, and crucially, AspectWerkz does not support the concept of aspects as objects
under program control; rather it is really an implementation of the AspectJ model. In-
stead, the use of Java classes as aspects is highly constrained so that the runtime system
can maintain control. A class representing an aspect must have either no constructor
or one with one of two predefined signatures, and a method representing an advice
body has one argument of type JoinPoint. AspectWerkz uses this interface to manage
aspect creation and advice invocation. AspectWerkz also lacks a single-language de-
sign, in that it uses both Java and XML binding files. Third, AspectWerkz lacks static
type checking of advice parameters. Rather, reflective information is marshaled from
the JoinPoint arguments to advice methods.

The design of Caesar [19] is also closely related to our approach. The aim of Caesar
is to decouple aspect implementation and the aspect binding with a new feature called an
aspect collaboration interface (ACI). By separating these concepts from aspect abstrac-
tion, Caesar enables reuse and componentization of aspects. This approach is similar
to ours and to AspectWerkz in that it uses plain Java to represent both classes and as-
pects; however, it represents advice using AspectJ-like syntax. Methods and advices are
still separate constructs, and the advice constructs couple crosscut specifications with
advice bodies. Consequently, as in AspectJ, advice bodies are still not addressable as
individual entities. They can be advised as a group using an advice-execution pointcut.
In Caesar, as in Eos, advice can be bound statically or dynamically; however, aspects in
Caesar cannot directly advise individual objects on a selective basis.

Aspect languages such as HyperJ [26,27] have one unit of modularity, classes, with
a separate notation for expressing bindings. However, they do not support program con-
trol over aspects as first-class objects, and to date the join point models that they have
implemented have been limited mainly to methods [28].

Several others have evaluated aspect-oriented programming techniques on differ-
ent benchmarks. Early assessments were conducted by Mendhekar et al. [29], Kersten
and Murphy [30], Walker et al. [31], etc. Mendhekar et al. [29] used RG, an envi-
ronment for creating image processing systems to evaluate aspect-oriented program-
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ming. Kersten and Murphy [30] used Atlas, a web-based learning environment to eval-
uate aspect-oriented programming. Walker et al. [31] also conducted an initial assess-
ment of aspect-oriented programming. These assessments describe the performance of
an aspect-oriented approach in isolation on unique problems; our approach compares
two different aspect-oriented models using standard problems. Compared to Dyer et
al. [32,33]’s work that compares AO interface features, we compare language features.

6 Conclusion

In this paper, we described a case study that analyzed the Eos implementation of 23
GoF design patterns. This implementation showed improvement in the case of 7 out
of 23 design patterns compared to the AspectJ implementation. The implementation
was no worse in other 16 patterns. A successful demonstration of the capabilities of
the language model on standard, broadly utilized, design structures inspires confidence
in its potential and practical utility. In most cases, these benefits emerged from the
ability to model relationships between participant instances as implicit advising struc-
tures. The unification in Eos thus allowed new type of design structures, for example,
the reverse chain of predecessors in the Chain of Responsibility pattern, to emerge.
A new set of patterns of advising structures is perhaps around the corner, waiting for
the wider adoption and use of aspect-oriented programming mechanisms. We also con-
tribute an analysis of the language constructs that were most useful during the GoF
design pattern implementation, which provides insight into the design and use of AO
languages constructs. These results should also apply to languages inspired by Eos, e.g.
Ptolemy [22, 23].
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