
Z661 aaNiMO^Dm

Hiffttti'Tiil

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9212149

Study of secondary structure of protein sequences by linear
algebra

Hsieh, Wei-hua, Ph.D.

Iowa State University, 1991

Copyright ©1991 by Hsieh, Wei-hua. All rights reserved.

U M I
300N.ZeebRd.
Ann Arbor, MI 48106

study of secondary structure of protein sequences

Wei-hua Hsieh

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Depai'tment: Mathematics
Major: Applied Mathematics

by linear algebra

ky

Approved:

In Charge of Ma ua 'Vork

For the Majo Department

For the Graduate College

Iowa State University
Ames, Iowa

1991

Copyright © Wei-hua Hsieh, 1991. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS xi

1. INTRODUCTION 1

2. LITERATURE REVIEW 4

2.1 Introduction I

2.2 Chou and Fasman's Conformational Parameters .5

2.3 Robson e l o/Zs Information Theory Method 10

2.4 Levin e t «/.'s Similarity Matrix 17

2.5 Qian & Sejnowski's Feedforward Neural Network Models 20

3. PARTITION IN LINEAR SPACE 25

3.1 Introduction 25

3.2 Transformation from Alphabetical Segment to Linear Space — Encod

ing Schemes 25

3.3 Conformation Parameters 20

3.4 Information Theory Method 27

3.5 Neural Network Models 28

3.6 Discussion 30

4. LOCAL STUDY OF PROTEIN SEQUENCES IN SEGMENTS 33

iii

4.1 Introduction

4.2 Similarity Scale for Two-state Prediction 31

4.2.1 Introduction 31

4.2.2 Method 31

4.2.3 Prediction Procedure — Five Nearest Neighbors 39

4.2.4 Results and Discussion 41

4.3 Similarity Matrix for Two-state Prediction 48

4.3.1 Introduction 48

4.3.2 Method 4!)

4.3.3 Prediction Procedure 51

4.3.4 Results and Discussion 53

4.4 Single Separation Plane 58

4.4.1 Introduction 58

4.4.2 Method 58

4.4.3 Prediction Procedure (iî)

4.4.4 Smoothing Algorithm Gf)

4.4.5 Results and Discussion 72

4.5 Pairs of Separation Planes 87

4.5.1 Introduction 87

4.5.2 Method 1)2

4.5.3 Prediction Procedure 94

4.5.4 Results and Discussion 9(i

4.6 Conclusion 117

BIBLIOGRAPHY 118

APPENDIX A. DATABASE

A.l Training Set

A.2 Testing Set

APPENDIX B. PROGRAMS

B.l Main Program

B.2 Functions

V

LIST OF TABLES

Table 2.1: Assignment of region 179-183 of Carboxj'peptitase A (Based

on 15 proteins): {Ihihh)a and {HHihll) (i

Table 2.2: Levin et aVs secondary structure similarity matrix 18

Table 4.1: DayliofF's substitution matrix 35

Table 4.2: Two-state predictions using the similarity scale derived from

the matrix M + N — W and the 5-nearest neighbors method

(Predict when 4 or 5 neighbors have same structure) 42

Table 4.3: The similarity scales derived from the matrix M N — 11^ in

the examples in previous table 44

Table 4.4: Three-state predictions using the similarity scale derived from

the matrix C — IF and the 5-nearest neighbors method (Pre

dict when 4 or 5 neighbors have same structures) 45

Table 4.5: Two-state predictions using the similarity scale derived from

the matrix Mand the 5-nearest neiglibors method

(Predict when 4 or 5 neighbors have same structures) 4fi

Table 4.6: The similarity scales derived from the matrix M -{- -{- II '

in the examples in previous tables 47

vi

Table 4.7: Three-stale predictions using the similarity scale derived from

the matrix C + and the S-nearest neighbors method

(Predict when 4 or 5 neighbors have same structures) 18

Table 4.8: Two-state predictions using the similarity matrix derived from

the matrix M + N — TK and the Levin-like method 51

Table 4.9: Two-state predictions using the similarity matrix derived from

the matrix M -f -t- and the Levin-like method 51

Table 4.10: Two-state predictions using the similarity matrix derived from

the matrix M + N — IF and the 5-nearest neighbors method

(Predict when 4 or 5 neighbors have same structures) 51

Table 4.11: Two-state predictions using the similarity matrix derived from

the matrix and the 5-nearest neighbors method

(Predict when 4 or 5 neighbors have same structures) 51

Table 4.12: Three-state predictions using the similarity matrix derived

from the matrix C — VK and the 5-nearest neighbors method

(Predict when 4 or 5 neighbors have same structmes) 55

Table 4.13: Three-state predictions using the similarity matrix derived

from the matrix and the 5-nearest neighbors method

(Predict when 4 or 5 neighbors have same structures) 50

Tal)le 4.14: The partition result on artificial database performed by the

planes, which were derived from the linear programming model

and calculated by the software MPSX, for seven amino acid

segments in the set of 30 or of 50 jjroteins 71

vii

Table 4.15: The partition results of the planes, which were derived from

the information theory method, for seveu-amino acid segment s

in the sets of 30 or of 50 proteins 75

Table 4.16: The four numbers in the entries of the S or P column in some

tables have the same roles as do A, B, C, and D 75

Table 4.17: The 10 iterations of the single plane for two-state separation

with segment length seven on 10 proteins 7!)

Table 4.18: The last 5 iterations after modification of a constraint 81

Table 4.19: The three single separation planes for three-state prediction

for seven-amino acid segments on the first 10 proteins in the

training set 83

Table 4.20: Separation results regarding the three planes mentioned in the

previous table 84

Table 4.21: The three single separation planes for three-state prediction

for seven-amino acid segments in the first 20 jiroteins in the

training set 85

Table 4.22: Separation results performed by the planes in the previous table. 80

Table 4.23: The three single separation planes for three-state prediction

for seven-amino acid segments on the second 20 proteins in

the training set 80

Table 4.24: Separation results performed by the three planes in the pre

vious table 87

Table 4.25: The nine iterations for the first pair of parallel planes for two-

state separation with segment length seven on 50 proteins. . 1)8

viii

Table 4.26: The inner product of the normalized normal vectors 9!)

Table 4.27: The secondary structures of the four proteins 2S0D\s. (r: coil; o :

alpha-helix.) 101

Table 4.28: The two-state prediction for seven-amino acid segments in the

training set 10:)

Table 4.29; The normal vectors of the second, the sixth, and the tent h

pair of parallel planes. The numbers in the first two rows (5'j

and S2) are the constant terms in the equations of the planes. 101

Table 4.30: The inner product of the normalized normal vectors of the ten

pair of parallel planes Ill

Table 4.31: The three-state prediction of Type I for 17-amino acid seg

ments. (Note: because the misplaced points in the "S'' column

lie on the corresponding plane derived from the OSL, we set

0.00000001 as threshold for the case 4, 4, and 4 (o avoid pre

dicting these points. The separation result is improved, l)ut

the prediction results are slightly differet. Similar expressions

hold for the cases listed in subsequent tables.) 113

Table 4.32: The three-state prediction of Type II for 17-aniino acid seg

ments i 15

Table 4.33: The nine numbers in the entries of the S or P cohmin in some

tables have the same role as A, B, C, D, E, F. G, II, and I,

respectively J16

Table 4.34: The three-state prediction of type I and type II for amino acid

segments with lengths seven and 25 IJ6

ix

LIST OF FIGURES

Figure 2.1: A feedforward neural network with one hidden layer. The

bottom layer is the input layer, the top layer is the output

layer, and the layer between is the hidden layer. Wjj is the

weight assigned to the connection from the ith unit in the

input layer to the jth unit in the hidden layer 2J

Figure 4.1: Five nearest neighbors 10

Figure 4.2: The transformed points are well distributed .31

Figure 4.3; Most points T belong to the group A for which S { S [, T) > C . 52

Figure 4.4: The nonzero Zj is the distance from the plane to the "mis

placed" point associated with Zi (II

Figure 4,5: Three-state prediction in three-dimensional space. The inter

section of the three planes is a line. The three vectors

Naci and are linearly dependent 65

Figure 4.6: The indifference plane in three-dimensional space. =

Na — N 1^. The two statistical distances sda and sd^:^ are equal. 67

Figure 4.7; Two-state prediction 70

X

Figure 4.8: Three-state prediction. The structure assigned to a point de

pends upon where this point is located in space. We do not

predict if a point lies in the middle triangle region 71

Figure 4.9: One pair of parallel separation planes 88

Figure 4.10: Two pairs of parallel separation planes 90

Figure 4.11: The categorization by the two pair of parallel planes in Fig.

4.10, in which the solid disks represent the alpha-helical points,

and the circles represent the non-alpha-helical points 91

xi

ACKNOWLEDGMENTS

1 am deeply grateful to Dr. James L. Cornette for his guidance and encourage

ment during my graduate study. Without his help, this dissertation would never have

been possible.

I am also indebted to Dr. Vincent A. J. Sposito for his kindly help on both

MPSX and OSL software.

Finally, I am grateful to the Computation Center of Iowa State University for

the Block Grant support for computing.

1

1. INTRODUCTION

A protein is a long-chain, linear polymer of amino acids, often cross-linked but

never branched. Each monomer has a side chain, which is usually one of the 20 com

mon types: alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic

acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline,

serine, threonine, tryptophan, tyrosine, and valine. The so-called primary struct ure

of a protein is its sequence of these amino acids. A common feature of a j)rotein"s

three-dimensional structure is the alpha-helix, which consists of a segment of some

7 to 20 amino acids folded into the form of a helix. Two-state prediction of the

secondary structure of a protein usually entails the classification of each of its amino

acids as either "helical" or "nonhelical." Three-state prediction, on the other hand,

entails classification of the structure of each amino acid as alpha-helix, beta-sheet,

or coil. Beta-sheet is a kind of secondary structure, and thus neither alpha-helix nor

beta-sheet structures are referred to as coil.

In 1974 [1], it was asserted that because protein folding occurs with no out

side assistance, the resulting three-dimensional native conformation depends solely

upon the primary sequence. Furthermore, the influence of the secondary structure

of an amino acid by other amino acids in the protein decreases with "residue dis

tance," i.e., much information about the conformation of an amino acid is carried by

2

a "long euoiigh" block with the observed amino acid in the middle. In 1081 Kabsch

and Sander [2] found that identical pentapeptides had different conformations. This

observation tells us that long-range interaction should be considered upon determi

nation of the secondary structure. In short, we can say that two identical strings

of amino acids tend to have identical three-dimensional shapes and that two similar

but nonidentical strings tend to have similar conformations. The role of blocks of

amino acids in the determination of protein secondary structures remains in (jiiesi ion,

however.

This research is directed to study "locally" the relation between primary struc

tures and secondary structures of proteins and to provide a methodology for identi

fying secondary structures. Specific objectives are as follows:

1. Similarity scale. To construct a similarity scale assigning a value to each

amino acid. For example, a seven amino acid sequence can be rejjresented by

a seven-dimensional real vector or by a single point in R'. The Euclidean

distance between two points determines the similarity of the corresponding t wo

amino acid strings.

2. Similarity matrix. To construct a 20 x 20 similarity matrix that is symmetric

and in which each row (and column) corresponds to a particular amino acid.

The "similarity score" of two amino acid sequences of the same length is deter

mined by addition of entries chosen from the similarity matrix. (The number

of chosen entries is the length of the amino acid strings.)

3. Single separation plane. To locate amino acid strings of length k, say, in the

20k-dimensional real space, and to then find an acceptable plane to "separate"

3

niicklle amino acid alpha-helical strings from middle amino acid non-aipha-

liclical strings. The problem is thus transformed into a partition problem.

4 . Pairs of separation planes. To construct several pairs of parallel jilanes,

thereby making partitioning possible.

All computing jobs were performed on the IBM 360 or the Digital Work Stat ion

3100. Programs, which were written in C, are listed in Appendix B. Software— IBM

Mathematical Programming System (MPSX) and Optimization Subroutine Libiary

(OSL)—was used to perform Simplex computations. Kabsch k Sander's protein

secondary structure assignments, listed in Appendix A, were used to train and to

test prediction schemes.

2. LITERATURE REVIEW

2.1 Introduction

We will begin by quoting from the works of prominent researchers on the signif

icance of predicting secondary protein structure from the primary protein sequence:

• Chou and Fasman [3]:

As such, multi-state prediction models serve as important, starting

conformations for calculations of protein folding based on energy min

imization. (Page 87)

• Qian and Sejnowski [10]:

This approach is not meant to be an alternative to other methods thai.

have been developed to study protein folding that take biophysical

properties explicitly into account, such as the methods of free energy

minimization... Rather, our method provides additional constraints

to reduce the search space for these methods. For example, a good

prediction for the secondary structure could be used as the initial

conditions for energy minimization... (Page 866)

2.2 Chou and Fasman's Conformational Parameters

Chou and Fasman's predictive method [3], whicli is one of the earliest prediction

schemes, outlines three basic steps:

Step 1: Use the database, which contains some proteins with known structures,

to compute the conformational parameters Pa (for helix) and (for sheet) for each

of the 20 amino acids.

The helix conformational parameter is

= 7^'

where fa is the frequency of residues in the helix and where < fa > is the axcrage

frequency of all residues in helical regions. Similar expressions hold for Pjj.

Example. Suppose that there are 4741 residues in 29 proteins for which 1798

residues are alpha-helical and 930 are beta-sheet residues. Then

< fa ^ ̂ 0.379, and
4(41

474Ï -

Suppose that, among the 4741 residues, 434 are Alanines, for which 234 are alpha-

helical and 71 are beta-sheet. Then, for Ala,

f a = ̂ 0.539, and

So the conformational parameters Pa and for Ala are

6

Table 2.1: Assignment of region 179-183 of Carboxypeptitase A (Based on 15 pro
teins): (Ihihh)a and {HHihIJ)ij.

179 180 181 182 183
Carboxypeptitase A Tie Val Asp Plie Val
Helical assignment I h i h h
Pa value 1.00 1.14 0.98 1.12 1.11
beta-sheet assignment H H i h II
P j j value 1.60 l.G!) 0.80 1.28 l.()5

Step 2: Use the conformational parameters to assign each residue as a former,

an indifferent, and a breaker.

Helical assignments: Ha, strong alpha-former; /îq, alpha-former; la, weak

alpha-former; /'a, alpha-indifferent; 6q, alphabreaker; Ba, strong alphabreaker.

Beta-sheet assignments: strong beta-former; beta-former; weak

beta-former; beta-indifferent; 6^^, beta-breaker; strong beta-breaker.

Example. As in the example for Step 1, Alanine was assigned as a strong helix

foinicr (//o , Pa = 1.422) and as an indifferent for beta-sheet Pjj = 0.837).

Example. See Table 2.1.

Step 3: Use a set of empirical rules to locate the secondary structures of proteins.

There are three basic rules for predicting secondary structures. Let < Pa > and

< Pj^ > denote the averages of Pa and Pj^ values for the residues in the segment under

consideration, respectivelj'. Because rules and conditions are somewhat ambiguous,

we will describe those aspects of the rules and the conditions that have been used in

a |)rogram written by Minoru Kanehisa and list the titles of the unused conditions in

the basic rules.

Rule 1. (Search for helical regions)

— Helix Nucleation

Step A. Assign 2 to Ha and ha residues; 1 to la residues; and 0

to ia, '>Q, and Ba residues. Let us call these values (2, 1, and 0) the

"o-tendency quantity" of residues. The o-tendency quantity of a k-residue

sequence in length is the sum of the a-tendency quantity of the k residues

in this sequence.

Example. The a-tendency quant il,y of the five-residue sequence in the

previous example, i.e. {Ihihh.)a, isl-)-2-t-0-f2-t-2 = 7.

Consider all amino acid sequences of length six with an o-tendency quantity

of at least 8. Modify each sequence by keeping its longest contiguous subse

quence such that the first and the last amino acids have an a-tendency ((uanl it

of 1 or 2, Then assign the structure alpha-helix to all the amino acids re

maining after modification.

- Helix Propagation and Termination

Step B. Assign 1 to Ha and ha residues; 0 to la and ?q residues; and -2

to ha and Ba residues. Let us call these values the "n-tendency quantity."

Example. The ô-tendency quantity of {Ihihh)a is 0 -1-1 -|- 0 -M -fl = 3.

Extend the helical segments found in Step 1 in both direction by con

sidering their adjacent tetrapeptides. For the C-terminal end extension,

shift along the protein one amino acid every time until find a tetrfipep-

tide having < Po > < 1 aiid (a-tendency quantity) < 0. Then assign

the structure alpha-helix to the residues between the helical segment and

8

the last tetrapepticle (not included). Do the same for the N-terniinal end

extension.

— Proline as Helix Breaker

Step C. The helical segment in a new (or observed) protein has been

identified in Steps 1 and 2. The object of Step 3 is to modify the located

helical segments by considering the Prolines in these helical segments ac

cording to rules (a)-(c):

(a) If position 4, 5, or 6, counted from the N-terminal end to the C-

terminal end, is occupied by a Proline, then the helical segment

is shortened by deleting the residues "before" this Proline in tlie

segment. The new, shortened helical segment should also obey

rules (a), (b), and (c).

(b) The minimum length of a helical segment is 6. Otherwise, cancel

the helix assigned to that segment.

(c) After (a) and (b), the first six residues in every helical segment

have been definitely assigned a secondary structure, namely, a

alpha-helix. So we construct the subsequences of these segments

by cutting the residues before the first proline found after the

seventh (included) position. Then go to (a).

— Helix Boundaries

• Rule 2. (Search for beta-sheet regions)

— Beta-Sheet Nucleation

Step A. Assign 1 to and hjj residues; and 0 to 6^^, and Bjj

9

residues. Let us call these values (1 and 0) the "/^-tendency quantity" of

residues. The /^-tendency quantity of a sequence of length k is the sum of

the /i-tendency quantity of the k residues in this sequence.

Consider all amino acid sequences of length 5 with a /?-tendeucy quantity

of at least 3. Modify each sequence by keeping its longest contiguous subse

quence such that the first and the last amino acids have a /j!-tendency ({uantity

of 1. Then assign the structure beta-sheet to all the amino acids remaining

after modification.

— Beta-Sheet Propagation and Termination

Step B. Assign 1 to and residues; 0 to ij^ residues; and —2 to bjj

and residues. Let us call these vahies the "/5-tendency quantity."

Extend the beta-sheet segments found in Step A in both directions ijy con

sidering their adjacent tetrapeptides. For the C-terniinal end extension,

shift along the protein one amino acid every time until there is a tetrapep-

tide having < > < 1 and (^-tendency quantity) < 0. Then assign the

structure beta-sheet to the residues between the beta-sheet segment and

the last tetrapeptide (not included). Do the same for the N-terminal end

extension.

— Strong Beta-sheet Breakers

— Beta-sheet Boundaries

• Rule 3, (Overlapping alpha- and beta- regions)

10

2.3 Robsou e t «/.'s Information Theory Method

In this section, we will explain the basic idea of Robson ei al. 's information

i heory method [5, 6, 7, 8]. Theoretically, the purpose of this method is to esl imate

the real value of the information [6]

I (iSj", i?|, i?2i • • V '

which reads, " tlie information that the residues at the first (7?^), tiie second (JYy),

and so on, up to the last position (^Riast) carry regarding the conformation of the

Jth residue

If there are two possible conformational states, say A and /I, for each residue,

then to predict the structure of the jth residue, we simply compare the two values:

1 ^ = 1 (^ S j = y4;

and

I2 = I (^Sj = y4; '

The larger value defines the conformational state of the jth residue.

Because of the observation that the effect of residues

J7I+1' • • ''^7' • • and

plays a dominant role for some integer m (it is claimed that the best choice is m =

8), an approximation for is thus

in
1 ^ = 1 [S j = • . -^Riast) - Z ^{ ^ j =

i——m

11

A similar expression holds for I2. So

m
h - h - X [f (gj = /I; - 7 (f) = Â; Bj+i)]. (2.1)

i=—m

Définition. I { S j = = log—^ A ^ , where P { S j = A | ^ j + /) is

the conditional probability that the conformation at the jth position(.Sy) is A, given

the type of residue at])osition j + i ; and where P (.S'y = is the j>robability

that the conformation at the jth position is A.

Definition. 1 (^Sj = A : A', Rj^j^ = 1 ÇSj = A; — 1 («S'y = A; .

From Eq. (2.1), we have

m _

h- h- ^ ('^'i = ^j+i) • (2-2)
i=—in

For notatioual convenience, let us remove the suffixes j and j + i; let us also rei>lace

A and A by 1 and 2, respectively, in the right hand side of Eq. (2.2) and explain how

to evaluate I (^Sj = A: A; Rj^j^, that is, how to find I (S = 1 : 2; /?).

Let Oç;j^ denote the probability of the combination (S,R), Avhere S stands for

one of the conformations 1 and 2 and where R stands for one of the 20 amino acids.

Then

^ S R ̂ 0'
2 20

E L ^ S R = 1
6=1R=1

and

I = , F (6 ' = l)
®P(5' = 2|7Ï) ®P(S' = 2)

= log log (2.3)
^2R ^2*

12

where 0^. = E|Li ̂ SR-

Sup])o,se that is the number of appearances of the combination (S.R) in tlie

database Z), saj^ and that E/|Li/.S'J? = /•• is fixed. Wlien the values of

hR^ -hR^ /l*' /2« then, from Eq. (2.3),

7(5'= 1 : 2; R) ~ log - log (2.-1)
J'2R /2«

On the other hand, if the size of the database is too small, Robson d ah apply

Bayes's decision theory, based on a database, to determine the posterior expected

value of

7 (5 = 1 : 2 ; 7 ?)

(see Note 2). The likelihood function and the probability density of the unknown

parameters Oc^fi's are then proportional to

2 20

and
2 20

,<Hi /El

respectively. The posterior density, say

T [^11,#12,• • • #21 '#22'• • • ^2k I ' where k = 20,

of #c;'7j-'s is then proportional to the product of the y;/7o/'probability and the likelihood

function, i.e.,

2 20 f , _ .
T [# i i , # 1 2 , - - - # i A m # 2 1 ' ^ 2 2 ' - " % I « n n ̂ ' s ^ R '

5=17?=1

where k = 20.

13

Property 1 [14]. The marginal posterior density function of 0^, is beta with

jjaranieters and /2# •

Property 2 [14]. The marginal posterior density function of is beta with

parameters and f2j^ .

Hence, tlie expected value of / (5 = 1,2; ff), given data D, is

E [I (S = 1 : 2 - , R) I D]

= E

= E

= E

= E

log
0 IR
0' 2R

log hRj^mR

I -
D log

1 -h.

i:
^log

D

(2.5)

wiiere

is the beta density with parameters m > 0 and n > 0 and where

T (m , n) = ^ l o g 9 (' c ; ")

Property 3. T (i n , n) = #(m) — #(n), where both m and n > 2 and where

#(A-) = l + ^ + ̂ + --- + ̂ . (2.0)

Property 3 is a good result that will make application of the information t heory

method relatively easy. For this reason, we will give the proof of Property 3 here.

14

Proof of property 3:

r\ II
T (i n , n) = l o g Y — g { u ; m , n) d u

'-î)"(,.-l)! '"-"I"

- [log (1 - u)] «'"-1 (1 - rff/j

(tu. + ?? — 1)!
(m — 1)! (?) — 1)!

- ̂ (log f) (1 - di:
/O

(m + 71 — 1)!
(?;? — 1)! {n - 1)!

[U (777, 7?) - U (77, 77?)] ,

where

U (7 7 7 , 7 7) = (log j<) 77'" ^ (1 - 7 7) " ^ du.

Iii(.egrating b.y parts, we have

U { m , n) = (log i<) (1 - t7)"~^ du

r„777

777
(log7t)(l - U)

77 — 1
77=1

77=0

+ — (l o g 7 7) (7 7 - 1) (1 - 7 7) " du

= " - m /o
77 — 1 fl

lo
— (777 — 1)! (77 — 1)1 77 — 1

777 (777 4-77 — 1)! 777

- 2 f/l7

(77? + 1,77 - 1) .

Multiplying both sides by we have the recursive formula

15

(m + n — 1)!
(m — 1)! (n — 1)!

(m , î i)

1 1
+

(???. + n — 1)!

m m + 1 (??? + 1)! (" — 3)!
(t17 2,7! — 2)

= - (i
\ m

+
1

+

m m + 1
(m + ?î — 1)!

(711 "t" ?î. — 2)!0!

