B e

To6t QUNTLIONIIN
NN

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9212149

Study of secondary structure of protein sequences by linear
algebra

Hsieh, Wei-hua, Ph.D.

Towa State University, 1991

Copyright ©1991 by Hsieh, Wei-hua. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Study of secondary structure of protqin sequences

by linear algebra

by

Wei-hua Hsieh

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Department: Mathematics
Major: Applied Mathematics

Approved:

Signature was redacted for privacy.
In Charge of Majef Work

Signature was redacted for privacy.
For the Major Department

Signature was redacted for privacy.
Tor the Graduate College

Towa State University
Ames, Jowa
1991

Copyright © Wei-hua Hsieh, 1991. All rights reserved.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ittt it e
1. INTRODUCTIONt e e e e e
2, LITERATUREREVIEW.
2.1 Imtroduction L .
2.2 Chou and Fasman's Conformational Parameters
2.3 Robson ef al.’s Information Theory Method
2.4 Levin et al’s Similarity Matrix
2.5 Qian & Sejnowski’s Feedforward Neural Network Models
3. PARTITION INLINEARSPACE
3.1 Introduction o L L e e
3.2 Transformation from Alphabetical Segment to Linear Space — Encod-

4.

ingSchemes L L
Conformation Parameters v v ...
Information Theory Method
Neural Network Models.

DIscussion . . v v vt e e e e e e e e e e e e e e

LOCAL STUDY OF PROTEIN SEQUENCES IN SEGMENTS

iii

4.1 Introduction it i e e e e 33
4.2 Similarity Scale for Two-state Prediction 31
4.2.1 Introductiono o e 31
422 Method e 31
4.2.3 Prediction Procedure — Five Nearest Neighbors 39
4.2.4 Resultsand Discussion 41
4.3 Similarity Matrix for Two-state Prediction 48
4.3.1 Introduction e 18
432 Method e 49
4.3.3 Prediction Procedure 51
4.3.4 Resultsand Discussion 53
4.4 Single Separation Plane, h8
441 Introduction 58
4,42 Method e H8
4.4.3 Prediction Procedureo L. 69
4.4.4 Smoothing Algorithm 69
4.4.5 Results and Discussion T2
4.5 Pairs of Separation Planes 87
4.5.1 Introduction o e 8T
452 Method 92
4.5.3 Prediction Procedure 9.1
4.5.4 Results and Discussion 96
4.6 Conclusion i i i e e e e e L7

BIBLIOGRAPHY 118

iv

APPENDIX A. DATABASE v, 120
Al Training Set e e e 121
A2 Testing Seto oo i e e 124

APPENDIX B. PROGRAMS i, 125
B.l MainProgram i 126

B.2 Funclions v v v i e e e e e e e e e e e e e e e e e e 1:33

Table 2.1:

Table 2.2:

‘able 4.1:
Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

LIST OF TABLES

Assignment of region 179-183 of Carboxypeptitase A (Based
on 15 proteins): (Ihihh)q and (HHihH) B

Levin et al’s secondary structure similarity matrix.

Dayhoff’s substitution matrix.
Two-state predictions using the similarity scale derived from
the matrix A + N — W and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structure).

The similarity scales derived from the matrix Af + N — ¥ in
the examples in previous table.
Three-state predictions using the similarity scale derived from
the matrix C' — W and the 5-nearest neighbors method (Pre-
dict when 4 or 5 neighbors have same structures).
Two-state predictions using the similarity scale derived from
the matrix M +N+W =L and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structures).
The similarity scales derived from the matrix Af + N + H—l

in the examples in previous tables.

46

47

Table 4.7:

Table 4.8:

Table 4.9:

Table 4.10:

Table 4,11:

Table 4.12:

Table 4.13:

Table 4.14:

vi

Three-state predictions using the similarity scale derived [rom
the matrix ¢ + W—1 and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structures).
Two-state predictions using the similarity matrix derived from
the matrix M + N — W and the Levin-like method.
Two-state predictions using the similarity matrix derived {rom
the matrix Af + N + W= and the Levin-like method.
Two-state predictions using the similarity mmatrix derived from
the matrix Al + N — W and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structures).
Two-state predictions using the similarity matrix derived from
the matrix M +N+W =1 and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structures). . . .

Three-state predictions using the similarity matrix derived
from the matrix C' — W and the 5-nearest neighbors method
(Predict when 4 or 5 neighbors have same structures).
Three-state predictions using the similarity matrix derived

1 and the 5-nearest neighbors method

from the matrix C'+H ™
(Predlict when 4 or 5 neighbors have same structures).
The partition result on artificial database performed by the
planes, which were derived from the linear programming modcl

and calculated by the software MPSX, for seven amino acid

segnents in the set of 30 or of 50 proteins.

48

5t

Hl

Table 4.15:

Table 4.16:

Table 4.17:

Table 4.18:

Table 4.19:

Table 4.20:

Table 4.21:

Table 4.22:

Table 4.23:

Table 4.24:

Table 4.25:

vil

The partition results of the planes, which were derived [rom
the information theory method, for seven-amino acid segments
in the sets of 30 or of 50 proteins.
The four numbers in the entries of the S or P column in some
tables have the same roles as do A, B, C,and D.
The 10 iterations of the single plane for two-state separation
with segment length seven on 10 proteins.
The last 5 iterations after modification of a constraint.
The three single separation planes for three-state prediction
for seven-amino acid segments on the first 10 proteins in the
training set. e
Separation results regarding the three planes mentioned in the
previous table. o e
The three single separation planes for three-state prediction
for seven-amino acid segments in the first 20 proteins in the

training sel. v o v i e e e e e e e e

Separation results performed by the planes in the previous table.

The three single separation planes for three-state prediction
for seven-amino acid segments on the second 20 proteins in
the trainingset.
Separation results performed by the three planes in the pre-
vioustable. o o o
The nine iterations for the first pair of parallel planes for two-

state separation with segment length seven on 50 proteins.

-~1

ot

-1
i]

9

81

83

84

86

oL
-1

93

Table 4.26:

Table 4.27:

Table 4.28:

Table 4.29:

Table 4.30:

Table 4.31:

Table 4.32:

Table 4.33:

Table 4.34:

viii

The inner product of the normalized normal vectors. 99
The secondary structures of the four proteins 250D’s. (c: coil; a :
alpha-helix.) 101
The two-state prediction for seven-amino acid segments in the
training set. o e e 103
The normal vectors of the second, the sixth, and the tenth

pair of parallel planes. The numbers in the first two rows (S|

and S9) are the constant terms in the equations of the planes. 104

The inner product of the normalized normal vectors of the ten

The three-state prediction of Type I for 17-amino acid seg-
ments. (Note: because the misplaced points in the “S™ colimmn
lie on the corresponding plane derived from the OSL, we set
0.00000001 as threshold for the case 4, 4, and 4 to avoid pre-
dicting these points. The separation result is improved, but
the prediction results are slightly differet. Similar expressions
hold for the cases listed in subsequent tables.) 3
The three-state prediction of Type II for 17-amino acid seg-
Ments. ot i e e e e e e e e e 15
The nine numbers in the entries of the S or I column in some
tables have the same role as A, B, C, D, E, I. G, H, and I,
respectively. L L L o e 116
The three-state prediction of type I and type II for amino acic

segments with lengths sevenand 25. 116

Figure 2.1:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

ix

LIST OF FIGURES

A feedforward neural network with one hidden layer. The
hottom layer is the input layer, the top layer is the output

layer, and the layer between is the hidden layer. 1} i is the

weight assigned to the connection from the ith unit in the

input layer to the jth unit in the hidden layer. 21
Five nearest neighbors. 40
The transformed points are well distributed. 51

Most points T belong to the group A for which S (5},T) > (". 52
The nonzero Z; is the distance from the plane to the “mis-
placed” point associated with Z;. Gl
Three-state prediction in three-dimensional space. The inter-
section of the three planes is a line. The three vectors N, 3

Nae, and N B¢ are linearly dependent. 65
The indifference plane I, 3 in three-dimensional space. N, p=
Na—-N 3 The two statistical distances sdq and sd j are equal. 67

Two-state prediction. 70

Figure 4.8:

I'igure 4.9:
Figure 4.10:
Figure 4.11:

Three-state prediction. The structure assigned to a point de-
pends upon where this point is located in space. We do not
predict if a point lies in the middle triangle region.
One pair of parallel separation planes,
Two pairs of parallel separation planes.
The categorization by the two pair of parallel planes in Fig.
4.10, in which the solid disks represent the alpha-helical points,

and the circles represent the non-alpha-helical points.

38
90

91

xi

ACKNOWLEDGMENTS

1 am deeply grateful to Dr. James L. Cornette for his guidance and encourage-
ment during my graduate study. Without his help, this dissertation would never have
been possible.

I am also indebted to Dr. Vincent A. J. Sposito for his kindly help on both
MPSX and OSL software.

Finally, I am grateful to the Computation Center of lowa State University for

the Block Grant support for computing.

1. INTRODUCTION

A protein is a long-chain, linear polymer of amino acids, often cross-linked hut
never branched. Each monomer has a side chain, which is usually one of the 20 com-
mon types: alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic
acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline,
serine, threonine, tryptophan, tyrosine, and valine. The so-called primary structure
of a protein is its sequence of these amino acids. A common feature of a protein’s
three-dimensional structure is the alpha-helix, which consists of a segment of some
T to 20 amino acids folded into the form of a helix. Two-state prediction ol the
secondary structure of a protein usually entails the classification of each of its amino
acids as either “helical” or “nonlelical.” Three-state prediction, on the other hand,
entails classification of the structure of each amino acid as alpha-helix, beta-sheet,
or coil. Beta-sheet is a kind of secondary structure, and thus neither alpha-helix nor
beta-sheet structures are referred to as coil.

In 1974 [1], it was asserted that because protein folding occurs with no out-
side assistance, the resulting three-dimensional native conformation depends solely
upon the primary sequence. Furthermore, the influence of the secondary structure
of an amino acid by other amino acids in the protein decreases with “residue dis-

tance,” i.e., much information about the conformation of an amino acid is carried by

a “long enough” block with the observed amino acid in the middle. In 1984 Kabsch
and Sander [2] found that identical pentapeptides had different conformations. This
observation tells us that long-range interaction should be considered upon determi-
nation of the secondary structure. In short, we can say that two identical strings
of amino acids tend to have identical three-dimensional shapes and that two similar
but nonidentical strings tend to have similar conformations. The role of blocks of
amino acids in the determination of protein secondary structures remains in question,
however.

This vesearch is directed to study “locally” the relation hetween primary struc-
tures and secondary structures of proteins and to provide a methodology for ident.i-

fying secondary structures. Specific objectives are as follows:

1. Similarity scale. To construct a similarity scale assigning a value to each
amino acid. For example, a seven amino acid sequence can be represented by
a seven-dimensional real vector or by a single point in R'. The Euclidean
distance hetween two points determines the similarity of the corresponding two

amino acid strings.

2. Similarity matrix. To construct a 20 x 20 similarity matrix that is symmetric
and in which each row (and column) corresponds to a particular amino acid,
The “similarity score” of two amino acid sequences of the same length is deter-
mined by addition of entries chosen from the similarity matrix. (The number

of chosen entries is the length of the amino acid strings.)

3. Single separation plane. To locate amino acid strings of length k, say, in the

20k-dimensional real space, and to then find an acceptable plane to “separate”

middle amino acid alpha-helical strings from middle amino acid non-alpha-

helical strings. The problem is thus transformed into a partition problem.

4. Pairs of separation planes. To construct several pairs of parallel planes,

thereby making partitioning possible.

All computing jobs were performed on the IBM 360 or the Digital Work Station
3100. Programs, which were written in C, are listed in Appendix B. Software— II3M
Mathematical Programming System (MPSX) and Optimization Subroutine Library
(OSL)—was used to perform Simplex computations. Kabsch & Sander's protein
secondary structure assignments, listed in Appendix A, were used to train and to

test prediction schemes.

2. LITERATURE REVIEW

2.1 Introduction

We will begin by quoting from the works of prominent researchers on the signif-

icance of predicting secondary protein structure from the primary protein sequence:

e Chou and Fasman [3]:

As such, multi-state prediction models serve as important starting
conformations for calculations of protein folding based on energy min-

imization. (Page 87)
e Qian and Sejnowski [10]:

This approach is not meant to be an alternative to other methods that
have been developed to study protein folding that take biophysical
properties explicitly into account, such as the methods of free energy
minimization... Rather, our method provides additional constraints
to reduce the search space for these methods. For example, a good
prediction for the secondary structure could be used as the initial

conditions for energy minimization... (Page 866)

G

2.2 Chou and Fasman’s Conformational Parameters

Chou and Fasman’s predictive method [3], which is one of the earliest prediction
schemes, outlines three basic steps:

Step 1: Use the database, which contains some proteins with known structures,
to compute the conformational parameters Py (for helix) and P/3 (for sheet) for each
of the 20 amino acids.

The helix conformational parameter is

fa

Py =
[a} <‘fa>,

where [q is the frequency of residues in the helix and where < fo > is the average
frequency of all residues in helical regions. Similar expressions hold for P/ .
Example. Suppose that there are 4741 residues in 29 proteins for which 1798

residues are alpha-helical and 930 are beta-sheet residues. Then

1798 -
< fa>= T 0.379, and
930

Suppose that, among the 4741 residues, 434 are Alanines, for which 234 are alpha-
helical and 71 are beta-sheet. Then, for Ala,

234 .
¢ T m—— 0)0 ¢ .
fa B 0.539, and

-

7l
fﬂ = m ~ (0.164.

So the conformational parameters Py and P/3 for Ala are

fa 0539

= 7S = 0379 ~ 1.422 and
Ja -

Pa

Table 2.1: Assignment of region 179-183 of Carboxypeptitase A (Based on 15 pro-
teins): (fThihh)q and (HHihH)/g.

179 180 181 182 183
Carboxypeptitase A Ile Val Asp Phe Val
Helical assignment 1 h i h h
Pq value 1.00 1.14 0.98 1.12 1.4
beta-sheet assignment H H i h I
]-’/3 value 1.60 1.65 0.80 1.28 1.65

M3 0.164
I . -
Fs=< 3> 0196 el

Step 2: Use the conformational parameters to assign each residue as a former,
an indifferent, and a breaker.

Helical assignments: Hgq, strong alpha-former; hq, alpha-former; In, weak
alpha-former; iq, alpha-indifferent; b, alphabreaker; Bq, strong alphabreaker.

Beta-sheet assignments: H /3 strong beta-former; h A beta-former; [il weal
beta-former; 7 B beta-indifferent; b 3 heta-breaker; B 3> strong beta-breaker.

Example. As in the example for Step 1, Alanine was assigned as a strong helix
former (Ha, Po = 1.422) and as an indifferent for beta-sheet (i L P/3 = 0.837).

Example. See Table 2.1.

Step 3: Use a set of empirical rules to locate the secondary structures of proteins.

There are three basic rules for predicting secondary structures. Let < Pn > and
< 1’/3 > denote the averages of Py and P/3 values for the residues in the segment under
consideration, respectively. Because rules and conditions are somewhat ambiguous,
we will describe those aspects of the rules and the conditions that have been used in
a program written by Minoru Kanehisa and list the titles of the unused conditions in

the basic rules.

-1

® Rule 1. (Search for helical regions)

— Helix Nucleation
Step A. Assign 2 to Hy and hq residues; 1 to Iq residues; and 0
to iq, ba, and B residues. Let us call these values (2, 1, and 0) the
“a-tendency quantity” of residues. The a-tendency quantity of a k-residue
sequence in length is the sum of the a-tendency quantity of the k residues
in this sequence.
Example. The a-tendency quantity of the five-residue sequence in the
previous example, i.e. (Thihh)q,is 1 +2+0+24+2=T.
Consider all amino acid sequences of length six with an a-tendency quantity
of at least 8. Modify each sequence by keeping its longest contiguous subse-
quence such that the first and the last amino acids have an a-tendency quantity
of 1 or 2. Then assign the structure alpha-helix to all the amino acids re-

maining after modification.

— IHeliz Propagation and Termination
Step B. Assign 1 to Hy and hq residues; 0 to I and iq residues; and -2
to ba and Bq residues. Let us call these values the “a-tendency quantity.”
Example. The a-tendency quantity of (Ihihh)q is04+14+04+14+1 =3.
Extend the helical segments found in Step 1 in both direction by con-
sidering their adjacent tetrapeptides. For the C-terminal end extension,
shift along the protein one amino acid every time until find a tetrapep-
tide having < Py > < 1 and (&-tendency quantity) < 0. Then assign

the structure alpha-helix to the residues between the helical segment and

the last tetrapeptide (not included). Do the same for the N-terminal end
extension.
— Proline as Helix Breaker
Step C. The helical segment in a new (or observed) protein has been
identified in Steps 1 and 2. The object of Step 3 is to modify the located
helical segments by considering the Prolines in these helical segments ac-
cording to rules (a)-(c):

(a) If position 4, 5, or 6, counted from the N-terminal end to the (-
terminal end, is occupied by a Proline, then the helical segment
is shortened by deleting the residues “before” this Proline in the
segment. The new, shortened helical segment should also obey
rules (a), (b), and (c).

(b) The minimum length of a helical segment is 6. Otherwise, cancel
the helix assigned to that segment.

(c) After (a) and (b), the first six residues in every helical segmeﬁi
have been definitely assigned a secondary structure, namely, a
alpha-helix. So we construct the subsequences of these segments
by cutting the residues before the first proline found after the

seventh (included) position. Then go to (a).
— Helix Boundaries
o Rule 2. (Search for beta-sheet regions)

— Beta-Sheet Nucleation

Step A. Assign | to A 8 and Iz./3 residues; and 0 to ¢ iL b/j, and 13/3

residues. Let us call these values (1 and 0) the “g-tendency quantity™ of
residues. The 3-tendency quantity of a sequence of length k is the sum of
the 3-tendency quantity of the k residues in this sequence.

Consider all amino acid sequences of length 5 with a F-tendency quantity
of at least 3. Modify each sequence by keeping its longest contiguous subse-
quence such that the first and the last amino acids have a 3-tendency quantity
of 1. Then assign the structure heta-sheet to all the amino acids remaining

after modification.

—~ Beta-Sheet Propagation and Termination

Step B. Assign 1 to H 3 and h 3 residues; 0 to 7 3 residues; and —2 to b 3
and B/3 residues. Let us call these values the “3-tendency quantity.”

Extend the beta-sheet segments found in Step A in both directions by con-
sidering their adjacent tetrapeptides. For the C-terminal end exteusion,
shift along the protein one amino acid every time until there is a tetrapep-
tide having < P/3 > < 1 and (f-tendency quantity) < 0. Then assign the
structure beta-sheet to the residues between the beta-sheet segment and
the last tetrapeptide (not included). Do the same for the N-terminal end

extension.
— Strong Beta-sheet Breakers

— Bela-sheel Boundaries

o Rule 3. (Overlapping alpha- and beta- regions)

10
2.3 Robson et al.’s Information Theory Method

In this section, we will explain the basic idea of Robson et al. ’s information
theory method [5, 6, 7, 8]. Theoretically, the purpose of this method is to estimate

the real value of the information [6]

I(Sj;R_[aR'Z’ .. -least)’

which reads, “ the information that the residues at the first (), the second (Hy),
and so on, up to the last position (Rla st) carry regarding the conformation of the
jth residue (Sj).

If there are two possible conformational states, say A and A, for each residue,

then to predict the structure of the jth residue, we simply compare the two values:
I =1(Sj=ARy, Ry, . .\ Rygg)

and

Iy=1I(S;=A4R),Ry, .. . Ryg).

The larger value defines the conformational state of the jth residue.

Because of the observation that the effect of residues

Rj-—m’Rj——m-l-l’ .. .,Rj, .. -’Rj+m—1’ and Rj+m.

plays a dominant role for some integer m (it is claimed that the best choice is m =

8), an approximation for I is thus

m
I =1(8;=AR| Ry, .. wRigg) > 3 T(Sj=ARjy).

l=—m

11

A similar expression holds for Ig. So

I~ Iy~ Z [1(S; = ARj1;) ~ 1(Sj = A Rjy5)]- (2.1)

i=—m

P(S;=A|R; .
(J IH—) \\heleP(,_All?_H)ls
P(sj=4) J
the conditional probability that the conformation at the jth posit1011(.’5',j) is A, given

Definition. I(;=AR; _Hj) = log

the type of residue at position j + i (R j+,j) ; and where P (S.j = A) is the probability
that the conformation at the jth position is A.
Definition. I(‘» =A: AR +,) I(;= A; R)](Sj = A;Rj-l-i)'

From Eq. (2.1), we have
m
n-Ip~ Y I(Sj=A:4&Rj;). (2.2)
=—m
For notational convenience, let us remove the suffixes j and j + i; let us also replace

A and A by 1 and 2, respectively, in the right hand side of Eq. (2.2) and explain how
to evaluate](i =A: AR +1) that is, how to find I (S =1:2; R).
Let f¢p denote the probability of the combination (S,R), where S stands for

one of the conformations 1 and 2 and where R stands for one of the 20 amino acids.

Then
O¢p 20,
2 2
Z Z =1
and ’

P(S=1]|R) P(S=2|R)

I(§=1:2R) = log P(5=1) ~ log P(S=2)
_ o P8 =1]R) g Pls=1)
= gp (S=2|R) ®P(5=2)
= log-—m logol' (2.3)

0‘71? ‘920

12

where Oce = Z%):l O¢p.
Suppose that fqp is the number of appearances of the combination (S.R) in the
database D, say, and that Z%v=1 E%?:l fep = fee is fixed. When the values of

J1Rr fop fle> and foq are great, then, from Eq. (2.3),
I(S=1:2R)~log=LL fRr ~log Lle ury (2.4)
Jor foe
On the other hand, if the size of the database is too small, Robson ef al. apply

Bayes’s decision theory, hased on a database, to determine the posterior expected

value of

I(S=1:2;R)

(see Note 2). The likelihood function and the prior probability density of the unknown

parameters 0 ¢ pp’s are then proportional to

and

respectively. The posterior density, say
™ (011,012, 01 1,091,099, - Ogy, | D] , where k = 20,

ol 0 i’s is then proportional to the product of the prior probability and the likelihood

function, i.e.,
1
™ [011.619, -6 4+ 691,022, -0y, | D] o H HquR :

where & = 20.

13

Property 1 [14]. The marginal posterior density function of 04 is beta with
parameters f1o and foq .
. . . b . .
Property 2 [14]. The marginal posterior density function of 7;1-11 is beta with
olt

parameters fi p and fop .

Hence, the expected value of 1 (S =1,2; R), given data D, is

E(§=1:2%R)| D]

0
= E logeig ﬂl—'IDJ

[0 0
= E|log LR _jog—le | D]
Yo -9 l- 010

= [|log O1pl%p -]
- (am/o,R)

= E|log O11/%R | D| - [logl ; |D]
1= (61p/%R) Lo

= /Ul (log 1_3_::1,>!/ (-T?flesz) tl:l?-—/o (logl Y)J(I/, flesf2e) dy
= T(fip:far) = T (f1e:f20) (2.5)

where

(m+n-1)"1 an—1
m-Dim-n* LY

is the heta density with parameters m > 0 and n > 0 and where
T(/1 (l X) (2) d
m,n) = 0 og T—=)9 aym,n) da.
Property 3. T (m,n) = #(m) — #(n), where both m and n > 2 and where

11 1
#k)=1+5+5++ T

g (uym,n) =

(2.6)

Property 3 is a good result that will make application of the information theory

method relatively easy. For this reason, we will give the proof of Property 3 here.

14

Proof of property 3:

T(m,n) = /(; log g(u m,n) du

~ 1)
(nfm —;—);7(,1 1)-1)' {/0 (logu)um'_l (1— u)n—l du

1 ‘
—/0 [log (1 ~ u)] w1 (1 - u)"'—l (lu}

ik it [/o (logw)u™ =1 (1 — w1 du

(m = 1) (n—1)!

- /0 (log v) ym—1,n— dv]
(m+n-—) r
(m—=1)(n |[U myn)—U(n, 171)]

where

1 ‘
U(m,n) = /0 (log u) a1 =)" g

Integrating by parts, we have
'(mn) = / (log w) w1 (1 — w)?*=1 &y

um | el u=1
= [-HT(logu)(l—u) et
m-1

1 3
—/0 i—-(1 —u)"'_1 du
m

1 o .
-[-/O }-:'T(log u)(n =1)(1 —u)""2 du

—E/O um=1 (1 -'u,)"'—l du

n—1r1 . -
+ m /0 w™ (logu) (1 —u) du
—(m=1)(n-1) n-1

m(m+n—1)! m

Multiplying both sides by o mi'-)”(n T Ve have the recursive formula

Um+1,n-1),

Hence,

(m4n-—1)
(m—=1)(n~- 1)
(m+n

Lttt 1)
“m ol (n=2)! (m+1n -

1 1 (m+4n-—1)!
——— T'(m , —
m m+1 + (m+ 1) (n - 3)!((m +2,n —2)

[7(m,n)

B S W
m m-1 | m+n—2
(7(:In+-i-nn——-])')0' T(m+n-—1,1)
(m m+1 +;7T+_ir——-—)
%/ﬂ (log u) yMmtn— -2 du

(1+ 1 IS S 1
m m+1 m+n --‘2

amtn—1 1 1 mtn=2
+(m4+n—-1) || ————logu ———du

m+n—1 0 0 7n+n—l
1 1 m+n.— 1
Y [l .. — —1) | ——
(m+m+1 T m+n—2) (m +n (m+n—l) 0

1 1
_(E+1n+l+ “+m+n—-2+m+n—-1>

1 1 1
T(m,n) = —<7_77+m+."+171+n—2+7n+n——1>

Note 1. Because Eq.2.6 is valid only for m and n > 2, Robson ¢f al. scl

M R=2 whenever fig = L or 0. Let a similar condition hold for Jo R [1es and foq.

1 1 1
+< +n+1+ +n+m—2+n+m—1)

= F#(m)— #(n).

16

After this modification, we can use Eq. (2.6) to find the posterior expecled value of

I(S=1:2;R) from Eq. (2.5).
Note 2. For large m and n,

m m]
log — = —dx ~ T (m,n),
n n X

and Eq. (2.4) and (2.5) are approximately equal.

Now, go back to Eq. (2.2). Instead of using the prediction scheme

A for Il —1y>0,

Sj =
A for I -1y <0,
Robson el al. use that of
A for I} — I9 > DC,
S.j = -

A for I) — I < DC,

where DC is an adjustable parameter chosen to improve prediction.

Note 3. Chou & Fasman’s conformation parameters can he expressed as

_P(S=alR) _ I(S=a;R)
bo=—Fpm—a =

where P (S = « | R) is the probability that the structure of the residue R is alpha-
helix and P (S = a) is the probability that the structure of a resicdue is alpha-helix.

and as
P(S=B1R) _ I($=p;R)

Ps=—F5=5p

The information theory method considers the influence of residues at different posi-

tions on the conformation of the middle amino acid in a block of amino acids and

so predicts one amino acid each time. Although information regarding the different

17

amino acids at different positions is not included in the conformational parameters,
this method predicts the structures of several sequential amino acids every time.
(Four sets of conformational parameters are constructed that are diflerent from the
two sets of conformational parameters we have introduced, in terms of the influence
of amino acids on the N-terminal end or on the C-terminal end of the conformation
of the entire block. The program for Chou & Fasman’s method, mentioned hefore,

used only the two sets of parameters that we have introduced.)

2.4 Levin et al’s Similarity Matrix

Applying the assumption that short homologous sequences of amino acid have
identical secondary structure tendencies and using a symmetric matrix called a sec-
ondary structure similarity matrix, Levin et al. [9] assigned sequence similarity scores
hetween all two sequences seven residues in length. The empirically determined sim-
ilarity matrix(Table 2.2) was developed and optimized using the Kabsch & Sander
database (See note 3 below).

Example. The similarity score hetween the sequences STNGIYW and AT-
SLVFW is 1(S and A) + 2(T and T) + O(N and S) +(-1)(G and L)+ I(I and V) +
(Y and F) 4+ 2(W and W) = 6.

Example. The similarity score hetween the sequences STNGIYW and ATS-
GVFLis1+2404+24+14140=T.

Definition. A training set is a set of proteins with known structures that is used
to establish a prediction scheme. The set that is used to test the performance of a
prediction scheme is called a testing set.

Prediction requires four steps:

18

Levin ef al.’s secondary structure similarity matrix.

Table 2.2:

PDEANQ

0 0

W
-1
-1

\,'

-1

I
1
-1

L
-1
-1

C

M

I
-1
-1
-1
-1

A%
-1
-1
-1
-1

K R H
0 0

0

0 0 0 0 0 0 O

1

T

S
0

G
G 2

I)

0
0

-1

|
-1
-1

0

0 0 0 O

3 0 -1 -1
0

-1
-1

0

0 0 O
0

0

0 0

2
1
0

DO

0

0

Ik

0 -1 -1

0

AO

— et ot oy — —

-1
-1

-1
-1

0 0 -1
0 0 -1

0
0

0
1

0
0
0
0
0

N O

0

0
0
0
0

QO
S

0

0
0
0
0
-1
-1
-1

T 0

Ko

1

0 0 0 0
0
-1

-1
-1

0
0
0
0
0
0
0
-1
-1
-1

0

HO

L

0 0
-1
-1
-1

—

-1
-1
-1

-1
-1
-1

-1
1
1

0
0
0

-1
-1
-1

-1
-1
-1

-1
1 -1
M-1

0

0

o~

-1
-1

0

0

0
-1
-1
-1
-1

0 0
-1
-1
-1
-1

Co

-1
-1

-1
-1
-1

-1
-1
-1
-1

0
-1
-1
-1

-1
-1
-1
-1

-1
-1
-1
-1

-1
-1
-1
-1

-1
-1
-1
-1

-1

-1

0

o™

0

0
-1

Y -1

™

0

W-1

19

Step 1. Choose a seven amino acid sequence from the testing set. (The first
block chiosen from a protein is composed of the first seven residues on the N-terminal
end. To choose the second sequence, and so on, shift along the protein sequence one
residue.)

Step 2. Use the similarity matrix to find the similarity score between the amino
acid block chosen in step 1 and every amino acid block in the training set. A block in
the training set is accepted if the score is greater than or equal to seven; otherwise,
it is rejected. For an accepted block, the score is the credit that the corresponding
residues in the two blocks have the same conformation. Accumulate the credits for
all types of conformation for each residue in the testing block.

Step 3. If every block in the testing set has been chosen for a comparison (in
step 2), then go to step 4. Otherwise, go to step 1.

Step 4. For cach residue in the testing set, compare the “sums of credits” for
all types of conformation. The conformation assigned to the observed residue is the
conformation with the greatest value.

Note 1. In step 4, each “sum of credits” is multiplied by a different constant
hefore being compared. The constants, called decision constants, are dilferent
for different conformations. The purpose is * to avoid overprediction of helix and
underprediction of aperiodic structure™ ([9]); page 305).

Note 2. It was observed by Levin and Garnier that if the number of amino acids
in a block is increased from seven to eight, the percentage accuracy will fall. Il no
cut-off (i.e., number 7 in step 2) is used, the entire protein sequence will be predicted
as aperiodic (the most commonly observed conformation in the training set).

Note 3. Initially, an arbitrary assignment for the matrix was made in order to

construct the similarity matrix. The principal diagonal entries were 2’s, 1 was given
for pairs of amino acids considered to have properties in common, —1 was given
for dissimilar amino acid pairs, and 0 was given elsewhere. The initial matrix was
then optimized by making “rational changes” [9] and by observing their eflects oun

prediction accuracy.

2.5 Qian & Sejnowski’s Feedforward Neural Network Models

A feedforward neural network model is composed of two or more layers of pro-
cessing units with feedforward connections from all the units in one layer to those
units one layer above. The bottom layer is the input layer, the top layer is the output
layer, and the other layers are hidden layers (See Figure 2.1) .

A processing unit sums the signals presented to it, with weights assigned to each
input signal, and computes an output to be sent to the next layer.

In Sejnowski and Qian’s models[10], inputs are the strings of contiguons amino
acids, and outputs are the conformational tendencies of the middle amino acids in
the input strings. For a block of length 13, for example, the input layer consists of 13
groups of processing units, with 20! units in each group. Each input group encodes
one amino acid of the input block, and each unit in a group represents one of the
20 amino acids. Thus, only one unit in each input group is active, which will give

an output 1, and the output of the other units is 0. This is called a local encoding

1."jejnow.‘aki and Qian, in fact, used 21 units in each group to predict the structures
of the first and the last six (for block length 13) amino acids in each protein, the
21st unit being associated with a spacer. Note that the sequence of amino acids was
concatenated to form a long string for each of the training and testing sets, with
spacers between the proteins to separate them during training,.

I'igure 2.1:

21

Output layer

W's

Hidden layer

Wji's

Input layer

A feedforward neural network with one hidden layer. The hottom layer
is the input layer, the top layer is the output layer, and the layer hetween
is the hidden layer. IV is the weight assigned to the connection from
the ith unit in the input layer to the jth unit in the hidden layer.

22

scheme.
For a unit i, say, which is not in the input layer, the total input £; to unit 7 and

the output (or state) S; from unit ¢ are determined by means of equations

E;, = Z W; j Sj +b;
J

and
1

1+e_EI'-’

where 11 j is the strength of the connection from unit j to unit i, j's are those units

S;=F(E;) =

one layer below unit 7, Sj is the output (or state) of unit j,and b; is the bias of unit
.2

The output layer consists of three units (that is, for three-state prediction; it
consists of two units for two-state prediction) representing the secondary structures
alpha-helix, beta-sheet, and coil. The structure corresponding to the greatest value
among the outputs of the output units was assigned to the middle amino acid in the
input protein block.

To train a neural network is to modify the weights between layers of units (and
biases in units) to obtain a desired input-output mapping (i.e., type of middle amino
acid of blocks and their secondary structures). The input set (or training set) con-
tains blocks of amino acids chosen from proteins whose secondary structures are
determined, and the output set contains three types of secondary structures (alpha-
helix, beta-sheet, and coil) for three-state prediction (or two types—alpha-helix and

coil—for two-state prediction). In Qian and Sejnowski[10], “Initially, the weights

in the neural network were assigned randomly with values uniformly distributed in

217 unit #is in the input layer, i.e., an input unit, then S; = F;.

23

the range [-0.3,0.3).” Then a block chosen from the training set was input, and the
output observed. If a desired output resulted, the original weiglits were kept and
another block input. Otherwise, weights were modified? by means of the learning
algorithm described helow, and another block was input. This process was repeated
until a “good result” was achieved.

The learning algorithm used incorporated the generalized delta rule and
back-propagation [11]. For a pattern p (ov for a block of amino acids here) with
inappropriate mapping results, the learning algorithm increases the current weights

|-|/'J-,-_’s by the amounts A]’”'iji. s, where?

Ap”’}'i = 7751)j°pi’

Opi is the output of unit ¢,
P (tpj -~ "pj) f! (neztw-) if unit j is in the output layer,
b (Z I 61,]‘,11"]‘_, j) f! (netpj) if unit j is in the hidden layer,
flx) = I—_—*_Le:—l- is the activative function,
nety; = Z l'lf}-,jop,j is the total input to unit j,
Il’j i: the target output of the output unit j (2.7)

(i.e., j is in the output layer;
ty; =1 if the structure of the middle amino acid in p is simply

the structure represented by unit j, and 0 otherwise.), and

3Same as below (next footnote).

4 According to Sejnowski and Rosenberg[4], “To reduce the average error for all
the input patterns, these gradients must he averaged over all the training patterns
before updating the weights. In practice, it is sufficient to average over several inputs
before updating the weights.”

24
0] is the constant of proportionality representing the learning ratc.

The bias b; for a unit 7 can be considered the weight between i and a unit, with

fixed output 1 connected to i only.

3. PARTITION IN LINEAR SPACE

3.1 Introduction

We will describe two different protein-sequence encoding schemes that will be
used in this and the next chapters. Then we will apply the encoding schemes to

discuss the works mentioned in Chapter 2.

3.2 Transformation from Alphabetical Segment to Linear Space —

Encoding Schemes

The least complicated general encoding scheme is that of assigning a quantity
such as hydrophobicity to each amino acid. In this manner, an amino acid segment
of length k, say, corresponds to a k-dimensional real vector or to a single point in
Rk, We will use this encoding scheme to conduct certain experiments in the next
chapter.

The most general encoding scheme, that is, the local encoding scheme, is to assign
each amino acid to a 20-dimensional unit veclor. We arrange the 20 amino acids in
the order A,R,N,D,C,Q.E,G,H,IL,I{,MF,P,S, T,W.,Y,V and theun use the ith column
of the 20 x 20 identity matrix to represent the ith capital letter or amino acid. So an
atnino acid segment of length k corresponds to a single point in the (20k)-dimensional

real space (RQOL’) with the ith, say, 20 coordinates representing the ith amino acid

26

counted from the N-terminal end of the segment. In some instances, we will also use
a 20 x k matrix to represent a k amino acid sequence in length with its ith column

corresponding to the ith amino acid counted from the N-terminal end of the segment.

3.3 Conformation Parameters

Chou and Fasman[3] established, in total, 19 sets of conformational parameters
(Pa, P/J’ etc.) “ .. showing the conformational potentials for 20 amino acids in the
helical, beta-sheet, coil, and beta-turn regions, as well as the frequency of residues
al helix and beta-sheet boundary and central regions.” FEach set of parameters con-
tains 20 real numbers, and each real number corresponds to one of the 20 amino
acids. As mentioned above regarding the least complicated encoding scheme assign-
ing hydrophobicity to each amino acid, each set of conformational parameters may
be used to assign a “number” to each of the 20 amino acids. Then each of the sets of
20 numbers may be tested for the ability to represent quantitatively the secondary
structure tendency of amino acids. In the next chapter, we will describe an experi-
ment attempting to establish an optimum set of 20 numbers, called a similarity scale,
from which to assign a value to each amino acid. This experiment arose {from the
question of whether we can construct only one set of 20 numbers that will give us
sufficient information about protein secondary structures and that can be used to

make objective predictions.

27
3.4 Information Theory Method

IFrom Eq. (2.2), i.e.,
m
I -Ig~ 3 I(Sj=A:ARj),
i=—m
the inlormation theory method is used to construct a table T, say, of 20(2m + 1)
discrete numbers for two-state predictions. Twenty is the number of different amino
acids and the number of rows in T. 2m + 1 is the length of protein blocks considered
and the number of columns in T. We can rearrange the 20(2m + 1) numbers into a
20(2m + 1)-dimensional column vector N such that the first 20 entries of N constitute
the first column of T, the seconud 20 entries of N the second column of T, and so
on. If we use the most general encoding scheme to encode blocks of (2m + 1) amino
acids in length such that each segment is represented by a single point in 20(2m +
1)-dimensional real space, then the structure of the middle amino acid of an observed
segment P is predicted to he
a) alpha-helical if NoP + DC' > 0 and
b) coil otherwise,
where DC, or the decision constant, is a fixed real number and where o is the
usual dot product in R20(2m-+1) Geometrically, the information theory method
ultimately constructs a plane in 20(2m + 1)-dimensional real space to “scparate”
alpha-helical amino acids from coil amino acids. But the information theory is used
to find a normal vector only, not to find a decision constant. According to Garnier
et al., “DC is an adjustable parameter which is chosen with the aim of producing
optimal predictions. It is a function only of .S'.j---” (page 105). Moreover, “the

choice of a correct set of decision constants is a definitive step towards improvement

28

of a predictive program. Whatever its physical significance, the improvement is such
that this choice is critical” (page 112). Thus, to choose the best decision constant.
for two-state prediction is to “shift” a plane, whose direction is determined by the
information theory method, thereby obtaining a best or sufficiently good patrtition
result, i.e., minimal misplaced points.

In the next chapter, we will describe a linear programming model attempting to
find an acceptable normal vector N and a constant DC simultaneously to constitute

a plane.

3.5 Neural Network Models

Qian and Sejnowski[10] used several neural network mocdels including one layer,
two layers, and three layers of weights. Seemingly, “networks with no hidden units
performed as well as networks with hidden units on the non-homologous training
set...” (page 881). So we concentrate on the neural network model without hidden
units. Note that Qian and Sejnowski performed a three-state prediction, which will
be discussed in Chapter 4. For convenience, we will discuss here a model for two-state
prediction which is similar to one for three-state prediction.

A two-state prediction neural network model for segments 2m + 1 amino acids
in length contains 20(2m + 1) input units, two output units (one for alpha helix and
the other for coil) and two groups of weights connected from input units to output
units. We can consider the two groups of weights as two 20(2m + 1)-dimensional real
vectors Ny (for alpha-helix) and Ny (for coil), say, and let the biases associated with
N and Ny be by and by, respectively. As in the previous section, we use the most

general encoding scheme. Then the secondary structure of the middle amino acid of

29
observed block P is predicted to be alpha-helical if

NyeP 4 b; > NaeP + by,

NeP 45> 0,

where

N=N;—-Ngand b= bl - [’2:

and coil otherwise. So the network is used to construct a plane, i.e., to find N and
b, as was done in the information theory method.

Qian and Sejnowski gave an example of two sets of input-output. mapping having
the same joint proba.bility1 but that can be learned by two different networks[10](page
869). They thus claimed that “this observation will be used to explain why the neural
network method yields better results than the information theory method of Robson
and Suzuki (1976)" [10] (page 869).

One difference hetween the information theory method and the neural network
model is the means of finding the constant, which is called the decision constant
in the information theory method and the bias in the neural network model. As
mentioned in Chapter 2, biases can be learned as well as weights, but the decision
constant is not determined by the information theory method. Instead, Robson f
al. used

a rapid optimization program, capable of making tens of thousands of
predictions for various combination of decision constants...

IPhis means that the information theory method will result in the same planes
for these two sets.

30

This program was designed to trace the highest percentage ol correctly
predicted residues for the four conformations by varying the decision con-
stants independently for alpha-helix, beta-sheet, extended chain, and re-
verse turns. [8](page 108)

Note: Use one decision constant for two-state prediction and three decision constants

for four-state prediction. This methodology will be discussed in Chapter 4.

3.6 Discussion

About Chou and Fasman’s conformational parameters method, Garnier and
Robson (8] stated, “Unfortunately, some of their rules are qualitative rather than
quantitative, and being open to interpretation they have not always yielded such
promising results in the hands of other workers...”(page 98).

Chou and Fasman[3] themselves remarked that “the predicted conformation is

more reliable if all the prediction rules 2 of Chou & Fasman are followed and quan-

litative calculations performed for the < Py >, < P3 >, < Py >, and Py values of

the predicted secondary structures” (page 139).

Additionally, Qian and Sejnowski pointed out that the “existing methods for
predicting secondary structures” were not entirely reliable although they cited Robson
¢l al.’s as the most reliable.

Sejnowski and Qian[10] used 106 proteins, which was called a training set, to
train their neural networks and then used 15 proteins, which was called a testing set
and was nonhomologous with the corresponding training set, to test the perfor-

mance of networks. Protein secondary structure assignments were from Kabsch &

¢ . . 13
2Only 2 out of 19 [3] sets of conformational parameters were used in the program
describing Chou & Fasman’s prediction rules.

31

Sander and based upon the Brookhaven databank of protein structures. The average

success rates, or

Total number of correctly predicted amino acids
Total number of predicted amino acids

for Qian & Sejnowski ’s testing set, are 53% for Robson’s information theory method,
50% for Chou-Fasman method, and 62.7% for the Qian-Sejnowski neural network
method? [10]. Evidently, the performances of Robson's and of C'hou & Fasman's
methods were not as successful as they had announced. According to Qian and
Sejnowski [10],

The original measures of accuracy reported by these authors were hased

in part on the same proteins from which they derived their method, and
these proteins are equivalent to our training set.

However, these methods should be compared on proteins with structures
that were not used in or homologous with those in the training sct. (page
878)

A good prediction scheme should be quantitative and objective. Good perlor-
mance, although the goal, is not the only factor requiring consideration. Different
reseachers should obtain the same prediction results when using the same method
on the same database. With this fact in mind, we apply a powerful mathematical
tool—linear programming— to develop models with which to study the secondary
structure of proteins. We consider all amino acids in the training set at the same

time but do not consider the performance on the testing set during “training.”

3Kabsch and Sander [2] used Chou & Fasman’s methods to test 62 proteins with
more than 1000 residues. For three-state prediction, the overall prediction accuracy
is 55%-56% for Robson’s method and 50% for Chou & Fasman'’s.

32

[iven Qian and Sejnowski introduced subjectivity into their method. In [10], “All
the amino acids in the training set were sampled once before starting again. This ran-
dom sampling process was adopted to prevent erratic oscillations in the performance
that occured when the amino acids were sequentially sampled. The performance of
the network on the testing set was monitored frequently during training and the set of
weights was kept that achieved the best average success rate on the testing set.”(page
871) This is a difference hetween Linear Programming Models and Neural Network
Models.

To conclude this chapter, let us quote Qian & Sejnowski’s[10] comment about
Levin et al. ’s [9] similarity matrix:

... our method should be faster because a set of weights obtained through
training can be used for predicting secondary structures for all new pro-
teins. The method of Levin ef al., on the other hand, requires an exhaus-

tive search of the whole database for every seven-amino acid sequence in
the new protein. (page 879)

33

4. LOCAL STUDY OF PROTEIN SEQUENCES IN SEGMENTS

4.1 Introduction

In the first two sections, we represent a k-amino acid sequence by means of a
20 x & matrix (see Chapter 3) and to construct hoth a similarity scale and a similarity
matrix.

In the last two sections, we relate a segment of length k to a single point in the
20k-dimensional real space and search for partition planes.

Slightly modified training and testing sets of Qian & Sejnowski are used to
develop and to test prediction schemes, respectively. Proteins in the testing set are
nonhomologous with proteins in the training set (see Appendix A).

Segments of amino acids in a protein are chosen by our shifting along the protein
from the N-terminal end to the C-terminal end one amino acid at a time. The predic-
tion schemes point to the secondary structure of the middle amino acid in a segment;
thus, the first 1‘—5—1- and the last L—é’—l amino acids of a protein in the testing set, in
which k is the number of amino acids in a segment, will not be predicted. Moreover,
information regarding the secondary structures of amino acids in the “head” part or

the “tail” part of a protein in the training test is not used.

34

The accuracy of a prediction result is described by means of the fraction

Total number of correctly predicted amino acids
Total number of predicted amino acids

In the last two sections, we obtain a “plane” partitioning and the accuracy ol a
partition result is described by means of tle fraction

Total number of correctly placed amino acids
Total number of located amino acids

4.2 Similarity Scale for Two-state Prediction

4.2.1 Introduction

The similarity scale V, a 20-dimensional column vector derived, by the method
described in next section, from the Dayhoff substitution matrix, is used to assign
a real number to each amino acid. Thus, a k-amino acid-long string, represented
by a 20 x k matrix A/ (as mentioned in Chapter 3), is transformed into either a
k-dimensional column vector or a single point Af Ty in RF,

The similarity scale is designed to cause a relatively small Eucledian distance,
transformed from two similar strings, between the two points. Because the 20 x 20
Dayhofl substitution matrix (Table 4.1) is often used to determine sequence homology.

il was used first to measure the similarity of two amino acid strings.

4.2,2 Method

Let D (M, N) denote the Dayhoff similarity score L of two amino acid segments,

say A and B, represented by matrices M and N, respectively. We say that the two

I't'he method used to evaluate the Dayhoff similarity score of two strings is similar
to Levin el al.’s similarity matrix.

Y V

T W

P S

F
-4
-4
-4
-6

-1

0
-9
-3

L K M
2 -1

I
5|

5§
-1

1

Dayhofl’s substitution matrix.
-3

G

0
-1

0
1

Q E

Table 4.1:

A R NDC

-1

0 0
-1
-1

™

2

-4

1

6

R-2

1

1

1
0

-1
-3

1

-2

Q0

B o
:

R~ B

2

2 0

-2

6

-3

-2
-1
-4

1
0
-3

-3
-2
-2

2
-2
0

-1

-2
0
-l
-1
0

4
-1

1
5

-3
-1

0
-4

2

0
-1
-4

-6
-3
-2

0

-4
-1

0
-4

-3
-2
-1

0
-4
-2

-3
3
0
0

-1
2

-

L-2
-1

1
r _:}

M-1
W-6

T

36

strings A and B are similar when the Dayhoff similarity score D (M, N) is rvelatively
great and dissimilar when D (M, N) is small. Suppose that P and Q are the two
points in R* that were transformed from A and B, respectively. Then the square of

the distance between P and Q is equal to
vIoar—nyar-mTy,

a relatively small distance if and only if D (M, N) is relatively great.

The best similarity scale, or V, is supposed to
1. MINIMIZE]), =1 y T (ag; —) (Af; - Mj)[v, (4.1)
1<j

where A/;’s and jllj’s are 20 x &k matrices representing k-amino acid sequences
chosen from the training set satisfying the two conditions

(a) D (M,j, M j) > 51, where 57 is a fixed number, and

(b) A; and M j represent middle amino acid alpha-helical strings;

)T

9, MINIMIZE) 1 S VI (N =N (N =-N;) v (1.2)
‘g

where N;’s and N j’s are 20 x k matrices representing k-amino acid sequences

chosen from the training set satisfying the two conditions

(a) D(N;,N;) = So, where S9 is a fixed number, and
114V 2 2

(b) N; and N j represent middle amino acid non-alpha-helical strings;

and

3. MAXIMIZE (o1 ?§<_j} VE (M = Ny) (M =)T W (4.3)

37

where M;’s and N b ’s are 20 x k matrices representing k-amino acid sequences

chosen from the training set satisfying the two conditions

(a) D (1\[,7, N J) < 83, where S3 is a fixed number, and
(b) Af; and N.j represent strings for which the middle amino acid has different

secondary structures.