= - (1 + ^ +
\ in

+ • • • + 1—)
• n - 2 J m + :

U (m + n — 1,1)

+ 1—)
n - 2 / m m +1 ' 77? + n

w
1

{ m +

= - (— +
\ î j) m + 1

+ (7 7? +71.-1)

+ • • • +
m +

' j,77?+77-1

777 +

\ fl , ,777+77-2

/O 777 + 77 — 1

= - (ï ï ; + ; ; r T T + ' " + , . > + ! . - 2)

= - (' l + - J _ + . . . + _ J + — ! — V
\777 777 + 1 777 + 77 — 2 777 + 77 — 1 /

, ,777+77— 1

(777 + 77 — 1) '^

Heuce,

T (777,77) = — f 1 —— + •••-) ; — 4 ;
\77? 777 + 1 777 + 77 — 2 777 + 77 — 1 /

+

777 + 77 — 2 777 + 77

fl + JL + ... + _l_ + _J)
\ n n + 1 n + m — 2 n + i n — 1 / + 1

= # (» ') - # (") •

Note 1. Because Eq.2.6 is valid only for m and n > 2, Robson d al. sel

J\fl = 2 whenever = 1 or 0. Let a similar condition hold for /2/^, J'l^, and

16

An.er Uiis modification, we can use Eq. (2.6) to find the posterior expected value of

I {S =1:2;/?) from Ecj. (2.5).

Note 2. For large ni and n,

n n 1 77?. f i l l 1
l o g — = / — (Ix ~ T (7)7 , 77) ,

n J n X

and Eq. (2.4) and (2.5) are approximateiy equal.

Now, go back to Eq. (2.2). Instead of using the prediction scheme

A for — /g > 0,

À for — ^2 0,

Robson ei al . use that of

A for Ii-l2> DC,

A for II - I2 < DC,

where DC is an adjustable parameter chosen to improve prediction.

Note 3. Chou &: Fasman's conformation parameters can be expressed as

_ P { S = a \ R) _ /(5=o;il)
- P (S = a) ~ P { S = a)

where P (S = a | /Î) is the probability that the structure of the residue R is alpha-

helix and P {S = o) is the probability that the structure of a residue is alpha-helix,

and as

P P { S = l 3)

The information theory method considers the influence of residues at different posi

tions on the conformation of the middle amino acid in a block of amino acids and

so predicts one amino acid each time. Although information regarding the different

17

amino acids at different positions is not included in the conformational parameters,

this method predicts the structures of several sequential amino acids every time.

(Four sets of conformational parameters are constructed that are different from the

two sets of conformational parameters we have introduced, in terms of the influence

of amino acids on the N-terminal end or on the C-terminal end of tlie conformation

of the entire block. The program for Chou & Fasman's method, mentioned before,

used only the two sets of parameters that we have introduced.)

2.4 Levin e t «/.'s Similarity Matrix

Applying the assumption that short homologous sequences of amino acid have

ident ical secondary structure tendencies and using a symmetric matrix called a sec

ondary structure similarity matrix, Levin et al. [9] assigned sequence similarity scores

between all two sequences seven residues in length. The empirically determined sim

ilarity mal.rix(Tal)le 2.2) was developed and optimized using the Kaljsch Sander

database (See note 3 below).

Example. The similarity score between the sequences STNCilYVV and Al -

SLVFW is 1(S and A) -f 2(T and T) -f 0(N and S) +(-l)(G and L)+ 1(1 and V) 4-

1(Y and F) -t- 2(W and W) = 6.

Example. The similarity score between the sequences STNCîIYVV and ATS-

GVFL is 14-24-0 + 2-1-1 + 1 + 0 = 7.

Definition. A training set is a set of proteins with known structures that is used

to establish a prediction scheme. The set that is used to test the performance of a

prediction scheme is called a testing set.

Prediction requires four steps:

18

Table 2.2: Levin c i «/.'s secondary structure similarity matrix.

G P D E A N Q s T K R H V I M C L F W
G 2 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 -1
P 0 3 0 -1 -1 0 0 0 0 0 0 0 -1 0 -1 -1
I) 0 0 2 1 0 1 0 0 0 0 0 0 -1 0 -1 -1
E 0 -1 1 2 1 0 1 0 0 0 0 0 -1 0 -1 -l
A 0 -1 0 1 2 0 0 1 0 0 0 0 0 0 -1 -1
N 0 0 1 0 0 3 1 0 0 1 0 0 -1 0 -1 -1
Q 0 0 0 1 0 1 2 0 0 0 0 0 -1 0 -1 -1
S 0 0 0 0 1 0 0 2 0 0 0 0 -1 0 -1 -1
T 0 0 0 0 0 0 0 0 2 0 0 0 0 0 -l -1
K 0 0 0 0 0 1 0 0 0 2 1 0 -1 0 -l -1
R 0 0 0 0 0 0 0 0 0 1 2 0 -1 0 -1 0
il 0 0 0 0 0 0 0 0 0 0 0 2 -1 0 -1 0 -1
V-1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 2 1 0 0 1 0 0 0
1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 1 0 0 1 0 0
M-l -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 2 0 2 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 -1 -1
L -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 1 0 2 0 2 0 0 0
F -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 0 -1 0 2 1 0
Y-l -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 0 1 2 0
W-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 0 0 -1 0 0 0 2

19

Step 1. Choose a seven amino acid sequence from the testing set. (The first

block chosen from a protein is composed of the first seven residues on the N-terminal

end. To choose the second sequence, and so on, shift along the protein se(|iieuce one

residue.)

Step 2. Use the similarity matrix to find the similarity score between the amino

acid block chosen in step 1 and every amino acid block in the training set. A block in

the training set is accepted if the score is greater than or equal to seven; otherwise,

it is rejected. For an accepted block, the score is the credit that the corresponding

residues in the two blocks have the same conformation. Accumulate the credits for

all types of conformation for each residue in the testing block.

Step 3. If every block in the testing set has been chosen for a comparison (in

step 2), then go to step 4. Otherwise, go to step 1.

Step 4. For each residue in the testing set, compare the "sums of credits'' for

all ty])es of conformation. The conformation assigned to the observed residue is the

conformation with the greatest value.

Note 1. In step 4, each "sum of credits" is multiplied by a different constant

before being compared. The constants, called decision constants, are different

for different conformations. The purpose is " to avoid over])rediction of helix and

underprediction of aperiodic structure" ([9]); page .305).

Note 2. It was observed by Levin and Gamier that if the number of amino acids

in a block is increased from seven to eight, the percentage accuracy will fall. If no

cut-off (i.e., number 7 in step 2) is used, the entire protein sequence will be predicted

a,s aperiodic (the most comnionlj'observed conformation in the training set).

Note 3. Initially, an arbitrary assignment for the matrix was made in order fo

20

construct the similarity matrix. The principal diagonal entries were 2's, 1 was given

for pairs of amino acids considered to have properties in common. —1 was given

for dissimilar amino acid pairs, and 0 was given elsewhere. The initial matrix was

then optimized by making "rational changes" [9] and by observing their effects on

prediction accuracy.

2.5 Qian & Sejnowski's Feedforward Neural Network Models

A feedforward neural network model is composed of two or move layers of pro

cessing units with feedforward connections from all the units in one layer to (hose

units one layer above. The bottom layer is the input layer, the top layer is the output

layer, and the other layers are hidden layers (See Figure 2.1) .

A processing unit sums the signals presented to it, with weights assigned to each

input signal, and computes an output to be sent to the next layer.

In Sejnowski and Qian's models[10], inputs are the strings of contiguous amino

acids, and outputs are the conformational tendencies of the middle amino acids in

the input strings. For a block of length 13, for example, the input layer consists of 1:)

groups of processing units, with 20^ units in each group. Each input group encodes

one amino acid of the input block, and each unit in a group represents one of the

20 amino acids. Thus, only one unit in each input group is active, which will give

an output 1, and the output of the other units is 0. This is called a local encoding

^Sejnowski and Qian, in fact, used 21 units in each group to predict the structures
of the first and the last six (for block length 13) amino acids in each protein, the
21st unit being associated with a spacer. Note that the sequence of amino acids was
concatenated to form a long string for each of the training and testing sets, with
spacers between the proteins to separate them during training.

21

Output layer

Iliclden layer

Figure 2.1: A feedforward neural network with one hidden layer. The bottom layer
is the input layer, the top layer is the output layer, and the layer between
is the hidden layer. Wjj is the weight assigned to the connection from
the ith unit in the input layer to the jth unit in the hidden layer.

22

sclieiiie.

For a unit i , say, which is not in the input layer, the total input Ej to unit i and

the output (or state) S.j from unit i are determined by means of equations

where 11^;^ is the strength of the connection from unit j to unit /s are those units

one layer below unit ?, Sj is the output (or state) of unit j ,and bj is the bias of unit

The output layer consists of three units (that is, for three-state prediction; it

consists of two units for two-state prediction) representing the secondary structures

alpha-helix, beta-sheet, and coil. The structure corresponding to the greatest value

among the outputs of the output units was assigned to the middle amino acid in the

input protein block.

To train a neural network is to modify the weights between layers of units (and

biases in units) to obtain a desired input-output mapping (i.e., type of middle amino

acid of blocks and their secondary structures). The input set (or training set) con

tains blocks of amino acids chosen from proteins whose secondary structures are

determined, and the output set contains three types of secondary structures (alpha-

helix, beta-sheet, and coil) for three-state prediction (or two types—alpha-helix and

coil—for two-state prediction). In Qian and Sejnowski[10], "Initially, the weights

in the neural network were assigned randomly with values uniformly distributed in

^ I f u n i t i i s i n t h e i n p u t l a y e r , i . e . , a n i n p u t u n i t , t h e n S j = E j .

and

/.2

23

the range [-0.3,0.3]." Then a block chosen from the training set was input, and the

output observed. If a desired output resulted, the original weights were kept and

another block input. Otherwise, weights were modified'^ Ijy means of the learning

algorithm described below, and another block was input. This process was repealed

until a "good result" was achieved.

The learning algorithm used incorporated the generalized delta rule and

back-propagation [11]. For a pattern p (or for a block of amino acids here) will»

inappropriate mapping results, the learning algorithm increases the current weights

by the amounts î^pWjj 's, where^

ApWji = 7]6pjOpj,

Ojjj is the output of unit

(f , p j — O p j J f (^ n e t p j ^ if unit j is in the output layer,

if unit j is in the hidden layer,

/(;r) = -— is the activative function,
1 +

neipj = ^ WjiOpj is the total input to unit j,
i

i p j is the target output of the output unit j (2.7)

(i.e., j is in the output layer;

i p j = 1 if the structure of the middle amino acid in p is sim|)ly

the structure represented by unit j, and 0 otherwise.), and

^Pj ~

'^Same as below (next footnote),

''According to Sejnowski and Rosenberg[4], "To reduce the average error for all
the input jjatterns, these gradients must be averaged over all the training j)a(terns
l)elbre updating the weights. In practice, it is sufficient to average over several in|)uts
before updating the weights."

?/ is the constant of proportionality representing the learning rale.

Tlie bias b j for a unit i can be considered the weight between i and a unit, wit h

fixed output 1 connected to i only.

25

3. PARTITION IN LINEAR SPACE

3.1 Introduction

We will describe two différent protein-sequence encoding schemes that will be

used in this and the next chapters. Then we will apply the encoding schemes l.o

discuss the works mentioned in Chapter 2.

3.2 Transformation from Alphabetical Segment to Linear Space —

Encoding Schemes

The least complicated general encoding scheme is that of assigning a quantity

such as hydrophobicity to each amino acid. In this manner, an amino acid segment

of length k, say, corresponds to a k-dimensional real vector or to a single point in

We will use this encoding scheme to conduct certain experiments in the next

chapter.

The most general encoding scheme, that is, the local encoding scheme, is to assign

each amino acid to a 20-dimensional unit vector. We arrange the 20 amino acids in

the order A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V and then use the ith column

of the 20 X 20 identity matrix to represent the ith capital letter or amino acid. So an

amino acid segment of length k corresponds to a single point in the (20k)-dimensional

real space) with the ith, say, 20 coordinates representing the ith amino acid

26

coiiiitcd from the N-terminal end of the segment. In some instances, we will also use

a 20 X k' matrix to represent a k amino acid sequence in length with its ith column

corresponding to the ith amino acid counted from the N-terminal end of the segment.

3.3 Conformation Parameters

Chou and Fasman[3] established, in total, 19 sets of conformational parameters

(Pa, Pjj, etc.) "• • • showing the conformational potentials for 20 amino acids in the

helical, beta-sheet, coil, and beta-turn regions, as well as the frequency of residues

at helix and beta-sheet boundary and central regions." Each set of parameters con

tains 20 real numbers, and each real number corresponds to one of the 20 amino

acids. As mentioned above regarding the least complicated encoding scheme assign

ing hydrophobicity to each amino acid, each set of conformational parameters may

be used to assign a "number" to each of the 20 amino acids. Then each of the sets of

20 numbers may be tested for the ability to represent quantitatively the secondary

structure tendency of amino acids. In the next chapter, we will describe an ex])eri-

ment attempting to establish an optimum set of 20 numbers, called a similarity scale,

from which to assign a value to each amino acid. This experiment arose from the

question of whether we can construct only one set of 20 numbers that will give us

sufficient information about protein secondary structures and that can be used to

make objective predictions.

27

3.4 Information Theory Method

From Eq. (2.2), i.e.,

m
h - h - ^ = A : A \

i=—m

the iiiformaliou theory method is used to construct a table T, say, of 20(2m + 1)

discrete numbers for two-state predictions. Twenty is the numljer of different amino

acids and the number of rows in T. 2m + 1 is the length of protein blocks considered

and the number of columns in T. We can rearrange the 20(2m -)- 1) numbers into a

20(2m 4- 1)-dimensional column vector N such that the first 20 entries of N constit ute

the first column of T, the second 20 entries of N the second column of T. and so

on. If we use the most general encoding scheme to encode blocks of (2m + J) amino

acids in length such that each segment is represented by a single point in 20(2ni +

1)-dimensional real space, then the structure of the middle amino acid of an observed

segment P is predicted to be

a) alpha-helical if N#P + D C > 0 and

b) coil othei'wise,

where DC, or the decision constant, is a fixed real number and where • is the

usual dot product in y^20(2??)+l) Geometrically, the information theory method

ultimately constructs a plane in 20(2m -t- 1)-dimensional real space to "sej^arate"

alpha-helical amino acids from coil amino acids. But the information theory is used

to find a normal vector only, not to find a decision constant. According to Gamier

cl al., "DC is an adjustable parameter which is chosen witii the aim of producing

optimal predictions. It is a function only of 'S'y-" (page 105). Moreover, "the

choice of a correct set of decision constants is a definitive step towards improvement

28

of a prcclictive program. Whatever its physical significance, the improvement, is such

that this choice is critical" (page 112). Thus, to choose the best decision constant

for two-state prediction is to "shift" a plane, whose direction is determined by the

information theory method, thereby obtaining a best or sufBciently good partition

result, i.e., minimal misplaced points.

In the next chapter, we will describe a linear programming model attempting to

find an acceptable normal vector N and a constant DC simultaneously to constit ute

a plane.

3.5 Neural Network Models

Qian and Sejnowski[10] used several neural network models including one layer,

two layers, and three layers of weights. Seemingly, "networks with no hidden tmits

performed as well as networks with hidden units on the non-homologous training

set..." (page 881). So we concentrate on the neural network model without hidden

units. Note that Qian and Sejnowski performed a three-state prediction, which will

be discussed in Chapter 4. For convenience, we will discuss here a model for two-state

prediction which is similar to one for three-state prediction.

A two-state prediction neural network model for segments 2m -f 1 amino acids

in length contains 20(2m + 1) input units, two output units (one for al])ha helix and

the other for coil) and two groups of weights connected from input units to output

units. We can consider the two groups of weights as two 20(2m 4- l)-dimensional real

vectors (for alpha-helix) and N2 (for coil), say, and let the biases associated wit h

N[and N2 be bi and 1)2, respectively. As in the previous section, we use the most,

general encoding scheme. Then the secondary structure of the middle amino acid of

29

observed block P is predicted to be alpha-helical if

Ni»P + />! > NgeP + 62,

i.e.,

N.P + b > 0 ,

where

N = Nj — N2 and 6 = 6^ — 1)2',

and coil otherwise. So the network is used to construct a plane, i.e., to find N and

1), as was done in the information theory method.

Qian and Sejnowski gave an example of two sets of input-oul put ma|)ping having

the same joint probability^ but that can be learned by two different net works [10] (page

869). They thus claimed that "this observation will be used to explain why the neural

network method yields better results than the information theory method of Robson

and Suzuki (f976)" [10] (page 869).

One difference between the information theory method and the neural network

model is the means of finding the constant, which is called the decision constant

in the information theory method and the bias in the neural network model. y\s

mentioned in Chapter 2, biases can be learned as well as weights, but the decision

constant is not determined by the information theory method. Instead, Robson cl

ai. used

a rapid optimization])rogram, capable of making tens of thousands of
predictions for various combination of decision constants...

^ This means that the information theory method will result in the same])lanes
for these two sets.

30

This i)rograin was designed to trace the higliest percentage of correctly
predicted residues for the four conformations by varying the decision con
stants independently for alpha-helix, beta-sheet, extended chain, and re
verse turns. [8](page 108)

Note: Use one decision constant for two-state prediction and three decision constants

for four-state prediction. This methodology will be discussed in Chapter 4.

3.6 Discussion

About Chou and Fasman's conformational parameters method, Gamier and

Uobson [8] stated, "Unfortunately, some of their rules are qualitative rather than

quantitative, and being open to interpretation they lia\'e not always yielded such

promising results in the hands of other workers..."(page 98).

Chou and Fasman[3] themselves remarked that "the predicted conformation is

more reliable if all the prediction rules ^ of Chou & Fasman are followed and quan

titative calculations performed for the < Pa >•,< Pij >•,< Pf >, and P/ values of

the predicted secondary structures" (page 139).

Additionally, Qian and Sejnowski pointed out that the "existing methods for

predicting secondary structures" were not entirely reliable although they cited Robsou

el fl/.'s as the most reliable.

Sejnowski and Qian[10] used 106 proteins, which was called a training set, to

train their neural networks and then used 15 proteins, which was called a testing set

and was nonhomologous with the corresponding training set, to test the peifor-

mance of networks. Protein secondary structure assignments were from Kabsch &

'^Only 2 out of 19 [.'}] sets of conformational parameters were used in the program
describing Chou Se Fasman's prediction rules.

31

Saiuler and based upon the Biookhaven databank of protein structures. The a\ orage

success rates, or

Total numljer of correctly predicted amino acids

Total number of predicted amino acids '

for Qian & Sejnowski's testing set, are 53% for Robson's information theory method,

50% for Chou-Fasman method, and 62.7% for the Qian-Sejnowski neural network

method'^ [10]. Evidently, the ^performances of Robson's and of C'hou k, Fasman's

methods were not as successful as they had announced. According to Qiau and

Sejnowski [10],

The original measures of accuracy reported by these authors were based
in part on the same proteins from which they derived their method, and
these proteins are equivalent to our training set.

However, these methods should be comjjared on proteins with si ructures
that were not used in or homologous with those in the training set. (page
878)

A good prediction scheme should be quantitative and objective. Good perfor

mance, although the goal, is not the only factor requiring consideration. Different

reseachers should obtain the same prediction results when using the same method

on the same database. With this fact in mind, we apply a powerful mathematical

tool—linear programming— to develop models with which to study the secondary

structure of proteins. We consider all amino acids in the training set at the same

time but do not consider the performance on the testing set during "training."

'^Kabsch and Sander [2] used Chou & Fasman's methods to lest 62 proteins with
more than 1000 residues. For three-state prediction, the overall prediction accuracy
is 55%~50% for Robson's method and 50% for Chou Sz Fasman's.

32

Even Qian and Sejuovvski introduced subjectivity into their method. In [10], "All

the amino acids in the training set were sampled once before starting again. This ran

dom sampling process was adopted to prevent erratic oscillations in the performance

that occured when the amino acids were sequentially sampled. The performance of

the network on the testing set was monitored frequently during training and the .set of

weights was kept that achieved the best average success rate on the testing set ."(page

871) This is a difference between Linear Programming Models and Neural Network

Models.

To conclude this chapter, let us quote Qian & Sejnowski's[10] comment about

Levin et al. 's [!)] similarity matrix:

... our method should be faster because a set of weights obtained through
training can be used for jjredicting secondary structures for all new pro
teins. The method of Levin et al., on the other hand, requires an exhaus
tive search of the whole database for every seven-amino acid sequence in
the new protein, (page 879)

33

4. LOCAL STUDY OF PROTEIN SEQUENCES IN SEGMENTS

4.1 Introduction

In t.lie first two sections, we represent a k-amino acid sequence ijy means of a

20 X k matrix (see Chapter 3) and to construct both a similarity scale and a similarity

matrix.

In the last two sections, we relate a segment of length k to a single point in the

20k-dimensional real space and search for partition planes.

Slightly modified training and testing sets of Qian Sz Sejiiowski are used lo

develop and to test prediction schemes, respectively. Proteins in the testing set are

jionhomologous with proteins in the training set (see Appendix A).

Segments of amino acids in a protein are chosen by our shifting along the protein

from the N-terminal end to the C-terminal end one amino acid at a time. The predic-

tion schemes point to the secondary structure of the middle amino acid in a segment;

thus, the first and the last amino acids of a protein in the testing set. in

which k is the number of amino acids in a segment, will not be predicted. Moreox er.

information regarding the secondary structures of amino acids in the "head"' part or

the "tail" part of a protein in the training test is not used.

34

The accuracy of a prediction result is described by means of the fract ion

Total number of correctly predicted amino acids

Total number of predicted amino acids

In the last two sections, we obtain a "plane" partitioning and the accuracy of a

partition result is described l)y means of the fraction

Total number of correctly placed amino acids
Total number of located amino acids

4.2 Similarity Scale for Two-state Prediction

4.2.1 Introduction

The similarity scale V, a 20-dimensional column vector derived, by the method

described in next section, from the Dayhoff substitution matrix, is used to assign

a real number to each amino acid. Thus, a k-amino acid-long string, represented

by a 20 x k matrix M (as mentioned in Chapter 3), is transformed into either a

k-dimensional column vector or a single point M^V in R^\

The similarity scale is designed to cause a relatively small Eucledian distance,

transformed from two similar strings, between the two points. Because the 20 x 20

Dayhoff substitution matrix (Table 4.1) is often used to determine sequence homology,

it wa,s used first to measure the similarity of two amino acid strings.

4.2.2 Method

Let D (M , N ^) denote the Dayhoff similarity score ^ of two amino acid segments.

say A and 13, represented i)y matrices M and N, respectively. We say that the I wo

^ The method used to evaluate the Dayhoff similarity score of two strings is similar
to Levin ci ai's similarity matrix.

35

Table 4.1: Dayhoff's substitution matrix.

A R N D C Q E G II I L K M F P S T W Y V
A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -4 1 1 1 -0 -3 0
R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2
N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -4 -1 1 0 -1 -2 -2
D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -1 -2
c; -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2
Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -1 -2
E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -1 -2
CI 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 -1 1 0 -7 -5 -1
H-1 2 2 i -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2
1 -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 1
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2
K-1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -f) -1 0 0 -3 -1 -2
M-1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -I -2 2
F -4 -4 -4 -G -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1
l> 1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -.5 () 1 0 -fi -5 -1
S 1 0 1 0 0 -1 0 1 -1 -I -3 0 -2 -3 1 2 1 -2 -3 -1
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0
W-6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -G
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -G -2 -1

36

strings A and B are similar when the Dayhoff similarity score D { M , N) is relatively

great and dissimilar when D {M, N) is small. Suppose that P and Q are the I wo

|)oints in that were transformed from A and B, respectively. Then the square of

the distance between P and Q is equal to

V ^ { M - N) { M - N) ^ V ,

a relatively small distance if and only if D { M , N) is relatively great.

The best similarity scale, or V, is supposed to

1. MINIMIZE|||,n 1 {"i - 'Wj) (M,: - V, (4.1)
i<j

where il/j's and AJj's are 20 X k matrices representing k-ami no acid sequences

chosen from the training set satisfying the two conditions

(a) D > S i , where 6'^ is a fixed number, and

(b) Mj and AIj represent middle amino acid alpha-helical strings;

2. MINIMIZE||,,,11,^1 (1.2)
i<j

where N f s and N j ' s are 20 x k matrices representing k-aniino acid sequences

chosen from the training set satisfying the two conditions

(a) D (^Nj, Nj ' j > 62, where 62 is a fixed number, and

(b) N.j and Nj represent middle amino acid non-alpha-helical strings;

and

3. MAXIMIZE|||,,|| 1 (J.:i)
i<j

37

where All 's and iVj's are 20 X k matrices representing k-ami no acid sequences

chosen from the training set satisfying the two conditions

(a) D < .S'3, where is a fixed number, and

(b) Alj and Nj represent strings for which tlie middle amino acid has different

secondary structures.