Note: Clondition 1 (a) is used to collect similar strings in the sense that their Dayhofl

similarity score is greater than or equal to a fixed number. Similar expression hold

for conditions 2 (a) and 3 (a).

Under the same conditi01132, combining 1, 2, and 3 and attempting to find an

acceptable V, we

MINIMIZE /1o -1 [Z v (0, - ;) (M; - Mj)T V
< 1<j
+ S VI (V= N;) (v - NJ-)T V
1<j
- v (0= Ny) (M - N.j)T ‘]
i<j
= MINIMIZE . _; VT [Z (v - 1) (ag; = 1) "
“ 1<y
+ (M- 0) (-)"
i<j
- 3 (M; - Ny) (a; - Nj)T 1
i<j
= MINIMIZE|y/j,—1 vI (M +N-w)Y, (4.1)

2(tondition 1 (a) only holds for the matrix M, condition 2 (a) only holds for the
matrix N, and condition 3 (a) only holds for the matrix W in Eq. 4.4.

33

where

M=Y (M=) (M; - 2;)" and
i<y

N=Y (N;- N;) (N; = N))T
1<j

and where

‘ T
W= 3" (M- N;) (A - Nj)"
1<)
Because M 4+ N — W is a 20 x 20 real, symmetrical matrix, according to the spectrum

decomposition theorem [15],
20 T
M+N-W=73 WV,
1=l

where the real numbers §; are the eigenvalues and the vectors V; are associated
orthonormal eigenvectors of the matrix M4+N—W. Therefore, the optimal V satisfying
. 4.4 is the unit eigenvector corresponding to the smallest eigenvalue of the matrix
M+N-W,

An acceptable V can be obtained by means of another approach. In Eq. 4.3, the

madrix

(l\flj — N:]) (Aji - Nj)T

is positive definite, as is the matrix

20
’ T T
W= 3 (M- Nj) (M; = Nj)" = Y ;0,0
1<) 1=l
where the positive numbers, 1;, are the eigenvalues associated with the eigenvectors

0;’s of W. Thus, the inverse of W, denoted by 1V —1 exists and can be expressed as

w1 = }: ooT

39

The unit vector maximizing V' TWV and minimizing VIW =1V is the unit eigenvec-
tor corresponding to the largest eigenvalue of W, so an acceptable similarity scale \.7
is the unit. vector minimizing vT (M + N+ W _1) V. Let V be the unit eigenvector
corresponding to the smallest eigenvalue of the matrix A/ + N + w1,

Note that if we delete Eq. 4.2 and replace condition b in Eq. 4.1 by “Af; and
M j represent strings for which the middle amino acid has same secondary structures
(alpha-helix, beta-sheet, or coil)”, then the resulting matrices C' — W and C' + !

can be used to do 3-state predictions.

4.2.3 Prediction Procedure — Five Nearest Neighbors

According to similarity scale design, we use the Euclidean distance between two
points in Rk, which have been transformed from two k-amino acid sequences, to
measure the similarity of the secondary structure of the middle amino acids in the
two segments.

To predict the structure of an amino acid in a new protein, we first locate in Ik
the k-amino acid segment, which is chosen from the new protein with the observed
residue in the middle, and then find its five nearest neighbors {from the training set.
The secondary structures of the middle residues in the five neighbors determine the
structure of the target residue. If the middle residue of 4 (3 or 5) of the neighbors have
the same structure, then this structure is assigned to the target residue (Iig. 1.1).
Otherwise, no prediction is made.

Because the distances hetween a target residue and some of its neighbors may he
too great, we set a fixed real number, called a threshold, as the maximum accepted

distance between a target residue and its neighbors. The distance hetween a target

40

A target point

Figure 4.1: Five nearest neighbors.

41

residue and each of its five neighbors should be less than or equal to the threshold;
otherwise no prediction can be made.

The information contained in the training set may or may not be sufficient to
allow prediction of a residue in a new protein; it therefore seems reasonable to set a

threshold and to avoid making predictions in certain instances.

4.2.4 Results and Discussion

The results using matrix M + N — " for T-amino acid segiments in the testing
set (see Appendix A) are listed in Table 4.2. Prediction results shown in column P
indicate the overpredictions of coil. When U = D = 7, performances for thresholds
of different values are slightly different. The derived similarity scale V is listed in
Table 4.3. There are only five nonzero entries in V, and the five corresponding
residues, A, R, N, D, and C, will dominate structure assignments. The similarity
scale derived [rom the example (U, D) = (7, -T) is more acceptable and perform
better than do the previously mentioned scale and is listed in Table 4.3.

The 3-state prediction results using matrix C' — W for T-amino acid segments in
the testing set are listed in Table 4.4, Prediction results shown in column P indicate
the overpredictions of coil.

Table 4.5 presents results obtained using the matrix A/ + N + w1 Similarity
scales are listed in Table 4.6. The 3-state prediction results using matrix '+ WL for

T-amino acid segments in the testing set are listed in Table 4.7. Coil was overpredicted

as it was when the matrix C' — W was used.

42

Table 4.2: Two-state predictions using the similarity scale derived from the matrix
M 4+ N — ¥ and the 5-nearest neighbors method (Predict when 4 or 5
neighbors have same structure).

NPt | The | ve | DY pe PAT | #,9
73 110 .
(0.004359)" (0.004359)
(0.000000)/ (0.000000)F
144 1182
(0.004366) (0.004359)
7 05 | 7 | 7 | (0.000000) (0.000000) | T4% | 2109

NP is the number of residues in a segment.

bPhreshold.

€U is the minimal Dayhoff similarity score that two segments can be treated
similar. That is S = S9 = D, where 57 is the fixed number in condition 1 (a) and
Sy is the fixed number in condition 2 (a),

1) is maximal Dayhoff similarity score that two segments can he treated dissimilar.
That is S3 = D, where S3 is the fixed number in condition 3 (a).

€Prediction results. See Table 4.16. There are 3312 T-amino acid segments in the
testing set, which is listed in Appendix A and in which 842 are alpha-helical and
2470 are non-alpha-helical. Note that there are 4884 alpha-helical segments, which
are segments with middle residue alpha-helix, and 11,956 coil segments in the training
set, which is listed in Appendix A. There are 3162 17-amino acid segments in the
testing set.

TPA = Prediction accuracy.

g #p is the number of segments in the testing set that were predicted.

h'Phe maximal distance between the correctly predicted alpha-helical segments
and their neighbors.

"The maximal distance between the observed alpha-helical segments, which are
predicted to be coil, and their neighbors.

J'The minimal distance between the correctly predicted alpha-helical segments and
their neighbors. \

FThe minimal distance between the observed alpha-helical segments, which are
predicted to be coil, and their neighbors.

43

Table 4.2 (Continued.)

NP Thr U D P PA #)
78 410
(0.999994) (0.004359)
(0.000000) (0.000000)
145 1482
(0.995634) (0.004359)
7 | 7 7 (0.000000) (0.000000) 4% 2115
78 410
(0.999994) (0.004359)
(0.000000) (0.000000)
145 1482
(0.995634) (0.004359)
T 5 T 7 (0.000000) (0.000000) T4% 2015
56 424
(0.063808) (0.063829)
(0.000000) (0.000000)
84 1531
(0.063833) (0.063829)
7 0.5 7 -7 (0.000000) (0.000000) 6% 2095
38 424
(0.400973) (0.312849)
(0.000001) (0.000000)
61 1169
(0.400972) (0.282662)
17 0.5 7 -7 (0.000000) (0.000000) T6% 1992
55 424
(0.047778) (0.047788)
(0.000000) (0.000000)
87 1505
(0.047790) (0.047788)
7 0.5 12 -12 (0.000000) (0.000000) 5% 2071

44

‘able 4.3: The similarity scales derived from the matrix A/ + N —1V in the examples
in previous table.

residue (U, D, NP)=(7, 7, 7) (7,-7,7) (7, -7, 17) (12, -12,7)
A 0.997815 0.000000 0.000000 0.000000
R -0.066023 0.000000 0.000000 0.000000
N 0.002535 0.000000 0.000000 0.000000
D -0.000208 0.000000 0.000000 0.000000
C 0.000004 0.000000 0.000000 0.000000
C 0.000000 0.000000 0.000003 0.000000
E 0.000000 -0.000008 -0.000090 0.000003
G 0.000000 0.000092 0.000725 -0.000040
H 0.000000 -0.000591 -0.001508 0.000290
| 0.000000 0.030991 0.071284 -0.016680
L 0.000000 -0.967061 -0.958101 0.975670
K 0.000000 0.252636 0.277383 -0.218602
M 0.000000 -0.002827 -0.004038 0.001829
I 0.000000 0.000034 0.000058 -0.000020
p 0.000000 -0.000002 -0.000003 0.000004
S 0.000000 0.000000 0.000000 0.000000
T 0.000000 0.000000 0.000000 0.000000
W 0.000000 0.000000 0.000000 0.000000
Y 0.000000 0.000000 0.000000 0.000000

Vv 0.000000 0.000000 0.000000 0.000000

45

‘able 4.4: Three-state predictions using the similarity scale derived from the matrix
C'—1V and the H-nearest neighbors method (Predict when 4 or 5 neighbors

have same structures).

See T'able 4.33.

NP | Thr | U D p¢ PA
55 22 158
(0.054492) | (0.001735) | (0.054492)
(0.000000) | (0.000000) | (0.000000)
30 34 116
(0.054519) | (0.001797) | (0.036515)
(0.000000) | (0.000000) | (0.000000)
50 B 419
(0.036515) | (0.054164) | (0.054507)
7 05 | 7 | -7 | (0.036515) | (0.000000) | (0.000000) | 52%
56 25 151
(0.042106) | (0.000443) | (0.042106)
(0.000000) | (0.000000) | (0.000000)
31 33 152
(0.042117) | (0.000451) | (0.033850)
(0.000000) | (0.000000) | (0.000000)
53 64 108
(0.033850) | (0.042042) | (0.042114)
7 0.5 | 12 | -12 | (0.033850) | (0.000000) | (0.000000) | 51%

46

Table 4.5: Two-state predictions using the similarity scale derived from the matrix
M+ N + W~ and the 5-nearest neighbors method (Predict when 4 or
5 neighbors have same structures).

NP | Thr | U D P PA %,
79 104
(0.000014) (0.000637)
(0.000000) (0.000000)
111 107
(0.000014) (0.000650)
q 0.5 7 T (0.000000) (0.000000) | 73% | 2031
79 401
(0.000014) (0.000637)
(0.000000) (0.000000)
141 1113
(0.000014) (0.942219)
q 1 T 7 (0.000000) (0.000000) | 73% | 2087
79 401
(0.000014) (0.000637)
(0.000000) (0.000000)
141 1413
(0.000014) (0.942219)
7 5 i 7 (0.000000) (0.000000) | T3% | 2037
GG 372
(0.001052) (0.002690)
(0.000000) (0.000000)
114 1249
(0.000667) (0.002092)
17 0.5 i T (0.000000) (0.000000) | 73% | 1796
79 107
(0.000014) (0.000637)
(0.000000) (0.000000)
141 1107
(0.000014) (0.000650)
i 0.5 q -7 (0.000000) (0.000000) | T3% | 2031
79 102
(0.000011) (0.000426)
(0.000000) (0.000000)
113 1405
(0.000011) (0.000437)
7 05 | 12 | -12 | (0.000000) (0.000000) | T3% | 2029

Table 4.6: The similarity scales derived from the matrix Al + N + W= i the
examples in previous tables.

residue (U, D, NP) = (7, 7, 7) 7, -7, 17) (7, -1, 7) (7, 12, -12)
A 0.000000 0.000000 0.000000 0.000000
R 0.000000 0.000000 0.000000 0.000000
N 0.000000 0.000000 0.000000 0.000000
D 0.000000 0.000000 0.000000 0.000000
¢ 0.000000 0.000000 0.000000 0.000000
Q 0.000000 0.000000 0.000000 0.000000
E 0.000000 0.000000 0.000000 0.000000
¢ 0.000000 0.000000 0.000000 0.000000
H 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.000000 0.000000 0.000000
L 0.000000 0.000000 0.000000 0.000000
K 0.000000 0.000000 0.000000 0.000000
M 0.000000 0.000000 0.000000 0.000000
F -0.000001 0.000004 -0.000001 0.000001
P -0.000077 0.000115 -0.000077 0.00007$
S -0.000444 0.000752 -0.0004:44 0.000122
T -0.003688 0.006673 -0.003688 0.003336
W -0.999575 0.999473 -0.999575 0.999707
Y -0.028906 0.031739 -0.028906 0.023961

\Y -0.000729 0.000993 -0.000729 0.000559

48

Table 4.7: Three-state predictions using the similarity scale derived from the matrix
¢ + W1 and the 5-nearest neighbors method (Predict when 4 or 5
neighbors have same structures).

NP [Thr | U D P PA | #,
79 33 120
(0.000013) | (0.000038) | (0.000011)
(0.000000) | (0.000000) | (0.000000)
50 ad 123
(0.000008) | (0.000026) | (0.000013)
(0.000000) | (0.000000) | (0.000000)
90 45 373
(0.000013) | (0.000026) | (0.000653)
7 05 | 7 | -7 | (0.000013) | (0.000000) | (0.000000) | 52% | 957
79 34 125
(0.000010) | (0.000031) | (0.000009)
(0.000000) | (0.000000) | (0.000000)
51 a5 121
(0.000007) | (0.000021) | (0.000010)
(0.000000) | (0.000000) | (0.000000)
92 48 367 |
(0.000010) | (0.000021) | (0.000448)
7 0.5 | 12 | -12 | (0.000010) | (0.000000) | (0.000000) | 51% [962

4.3 Similarity Matrix for Two-state Prediction

4.3.1 Introduction

The similarity matrix is a 20 x 20 matrix, the i,jth entry of which marks the
similarity hetween amino acids i and j. The matrix may be based on the chemical
or physical similarities between amino acids or an implicit similarity based on the
frequency with which amino acid i has mutated (non-lethally) to amino acid j. The

similarity scale and the five nearest neighbors method consider the Euclidean distance

49

between two points as the structural similarity between two corresponding residues.
The similarity matrix considers the inner product of two vectors, which corresponds
to two protein segments, as the similarity of the structures of the two middle residues
in the two segments. Thus, the points with known structures, i.e., points in the
training set, lying on one side of the plane determined by the observed segment
will determine the secondary structure of the middle residue in the observed protein

segment.

4.3.2 Method

We construct a similarity matrix S using certain small eigenvalues and corre-
spouding eigenvectors of the matrix Al + N + W ~1 (or Al + N — W), which was
discussed in the previous section. That is,

m 1

§=3Y —o0,,0L,,

where m < 20 and where | _i)’s are some significant, small eigenvalues associated
with the eigenvectors O(i)’s of the matrix M + N + W1, By significant, we mean
that the smallest unused eigenvalue is greater than the greatest used one and that
the difference is relatively great. For example, suppose the eigenvalues listed, from
smallest to largest, are 1.0, 1.2, 1.7, 2.0, 7.4, 7.6,---, 12, and 14; then the first four
eigenvalues will be chosen, We use the matrix S, as Levin ¢f al. use their similarity
matrix, to define the similarity score of two amino acid segments.

Suppose that S} and S9 are two k-amino acid segments represented by the two

20x k matrices /) and Uy, respectively, as in the previous section. Then the similarity

50

score, S (.S1,59), of §1 and Sg, as defined by matrix S, is

m]
(S, 89) = El [m (0(7;)U1> . (0(7;)02>] : (1.5)

where e is the usual inner product in k-dimensional real space.

Temporarily, let m = 1,1;(1) = 1),a.ndO(1) = 0 in Eq. 4.5, i.e.,
S(8],Sp) = ;1)- (07t) o (0T1r).

If P| and Py are the two points in RF transformed from S1 and Sy , respectively, by

O, as in the previous section, then
p =0Tu,,
Py =0Tu,,

and
1
S(S51,59)==P) e Py.
U]
The matrix S would work well if the following two hypotheses were true:

1. The points transformed from the k-amino acid segments by eigenvector O are
well distributed. That is, there exists a plane L in R* such that most middle
residue alpha-helical points lie on one side of L (the points lying on the other

side are called “misplaced” points) and most non-alpha-helical points lie on the

other side (see Fig. 4.2).
2. The plane L passes through the origin (see Fig. 4.2).

We can classify k-amino acid segments in the training set into two groups. A

and B, according to the helical or nonhelical structure of the middle residue,

e

A misplaced point

Plane L

A misplaced point

Figure 4.2: The transformed points are well distributed.

For an element S| in A that is not misplaced in R"", most. segments T in the

training set such that

S(SI,T) > C",

for some constant C, would belong to group A if the above two hypotheses were true.

A similar phenomenon would hold true for group B (Fig. 4.3).

Hence, to predict the structure of the middle residue of a new amino acid seg-

ment, So, we compare the sums of the S (89, T) values for segments T in groups A

and B for which S(S9,T) > C.

4.3.3 Prediction Procedure

If for S (59, T) > C, where So is a new amino acid segment. whose structnre is
2 2 g

unknown, the sums of the 5'(S9, T') values for segments T in group A is greater than

52

e Group A
oI o
o o)
.'. O ‘Q %) OO S(51.T)>
e % o °NTo

o ® #‘ O O
5'(.5'1,7’): C. ° “

® o
® @)

Group B

Figure 4.3: Most points T belong to the group A for which S (S1.7) > C.

53

that in group B, then the alpha-helix structure is assigned to the middle residue of
S9. Otherwise, the structure assigned is coil. Let us call this prediction procedure
the Levin-like scheme.

Another prediction procedure is similar to the 5-nearest neighbors method. We
find the 5 segments T from the training set with greatest S (Sy,T') values. Then the
secondary structures of the middle residues in the 5 segments determine the structure
of the target residue. If the middle residue of 4 (3 or 5) of the 5 segments have the

same structure, then this structure is assigned to the target residue. Otherwise, no

prediction is made.

4.3.4 Results and Discussion

Tables 4.8, 4.9, 4.10, and 4.11 present results of two-state predictions obtained
using different matrices (A/ + N — W or M + N + H"—l) and prediction schemes
(Levin-like or 5-nearest neighbors). Similarity matrices are band matrices.

Tables 4.12 and 4.13 present results of three-state predictions obtained using
matrices ' — W and ¢+ W=1, respectively, and the 5-nearest neighbors prediction
scheme. Similarity matrices are band matrices. Coil remains overpredicted. Note
that there are 4884 alpha-helical segments, 3884 heta-sheet segments, and 8072 coil
segments in the training set when the length of the segment is seven, and there are
4524 alpha-helical segments, 3634 heta-sheet segments, and 7652 coil segments when

the length of the segment is seventeen,

54

Table 4.8: Two-stale predictions using the similarity matrix derived from the matrix
M+ N — W and the Levin-like method.

NP | U | D | A | SCORE? P PA Z,

0 510
7 T 5|5 7 0 32| % | 3312

“SCORE is the minimal similarity value hetween the observed segment in testing
set and any segment in training set that are considered similar.

Table 4.9: Two-state predictions using the similarity matrix derived from the matrix
M+ N + W1 and the Levin-like method.

NP | U | D | & | SCORE P PA #»

T 7 -5 3 T 0 2472 ™% 3312

Table 4.10: Two-state predictions using the similarity matrix derived from the ma-
trix M + N — W and the 5-nearest neighbors method (Predict when 4
or 5 neighbors have same structures).

NP | Thr JU D] A P PA | #»
100 355
(188,795,908) | (176,997.325)
(3,735,217) (1,258,731)
178 1153
(176,038,425) | (182,352,343)
T los | Tl s (1,346,108) (1,038,586) | T4% | 2086

‘able 4.11: Two-state predictions using the similarity matrix derived from the ma-
1
trix M + N + W1 and the 5-nearest neighbors method (Predict when
4 or 5 neighbors have same structures).

NP | The U DN P PA | #p
64 386
(787.608) (1,149,910)
(903) (124)
169 1102
(1,165,708) (1,149,448)
Tlos | T 5] 3 (306) (61) | 68% | 1721

(o7]
(v }

Table 4.12: Three-state predictions using the similarity matrix derived from the
matrix C' — W and the 5-nearest neighbors method (Predict when 4 or

5 neighbors have same structures).

NP[Thr JU[DA P PA T #,
94 20 127
(280,867,391) | (288,710,681)| (288,712,170)
(5,095,399) | (52,866,430) (2,031,192)
71 60 118
(256,763,271) | (228,986,542)| (276.,302,636)
(8,401,568) (8,149,886) (1,599,557)
109 63 374
(275,017,426) | (249,545,024) [(280,385,919)
71 1wt T s 5] (275,017,426) (4,501,798) (3,326,436) [19% | 107H
92 29 115
(280,867,391) | (288,710,681)| (288,712,170)
(54,781,622)| (52,866,430)| (52,880,575)
69 59 110
(256,763,271) | (228,986,542)| (276,302,630)
(52,950,522) | (59,405,761) | (51,862,433)
105 59 319
) (275,017,426) | (249,545,024) [(280,385.919)
T5x10°]7|-55] (275,017,426)| (55,070,816)((50,877,254) | 19% (1017
80 33 97
(1,135,257,107) | (1,140,401,086) { (1,028,756,924)
(318,006,616) | (351,858,070)| (204,966,531)
51 40 107
(1,017,372,169) | (1,376,094,007) | (1,109,190,057)
(422,400,762) | (357,545,242) | (323,577,7G8)
103 41 311
] (1,116,703,446) | (983,976,949) | (1,271,005,388)
1715x10'|7|-5]5/(1,116,703,446) | (324,759,996) | (184,949,291) [50% | 863
G 33 98
(951,979,541) | (943,400,934)| (861,639,626)
(266,433,217) | (293,302,073)| (172,023,641)
53 42 108
(843,388,304) | (1,147,947,682) | (927,787.508)
(355,775,251) | (297,746,735) | (267,309,152)
101 39 312
_ (937,624,840) | (822,945,509) | (1,064,905.273)
1715 x 107 110]-10{5| (937,624,840)| (268,429,753)| (152,627,097)|50% | 863

Table 4.13: Three-state predictions using the similarity matrix derived from the

matrix C' + W1 and the 5-nearest neighbors method (Predict when 1

or 5 neighbors have same structures).
NP Thr UID|A P PA | #p
46 23 81
(527,404) | (525,997) | (781,386)
(11,091) (12,237) (11,067)
43 7 57 |
(792,111) (626,213) (781,017)
(11,094) (12,331) (11,098)
81 30 146
(626,202) (372,651) (780,878)
T 10t | 7|53 (626,202) (12,237) (11,009) | 10% | 521
6 1 30
(527,404) (525,997) (781,386)
(391,021) [(394,350) | (390,559)
15 4 17
(792,111) (626,213) (781,017)
(390,531) (371,328) (390,576)
11 0 29
(626,202) () (780,878)
T 3x100|7|-5(3] (626,202 O 371,325 | 35% | 113
21 9 91
(970,613) | (1,149,355) | (1,310,932)
(315,701) (316,2 7) (312,155)
24 15 92
(1,328,353) (813,704) | (1,803,345)
(320,111) (315,688) (320,068)
37 20 186
(1,329,871) | (1,310,689) | (1,803.,347)
17 [3x10° | 7|53 (1,329,871) (315,687) (315,017) | 45% | 198

Gt
-3

Table 4.13 (Continued.)

NP The JU]DTA P PA T #)
41 11 153
(970,613) | (1,149,355) | (1,310,932)
(36,760) (37,136) (34,143)
35 20 125
(1,328,353) | (813,704) | (1,803,345)
(34,101) (33,388) (36,675)
71 24 280
(1,329,871) | (1,310,689) | (1,803,347)
17 (3x10¢ | 7| -5 | 3] (1,320,871) (33,888) (32,528) | 45% | 760
24 9 100
(514,177) | (606,262) | (706,196)
(34,150) | (161,664) (30,245)
25 15 93
(715,686) | (416,884) | (958,559)
(34,148) | (161,373) (34,204)
38 21 202
(T16,436) | (706,064) | (958,560)
17 |3x 10t |10)-10 3] (716,436) (34,150) (30,232) | 46% | 527

4.4 Single Separation Plane

4.4.1 Introduction

The most general encoding scheme introduced in Chapter 3 will he used in the
last two sections of Chapter 4. That is, a k-amino acid segment is represented by k
20-dimensional unit vectors and transformed into a single point in 20k-dimensional
real space.

The ultimate purpose of the information theory method aud the neural network
model is to construct a plane in the (20 x &)-dimensional real space, where k is the
unumber of amino acids in a segment. The structure assigned to the middle amino
acid in a new segment is determined by the location of the segment in space. It is
alpha-helical il the point transformed from a segment lies on one side of the plane; it is
coil (or nonalpha-helix) if the point lies on the other side. We will construct a linear
programming model in this section and attempt to find an acceptable separating

plane.

4.4.2 Method

Two-state prediction. A segment of amino acids is defined to he alpha-helical
if the structure of its middle amino acid is in an alpha-helix. Similar procedure is
followed for a non-alpha-helical structure. Suppose that there are m + » k-amino
acid segments in the training set, within which m segments are alpha-helical, and r
segments non-alpha-helical. Let A be an m x 20k matrix with each row composcd
of k 20-dimensional unit vectors and corresponding to an alpha-helical segment. in

the training set. Similarly, let B be an r x 20k matrix representing the r non-alpha-

helical segments in the training set. To find a normal vector N and a constant ' to

constitute a plane, we solve the minimization problem (For convenience, let k = 7.):

m-r
Minimize Z Z;
=1

subject to A-N+Cm+2Za =2 0,
B-N+Cr+2Zc <0,

Ny +Ng+-- 4Ny = 0,

Noy + Nog+---+Nyg = 0,

Nyp+Nyg+---+Nggp = 0,

Ne1 + N2 +-+-+Ngg = G,

Ngjy + Ngg ++--+Nyjgg = 0,

Ny + Nygg +-+-+Njgg = 0,

Nygy + Nygg +---+ Ny = 0,
NeN = 1, and

Z; =2 0, wherei=1,2,.-,m+r,
. _ r IRYA
where N = (]\1,1\72,-”,]\140) ,
Za = (21,25, Zm)T,

Ze = (Zmt1Zm+42> ’Z‘ln-!-l‘)T*
Cm = (C,C,.--,C)T, a constant vector in R"*, and

¢ = (¢,¢,---,C)T, a constant vector in R",

60

are unknowns.

Solving such a minimization problem w_ill yield a unit vector N and a constant
C such that the sum of the distances (Z;) from the “misplaced points” to the plane
X o N + C = 0 is minimized (Fig. 4.4). The Z; value associated with a correctly
placed point is 0. The seven constraints N; + Njp +-+-+ Ny g, fori=1 21,1 I
61, 81, 101, and 121, eliminate some trivial solutions for which the resulting plane
contains all the points in the training set and thus will not classify alpha-helical and

coil points. For example,

N=-A(1,1,---,1,-1,=1,---,=1,0,0,---,0,0)T,
BT S e R e) 0)
20 2

C' =0, and

~ Z; =0, where i =1,2,...,m+mr,

and

F 1_. N &
N = 1,101, cevvennnnnn O,
N=7nl! " 1)

C =\7§T76’ and

{ Z; =0, wherei=1,2,--«,m+r

are two trivial solutions, but do not satisfy the constraint Ny + N9 +-.- + Ngg = 0.
On the other hand, because we are concerned with the relative influence of the
20 different amino acids at each position on the structure of the middle amino acid
ol k-amino acid-long sequences, the seven constraints are quite acceptable.
The nonlinear constraint N ¢ N = 1 is first replaced with N e Ny = 1. where
INgll = 1 is given, thus turning it into a linear constraint for which the Simplex

method can solve for a solution of Nj. Normalizing N| to obtain N] and replacing

Figure 4.4:

61

Plane XN+ C =0

The nonzero Z; is the distance from the plane to the “misplaced” point
associated with Z;.

62

NeN by Ne N| =1, we solve the minimal problem by the Simplex method again
and normalize the solution to obtain Ny, etc.

The initial guess, Ny, is given as

A-B
Ny = —
0= [A=Bl;
where
~ m oA _ A
A= _?="-_,_21__7.. and B = g’i?l-—', where

A;’s are the rows of the matrix A and
1
B;’s are the rows of the matrix B.

That is, A and B are the centroids (or averages) of the alpha-helical points and
the coil points, respectively, and Ny is the normalization of the difference hetween
centroids.

Suppose there is a plane, namely X ¢ N + (' = 0, able to separate alpha-heclical
from non-alpha-helical points. That is, A; - N+ C' > 0 for any row A; of the matrix

A,and B;-N + ' £ 0 for any row B; of the matrix B. Then

A-N4+C2>0
and
B.N+(C <0,
where
- m oA _ YA
A= —L—l—Z: i and B = Zi=| L
m r
So

63

i.e.,
(A-B)-N>0,
ie..
A-B -
—=———=— N > 0 provided ||A - B 0.
Thus, let
A-B
Ny = .
0~ A=,

Three-state prediction. First, we describe Qian & Sejnowski's and Robson ¢/
al.’s three-state prediction schemes and explain how to make a three-state prediction.

Qian and Sejnowski did not undertake a two-state prediction in [10];: instead
they constructed three tables for a three-state prediction using a two layer neural
network. These three tables include the weights from the input units to the three
output units, as well as the bias in each output unit. Il we rearrange the numbers in
each table as three 20k-dimensional vectors No, N i and N¢ and let the three hiases
be Bq, B/j, and Be, respectively, then for a new amino acid segment P, Qian and

Sejnowski use the greatest of the three numbers
Nq e P + Bq,

and

Nc.P+Bc_

to determine the secondary structure of the middle residue of P.

Assuine that .

Nop = No = Np,

64

NO/C = Na - NC,
N/]C = Af/ — 1\’(},
Bqp = Ba ~ Bp,
BOC = BG’ - BCv

and that

B/Bc = B/3 — Be;

then the three planes

I

o Naﬂ o X+ B,3=0,

Ine: Nac® X + Bae =0,

and

I/3c: N/3c o X + B/ic =0

partition the 20k-dimensional real space into several regions, and each region is a
“alpha region,” a “ heta region,” or a “coil region” (Fig. 4.5). The secondary structure
assigned to the middle residue of a new segment P depends upon in which region or
in what kind of region P is located. For example, an alpha-helix will be assigned il
P is in an alpha region.

The three planes

PQ‘: Na'.P+BQ'=0,
Pﬂ: N/30P+B/3 =0,

and

PcZ fvc.P-l-Bc:O,

Figure 4.5: Three-state prediction in three-dimensional space. The intersection of
the three planes is a line. The three vectors 1\’0,/3, Nac. and N e are
linearly dependent.

66

which are derived from the neural network model; and the magnitude of the three

vectors Ny N il and Ng, i.e.,
I Nall2,
I1¥4ll2,
and
I Nell2,
determine how 20k-dimensional real space is partitioned. Suppose that Q is a point

on the plane I, 3 and suppose that the Euclidean distances from Q to Pn and from

Qto 1’/3 are do and d 3 respectively. Then
,IA’Q” . ([Q’ = HIV/_?” . (1/3.

Let us call the three planes Ia,/3,1ac, and [Be the “indifference planes™; the Eu-
clidean distance from a point T to Py times ||Ny||, where x = a, A, and ¢, the
“statistical distance” between T and Pp; and the three vectors No, N 3 and Ne¢ the
“distance vectors” (See Fig. 4.6).

Applying Eq. 2.5, the information theory method for three-state prediction con-
structs three tables for alpha-nonalpha, beta-nonbeta, and coil-noncoil separations,
respectively. In exactly the same procedure as used in the neural network model, the
three tables are used to construct three indifference planes if the three decision con-
stants for each table are determined. For a fixed database, the three unique distance
vectors for the information theory method are determined, and the three decision
constants chosen to yield a good performance; that is, the three indiffercnce planes
are “shifted” to cause a good partition for the points in the training set. The stalis-

tical distances from a point to the three indifference planes will reflect the structural

No /
T / j
Ny 3

Figure 4.6: The indifference plane I, 3 in three-dimensional space. N, 3= Na—-N Pt
The two statistical distances sdq and sd 3 are equal.

68

tendency of the middle residue of the segment corresponding to the point (Fig. 1.5).
On the other hand, in the neural network model, both the three distance vectors
and the three biases are changable. The three indifference planes should not ouly he
“shilted”™ but also be “rotated” to achieve a good performance upon partition. Thus.
the neural network model can, although not consistently3, yield a better result. than
can the information theory method.

The goal of the linear programining model for three-state prediction is to con-
struct three planes directly to partition the 20k-dimensional space. For two-state
prediction, we construct a plane to “separate” the alpha-helical points from the non-
alpha-helical points. The three planes for three-state prediction “separate™ the alpha-
helical points from the beta-sheet points, the alpha-helical points from the coil points,
and the beta-sheet points from the coil points. We use the same model for two-state
prediction but use different A and B matrices to find the three planes. If A and
3 represent the alpha-helical and the beta-sheet points, respectively, and if the coil
points are discarded, then the resulting plane can be used for alpha-heta separation
(Fig. 4.6). The other two planes are constructed similarly (Fig. 4.5). The resulting
three planes will partition the space into several regions, each of which will he cate-
gorized as an alpha-helix region, a beta-sheet region, a coil region, or a [uzzy region.
We assign no structure to points lying on a fuzzy region.

Note that the intersection of the convex hulls of the alpha-helical points. the

beta-sheet points, and the coil points may not be empty, i.e., “mixed region(s) (or
|) 3)

370 achieve a desired input-output mapping, the purpose of the neural network
model is to minimize the quadratic function, which is the sum of the differences of the
target outputs and the corresponding outputs of the network over all inputs. Because
of the existence of local minima, the performance of a network depends upon starting
weights and training procedures.

69

fuzzy set(s))” exist(s). Therefore, a point is not predicted if it is lying in a mixed

region.

4.4.3 Prediction Procedure

Two-state prediction. Suppose that the plane X e N4 (' = 0 results from the
linear programming model. Then the secondary structure of the middle amino acid

of a segment, corresponding to point P, is predicted to be (Fig. 4.7) alpha-helical il.
PeN+C>0

and non-alpha-helical if
PeN+C <.
Three-state prediction. Suppose that the three planes
X eNgg+Cop =0,
XeoeNac+ Cac=0, and
X oNﬂc + C/3c =0

are the resulting partition planes. To assign a secondary structure to the middle
residue of a block of k amino acids, each of the three partition planes will be used
to determine one of two possible structures: alpha-helix or beta-sheet, alpha-helix
or coil, and beta-sheet or coil, respectively. We predict only when two out of three

structures are the same and assign the structure to the target residue (I'ig. -1.8).

4.4.4 Smoothing Algorithm

A helix or a sheet in a protein is composed of several contiguous amino acids,

A prediction scheme may mistakenly assign non-helix to a residue in the middle of

N
aregion: XeN+(C' >0

non-a region: X e N+ (' <0

XeN+(C=0

Figure 4.7: Two-state prediction.

.X. [J N/jc + C/’/_'}(‘. = 0

XoNgg+Cpz3=0

XeNac+ Cac=0

Figure 4.8: Three-state prediction. The structure assigned to a point depends upon
where this point is located in space. We do not predict if a point lies in
the middle triangle region.

a block of helix residues, which would appear to be a discontinuity in the prediction
sequence. The purpose of the smoothing algorithm is to offset or to eliminate the
discontinuity trend. If an amino acid is assigned a structure different from that
assigned to the left two and the right two amino acids, which have the same structure,
then the structure of the middle acid must be changed so that all five acids have the
same structure.

We applied the smoothing algorithm in two-state prediction, and accuracy per-

centages improved slightly.

4.4.5 Results and Discussion

A. Artificial Database.

We use Eqs. 2.5 and 2.4, which have been derived from the information theory
method with and without Baysian smoothing, respectively, to construct artificial
databases using the first 301 or the first 50° proteins in the training set. We assign
“structure” to the proteins according to the information theory prediction. To do
so, we first compute the appropriate information theory vector (a 140-dimensional
vector because we use segments of length 7) using one of the two equations and
either 30 or 50 proteins. We let the adjustable parameter be zero and construct
a 140-dimensional plane, L, passing through the origin. The artificial database is
established by changing the structural assignments to the residues in the 30 or the 50
proteins whenever necessary so that all alpha-helical points lie on one side of plane

L and so that all non-alpha-helical points lie on the other side. Then the lincar

-

4The total number of amino acids in the 30 proteins is 3707.
5 . . ‘ . ¢ .
""T'lhe total number of amino acids in the 50 proteins is 7251,

73

programming model in the Method section uses the artificial database to find the
plane M by means of MPSX software and an IBM machine. The partition result is
subsequently tested on the artificial database.

The resulting planes M can, except for some points on M, separate alpha-helical
points from non-alpha-helical points in the artificial database (See Table 4.14). From
the experiments, we found that a plane M can he constructed in one iteration by
means of the linear programming model, which separates the alpha-helical from the
non-alpha-lelical points; on the other hand, the number of iterations has little influ-
ence on the performance of the partition for the 30 or the 50 proteins.

We tested the partition accuracy performed by plane L on the 30 or 50 proteins
before changing structures to establish an artificial database (see Table 4.15). We
found that the use of Bayes’ decision theory has little influence on the performance

of partitions of the 30 or 50 proteins.

74

Table 4.14: The partition result on artificial database performed by the planes.
which were derived from the linear programming model and calculated
by the software MPSX, for seven amino acid segments in the set of 30
or of 50 proteins.

44 s derudnelpel/ S CPU%|Del S HCPU%{Del
587 42
IS4T]1| 421 |99] 36
3125 17 3107| 40
BYI|50{ 56 3725|1| 1030 {99] 14 I 37 3749}2|1261[oy| 4
1636] 20
30[3§ 17901 405 |99] 29 |

3150| 24 3123 48 3150] 27
BMsoll a6 3704]1] 1274 |99] 7 16] 372223049199 29[35| 3708

30

=1

b

(v §

31071199 17

@4 = The number of proteins used.

bhe separation result for the 30 or the 50 proteins (see Table 1.16 for details.).
Note that we ran the MPSX in double precision, but only five numbers alter digital
points are used to form the planes. Because all the output solutions from MPSX
were optimal with objective values 0, any resulting plane will separate all alpha-
helical points from nonalpha points, except for some points lying on the plane. The
“misplaced” points in this column, in fact, lie on the corresponding plane derived
from the MPSX.

I is the number of iterations performed in the linear programming model.

1y seconds.

€% = SA = separation accuracy.

IDel is the number of deleted points, which may or may not be on the real
plane counstructed by the MPSX, but which lie on the plane used here and were

nol partitioned.
- 9Baysian information theory method.

I"Non—Baysia.n information theory method.

-1

ot

Table 4.15: The partition results of the planes, which were derived from the infor-
malion theory method, for seven-amino acid segments in the sets of 30
or of 50 proteins.

g SA? Del¢

1013 410

30 633 1452 70% 0
1768 750

Baysian 50 1380 3039 69% 0
1020 403

30 650 1440 0% 0
1783 35

Non-Baysian 50 1401 3018 69% 0

“T'he separation results for the 30 or the 50 proteins.

bSA = Separation accuracy.
“Del = The number of points on the plane.

Table 4.16: The four numbers in the entries of the S or P column in some tables
have the same roles as do A, B, C, and D.

Predicted structure

Real structure alpha-helix nonalpha-helix
alpha-helix A 13
nonalpha-helix ¢ D

B. Real Database.

An acceptable normal vector will reflect the influences of different amino acids
at diflerent positions on the structures of middle residues in segments. Algebraically.
the entries in an acceptable normal vector will be different to quantitatively indicate
the relative influences; geometrically, the resulting plane will separate most points of
different types and itself contain only a few points.

Two-state Prediction. We use MPSX software and the first 10 proteins (1027
residues) in the training set to test the performance of the linear programming model
for seven-amino acid segments. The solution, which includes a normal vector N and

a constant C, is of the the form®

' Ngs =19 x (—a), where a is a real number,
4 Ni=ua for ¢ = 81 — 100 except 95,
N = 0 otherwise, and -
k C=-—a.

The plane will contain all points except the points whose corresponding segments
include prolines at the fifth positions (counted from the N-terminal end to the (-
terminal end), and for which the structures of the middle residues are predicted to
be non-alpha-helical. Thus, from the viewpoint of separation, this plane docs not
achieve our goal; on the other hand, the normal vector indicates that proline is a
helix-breaker when appearing in at the fifth position but gives no information about
the other residues.

When we add the constraint Ngs = 0, similar output results. This time. proline

in the sixth position is a helix-breaker. As we continue this process, the resulling

6 he iterative linear programming problem converged in one iteration.

-1
-~1

normal vectors indicate that proline is a helix-breaker at positions 4, 5, and 6; and
that tryptophan is a helix-breaker at positions 3, 4, 5, 6, and 7, and that tryptophan
is a helix-former at the first and second positions.

Another experiment was conducted to add instead the constraint
—-0.3 < N; £0.3, for i = 75,95,115, 18, 38,58, 78, 98, 118, 138,

to restrict in the normal vector the ranges of some specific entries found in the
previous experiment. We solved the problem until it converged. Using the resulting
planes of each iteration, we list the separation results for the first 10 proteins in
Table 4.17. Note that the normal vector derived from the fifth iteration is not in
an acceptable form as almost all points are predicted to be non-alpha-helical (sce

Table 4.17). For example, the normal vector derived from the ninth iteration is

(N;=-0.3 if i =78,95,98,118,138,

Nig9 = 0.71482,

N-j = 0.01579 if j =61 - 80 and 101 - 120, except 78 and 118;
N, =0.03333 if k=81 - 100, except 95 and 98;

Ny =-0.02305 if I =121 - 140, except 122 and 138;

Nm=0 otherwise; and

C' = —0.04187.

\

Note that Ny99 = 0.71482 indicates that arginine is a helix-former wheun in the

seventh position. We modified the added constraint as

—-03 < N; <-0.01 ifi=175,95115,58,78,98,118.138, and

9
0.01 < Nj <0.3 if j = 18, 38,122,

T8

and used the normal vector of the fourth iteration above as the starting vector; the
iteration scheme converged, and the resuliing normal vectors were accepted. Separa-
tion accuracy for the 10 proteins is about 73%. Results are listed in Table 4.18.

We also used the second 10 proteins in the training set to test the model. The
resulting normal vectors indicate that proline at positions 5 and G, methionine at. the
positions 2, 5, 4, 6; and tyrosine at the positions 3, 5, 4, and 2 are helix-hreakers
and that tryptophan at the positions 6 and 7 is a helix-former, which contradicts
the indications of the first 10 proteins. Because the normal vector and the resulting

plane are dominated by the given ten proteins, this phenomenon is not surprising.

Table 4.17: The 10 iterations of the single plane for two-state separation with seg-
ment length seven on 10 proteins.

Ite.” OBJY CPU DOT¢ s¢ SAE | #ql

770 115

(283) (107)

129 ™9 | ™% | (1)
st || 28.36468 | 208.63 | 1.000003 | (132) (445) | (15%) | 953

244 138

(252) (138)

109 55| ™% | (@21
oand || 18.82253 | 195.43 | 0.619989 | (108) (169) | (75%) | 916

355 132

(256) (134)

123 450 3% (7)
3rd || 16.21761 | 195.73 | 0.491218 | (106) (A71) | (15%) | 960

264 118

(278) (112)

141 9 | ™% | (25)
4th || 15.12556 | 199.56 | 0.426878 | (144) (433) | (T4%) | 942

e, = Iteration.

b01J is the objective value of the linear programming problem. That is, OBJ is
the sum of the distances from the “misplaced” points to the separation plane.

DOT is the inner product of the nornal vector and the given initial vector.

dphe partition performed by the plane on the 10 proteins. The results of using
the smoothing algorithm are in parentheses. See Table 4.16.

‘iSA = Separation accuracy.

1 #s is the number of segments separated by the plane. The number of points
lying on the plane is in parentheses.

80

Table 4.17 (Continued.)

Tte. OBJ CPU DOT S SA #s

17 373

(1) (389)

10 567 60% (0)
5th 11.98900 | 96.16 | 0.167121 (7) (570) | (59%) | 967

12 378

(1) (389)

T 570 60% (0)
6th 8.30203 37.90 | 0.142512 (5) (572) | (59%) | 967

12 378

(1) (389)

T 570 60% (0)
Tth 7.68239 58.85 | 0.137115 (5) (572) | (59%) | 967

12 378

(1) (389)

T 570 60% (0)
8th 7.66635 39.54 | 0.136975 (5) (572) | (BY%) | 967

12 378

(1) (389)

T 570 60% {0)
9th 7.66632 51.85 | 0.136975 (5) (572) | (59%) | 967

12 378

(1) (389)

7 570 60% (0)
10th 7.66632 41.15 | 0.136975 (5) (572) | (59%) | 967

81

Table 4.18: The last 5 iterations after modification of a constraint.

Ite. OoBJ CPU DOT S SA F#q

245 141

(242) (148)

119 451 3% (11)
5th 14.71520 | 243.05 | 0.394234 || (102) (475) | (T4%) | 956

252 131

(255) (135)

127 436 3% (18)
6th 13.85828 | 254.18 | 0.359923 || (107) (470) | (75%) | 919

263 120

(271) (119)

139 425 3% (20)
Tth 13.79683 | 210.37 | 0.356741 (126) (451) | (75%) [ot7

263 120

(271) (119)

139 125 3% (20)
Sth 13.78685 | 228.46 | 0.356317 | (126) (451) | (75%) | o7

2383 141

(239) (151)

106 465 4% (17)
9th 13.78409 | 188.31 | 0.356048 (91) (486) | (75%) | 950

244 129

(245) (145)

118 135 3% (41)
10th || 13.78297 | 158.31 | 0.355848 || (102) (475) | (74%) | 9206

For our problems, the MPSX software required much more time than did the
OSL software. But when we used the OSL software to find a single separation plane
for the 101 proteins in the training set and for length seven, the calculation remained
unfinished after 9619.72 CPU seconds.

For two-state prediction, the heta-sheet structure, as important a structure as
alpha-helix, is considered coil. This assumption will make the distribution of points

more ambiguous and will limit the accuracy of two-state prediction.

82

Early results regarding secondary structures of proteins included few heta-sheets;
for example, myoglobin and haemoglobin have no beta-sheet structures; thus, only
two-state prediction was studied before.

Three-state prediction. First, we used the first 10 proteins in the (raining
set to find three single planes for alpha-beta, alpha-coil, and beta-coil separations,
respectively. Second, we used the first 20 proteins to do the same thing. Third, we
use the second 20 proteins to do it. The outputs of all linear programming problems
were optimal.

The results for the first 10 proteins are listed in Tables 4.19 and 4.20. Fach
plane is obtained without iteration. Furthermore, the alpha-heta plane is obtained
by allowing N3¢ to be 0 (we allowed Njg(to be a relatively great positive number
when predicting, so that whenever isoleucine is at the seventh position, the segment
will tend to be alpha-helical rather than beta-sheet), and the alpha-coil planc is
obtained by allowing Ngg to be 0 (we allowed Ngg to be a relatively small negative
number when predicting, so that whenever proline is at the fifth position, the segment
will tend to be coil rather than alpha-helical.).

Because the number of beta-sheet points is far smaller than the number of either
of the other two structures in the 10 proteins, much more time was required to
construct the alpha-coil plane, and a greal objective value resulted. Note that a

great objective value may result from the distribution of points in space.

83

Table 4.19: The three single separation planes for three-state prediction for
seven-amino acid segments on the first 10 proteins in the training set.

alpha-heta® alpha-coil heta-coil
cpyd 23.76 177.64 44
OBJ 0.00000 37 56002 0.00000
TstC 0.10604 0.07288 0.11615
ond 0.10106 0.06939 0.098S1
3rd 0.12525 0.00334 0.08011
T 0.10617 0.10866 0.12971
Bh 0.14873 0.10247 011118
Gth 0.13549 0.10078 0.09611
Tth 0.11230 0.10407 0.10583
¢ 0.17629 -0.02952 -0.13055

“The single plane separating the alpha-helical points from the beta-sheet points.

by seconds; MPSX software.
®The average of magnitudes of the first 20 entries in the normal vector.

dT)e constant term in the equation of the plane.

84

Table 4.20: Separation results regarding the three planes mentioned in the previous

table.
sa SA #a ab? ac be Del€
238 T 104
R
87 17 341 35% 842 35 1 23 66

“See Table 4.33.
baly is the number of points contained in the alpha-beta plane.
¢Del is the number of points lying in the fuzzy region.

The average of magnitudes of the middle 20 entries (fourth position) in each
normal vector in Table 4.19 is relatively greater than that of the other entries. This
reflects the fact that structure of a residue is determined mainly by the residue itsell.
Furthermore, hecause the averages of the entries on the C-terminal end are greater
than the averages on the N-terminal end of the alpha-coil plane, the alpha or the coil
tendency of the structure of a residue is dominated by C-terminal residues.

The constant of the alpha-beta plane is a relatively great positive number com-
pared with the averages of entries. Thus, alpha-helix may be overpredicted in alpha-
heta prediction. Similarly, coil may be overpredicted in heta-coil prediction. On
the other hand, the signs of the three constants are the same as the corresponding
differences of the constants in Fig. 9 of [10]; and the sum of the three constants is
0.01622, a number near zero.