Note; Condition 1 (a) is used to collect similar strings in the sense that their Dayhoff

similarity score is greater than or equal to a fixed number. Similar expression hold

for conditions 2 (a) and 3 (a).

Under the same conditions^, combining 1, 2, and 3 and attempting to find an

acce])table V, we

MINIMIZE 2=1
L''<i

+ i: 1'^ K: --Wj) {Ni-Njfv
KJ

- Y. (Mi - "• ' j f
Kj

= MINIMIZE||y|i^^i V E ('Wi - U j) [M i - i ' j)
L K j

+ E (JV,- - (Ni -
Kj

T

Z (Mi - Nj) (Mi - Nj)
Kj

T
V

= MINIMIZE||y| |g^i (M + N- W) V, (4.1)

^Condition 1 (a) only holds for the matrix M, condition 2 (a) only holds for the
matrix N, and condition 3 (a) only holds for the matrix W in Eq. 4.1.

38

where

M = ̂ [Mi - Mj) [Ml - Mj)^ and
i<j

i<j

and wliere

H ' = J : (j / , : - A ^) (M i - N j Y .
K j

Because M + N — W is a 20 x 20 real, symmetrical matrix, according to the spectrum

decom])osition theorem [15],

20 _
M + N - I F = £ ̂/V-Vf,

;=1

where the real numbers are the eigenvalues and the vectors \ / are associated

orthonormal eigenvectors of the matrix M+N—W. Therefore, the optimal V satisfying

Eq. 4.'i is the unit eigenvector corresponding to the smallest eigenvalue of the matrix

M+N-W.

An acceptable V can be obtained by means of another approach. In Eq. 1.3, tlie

matrix

(Mi - Nj) [Ml - Njf

is positive definite, as is tlie matrix

20
ir = g («,: - Nj) (M, - Njf = •£ mOftT'

{<j 1=1

where tlie positive numbers, are the eigenvalues associated with the eigenvectors

Ofs of W. Thus, the inverse of VV, denoted by W~^, exists and can be exi)ressed as

= Z ^OiOf.
i=l '''

The unit vector maximizing V^WV and minimizing V^W~^W is tlie unit eigenvec

tor corresponding to the largest eigenvalue of VV, so an acceptable similarity scale V

is the unit vector minimizing V'^ {hi + iV + V. Let V be the unit eigenvector

corres])onding to the smallest eigenvalue of the matrix M -t- yV +

Note that if we delete Eq. 4.2 and replace condition b in Eq. 1.1 by "yUj and

Mj represent strings for which the middle amino acid has same secondary st ruct ures

(alpha-helix, beta-sheet, or coil)", then the resulting matrices C — 11' and C -)- M ^

can be used to do 3-state predictions.

4.2.3 Prediction Procedure — Five Nearest Neighbors

According to similarity scale design, we use the Euclidean distance between two

points in which have been transformed from two k-amino acid sequences, to

measure the similarity of the secondary structure of the middle amino acids in the

two segments.

To predict the structure of an amino acid in a new protein, we first locate in

the k-amino acid segment, which is chosen from the new protein with the observed

residue in the middle, and then find its five nearest neighbors from the training set.

The secondary structures of the middle residues in the five neighljors determine the

struct ure of the target residue. If the middle residue of 4 (3 or -5) of the neighbors have

the same structure, then this structure is assigned to the target residue (Fig. 4.1).

Otlierwise, no prediction is made.

Because the distances between a target residue and some of its neighbors may be

too great, we set a fixed real number, called a threshold, as the maximum accepted

distance between a target residue and its neighbors. The distance between a target

40

O

TJ A target point

O

O

Figure 4.1: Five nearest neighbors.

41

residue and each of its five neighbors should be less than or equal to the threshold;

otherwise no prediction can be made.

The information contained in the training set may or may not be sufficient, to

allow prediction of a residue in a new protein; it therefore seems reasonable to set a

threshold and to avoid making predictions in certain instances.

4.2.4 Results and Discussion

The results using matrix M + A'^ — TF for 7-amino acid segments in the testing

set (see Appendix A) are listed in Table 4.2. Prediction results shown in colunni P

indicate the overpredictions of coil. When U = D = 7, performances for thresholds

of different values are slightly different. The derived similarity scale V is listed in

Table 4.3. There are only five nonzero entries in V, and the five corres])oiidlng

residues, A, R, N, D, and C, will dominate structure assignments. The similarity

scale derived from the example (U, D) = (7, -7) is more acceptable and perform

better than do the previously mentioned scale and is listed in Table 4.3.

The 3-state prediction results using matrix C — IF for 7-amino acid segments in

the testing set are listed in Table 4.4. Prediction results shown in column P indicate

the overpredictions of coil.

Table 4.5 presents results obtained using the matrix M + IF~^. Similarity

scales are listed in Table 4.6. The 3-state prediction results using matrix for

7-amino acid segments in the testing set are listed in Table 4.7. Coil was overpredicted

as it was when the matrix C — li' was used.

42

Table 4.2: Two-state predictions using the similarity scale derived from the matrix
M + N — 11' and the 5-nearest neighbors method (Predict when 4 or 5
neighbors have same structure).

NP« Thr'' pe PA'

7 O..5 7 7

73
(0.004359)6

(0.000000)-'"

410

(0.004359)'

(0.000000)^'

74% 2109 7 O..5 7 7

144
(0.004.366)
(O.OOOOOU)

1482
(0.0043.59)
(0.000000) 74% 2109

^'NP is the number of residues in a segment.

^Threshold.
is the minimal Dayhoff similarity score that two segments can be treated

similar. That is .Sj = 62 = D, where 6'% is the fixed number in condition I (a) and
S'2 is the fixed number in condition 2 (a),

''d is maximal Dayhoff similarity score that two segments can be treated dissimilar.
That is .S3 = D, where 1S3 is the fixed number in condition 3 (a).

^ Prediction results. See Table 4.16. There are 3312 7-amiiio acid segments in the
testing set, which is listed in Appendix A and in which 842 are alpha-helical and
2470 are non-alpha-helical. Note that there are 4884 alpha-helical segments, which
are segments with middle residue alpha-helix, and 11,9-56 coil segments in the training
set, which is listed in Appendix A. There are 3162 17-amhio acid segments in the
testing set.

J PA = Prediction accuracy.
^ i s t h e n u m b e r o f s e g m e n t s i n t h e t e s t i n g s e t t h a t w e r e i > i e d i c t e d .

^'The maximal distance between the correctly predicted alpha-helical segments
and their neighbors.

'The maximal distance between the observed alpha-helical segments, which are
predicted to be coil, and their neighbors.

•^The minimal distance between the correctly predicted alpha-helical segments and
their neighbors.

^ The minimal distance between the observed alpha-helical segments, which are
predicted to be coil, and their neighbors.

43

Table 4.2 (Coiitiuued.)
NP Thr II D P PA

7 1 7 7

78
(0.999994)
(0.000000)

410
(0.004359)
(0.000000)

74% 2115 7 1 7 7

145
(0.995634)
(0.000000)

1482
(0.004359)
(0.000000) 74% 2115

7 5 7 7

78
(0.999994)
(0.000000)

410
(0.004359)
(0.000000)

74% 2115 7 5 7 7

145
(0.995634)
(0.000000)

1482
(0.004359)
(0.000000) 74% 2115

7 0.5 7 -7

56
(0.063808)
(0.000000)

424
(0.063829)
(0.000000)

76% 2095 7 0.5 7 -7

84
(0.063833)
(0.000000)

1531
(0.063829)
(0.000000) 76% 2095

17 0.5 7 -7

38
(0.400973)
(0.000001)

424
(0.312849)
(0.000000)

76% 1992 17 0.5 7 -7

61
(0.400972)
(0.000000)

1469
(0.282662)
(0.000000) 76% 1992

7 0.5 12 -12

55
(0.047778)
(0.000000)

424
(0.047788)
(0.000000)

75% 2071 7 0.5 12 -12

87
(0.047790)
(0.000000)

1505
(0.017788)
(0.000000) 75% 2071

44

Table 4.3: The similarity scales derived from the matrix il/ +— li' in the examples
in previous table.

residue (U, D, NP)=(7, 7, 7) (T, -7, 7) (T, -7, 17) (12,-12, 7)
A 0.997815 0.000000 0.000000 0.000000
H -0.066023 0.000000 0.000000 0.000000
N 0.002535 0.000000 0.000000 0.000000
D -0.000208 0.000000 0.000000 0.000000
(:! 0.000004 0.000000 0.000000 0.000000
Q 0.000000 0.000000 0.000003 0.000000
E 0.000000 -0.000008 -0.000090 0.000003
C! 0.000000 0.000092 0.000725 -0.000010
II 0.000000 -0.000591 -0.001508 0.000290
I 0.000000 0.030991 0.071284 -0.016680
L 0.000000 -0.967001 -0.958101 0.975670
K 0.000000 0.2.52636 0.277383 -0.218602
M 0.000000 -0.002827 -0.004038 0.001829
F 0.000000 0.000034 0.000058 -0.000020
P 0.000000 -0.000002 -0.000003 0.000001
S 0.000000 0.000000 0.000000 0.000000
T 0.000000 0.000000 0.000000 0.000000
W 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000
V 0.000000 0.000000 0.000000 0.000000

45

Table 4.4: Three-state predictions using tlie similarity scale derived from the matrix
C—W and the 5-nearest neighbors method (Predict when 4 or 5 neighbors
have same structures).

NP Thr U D ptt PA
55 22 158

(0.0.54492)
(0.000000)

(0.001735)
(0.000000)

(0.054492)
(0.000000)

30 34 116
(0.054519) (0.001797) (0.036515)
(0.000000) (0.000000) (0.000000)

50 57 419

7 0.5 7 -7
(0.036515)
(0.036515)

(0.054164)
(0.000000)

(0.054507)
(0.000000) 52% 971

50 25 151
(0.042106)
(0.000000)

(0.000443)
(0.000000)

(0.042106)
(0.000000)

31 38 152
(0.042117)
(0.000000)

(0.000451)
(0.000000)

(0.033850)
(0.000000)

53 64 408

7 0.5 12 -12
(0.033850)
(0.033850)

(0.042042)
(0.000000)

(0.042114)
(0.000000) 51% 978

"See Table 4.33.

46

laljle 4.5; Two-state predictions using the similarity scale derived from the matrix
M + N + and the 5-nearest neighbors method (Predict when 4 or
5 neighbors have same structures).

NP Thr U D P PA #/'

7 0..5 7 7

79
(0.000014)
(0.000000)

404
(0.000637)
(0.000000)

73% 2031 7 0..5 7 7

141
(0.000014)
(0.000000)

1407
(0.000650)
(0.000000) 73% 2031

7 1 7 7

79
(0.000014)
(0.000000)

404
(0.000637)
(0.000000)

73% 2037 7 1 7 7

141
(0.000014)
(0.000000)

1413
(0.942219)
(0.000000) 73% 2037

7 5 7 7

79
(0.000014)
(0.000000)

404
(0.000637)
(0.000000)

T3% 2037 7 5 7 7

141
(0.000014)
(0.000000)

1413
(0.942219)
(0.000000) T3% 2037

17 0.5 7 -7

C6
(0.001052)
(0.000000)

372
(0.002690)
(0.000000)

73% 1796 17 0.5 7 -7

114
(0.000667)
(0.000000)

1244
(0.002092)
(0.000000) 73% 1796

7 0.5 7 -7

79
(0.000014)
(0.000000)

404
(0.000637)
(0.000000)

73% 2031 7 0.5 7 -7

141
(0.000014)
(0.000000)

1407
(0.000650)
(0.000000) 73% 2031

7 0.5 12 -12

79
(0.000011)
(0.000000)

402
(0.000426)
(0.000000)

73% 2029 7 0.5 12 -12

143
(0.000011)
(0.000000)

1405
(0.000437)
(0.000000) 73% 2029

47

Table 4.G: The similarity scales derived from the matrix M + N + 11' ^ in the
examples in previous tables.

residue (U, D, NP) = (7, 7, 7) (7, -7, 17) (7, -7, 7) (7, 12, -12)
A
II
N
D
(J
Q
E
CI
H
1
L
K
M
F
P
S
T
VV

V

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

-0.000001
-0.000077
-0.000444
-0.003688
-0.999575
-0.02890G
-0.000729

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000004
0.000115
0.000752
0.006673
0.999473
0.031739
0.000993

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

-0.000001
-0.000077
-0.000444
-0.003688
-0.999575
-0.028906
-0.000729

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
0.000078
0.000122
0.003336
0.999707
0.023961
0.00055!)

48

Table 4.7: Three-state predictions using the similarity scale derived from the matrix
C and the 5-uearest neighbors method (Predict when 4 or 5
neighbors have same structures).

NP Tin- U D P PA *P
79

(0.000013)
(0.000000)

33
(0.000038)
(0.000000)

120
(0.000011)
(0.000000)

50
(0.000008)
(0.000000)

44
(0.000026)
(0.000000)

123
(0.000013)
(0.000000)

7 0.5 7 -7

90
(0.000013)
(0.000013)

45
(0.000026)
(0.000000)

373
(0.000653)
(0.000000) 52% 957

79
(0.000010)
(0.000000)

34
(0.000031)
(0.000000)

125
(0.000009)
(0.000000)

51
(0.000007)
(0.000000)

45
(0.000021)
(0.000000)

121
(0.000010)
(0.000000)

7 0.5 12 -12

92
(0.000010)
(0.000010)

48
(0.000021)
(0.000000)

367
(0.000448)
(0.000000) 51% 962

4.3 Similarity Matrix for Two-state Prediction

4.3.1 Introduction

The similarity matrix is a 20 x 20 matrix, the i,jth entry of which marks f lie

similarity between amino acids i and j. The matrix may be based on the chemical

or physical similarities between amino acids or an implicit similarity based on the

fre(|uency with which amino acid i has mutated (non-lethally) to amino acid j. The

similarity scale and the five nearest neighbors method consider the Euclidean distance

49

between two points as the structural similarity between two corresponding residues.

The similarity matrix considers the inner product of two vectors, which corresponds

to two protein segments, as the similarity of the structures of the two middle residues

in the two segments. Thus, the points with known structures, i.e., points in the

training set, lying on one side of the plane determined l)y the observed segment

will determine the secondary structure of the middle residue in the observed protein

segment.

4.3.2 Method

We construct a similarity matrix S using certain small eigenvalues and coire-

sponding eigenvectors of the matrix AI + N + (or M + N — li'), which was

discussed in the previous section. That is,

where in < 20 and where are some significant, small eigenvalues associated

with the eigenvectors of the matrix M + iV + By significant, we mean

that the smallest unused eigenvalue is greater than the greatest used one and tiiat

the difference is relatively great. For example, suppose the eigenvalues listed, from

smallest to largest, are 1.0, 1.2, 1.7, 2.0, 7.4, 7.6,-• 12, and 14; then the first four

eigenvalues will be chosen. We use the matrix S, as Levin ti al. use their similarity

matrix, to define the similarity score of two amino acid segments.

Suppose that 5'^ and S2 are two k-amino acid segments represented l)y the two

20xA' matrices Ui and U21 respectively, as in the previous section. Then the similarity

50

score, .S'(5j, ,S2), of .S'| and 5*2, as defined by matrix S, is

m
(.1.5)

/=! VKi)

where • is the usual inner product in k-dimensional real space.

Temporarily, let m = li'/(i) = 7;,andO^^ = 0 in Eq. 4.5, i.e.,

.S'(5i,52) = i(0^f^l).(0^fA2).

If Pi and P2 are the two points in R^' transformed from 6'^ and .S'2 , respectively, l>y

0, as in the previous section, then

Pl=O^Ui,

P2 = 0^U2,

and

'^'('S'lvS'g) = -Pi • P2.

Tlie matrix S would work well if the following two hypotheses were true:

1. The points transformed from the k-amino acid segments by eigenvector 0 are

well distributed. That is, there exists a plane L in R^' such that most middle

residue alpha-helical points lie on one side of L (the points lying on the other

side are called "misplaced" points) and most non-alpha-helical points lie on the

other side (see Fig. 4.2).

2. The plane L passes through the origin (see Fig. 4.2).

We can classify k-amino acid segments in the training set into two groups. A

and B, according to the helical or nonlielical structure of the middle residue,

51

A misplaced point

Plane L

A misplaced point

Figure 4.2: The transformed points are well distributed.

For an element .9^ in A that is not misplaced in most segments T in the

training set such that

for some constant C, would belong to group A if the above two hypotheses were true.

A similar phenomenon would hold true for group B (Fig. 4.3).

Hence, to predict the structure of the middle residue of a new amino acid seg

ment, ,S'2, we compare the sums of the S{S2,T) values for segments T in groups A

a n d B f o r w h i c h S (S 2 , T) > C .

4.3.3 Prediction Procedure

If for S (S 2 , T) > C , where S 2 is a new amino acid segment whose structure is

unknown, the sums of the S {S2,T) values for segments T in group A is greater than

52

S (S u T) < C

Ciroup B

Group A

S (S i , T) > C

S (S i , T) = C

Figure 4.3: Most points T belong to the group A for which S (S i . T) > C .

53

tliat ill group B, llien the alpha-helix structure is assigned to the middle residue of

iS'2. Otherwise, the structure assigned is coil. Let us call this prediction procedure

the Levin-like scheme.

Another prediction procedure is similar to the 5-nearest neighbors method. We

find the 5 segments T from the training set with greatest ,5' ('S'g, T) values. Then tlie

secondary structures of the middle residues in the 5 segments determine the struct ure

of the target residue. If the middle residue of 4 (3 or 5) of the 5 segments have the

same structure, then this structure is assigned to the target residue. Otherwise, no

prediction is made.

4.3.4 Results and Discussion

Tables 4.8, 4.9, 4.10, and 4.11 present results of two-state predictions obtained

using different matrices {M + N — IV or M + N + and prediction schemes

(Levin-like or 5-nearest neighbors). Similarity matrices are band matrices.

Tables 4.12 and 4.13 present results of three-state predictions obtained using

matrices C — IF and C + 1F~^, respectively, and the 5-nearest neighbors prediction

scheme. Similarity matrices are band matrices. Coil remains overpredicled. Note

that there are 4884 alpha-helical segments, 3884 beta-sheet segments, and 8072 coil

segments in the training set when the length of the segment is seven, and there are

4524 alpha-helical segments, 3634 beta-sheet segments, and 7G52 coil segments when

the length of the segment is seventeen.

54

Table 4,8: Two-stale predictions using the similarity matrix derived from the matrix
M + N — 11' and the Levin-like method.

NP II D A SC:ORE" P PA #/'
0 840

7 7 -5 5 7 0 2472 75% 3312

"SCORE is the minimal similarity value between the observed segment in testing
set and any segment in training set that are considered similar.

Taljle 4.9: Two-state predictions using the similarity matrix derived from the matrix
AI + N +]V~^ and the Levin-like method.

NP IT D A SCORE P PA
0 840

7 7 -5 3 7 0 2472 75% 3312

Table 4.10: Two-state predictions using the similarity matrix derived from the ma
trix M + N — Vl' and the 5-nearest neighbors method (Predict when 4
or 5 neighbors have same structures).

NP Thr U D A P PA

7 0.5 7 -5 5

100
(188,795,908)

(3,735,217)

355
(176,997,325)

(1,258,731)

2080 7 0.5 7 -5 5

178
(176,038,425)

(1,346,108)

1453
(182,352,343)

(1,038,586) 74% 2080

Table 4.11: Two-state predictions using the similarity matrix derived from the ma
trix M + N + and the 5-nearest neighbors method (Pretlict when
4 or 5 neighbors have same structures).

NP Thr U D A P PA

7 0.5 7 -5 3

64
(787,608)

(903)

386
(1,149,940)

(J24)

08% 1721 7 0.5 7 -5 3

169
(1,165,708)

(306)

1102
(1,149,448)

(61) 08% 1721

55

Table 4.12: Three-state predictions using the similarity matrix derived from the
matrix C — VK and the 5-nearest neighbors method (Predict when 1 or
5 neighbors have same structures).

NP Thr II D A P PA
94

(280,867,391)
(5,095,399)

29
(288,710,681)
(52,866,430)

127
(288,712,170)

(2,031,192)
71

(256,763,271)
(8,401,568)

60
(228,986,542)

(8,149,886)

148
(276,302,636)

(1,599,557)

7 lo i 7 -5 5

109
(275,017,426)

(275,017,426)

63
(249,545,024)

(4,501,798)

374
(280,385,919)

(3,326,436) 19% 1075
92

(280,867,391)
(54,781,622)

29
(288,710,681)

(52,866,430)

115
(288,712,170)

(.52,880,575)
69

(256,763,271)
(52,950,522)

59
(228,986,542)

(59,405,761)

110
(276,302,636)

(51,862,433)

7 5 X lo" 7 -5 5

105
(275,017,426)

(275,017,426)

59
(249,545,024)

(55,070,816)

349
(280,385,919)

(.50,877,254) 19% 1017
80

(1,135,257,107)
(318,006,616)

33
(1,140,401,086)

(351,858,070)

97
(1,028,756,924)

(204,966,534)
51

(1,017,372,169)
(422,400,762)

40
(1,376,094,007)

(357,545,242)

107
(1,109,190,057)

(323,577,768)

17 5 X lo" 7 -5 5

103
(1,116,703,446)
(1,116,703,446)

41
(983,976,949)

(324,759,996)

311
(1,271,005,388)

(184,949,291) 50% 863
77

(951,979,541)
(266,4.33,217)

33
(943,400,934)
(293,302,073)

98
(861,639,626)
(172,023,641)

53
(843,388,304)
(355,775,251)

42
(1,147,947,682)

(297,746,735)

108
(927,787,508)
(267,309,152)

17 5 X io" 10 -10 5

101
(937,624,840)

(937,624,840)

39
(822,945,509)

(268,429,753)

312
(1,064,905,273)

(152,627,097) 50% 863

56

Table 4.13: Three-slate predictions using the similarity matrix derived from the
matrix C]V~^ and the 5-nearest neighbors method (Predict when 1
or 5 neighbors have same structures).

NP Thr U I) A P PA #/'
46 23 81

(527,404)
(11,091)

(525,997)
(12,237)

(781,386)
(11,067)

43 17 57
(792,111)
(11,094)

(626,213)
(12,331)

(781,017)
(11,098)

81 30 146

10'^
(626,202) (372,651) (780,878)

7 10'^ 7 -5 3 (626,202) (12,237) (11,009) 10% 521
6 1 30

(527,404)
(391,021)

(525,997)
(394,350)

(781,386)
(390,559)

15 4 17
(792,111)
(390,531)

(626,213)
(371,328)

(781,017)
(390,576)

11 0 29

:j X 10-')
(626,202) 0 (780,878)

7 :j X 10-') 7 -5 3 (626,202) 0 (371,325) 35% 113
21 9 91

(970,613)
(315,701)

(1,149,355)
(316,217)

(1,310,932)
(312,155)

24 15 92
(1,328,353)

(320,111)
(813,704)
(315,688)

(1,803,345)
(320,068)

37 20 186
(1,329,871) (1,310,689) (1,803,347)

17 X 10"') 7 -5 3 (1,329,871) (315,687) (315,017) 45% 198

57

Table 4.13 (Continued.)
NP Tin- U D A P J'y\ #/'

41
(970,613)

(36,760)

11
(1,149,355)

(37,136)

153
(1,310,932)

(34,143)
35

(1,328,353)
(34,101)

20
(813,704)
(33,888)

125
(1,803,345)

(36,675)

17 3 X 10"^ 7 -5 3

71
(1,329,871)
(1,329,871)

24
(1,310,689)

(33,888)

280
(1,803,347)

(32,528) 45% 760
24

(514,177)
(34,150)

9
(606,262)
(161,664)

100
(706,196)

(30,245)
25

(715,686)
(34,148)

15
(416,884)
(161,373)

93
(958,559)

(34,204)

17 3 X 10^ 10 -10 3

38
(716,436)

(716,436)

21
(706,064)

(34,150)

202
(958,560)

(30,232) 46% 527

58

4.4 Single Separation Plane

4.4.1 Introduction

The inost general encoding scheme introduced in Chapter 3 will be used in the

last two sections of Chapter 4. That is, a k-amino acid segment is represented iiy k

20-dimensional unit vectors and transformed into a single point in 20k-dimensioual

real space.