Results regarding the first 20 proteins in the training set are listed in Tables -1.21
and 4.22. For iteration 1, the alpha-coil plane was obtained by allowing Ny (tend to
coil) to he 0; the beta-coil plane was obtained by allowing Nr5 (tends to coil) to he 0.

For iteration 2, we used the normal vectors from iteration 1 as the initial vectors and

85

allow Ngg (tends to beta-sheet) to he 0 to get the alpha-beta plane, allowed Ngg =
Nrg = Nii5 = 0, where N;g tends to alpha-helix rather than to coil and the other
two tend to coil, to get the alpha-coil plane, and allowed N5 = Ngg = N33 =0
(all tend to coil) to get the beta-coil plane. Because we set more entries equal to 0
in iteration 2 than in iteration 1, it is not the real second iteration.

The information contained in the tables for the first 20 proteins is similar to that

for the first 10 proteins.

‘able 4.21: The three single separation planes for three-state prediction for

seven-amino acid segments in the first 20 proteins in the training set.

Iteration ! lteration 2

alpha-beta | alpha-coil | beta-coil (| alpha-beta | alpha-coil | heta-coil
CPu 232.73 620.38 323.10 270.72 762.69 420.95
0OBJ 2277856 | 71.92611 | 31.17186 20.83535 | 60.84273 | 60.58091
Lst 0.06475 0.03941 | 0.04922 0.06205 0.03572 | 0.12916
2nd 0.07197 0.05889 | 0.05211 0.06961 0.05706 | 0.14G81
3rd 0.06808 0.08343 0.06536 0.06534 0.08380 0.15399
dth 0.08047 0.11318 0.19206 0.07551 0.08373 0.21087
5th 0.09405 0.07422 | 0.06498 0.07537 0.06718 | 0.18197
Gth 0.06633 0.09746 | 0.04554 0.06428 0.07708 | 0.12202
Tth 0.06902 0.09969 | 0.05002 0.07091 0.09401 | 0.1088I
C 0.07453 | -0.03785 | -0.15509 0.08594 0.00504 | -0.11950

86

Table 4.22: Separation results performed by the planes in the previous table,

Iteration 1

S SA #s ab ac be Del
457 65 222
T4 177 93
217 82 710 67% 2097 10 1 27 53
S SA #s ab ac e Del
401 ™ 260
65 170 102
180 36 735 67% 2074 16 0 9 89

Results regarding the second 20 proteins in the training set are presented in
Tables 4.23 and 4.24. Separation accuracy is 52%, percentage inferior to those for
the first 20 proteins. Note that the average of the middle 20 entries ol the normal
vector of the alpha-coil plane is a small number compared with others and thus will
not dominate the prediction. As a result, accuracy diminishes.

Table 4.23: The three single separation planes for three-state prediction for
seven-amino acid segments on the second 20 proteins in the training

set.

alpha-heta alpha-coil heta-coil
cPu 644.31 2061.35 511.09
OBJ 72.54383 144.73585 75.30725
Ist 0.06642 0.08712 0.03722
2nd 0.08047 0.09116 0.10199
3rd 0.08598 0.09383 0.08301
4th 0.09264 0.06259 0.09753
5th 0.07908 0.080:35 0.06710
6th 0.07693 0.06103 0.08220
Tth 0.07001 0.06010 0.07886
(& 0.09854 0.00459 -0.12038

87

‘able 4.24: Separation results performed by the three planes in the previous table.

S SA #s ab ac be Del
452 145 339
128 195 165
363 172 611 52% 2570¢ 14 2 T 130

C5T0 423413046 x 2042 X 6 42 = 2857, where 2857 is the number of residues
in the 20 proteins; 23 is the number of points on the planes; 130 is the number of
points in the fuzzy region; the last number 2 on the lefthand side is the two unknown
residues; and the 2 in the term 2 X 6 comes from the splitting of the two proteins
containing one unknown residue (see Appendix A for details).

The performance of three-state prediction seems bhetter than that of two-state

prediction. But not only is finding single separation planes quite timeconsuming but

also it is somewhat artificial to set certain entries to equal 0.

4.5 Pairs of Separation Planes

4.5.1 Introduction
8

Because of the existence of a “fuzzy set!” or plural sets®, it is impossible {o
separale completely, for example, alpha-helical points from non-alpha-helical points
by means of a single plane. Several pairs ol parallel planes, however, can perform

this job [L3]. The first pair of parallel planes partitions the whole space into three

TIf the convex hulls of, for example, the alpha-helical points and the coil points
intersect, then the intersection of the two sets is called a fuzzy set.

$The percentage of correctly predicted structures of Qian & Sejnowski’s neural
network without hidden units for the training set is about 63. The 63% performance
ol separation by the three indifference planes seemingly reflects the ill-distribution of
the points in space, which corroborates the observation made in the previous section.
Nevertheless, the performance of the same neural network for the testing set is abont.
63%, a good result.

88

Plane XN+ (C =0
Plane X-N 4+ D =0

Figure 4.9: One pair of parallel separation planes.

parts so that, for alpha and nonalpha separation, the points helonging to the fuzzy
set, which is the intersection of the two convex hulls of the two sets containing the
alpha-helical points and the non-alpha-helical points, lie between the two parallel
planes; the points lying on one side, which is not the region between the two plancs,
are all alpha-helical points; the non-alpha-helical points, which are not between the
two planes, lie on the other side. The two parallel planes are constructed as closely
as possible. One of the two parts not between the pair is considered an alpha-helical
region, and the other a non-alpha-helical region (Fig. 4.9).

After discarding the points located on the two sides not hetween the first pair

89

of planes, we construct the second space partitioning pair, which is between the
first pair, again into three parts so that the points belonging to the fuzzy set lie
in between. Thus, one side contains only alpha-helical points; the other side only
non-alpha-helical points. The distance between the second pair of planes is also as
small as possible (Fig. 4.10). We then construct the third pair, the fourth pair, and
so on, until all points are completely partitioned.

The pairs of parallel planes partition the entire space into several regions, each
of which is categorized as either alpha-helical or non-alpha-helical (Fig. 4.11). The
structure of the middle residue of a new segment is determined according to the type

of region in which the segment is located.

90

L Second pair

First pair

Figure 4.10: Two pairs of parallel separation planes.

91

non-o

l s Second pair

non-«

First pair

Figure 4.11: The categorization by the two pair of parallel planes in Fig. .10, in
which the solid disks represent the alpha-helical points, and the circles
represent the non-alpha-helical points.

Because of the limitation of local prediction, we did not attempt to construct
sufficiently many pairs of parallel planes to partition the whole space; neither did
we make predictions regarding the points lying on the regions neither partitioned or
categorized.

We tested several different lengths of amino acid sequences, and found that the
result for length 25 is not better than the result for length 17, which is the better

choice.

4.5.2 Method

We solve the minimization problem below to find a normal vector N and two

constants C and D to constitute the two paralle] planes
XeN+C=0and XeN+D=0.

For the sake of convenience, we will use length seven to describe the minimization
3
problem for the separation of alpha-helical points from non-alpha-helical points. We

do likewise for other examples.

Minimize ¢-D

Subject to A N+Cn 2 0,
B-N+Dr £ 0,
Ni+Ng+---+Nogy = 0,

N9+ Ngg+---+Nyg = 0,

Nyy+Nyg+--+Ngyg = 0,
NGy +Ngg +---+Ngg = 0,
Ngp + Ngg +---+Nygg = 0,
Nygr +Nigg + -+ Nygg = 0,

Nigp + Npgg +---+ Ny = 0, and
NeN = 1,

93

where
m is the number of alpha-helical points,
r is the number of non-alpha-helical points,
A is an m x 140 matrix representing alpha-helical points, and
B is an r x 140 matrix representing non-alpha-helical points,
and where
N = (Ny, Ny, -, Nygg)T,
Cm=(C,C,...,C)T, a constant vector in R, and
Dy = (D,D,... ,D)T, a constant vector in R”,

are unknowns.

Note that C — D is greater than or equal to zero if there is a fuzzy set with a

point P such that

PeN+(C>0and Pe N+ D <O,

The difference between these two inequalities implies that C — D > 0, where C is
equal to D if and only if the resulting plane contains the fuzzy set; this special con-
dition was not fulfilled in our experiments. On the other hand, C' < D if no fuzzy set.

exists; again, this condition did not arise.

A. Type I Partition.

Type I partition is accomplished by means of three groups of parallel planes sep-
araling the alpha-helical points from the beta-sheet points, the alpha-helical points
from the coil points, and the heta-sheet points from the coil points. To construct the
first group of planes, i.e., to separate alpha-helical points from beta-sheet points. the

matrix A in the linear programming model represents the alpha-helical points, the

94

matrix B represents the beta-sheet points, and the coil points are discarded. For the
construction of the second group of planes, the matrix A represents the alpha-helical
points, and the matrix B represents the coil points. Similarly, to construct the third

group, let A represent the beta-sheet points, and let B represent the coil points.

B. Type II Partition.

Type II partition is similar to type I partition except, that type II partition is the
separation of alpha-helical points from non-alpha-helical points, which includes the
beta-sheet points and the coil points; of beta-sheet points from nonbeta-sheet points,
which includes the alpha-helical points and coil points; and of the coil points fromn
the noncoilpoints, which include the alpha-helical points and the beta-sheet points.

Thus, the type II partition is also performed by three groups of parallel planes.

4.5.3 Prediction Procedure

A. For Type I Partition.

Each group of parallel planes partitions the 20k-dimensional space, i.e., R0k
where k is the number of amino acids in each segment. For a new segment, the
structure assigned to the middle residue depends upon the location of the segment in
R20k . We consider the partition performed by each group of planes independently,
and one of two possible conformations will be given from each group if the point
is not located in a mixed region such as the middle rectangular region in Fig. 4.11.
The two possible conformations are alpha-helical and beta-sheet {rom the first group:;
alpha-helix and coil from the second group; and beta-sheet and coil from the third

group. If two out of the three structures derived from the three groups of planes are

95

the same, then the same structure is assigned to the observed residue. Otherwise, we

make no prediction.

B. For Type II Partition.

We consider the partitions performed by each of the three groups of paraliel
planes indepedently. For a new protein segment P, each group of planes will determine
a number d as follows. For the sake of convenience, we will use the a—~ ~ a group
to describe how the number d is determined. (Similar expressions hold for the other
two cases.) If P lies in the mixed region, d is 0. Otherwise, P lies either on an
alpha-lielical or a non-alpha-helical region, which is determined by a pair of parallel
planes, L| and Lo, in the group. If P lies on an alpha-helical region, d is the distance
from P to the closer one of the two planes L and Ly; otherwise, d is the negative of
the distance from P to the closer one of them.

Let d;, where i = 1,2,3, be the number determined by the ith group of planes.
I at least one of the d;’s is positive, the conformation (alpha-helix, heta-sheet, or
coil) associated with the largest number will be assigned to the observed residuc; il
only one of the d;’s is 0 and the other two are negative, then the structure assigned
to the residue will be alpha-helical if d) = 0, beta-sheet if dy = 0, and coil if dj = 0.;

otherwise, no prediction is made.

96

4.5.4 Results and Discussion

First, we used the first 50 proteins, which include 7251 amino acids, 9in the
training set to test the convergence of the iterative linear programming scheme both
for two-state separation (alpha-helical and non-alpha-helical) and for length seven,
which is the number of residues in a segment. To construct the first pair of parallel
planes for nine iterations, OSL10 software was used. Prediction performance were
also tested on the testing set, which included 15 proteins and 3402 amino acids, 1
by pairs of planes from each iteration. (See Tables 4.25 and 4.26.).

In Table 4.25, the numbers in the “norm” column decrease to 1, which signifies
that the normal vectors approach a unit vector and that the distances hetween pairs
of parallel planes decrease to about 0.54.

Note that because numbers were truncated after the 8th position of digital points.
the “misplaced” points in the “S” column are, in fact, contained in either one of the
corresponding planes. Results in Table 4.25 were obtained by means of the truncated
numbers.

The performances, which include both number of partitioned points and accu-
racy of separation of the second and third iterations in the training set including 50
proteins, are hetter than that of the other iterations, and slightly better results are

implied in the testing set. Iteration 1, which achieved a 85% accuracy, has a rela-

IThere are 7251 — 50 x 6 — 2 x 6 — 2 = 6937 seven-amino acid segments, {or which
the last number 2 on the lefthand side is the two unknown residues, and the 2 in
the term 2 x 6 comes from the splitting of the two proteins containing one unknown
residue (see Appendix A for details).

WOSL software was used to find the parallel planes in the last section, in which all
outputs were optimal for their corresponding programming problems.
' here are 3402 — 15 x 6 = 3312 seven-amino acid segments in the testing set.

97

tively large non-alpha-helical tendency; on the other hand, from results in the “P”
column, we found that the iterations could reduce overprediction of non-alpha-helical
structure.

In Table 4.26, the numbers in each column are decreasing and the numbers in
each row are increasing, which means that no oscillation is occurring; on the other
hand, the top numbers in each column, from left top corner to right bottom corner,

approach 1, which means that the sequence of unit normal vectors converge.

98

Table 4.25: The nine iterations for the first pair of parallel planes for two-state
separation with segment length seven on 50 proteins.

Ie.’]| Norm® | CPU | Dis.c s@ Isac|gslfl Y PA" | 4,
. 163] 45 1 Y

Ist [|1.375548 | 165.037 [0.686854 | 13| 769[94%| 995 {[40] 358]85% | 166
709| 10 8 20

ond |[1.012482|135.72% [0.617340 || 14| 746]98%| 979 [[70] 339 s0% | 156
191 5 5| %

3rd || 1.014400 | 151.64/ |0.600303 || 14] 7is{osw| 928 {feo| 330]s0% | 469
182 23 8 22

Ath || 1.013297 | 143.65 [0.588287 || 31| 660|94% | 896 [[G8] 31| 80% | 156
169 26 [2

5¢h [1.017352 | 148.69 [0.571633 [16| 611]95% | 822 [73| 201 78% | 131
173 9 5| 25

6th |[1.016371 | 154.81 [0.554744 [25| 587|96%| 794 [[ST| 275 | 76% | 135
177 30 G

7th | 1.005795 | 169.75 |0.549540 [22| 546]93% | 775 [[76] 262| 75% | 419
190 371 Y RS

8th | 1.004754 | 158.00 |0.544411 [[21| 542|93% | 790 [[ST] 255 4% | 126
190 40 58] 98

9th |[1.003725 | 166.55 |0.541059 [23| 539]92%| 792 [[83[246 73% | 415

UIte. = Iteration.

"Norm = The 2-norm of the normal vector of the parallel planes before
normalization.

“Dis. is the distance between the two planes of the pair.

drye partition performed by the pair on the training set. See Table 4.16

€SA = Separation accuracy.

/ #q is the number of segments in the training set that were separated by the pair.

IThe prediction performed by the pair on the testing set.

hpA = Prediction accuracy.

":#p is the number of segments in the testing set that were predicted by the pair.

J'The software MPSX was also used to solve the same problem, and the exact
output resulted, but CPU time was 2863.11 seconds, or about 17 times 165.03.

FThe MPSX required 1733.09 seconds to perform the same problem, or about 13
times 135.72.

e MPSX required 1051.37 seconds, or about seven times 151.61.

99

Table 4.26: The inner product of the normalized normal vectors.

I 1sth nd 3vd| 4th 5th 6th Tth| 8th
I
[st[0.726984
2nd|D.614294]0.959249

3rd(0.56:3561{0.9239620.985805
Ath}0.522771{0.886338/0.957054/0.986877
51110.474034(0.8310450.9089250.949743]0.982944
6111[0.4131682[0.768766[0.849476/0.896202(0.943668|0.983893
7th|0.414767(0.737033[0.823874/0.872135(0.924434(0.970592/0.994238
81110.402402[0.710829(0.797834]0.846155(0.901236/0.95265710.981834{0.99526)
91110.390250(0.695449(0.78292110.828789(0.884130(0.938559(0.9707830.987:39510.996:289

“The initial guess.
f'le unit normal vector of the pair of parallel planes of the first iteration.

Two-state prediction. Table 4.28 lists the results obtained from ten pairs
of parallel planes for two-state prediction for the seven amino acid segments in the
training set (101 proteins and 17,460 residues 12). Note that each pair of planes is
the output of a linear programming problem and that each problem has been iterated
only once.

About one-third of the points in the training set and about one-third of the
points in the testing set were partitioned by these ten pairs of planes. The ratio of
the number of points predicted in the testing set to the number separated in the
training set by each pair of planes is about %, which is about the ratio of the number
ol points in the testing set (3312) to that in the training set (16840). It seems that

the distribution of the points in the training set, is similar to that in the testing

L2\When the length of segments is seven, there are 4884 alpha-helical points, 3881
beta-sheet points, and 8072 coil points in the training set.

100

set. In other words, it seems possible to diminish accuracy on separation and, at. the
same lime, to improve accuracy on prediction. The 63% accuracy on both separation
and prediction for three-state prediction performed by Qian & Sejnowski’s two-layer
neural network evidently reflects this phenomenon.

Because the number of points partitioned by pairs after the fifth pair is smaller
than 100 in the testing set and smaller than 500 in the training set, figures much
smaller than the number of points in the testing and training sets, and from the
results presented in Table 4.25, the iteration of planes will not increase the number
of partitioned points, for the alpha-helix and nonalpha-helix points are terribly mixed.
Thus, two-state prediction is limited, especially when one single separation planc is
being used.

As can be seen from the results in Table 4.25, it might be possible to overcome
the overprediction of non-alpha-helical structure by iterating each pair of planes more
frequently. Note that the four chains of 250D, that is, 250Do, 250Dy, 2SODb. and
250Dg, which have identical primary structures (see Table 4.27), are included in the
training set so that the structures of the middle residues of certain identical segments,
which are {rom different chains of 250D, will be different, and so that these segments
will be contained in the fuzzy set. This situation will limit the performance of the
linear programming model. Note that Sejnowski uses only one of the four chains.
But two of the 4SBV chains are contained in Sejnowski’s training set, which also will
cause the problem mentioned here.

Table 4.29 lists the normal vectors of the first, the second, the sixth, and the tenth
pair of parallel planes. Relatively great and positive numbers in the vector support

alpha-helical conformation; on the other hand, relatively small and negative numbers

101

Table 4.27: The secondary structures of the four proteins 2SODs.
(c: coil; @ : alpha-helix.)

51 52 53 54 H5 56 5T H8 HY 60

N T Q G C T S A : P

250Do c c C a « «a c C ¢ c
250Dy c C C c a a a o c C
250D c c c C ¢ c ¢ c c C
250Dg c c c c c c c c c ¢
131 132 133 134 135 136 137 138 139 140

E S T K T 7 N A g S

250Do c c c c c C c c c c
250Dy c c c c c c c ¢ ¢ ¢
250DDb c c c c c c c c C ¢
250Dg ¢ a a a a c c ¢ c ¢

support non-alpha-helical conformation. Normal vectors reflect some information
about the contribution to each type of secandary structure by amino acids at each
position. For example, that proline is a helix breaker is reflected by relatively small
negative numbers, especially when on the C-terminal end; glutamic acid, which is a
helix former on the N-terminal end and a strong J-sheet breaker, is represented by
relatively positive, large numbers; alanine, leucine, and methionine are helix formers,
especially when on the C-terminal end; and lysine and arginine are helix formers
when on the C-terminal end.

Table 4.30 lists the inner products of the unit normal vectors of the ten pairs of
planes in Table 4.28. The smallest number in the table is 0.770179, which indicates
that the “rotation angle™ between any two normal vectors of pairs of planes is small.
Thus, the partitioned points in the training set, roughly speaking, are distributed well
in the sense that alpha-helical points lie on one side of the “smooth” multiplane de-

termined by the ten pair of planes and that the non-alpha-helical lie on the other side.

102

On the other hand, because the “rotation angles” hetween later normal vectors are
sialler than between former vectors, that is, the values of inner products are greater
and, from Table 4.28, the numbers of partitioned points are smaller, unpartitioned

points are terribly mixed.

103

‘able 4.28: The two-state prediction for seven-amino acid segments in the training

set,

Pair | CPU Dis. S SA | #s P PA | #)
123% 3 18] 10

Ist || 2112.07 | 0.830707 17| 1239]99% | 1382 9 2227193% | 259
89 35 13 9

ond || 673.66 |0.825133 34| 451 89% | 609 G 71]85% | 99
98 46] M

Jvd || 641.10 | 0.801053 197 575 |91% | 738 9 108 |84% | 142
69 54 B3 1

Ath [1486.59 | 0.754658 19 481|88% | 623 51 98185% | 130
37 28 9 9

5th || 1413.89 | 0.721548 31 457 | 89% | 553 51 77 |86% | 100
54 34 5| I7

6th || 574.83 | 0.723060 16| 289]87% | 393 5 53|76% | 90
32 37 il 5

Tth || 1176.24 | 0.697520 2 231]87% (302 51 427182% | 56
40 46 T 8

8th || 1188.54 | 0.665975 197 204 |79% | 309 21 43183%1 6o
46 33 51 12

9th || 583.55 | 0.660534 I 273(88% | 363 31 B2 79% | 72
33 44 G 4

toth {{ 1079.24 | 0.602637 5 260 |86% | 342 I 52(88% | 66
621 360 101 | 102

Alb 173 | 4460 | 91% | 5614¢ || 53| st8|86% | 1071¢

“The distance from any of the 123 points to the plane, which is one of the two
planes such that all points lying on one side of it are alpha-helical, is between 2 x
10=1 and 1073, and the average of the distances is about 6.6 x 10~ =2 the distance
from an of (he 17 points below, which are, in fact, on the planes, to thc same plane
is 1010 10"‘ , or 9 x lO—J, and the average of the distances is about 8.2 x 107",

bphe prediction performed by the 10 pair of parallel planes on the testing set.

€17,460 = 5614 + 11,226 4+ 101 x 6 + 2 x 6 + 2, where 11,226 is the number of

seven-residue segments that were not predicted, 101 is the number of proteins in the
training set, the last number 2 on the righthand side is the two unknown residues,
and 2 in the term 2 x 6 is the splitting of the two proteins containing one unknown
residue (see Appendix A for details).

d'The total number of residues in the testing set is 3402 = 1071 + 6 x 15 + 2238,

where 15 is the number of proteins in the testing set, and 2238 is the number of

seven-residue segments not predicted.

104

Table 4.29: The normal vectors of the second, the sixth, and the tenth pair of par-
allel planes. The numbers in the first two rows (5 and Sy) are the
constant terms in the equations of the planes.

S) 0.562056 0.577381 0.430183 0.317987-
Sy -0.540403 -0.649251 -0.567913 -0.5:8244

(Position® 1)

Residue First pair Second pair Sixth pair Tenth pair
A 0.005468 0.023201 0.152979 0.133138
R 0.075784 -0.002298 -0.090865 -0.027708
N -0.027001 0.013161 -(0.024840 0.011972
D 0.012582 0.073869 0.030170 0.001611
C -0.075841 -0.188956 -0.072478 -0.030083
Q 0.046783 0.072394 0.063079 -0.019587
E 0.052:384 0.123321 0.069411 0.090187

i -0.039885 -0.106068 -0.148528 -0.114755
H -0.118235 -0.074113 -0.045119 -0.049:452
I 0.057331 0.022446 -0.041844 0.017746
L 0.007934 -0.001955 0.072088 0.091612
K 0.020523 0.021503 0.096915 -0.035816
M 0.054548 0.036884 0.088450 -0.048180
I 0.104333 0.075377 0.022726 0.053950
p -0.014487 -0.062668 -0.105774 -0.027109
S -0.023121 -0.080881 -0.065163 -0. 137276
T -0.014793 -0.077147 -0.044238 -0.062517
W -0.102116 0.024986 0.069910 0.187907
Y -0.02804+4 -0.052483 0.008151 -0.017310
\Y 0.005854 0.159425 -0.035032 -0.020970

“The seven positions in a seven-residue segment counted from the N-terminal end

to the C-terminal end.

105

Table 4.29 (Continued.)

(Position 2)

Residue First pair Secoud pair Sixth pair Tenth pair
A 0.045093 0.029227 0.142521 0.123351
R 0.055546 0.081957 -0.047947 -0.012378
N 0.058329 -0.042048 -0.046644 -0.032181
D 0.000786 0.026099 0.009698 0.069807
C -0.047457 -0.061859 -0.045108 -0.03:3583
Q 0.036759 0.024259 0.009035 0.019304
E 0.126698 0.191933 0.145885 0.1 14969
G -0.169641 -0.121068 -0.142464 -0, 145763
H 0.006137 -0.069331 0.120596 0.031903
I 0.016483 -0.064552 -0.046767 -0.000162
L 0.018670 0.050717 0.020999 0.071.180
K 0.058949 0.081957 0.014386 -0.001659
M -0.045756 0.173114 0.070370 -0.031784
F 0.068024 0.022642 0.008217 0.075258
P -0.109245 -0.102885 -0.041128 -0.1377h1
S -0.131533 -0.171643 -0.112820 -0.108265
T 0.047411 0.002168 -0.040282 -0.092920
\3Y -0.009872 -0.024579 0.112022 0.152110
Y -0.064212 -0.058216 -0.119822 -0.062936

\Y 0.038831 0.032108 -0.010747 -0.001746

106

Table 4,29 (Continued.)