The ultimate purpose of the information theory method and the neural network

model is to construct a plane in the (20 x Â')-dimensional real space, where k is the

tiumi)er of amino acids in a segment. The structure assigned to the middle amino

acid in a new segment is determined by the location of the segment in space. It is

alpha-helical if the point transformed from a segment lies on one side of the plane; it is

coil (or nonalpha-helix) if the point lies on the other side. We will construct a linear

programming model in this section and attempt to find an acceptable separating

lilane.

4.4.2 Method

Two-state prediction. A segment of amino acids is defined to t)e alpha-helical

if the structure of its middle amino acid is in an alpha-helix. Similar]>roccdure is

followed for a non-alpha-helical structure. Suppose that there are w -t- r k-ainino

acid segments in the training set, within which m segments are alpha-helical, and r

segments non-alpha-helical. Let A be an m X 20A! matrix with each row composed

of k 20-dimensional unit vectors and corresponding to an alpha-helical segment in

the training set. Similarly, let B be an r x 20A; matrix representing the r non-alpha-

59

liclical segiiients in the training set. To fincl a normal vector N and a constant. C i

constitute a plane, we solve the minimization problem (For convenience, let k = 7.

77?+?'

Minimize ^ Z/
i=l

i4 • N + Cm + Z(\ > 0,

5 • N Cr + Zc < 0,

Ni + iV2 + • • + ̂ 20 = 0,

N21 + N22 + • • + ̂ ^40 = 0,

-/V4I + A^42 + • • + %o = 0,

+ ̂ 62 + • • + ̂ ^^80 = 0,

A^Sl + %2 + • • + ̂ ^100 = 0,

A^lOl +A^102 + •• + A'I20 = 0,

^121 +^^122 + •• + ̂ 140 0,

N « N = 1 , a n d

Zf > 0, where i = 1, 2,' • - , m + r,

(A^l,iV2, • • ',^^140)^1

(Z i , Z 2 , • • • , Z / n) ^ ,

T
(• • • ' Ziij-^ f) ,

(C, C, • • •, C')^, a constant vector in , and
rn ^

(C\ C', • • •, C') , a constant vector in /?',

where N =

Zq =

Zc =

C m =

Cr =

60

are unknowns.

Solving such a minimization problem will yield a unit vector N and a constant

C such that the sum of the distances (Zj) from the "misplaced points" to the plane

X • N + C = 0 is minimized (Fig. 4.4). The Z,; value associated with a correctly

placed point is 0. The seven constraints -I 1- for 1 = 1. 21. II.

61, 81, 101, and 121, eliminate some trivial solutions for which the resulting plane

contains all the points in the training set and thus will not classify alpha-helical and

coil points. For example,

JV = -tI—(1,1,'*',1,—1,-1,••*,—1,0,0, ••• ,0,0)^,

20 20

and

C = 0, and

Zf = 0, where i = 1,2, • • •, + r.

140

'^=7nô'

Z f - = 0, where ?' = 1,2, • • •, ??? + r

are I,wo trivial solutions, but do not satisfy the constraint 4 h vVgO ~ 0.

On the other hand, because we are concerned with the relative influence of the

20 different amino acids at each position on the structure of the middle amino acid

of k-aniino acid-long sequences, the seven constraints are quite acceptable.

The nonlinear constraint N • N = 1 is first replaced with N • A'^q = 1. where

IIA'^qII = lis given, thus turning it into a linear constraint for which the Simplex

method can solve for a solution of JV^. Normalizing A^| to obtain A^i and replacing

61

Plane X-N + C = 0

Figure 4.4: The nonzero Z,; is the distance from the plane to the "misplaced" point
associated with Z[.

62

N # N l)y N # TVj =1, we solve the minimal problem by the Simi)lex method again

and normalize the solution to obtain #2* etc.

The initial guess, jVg, is given as

A ^ 0 = ^

where

M - B y , "

A = ^'=1 auci B = 5î=Ldi, ,vlieie
in r

A j S a r e t h e r o w s o f t h e m a t r i x A a n d

j5,;'s are the rows of the matrix B.

Tliat is, À and B are the centroids (or averages) of the alpha-helical points and

the coil points, respectively, and Nq is the normalization of the difference bet ween

centroids.

Sui)pose there is a plane, namely A' • N -1- C = 0, able to separate alpha-helical

from non-alpha-helical points. That is, /l,;• N -F C > 0 for any row Aj of the matrix

A, and By - N -|- C < 0 for any row Bj of the matrix B. Then

and

where

Â . N - k C > 0

5 • N + C < 0,

•So

À • N - 5 • N > 0,

63

i.e.,

{ À - B) - N > 0 ,

i.e..

[|^_ • N > 0 provided \\A - D\\2 ^ 0.

Tims, let

T\T Â — B
"o^WTBh-

Three-state prediction. First, we describe Qian Sz Sejnowski's and Robson d

three-state prediction schemes and explain how to make a three-state prediction.

Qian and Sejnowski did not undertake a two-state prediction in [10]: Instead

they constructed three tables for a three-state prediction using a two layer neural

network. These three tables include the weights from the input units to the three

output units, as well as the bias in each output unit. If we rearrange the numbers in

each table as three 20k-dimensional vectors Aq, N^, and Nc and let the three l)iases

be Ba, and Be, respectively, then for a new amino acid segment P. Qian and

Sejnowski use the greatest of the three numbers

* P + Bai

• ̂ +

and

N c • -P + B e

to determine the secondary structure of the middle residue of P.

Assume that

Naji = Na-Nij,

64

^ac = Na — Nci

^o/i = - Bjj,

Bac = — Bc^

and that

^/5c = ̂ /i - Bc\

then the three planes

^a/i= ^cv/i • + ̂ a f l = 0,

I(\c'- Nac • + B(xc = 0,

and

^/ic= lie • + ̂ /)c = 0

])artil.ion the 20k-dimensional real space into several regions, and each region is a

"alpha region," a " beta region," or a "coil region" (Fig. 4.5). The secondary structure

assigned to the middle residue of a new segment P depends upon in wliich region or

in wliat kind of region P is located. For example, an alpha-helix will be assigned if

P is in an alpha region.

The three planes

Pa'- • -P + B(x = 0,

^1)' -^/J • -^ + = 0,

and

Pc'. Ne* P Be = 0,

65

N . a/3
iVn, ac

Figure 1.5: Three-state prediction in three-dimensional space. The intersection ol'
t h e t h r e e p l a n e s i s a l i n e . T h e t h r e e v e c t o r s A o c . a n d N a r e
linearly dependent.

66

will cil are derived from the neural network model; and the magnitude of tiie three

vectors Na, Njj, and Nc, i.e.,

Il%l|2,

l|A'/)ll2.

and

l|A'dl2.

dei.erniine how 20k-dimensional real space is partitioned. Su])pose that Q is a point

on the plane and suppose that the Euclidean distances from Q to Po and from

Q to Pyj are da and respectively. Then

||A^o || • (la = ||-/Vy^|| •

Let us call the three planes I^i^^Iqc , and 7^^ the "indifference planes"; the Eu

clidean distance from a point T to Px times ||A^;r||, where x = o, /i, and c, the

"statistical distance" between T and Px] and the three vectors and Nc t he

"distance vectors" (See Fig. 4.6).

Applj'ing Ecj. 2.5, the information theory method for three-state prediction con

structs three tables for alpha-nonalpha, beta-nonbeta, and coil-noncoil separations,

respectively. In exactly the same procedure as used in the neural network model, the

three tables are used to construct three indifference])lanes if the three decision con

stants for each table are determined. For a fixed dat abase, the three unique distance

vectors for the information theory method are determined, and the three decision

constants chosen to yield a good performance; that is, the three indifference planes

are "shifted" to cause a good partition for the points in the training set. The statis

tical distances from a point to the three indifference planes will reflect the struct ural

67

l^igure 4.6: The inclifference plane 7^,^ in three-dimensional space.
The two statistical distances sda and are equal.

= Nc\

68

leiidency of tlie middle residue of the segment corresponding to the point (Fig. -1.5).

On the other hand, in the neural network model, both the three distance vectors

and the three biases are changable. The three indifference planes should not only be

"shifted''' but also be "rotated'" to achieve a good performance upon partition. Thus,

the neural network model can, although not consistently'^, yield a better result than

can the information theory method.

The goal of the linear programming model for three-state prediction is to con

struct three planes directly to partition the 20k-dimeusional space. For two-state

prediction, we construct a plane to "separate" the alpha-helical points from the non-

alpha-helical points. The three planes for three-state prediction "separate" the alpha-

helical points from the beta-sheet points, the alpha-helical points from the coil points,

and the beta-sheet points from the coil points. We use the same model for two-stale

prediction but use different A and B matrices to find the three planes. If A and

B rejjresent the alpha-helical and the beta-sheet points, respectively, and if the coil

points are discarded, then the resulting plane can be used for alpha-beta separation

(Fig. 4.6). The other two planes are constructed similarly (Fig. 4.5). The resulting

three planes will partition the space into several regions, each of which will be cate

gorized as an alpha-helix region, a beta-sheet region, a coil region, or a fuzzy region.

We assign no structure to points lying on a fuzzy region.

Note that the intersection of the convex hulls of the alpha-helical points, the

beta-sheet points, and the coil points may not be empty, i.e., "mixed region(s) (or

^To achieve a desired input-output mapping, the purpose of the neural network
model is to minimize the quadratic function, which is the sum of the differences of the
target outputs and the corresponding outputs of the network over all inputs. Because
of the existence of local minima, the performance of a network depends upon starting
weights and training procedures.

69

fuzzy set(s))" exist(s). Therefore, a point is not predicted if it is lying in a mixed

region.

4.4.3 Prediction Procedure

Two-state prediction. Suppose that the plane A'«N + C = 0 results from the

linear programming model. Then the secondary structure of the middle amino acid

of a segment, corresponding to point P, is predicted to be (Fig. 4.7) alpha-helical if,

f e N C > 0

and non-alpha-helical if

P • N -t- C < 0.

Three-state prediction. Suppose that the three planes

• No/? + C'a/) = 0,

A' • Nqc + Cac = 0, and

'^'•N/3C + <^75C = 0

are the resulting partition planes. To assign a secondary structure to the middle

residue of a block of k amino acids, each of the three j)artition planes will be used

to determine one of two])ossible structures: alpha-helix or beta-sheet, alpha-helix

or coil, and beta-sheet or coil, respectively. We predict only when two out of three

structures are the same and assign the structure to the target residue (Fig. 4.8).

4.4.4 Smoothing Algorithm

A helix or a sheet in a protein is composed of several contiguous amino acids.

A prediction scheme may mistakenly assign non-helix to a residue in the middle of

70

a region: A" • N + C > 0

non-o region: A' • N + C < 0

A • N + C = 0

Figure 4.7: Two-state prediction.

71

Oc

A • Noc + C'ac = 0

Figure 4.8: Three-state prediction. The structure assigned to a point depends upon
where this point is located in space. We do not predict if a |)oint lies in
the middle triangle region.

72

a block of helix residues, which would appear to be a discontinuity in tiie prediction

sequence. The])urpose of the smoothing algorithm is to offset or to eliminate the

discontinuity trend. If an amino acid is assigned a structure different from that

assigned to the left two and the right two amino acids, which have the same struct ure,

(.hen the st ructure of the middle acid must be changed so that all five acids have the

same structure.

We applied the smoothing algorithm in two-state prediction, and accuracy per

centages improv ed slightly.

4.4.5 Results and Discussion

A. Artificial Database.

We use Eqs. 2.5 and 2.4, which have been derived from the information theory

method with and without Baysian smoothing, respectively, to construct artificial

databases using the first 30^ or the first 50'^ proteins in the training set. We assign

"structure" to the proteins according to the information theory prediction. To do

so, we first compute the appropriate information theory vector (a 140-dinicnsional

vector because we use segments of length 7) using one of the two equations and

either 30 or 50 proteins. We let the adjustable parameter be zero and construct

a MO-dimensional plane, L, passing through the origin. The artificial database is

established by changing the structural assignments to the residues in the 30 or the 50

proteins wlienever necessary so that all alpha-helical points lie on one side of plane

L and so that all non-alpha-helical points lie on the other side. Then the linear

'^The total number of amino acids in the 30 proteins is 3707.
'^The total number of amino acids in the 50 proteins is 7251.

73

prograinniiiig model in the Method section uses the artificial database to find the

])lane M i)y means of MPSX software and an IBM machine. The partition result is

subsequently tested on the artificial database.

The resulting planes M can, except for some points on M, separate alpha-helical

points from non-alpha-helical points in the artificial database (See Table 4.14). From

the experiments, we found that a plane M can be constructed in one iteration by

means of the linear programming model, which separates the alpha-helical from the

non-alpha-lielical points; on the other hand, the number of iterations has little influ

ence on the performance of the partition for the 30 or the -50 proteins.

We tested the partition accuracy performed by plane L on the 30 or 50 proteins

before changing structures to establish an artificial database (see Table 4.1.5). We

found that the use of Bayes' decision theory has little influence on the performance

of partitions of the 30 or .50 proteins.

74

Table 4.14: The partition result on artificial database performed by the planes.
which were derived from the linear programming model and calculated
by the software MPSX, for seven amino acid segments in the set of .']()
or of 50 proteins.

r S& r CPU^ Del-' S I CPU % Del S I CPU % Del

13.9

30
1587 42

1 421 99 36

13.9

30 7 1841 1 421 99 36

13.9 50
3125 17

1 1030 99 14
3107 40

2 1261 99 4 13.9 50 56 3725 1 1030 99 14 37 3749 2 1261 99 4

D''

30
1636 20

1 405 99 29

D''

30 38 1790 1 405 99 29

D''

3156 24

1 1274 99 7

3122 48

2 3049 99 29

3150 27

3 1071 99 17 D'' 50 46 3704 1 1274 99 7 16 3722 2 3049 99 29 35 3708 3 1071 99 17

= The number of proteins used.

''The separation result for the 30 or the 50 proteins (see Table 1.16 for details.).
Note that we ran the MPSX in double precision, but only five numbers after digital
points are used to form the planes. Because all the output solutions from MP8X
were optimal with objective values 0, any resulting jjlane will separate all alpha-
helical points from nonalpha points, except for some points lying on the plane. The
"misjjlaced" points in this column, in fact, lie on the corres]wnding plane tieriveil
from the MPSX.

'1 is the number of iterations performed in the linear programming model.

^4n seconds.
= SA = separation accuracy.

J Del is the number of deleted points, which may or may not be on the real
|)lane constructed by the MPSX, but which lie on the plane used here and were
not partitioned.

f I3aysian information theory method.

''Non-Baysian information theory method.

75

Table 4.15: The partition results of the planes, which were derived from the infor
mation theory method, for seven-amino acid segments in the sets of .'jO
or of 50 proteins.

SA'' Del^"
1013 410

30 638 1452 70% 0
1768 750

Baysian 50 1380 3039 69% 0
1020 403

30 650 1440 70% 0
1783 735

Non-Baysian 50 1401 3018 69% 0

"The separation results for the 30 or the 50 proteins.

''SA = Separation arcnrary.
'^'Del = The number of points on the plane.

Table 4.16: The four numbers in the entries of the S or P column in some tables
have the same roles as do A, B, C, and D.

Real structure
Predicted si ructule

Real structure alpha-helix noiial])lia-helix
alpha-helix A B

nonalpha-helix C D

76

B. Real Database.

An acceptable normal vector will reflect the influences of different amino acids

at different positions on the structures of middle residues in segments. Algebraically,

the entries in an acceptable normal vector will be different to quantitativ ely indicate

the relative influences; geometrically, the resulting plane will separate most points of

different types and itself contain only a few points.

Two-state Prediction. We use MPSX software and the first 10 proteins (1027

residues) in the training set to test the {performance of the linear programming model

for seven-ami no acid segments. The solution, which includes a normal vector N and

a constant C, is of the the form^

= 19 X (—a) , where a i s a rea l number ,

N.j = a for Î = 81 - 100 except 95,

Nj = 0 otherwise, and

C = —a.

The plane will contain all points except the points whose corresponding segments

include prolines at the fifth positions (counted from the N-terminal end to the ('-

terminal end), and for which the structures of the middle residues are predicted to

be non-alpha-helical. Thus, from the viewpoint of separation, this plane does not

achieve our goal; on the other hand, the normal vector indicates that proline is a

helix-breaker when appearing in at the fifth position but gives no information about

the other residues.

When we add the constraint = 0, similar output results. This time, proline

in the sixth position is a helix-breaker. As we continue this process, the resulting

^^The iterative linear programming problem converged in one iteration.

i I

iioinial vectors indicate that proline is a helix-breaker at positions 4, and 0; and

that tryptophan is a helix-breaker at positions 3, 4, 5, 6, and 7, and that tryplopltaii

is a helix-former at the first and second positions.

Another experiment was conducted to add instead the constraint

-0.3 < Nj < 0.3, for i = 75,95,115,18,38,58,78,98,118,138,

to restrict in the normal vector the ranges of some specific entries found in the

previous experiment. We solved the problem until it converged. Using the resulting

planes of each iteration, we list the separation results for the first 10 proteins in

Table 4.17. Note that the normal vector derived from the fifth iteration is not in

an acceptable form as almost all points are predicted to be non-alpha-helical (see

Table 4.17). For example, the normal vector derived from the ninth iteration is

Ni = -0.3 if ? = 78,95,98,118,138,

A^122 = 0.71482,

Nj = 0.01579 if 7 = 61 - 80 and 101 - 120, except 78 and 118;

" Nj^, = 0.03333 if A: = 81 - 100, except 95 and 98;

Ni = —0.02305 if I = 121 - 140, except 122 and 138;

Nni = 0 otherwise; and

C = -0.04187.

Note that A^i22 ~ 0.71482 indicates that arginine is a helix-former when in (he

seventh position. We modified the added constraint as

-0.3 < TV; < -0.01 if i = 75,95,115,58,78,98,118.138, and

0.01 < Nj < 0.3 if j = 18,38,122,

78

and used the normal vector of the fourth iteration above as the starting vector; the

iteration scheme converged, and the resulting normal vectors were accepted. Separa

tion accuracy for the 10 proteins is about 73%. Results are listed in Table 4.18.

We also used the second 10 proteins in the training set to test the model. The

resulting normal vectors indicate that proline at positions .5 and 6, methionine al. the

positions 2, 5, 4, 6; and tyrosine at the positions 3, 5, 4, and 2 are helix-breakers

and that tryptophan at the positions 6 and 7 is a helix-former, which contradicts

the indications of the first 10 proteins. Because the normal vector and the resulting

plane are dominated by the given ten proteins, this phenomenon is not surprising.

79

Table 4.17; The 10 iterations of the single plane for two-state separation with seg
ment length seven on 10 proteins.

lie." OB.J" CPU DOTC s" SA^

1st 28.36468 208.63 1.000003

270
(283)

115
(107)

74%
(75%)

(14)
953 1st 28.36468 208.63 1.000003

129
(132)

439
(445)

74%
(75%)

(14)
953

2nd 18.82253 195.43 0.619989

244
(252)

138
(138)

74%
(75%)

(21)
916 2nd 18.82253 195.43 0.619989

109
(108)

455
(469)

74%
(75%)

(21)
916

3rd 16.21761 195.73 0.491218

255
(256)

132
(134)

73%
(75%)

(7)
960 3rd 16.21761 195.73 0.491218

123
(106)

450
(471)

73%
(75%)

(7)
960

4th 15.12556 199.56 0.426878

264
(278)

118
(112)

73%
(74%)

(25)
942 4th 15.12556 199.56 0.426878

141
(144)

419
(433)

73%
(74%)

(25)
942

"lie. = Iteration.

^0J3.J is the objective value of the linear programming problem. That is, 013.1 is
the sum of the distances from the "misplaced" points to the separation plane.

^DOT is the inner product of the normal vector and the given initial vector.

'^'The partition performed by the plane on the 10 proteins. The results of using
the smoothing algorithm are in parentheses. See Table 4.16.

^SA = Separation accuracy.

J is the number of segments separated by the plane. The number of points
lying on the plane is in parentheses.

80

Table 4.17 (Continued.)
Ile. OB.J CPU DOT S SA #.s

17 373
(1) (389)
10 567 60% (0)

5Ui 11.98900 96.16 0.167121 (7) (570) (59%) 907
12 378
(1) (389)

7 570 60% (0)
6t.h 8.30203 37.90 0.142512 (•5) (572) (59%) 967

12 378
(]) (389)

7 570 60% (0)
7Mi 7.682.39 58.85 0.137115 (5) (572) (59%) !)67

12 378
(1) (389)

7 570 60% (0)
8th 7.66635 39.54 0.136975 (5) (.572) (59%) 967

12 378
(1) (389)

7 570 60% (0)
Util 7.66632 51.85 0.1.36975 (5) (572) (59%) 967

12 378
(1) (389)

7 570 60% (0)
lOtli 7.66632 41.15 0.1.36975 (5) (572) (59%) 967

81

Table 4.18: The last 5 iterations after modification of a constraint.

Ite. OB.J CPU DOT S SA

5tli 14.71520 243.05 0.394234

245
(242)

141
(148)

73%
(74%)

(11)
956 5tli 14.71520 243.05 0.394234

119
(102)

451
(475)

73%
(74%)

(11)
956

6th 13.85828 254.18 0.359923

252
(255)

134
(135)

73%
(75%)

(IS)
919 6th 13.85828 254.18 0.359923

127
(107)

436
(470)

73%
(75%)

(IS)
919

7th 13.79683 210.37 0.356741

263
(271)

120
(119)

73%
(75%)

(20)
947 7th 13.79683 210.37 0.356741

139
(126)

425
(451)

73%
(75%)

(20)
947

Sth 13.78685 228.46 0.356317

263
(271)

120
(119)

73%
(75%)

(20)
947 Sth 13.78685 228.46 0.356317

139
(126)

425
(451)

73%
(75%)

(20)
947

9th 13.78409 188.31

238
(239)

141
(151)

74%
(75%)

(17)
950 9th 13.78409 188.31 0.356048

106
(91)

465
(486)

74%
(75%)

(17)
950

10th 13.78297 158.31

244
(245)

129
(145)

73%
(74%)

(41)
926 10th 13.78297 158.31 0.355848

118
(102)

435
(475)

73%
(74%)

(41)
926

For our problems, the MPSX software required much more time than did the

OSL software. But when we used the OSL software to find a single separation plane

for the 101 proteins in the training set and for length seven, the calculation remained

unfinished after 9019.72 CPU seconds.

For two-state prediction, the beta-sheet structure, as important a structure as

alpha-helix, is considered coil. This assum])tion will make the distribution of))oints

more ambiguous and will limit the accuracy of two-state prediction.

82

Early results regarding secondary structures of proteins included few beta-sheets;

for example, myoglobin and haemoglobin have no beta-sheet structures; thus, only

two-state i)redictiou was studied before.

Three-state prediction. First, we used the first 10 j^rotcins in the training

set to find three single planes for alpha-beta, alpha-coil, and beta-coil separations,

respectively. Second, we used the first 20 proteins to do the same thing. Third, we

use the second 20 proteins to do it. The outputs of all linear programming problems

were optimal.

The results for the first 10 proteins are listed in Tables 4.19 and 4.20. Each

plane is obtained without iteration. Furthermore, the alpha-beta plane is obtained

by allowing to be 0 (we allowed to be a relatively great positive number

when predicting, so that whenever isoleucine is at the seventh position, the segment

will tend to be alpha-helical rather than beta-sheet), and the alpha-coil plane is

obtained by allowing to be 0 (we allowed to be a relatively small negative

number when predicting, so that whenever proline is at the fifth position, the segment

will tend to be coil rather than alpha-helical.).

Because the number of beta-sheet points is far smaller than the number of either

of the other two structures in the 10 proteins, much more time was required (o

construct the alpha-coil plane, and a great objective value resulted. Note that a

great objective value may result from the distribution of points in space.

83

Table 4.19: The three single separation planes for three-state prediction for
seven-amino acid segments on the first 10 proteins in the training set.

alpha-beta" alpha-coil beta-coil

CPU" 28.76 177.64 U
OB.I 0.00000 27.56092 0.00000
Ist^ 0.10604 0.07288 0.11615
2nd 0.10106 0.06939 0.09881
3rd 0.12525 0.09334 0.08914
'1th 0.19647 0.10866 0.12971
5Ui 0.14873 0.10247 0.11118
Gth 0.13549 0.10978 0.09611
7tli 0.112.30 0.10407 0.10583
C(' 0.17629 -0.02952 -0.13055

"The single plane separating the alpha-helical points from the beta-sheet points.

''In seconds; MPSX software.
'^The average of magnitndes of the first 20 entries in the normal vector.

'^Tiie constant term in the equation of the plane.

84

Table 4.20: Separation results regarding the three planes mentioned in the previous
table.

s« SA ab^ ac be DeF
238 7 104
9 33 6
87 17 341 85% 842 35 1 23 66

«See Table 4.33.

''ab is the number of points contained in the alpha-beta plane.
'^ Del is the number of points lying in the fuzzy region.

The average of magnitudes of the middle 20 entries (fourth position) in each

normal vector in Table 4.19 is relatively greater than that of the other entries. This

reflects the fact that structure of a residue is determined mainly by the residue itself.

Furthermore, because the averages of the entries on the C-terminal end are greater

than the averages on the N-terminal end of the alpha-coil plane, the alpha or the coil

tendency of the structure of a residue is dominated by C-terminal residues.

The constant of the alpha-beta plane is a relatively great positive number com

pared with the averages of entries. Thus, alpha-helix may be overpredicted in al|)ha-

beta prediction. Similarly, coil may be overpredicted in beta-coil prediction. On

the other hand, the signs of the three constants are the same as the corresponding

differences of the constants in Fig. 9 of [10]; and the sum of the three constants is

0.01622, a number near zero.

Results regarding the first 20 proteins in the training set are listed in Tables 1.21

and 4.22. For iteration 1, the alpha-coil plane was obtained by allowing (tend to

coil) to be 0; the beta-coil plane was obtained by allowing N'jr^ (tends to coil) to be 0.

For iteration 2, we used the normal vectors from iteration 1 as the initial s ectors and

85

allow (tends to beta-sheet) to be 0 to get the alpha-beta plane, allowed Ni)ry =

A^7§ = = 0, where N'jg tends to alpha-helix rather than to coil and the other

two tend to coil, to get the alpha-coil plane, and allowed jVyg = = 0

(all tend to coil) to get the beta-coil plane. Because we set more entries equal to 0

in iteration 2 than in iteration 1, it is not the real second iteration.

The information contained in the tables for the first 20 proteins is similar to tliat

for the first 10 proteins.

Table 4.21: The three single separation planes for three-state prediction for
seven-amino acid segments in the first 20 proteins in the training sel..

Iteration 1 Iteration 2
alpha-beta alpha-coil beta-coil alp h a-beta alpha-coil beta-coil

(IPU 232.73 620.38 323.10 270.72 762.69 420.95
OB.I 22.77856 71.92611 31.17186 20.83535 60.84273 60.58091
1st 0.06475 0.03941 0.04922 0.06205 0.03572 0.12916
2nd 0.07197 0.05889 0.05211 0.06961 0.05700 0.14681
3rd 0.06808 0.08343 0.06536 0.06534 0.08380 0.15399
4 th 0.08047 0.11318 0.19206 0.07551 0.08373 0.21087
5th 0.09405 0.07422 0.06498 0.07537 0.06718 0.18197
()th 0.06633 0.09746 0.04554 0.06428 0.07708 0.12202
7th 0.06902 0.09969 0.05002 0.07091 0.09401 0.10881
C 0.07453 -0.03785 -0.15509 0.08594 0.00504 -0.11950

86

Table 4.22: Separation results performed by the planes in the previous table.

Iteration 1
S SA #5 al) ac bc Del

457 65 222
74 177 93

217 82 710 67% 2097 10 1 27 53

Iteration 2
S SA al) ac bc Del

401 75 260
65 170 102

180 86 735 67% 2074 16 0 9 89

Results regarding the second 20 proteins in the training set are presented in

Tables 4.23 and 4.24. Separation accuracy is 52%, percentage inferior to those for

the first 20 proteins. Note that the average of the middle 20 entries of the normal

vector of the alpha-coil plane is a small number compared with others and thus will

not dominate the prediction. As a result, accuracy diminishes.

Table 4.23: The three single separation planes for three-state prediction for
seven-amino acid segments on the second 20 proteins in the training
set.

alpha-beta alpha-coil beta-coil
(U'U 644.31 2061.35 511.09
OB.J 72.54383 144.73585 75.30725
1st 0.06642 0.08712 0.03722
2nd 0.08047 0.09116 0.10199
3rd 0.08598 0.09383 0.08301
4th 0.09264 0.06259 0.09753
5th 0.07908 0.08035 0.06710
6th 0.07693 0.06103 0.08220
7th 0.07001 0.06010 0.07886
C 0.09854 0.00459 -0.12038

87

Table 4.24: Separation results performed by the three planes in the previous table.

S SA #s ab ac be Del
152 145 339
128 195 165
363 172 611 52% 2570" 14 2 7 130

"2570 + 23 +130 + G x 20+ 2x6 + 2 = 2857, where 2857 is the number of residues
in the 20 proteins; 23 is the number of points on the planes; 130 is the number of
points in the fuzzy region; the last number 2 on the lefthand side is the two unknown
residues; and the 2 in the term 2x6 comes from the splitting of the two proteins
containing one unknown residue (see Appendix A for details).

The performance of three-state prediction seems better than that of two-state

prediction. But not only is finding single separation planes quite timeconsuming but

also it is somewhat artificial to set certain entries to equal 0.

4.5 Pairs of Separation Planes

4.5.1 Introduction

Because of the existence of a "fuzzy set"" or plural sets^, it is impossible to

separate completely, for example, alpha-helical points from non-alpha-helical points

by means of a single plane. Several pairs of parallel planes, however, can perform

this job [13]. The first pair of parallel planes partitions the whole space into three

'If the convex hulls of, for example, the alpha-helical points and the coil points
intersect, then the intersection of the two sets is called a fuzzy set.

®The percentage of correctly predicted structures of Qian k. Sejnowski's neural
net work without hidden units for the training set is about 63. The 63% performance
of separation by the three indifference planes seemingly reflects the ill-distribution of
the points in s|)ace, which corroborates the observation made in the previous section.
Nevertheless, the performance of the same neural network for the testing set is about
63%, a good result.

88

Plane X-N + C = 0

Plane X-N + D = 0

Figure 4.9: One pair of parallel separation planes.

parts so that, for alpha and nonalpha separation, the points belonging to the fuzzy

set, which is the intersection of the two convex hulls of the two sets containing the

alpha-helical points and the non-alpha-helical points, lie between the two parallel

planes; the points lying on one side, which is not the region between the two planes,

are all alpha-helical points; the non-alpha-helical points, which are not between I he

two planes, lie on the other side. The two parallel planes are constructed as closely

as possible. One of the two parts not between the pair is considered an alpha-helical

region, and the other a non-alpha-helical region (Fig. 4.9).

After discarding the points located on the two sides not between the first pair

89

of planes, we construct the second space partitioning pair, wliich is between t he

first pair, again into three parts so tliat the points belonging to tlie fuzzy set lie

in between. Thus, one side contains only alpha-helical points; the other side only

non-alpha-helical points. The distance between the second pair of planes is also as

small as possible (Fig. 4.10). We then construct the third pair, the fourth pair, and

so on, until all points are completely partitioned.

The pairs of parallel planes partition the entire space into several regions, each

of which is categorized as either alpha-helical or non-alpha-helical (Fig. 4.11). The

structure of the middle residue of a new segment is determined according to the type

of region in which the segment is located.

90

Second pair

Figure 4.10: Two pairs of parallel separation planes.

91

non-a

Second pair
non-a non-a

non-Q

Figure 4.1J: The categorization l)y the two pair of parallel planes in Fig. 1.10, in
which the solid disks represent the alpha-helical points, and the circles
represent the non-alpha-helical points.

Because of the limitation of local prediction, we did not attempt to construct

sulficiently many pairs of parallel planes to partition the whole space; neither did

we make predictions regarding the points lying on the regions neither partil ioned or

categorized.

We tested several different lengths of amino acid sequences, and found that the

result for length 25 is not better than the result for length 17, which is the better

choice.

92

4.5.2 Method

We solve the minimization problem below to find a normal vector N and two

constants C and D to constitute the two parallel planes

A* • N + C = 0 and A' • N + D = 0.

For the sake of convenience, we will use length seven to describe the minimization

])ioblem for the separation of alpha-helical points from non-alpha-helical points. We

do likewise for other examples.

Minimize C — D

Subject to /I • N + Cm > 0,

B - N + D r < 0 ,

+ N2 + • • • + A'20 = 0,

A'21 + N22 + 1- A'40 = 0,

A'^41 + iV42 -\ 1- A^60 =

%i + A%2 + • • • + A^SO = 0,

A'si + A^82 + 1- A^ioo = 0,

A^lOl + A^102 + ••• + A^120 = 0,

A^121 + A^122 + ^ A^i4o = 0, and

N.N = 1,

93

where

m is the number of alpha-helical points,

r is the number of non-alpha-helical points,

A is an in x 140 matrix representing alpha-helical points, and

B is an r x 140 matrix representing non-alpha-helical points,

and where

N = (A^j,iV2,---,iVx4o)^,

Cm = (C, C, • • •, 6')^, a constant vector in i?"', and

Df = (D, £),•••, a constant vector in 7?'',

are unknowns.

Note that C — D is greater than or equal to zero if there is a fuzzy set with a

point P such that

P » N + C > 0 and P » N + D < d .

The difference between these two inequalities implies that C — D > 0, where C is

equal to D if and only if the resulting plane contains the fuzzy set; this special con

dition was not fulfilled in our experiments. On the other hand, C < D if no fuzzy set

exists; again, this condition did not arise.

A. Type I Partition.

Type I partition is accomplished by means of three groups of parallel planes sep

arating the alpha-helical points from the beta-sheet points, the alpha-helical points

from the coil points, and the beta-sheet points from the coil points. To construct the

first group of planes, i.e., to separate alpha-helical points from beta-sheet points, the

matrix A in the linear programming model represents the alpha-helical points, the

94

matrix B represents the beta-sheet points, and the coil points are discarded. For the

construction of the second group of planes, the matrix A represents the alpha-helical

points, and the matrix B represents the coil points. Similarly, to construct the third

group, let A represent the beta-sheet points, and let B represent the coil points.

B. Type II Partition.

Type II partition is similar to type I partition except, that type II partition is the

separation of alpha-helical points from non-alpha-helical points, which includes the

beta-sheet points and the coil points; of beta-sheet points from nonbeta-sheet points,

which includes the alpha-helical points and coil points; and of the coil points from

the noncoilpoints, which include the alpha-helical points and the beta-sheet j)oints.

Thus, the type II partition is also performed by three groups of parallel])lanes.

4.5.3 Prediction Procedure

A. For Type I Partition.

Each group of parallel planes partitions the 20k-dimensional s])ace, i.e..

where k is the number of amino acids in each segment. For a. new segment, the

st ructure assigned to the middle residue depends upon the location of the segment in

consider the partition performed by each group of planes independently,

and one of two possible conformations will be given from each group if the point

is not located in a mixed region such as the middle rectangular region in Fig. 1.11.

The two possible conformations are alpha-helical and beta-sheet from the first group;

alpha-helix and coil from the second group; and beta-sheet and coil from the third

group. If two out of the three structures derived from the three groups of planes are

95

(he same, then the same structure is assigned to the observed residue. Otherwise, we

make no prediction.

B. For Type II Partition.

We consider tlie partitions performed by each of the three groups of parallel

planes indepedently. For a new protein segment P, each group of planes will determine

a number d as follows. For the sake of convenience, we will use the a— ~ a group

to describe how the number d is determined. (Similar expressions hold for the other

two cases.) If P lies in the mixed region, d is 0. Otherwise, P lies either on an

alpha-helical or a non-alpha-helical region, which is determined by a pair of parallel

planes, Li and L2, in the group. If P lies on an alpha-helical region, d is the distance

from P to the closer one of the two planes Li and L2', otherwise, d is the negative of

the distance from P to the closer one of them.

Let d j , where i = 1,2,3, be the number determined by the ith group of planes.

If at least one of the dj's is positive, the conformation (alpha-helix, beta-sheet, or

coil) associated with the largest number will be assigned to the observed residue; if

only one of the r/,;'s is 0 and the other two are negative, then the structure assigned

to the residue will be aJpha-helical if f/j^ = 0, beta-sheet if f/2 = 0, and coil if r/y = 0.;

otherwise, no prediction is made.

96

4.5.4 Results and Discussion

First, we used the first 50 proteins, which include 7251 amino acids, ^ in the

training set to test the convergence of the iterative linear programming scheme both

for two-state separation (alpha-helical and non-alpha-helical) and for length seven,

which is the number of residues in a segment. To construct the first pair of parallel

])lanes for nine iterations, OSL^® software was used. Prediction performance were

also tested on the testing set, which included 15 proteins and 3402 amino acids,^ ^

by pairs of planes from each iteration. (See Tables 4.25 and 4.26.).

In Table 4.25, the numbers in the "norm" column decrease to 1, which signifies

that the normal vectors approach a unit vcctor and that the distances between pairs

of parallel planes decrease to about 0.54.

Note that because numbers were truncated after the Sth position of digital points,

the "misplaced" points in the "S" column are, in fact, contained in either one of the

corresponding planes. Results in Table 4.25 were obtained by means of the truncated

numbers.

The performances, which include both number of partitioned points and accu

racy of separation of the second and third iterations in the training set including 50

])roteins, are better than that of the other iterations, and slightly better results are

implied in the testing set. Iteration 1, which achieved a 85% accuracy, has a rela-

^ There are 7251 — 50x6 — 2x6 — 2 = 6937 seven-amino acid segments, for which
the last number 2 on the lefthand side is the two unknown residues, and the 2 in
the term 2x6 comes from the splitting of the two proteins containing one unknown
residue (see Appendix A for details).

software was used to find the parallel planes in the last section, in which all
outputs were optimal for their corresponding programming problems.

There are 3402 — 15 x 6 = 3312 seven-amino acid segments in the testing set.

97

lively large uon-alpha-lielical tendency; on the other hand, from results in the "P"

column, we found that the iterations could reduce overprediction of non-alpha-hclical

structure.

In Table 4.26, the numbers in each column are decreasing and the numbers in

each row are increasing, which means that no oscillation is occurring; on the other

hand, the top numbers in each column, from left top corner to right bottom corner,

approach 1, which means that the sequence of unit normal vectors converge.

98

Table 4.25: Tlie nine iterations for the fiist pair of parallel planes for two-state
separation with segment length seven on 50 proteins.

Ite." Norm'' CPU Dis.^ SA* ̂ #3-' pi/ PA'' #//
168 45 37 31

1st 1.375.548 165.0.3' 0.686854 13 769 94% 995 40 358 85% 166
209 10 48 29

2nd i.042482 135.72^' 0.617340 14 746 98% 979 70 339 80% 186

151.64'

191 5 45 25

3rd 1.014400 151.64' 0.600303 14 718 98% 928 69 330 80% 469
182 23 48 22

1th 1.01.3297 143.65 0.588287 31 660 94% 896 68 318 80% 156
169 26 44 23

5th 1.0173.52 148.69 0.571633 16 611 95% 822 73 291 78% 431
173 9 54 25

6th 1.016371 154.81 0.554744 25 .587 96% 794 81 275 76% 135
177 30 54 27

7th 1.005795 169.75 0.549540 22 546 93% 775 76 262 75% 419
190 37 59 28

8th 1.004754 158.00 0.544411 21 542 93% 790 84 255 74% 126
190 40 58 28

9th 1.003725 166.55 0..541059 23 539 92% 792 83 246 73% 415

"J te. = Iteration.

''Norm = The 2-norm of the normal vector of the parallel planes before
normalization.

' Dis. is the distance between the two planes of the pair.

'^' riie partition performed by the pair on the training set. See Table 4. J 6
^SA = Separation accuracy.

/ is the number of segments in the training set that were separated by the pair.
^The prediction performed by the pair on the testing set.

''PA = Prediction accuracy.

':^p is the number of segments in the testijig set that were predicted by the pair.

The software MPSX was also used to solve the same problem, and the exact
output resulted, but CPU time was 2863.11 seconds, or about 17 times 165.03.

^'The MPSX required 1733.09 seconds to perform the same problem, or about 13
times 135.72.

'The MPSX required 1051.37 seconds, or about seven times 151.61.

99

Table 4.26: The inner product of the normalized normal vectors.

I« ist^ 2nd 3rd 4 th 5th 6th 7th 8th
1

1st 0.726984
2nd 0.614294 0.959249
3rd 0.563561 0.923962 0.985805
Itli 0.522771 0.886338 0.957054 0.986877
5th 0.474034 0.831045 0.908925 0.949743 0.982944
6tlt 0.431682 0.768766 0.849476 0.896202 0.943668 0.983893
7th 0.414767 0.737033 0.823874 0.872135 0.924434 0.970592 0.994238
8th 0.402402 0.710829 0.797834 0.846155 0.901236 0.952657 0.981834 0.995269
9th 0.390250 0.695449 0.782921 0.828789 0.884130 0.938559 0.970783 0.987395 0.996289

"The initial guess.

''The unit normal vector of the pair of parallel planes of the first iteration.

Two-state prediction. Table 4.28 lists the results obtained from ten pairs

of parallel planes for two-state prediction for the seven amino acid segments in the

training set (101 proteins and 17,460 residues Note that each pair of planes is

the output of a linear programming problem and that each problem has been iterated

only once.

About one-third of the points in the training set and about one-third of the

points in the testing set were])artitioned by these ten pairs of planes. The ratio of

the number of points predicted in the testing set to the number separated in the

training set by each pair of planes is about which is about the ratio of the number

of points in the testing set (3312) to that in the training set (16840). It seems that

the distribution of the points in the training set, is similar to that in the testing

^•^VVhen the length of segments is seven, there are 4884 alpha-helical points. 3881
beta-sheet points, and 8072 coil points in the training set.

100

set. In other words, it seems possible to diminish accuracy on separation and, at the

same time, to improve accuracy on prediction. The 63% accuracy on both separat ion

and prediction for three-state prediction performed by Qian Sejuowski's two-layer

neural network evidently reflects this phenomenon.

Because the number of points partitioned by pairs after the fifth pair is smaller

than 100 in the testing set and smaller than 500 in the training set, figures much

smaller than the number of points in the testing and training sets, and from the

results]>resented in Table 4.25, the iteration of planes will not increase the number

of partitioned points, for the alpha-helix and nonalpha-helix points are terribly mixed.

Thus, two-state prediction is limited, especially when one single separation plane is

being used.

As can be seen from the results in Table 4.25, it might be possible to overcome

the overprediction of non-alpha-helical structure by iterating each pair of planes more

frequently. Note that the four chains of 2S0D, that is, 2S0Do, 2S0Dy, 2S0DI). and

2S0Dg, which have identical primary structures (see Table 4.27), are included in the

training set so that the structures of the middle residues of certain identical segment s,

which are from different chains of 2S0D, will be different, and so that these segments

will be contained in the fuzzy set. This situation will limit the performance of the

linear programming model. Note that Sejnowski uses only one of the four chains.

But. two of the 4SBV chains are contained in Sejnowski's training set, which also will

cause the prol)lem mentioned here.

Table 4.29 lists the normal vectors of the first, the second, the sixth, and t he tent h

pair of parallel planes. Relatively great and positive numbers in the vector support

alpha-helical conformation; on the other hand, relatively small and negative numbers

101

Table 4.27: The secondary structures of the four proteins 2S0D's.
(c: coil; a : alpha-helix.)

51 52 53 54 55 56 57 58 59 60
N T Q G C T S A G P

2SODo c c c a a a c c c c
2S0Dy c c c c Q cv a a c c
2S0Db c c c c c c c c c c
2S0Dg c c c c c c c c c c

131 132 133 134 135 136 137 138 139 140
E S T K T G N A G S

2S0Do c c c c c c c c c c
2S()Dy c c c c c c c c c c
280 Db c c c c c c c c c c
2.S0Dg c n o n o c c c c (•

sn])port non-alpha-helical conformation. Normal vectors reflect some Information

about the contribution to each type of secondary structure bj' amino acids at each

position. For example, that proline is a helix breaker is reflected by relatively small

negative numbers, especially when on the C-terminal end; glutamic acid, which is a

helix former on the N-terminal end and a strong /5-shect breaker, is represented by

relatively])ositive, large numbers; alanine, leucine, and methionine are helix formers,

especially when on the C-terminal end; and lysine and arginine are helix formers

when on the C-terminal end.

Table 4.30 lists the inner products of the unit normal vectors of the ten pairs of

planes in Table 4.28. The smallest number in the table is 0.770179, which indicales

that the "rotation angle'' between any two normal vectors of pairs of planes is small.

Thus, the partitioned points in the training set, roughly speaking, are distributed well

in the sense that alpha-helical points lie on one side of the "smooth'' multiplane de

termined by the ten pair of planes and that the non-alpha-helical lie on the other side.

102

On (he other haiul, because the "rotation angles" between later normal \'ec'tors are

smaller than between former vectors, that is, the values of inner products are greater

and, from Table 4.28, the numbers of partitioned points are smaller, unpartitioned

])oints are terribly mixed.

103

Table 4.28; The two-state prediction for seven-amino acid segments in the training
set.

Pair f'PlI Dis. S SA #5 P PA
123" 3 18 10

1st 2112.07 0.830707 17 1239 99% 1382 9 222 93% 259
89 35 13 9

2nd 673.66 0.825133 34 451 89% 609 6 71 85% 99
98 46 11 14

3rd 641.10 0.801053 19 575 91% 738 9 108 84% 142
69 54 13 M

4th 1486.59 0.754658 19 481 88% 623 5 98 85% 130
37 28 9 9

5th 1413.89 0.721548 31 457 89% 553 5 77 86% 100
54 34 15 17

6th 574.83 0.723060 16 289 87% 393 5 53 76% 90
32 37 4 5

7th 1176.24 0.697520 2 231 87% 302 5 42 82% 56
40 46 7 8

8th 1188.54 0.665975 19 204 79% 309 2 43 83% 60
46 33 5 12

9th 583.55 0.660534 11 273 88% 363 3 52 79% 72
33 44 6 4

lOth 1079.24 0.602637 5 260 86% 342 4 52 88% 66
621 360 101 102

All'' 173 4460 91% 5614C 53 818 86% 1071''

"The distance from any of the 123 points to the plane, wliich is one of the two
jilanes such that all points lying on one side of it are alpha-helical, is between 2 x
10""^ and 10""'^, and the average of the distances is about 6.6 x 10""^; the distance
from any of the 17 points below, which are, in fact, on the planes, to the same plane
is 10~^", 10"^, or 9 X 10~^, and the average of the distances is about 8.2 x 10~''.

''The prediction performed by the 10 pair of parallel planes on the testing set.
^17,460 = 5614 -f 11,226 -f- 101 x64-2x6-|-2, where 11,226 is the iniinber of

seven-residue segments that were not predicted, 101 is the number of proteins in the
training set, the last number 2 on the righthand side is the two unknown residues,
and 2 in the term 2 x 6 is the splitting of the two proteins containing one unknown
residue (see Appendix A for details).

'^The total number of residues in the testing set is 3402 = 1074 -t- 6 x 15 4- 2238,
where 15 is the number of proteins in the testing set, and 2238 is the number of
seven-residue segments not predicted.

104

Table 4.29: The normal vectors of the second, the sixth, and the tenth pair of par
a l l e l p l a n e s . T h e n u m b e r s i n t h e f i r s t t w o r o w s (. S ' j a n d S 2) a r e t h e
constant terms in the equaUons of the planes.

.5'l 0.562056 0.577381 0.430183 0.317987

.^'2 -0.540403 -0.649251 -0.567913 -0.518241
(Position" 1)
Residue First pair Second pair Sixth pair Tenth paii-
A 0.005468 0.023201 0.152979 0.133138
11 0.075784 -0.002298 -0.090865 -0.027708
N -0.027001 0.013161 -0.024840 0.011972
D 0.012582 0.073869 0.030170 0.001611
C -0.075841 -0.188956 -0.072478 -0.030083
Q 0.046783 0.072394 0.063079 -0.019587
E 0.052384 0.123321 0.069411 0.090187
(! -0.039885 -0.106068 -0.148528 -0.114755
11 -0.118235 -0.074113 -0.045119 -0.049152
1 0.057331 0.022446 -0.041844 0.017746
I. 0.007934 -0.001955 0.072088 0.091G12
K 0.020523 0.021503 0.096915 -0.035816
M 0.054548 0.036884 0.088450 -0.048180
F 0.104333 0.075377 0.022726 0.053950
P -0.014487 -0.062668 -0.105774 -0.027409
S -0.023121 -0.080881 -0.065163 -0.137276
,j, -0.014793 -0.077147 -0.044238 -0.062517
vv -0.102116 0.024986 0.069910 0.187907

-0.028044 -0.052483 0.008151 -0.017310
V 0.005854 0.1.59425 -0.035032 -0.020970

"'I'he seven positions in a seven-residue segment counted from the N-tcrmiiial cud
to the C-terminal end.