(Position 3)

Residue First pair Second pair Sixth pair Tenth pair
A 0.126256 0.146744 0.131173 0.135130
R -0.138408 -0.190755 -0.037535 0.003153
N -0.029649 -0.018291 0.059980 -0.081202
D 0.068559 0.073613 -0.027327 -0.067306
C -0.132751 -0.129127 -0.089149 0.012620
Q 0.080537 0.131961 0.048502 0.0876493
E 0.128712 0.192274 0.161219 0.110859
g -0.172999 -0.146743 -0.245617 -0.285380
I 0.106713 0.079022 -0.016901 0.002581
I -0.005223 0.029718 -0.033945 -0.017736
L 0.080268 0.039253 0.076742 0.120847
K 0.088117 0.155358 0.029748 0.06271 |
M 0.112866 0.181004 0.126291 0.060187
F 0.040457 0.040304 0.051391 0.0407 11
P -0.222775 -0.179198 -0.017648 -0.1:32435
b) -0.108231 -0.106331 -0.108601 -0.130372
T -0.086350 -0.091742 -0.1065 10 -0.0558203
ALY 0.100315 -0.021127 0.108701 0.192541
Y 0.030288 -0.074060 -0.131281 -0.09717

\Y -0.066702 -0.111876 0.020367 -0.026287

107

Table 4.29 (Continued.)

(Position 4)

Residue First pair Second pair Sixth pair Tenth pair
A 0.142896 0.199983 0.194278 0.175250
R 0.004754 0.052975 -0.053563 -0.129452
N -0.042031 -0.174259 -0.075199 -0.129751
D -0.015089 -0.023765 -0.016046 -0.011189
C -0.121938 -0.097754 -0.064410 -0.034377
Q 0.090440 0.049671 0.032683 0.052776
E 0.097150 0.148013 0.239403 0.205570
i -0.193050 -0.188745 -0.309389 -0.311595
H 0.068712 0.123824 -0.012159 0.084714
| 0.070439 0.051175 0.062845 0.075081
L 0.096907 0.092492 0.163936 0.163283
K 0.103493 0.060392 0.058118 0.079596
M 0.082474 0.253915 0.191165 0.075010
¥ 0.106430 0.034728 0.126296 0.100280
P -0.288980 -0.280663 -0.258778 -0.21643
S -0.114968 -0.116040 -0.098338 -0.066000
T -0.140555 -0.136529 -0.134740 -0.190537
W 0.110963 0.101281 0.054159 0.0419307
Y 0.004331 -0.081653 -0.042490 0.013713

Vv -0.062376 -0.069041 -0.057772 0.011933

108

Table 4.29 (Continued.)

(Position 5)

Residue First pair Second pair Sixth pair Tenth pair
A 0.118934 0.156359 0.205538 0.191152
R 0.017251 -0.040424 -0.012232 0.054929
N 0.012465 -0.039508 -0.079924 -0, 143338
D 0.018445 -0.132412 -0.015457 -0.053.163
C 0.118664 0.120237 0.057823 0.047078
Q 0.089266 0.142451 0.149401 0.134881
E 0.134009 0.162850 0.125426 0.142771
G -0.225810 -0.147345 -0.184491 -0.178110
H 0.078037 0.155141 0.047186 0.048708
I 0.024924 -0.146599 0.051970 0.053970
L 0.112561 0.170007 0.154249 0.217666
K 0.026765 0.033289 0.121996 0.112276
M 0.122904 0.168971 0.081381 0.141501
F 0.040046 0.049393 0.065518 0.094098
p -0.504376 -0.393860 -0.475040 -0.G35112
S -0.117844 -0.143294 -0.181919 -0.152118
T -0.097216 -0.157069 -0.190969 -0.147975
W 0.124782 0.232236 0.155041 0.129333
Y -0.038784 -0.045908 -0.042967 -0.038010
Vv -0.055021 -0.144517 -0.032531 -0.01961 ¢

109

Table 4.29 (Continued.)

(Position G)

Residue First pair Second pair Sixth pair Tenth pair
A 0.109120 0.096613 0.110384 0.11137
R 0.038913 -0.052571 0.008892 -0.0425.11
N -0.046140 -0.1435G6 -0.0:33289 -0.164165
D -0.087881 -0.129604 -0.003509 -0.036396
& -0.073372 0.018285 -0.024963 0.078636
Q 0.073900 0.060365 0.072767 0.002120
E 0.088422 0.203885 0.104430 0.000751

' -0.113065 -0.042271 -0.194709 -0.07087Y
Il 0.070081 0.097030 0.009805 0.078960
| 0.059484 0.015630 0.013997 -0.020926
L 0.164443 0.150914 0.143743 0.119503
K 0.089018 0.062699 0.090791 0.151096
M 0.122436 0.151649 0.146560 0.127470
I 0.106376 0.055721 0.068483 0.085905
P -0.435547 -0.348022 -0.286G135 -0.369352
S -0.230493 -0.227542 -0.163053 -0.155935
T -0.175159 -0.093028 -0.135169 -0.092005
W 0.122516 0.122271 0.069373 0.130369
Y -0.000458 -0.042634 -0.021564 -0.000577

\Y 0.117405 0.044174 0.023167 0.004093

110

Table 4.29 (Continued.)

(Position 7)

Residue First pair Second pair Sixth pair Tenth pair
A 0.038625 0.104614 0.095047 0.112871
R 0.038471 -0.117105 0.037433 -0.035137
N -0.029258 -0.131734 -0.112439 0.010356
D -0.069508 -0.138639 -0.056579 -0.163198
C -0.004213 -0.044918 -0.115212 0.036656
Q 0.079837 0.027054 0.100444 0.134919
E 0.012102 0.085059 -0.0057:11 0.030828
& -0.115141 -0.061117 -0.118914 -0.119195
H 0.093065 0.223832 0.158140 0.058783
I 0.048033 -0.083979 -0.009986 0.048465
L 0.099986 0.133732 0.063371 0.070257
K 0.082442 0.086673 0.064925 0.103081
M 0.146835 0.231794 0.182329 0.188279
F 0.008356 -0.014745 0.118561 0.088159
p -0.279265 -0.315760 -0.266188 -0.305580
) -0.103607 -0.112449 -0.137529 -0.159087
T -0.176345 -0.109046 -0.166916 -0.154156
\%Y 0.136209 0.211843 0.1893:1 0139117
Y -0.031782 0.016978 0.027404 -0.082980
\% 0.025154 0.007911 -0.047493 -0.003012

111

Table 4.30: The inner product of the normalized normal vectors of the ten pair of
parallel planes.

1st 2nd 3rd 4th Hth Gth Tth Sth 9th

ist,
2nd.851750
3rdi0.815257(0.812966
Athi0.792132{0.770657]0.861484
5110.808601{0.788934(0.87107010.901453
6thi0.827218[0.811528]0.866814{0.885454{0.896754
Tthj0.820555(0.797946[0.851350[0.900840{0.908771{0.916297
Sthi0.841345[0.783296)0.8419410.850165/0.8901 16/0.916648]0.945680
9th{.800363(0.784424/0.856642{0.856868(0.880685/0.878995]0.925763/0.91 6722
10t110.823918]0.770179(0.844505}0.863859(0.889108]0.880333(0.917776/0.91961 10.925G64

Three-state prediction. Three-state prediction improves the overprediction
problem. Tables 4.31 and 4.32 list the results of type I partition and of type Il
partition, respectively, for 17-amino acid segments in the training set (101 protoinsl:i)
and in the testing set (15 proteins“). Separation and prediction performances of the
two partition schemes, type I and type II, are slightly different, but much more
computer time was required to construct the planes for type II partition.

The beta-sheet structure is more difficult to predict than is alpha-helix (or coil),
For example, as can be seen from Table 4.31, T4% accuracy was achieved by using
three pairs of a — ¢ planes, 1 pair of o — /3 planes, and 1 pair of /7 — ¢ planes; when the
numbers of each type of pair, a — 3, a ~ ¢, and 3 — ¢, are 2, 2, and 2, and 2, 3, and

2, the percentages are similar, but the numbers of separated points and ol predicted

points for the latter are significantly greater.

B he 101 proteins include 4524 alpha-helical points, 3634 beta-sheet points. and
7652 coil points when the length of the segment is seventeen.
Hhe 15 proteins includes 3162 length 17 segments

112

The number of separated points is about five times that of the number of pre-
dicted points, which is about the ratio of the number of points in the training set
to that in the testing set. We have made the same observation in previous sections.
(See Table 4.28).

Table 4.34 lists results when the segment length is 7 or 25, results not. as good

as when length is 17.

113

‘able 4.31: The three-state prediction of Type I for 17-amino acid segments. (Note:
hecause the misplaced points in the “S” column lie on the corresponding
plane derived from the OSL, we set 0.00000001 as threshold for the case
4, 4, and 4 to avoid predicting these points. The separation result
is improved, but the prediction results are slightly differet. Similar
expressions hold for the cases listed in subsequent tables.)
#of a— U of a—cO|# of f—c s¢ SA | #s P PA |#)
436 351 23 58(16 7

181400 16 18] 79| 11 :

2 1 1 65 19] 750]90%|1762][23| 27| 11.T]|71%|353
635 20 65 78] 14| 15
22[324] 24 20{ 56] 17

1 3 1 75| 15]1089[90%|2269(| 33| 16{192|74% 111
67| 35| 41 98] 16| 10
2914007 21 321 191 |

2 2 1 83| 19| 946|90%|2341{| 41| 27[159]71%| 176
635| 26| 104 78] 17| 21
221435] 63 201 67] 41

1 3 2 (75 21]{1570]89%(2951 | 33[26[270]|72%|573
T67| 48] 65 98] 24} 14
29(560(55 32| 98] 32

2 2 2 83| 28[1319]90%|2954 [4] 37(222]70% |59
896} 48| 104 128] 24| 21
32[560] 63 36 98] 41

2 3 2 99| 28[157089%|3400(51| 37[270]70%|706
635| 34| 124 78] 21| 28
22{510] 83 20] 76| 47

| 3 3 75| 57{1864|88%|3404 | 33| 36[330]72% 664
843[53] 65 L1L 32 14
46|631| 55 39(11L| 32

3 2 2 97| 31]1319|89%|3140(51| 44]222|68% |G56

“The number of pair of parallel planes separating the alpha-helical points [rom

the beta-shee

be = coil.

t points.

CSce T'able 4.33.

114

Table 4.31 (Continued.)

#ola—pl#ofa—c(#of A-c S SA | #s P PA | #p
997| 53| 104 150] 32| 21
58/631] 63 4111 41

3 3 2 115] 31[1570]|88%(3622(| 62| 44]270(69% | 775
997| 77| 124 150} 44] 28
5817731 83 4411371 47

3 3 3 115} 8911864 |87%[1180) 62| 63]330[68% | 905
1281) 70| 132 195] 52] 49
65[956 98 G3[156(68

4 4 4 120110012436 (89% 15258 || 83{ 8:1]132[{66% 1182

115

Table 4.32: The three-state prediction of Type 11 for 17-amino acid segments.

#Hofa—~alffof c— ~cj# of g~ ~ 3 S SA|#s P PA #)
510 1] 1 52[19] 15
2M38] 0 T4 64 18

1 1 1 8| 11]1055[99%[2026(] 36 20|T75[70%| 117
796] 1 3 rod| 19 15
ol 0 30{ 66] 20

2 1 1 18| TI[T106[08%[2382(] H0] 24|I88]69%| 516
S04 19] 6 106] 33[16
T66I[6 20[109] 22|

2 1 2 9] 39[1234|97%{2795]] 50| 13[207]69%) 615
823 19 12 110] 33] 23

71668 8 20[112] 25 ~

2 2 2 22] 41{1508]07%3108[50| 13[256|70% 681
1032| 26] 33 160[43| 36
14832] 33 10139 39

3 3 3 31| 61[1853]95%[3915[71| 67[326|68%| 921
1217 33 53 188 51| 17
26(062] 53 SHILGI| H6

4 4 4 65| 72]2146]93%/4632[SO ST[397(66%!1 131

116

Table 4.33: The nine numbers in the entries of the S or P column in some tables
have the same role as A, B, C, D, E, I, (i, H, and I, respectively.

Predicted structure

Real structure alpha-helix heta-sheet coil
alpha-helix A B ¢
beta-sheet D E I

coil G H I

Table 4.34: The three-state prediction of type I and type Il for amino acid segments
with lengths seven and 25.

Type I; Length = 7

#ola-p|H#ofa—c| #off—-c S SA #SIF P PA |#)
120f 3 19 17 5] 7
P il G IS
2 2 2 1] 17] 660]95%|1000f G[I3]105]79%|187
|189] 12| 28 Hj) 8| 10
71223] 16 41311 7
3 3 3 | 9] 26] 895]93%|1405]] T]16]154 807|266
Type Il; Length = 7 ']
#ofa—~al#of c—~cl#of f—~p S SA | #s P PA 14
211 o] 2 (I 3111 3
| 5[139] 0] o[6 8
2 2 |1 12[0] 567]97%] 942 || ‘)__(l_()_lzi_‘&ﬂ
Type I; Length = 25]
#Fola—-pgl#ofa-c| #off~c S SA | #s |l P PA [#)
368] 10 9 [l 40115] 10
84311 4 [| 16]50] 12
1 1 1 32| 35| 840]94%|(1737| 29[22[122]67%(316
468 23| 9 [l 67]L8] 10
131537 4 [| 24{65] 12
2 1 1 42| 45(840(93%{1981{l 40{3:1]122]65%]392
768] 23| 30 | EED
25/537] 8 [} 40]65] 20
2 2 1 91{ 45[{1103|92%|2630|| 66{34]180]617{551

117
4.6 Conclusion

A reliable prediction scheme should be hoth quantitative and objective. Ols-
viously, the information theory method and the neural network models are largely
quantitative; nonetheless, hoth are somewhat subjective. For example, Robson ¢! «l.
use decision constants to improve prediction results, and Qian & Sejnowski observe
performances of networks on a testing set. A great accuracy prediction result on
a certain testing set does not necessarily imply such accuracy for subsequent. Yet,
using a set of numbers to predict is more economical than exhaustively searching as
in Levin’s similarity matrix and is more stable than using Chou & Fasman’s confor-
mational parameters method.

We believe that a basic requirement for a reliable prediction scheme is that of
achieving a good performance on the training set. The linear programming model
was trained on a set of known structure proteins, which form the constraints of the
optimization problem, and so the partition on the training set is optimized in some
sense.

Because of the terribly distributed points in space, coil is overpredicted by hoth
our similarity scale and our similarity matrix. On the other hand. in the prediction

of secondary structures of new proteins, both methods require exhaustive search and

are timecomsuming.

118

BIBLIOGRAPHY

(1] C. B. Anfinsen, E. Haber, M. Sela, and F. H. White. Jr., Proc. Natl. Acad. Sci.
U.S. 47, 1309 (1961).

[2] W. Kabsch and C. Sander. Proc. Natl. Acad. Sci. USA 81, 1075-1078 (1981).
[3] P. Y. Chou and G. D. Fasman. Advances in Enzymology 47, 45-148 (1978).

[1] T.J. Sejnowski and R. R. Rosenberg. “Parallel networks that learn to pronounce
English text.” Compl. Syst. 1, 145-168 (1987).

(5] B. Robson and R. H. Pain. “Analysis of the code relating sequence to conforma-
tion in proteins: Possible implications for the mechanism of formation of helical
regions.” J. Mol. Biol. 58, 237-259 (1971).

[6] B. Robson. “Analysis of the code relating sequence to conformation in globular
proteins.” Biochem. J. 141, 853-867 (1974).)

[7] B. Robson and E. Suzuki. “Conformational properties of amino acid residues in
globular proteins.” J. Mol. Biol. 107, 327-356 (1976).

[8] J. Garnier, D. J. Osguthorpe and B. Robson. “Analysis of accuracy and im-
plications of simple methods for predicting the secondary structure of globular
proteins.” J. Mol. Biol. 120, 97-120 (1978).

[9] J. M. Levin, B. Robson and J. Garnier. “An algorithm for secondary structure
determination in proteins based on sequence similarity.” FEBS Letiers 205, 303-
308 (1986).

[10] N. Qian and T. J. Sejnowski. “Predicting the secondary structure of globular
proteins using neural network models.” J. Mol. Biol. 202, 865-884 (1988).

119

(t1] D. E. Rumelhart, G. E. Hinton and R. J. Williams. “Learning internal repre-
sentations by error propagation.” Parallel Distributed Processing. 1. id. 1. E.
Rumelhart, J. L. McClelland and the PDP Research Group.

[12] W. Kabsch and C. Sander. “How good are predictions of protein secondary
structure?” FEBS Letters 155, number 2,179-182 (1983).

[13] O. L. Mangasarian. “Multisurface method of pattern separation.” IEEE Trans-
actions on Information Theory 14, 801-807 (1968).

[14] S. S. Wilks. Mathematical Statistics. New York: Wiley, 1962.

[15] P. Lancaster and M. Tismenetsky. The Theory of Matrices. 2nd ed. New York:
Academic press, 1985.

120

APPENDIX A. DATABASE

121

A.1 Training Set

(‘ode Protein name LY
1AZU Azurin 128
1BP2 Phospholipase A2 123
1CC5 Cytochrome c5 (oxidized) 83
1CCR Cytochrome c (rice) 11
1CPV Calcium-bindind parvalbumin b 108
ICRN Crambin 16
10TX a-Cobratoxin 7l
1CY3 Cytochrome c3 L8
1CYC Ferrocytochrome c 103
1ECD Haemoglobin (deoxy) 136
IEST Tosyl-elastase 240
1FC2c Immunoglobulin FC-Frag B complex 550
1IFC2d Immunoglobulin FC-Frag B coniplex 221
1FDIa Haemoglobin (deoxy, human fetal) L1l
1FDIHg Haemoglobin (deoxy, human fetal) 116
1FDX Ferredoxin 5
1FX1 Flavodoxin 118
1GCN Glucagon (pH 6 - pH 7 form) 29
1GCR v-Crystallin 174
1GF1 Insulin-like growth factor 70
1GF2 Insulin-like growth factor 67
1GPla Glutathione peroxidase 198¢
LGP1b Glutathione peroxidase 198
1HDSa Haemoglobin 111
11IDSh Haemoglobin 145

4], = Length.

IThe Jast three residues, in which the type of the first two residues are unknown,
are not included.

¢The type of the 45th amino acid in both of the two protecins 1GPla and LGPID
is not shown in our database. We split each protein as two sequences. The first
sequence is composed of the first 44 amino acids of the original sequence, and the
second sequence is composed of the amino acids from the 46th to the last. The split
two sequences are treated as two proteins.

122

Training set (Continued.)

Code Protein name L
1HIP High potential iron protein 85
1LZ1 Lysozyme 130
ILZT Lysozyme, triclinic crystal form 129
IMBD Myoglobin (deoxy, pl{ 8.4) 153
1MBS Mpyoglobin (imet) 153
IMLTa Melittin 26
1P2p Phospliolipase A2 124
IPIC Fragment of IgG 113
1PPT Avian prancreatic polypeptide 36
1REla LIimmunoglobulin B-J fragment V Lo7
IRHD Rhodanese 293
1RN3 Ribonuclease 121
1SN3 Scorpion neurotoxin (variant 3) 65
1TIMa Triose phosphate isomerase 217
2APP Acid proteinase, penicillopepsin 323
3LDH Lactate dehydrogenase complex 320
2APR Acid protease 325
2AZAa Azurin 129
235C Cytochrome b5 (oxidized) 03
2CAB Carbonic anhydrase form b 260
2C'CYa Cytochrome ¢ (prime) 128
20YP Cytochrome c peroxidase 291
2DHBa Haemoglobin (horse, deoxy) 11
2DHBD Haemoglobin (horse, deoxy) 116G
260CH ~-Chymotrypsin a 2411
2GiIN5 Gene 5/DNA binding protein 8T
21G21 Immunoglobunlin G1 216
21G2h Immunoglobunlin G1 455
2INSa Insulin 21
2INSbh Insulin 29
2KAla Kallikrein a 30
2IKKAIDb Kallikrein a 152
2KAl Kallikrein a 58
2LDX Lactate dehydrogenase 331
2LH1 Leghaemoglobin (acetate, met) 153
2M(C'Ph Ig Faly mepc603/phosphocholine 222
2MCPL Ig Fab mcpc603/phosphocholine 220
2PABa Prealbumin (human plasma) 127
2RHE Immunoglobulin B-J fragment V-MN HH

“I'he type of the 14th, 15th, 47th, and 48th amino acids in the protein 2GCII are
not shown in our database and are simply deleted.

123

Training set (Continued.)

Code Protein name L
25GA Proteinase A 181
25NS Staphylococcal nuclease complex 5 119
250Do Cu,Zn superoxide dismutase 151
250Dy Cu,Zn superoxide dismutase 151
250D Cu,Zn superoxide dismutase 151
250Dg Cu,Zn superoxide dismutase 151
2551 Streptomyces subtilisin inhibito 113
25TV Satellite tobacco necrosis virus 195
2TAAa Taka-amylase 478
2TBVa Tomato bushy stunt virus 387
3ADK Adenylate kinase 191
3C2C Cytochrome c¢2 (reduced) 112
3CNA Cloncanavalin A 237
3FXC Ferredoxin 98
3HHBa Haemoglobin (deoxy) 14l
JHHBL Haemoglobin (deoxy) 146
31CB Calcium-binding protein ™
3PCY Plastocyanin (H g2+ substituted) 9
3PGK Phosphoglycerate kinase complex 415
IPGM Phosphoglycerate mutase 211
3RP2a Rat mast cell protease 221
35CBe Proteinase B 185
35GBi Proteinase B 56
JTLN Thermolysin 316
451C Cytochrome c551 (reduced) 82
4APE Acid proteinase, endothiapepsin 330
4CTSa Citrate synthase complex 437
4DFRa Dihydrofolate reductase 159
4FXN Flavodoxin (semiquinone form) 138
4MDHa Cytoplasmic malate dehydrogenase 333
45BVa Southern bean mosaic virus coat protein 260
45BVe Southern bean mosaic virus coat protein 260
5CPA Carboxypeptidase 307
5PTI Trypsin inhibitor 58
S5RXN Rubredoxin (oxidized) 5l
G6ADHa Alcohol dehydrogenase complex 374
8CATa Catalase 506

124

A.2 Testing Set

Code Protein name L
LABP 1-Arabinose-binding protein 306
1ACX Actinoxanthin 108
HIMQa Haemerythrin (met) 113
1IGEa Fe fragment (model) 322
INXDB Neutrotoxin b 62
1PPD 2-hydroxyethylthiopapain d 212
IPYP Inorganic pyrophosphatase 285
2ACT Actinidin (sulphhydryl proteinase) 22()
2ALP a-Lytic protease 198
200DV Cytochrome c¢3 107
3GRS Glutathione reductase 478
258BT Subtilisin novo 275
3GPDr Glyceraldehyde-3-P-dehydrogenase 334
GAPla Modified a-l-antitrypsin 317

Modified a-1-antitrypsin 35

GAPIb

125

APPENDIX B. PROGRAMS

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#define RES 20

#define

NP

7

126

B.1 Main Program

/* NP = number of residues in a segment.

#define RESNP RES*NP

#tdefine

NUM

20

#define USCORE 7

#define
#define
#define

#tdefine

#tdefine

#define
##define
#tdefine

#tdefine
#define

SCORE

7

K_NEAR &

THR

RATE

INFO

BAY
ITE
TEST

PARL
PAIR

1

5

.0

/%
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%

/* # of proteins in training set used.

/* Similarity value for different structures.
/* Similarity value for the same structure.
/* For k-nearest neighbors.

/* Threshold for k-nearest neighbors.

/* Learning rate. nl’=n0+RATE*(ni-n0).

/* where n0 is the initial vector.

/* 0.0 <= RATE <= 1.0.

/* Construct artificial database if INFO=1.
/* Warning: Let INFO=0 to use real database.
/*BAY=1 if Baysian is used and when INFO=1.
ITE = 1 only if iteration is executed.

If TEST=1, then use the output of mpsx to
separate artificial data.

If PARL=1, then find parallel planes,.

*/
*/
*/
*/
*/
*/

PAIR is the number of pairs of parallel lines.