105

Table 4.29 (Continued.)
(Position 2)
Residue First pair Second pair Sixtli pair Tenth pair
A 0.045093 0.029227 0.142521 0.12.3351
II 0.055546 0.081957 -0.047947 -0.0J2378
N 0.058329 -0.042048 -0.046644 -0.032181
1) 0.000786 0.026099 0.009698 0.069807
C! -0.047457 -0.061859 -0.015108 -0.033583
Q 0.0367.59 0.024259 0.009035 0.019301
E 0.126698 0.191933 0.145885 0.114969
c; -0.169641 -0.121068 -0.142464 -0.145763
M 0.006137 -0.069331 0.120596 0.031903
I 0.016483 -0.064552 -0.046767 -0.000162
L 0.018670 0.050717 0.020999 0.074180
K 0.058949 0.081957 0.014386 -0.001659
M -0.045756 0.173114 0.070370 -0.031784
F 0.068024 0.022642 0.008217 0.075258
P -0.109245 -0.102885 -0.041128 -0.137751
S -0.131533 -0.171643 -0.112820 -0.108265
T 0.047411 0.002168 -0.040282 -0.092920
W -0.009872 -0.024579 0.112022 0.152110
Y -0.064212 -0.058216 -0.119822 -0.062986
V 0.038831 0.032108 -0.010747 -0.001746

106

Table 4.29 (Continuecl.)
(Position .3)
Residue First pair Second pair Sixth pair Tentli pair
A 0.126256 0.146744 0.131173 0.1351.30
R -0.138408 -0.190755 -0.037535 0.003J53
N -0.029649 -0.018291 0.059980 -0.081202
D 0.068559 0.073613 -0.027327 -0.067306
C -0.132751 -0.129127 -0.089149 0.012620
Q 0.080537 0.131961 0.048502 0.087698
E 0.128712 0.192274 0.161219 0.110859
G -0.172999 -0.146743 -0.245617 -0.285380
II 0.106713 0.079022 -0.016901 0.002581
I -0.005223 0.029718 -0.033945 -0.017736
L 0.080268 0.039253 0.076742 0.1208-17
K 0.088117 0.1.55358 0.029748 0.06271 1
M 0.112866 0.181004 0.126291 0.060187
F 0.040457 0.040304 0.051391 0.040711
P -0.222775 -0.179198 -0.017648 -0.132435
S -0.108231 -0.106331 -0.108601 -0.130372
T -0.086350 -0.091742 -O.lOGilO -0.058208
W 0.100315 -0.021127 0.108701 0.1925 il

0.030288 -0.074060 -0.131281 -0.090717
V -0.066702 -0.111876 0.020367 -0.026287

107

Table 4.29 (Continued.)
(Position 4)
Residue First pair Second pair Sixth pair Tentli])air
A 0.142896 0.199983 0.194278 0.1752.50
R 0.004754 0.052975 -0.053563 -0.129152
N -0.042031 -0.174259 -0.075199 -0.129751
I) -0.01.5089 -0.023765 -0.016046 -0.011489
C -0.121938 -0.097754 -0.064410 -0.03-1377
Q 0.090440 0.049671 0.032683 0.052776
E 0.097150 0.148013 0.239403 0.205570
C -0.19.3050 -0.188745 -0.309389 -0.311595
II 0.068712 0.123824 -0.012159 0.084711
I 0.070439 0.051175 0.062845 0.075081
L 0.096907 0.092492 0.16.3936 0.163283
K 0.103493 0.060392 0.058118 0.079596
M 0.082474 0.2.53915 0.191165 0.075010
F 0.106430 0.034728 0.126296 0.100280
P -0.288980 -0.280663 -0.258778 -0.216134
S -0.114968 -0.116040 -0.098338 -0.066000
T -0.140555 -0.1.36529 -0.134740 -0.190537
W 0.110963 0.101281 0.054159 0.019.(97
Y 0.004331 -0.081653 -0.042490 0.013713
V -0.062376 -0.069041 -0.057772 0.014933

108

Table 4.29 (Coniimied.)
(Position 5)
liesidiie First, pair •Second pair Sixth pair Tentli pair
A 0.118934 0.156359 0.205538 0.191152
H 0.017251 -0.040424 -0.012232 0.054929
N 0.012465 -0.039508 -0.079924 -0.143338
I) 0.018445 -0.1.32412 -0.015457 -0.053163
C 0.118664 0.120237 0.057823 0.047078
Q 0.089266 0.142451 0.149401 0.134881
E 0.134009 0.162850 0.125426 0.142771
Cî -0.225810 -0.147.345 -0.184491 -0.178410
11 0.078037 0.155141 0.047186 0.048708
I 0.024924 -0.146599 0.051970 0.05.3970
L 0.112561 0.170007 0.154249 0.217666
K 0.026765 0.033289 0.121996 0.112276
M 0.122904 0.168971 0.081381 0.141501
1'' 0.040046 0.049393 0.065518 0.094098
P -0.504376 -0.393860 -0.475040 -0.635142
S -0.117844 -0.14.3294 -0.181919 -0.152118
T -0.097216 -0.157069 -0.190969 -0.147975
W 0.124782 0.232236 0.155041 0.129333

-0.038784 -0.04.5908 -0.042967 -0.038010
V -0.055021 -0.144517 -0.032531 -0.019611

109

Table 4.29 (Continued.)
(Position 6)
Residue First pair Second pair Sixth pair Teiitii pair
A 0.109120 0.096613 0.110384 0.144371
R 0.038913 -0.052571 0.008892 -0.042511
N -0.046140 -0.143566 -0.033289 -0.164165
D -0.087881 -0.129604 -0.003509 -0.036396
c: -0.073372 0.018285 -0.024963 0.078636
Q 0.073900 0.060365 0.072767 0.002120
E 0.088422 0.203885 0.1044.30 0.00075!
CÎ -0.113065 -0.042271 -0.194709 -0.070879
II 0.070081 0.097030 0.009805 0.078960
I 0.059484 0.015630 0.013997 -0.020926
L 0.164443 0.150914 0.143743 0.149503
K 0.089018 0.062699 0.090791 0.151096
M 0.122436 0.151649 0.146560 0.127170
F 0.106376 0.055721 0.068483 0.085905
P -0.435547 -0.348022 -0.286135 -0.369852
S -0.230493 -0.227542 -0.163053 -0.1.559.35
T -0.1751.59 -0.093028 -0.135169 -0.092005
W 0.122516 0.122271 0.069373 0.180369

-0.000458 -0.042634 -0.021564 -0.050577
V 0.117405 0.044174 0.023167 0.001093

110

Tal)le 4.29 (Continued.)
(Position 7)
Residue First pair Second pair Sixth pair 'J'entli pair
A 0.038625 O.J 04614 0.095047 0.112871
R 0.038471 -0.117105 0.037433 -0.035137
N -0.029258 -0.131734 -0.112439 0.010356
D -0.069508 -0.138639 -0.056579 -0.163198
C -0.004213 -0.044918 -0.115212 0.036656
Q 0.079837 0.027054 0.100444 0.131919
E 0.012102 0.085059 -0.005711 0,030828
CI -0.115141 -0.061117 -0.118914 -0.119195
II 0.093065 0.223832 0.158140 0.058783
I 0.048033 -0.083979 -0.009986 0.018465
1. 0.099986 0.133732 0.063374 0.070257
K 0.082442 0.086673 0.064925 0.103081
M 0.146835 0.231794 0.182329 0.188279
V 0.008356 -0.014745 0.118561 0.088159
P -0.279265 -0.315760 -0.266188 -0.305580
S -0.103607 -0.112449 -0.137529 -0.159087
T -0.176345 -0.109046 -0.166916 -0.154156
W 0.136209 0.211843 0.189341 0.139417
Y -0.031782 0.016978 0.027404 -0.082980
V 0.025154 0.007911 -0.047493 -0.003012

I l l

Tal)le 4.30: The inner product of the normalized normal vectors of the ten paii- of
parallel planes.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th
1st

2nd 0.851750
3rd 0.815257 0.812966
1th 0.792132 0.770657 0.861484
5th 0.808601 0.788934 0.871070 0.901453
6th 0.827218 0.811528 0.866814 0.885454 0.896754
7th 0.820555 0.797946 0.851350 0.900840 0.908771 0.916297
8th 0.841345 0.783296 0.84J 941 0.850165 0.890116 0.916648 0.945680
nth 0.800363 0.784424 0.856642 0.856868 0.880685 0.878995 0.925763 0.916722

10th 0.823918 0.770179 0.844505 0.863859 0.889108 0.880333 0.917776 0.919611 0.925669

Three-state prediction. Three-state prediction improves the overpredicl ion

problem. Tables 4.31 and 4.32 list the results of type I partition and of type II

partition, respectively, for 17-amino acid segments in the training set (101 proteins ̂

and in the testing set (15 proteins^'^). Separation and prediction performances of the

two partition schemes, type I and type II, are slightly different, but much more

computer time was required to construct the planes for type II partition.

The beta-sheet structure is more difficult to predict than is alpha-helix (or coil),

For example, as can be seen from Table 4.31, 74% accuracy was achieved by using

three pairs of o — c planes, 1 pair of a — /i planes, and 1 pair of /i — c planes; when the

numbers of each type of pair, a — /3, o — c, and j3 — c, are 2, 2, and 2. and 2, 3, and

2, the percentages are similar, but the numbers of separated points and of predicted

jjoinls for the latter are significantly greater.

^•^The 101 proteins include 4524 alpha-lielical points, 3634 beta-sheet points, and
7652 coil points when the length of the segment is seventeen.

^ *The 15 proteins includes 3162 length 17 segments

112

The number of separated points is about five times that of the number of pre

dicted points, which is about the ratio of the number of points in the training set

to that in the testing set. We have made the same observation in previous sections.

(See Table 4.28).

Table 4.34 lists results when the segment length is 7 or 25, results not as good

as when length is 17.

113

Table 4.31: The three-state prediction of Type I for IT-ami no acid segments. (Note:
because the misplaced points in the "S" column lie on the corresponding
plane derived from the OSL, we set 0.00000001 as threshold for the case
4, 4, and 4 to avoid predicting these points. The separation result
is improved, but the prediction results are slightly differet. Similar
expressions hold for the cases listed in subsequent tables.)

of cv - 13" # of a — c^ # of ^ - c SC SA #3 P PA #p
436 35 23 58 16 7
18 400 16 18 79 Jl

2 1 1 65 19 750 90% 1762 23 27 114 71% 353
635 20 65 78 14 15

22 324 24 20 56 17
1 3 1 75 15 1089 90% 2269 33 16 192 74% 411

767 35 41 98 16 10
2!) 400 21 32 79 14

2 2 1 83 19 946 90% 2.341 41 27 159 71% 176
635 26 104 78 17 21

22 435 63 20 67 41
1 3 2 75 21 1570 89% 2951 33 26 270 72% 573

767 48 65 98 24 14
29 560 55 32 98 32

2 2 2 83 28 1319 90% 2954 41 37 222 70% 598
896 48 104 128 24 21

32 560 63 36 98 41
2 3 2 99 28 1570 89% 3400 51 37 270 70% 706

635 34 124 78 21 28
22 510 83 20 76 47

1 3 3 75 57 1864 88% 3404 33 36 330 72% 66!)
843 53 65 111 32 14

46 631 55 39 111 32
3 2 2 97 31 1319 89% 3140 51 44 222 68% 656

"The number of pair of parallel planes separating the alpha-helical points from
the beta-sheet points.

= coil.
fSee Table 4.33.

114

Table 4.31 (Continued.)

of a — / 3 # of o — c # o i 1 3 - c S SA # s P l'A

997 53 104 150 32 21

58 631 63 44 111 41

3 3 2 115 31 1570 88% 3622 62 44 270 69% 775

997 77 124 150 44 28

58 773 83 44 137 47

3 3 3 115 89 1864 87% 4180 62 63 330 68%, 905

1281 70 132 195 52 49

65 956 98 63 156 68

4 4 4 120 100 2436 89% 5258 83 8-1 432 66% 1182

115

Table 4.32: The three-state prediction of Type II for 17-ainino acid segments.

^ o f n — ^ of c— ~ c # of j3— ~ /5 S SA #5 P PA

1 1 J

510] 1

99% 2026

52 19 15

70% 117 1 1 J
2 438 0

99% 2026
14 64 18

70% 117 1 1 J 8 11 1055 99% 2026 36 24 175 70% 117

2 1 1

7U6 1 3

98% 2382

104 19 15

69% 516 2 1 1
7 440 0

98% 2382
30 66 20

69% 516 2 1 1 18 11 1106 98% 2382 50 24 188 69% 516

2 1 2

804 19 G

97% 2795

106 33 16

69% 615 2 1 2
7 661 6

97% 2795
29 109 22

69% 615 2 1 2 19 39 1234 97% 2795 50 43 207 69% 615

2 2 2

823 19 12

97% 3108

110 33 23

70% 681 2 2 2
7 668 8

97% 3108
29 112 25

70% 681 2 2 2 22 41 1508 97% 3108 50 43 256 70% 681

3 3

1032 26 33

95%

160 43 36

68% 921 3 3
14 832 33

95%
40 139 39

68% 921 3 3 3 31 61 1853 95% 3915 71 67 326 68% 921

4 4

1217 33 53

93%

188 51 47

66% 1131 4 4
26 962 58

93%
55 161 56

66% 1131 4 4 4 65 72 2146 93% 4632 89 84 397 66% 1131

116

Tai)le 4.33: The nine numbers in the entries of the S or P column in some tallies
have the same role as A, B, C, D, E, F, C, H, and I, respectively.

Predicted structure
Real structnre alpha-helix beta-sheet coil

alpha-helix A B C
beta-sheet D E F

coil G II I

Table 4.34: The three-state prediction of type I and type II for amino acid segments
with lengths seven and 25.

Type 1; Length = 7
of fv — /i # of a — c # o î / i - c S SA #3 P PA #/'

2 2 2

120 3 19

95% 1000

17 5 7

79% 187 2 2 2
2 171 7

95% 1000
4 26 4

79% 187 2 2 2 1 17 660 95% 1000 6 13 105 79% 187

3 3 3

189 12 28

93% 1405

29 8 10

80% 266 3 3 3
7 223 16

93% 1405
4 31 7

80% 266 3 3 3 9 26 895 93% 1405 7 16 154 80% 266

Type II; Length = 7
^ of a — ~ n # of c— ~ c # ol fi— ~ /? S SA #.s P PA #/'

2 2 1

211 0 2

97% 942

31 11 3

77% 181 2 2 1
5 139 6

97% 942
6 16 8

77% 181 2 2 1 12 0 567 97% 942 9 6 91 77% 181

Type 1; Length = 25
of n — # of a — c ^ O Î — c S SA #5 P l'A *P

1 1 1

368 10 9

94% 1737

40 15 10

67% 316 1 1 1
8 431 4

94% 1737
16 50 12

67% 316 1 1 1 32 35 840 94% 1737 29 22 122 67% 316

2 1 1

468 23 9

93% 1981

67 18 10

65% 392 2 1 1
13 537 4

93% 1981
24 65 12

65% 392 2 1 1 42 45 840 93% 1981 40 31 122 65% 392

2 2

768 23 30

92%

111 18 20

61% 551 2 2
25 537 8

92%
40 65 20

61% 551 2 2 1 91 45 1103 92% 2630 66 34 180 61% 551

4.6 Conclusion

A reliable prediction scheme should be both quantitative and objective. Ob

viously, the information theory method and the neural network models are largely

quantitative; nonetheless, both are somewhat subjective. For example, Robson r/ «/,

use decision constants to improve prediction results, and Qian & Sejnowski observe

performances of networks on a testing set. A great accuracy prediction result on

a certain testing set does not necessarily imply such accuracy for subsecpient. "N et,

using a set of numbers to predict is more economical than exhausti\ ely searching as

in Levin's similarity matrix and is more stable than using Chou Se Fasmaii's confor

mational parameters method.

We believe that a basic requirement for a reliable prediction scheme is that of

achieving a good performance on the training set. The linear programming model

was trained on a set of known structure proteins, which form the constraints of the

optimization problem, and so the partition on the training set is optimized in some

sense.

Because of the terribly distributed points in space, coil is overpredicted by bol li

our similarity scale and our similarity matrix. On the other hand, in the prediction

of secondary structures of new proteins, both methods require exhaustive search and

are timecomsuming.

118

BIBLIOGRAPHY

[1] C. B. Aiifinsen, E. Haber, M. Sela, and F. H. White. Jr., Proc. Natl. Acad. Sci.
U.S. 47, 1309 (1961).

[2] W. Kabsch and C. Sander. Proc. Natl. Acad. Sci. USA SI, 1075-1078 (1981).

[3] P. Y. Cîhou and G. D. Fasman. Advances in Enzymology 47, 45- J48 (1978).

[l] T. J. Sejnowski and R. R. Rosenberg. "Parallel networks that learn to pronounce
English text." Conipl. Syst. 1, 145-168 (1987).

[5] B. Hobson and R. H. Pain. "Analysis of the code relaliiig sequence to conforma
tion in proteins: Possible implications for the mechanism of formation of helical
regions." J. Mol. Biol. 58, 237-259 (1971).

[6] B. Robson. "Analysis of the code relating sequence to conformation in globular
proteins." Biochem. J. 141, 853-867 (1974).

[7] B. Robson and E. Suzuki. "Conformational jjroperties of amino acid residues in
globular proteins." J. Mol. Biol. 107, 327-356 (1976).

[8] J. Gamier, D. J. Osguthorpe and B. Robson. "Analysis of accuracy and im
plications of simple methods for predicting the secondary structure of globular
proteins." Mol. Biol. 120, 97-120 (1978).

[9] J. M. Levin, B. Robson and J. Gamier. "An algorithm for secondary structure
determination in proteins based on sequence similarity." FEBS Letters 205, 303-
308 (1986).

[10] N. Qian and T. J. Sejnowski. "Predicting the secondary structure of globular
proteins using neural network models." J. Mol. Biol. 202, 865-884 (1988).

119

[IJ] D. E. Rumelhait, G. E. Hiuton and R. J. Williams. "Learning internal repre
sentations i>y error pro])agation." Parallel Distributed Processing. 1. Ed. I). E.
lliinielhart, J. L. McClelland and the PDP Research Group.

[12] W. Kabsch and C. Sander. "How good are predictions of protein secondary
structure?" FEBS Letters 155, number 2,179-182 (1983).

[13] (). L. Mangasarian. "Multisurface method of pattern separation." IEEE Trans
actions on Information Theory 14, 801-807 (1968).

[14] S. S. Wilks. Mathematical Statistics. New York: Wiley, 1962.

[15] P. Lancaster and M. Tismenetsky. The Theory of Matrices. 2nd ed. New York:
Academic press, 1985.

120

APPENDIX A. DATABASE

121

A.l Training Set

Code Protein name I/'
lAZU Azurin 128
1BP2 Phospholipase A2 123
1CC5 Cytochrome c5 (oxidized) 83
10(41 Cytochrome c (rice) 111
ICPV Calcium-bindind parvalbumin b 108
ICRN Ciranibin 4()
K!TX a-Cobratoxin 71
1CY3 Cytochrome c3 118
ICYC Ferrocytoch rome c 103
lECD Haemoglobin (deoxy) 130
lEST Tosyl-elastase 210

lFC2c Immunoglobulin FC-Frag B complex
irC2d Immunoglobulin FC-Frag B complex 224
IFDIIa Haemoglobin (deoxy, human fetal) 111
IFDIIg Haemoglobin (deoxy, human fetal) M(i
IFDX Ferredoxin 54
IFXl Flavodoxin 1 IS
KICW Glucagon (pH 6 - pH 7 form) 2!)
ICJCR 7-Crystallin 174
ICFl Insulin-like growth factor 70
1GF2 Insulin-like growth factor (17
ICiPla Glutathione peroxidase i!)8''
iCPlb Glutathione peroxidase l!)8
IHDSa Haemoglobin Ml
llIDSb Haemoglobin 145

"L = Length.

''The last three residues, in which the type of tlie first two residues arc unknown,
are not included.

'-"The type of the 45th amino acid in both of the two proteins iCîPla and ICIPIb
is not shown in our database. We split each protein as two sequences. The firs I.

secjuence is composed of the first 44 amino acids of the original se(|uenie. and the
second sequence is composed of the amino acids from the 46th to the last. The split
two sequences are treated as two proteins.

122

Training set. (Continued.)
(yode Protein name L
HHP High potential iron protein 85
ILZl Lysozyme 130
ILZT Lysozyme, triclinic crystal form 129
IMBD Myoglobin (deoxy, pH 8.4) 153
1MJ3S Alyoglobin (met) J 53
IMLTa Melittin 26
1P2P Phospholipase A2 12-1
IPFC Fragment of IgG 113
J PPT Avian prancreatic polypeptide 3G
iREIa Immunoglobulin B-J fragment V 107
liUJD Rhodanese 293
1RN:J Ribonuclease 121
1SN3 Scorpion neurotoxin (variant 3) m
iTIMa Triose phosphate isomerase 217
2APP Acid proteinase, j^enicillopejisin 323
3L])H Lactate dehydrogenase complex 329
2APR Acid protease 325
2AZAa Azurin 129
2B5C Cytochrome b5 (oxidized) !)3
2CAI3 Carbonic anhydrase form b 2{)0
2CCYa Cîytochrome c (prime) 128
2CYP C'ytochrome c peroxidase 291
21)HIia Haemoglobin (horse, deoxy) i l l
2DIIBb Haemoglobin (horse, deoxy) MO
2C;(.:il 7-Chymotrypsin a 2-11"
2CIN5 Gene .5/DNA binding protein 87
2IG21 Imnumoglobunlin Gl 210
21C2h Immunoglobunlin Gl 155
21NSa Insulin 21
2INSb Insulin 29
2KAIa Kallikrein a 80
2KAIb Kallikrein a 152
2KAli Kallikrein a 58
2LI)X Lactate dehydrogenase 331
2LH1 Leghaemoglobin (acetate, met) 153
2MCPh Ig Fab mcpc603/phosphocholine 222
2MCP1 Ig Fab mcpc603/phosphocholine 220
2PABa Prealbumin (human plasma) 127
2RHE Immunoglobulin B J fragment V-MN 111

"The type of the 14th, 15th, 47th, and 48th amino acids in the protein 2GCH are
not shown in our database and are simply deleted.

123

Training set. (Continued.)
('ofle Protein name L
2 H G A Proteinase A 181
2SNS Staphylococcal nuclease complex 5 11!)
2S01)o C!u,Zn superoxide dismutase 151
2S01)y C!u,Zn sujjeroxide dismutase 151
2S0D1) Cu,ZH superoxide dismutase 151
2S0Dg Cu,Zn superoxide dismutase 151
2SSI Streptomyces subtilisin inhibito 113
2STV Satellite tobacco necrosis virus 11)5
2TAAa Taka-amylase 478
2TBVa Tomato bushy stunt virus 387
3ADK Adenylate kinase 1!)1
3C2C Cytochrome c2 (reduced) 112
3CNA Concanavalin A 237
3FXC Ferredoxin 98
311 HBa Haemoglobin (deoxy) 111
311H Ub Haemoglobin (deoxy) MO
3i(!B Calcium-binding protein 75

3PCY Plastocyanin substituted) !)<)

3FGK Phosphoglycerate kinase complex 415
3PCÎM Phosphoglycerate mutase 211
3KP2a Rat mast cell protease 221
3SC:Be Proteinase B 185
3SGBi Proteinase B 50
3TLN Thermolysin 31(i
45 ic: Cîytochrome c551 (reduced) 82
4APE Acid proteinase, endothiapepsin 330
4CTSa Citrate synthase complex 437
41)FRa Dihydrofolate reductase 155)
4FXN Flavodoxin (semi qui none form) 138
4MDIia Cytoplasmic malate dehydrogenase 333
4SBVa Southern bean mosaic virus coat protein 200
4S13Vc Southern bean mosaic virus coat protein 200
5CPA Carboxypeptidase 307
5PTI Trypsin inhibitor 58
5RXN Rubredoxin (oxidized) 51
GADHa Alcohol dehydrogenase complex 374
SCJATa Catalase 500

124

A.2 Testing Set

(Jode Protein name L
lABP 1- A rabi nose-bincli ng protei n 306
lACX Actinoxanthin 108
lIIMQa Haemerythrin (met) 113
lICJEa Fe fragment (model) 322
INXB Neutrotoxin b 02
IPPD 2-liydroxyetlij'ltluopapain d 212
11'YP Inorganic pyro])hosphatase 285
2ACT Actinidin (sulpliliydryl proteinase) 220
2ALP o-Lytic protease 1!)8
2(!DV Cytochrome c3 HIT
3CRS Glutathione reductase ITS
2SBT Subtilisin novo 275
3GPDr G ly ceraldehy de- 3- P- dehydrogenase 331
GAPIa Modified o-l-antitrypsin 3 IT
GAPIb Modified o-l-antitiypsin 35

125

APPENDIX B. PROGRAMS

126

B.l Main Program

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#dGfine RES 20

#define NP 7 /* NP = number of residues in a segment. */

#define RESNP RES*NP

#define NUM 20 /* # of proteins in training set used. */

«define USCORE 7

«define SCORE 7

«define K_NEAR 5

«define THR 5

«define RATE 1.0

«define INFO 0

«define BAY

«define ITE

«define TEST

«define PARL

«define PAIR

0
0 /*
0 /*

/*
0 /*
10 /*

/*
/*
/*
/*
/*
/*
h
/*
/*
/*
/*

/* Similarity value for different structures.*/

/* Similarity value for the saune structure. */

/* For k-nearest neighbors. */

/* Threshold for k-nearest neighbors. */

/* Learning rate. nl'=nO+RATE*(nl-nO). */

/* where nO is the initial vector. */

/* 0.0 <= RATE <= 1.0. */

/* Construct artificial database if INF0=1. */

/* Warning: Let INF0=0 to use real database. */

/*BAY=1 if Baysian is used emd when INF0=1. */

ITE = 1 only if iteration is executed. */

If TEST=1, then use the output of mpsx to */

separate artificial data. */

If PARL=1, then find parallel planes. */

PAIR is the number of pairs of parallel lines. */

Warning : To construct the initial guess */

to find, e.g., the 2nd pair of lines, let */

PAIR=1 and ITE=0; then let PAIR=2 to do */

iterations for the 2nd pair (let ITE=1) */

or to find the 3rd pair (let ITE=0). */

Warning: PAIR != 0 in any situation. */

For 3-state prediction of type 1, let */

PAIR=PAIRAB (PAIRAC, PAIRBC) for A-B (A-C, B-C)*/

separation. For 3-state prediction of type 2, */

let PAIR=PAIRA (PAIRB, PAIRC) for */

A-~A (B-~B, C-~C) separation. */

#define BIAS 0.0

#define CA 0.00000000

#define CB -0.00000000

#define PAIRAB 3 / * For 3-state prediction of type I. * /
«define PAIRAG 3 / * The number of pairs of parallel * /
#define PAIRBC 3 / * planes in each group. * /

«define PAIRA 2 / * For 3-state prediction of type II. * /
«define PAIRB 1 / * (Parallel plauies) * /
«define PAIRC 2 / * Let STRUC2=2. * /

«define FIRST 0 / * To construct the first pair at iteration 1, * /
/ * let FIRST==1; otherwise, let FIRST==0 * /
/ * (Let ITE==0 when FIRST == 1). * /

«define STRUG1 (1) / * For 3-state prediction (single or pairs). * /
«define STRUC2 (2) / * 1 helix; 0 —- beta; (-1) coil * /

h For type II separation, let STRUC2==2 and * /
h use 3-state function,i.e., let STATE==3. * /
h If STRUC2==2 & STRUC1==1(0, -1), then * /
/ * A vs. ~A (B vs. ~B, C vs. ~C). * /

«include "happy" h Use the first 20 intergers to represent the
20 residues. */

/* The following blocks of included functions contain plaoies derived

from either MPSX or OSL.*/

/*#include "mpsxout.c"

/*

#include "ab_mpsxout.c"

#include "ac_mpsxout.c"

#include "bc_mpsxout.c"

*/

Single plane separation.*/

3 single planes separation.

Type 1 separation.

/ *
#include "pabO.c"

#include "pacO.c"

#include "pbcO.c"

3-state prediction of type 1.

Pairs of parallel planes.

Example: pabO.c contains the first pair

128

for alpha-beta separation.

#include "pabl.c"

#include "pad .c"

#include "pbcl.c"

#include "pab2.c"

#include "pac2.c"

#include "pbc2.c"

#include "pab3.c"

#include "pac3.c"

#include "pbc3.c"

*/

/*
#include "paO.c"

#include "pbO.c"

#include "pcO.c"

3-state prediction of type 2.

Pairs of parallel plames.

Example: pal.c contains the second pair

for alpha and non-alpha separation.

#include "pal.c"

#include "pbl.c"

#include "pcl.c"

#include "pa2.c"

#include "pb2.c"

#include "pc2.c"

#include "pa3.c"

#include "pb3.c"

#include "pc3.c"

*!

#undef DATA

#define DATA 2

#if DATA == 1

#define TR_HYD "tr.hyd"

#define TR_STR "tr.str"

#define TE_HYD "te.hyd"

#define TE_STR "te.str"

129

#elif DATA ==

«define TR.HYD

#define TR.STR

«define TE_HYD

«define TE_STR

#endif

"trytr.hyd"

"trytr.str"

"tryte.hyd"

"tryte.str"

/* Kabsch emd Sander's assignments.*/

«include "ptr_read.c"

«include "pte_read.c"

«undef SYSTEM

«define SYSTEM 5

«if SYSTEM == 1

«define SIMI

«elif SYSTEM == 2

«define SIMI

«elif SYSTEM == 3

«define SIMI

«elif SYSTEM == 4

«define SIMI

«elif SYSTEM == 5

«define SIMI

«endif

«include SIMI

/•To read the training set.

/* To read the testing set.
*/
*/

*/ "S_M+N-W.c" /• Similarity scale.

"S_M+N+invW.c"

"M+N-W.c" /• Similarity matrix.

"M+N+invW.c"

"partition.c" /• To construct separation planes. */

•/

«undef STATE

«define STATE 3

«if STATE == 2

«define FUN

«elif STATE == 3

«define FUN

«endif

«include FUN

"_2state_fun.c"

"_3state_fun.c"

«undef SCHEME

«define SCHEME 7

«if SCHEME == 1

130

#define METHOD

#elif SCHEME == 2

#define METHOD

#elif SCHEME == 3

«define METHOD

#elif SCHEME == 4

«define METHOD

#elif SCHEME == 5

«define METHOD

«elif SCHEME == 6

«define METHOD

«elif SCHEME == 7

«define METHOD

«elif SCHEME == 8

«define METHOD

«elif SCHEME == 9

«define METHOD

«elif SCHEME ==10

«define METHOD

«endif

«include METHOD

"_2_dayhoff_levin.c" /* Levin-like scheme. */

"_2ave_dayhoff_levin.c"

"_3k_dayhoff_levin.c" /* k-nearest neighbors. */

"_2k_dayhoff_levin.c"

"c_super.c"

"m_8uper.c"

"3c_super.c"

"pr_super.c"

"31pr_super.c"

"32pr_super.c"

/* Type I partition. */

/* Type II partition. */

/* external variables */

int n_tr;

int n_te;

int num;

int num_te;

double day[21][21];

/* Total « of amino acids in the training set. */

/* Total « of amino acids in the testing set. */

/* Total « of proteins in the training set. */

/* Total « of proteins in the testing set. */

/* Similarity matrix. */

double hsieh[20000],wei[5000];

int fan[20000],ching[5000],hua,hub;

/* hsieh contains residues in the training set. */

/* wei contains residues in the testing set. */

/* fan contains structures in the training set. */

/* ching contains structures in the testing set. */

/* hua = length of hsieh. */

/* hub = length of wei. */

/* Single separation plemes. */

double normal[RESNP],shift ;

131

double ab_pleme[RESNP],ac_plane[RESNP] ,bc.plane[RESNP],ab,ac,bc;

/* Pairs of parallel lines. */

double pr[PAIR][RESNP+2];

double pab[PAIRAB][RESNP+2],pac[PAIRAC][RESNP+2],pbc[PAIRBC][RESNP+2];

double pa[PAIRA][RESNP+2],pb[PAIRE][RESNP+2],pc[PAIRC][RESNP+2];

mainO

{

tr_read();

te_read();

/* Read the training set. */

/* Read the testing set. */

/*
mpsxoutO ; Single separation plane.

Use the function mpsxout.c*/

ab_mpsxout();

ac_mpsxout();

bc_mpsxout();

/*3 single separation planes for 3-state prediction.*/

/*Use the function ac_mpsxout.c.*/

/*
pabOO ;

pacOO ;

pbcOO ;

Type I planes.

Use the function pacO.c.

pablO ;

paclO ;

pbclO ;

pab2();

pac2();

pbc2() ;

pab3();

pacSO ;

pbcSO ;

*/

/*
paOO ; Type II planes.

pbOO ;

pcO();

palO ;

pblO ;

pclO ;

pa2() ;

pb2();

pc2();

pa3();

pbSO ;
pc3();

*/

systemO ;

method0 ;

}

133

B.2 Functions

/•partition.c

1. Always let STATE==3.

2. Let STRUC2==2 (aaid STATE==3); then it's a 2-state separation:

if STRUG1==1, then alpha vs. non-alpha; if STRUCl==0,then beta vs.

non-beta; if STRUC1==(-1), then coil vs. non-coil.

3. This function cam construct an artificial data base (let INFO = 1)

using the information theory method with (BAY=1) or without (BAY!=1)

Baysieui. In the latter case (BAY!=1), we suppose that the database

is large enough.

Note: An artificial database will not be constructed when doing

3-state prediction.

4.When PARL=1, this function will construct the input of either DSL or

MPSX. To construct the input for 3-state seperation of both types,

assign different values to STRUG1 & STRUG2 in the main function.

*/

#include "nrerror.c"

/•Standard error handler. */

#include "dvector.c"

/•Allocates a double vector with range [nl..nh]. •/

#include "imatrix.c"

/• Allocates an integer matrix with range [nrl..nrh][ncl..nch]. •/

#include "d.dmatrix.c"

/• Allocates a double matrix with range [nrl..nrh][ncl..nch]. •/

#include "ivector.c"

/• Allocates an integer vector with remge [nl..nh]. •/

/•See ''Numerical recipes in C.'' Press et al. •/

#define MOD NP-1

void systemO

-C
extern int fan[20000],hua,n_tr;

extern double hsieh[20000].normal[RESNP].shift;

extern double ab_pleme[RESNP],ac_plane[RESNP],bc_plame[RESNP];

extern double pr[PAIR][RESNP+2];

134

extern double pab[PAIRAB][RESNP+2],pac[PAIRAC][RESNP+2],

pbcCPAIRBC][RESNP+2];

extern double pa[PAIRA][RESNP+2],pb[PAIRB] [RESNP+2],pc[PAIRC][RESNP+2] ;

int i,j=0,jj,kk=0,qq=0,k,l,s,p,q,w,bug=0; /*j = # of points */

double ss=0.0,zz,dot_pdt;

double *v,*u,**f,**b,ram,x,y;

int **h,*patl,*patO;

int yy=0;/*yy = # of middle residue STRUCl sequences in training set*/

int xx=0;/*xx = # of middle residue STRUC2 sequences in training set*/

int a_a=0,a_na=0,na_a=0,na_na=0,del=0,str;

double group;

V = dvector(l,RESNP);

u = dvector(l,RESNP);

h = imatrix(l,n_tr,1,NP);

f = d_dmatrix(l,RES*2,1,NP); /* Table of conditional probabilities. */

b = d_dmatrix(l,RES*2,l,NP); /* Table of l(x=l:0;y) (for Baysian). */

patl = ivectorCl,PAIR); /* e.g., patl[1] = # of alpha-helices

partitioned by 1st pair of planes. */

patO = ivectorCl,PAIR); /* patO is for non-alpha helices. */

for(i=l;i<=RESNP;++i) {v[i]=0.0;u[i]=0.0;}

for(i=l;i<=RES*2;++i)

for(k=l;k<=NP;++k)

f[i][k] = 0.0;

/****** Construct the matrices h & f ********************/

/* The j X NP matrix h records all sequences of length NP in the

training set. The sign of the first column of h records

structures ('+' for STRUCl and for STRUC2) of the middle

residues. The RES*2 by NP matrix f is the contingency table in

which odd and even rows are for STRUCl aind STRUC2 amino acids,

respectively.

*/
for(i=0;i<=hua-NP;++i)

{
if(hsieh[i+NP-l] == 0.0) i = i+NP;

if(fan[i+(NP-l)/2] == STRUCl) {yy += l;mm=(1.0);}

else if(fan[i+(NP-1)/2]==STRUC2 II STRUC2==2) {xx += l;mm=(-l.0);}

135

else goto delete;

j = yy+xx;

for(k=0;k<=NP-l;++k)

{
1 = RES*k;

s = hsieh[i+k];

h[j][k+l] = s;

if(mm==(-l.0)) {v[l+s] += mm;f[s*2][k+l] += 1.0;}

else {u[l+s] += mm;fCs*2-l][k+1] += 1.0;}

}
if (mm == (-1.0)) hCj] [1] = (-h[j][l]);

delete: if(fan[i+(NP-l)/2]!=STRUCl&&fan[i+(NP-l)/2]!=STRUC2&&STRUC2!=

++del;

}
if(STRUCl==l && STRUC2==0)

printf("\n#of coil in the training set = %d\n\n",del);

else if(STRUC1==1&&STRUC2==(-1))

printf("\n# of beta sheet in the training set = %d\n\n",del);

else if(STRUCl==0&&STRUC2==(-l))

printf("\n# of alpha helex in the training set = %d\n\n",del);

del = 0;

/* Construct artificial database.

Let STRUC1==1 and STRUC2==2 to construct an artificial database

for alpha eind non-alpha separation. For the case STRUC2 != 2, we

should modify the program to construct a 3-state artificial database

*/

if(INFO == 1 && STRUC2==2)

{
/* Copy f[Xi][Yj] to b[Xi][Yj](for Baysian) */

for(i=l;i<=NP;++i)

for(k=1;k<=RES*2;++k)

b[k] Ci] = f [k] [i] ;

/* Find mm=#(fl)-#(f2) where fl=yy and f2=xx */

mm = 0.0;

for(i=l;i<=yy-l;++i)

mm += (1.0/i);

136

for(i=l;i<=xx-l;++i)

mm -= (1.0/i);

/•Find the conditional probabilities p(Xi|Yj) emd then replace f[Xi][Yj].

Find #(fly)-#(f2y)-#(fl)+#(f2) and then replace b[odd][]. */

for(i=l;i<=NP;++i)

for(k=2;k<=RES*2;k=k+2)

if (f [k] [i]==0.0) {f[k][i]+=1.0;b[k][i]+=2.0;} /* modification */

if(f[k-1][i]==0.0) {f[k-1] [i]+=1.0;b[k-l][i]+=2.0;}

w=b[k-l] [i]-l;

b[k-l] [i]=0.0;

for(l=l;l<=w;++l)

b[k-l][i] += (1.0/1);

w=b[k] [i]-l;

for(1=1 ;l<=w;++1)

b[k-l][i] -= (1.0/1);

b[k-l] [i] -= mm;

zz = f [k] [i]+f [k-1] [i] ;

f[k] [i] /= zz;

f[k-l][i] /= zz;

}

/* Information theory method with (let BAY=1) or

without (let BAY!=1) Baysian */

X = 1.0*xx/j;

y = 1.0*yy/j; /* y=p(alpha) and x=p(non-alpha) where p=probability */

/* y & mm: for alpha; x & zz: for non-alpha. */
for(i=l;i<=j;++i)

{
mm = 0.0;

zz = 0.0;

if(h[i][l] > 0)

{
if(BAY==l) mm += b[h[i][l]*2-l][l];

else {mm+=(log(f [hCi] [1]*2-1] Cl]/y)) ;zz+=(log(f [h[i] [1]*2] Cl]/x)) ;}

}

else

137

{
if(BAY==l) mm += b[-h[i][l]*2-l][l];

else

{mm+=(log(f [-h[i] [1]*2-1] [l]/y));zz+=(log(f[-h[i] [1]*2] [l]/x)) ;}

}
for(k=2;k<=NP;++k)

{
if (BAY==1) mm+=b[h[i] [k]*2-l] [k] ;

else

{

mm += (log(f[h[i][k]*2-l][k]/y));

zz += (log(f[h[i][k]*2][k]/x));

}
}

if(BAY==l) zz=0.0;

if(mm>zz)

{
if(h[i][l] > 0) a_a += 1;

else {na_a += 1; h[i][l] = (-h[i][l]);}

}
else if(mm<zz)

{
if (h[i] [1]>0) {a_na += 1; h[i][l] = (-h[i][l]);}

else {na_na += 1;}

}
else del+=l;

}
p r i n t f ;

printf("\n* The result on the training set *");

if(BAY==l)

printf("\n* (information with Baysian) *'');

else

printf ("\n* (information without Baysian) *'');

p r i n t f ;

printf("\n predicted structures");

printf("\n helix non-helix sum\n");

printf("\n");

printf(" helix %d %d %d\n",a_a,a_na,a_a+a_na);

printf("\n");

printf("non-helix %d %d %d\n",na_a,na_na,na_a+na_na);

138

printf("\n");

printfC"# of deleted residues = %d\n",del);

printf("(# of correctly predicted residues)/(total # of residues-del)");

printf (" = '/,f\n", (a_a+na_na)*1.0/(a_a+na_a+a_na+na_na-del)) ;

a_a=0;

a_na=0;

na_a=0;

na_na=0;

del=0;

for(i=0;i<=hub-NP;++i)

{
mm=0.0 ;

zz=0.0 ;

if(wei[i+NP-1] ==0.0) i = i+NP;

str = ching[i+(NP-l)/2];

for(k=0;k<=NP-1 ;++k)

{
s = wei[i+k];

if(BAY==l) mm+=b[s*2-l][k+1];

else

{

mm += (log(f[s*2-l][k+l]/y));

zz += (log(f[s*2][k+l]/x));

}
}

if(BAY==l) zz=0.0;

if(mm>zz)

{
if(str==STRUCl) a_a += 1;

else na_a += 1;

}
else if(mm<zz)

if(str==STRUCl) a_na += 1;

else {na_na +=1;}

}
else del+=l;

}

139

printf) ;

printf("\n* The result on the testing set *");

if(BAY==l)

printf("\n* (information with Baysian)

else

printf("\n* (information without Baysian) *");

p r i n t f ;

printf("\n predicted structures");

printf("\n helix non-helix sum\n");

printf("\n");

printf(" helix %d %d %d\n",a_a,a_na,a_a+a_na);

printf("\n");

printf("non-helix %d %d %d\n",na_a,na_na,na_a+na_na);

printf("\n");

printf("# of deleted residues = %d\n",del);

printf("(# of correctly predicted residues)/(total # of residues-del)");

printf(" = %f\n",(a_a+na_na)*l.0/(a_a+na_a+a_na+na_na-del));

a_a=0;

a_na=0;

na_a=0;

na_na=0;

del=0;

/* Use the single separation plane (two-state) to test performance

on the artificial database, normal[] is the normal vector. */

if(TEST==l)

{
for(i=l;i<=j;++i)

{
Z2=0.0 ;

if (h[i] [1]>0) zz+=normal[h[i] [1]-1] ;

else zz+=normal[-h[i] [!]-!];

for(k=2;k<=NP;++k)

zz += normal[h[i][k]+(k-l)*RES-l];

zz+=(shift);

if (h[i] [1]>0)

{
if(zz>0) a_a+=l;

140

else if(zz<0) a_na+=l;

else del += 1;

}
else

{

if(zz>0) na_a += 1;

else if(zz<0) na_na += 1;

else del += 1;

}
}

printf("\n* The result on the artificial training set *")

printf

printf("\n predicted structures");

printf("\n helix non-helix sumXn");

printf("\n");

printf(" helix %d %d %d\n",a_a,a_na,a_a+a_na);

printf("\n");

printf ("non-helix %d %d */,d\n" ,na_a,na_na,na_a+na_na) ;

printf("\n");

printf("# of deleted residue = %d\n",del);

printf("(# of correctly predicted residue)/(total # of residue-del)");

printf(" = %f\n",(a_a+na_na)*1.0/(a_a+na_a+a_na+na_na-del));

}
>

/* End of if(INFO==l && STRUC2==2) */

if(PARL==l && FIRST!=1)

if(STRUC2 != 2)
{
if(STRUCl==l&ftSTRUC2==0)

for(i=0;i<=PAIR-l;++i)

for(w=1;w<=RESNP+2;++w)

pr[i] [w-1] = pabCi][w-l];

else if(STRUC1==1&&STRUC2==(-1))

for(i=0;i<=PAIR-i;++i)

for(w=l;w<=RESNP+2;++w)

pr[i][w-l] = pac[i][w-l];

else if(STRUCl==0ft&STRUC2==(-l))

141

for(i=0;i<=PAIR-l;++i)

for(w=l;w<=RESNP+2;++w)

pr[i][w-l] = pbc[i] [w-l] ;

}
else

{

if(STRUCl==l)

for(i=0;i<=PAIR-l;++i)

for(w=1 ;w<=RESNP+2;++w)

pr[i] [w-l] = pa[i][w-l];

else if(STRUCl==0)

for(i=0;i<=PAIR-l;++i)

for(w=l;w<=RESNP+2;++w)

pr[i] [w-l] = pb[i][w-l];

else if(STRUCl==(-l))

for(i=0;i<=PAIR-l;++i)

for(w=1 ;w<=RESNP+2;++w)

pr[i] [w-l] = pc[i] [w-l] ;

/* Delete the points seperated by pairs of parallel planes. */

if(PARL==l)

{
for(i=l;i<=PAIR;++i) {pat0[i]=0; patl[i]=0;}

if(PAIR >= 2)

{
for(i=l;i<=j;++i)

for(w=0;w<=PAIR-2;++w)

{
mm = 0.0;

if(h[i][l] > 0) mm += pr[w][h[i][l]-l];

else mm += pr[w][-h[i][l]-l];

for(k=2;k<=NP;++k)

mm += pr[w] [h[i] [k] + (k-l)*RES-l] ;

if(mm+pr[w][RESNP] < CB)

pat0[w+l] += 1;

/* To construct the new centroids,

delete the partitioned points, */

142

if (h[i] [1] > 0)

{
for(k=l;k<=NP;++k) u[hCi][k]+(k-l)*RES] -= 1.0;

yy -= 1;

}
else if(h[i][l] < 0)

{
v[-h[i] [1]] += 1.0;

for(k=2;k<=NP;++k) v[h[i][k]+(k-l)*RES] += 1.0;

XX -= 1;

>

h[i] [1] = 0;

/* To indicate the deleted row (or NP-amino acid segment). */

break;

}
else if(mm+pr[w][RESNP+1] > CA)

{
patl[w+l] += 1;

if (h[i] [1] > 0)

{
for(k=l;k<=NP;++k) u[hCi][k]+(k-l)*RES] -= 1.0;

yy -= 1;

}
else if(h[i][l] < 0)

{
v[-h[i] [1]] += 1.0;

for(k=2;k<=NP;++k) v[h[i][k]+(k-l)*RES] += 1.0;

XX -= 1;

}
h[i] [1] =0;

break;

}
}

s = 0;

for(i=l;i<=PAIR-l;++i)

{
printf("\n# of '%d'('%d') residues partitioned by the %dth pair

= %d(%d)\n",STRUG1,STRUC2,i,pat 1[i],pat0[i]);

s += (patO[i]+patl[i]) ;

143

printf("Total # of residues partitioned by the first %d pairs

= %d\n",PAIR-l ,s);

} /* End of "PAIR>=2" */

if(FIRST!=1)

{
for(i=l;i<=j;++i)

if (h[i] [1] != 0)

{
mm = 0.0;

if(h[i][l] > 0) mm += pr[PAIR-l][h[i] [!]-!];

else mm += pr[PAIR-l][-h[i] [!]-!];

for(k=2;k<=NP;++k)

mm += pr[PAIR-l][h[i][k]+(k-l)*RES-l];

if(mm+pr[PAIR-l][RESNP] < CB)

pat0[PAIR] += 1;

if(ITE!=l) /*To construct the centroids for next pair. */

{

if(h[i][l] > 0)

{
for(k=l;k<=NP;++k) u[h[i][k]+(k-l)*RES] -= 1.0;

yy -= 1;

}
else

{

v[-h[i] [1]] += 1.0;

for(k=2;k<=NP;++k) v[h[i][k]+(k-l)*RES] += 1.0;

XX -= 1;

}
h[i] [1] = 0;

}
}

else if(mm+prCPAIR-l][RESNP+1] > OA)

{
pat1[PAIR] += 1;

if(ITE!=l)

{
if(h[i][l] > 0)

{

144

for(k=l;k<=NP;++k) u[h[i][k]+(k-l)*RES] -= 1.0;

yy -= 1;

}
else

{

v[-h[i][l]] += 1.0;

for(k=2;k<=NP;++k) v[h[i][k]+(k-l)*RES] += 1.0;

XX -= 1;

}
h[i] [1] = 0;

}
}

}

printf ("# of '•/,(!' residues partitioned by the new pair =

%d\n",STRUCl,patl[PAIR]);

printf("# of '%d' residues partitioned by the new pair =

%d\n",STRUC2,pat0[PAIR]);

printf("Total # of residues partitioned by the new pair =

%d\n",pat1[PAIR]+pat0[PAIR]);

s = 0;

for(k=l;k<=PAIR;++k) s+=(patO[k]+patl[k]);

printf("\nTotal # of residues that have been partitioned = %d\n",

printf ("# of residues left = '/.dXnXn", j-s) ;

} /* End of "FIRST!=1"*/

} /* End of "PARL==1" */

/* Construct the initial guess */

for(i=l;i<=RESNP;++i)

v[i]=(v[i]/xx)+(u[i]/yy); /* Difference of centroids.*/

for(i=l;i<=RESNP;++i) ss += (v[i]*v[i]); /* Normalization. */

zz = sqrt(ss);

for(i=l;i<=RESNP;++i) v[i] /= (zz);

/•Find the inner product of the initial vector and the normalized

output vector when iteration is executed.