Warning: To construct the initial guess
to find, e.g., the 2nd pair of lines, let
PAIR=1 and ITE=0; then let PAIR=2 to do
iterations for the 2nd pair (let ITE=1)
or to find the 3rd pair (let ITE=0).
Warning: PAIR != 0 in any situation.

For 3-state prediction of type 1, let

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

PAIR=PAIRAB (PAIRAC, PAIRBC) for A-B (A-C, B-C)*/

separation. For 3-state prediction of type 2,
let PAIR=PAIRA (PAIRB, PAIRC) for
A-~A (B-"B, C-"C) separation.

*/
*/
*/

#tdefine
#define
#define

#define
#define
#define
#define
#define
#define
##define

#define
#define

#include

BIAS 0.0
CA 0.00000000
CB -0.00000000

PAIRAB 3 /*

PAIRAC 3 /*

PAIRBC 3 /*

PAIRA 2 /*

PAIRB 1 /*

PAIRC 2 /*

FIRST 0 /*

/*

/*

STRUC1 (1) /*

STRUC2 (2) /*

/*

/*

/*

/*

"happy" /*

For 3-state prediction of type I. */
The number of pairs of parallel */
planes in each group. */
For 3-state prediction of type II. */
(Parallel planes) */
Let STRUC2=2. */
To construct the first pair at iteration 1, */
let FIRST==1; otherwise, let FIRST==0 */
(Let ITE==0 when FIRST == 1). */
For 3-state prediction (single or pairs). */
1 --- helix; 0 --- beta; (-1) --- coil */
For type II separation, let STRUC2==2 and */
use 3-state function,i.e., let STATE==3. */
If STRUC2==2 & STRUC1==1(0, -1), then */
Avs. "A (Bvs. "B, C vs., "C). */
Use the first 20 intergers to represent the

20 residues. */

/* The following blocks of included functions contain planes derived
from either MPSX or OSL.*/

/*#include '"mpsxout.c"

/*

#include "ab_mpsxout.c"
#include "ac_mpsxout.c"
#include "bc_mpsxout.c"
*/

/*

#include "pabO.c"

#include "pacO.c"

#include

Ilpbco . cll

Single plane separation.*/

3 single planes separation.
Type 1 separation.

3-state prediction of type 1.
Pairs of parallel planes.
Example: pabO.c contains the first pair

#include '"pabl.c"
#include '"pacl.c"
#include '"pbcl.c"

#include "pab2.c"
#include "pac2.c"
#include "pbc2.c"

#include '"pab3.c"
#include '"pac3.c"

#include "pbc3.c
*/

/*

#include "paO.c"
#include "pbO.c"
#include "pcO.c"

#include "pal.c"
#include "pbi.c"
#include "pci.c"

#include "pa2.c"
#include "pb2.c"
#include "pc2.c"

#include "pa3.c"
#include '"pb3.c"
#include "pc3.c"

*/

#undef DATA
#define DATA
#if DATA ==
#define TR_HYD
#define TR_STR
#define TE_HYD
#define TE_STR

2

128

for alpha-beta separation.

3-state prediction of type 2.
Pairs of parallel planes.
Example: pal.c contains the second pair
for alpha and non-alpha separation.

"tr. hyd"
“tr.str"
"te.hyd"
"te.str"

#elif DATA == 2
#define TR_HYD
#define TR_STR
#define TE_HYD
#define TE_STR
#tendif

#include "ptr_read.c"
#include "pte_read.c"

#undef SYSTEM
#define SYSTEM 65

#if SYSTEM == 1
#define SIMI
#telif SYSTEM == 2
#define SIMI
#elif SYSTEM == 3
#tdefine SIMI
#telif SYSTEM == 4
#define SIMI
#elif SYSTEM == 5

#define SIMI
#endif
#include SIMI

#tundef STATE
#tdefine STATE 3
#if STATE == 2
#define FUN
#telif STATE == 3
#define FUN
#tendif

#include FUN

#undef SCHEME
f#tdefine SCHEME 7
#if SCHEME ==

129

"trytr.hyd" /*
"trytr.str"
"tryte.hyd"
"tryte.str"

/*
/*

"S_M+N-W.c" /*
"S_M+N+invW.c"
"M+N-W.c" /*
"M+N+invW.c"

"partition.c" /*

" _2state_fun.c"

"_3state_fun.c"

Kabsch and Sander’s assignments.*/

To read the training set.
To read the testing set.

Similarity scale.

Similarity matrix.

To construct separation planes.

*/
*/

*/

*/

#define METHOD
#elif SCHEME == 2
#define METHOD
#elif SCHEME == 3
#define METHOD
#elif SCHEME == 4
#define METHOD
#elif SCHEME == §
#define METHOD
#elif SCHEME == 6
#define METHOD
#elif SCHEME == 7
#define METHOD
#elif SCHEME == 8
#define METHOD
#elif SCHEME == 9
#define METHOD
#elif SCHEME ==10
#define METHOD
#endif

#include METHOD

130

"_2_dayhoff_levin.c"

" _2ave_dayhoff_levin.c"

"_3k_dayhoff_levin.c"

"_2k_dayhoff_levin.c"

"c_super.c"

"m_super.c"

"3c_super.c"

"pr_super.c'

"31pr_super.c"

"32pr_super.c"

/* external variables */

int n_tr;
int n_te;
int num;
int num_te;

double dayl[21]1[21];

/*
/*
/*
/*
/%

/* Levin-like scheme. */

/* k-nearest neighbors. */

/* Type I partition. */

/* Type II partition. */

Total # of amino acids in the training set. */
Total # of amino acids in the testing set. */
Total # of proteins in the training set. */
Total # of proteins in the testing set. */
Similarity matrix. */

double hsieh[20000] ,wei[5000];

int fan[20000],ching[5000],hua,hub;
/* hsieh contains residues in the training set. */
/* wei contains residues in the testing set. */
/* fan contains structures in the training set. */
/* ching contains structures in the testing set. */

/* hua =

/* hub = length of wei.
/* Single separation planes. */
double normal[RESNP],shift;

length of hsieh. */

*/

131

double ab_plane[RESNP],ac_plane[RESNP],bc_plane[RESNP],ab,ac,bc;

/* Pairs of parallel lines. */

double pr{PAIR] [RESNP+2];

double pab[PAIRAB] [RESNP+2],pac[PAIRAC] [RESNP+2],pbc[PAIRBC] [RESNP+2] ;
double pa[PAIRA] [RESNP+2],pb[PAIRB] [RESNP+2] ,pc [PAIRC] [RESNP+2] ;

main()
{
tr_read(); /* Read the training set. */
te_read(); /* Read the testing set. */
/*
mpsxout () ; Single separation plane.
Use the function mpsxout.c*/
ab_mpsxout(); /*3 single separation planes for 3-state prediction.*/

ac_mpsxout(); /*Use the function ac_mpsxout.c.*/
bc_mpsxout() ;

/*
pab0(); Type I planes.
paco(); Use the function pac0.c.

pbc0();

pab1();
pacl();
pbci();

pab2();
pac2();
pbc2();

pab3();
pac3();
pbe3();
*/

/*
pao(); Type II planes.

132

pb0();
pco();

pal();
pb1(Q);
pciQ);

pa2();
pb2Q);
pc20);

pa3();
pb3();
pc30);
*/

system() ;
method();
}

133

B.2 Functions

/*partition.c

1. Always let STATE==3.

2. Let STRUC2==2 (and STATE==3); then it’s a 2-state separation:
if STRUCi==1, then alpha vs. non-alpha; if STRUCi==0,then beta vs.
non-beta; if STRUC1==(-1), then coil vs. non-coil.

3. This function can construct an artificial data base (let INFO = 1)
using the information theory method with (BAY=1) or without (BAY!=1)
Baysian. In the latter case (BAY!=1), we suppose that the database
is large enough.

Note: An artificial database will not be constructed when doing
3-state prediction.

4.When PARL=1, this function will construct the input of either OSL or

MPSX. To construct the input for 3-state seperation of both types,
assign different values to STRUC1 & STRUC2 in the main function.

*/

#include "nrerror.c"

/*Standard error handler. */
#include "“dvector.c"
/*Allocates a double vector with range [nl..nh]. */

#include "imatrix.c"

/* Allocates an integer matrix with range [nrl..nrh][ncl..nch]. */
#include "d_dmatrix.c"

/* Allocates a double matrix with range [nrl..nrhl[ncl..nch]. */
#include "ivector.c"

/* Allocates an integer vector with range [nl..nh]. */
/*See ‘‘Numerical recipes in C.’’ Press et al. */

#tdefine MOD NP-1

void system()

{

extern int fan[20000],hua,n_tr;

extern double hsieh[20000] ,normal [RESNP],shift;

extern double ab_plane[RESNP],ac_plane[RESNP],bc_plane[RESNP];
extern double pr[PAIR] [RESNP+2];

134

extern double pab[PAIRAB] [RESNP+2],pac[PAIRAC] [RESNP+2],
pbc [PAIRBC] [RESNP+2] ;
extern double pa[PAIRA] [RESNP+2],pb[PAIRB] [RESNP+2],pc[PAIRC] [RESNP+2];

int i,j=0,jj,kk=0,q9=0,k,1,s,p,q,w,bug=0; /*j = # of points */

double s8=0.0,2z,dot_pdt;

double *v,*u,**f **b,mm,x,y;

int **h,*patl,*pat0;

int yy=0;/*yy = # of middle residue STRUC1 sequences in training set*/
int xx=0;/*xx = # of middle residue STRUC2 sequences in training set*/
int a_a=0,a_na=0,na_a=0,na_na=0,del=0,str;

double group;

v = dvector(1,RESNP);

u = dvector(1,RESNP);

h = imatrix(i,n_tr,1,NP);

f = d_dmatrix(1,RES*2,1,NP); /* Table of conditional probabilities. */

b = d_dmatrix(1,RES*2,1,NP); /* Table of I(x=1:0;y) (for Baysian). =*/

patl = ivector(1,PAIR); /* e.g., pati[1] = # of alpha-helices
partitioned by 1st pair of planes. */

pat0 = ivector(1,PAIR); /* patO is for non-alpha helices. */

for(i=1;i<=RESNP;++i) {v[i]=0.0;ul[il=0.0;}
for(i=1;i<=RES*2;++i)
for(k=1;k<=NP;++k)
f[i][k] = 0.0;

/**kxskk Construct the matrices h & £ kkkokskokskokokskkkskskokkskskskk/

/* The j x NP matrix h records all sequences of length NP in the
training set. The sign of the first column of h records
structures ('+’ for STRUCL and ’~’ for STRUC2) of the middle
residues. The RES*2 by NP matrix f is the contingency table in
which odd and even rows are for STRUC1 and STRUC2 amino acids,
respectively.

*/

for(i=0;i<=hua-NP;++i)

{

if (hsieh[i+NP-1] == 0.0) i = i+NP;

if(fan[i+(NP-1)/2] == STRUC1) {yy += 1;mm=(1.0);}

else if (fan[i+(NP-1)/2]==STRUC2 || STRUC2==2) {xx += 1;mm=(-1.0);}

else goto delete;
J = yy+xx;
for (k=0;k<=NP-1;++k)
{
1 = RESx*k;
8 = hsieh[i+k];
h(jl[k+1] = s;
if(mm==(-1.0)) {v[1l+s] += mm;f[s*2] [k+1] += 1.0;}
else {ull+s] += mm;f[s*2-1][k+1] += 1.0;}
}
if(mm == (~1.0)) h(j101] = (-h([j1011);
delete: if(fan[i+(NP-1)/2]!=STRUC1&&fan[i+(NP-1)/2] !=STRUC2&&STRUC2!=2)
++del;
}
if (STRUCi==1 && STRUC2==0)
printf("\n#of coil in the training set = %d\n\n",del);
else if (STRUC1==1&&STRUC2==(-1))
printf("\n# of beta sheet in the training set = %d\n\n",del);
else if (STRUC1==0&&STRUC2==(-1))
printf("\n# of alpha helex in the training set = %d\n\n",del);

del = 0;

/* Construct artificial database.
Let STRUCi==1 and STRUC2==2 to construct an artificial database
for alpha and non-alpha separation. For the case STRUC2 != 2, we
should modify the program to construct a 3-state artificial database.

*/

if (INFD == 1 &% STRUC2==2)
{
/* Copy £[Xil[Yj] to b[Xil[Yj](for Baysian) */
for(i=1;i<=NP;++i)
for (k=1;k<=RES*2;++k)
b[k][i] = £[k][i];

/* Find mm=#(f1)-#(£2) where fi=yy and f2=xx */
mm = 0.0;
for(i=1;i<=yy~1;++i)

mm += (1.0/i);

136

for(i=1;i<=xx-1;++i)
mm -= (1.0/i);

/*Find the conditional probabilities p(Xi|Yj) and then replace f[Xil[Yj].
Find #(f1y)-#(£2y)-#(£f1)+#(f2) and then replace blodd][]. */
for(i=1;i<=NP;++i)
for(k=2;k<=RES*2;k=k+2)
{
if(£Lk] [i]1==0.0) {f[k])[i]+=1.0;b[k][i]+=2.0;} /* modification */
if(£[k-1][il==0.0) {f[k-1][i]J+=1.0;b[k-1]1[i]+=2.0;}

w=b[k-1][i]-1;
blk-11[i]=0.0;
for(l=1;1<=w;++1)
bl[k-1][i] += (1.0/1);
w=b[k] [i]-1;
for(1=1;1<=w;++1)
bl[k-1][i] -= (1.0/1);
blk-1][i] -= mm;

zz = f[k][i]+f[k-1][i];
£kl [i] /= zz;
flk-11[i] /= zz;

}

/* Information theory method with (let BAY=1) or
without (let BAY!=1) Baysian */

x = 1.0%xx/3;
y = 1.0%yy/j; /* y=p(alpha) and x=p(non-alpha) where p=probability */
/* y & mm: for alpha; x & zz: for non-alpha. */
for(i=1;i<=j;++i)
{
mm = 0.0;
zz = 0.0;
if(hlil[1] > 0)
{

if(BAY==1) mm += b[h[i][1]*2-1][1];
else {mm+=(log(£f[h[i][11*2-11[11/y)) ;zz+=(Llog(f[h[i] [1]*2]1 [1]/x));}
}

else

137

{

if(BAY==1) mm += b[~-h[i][1]*2-1][1];

else
{mm+=(Log(f[~h[i] [1]1*2~1][1]/y)) ;zz+=(Llog(£[~h[i] [11%2][1]1/x));}

}

for (k=2;k<=NP;++k)

{

if (BAY==1) mm+=b[h[i] [k]*2-1] [k];

else
{

mm += (log(f[h[i] [k]*2-1]1[k1/y));
zz += (log(£[h[i] [k]*2][k1/x));

}
}
if (BAY==1) 2z=0.0;
if (mm>zz)
{

if(h([iJ[1] > 0) a_a += 1;
else {na_a += 1; h[i]J[1)=(-h[i]J[1]1);}
}
else if(mm<zz)
{
if(h[i][1]>0) {a_na += 1; h[i][1]=C-h[i][1]);}
else {na_na += 1;}

}

else del+=1;

}
printf (" \n\nsksksrskskoskskkokkokskoksokdododorkdokdokokokkokokdok dokkokk 1) 5
printf("\n* The result on the training set *1)
if (BAY==1)
printf("\n* (information with Baysian) *M)
else
printf ("\n* (information without Baysian) *1)
PrintE (M \mskskokskokokskskoksokonskokoskskokoksk ok ook ok ok okl dokskokok 11) 5
printf ("\n predicted structures");
printf("\n helix non~helix sum\n") ;
printf("\n");
printf (" helix Y%d %a %d\n",a_a,a_na,a_ata_na);

printf("\n");
printf("non-helix %d %d %d\n'",na_a,na_na,na_a+na_na);

138

printf("\n");

printf("# of deleted residues = %d\n",del);

printf("(# of correctly predicted residues)/(total # of residues-del)");
printf(" = %f\n",(a_a+na_na)#*1.0/(a_a+na_a+ta_na+na_na-~del));

a_a=0;
a_na=0;
na_a=0;
na_na=0;
del=0;

for(i=0;i<=hub-NP;++i)
{
mm=0.0;
zz2=0.0;
if(wei[i+NP-1] == 0.0) i = i+NP;
str = ching[i+(NP-1)/2];
for (k=0 ;k<=NP-1;++k)
{
s = weili+k];
if (BAY==1) mm+=b[s*2-1] [k+1]; .
else
{
mm += (log(f[s*2-1][k+11/y));
zz += (log(fls*2] [k+1]/x));

}
}
if (BAY==1) 22=0.0;
if (mm>zz)
{

if (str==STRUC1) a_a += 1;
else na_a += 1;
}

else if(mm<zz)

{
if (str==STRUC1) a_na += 1;
else {na_na += 1;}

¥

else del+=1;

139

Printf ("'\n\nsksrskoksomsksodokskoksiohok kool solokok kol kool kokskokok ook ok !) 5

printf("\n* The result on the testing set *') ;

if (BAY==1)

printf("\n* (information with Baysian) *1) 5

else

printf ("\n* (information without Baysian) *1) ;

Printf (M \nkskskorskskskskorokskookskookokkkokokkkokkokkkok ook ok ok 1) 5

printf("\n predicted structures");

printf("\n helix non-helix sum\n") ;

printf ("\n");

printf (" helix Y%d %d %d\n",a_a,a_na,a_a+a_na);
printf("\n");

printf("non-helix Y%d %d %d\n",na_a,na_na,na_a+na_na);

printf("\n");

printf ("# of deleted residues = %d\n",del);
printf (" (# of correctly predicted residues)/(total # of residues-del)");
printf(" = %f\n",(a_a+na_na)*1.0/(a_a+na_a+a_na+na_na-del));

a_a=0;
a_na=0;
na_a=0;
na_na=0;
del=0;

/* Use the single separation plane (two-state) to test performance
on the artificial database. normal[] is the normal vector. */

if (TEST==1)
{
for(i=1;i<=j;++i)
{
2z2=0.0;

if(h[i] [1]1>0) zz+=normallh[i][1]~-1];
else zz+=normal[-h[i] [1]-1];
for (k=2;k<=NP;++k)

zz += normallh(i] (k]+(k-1)*RES-1];
zz+=(shift);
if(h[i] [1]>0)

{

if(zz>0) a_at+=1;

140

else if(zz<0) a_na+=1;
else del += ;
}
else
{
if(22>0) na_a += 1;
else if(zz<0) na_na += 1;
else del += 1;

}

}
Printf (" \n\ koot ook ok odokookkotor ko kororokokskok kR Rk K1) 5
printf("\n* The result on the artificial training set *1) ;
PrintE (" \nskokskoksskdoksoololoolok ool orololorolook ook odolok dokkoRdoRok 1) 3
printf("\n predicted structures");
printf("\n helix non-helix sum\n") ;
printf("\n");
printf(" helix Yd %d %d\n",a_a,a_na,a_a+a_na);
printf("\n");
printf("non-helix Yd %4 %d\n",na_a,na_na,na_a+na_na);

printf("\n");
printf("# of deleted residue = %d\n",del);
printf (" (# of correctly predicted residue)/(total # of residue-del)");
printf(" = %f\n", (a_a+na_na)*1.0/(a_atna_a+a_na+na_na-del));
}
}
/* End of if (INFO==1 && STRUC2==2) */

if (PARL==1 && FIRST!=1)
if (STRUC2 != 2)
{
if (STRUC1==1&&STRUC2==0)
for(i=0;i<=PAIR-1;++i)
for(w=1;w<=RESNP+2;++w)
prlil [w-1] = pab[i] [w-1];
else if(STRUC1==1&&STRUC2==(~1))
for(i=0;i<=PAIR~1;++i)
for(w=1;w<=RESNP+2;++w)
prlil [w-1] = pac[i] [w-1];
else if(STRUC1==0&&STRUC2==(-1))

141

for(i=0;i<=PAIR-1;++i)
for(w=1;w<=RESNP+2;++u)
prlil[w-1] = pbclil[w-1];
}
else
{
if(STRUC1==1)
for(i=0;i<=PAIR-1;++i)
for(w=1;w<=RESNP+2;++w)
prlil [w-1] = pa[i] [w-1];
else if (STRUC1==0)
for(i=0;i<=PAIR-1;++i)
for (w=1;w<=RESNP+2;++w)
prlil[w-1] = pb[il[w-1];
else if (STRUC1==(~1))
for(i=0;i<=PAIR-1;++i)
for(w=1;w<=RESNP+2;++u)
prlil[w-1] = pc[i] [w-1];
}

/* Delete the points seperated by pairs of parallel planes. */
if (PARL==1)
{
for(i=1;i<=PAIR;++i) {pat0[i]l=0; pat1[il=0;}
if (PAIR >= 2)
{
for(i=1;i<=j;++i)
for(w=0;w<=PAIR-2;++w)
{
mm = 0.0;
if(h[il[1]1 > 0) mm += prwl[h[i][1]-1];
else mm += prlw][-h[i][1]-1];
for(k=2;k<=NP;++k)
mm += pr[w][h[i] [k]+(k-1)*RES-1];
if (mm+pr[w] [RESNP] < CB)
{
patO[w+1] += 1;

/* To construct the new centroids,
delete the partitioned points. */

142

if(hlil [11 > 0)
{
for(k=1;k<=NP;++k) ulh[i] [k]+(k-1)*RES] -= 1.0;
yy = 1;
}
else if(h[il[1] < 0)
{
v[-h[i][1]] += 1.0;
for(k=2;k<=NP;++k) v[h[i] [k]+(k-1)*RES] += 1.0;
xx -= 1;
}
h[il[1] = 0;
/* To indicate the deleted row (or NP-amino acid segment). */
break;
}
else if (mm+pr[w] [RESNP+1] > CA)
{
patif[w+1] += 1;

if(h[il (1] > 0)

{
for(k=1;k<=NP;++k) ul[h[i] [k]+(k-1)*RES] -= 1.0;
yy -= 1;
}
else if(h([i][1] < 0)
{

v[-h[iJ[1]] += 1.0;
for(k=2;k<=NP;++k) v[h[i] [k]+(k-1)*RES] += 1.0;

Xxx -= 1;
}
h[il[1] = o0;
break;
}
}
8 = 0;
for(i=1;i<=PAIR-1;++1i)

{

printf("\n# of ’%d’(’%d’) residues partitioned by the %dth pair
= %d(%d)\n",STRUC1,STRUC2,i,pat1[i],pat0[il);

s += (patO[i]+pati[i]);

143

}
printf("Total # of residues partitioned by the first %d pairs

= %d\n",PAIR-1 ,8);
} /* End of "PAIR>=2" */
if (FIRST!=1)
{
for(i=1;i<=j;++i)
if(hliJ[1] t= 0)
{
mm = 0.0;
if(h[i1[1] > 0) mm += pr[PAIR-1][h[i][1]-1];
else mm += pr[PAIR-1][-h([i][1]-1];
for(k=2;k<=NP;++k)
mm += pr[PAIR-1][h[i] [k]+(k-1)*RES-1];
if (mm+pr [PAIR-1] [RESNP] < CB)
{
patO[PAIR] += 1;
if (ITE!=1) /*To construct the centroids for next pair. */
{
ifh[i101] > 0)
{
for(k=1;k<=NP;++k) u[h([i] [k]+(k-1)*RES] -= 1.0;
yy -= 13
}
else
{
v[-h[il[1]1] += 1.0;
for(k=2;k<=NP;++k) v[h[i] [k]+(k-1)*RES] += 1.0;
xx -= 1;
}
h{i][1] = 0;
}
}
else if (mm+pr[PAIR-1][RESNP+1] > CA)
{
pat1[PAIR] += 1;
if(ITE!=1)
{
if(h[il (1] > o)
{

144

for(k=1;k<=NP;++k) ulh[i] [k]+(k-1)*RES] -= 1.0;
yy -= 1;
}
else
{
vi-h[il[1]] += 1.0;
for(k=2;k<=NP;++k) v[h[i] [k]+(k-1)*RES] += 1.0;

Xx -= 1;

}
h[i][1] = 0;
}

}
}

printf("# of ’%d’ residues partitioned by the new pair =
%d\n",STRUC1,pat1[PAIR]);

printf("# of ’%d’ residues partitioned by the new pair =
%d\n",STRUC2,pat0 [PAIR]);

printf("Total # of residues partitioned by the new pair =
%d\n",pat1[PAIR]+pat0[PAIR]);

s = 0;

for(k=1;k<=PAIR;++k) s+=(patO[k]l+pati(k]);

printf("\nTotal # of residues that have been partitioned = %d\n",s);

printf("# of residues left = %d\n\n",j-s);

} /* End of "FIRST!=1'"%/

} /* End of "PARL==1" */

/* Construct the initial guess */
for(i=1;i<=RESNP;++i)

viil=(v[il/xx)+lil/yy); /* Difference of centroids.*/
for(i=1;i<=RESNP;++i) ss += (v[il*v[i]); /* Normalization. */
zz = sqrt(ss);
for(i=1;i<=RESNP;++i) v[i] /= (zz);

/*Find the inner product of the initial vector and the normalized
output vector when iteration is executed.
Use the output vector of either MPSX or OSL to replace v[i].*/
if (ITE == 1)
{
if (PARL==1)

145

for(i=0;i<=RESNP-1;++i) normalli] = pr[PAIR-1][i];
else if (STRUC2 != 2)

{

if (STRUC1==1 && STRUC2==0)
for(i=0;i<=RESNP-1;++i) normal[il=ab_plane[i];

else if (STRUC1==1 && STRUC2==(-1))
for(i=0;i<=RESNP-1;++i) normal[il=ac_planel[il;

else if(STRUC1==0 && STRUC2==(-~1))
for(i=0;i<=RESNP-1;++i) normal[il=bc_plane[il;

}

88=0.0;
for(i=1;i<=RESNP;++i)
ss += (normal([i-1]#*normal(i-1]);
zz = sqrt(ss);
printf("The 2-norm of the normal vector is %f\n",zz);
if (PARL==1)
{
printf("The distance between the two planes = ");
printf("ZSUM/(2-norm of the normal) = %f\n",
(pr[PAIR-1] [RESNP]-pr [PAIR~1] [RESNP+1])/2zz) ;
¥
for(i=1;i<=RESNP;++i)
uli] = normalli-1]/zz;

dot_pdt = 0.0;
for(i=1;i<=RESNP;++i)

dot_pdt += (ulil*v[il);
printf("\ndot_pdt = %f\n",dot_pdt);
if(dot_pdt < 0.0 && PARL!=1) goto terrible;

for(i=1;i<=RESNP;++i) v[i] += (RATE*(ulil)-v[i]));
/*for(i=1;i<=RESNP;++i) printf(" %f\n",v[i]);*/
}

/*goto terrible;*/ /*Use this statement when input is not constructed.

/*print JCL for MPSX */

printf("\n//PRIMAL JOB ,MSGLEVEL=1\n") ;

146

printf("//+ CHECKPOINT=[NO]\n");

printf("/*JOBPARM BIN=246,CLASS=G\n");

printf (*/*JOBPARM L=500\n");

printf("//S1 EXEC DPLMPROC,PBDISP=NEW,\n");
printf("// TIME.MPSG0=(2,10) ,REGION.MPSGOX=15M,\n");
printf("// TIME.MPSGOX=(68,55)\n");
printf("//MPSGO.SYSIN DD *\n");

printf(" PROGRAM\n") ;

printf (" INITIALZ\n");

printf (" MOVE (XDATA, > INPUT%d’)\n" ,NUM) ;
printf(" MOVE(XPBNAME, ' PRIMAL’) \n") ;
printf(" MOVE(XO0BJ, ?ZSUM’)\n");

printf (" MOVE(XRHS, 'RHS’)\n");

printf(" XEPS=0.001\n");

printf (" CONVERT\n") ;

printf (" SETUP(’MIN’,’BOUNDS’,’B1?,’SCALE’)\n");
printf (" OPTIMIZE\n");

printf (" SAVE\n") ;

printf(" XEPS=0.0\n");

printf (" RESTORE\n") ;

printf (" OPTIMIZE\n");

printf(" SOLUTION\n");

printf (" EXIT\n");

printf (" PEND\n") ;

printf("/*\n");

printf("//MPSGOX.MATRIX1 DD UNIT=SCRTCH,SPACE=(CYL, (10),,CONTIG)\n");
printf("//MPSGOX.SCRATCH1 DD UNIT=SCRTCH,SPACE=(CYL,(10),,CONTIG)\n");
printf ("//MPSGOX.SCRATCH2 DD UNIT=SCRTCH,SPACE=(CYL, (10),,CONTIG)\n");
printf("//MPSGOX.ETA1 DD UNIT=SCRTCH,SPACE=(CYL, (40),,CONTIG)\n");
printf("//MPSGOX.ETA2 DD UNIT=SCRTCH,SPACE=(CYL,(40),,CONTIG),SEP=ETA1\n");
printf ("//MPSGOX.SYSIN DD *\n");

/* Print JCL for OSL */

/*

printf("\n//PRIMAL JOB\n");

printf("//* CHECKPOINT=[NO]\n");

printf("/*JOBPARM BIN=246,CLASS=G\n");
printf("/*JOBPARM L=500\n");

printf("//S1 EXEC PGM=SAM12,REGION=50M,TIME=(60,20)\n");

147

printf("//STEPLIB DD DSN=V.U9229.LP.LOAD12,DISP=SHR\n");
printf("//FTO6F001 DD SYSOUT=A\n");

print£("//FT98F001 DD *\n");

printf(" 0 2 1\n");

*/

/*Construct the initial tableau which is the input of
OSL or MPSX software*/
printf ("NAME INPUT%d\n" ,NUM) ;
printf ("ROWS\n");
printf(" N ZSUM\n");
jj = 0; /* To count the # of points not partitioned
by previously constructed pairs of planes. */
for(i=1;i<=j;++i)
if(h[i1[1]!'=0) {jj += 1; printf(" G R%d\n",jj);:
for(i=jj+1;i<=NP+1+jj;++i)
printf(" E RYd\n",i);

printf ("COLUMNS\n") ;
for(i=1;i<=RESNP+1+j;++i)
{
if (i>RESNP+1)
{
if (PARL!=1) /* For single separation planes. */
{

if(i<10)
{
printf(" c/d ZSUM 1.0\n",i);
printf(" Chd Rld 1.0\n",i,i-RESNP-1);
}
else if(i<100)
{
printf (" C/d ZSUM 1.0\n",i);
printf (" cld Rid 1.0\n",i,i-RESNP-1);
}
else if(i<1000)
{
printf(" Cid ZSUM 1.0\n",i);
printf (" Cid R/\d 1.0\n",i,i-RESNP-1);

)

else if(i<10000)
{
printf(" Cld
printf(" ClYd
}

else if(i<100000)
{
printf(" Cid
printf(" Cld
}

else if(i<1000000)
{

printf(" cld
printf(" cihd
}

else printf("Modify the format of input data.");

ZSUM
Ri\d

ZSUM
R%d

ZSUM

R%d

} /* End of if(PARL != 1) */
} /* End of if (i>RESNP+1) %/

else
{
kk=0;
for (k=1;k<=NP;++k)

if (i<=RES*k) {p=k;break;}

for (k=1;k<=j;++k)

if(h[k] [1]==0) kk+=1;
else if ((h[k] [p]==i-RES*(p-1)) || (h[k] [p]==RES*(p-1)-i))

{

if(i<10)
{
if(h[x][11>0)
else

}

else if(i<100)
{
if(h(x] [1]>0)
else
}

else if(i<1000)
{
if(h[k][1]>0)

printf ("
printf("

printf ("
printf ("

printf("

148

1.0\n",i);

1.0\n",i,i-RESNP-1);

1.0\n",1i);

1.0\n",i,i-RESNP-1);

1.0\n",i);

1.0\n",1i,i-RESNP-1);

Chd
Chd

Chd
Chd

Chd

Rlid
R%d

RAd
Rid

Rid

1.0\n",i,k-kk);
-1.0\n",i,k-kk);

1.0\n",i,k-kk);
-1.0\n",i,k-kk);

1.0\n",i,k-kk);

149

else printf < c%d RY%d -1.0\n",i,k-kk);
}

else if(i<10000)
{
if(h[k][1]1>0) printf(" Chd RAd 1.0\n",i,k-kk);
else printf (" chd RY%d ~1.0\n",i,k-kk);
}

else if(i<100000)
{
if(h(x][11>0) printf(" chd RY%d 1.0\n",i,k-kk);
else printf (" C%d RY%d -1.0\n",i,k-kk);
}

else if(i<1000000)
{
if (h[k][1]1>0) prin‘bf(" c%d R%d 1.0\n",i,k-kk);
else printf(" c%d RYd -1.0\n",i,k-kk);
}

else printf ('#ikkks*Modify the format of input data Sskskkkkk!);

¥

/* Put the initial vector; add (NP-1) constraints; add the constraint
(sum of the first 20 entries of the normal vector)=0. */
if (i<=RESNP)
{
if(i<10)
{
printf (" cYd Rid %f\n",i,jj+1,v[i]);
if (p==1)
{
for (w=1;w<=MOD;++w) printf(" cY%d R%d 1.0\n",
i,jj+i+w);
printf(" CY%d R%d 1.0\n",i,jj+NP+1);
}
}
else if(i<100)
{
printf (" cY%d R%d %f\n",i,jj+1,vii]);
if (p==1)
{

for(w=1;w<=MOD;++w) printf(" CcY%d R%d 1.0\n",

i,jj+14w);

printf (" Cld R/d 1.0\n",i,jj+NP+1);
}
for(w=2;w<=NP;++w)
if (p==w) {printf(" cld Ri\d ~1.0\n",1i,jj+p);
break;}
}
else if(i<1000)
{
printf(" c%d Rd %f\n",i,jj+1,v[il);
for (w=2;w<=NP;++w)
if (p==w) {printf(" chd R/\d -1.0\n",1i,jj+p);
break;}
}

else if(i<10000)

printf(" CcY%d R%d %f\n",i,jj+1,vLil);

else if(i<100000)

printf (" Chd RAd %f\n",i,jj+1,v[il);

else printf ("****xiModify the format of input data 4xkkxx");

}

/* Set constant term for single separation plane. */
if (i==RESNP+1 && PARL!=1)
{
for(q=1;q<=j;++q)
{
if(h[ql[11>0) printf(" Cld R%d 1.0\n",i,q);
else printf (" Chd R%d -1.0\n",i,q);
} ‘
}
} /* End of "else" of the statement if (i>RESNP+1). */
if (PARL==1)
{
if (i==RESNP+1)
{
qq=0;
printf(" Clhd ZSUM 1.0\n",1i);
for(q=1;q<=j;++q)
{
if(hlql [1]!=0) qq+=1;

if(h[ql [11>0) printf(® cid R%d 1.0\n",i,qq);
}
}
else if (i==RESNP+2)
{
99=0;
printf (" Chd ZSUM -1.0\n",i);
for(q=1;q<=j;++q)
{
if(h[ql [1]!=0) qq+=1;
if(h[ql[1]1<0) printf(" c%d R%d -1.0\n",i,qq);
}
}
}

} /* End of the COLUMN part */
printf ("RHS\n");
printf(" RHS RY%d 1.0\n",jj+1);
printf ("BOUNDS\n");
for(i=1;i<=RESNP+1;++i)
printf(" FR Bi c%d\n",i);
if (PARL==1) printf(" FR Bl C/%d\n" ,RESNP+2) ;

printf ("ENDATA\n");

printf("/*\n");

terrible:

if(dot_pdt < 0.0)

printf("\n The inner product of the initial vector and
the output vector is less than 0.\n");

}

/* happy */
/* Use the first 20 integers to represent the 20 amino acids. */

#define AA
#define RR
#define NN
#tdefine DD
#define CC
#tdefine QQ
#define EE
#define GG
#define HH
#define II
#define LL
##tdefine KK
#define MM
#tdefine FF
#tdefine PP
#tdefine SS
#define TT
#define WW
#tdefine YY
#define VV

© 0O ~N® gD WN

e
= O

N b b e e e
C W oOoO~NOON D WN

153

/* _3state_fun.c */
/*
Use 1 to represent alpha-helix, 0 to represent beta-sheet,
and -1 to represent coil.
?) = ¢colil; <~----> = helix; else = sheet
*/
int func(c)
char c;
{
int i;
switch(c)
{
case *'<’ : i=1;
case ’'~’ : i=1;break;
case ’'=’ : i=1
case ’>' : i=1;break;
case ’ ' : i=(
default i=0
}
return(i);

}

/*ptr_read.c*/
void tr_read()

{

extern int n_tr;
extern double hsieh{20000];
extern int fan[20000],hua;
extern int num;

double tr_hyd;

int tr_str;

int 1i,p,b,q;

int k = 0;

int 1 = -1;

int anum = 0; /* anum = # of amino acids + # of proteins */
FILE =*fptr;

FILE *sptr;

char str,ftr;

/* num = # of proteins. */

fptr = fopen(TR_HYD, "r");
= fopen(TR_STR, "r");

sptr

for(i=0;i<=20000;++i)

{

str = fgetc(sptr);

ftr = fgetc(fptr);

anum += 1;

switch(ftr)

{

case ’A’ : tr_hyd = AA;tr_str = func(str); break;
case ‘R’ : tr_hyd = RR;tr_str = func(str); break;
case N’ : tr_hyd = NN;tr_str = func(str); break;
case 'D’ : tr_hyd = DD;tr_str = func(str); break;
case 'C’ : tr_hyd = CC;tr_str = func(str); break;
case 'Q’ : tr_hyd = QQ;tr_str = func(str); break;
case ’'E’ : tr_hyd = EE;tr_str = func(str); break;
case G’ : tr_hyd = GG;tr_str = func(str); break;
case ’H’ : tr_hyd = HH;tr_str = func(str); break;
case 'I’ : tr_hyd = II;tr_str = func(str); break;
case 'L’ : tr_hyd = LL;tr_str = func(str); break;

case 'K’ : tr_hyd = KK;tr_str = func(str); break;
case 'M’ : tr_hyd = MM;tr_str = func(str); break;
case 'F’ : tr_hyd = FF;tr_str = func(str); break;
case 'P’ : tr_hyd = PP;tr_str = func(str); break;
case ’S’ : tr_hyd = SS;tr_str = func(str); break;
case 'T’ : tr_hyd = TT;tr_str = func(str); break;
case 'W’ : tr_hyd = WW;tr_str = func(str); break;
case 'Y’ : tr_hyd = YY;tr_str = func(str); break;
case 'V’ : tr_hyd = VV;tr_str = func(str); break;
case "%’ : k+=1; tr_hyd=0.0; break;

case ’X’ : tr_hyd=0.0; break;

case ’'"’ : tr_hyd=100.0; k+=1; break;

default : anum-=1;1-=1;break;

}
1 +=1;
hsieh[l] = tr_hyd; /* Amino acid sequences.*/
fan[l] = tr_str; /* Structure sequences. */
if(ftr == %’ || ftr == ')

{

num += 1;

if(ftr == ’~’) goto end;
if (num == NUM) goto end;
}

}

end: printf("\nThe total number of protein in tr.hyd is %d\n",num);
hua = 1;

n_tr = anum - k;

printf("\nThe total number of amino acid in tr.hyd is %d\n", n_tr);
fclose(fptr);

fclose(sptr);

}

/*31pr_super.c
This subroutine uses 3 groups of several pairs of
parallel planes determined by OSL to perform 3-state
predictions.
For 3-state prediction of type 1 only.
Type 1: alpha vs. beta, alpha vs. coil, and beta vs. coil.

*/

void method()

{

extern int f£an[20000],ching[5000],hua,hub;

extern double hsieh[20000],wei[5000] ;

extern double pab[PAIRAB] [RESNP+2],pac[PAIRAC] [RESNP+2];
extern double pbc[PAIRBC] [RESNP+2];

int i,k,l,s,w,str,del=0,s81,82,83;
int a_a,a_b,a_c,b_a,b_b,b_c,c_a,c_b,c_c;
double mm;

-e

[}

0O o e oo e 0o e
|

(= =il e NeNe e Nel

-e

[
UL |
n

1
1 n
e we

'O'OOU‘U'U‘
1l

/% sckokdckiokkkktraining setkkksdoksdokiookorkkokk */
for(i=0;i<=hua-NP;++i)

{

if(hsieh[i+NP-1] == 0.0) i = i+NP;

str = fan[i+(NP-1)/2];

/* alpha-beta seperation */
for(w=0;w<=PAIRAB-1;++w)
{
mm = 0.0;
for(k=0;k<=NP-1;++k)

{

1=RES*k;

s = hsieh[i+k];

mm += pab[w] [1+s-1];

}
if (mm+pab[w] [RESNP] < CB) {s81=0;break;}
else if (mm+pab[w] [RESNP+1] > CA) {si=1;break;}
else if(w==PAIRAB-1) s81=2;

¥

/* alpha-coil seperation */
for(w=0;w<=PAIRAC-1;++w)
{
mm = 0.0;
for (k=0;k<=NP-1;++k)
{
1=RES*k;
s = hsieh[i+k];
mm += pac[w] [1+s-1];
}
if (mm+pac[w] [RESNP] < CB) {s2=(~1) ;break;}
else if(mm+pac[w][RESNP+1] > CA) {s2=1;break;}
else if(w==PAIRAC-1) §2=2;
}

/* beta-coil seperation */
for(w=0;w<=PAIRBC-1;++w)
{
mm = 0.0;
for (k=0;k<=NP-1;++k)
{
1=RES*k;
s = hsieh[i+k];
mm += pbc(w] [1+s-1];
}

if (mm+pbc[w] [RESNP] < CB) {s3=(-1) ;break;}
else if(mm+pbc(w] [RESNP+1] > CA) {s3=0;break;}
else if(w==PAIRBC-1) 83=2;

}

158

/* Prediction of the ith point. */
if(sl==1)
{
if(s2==1)
{
if(str==1) a_a += 1;
else if(str==0) b_a += 1;
else c_a += 1;
}
else if(s2==(-1))
{
if(s83==(-1))
{
if(str==(-1)) c_c += 1;
else if(str==1) a_c += 1;
else b_c += 1;
}
else del += 1;
}
else del += 1;
}
else if(s1==0)
{
if(83==0)
{
if(str==0) b_b += 1;
else if(str==1) a_b += 1;
else c.b += 1;
}
else if(s3==(-1))
{
if(s2==(-1))
{
if (str==(-1))
else if(str==0)
else
}
else del += 1;
}

else del += 1;

o O 0
o0 0
+
;]
[y

159

}
else
{
if(s2==(-1))
{
if(s3==(-1))
{
if(str==(-1)) c_c += 1;
else if(str==0) b_.c += 1;
else a_c += 1;
}
else del += 1;
}
else del += 1;
}
}

printf ("\n# of pairs of parallel planes for A-B = %d\n",PAIRAB);
printf("\n# of pairs of parallel planes for A-C = %d\n",PAIRAC);
printf ("\n# of pairs of parallel planes for B-C = %d\n",PAIRBC);

printf("\nCA = ¥%.10f, CB = ¥%.10f\n",CA,CB);

printE (" \mskskskdoksoksokokokodkokskokokkoksiok ok kol ook ok dokokokok 1) o

printf("\n* The result on the training set *M);

printf (M \kaokskokkokskokoksopskokosksdokskokskok ksl okokokok ok koksk ook k1) 5
printf("\n predicted structures");

printf("\n helix beta coil sum\n") ;
printf("\n");

printf(" helix Y%d %d %d %d\n",

a_a,a_b,a_c,a_at+a_b+a_c);

printf("\n");

printf(" beta Yd %d %d d\n",
b_a,b_b,b_c,b_a+b_b+b_c);

printf("\n");

printf (" coil %d %d %d %d\n",
c.a,c_b,c_c,c_atc_btc_c);

printf£("\n");

printf("Total # of points not predicted = %d\n",del);

printf ("Total# of points predicted = %d\n",

160

a_a+a_b+a_c+b_a+b_b+b_ct+c_atc_b+c_c);

printf("Total # of points in the training set = %d\n",
del+a_a+a_b+a_c+b_a+b_b+b_c+c_atc_b+c_c);

printf("(Total # of correctly predicted residues)/
(total # of predicted residues)=");

printf("%f\n", (a_a+b_b+c_c)*1.0/(a_ata_b+a_c+b_a+b_b+b_c+c_atc_b+c_c));

/% krrrkkkiobiooktesting setkskkkkkokksokkdokkok %/

a_a = 0;
a_b = 0;
a_c = 0;
b_a = 0;
b_b = 0;
b_c = 0;
c_a = 0;
c_.b =0;
c_c = 0;
del = 0;

for(i=0;i<=hub-NP;++i)
{
if(wei[i+NP-1] == 0.0) i = i+NP;
str = ching[i+(NP-1)/2];

/* alpha-beta seperation */
for(w=0;w<=PAIRAB-1;++w)
{
mm = 0.0;
for (k=0;k<=NP-1;++k)
{
1=RES*k;
s = weili+k];
mm += pab[w] [1+s-1];

}
if (mm+pab[w] [RESNP] < CB) {s1=0;break;}
else if (mm+pab[w] [RESNP+1] > CA) {si=1;break;}
else if(w==PAIRAB-1) s1=2;
}

/* alpha-coil seperation */

161

for(w=0;w<=PAIRAC-1;++w)
{
mm = 0.0;
for (k=0;k<=NP-1;++k)
{
1=RES*k;
s = weili+k];
mm += pac[w][1+s-1];

}
if (mm+pac[w] [RESNP] < CB) {s2=(~1) ;break;}
else if(mm+pac[w][RESNP+1] > CA) {s2=1;break;}
else if (w==PAIRAC-1) 582=2;

}

/* beta-coil seperation */
for (w=0;w<=PAIRBC~1;++w)
{
mm = 0.0;
for(k=0;k<=NP-1;++k)
{
1=RES*k;
s = weili+k];
mm += pbc[w] [1+s~1];

}
if (mm+pbc[w] [RESNP] < CB) {83=(-1) ;break;}
else if(mm+pbc[w] [RESNP+1] > CA) {s3=0;break;}
else if(w==PAIRBC-1) 83=2;
}
/* Prediction of the ith point. */
if(si==1)
{
if(s2==1)
{
if(str==1) a_a += 1;
else if(str==0) b_a += 1;
else c.a += 1;
}

else if(s2==(~1))
{

162

if(83==(~1))
{
if(str==(-1)) c_c += 1;
else if(str==1) a_c += 1;
else b_c += 1;
}
else del += 1;
}
else del += 1;
}
else if(s1==0)
{
if(83==0)
{
if(str==0) b_b
else if(str==1) a_b += 1;
else c.b += 1;
}
else if(s3==(-1))
{
if(s2==(-1))
{
if (str==(-1))
else if(str==0)
else
}
else del += 1;
}
else del += 1;
}
else
{
if(s2==(~1))
{
if(83==(-1))
{
if(str==(-1)) c_c += 1;
else if(str==0) b_c += 1;
else a_c += 1;

}

+

W'U'O
o o0 o0
+
]
A

163

else del += 1;

}
else del += 1;
}
}

Printf (" \moksskokokkokoskdokskokk kkok ook ook ook ootk 1) 5
printf("\n* The result on the testing set *1);
printf("\n*************************************");
printf("\n predicted structures");
printf("\n helix beta coil sum\n") ;
printf("\n");
printf(" helix %d %d %d %d\n",

a_a,a_b,a_c,a_a+a_b+a_c);

printf("\n");

printf(" beta %d %d %d %d\n",
b_a,b_b,b_c,b_at+b_b+b_c);

printf("\n");

printf(" coil %d %d hd hd\n",
c.a,c_b,c_c,c_atc_b+c_c);

print£("\n");

printf("Total # of points not predicted = %d\n",del);

printf("Total # of points predicted = d\n",
a_at+a_b+a_c+b_a+b_b+b_c+c_atc_b+c_c);

printf("Total # of points in the testing set = Yd\n",
del+a_a+a_b+a_c+b_atb_b+b_c+c_at+c_btc_c);

printf("(Total # of correctly predicted residues)/
(total # of predicted residues)=");

printf ("%f\n", (a_a+b_b+c_c)*1.0/(a_a+a_b+a_c+b_at+b_b+b_c+c_atc_b+c_c));

}

164

/* Examples of training set and testing set */
/* Residues (A subset of tryte.hyd.) */

ENLKLGFLVKQPEEPWFQTEWKFADKAGKDLGFEVIKIAV
PDGEKTLNAIDSLAASGAKGFVICTPDPKLGSAIVAKARG
YDMKVIAVDDQFVNAKGKPMDTVPLVMMAATKIGERQGQE
LYKEMQKRGWDVKESAVMAITANELDTARRRTTGSMDALK
AAGFPEKQIYQVPTKSNDIPGAFDAANSMLVQHPEVKHWL
IVGMNDSTVLGGVRATEGQGFKAADIIGIGINGVDAVSEL
SKAQATGFYGSLLPSPDVHGYKSSEMLYNWVAKDVEPPKF
TEVTDVVLITRDNFKEELEKKGLGGK*
APAFSVSPASGASDGQSVSVSVAAAGETYYIAQCAPVGGQ
DACNPATATSFTTDASGAASFSFTVRKSYAGQTPSGTPVG
SVDCATDACNLGAGNSGLNLGHVALTFG*
SIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQ"

/* Structures (A subset of tryte.str.) */

AAA {ummmmmmm e > AAA

S > B P J——
> B R ———
------- > DDD TP T ——
-> DD L S — > D
DD e > EE <-=>

EE F JE—— >

C E <=> *

AAAAA AAAAAAA BBBBBBB CC C
c BBB AAAAA DDDDD DDD
DDD BBBBB *

DDD AAAAAAA AAAAAAAA -