Use the output vector of either MPSX or OSL to replace v[i].*/

ifdTE == 1)

{
if(PARL==l)

145

for(i=0;i<=RESNP-l;++i) normalCi] = pr[PAIR-l][i];

else if(STRUC2 != 2)

{
if(STRUCl==l && STRUC2==0)

for(i=0;i<=RESNP-l;++i) normal[i]=ab_plane[i];

else if(STRUCl==l && STRUC2==(-1))

for(i=0;i<=RESNP-l;++i) normal [i]=ac_plaiie[i] ;

else if(STRUCl==0 && STRUC2==(-1))

for(i=0;i<=RESNP-l;++i) normal[i]=bc_planeCi];

}

88=0.0;

for(i=l;i<=RESNP;++i)

ss += (normal[i-1]*normal[i-1]);

2Z = sqrt(ss);

printf("The 2-norm of the normal vector is %f\n",zz);

if(PARL==l)

{
printf("The distance between the two planes = ");

printf("ZSUM/(2-norm of the normal) = %f\n",

(prCPAIR-1][RESNP]-pr[PAIR-l][RESNP+1])/zz);

}
for(i=l;i<=RESNP;++i)

u[i] = normal[i-1]/zz;

dot_pdt = 0.0;

for(i=l;i<=RESNP;++i)

dot.pdt += (uCi]*v[i]);

printf("\ndot_pdt = %f\n",dot_pdt);

if(dot_pdt < 0.0 && PARL!=1) goto terrible;

for(i=l;i<=RESNP;++i) v[i] += (RATE*(u[i]-vCi]));

/*for(i=l;i<=RESNP;++i) printf(" %f\n",v[i]);*/

}

/•goto terrible;*/ /•Use this statement when input is not constructed.*/

/•print JCL for MPSX •/

printf("\n//PRIMAL JOB ,MSGLEVEL=l\n");

146

//* CHECKPOINT»[NO]\n");

/*JDBPARM BIN=246,CLASS=Q\n");

/•JOBPARM L=500\n");

//SI EXEC DPLMPROC,PBDISP=NEW,\n");

// TIME.MPSG0=(2,10),region.MPSG0X=15M,\n");

// TIME.MPSG0X=(68,55)\n");

//MPSGO.SYSIN DD *\n");

PR0GRAM\n");

INITIALZ\n");

MOVE (XDATA, ' INPUT'/.d ') \n", NUM) ;

MOVE(XPBNAME,'PRIMAL')\n");

MOVE(XOBJ,'ZSUM')\n");

MOVE(XRHS,'RHS')\n");

XEPS=0.001\n");

CONVERT\n");

SETUP('MIN','BOUNDS','B1','SCALE')\n");

OPTIMIZE\n");

SAVE\n");

XEPS=0.0\n");

RESTORE\n");

OPTIMIZE\n");

SOLUTION\n");

EXIT\n");

PEND\n");

/*\n");

//MPSGOX.MATRIX1 DD UNIT=SCRTCH,SPACE=(CYL,(10),,CONTIG)\n");

//MPSGOX.SCRATCHl DD UNIT=SCRTCH,SPACE=(CYL,(lO),,CONTIG)\n");

//MPSGOX.SCRATCH2 DD UNIT=SCRTCH,SPACE=(CYL,(10),,CONTIG)\n");

//MPSGOX.ETAl DD UNIT=SCRTCH,SPACE=(CYL,(40),.CONTIG)\n");

//MPSGOX.ETA2 DD UNIT=SCRTCH,SPACE=(CYL,(40),.CONTIG),SEP=ETAl\n");

//MPSGOX.SYSIN DD *\n");

/* Print JCL for OSL */

I*
printf ("W/PRIMAL JOB\n");

printf("//* CHECKPOINT»[NO]\n");

printf("/*JOBPARM BIN=246.CLASS=G\n");

printf("/*JOBPARM L=500\n");

printf("//SI EXEC PGM=SAM12,REGI0N=50M.TIME=(60,20)\n");

147

printf("//STEPLIB DD DSN=V.U9229.LP.L0AD12,DISP=SHR\n");

printf("//FT06F001 DD SYSOUT=A\n");

printf('7/FT98F001 DD *\n");

printf(" 0 2 l\n");

*/

/•Construct the initial tableau which is the input of

OSL or MPSX software*/

printf ("NAME INPUT'/,d\n" ,NUM) ;

printf("ROWS\n");

printf(" N ZSUM\n");

jj = 0; /* To count the # of points not partitioned

by previously constructed pairs of planes. */

for(i=l;i<=j;++i)

if(h[i][1]!=0) {jj += 1; printf(" G R%d\n",jj);}

for(i=jj+l;i<=NP+l+jj;++i)

printf(" E R%d\n",i);

printf("COLUMNS\n");

for(i=l;i<=RESNP+l+j;++i)

{
if(i>RESNP+l)

{
if(PARL!=l) /* For single separation planes. */

{
if(i<10)

{
printf (" C'/,d

printf (" C'/,d

}

else if(i<100)

{
printf (" C'/,d

printf(" C%d

}

else if(i<iOOO)

{
printf (" C'/,d

printf(" C%d

}

ZSUM 1.0\n",i);

R%d 1.0\n",i,i-RESNP-l);

ZSUM 1.0\n",i);

R%d 1.0\n",i,i-RESNP-l);

ZSUM 1.0\n",i);

R%d 1.0\n",i,i-RESNP-l);

148

else if(i<10000)

{
printf(" C%d

printf (" C'/,d

}

else if(i<100000)

{

printf (" C'/,d

printf (" C'/,d

}

else if(i<1000000)

{

printf(" C%d

ZSUM 1.0\n",i);

R%d 1.0\n",i,i-RESNP-l);

ZSUM 1.0\n",i);

R%d 1.0\n",i,i-RESNP-l);

ZSUM 1.0\n",i);

1.0\n",i,i-RESNP-l); printf (" C'/,d R%d

}

else printf("Modify the format of input data.");

} /* End of if(PARL != 1) */

} /* End of if(i>RESNP+l) */

else

{

kk=0;

for(k=1 ;k<=NP;++k)

if(i<=RES*k) {p=k;break;}

for(k=l;k<=j;++k)

if(h[k][l]==0) kk+=l;

else if((h[k][p]==i-RES*(p-l))||(h[k][p]==RES*(p-l)-i))

{

if(i<10)

if(h[k][l]>0) printf (

else printf(
}

else if(i<100)

{
if(h[k][l]>0) printf (

else printf(
}

else if(i<1000)

{
if (h[k] Cl]>0) printf (" C'/,d R%d

C'/,d

C'/,d

C%d

C%d

R%d

R%d

R%d

R%d

1.0\n",i,k-kk);

-1.0\n",i,k-kk);

1.0\n",i,k-kk);

-1.0\n",i,k-kk);

1.0\n",i,k-kk);

149

else printfC" C'/,d R*/,d -1.0\n",i,k-kk) ;

}

else if(i<10000)

{
if (h[k] [1]>0) printfC" C'/,d R%d 1.0\n",i,k-kk) ;

else printfC" C%d R'/,d -1.0\n",i,k-kk) ;
}

else if(i<100000)

{
if(h[k][l]>0) printfC" C'/,d R'/.d 1.0\n",i,k-kk);

else printfC" C%d R%d -1.0\n",i,k-kk);

}
else ifCi<1000000)

{
if Ch[k] [1]>0) printfC" C'/,d R%d 1.0\n",i,k-kk) ;

else printfC" C%d R%d -1.0\n",i,k-kk);

}
else printfC"*******Modify the format of input data 3*******");

}

/* Put the initial vector; add CNP-1) constraints; add the constraint

Csum of the first 20 entries of the normal vector)=0. */

ifCi<=RESNP)

{
ifCi<10)

{
printfC" C'/,d R%d %f\n",i,jj+l,v[i]);

ifCp==l)
{
forCw=l;w<=MOD;++w) printfC" C%d R%d 1.0\n",

i,jj+l+w);

printfC" C%d R'/.d 1.0\n",i,jj+NP+l);

}
}

else ifCi<100)

{
printfC" C%d R%d %f\n",i,jj+l,v[i]);

ifCp==l)

{
forCw=l;w<=MOD;++w) printfC" C%d R%d 1.0\n",

150

i,jj+l+w);

printf (" C'/.d R%d 1.0\n",i,jj+NP+l) ;
}

for(w=2;w<=NP;++w)

if(p==w) {printf (" C'/,d R*/,d -1.0\n", i, j j+p) ;

break;}

}
else if(i<1000)

{
printf (" G*/,d R'/,d %f\n",i,jj+l,v[i]);

for(w=2;w<=NP;++w)

if(p==w) {printf(" C'/,d R'/,d -1.0\n",i,jj+p);

break;}

}
else if(i<10000)

printf(" C%d R%d %f\n",i,jj+l,v[i]);

else if(i<100000)

printf (" C*/,d R%d %f\n",i,jj+l,v[i]);

else printf("*****Modify the format of input data 4*****");
}

/* Set constant term for single separation plane. */

if (i=«=RESNP+l && PARL!=1)

{
for(q=l;q<=j;++q)

{
if(h[q][l]>0) printf (" C'/.d R'/.d 1.0\n",i,q);

else printf (" C'/,d R%d -1.0\n",i,q);
}

}
} /* End of "else" of the statement if(i>RESNP+l). */

if(PARL==l)

{
if(i==RESNP+l)

{
qq=0;

printf (" C'/.d ZSUM 1.0\n",i);

for(q=l;q<=j;++q)

{
if(h[q][1]!=0) qq+=l;

151

if (h[q] [1]>0) printfC C'/,d R'/,d 1.0\n",i,qq) ;

}
}

else if(i==RESNP+2)

{
qq=0;

printfC cy.d ZSUM -l.OW.i);

for(q=l;q<=j;++q)

{
if(h[q][1]!=0) qq+=l;

if(h[q][l]<0) printfC" C%d R%d -1.0\n",i,qq);

}
}

}
} /* End of the COLUMN part */

printf("RHS\n");

printfC RHS R%d 1.0\n",jj+l) ;

printf("BOUNDS\n");

for(i=l;i<=RESNP+l;++i)

printfC" FR B1 C%d\n",i);

if(PARL==i) printfC FR B1 C'/.d\n" ,RESNP+2) ;

printf("ENDATA\n");

printf("/*\n");

terrible:

if(dot_pdt < 0.0)

printf("\n The inner product of the initial vector êuid

the output vector is less than 0.\n");
}

152

/* happy */
/* Use the first 20 integers to represent the 20 amino acids.

#define AA 1

#def ine RR 2

#define NN 3

#define DD 4

#define CC 5

#define qq 6

#define EE 7

#define GG 8

#define HH 9

#define II 10

#define LL 11

#define KK 12

#define MM 13

#define FF 14

#define PP 15

#define SS 16

#define TT 17

#define WW 18

#define YY 19

#define VV 20

153

/* _3state_fun.c */

/ *
Use 1 to represent alpha-helix, 0 to represent beta-sheet,

and -1 to represent coil.

' ' = coil; < > = helix; else = sheet

*/
int jfunc(c)

char c;

int i;

switch(c)

{
case '<'

case

case

case '>'

case ' '

default

}

return(i);

}

i=l;break;

i=l;break;

i=l;break;

i=l;break;

i=(-l);break;

i=0;

154

/*ptr_read.c*/

void tr_read()

{
extern int n_tr;

extern double hsieh[20000];

extern int fsm[20000],hua;

extern int num; /* num = # of proteins. */

double tr_hyd;

int tr.str;

int i,p,b,q;

int k = 0;

int 1 = -1;

int anum =0; /* aaium = # of amino acids + # of proteins */

FILE *fptr;

FILE *sptr;

char str,ftr;

fptr = fopen(TR_HYD, "r");

sptr = fopen(TR_STR, "r");

for(i=0;i<=20000;++i)

{
str = fgetc(sptr);

ftr = fgetc(fptr);

anum += 1;

switch(ftr)

{
case 'A' tr_hyd AA;tr_ .str fune(str) break;

case 'R' tr_hyd RR;tr_ .str func(str) break;

case 'N' tr_hyd NN;tr_ str func(str) break;

case 'D' tr_hyd DD;tr_ str func(str) break;

case 'C tr_hyd CCjtr. str fune(str) break;

case tr_hyd QQjtr. str fune(str) break;

case 'E' tr_hyd EE;tr_ str fune(str) break;

case 'G' tr_hyd GG;tr_ str fune(str) break;

case 'H' tr_hyd HH;tr_ str func(str) break;

case 'I' tr_hyd II;tr_ str func(str) break;

case 'L' tr_hyd LL;tr_ str func(str) break;

155

case 'K' tr.hyd = KK;tr_str S func(str) break;

case 'M' tr.hyd = MM;tr_str func(str) break;

case 'F' tr.hyd = FF;tr_str func(str) break;

case 'P' tr.hyd - PP;tr.str S func(str) break;

case 'S' tr.hyd = SS;tr.str func(str) break;

case >•^1 tr.hyd = TT;tr.str func(str) break;

case 'W tr.hyd = WW;tr_str func(str) break;

case 'Y' tr.hyd = YY;tr.str es func(str) break;

case 'V tr.hyd = VVjtr.str func(str) break;

case k+=l; tr_hyd=0.0; breaik;

case 'X' tr.hyd=0.0; breed:;

case ; - ; tr.hyd=100.0; k+=l; break;

default anum-=l;1-=1; break;

}

1 += 1;

hsiehCl] = tr_hyd; /* Amino acid sequences.*/

fajiCl] = tr_str; /* Structure sequences. */

if(ftr == II ftr == ''')

num += 1;

if(ftr == goto end;

if(num == NUM) goto end;

}
}

end: printf("\nThe total number of protein in tr.hyd is %d\n",num);

hua = 1;

n_tr = anum - k;

printf("\nThe total number of aunino acid in tr.hyd is %d\n", n_tr);

fclose(fptr);

fclose(sptr);
}

156

/*31pr_8uper.c

This subroutine uses 3 groups of several pairs of

parallel planes determined by OSL to perform 3-state

predictions.

For 3-state prediction of type 1 only.

Type 1: alpha vs. beta, alpha vs. coil, eoid beta vs. coil.

*/

void method()

{
extern int fan[20000],ching[5000],hua,hub;

extern double hsieh[20000],wei[5000];

extern double pab[PAIRAB][RESNP+2],pac[PAIRAC][RESNP+2];

extern double pbc[PAIRBC][RESNP+2];

int i,k,l,s,w,str,del=0,sl,s2,s3;

int a_a,a_b,a_c,b_a,b_b,b_c,c_a,c_b,c_c;

double mm;

a_a = 0;

a_b = 0;

a_c = 0;

b_a = 0;

b_b = 0;

b_c = 0;

c_a = 0;

c_b = 0;

c_c = 0;

/* ************training set***************** */

for(i=0;i<=hua-NP;++i)

{
if(hsieh[i+NP-1] == 0.0) i = i+NP;

str = fan[i+(NP-l)/2];

/* alpha-beta seperation */

for(w=0;w<=PAIRAB-1;++w)

{
mm = 0.0;

for(k=0;k<=NP-l;++k)

157

{
l=RES*k;

s = hsieh[i+k];

mm += pab[w] [1+s-l] ;

}
if (inm+pab[w] [RESNP] < CB) {sl=0;break;}

else if(mm+pab[w][RESNP+l] > CA) {sl=ljbreak;}

else if(w==PAIRAB-l) 81=2;

}

/* alpha-coil seperation */

for(w=0;w<=PAIRAC-1;++w)

{
mm = 0.0;

for(k=0;k<=NP-1 ;++k)

{
l=RES*k;

s = hsieh[i+k];

mm += pac[w] [1+s-l] ;

}
if(mm+pac[w][RESNP] < CB) {s2=(-l);break;}

else if(mm+pac[w][RESNP+l] > CA) {s2=l;break;}

else if(w==PAIRAC-l) 82=2;

}

/* beta-coil seperation */

for(w=0;w<=PAIRBC-l;++w)

mm = 0.0;

for(k=0;k<=NP-l;++k)

{
l=RES*k;

s = hsieh[i+k];

mm += pbc[w][1+s-l];

}
if(mm+pbc[w][RESNP] < CB) {s3=(-l);break;}

else if(rara+pbc[w][RESNP+l] > CA) {s3=0;break;}

else if(w==PAIRBC-l) 83=2;

}

158

/* Prediction of the ith point. */

if(sl==l)

if(s2==l)

{
if(str==l) a_a += 1;

else if(str==0) b_a += 1

else c_a += i;

}
else if(s2==(-l))

if(s3==(-l))

{
if(str==(-l)) c_c += 1;

else if(str==l) a_c += 1;

else b_c += 1;

}
else del += 1;

}
else del += 1 ;

}
else if(sl==0)

{
if(s3==0)

{
if(str==0) b_b += 1;

else if(str==l) a_b += 1

else c_b += 1;

}
else if(s3==(-l))

{
if(s2==(-l))

if(str==(-l)) c_c += 1;

else if(str==0) b_c += 1;

else a_c += 1;

>
else del += 1;

}
else del += 1;

159

}
else

{

if(s2==(-l))

{
if(s3==(-l))

{
if(str==(-l)) c_c += 1;

else if(str==0) b_c += 1;

else a_c += 1 ;

}
else del += 1;

}
else del += 1;

}
}

printf("\n# of pairs of parallel planes for A-B = */,d\n" ,PAIRAB)

printf ("\n# of pairs of parallel planes for A-C = */.d\n" ,PAIRAC)

printf("\n# of pairs of parallel planes for B-C = 5Jd\n",PAIRBC)

printf ("\nCA = %.10f, CB = 10f\n",CA,CB) ;

p r i n t f ;

printf ("\n* The result on the training set

p r i n t f ;

printf("\n predicted structures");

printf("\n helix beta coil

printf("\n");

printf(" helix %d %d %d

a_a,a_b,a_c,a_a+a_b+a_c);

printf("\n");

printf(" beta %d %d %d

b_a,b_b,b_c,b_a+b_b+b_c);

printf("\n");

printf(" coil %d %d %d

c_a,c_b,c_c,c_a+c_b+c_c);

printf("\n");

printf("Total # of points not predicted = %d\n",del);

printf("Total# of points predicted = %d\n",

sum\n");

%d\n",

%d\n",

%d\n",

160

a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c_c);

printf("Total # of points in the training set = %d\n",

del+a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c_c);

printf("(Total # of correctly predicted residues)/

(total # of predicted residues)®");

printf("%f\n",(a_a+b_b+c_c)*1.0/(a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c

/* ************testing set***************** */

a_a = 0;

a_b = 0;

a_c = 0;

b_a = 0;

b_b = 0;

b_c = 0;

c_a = 0;

c_b = 0;

c_c = 0;

del = 0;

for(i=0;i<»hub-NP;++i)

{
if(weiCi+NP-1] == 0.0) i = i+NP;

str = ching[i+(NP-l)/2];

/* alpha-beta seperation */

for(w=0;w<=PAIRAB-1;++w)

{
mm = 0.0;

for(k=0;k<=NP-l;++k)

{
l=RES*k;

s = wei[i+k];

mm += pab[w] [1+s-l] ;

}
if(mm+pab[w][RESNP] < CB)

else if(mm+pab[w][RESNP+1] > CA)

else if(w==PAIRAB-i)

}

{s1=0;break;}

{sl=l;break;}

sl=2;

/* alpha-coil seperation */

161

for(w=0;w<=PAIRAC-1;++w)

{
mm = 0.0;

for(k=0;k<=NP-1 ;++k)

{
l=RES*k;

s = wei[i+k];

mm += pac[w][1+s-l];

}
if(mm+pac[w][RESNP] < CB) {s2=(-l);break;}

else if(mm+pac[w][RESNP+1] > CA) {s2=l;break;}

else if(w==PAIRAC-l) s2=2;

/* beta-coil seperation */

for(w=0;w<=PAIRBC-1;++w)

{
mm = 0.0;

for(k=0;k<=NP-l;++k)

{
l=RES*k;

s = wei[i+k];

mm += pbc[w][1+s-l];

}
if(mm+pbc[w][RESNP] < CB) {s3=(-l);break;}

else if(mm+pbc[w][RESNP+1] > CA) {s3=0;break;}

else if(w==PAIRBC-l) s3=2;

}

}

/* Prediction of the

if(sl==l)

{
if(s2==l)

ith point, */

if(str==l)

else if(str==0)

else

a_a += 1 ;

b_a += 1;

c_a += 1;

}
else if(s2==(-l))

1G2

if(s3==(-l))

{
if(str==(-l)) c_c += 1;

else if(str==l) a_c += 1 ;

else b_c += 1;

}
else del += 1;

}
else del += 1;

}
else if(sl==0)

{
if(s3==0)

{
if(str==0) b_b += 1;

else if(str==l) a_b += 1;

else c_b += 1 ;

}
else if(s3==(-l))

{
if(s2==(-l))

if(str=-(-l)) c_c += 1;

else if(str==0) b_c += 1;

else a_c += 1;

}
else del += 1;

}
else del += 1;

}
else

{

if(s2==(-l))

{
if(s3==(-l))

{
if(str==(-l)) c_c += 1;

else if(str==0) b_c += 1 ;

else a_c += 1 ;

}

163

else del += 1 ;

}

else del += 1;

}
}

printf

printf("\n* The result on the testing set *")

printf

printf("\n predicted structures");

printf("\n helix beta coil sura\n");

printf("\n");

printf(" helix %d %d %d %d\n",

a_a,a_b,a_c,a_a+a_b+a_c);

printf("\n");

printf(" beta %d %d %d %d\n",

b_a,b_b,b_c,b_a+b_b+b_c);

printf("\n");

printf(" coil %d %d %d %d\n",

c_a,c_b,c_c,c_a+c_b+c_c);

printf("\n");

printf("Total # of points not predicted = %d\n",del);

printf("Total # of points predicted = %d\n",

a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c_c);

printf("Total # of points in the testing set = %d\n",

del+a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c_c);

printf("(Total # of correctly predicted residues)/

(total # of predicted residues)=");

printf ("*/,f\n", (a_a+b_b+c_c)* 1.0/(a_a+a_b+a_c+b_a+b_b+b_c+c_a+c_b+c_c)) ;

}

164

/* Examples of training set and testing set */

/* Residues (A subset of tryte.hyd.) */

ENLKLGFLVKQPEEPWFQTEWKFADKAGKDLGFEVIKIAV

PDGEKTLNAIDSLAASGAKGFVICTPDPKLGSAIVAKARG

YDMKVIAVDDQFVNAKGKPMDTVPLVMMAATKIGERqGQE
LYKEMQKRGWDVKESAVMAITANELDTARRRTTGSMDALK

AAGFPEKQIVqVPTKSNDIPGAFDAANSMLVqHPEVKHWL
IVGMNDSTVLGGVRATEGQGFKAADIIGIGINGVDAVSEL

SKAQATGFYGSLLPSPDVHGYKSSEMLYNWVAKDVEPPKF

TEVTDVVLITRDNFKEELEKKGLGGK*

APAFSVSPASGASDGQSVSVSVAAAGETYYIAQCAPVGGQ

DACNPATATSFTTDASGAASFSFTVRKSYAGQTPSGTPVG

SVDCATDACNLGAGNSGLNLGHVALTFG*

SIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQ-

/* Structures (A subset of tryte.str.) */

AAA < > AAA

< > B <

> B C <

> ODD <=><

-> DD < > D

DD < > EE <-->

EE < >

C E

AAAAA AAAAAAA BBBBBBB CC C

AAAAA DDDDD DDD

<=> *

C

DDD

BBB

BBBBB

DDD AAAAAAA

*

AAAAAAAA

