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Nonlinear elasticity of prestressed single crystals at high pressure and various elastic moduli
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A general nonlinear theory for the elasticity of prestressed single crystals is presented. Various types of elastic
moduli are defined, their importance is determined, and relationships between them are presented. In particular,
B moduli are present in the relationship between the Jaumann objective time derivative of the Cauchy stress
and deformation rate and are broadly used in computational algorithms in various finite-element codes. Possible
applications to simplified linear solutions for complex nonlinear elasticity problems are outlined and illustrated
for a superdislocation. The effect of finite rotations is fully taken into account and analyzed. Different types
of the bulk and shear moduli under different constraints are defined and connected to the effective properties of
polycrystalline aggregates. Expressions for elastic energy and stress-strain relationships for small distortions with
respect to a prestressed configuration are derived in detail. Under initial hydrostatic load, general consistency
conditions for elastic moduli and compliances are derived that follow from the existence of the generalized
tensorial equation of state under hydrostatic loading obtained from a single crystal or polycrystal. It is shown
that B moduli can be found from the expression for the Gibbs energy. However, higher order elastic moduli
defined from the Gibbs energy do not have any meaning since they do not directly participate in any known
equations, like the stress-strain relationships and wave propagation equation. The deviatoric projection of B can
also be found from the expression for the elastic energy for isochoric small strain increments, and the missing
components of B can be found from the consistency conditions.
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I. INTRODUCTION

Elastic moduli under high pressures play a fundamental
role for the solution of numerous basic and applied problems.
These problems include the determination of tensorial stress-
strain relationships for single crystal and polycrystalline
aggregates, which are utilized for continuum simulations
of deformation of a material under extreme dynamic [1–3]
or static [4,5] loadings. The nonlinearity of the elasticity
rules leads to elastic instabilities [6–10]. They cause vari-
ous physical phenomena, including phase transitions (PT, i.e.,
crystal-crystal [11–15], amorphization [16–20], and melting
[21,22]), slip [23], twinning [24], and different fracture modes
[9,10,25,26].

A quite general and correct description of nonlinear elas-
ticity in terms of elastic moduli with respect to the reference
configuration under an arbitrary stress tensor was presented in
Refs. [27–31]. While in Refs. [27,28], the presentation was
heavily mixed with the atomic treatment, in Ref. [29] and
then in Refs. [30,31], the elastic moduli B are introduced that
determined the relationship between a small Cauchy stress
increment and a strain with respect to the current configu-
ration, which played a major role in the determination of
elastic lattice instability under homogeneous perturbations in
Refs. [7–10].

*vlevitas@iastate.edu

Unfortunately, in the most popular for this topic textbook
[6], the derivation of the elastic moduli B from the Cauchy
(true) stress-small strain relationship is based on a small
strain increment from the intermediate reference configura-
tion with respect to a stress-free configuration (instead of the
intermediate to the current configuration) and corresponding
linearization. In Ref. [29], the stress-free reference configu-
ration is not introduced at all; that is why the relationship
between the elastic moduli in the current configuration C̄ and
the all-rank elastic constant tensors Cn

0 of the undeformed
crystal is not presented. This, however, was elaborated in
Ref. [30].

It was suggested in Ref. [32] that for cubic crystals un-
der an initial hydrostatic pressure we should use the second
derivatives of the enthalpy (instead of the Helmholtz energy)
with respect to the Lagrangian strain tensor to determine
elastic moduli, claiming that they play the same role under
pressure as the usual moduli for an unstressed solid. However,
justification was not given, and as we will discuss, this is
not true for the third- and higher order elastic moduli. This
direction was further elaborated in terms of the Gibbs energy
and applied for atomistic determination of elastic moduli for
specific materials in Refs. [33–37]. However, as we will show
in the paper, such elastic moduli, starting with the third order,
do not have any direct physical applications.

One of the methods to determine some of the compo-
nents of tensor B is based on the calculation of the elastic
energy for a small incremental strain ε, which is isochoric
up to terms ε2 [38–40]. However, because no justification
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was given, this method was criticized in Refs. [33,41]. This
led to mutual criticism in Refs. [42,43]. It is shown in
Refs. [8,42] for hexagonal crystals that for several small
isochoric strains without rotations, the free energy, indeed,
represents a quadratic form with B moduli. However, a general
proof is lacking. Also, there is no general consideration for
exactly which components of the B moduli can be determined
with such a method and how to find the remaining compo-
nents.

While using the density functional theory (e.g.,
Refs. [44–46]), a linear elasticity theory that neglects
the effect of initial stresses was used for calculations of
elastic moduli as the coefficients in quadratic elastic energy.
However, when the same approaches have been applied for
a stressed solid, the effect of prestressing is often neglected.
For example, in Ref. [47], these equations have been applied
at high pressures but pressure correction was not mentioned.

Elastic moduli B were found directly from the stress-small
strain relationship in Ref. [48] for α, ω, and β Zr. One of the
general problems is that in most papers, different elastic mod-
uli C and B are often used. The importance of a clear definition
of which elastic moduli are considered in the problem under
study is demonstrated in Ref. [49] and the following discus-
sion in Refs. [50,51]. In Ref. [49], elastic moduli for α quartz
were taken from the linear relationship between the stress and
strain tensors, without specifying which stress and strain, and
used for the evaluation of lattice instability. It was assumed
in Ref. [50] that these elastic moduli are C and should be
pressure corrected to B for the stability study. Then it was
explained in Ref. [51] that their elastic moduli were, in fact, B,
because they came directly from the stress-strain relationship,
meaning the Cauchy stress-small strain with respect to the
deformed state.

Also, as we will show, even the definition of the bulk
modulus under nonhydrostatic loading contains ambiguities,
which leads to various confusion.

We believe that it is time to revisit in a strict and consistent
way, within the framework of modern continuum mechanics,
the main expressions for all reasonable elastic moduli, the
relationship between them, and rigorous determination meth-
ods. The paper is organized as follows. Section II contains
finite-strain kinematics, expressions for different stresses and
energy, and definitions of elastic moduli in the stress-free (C0)
and arbitrary reference configurations (C) for arbitrary strains,
as well as elastic constants of all ranks (Cn

0) in the stress-free
configuration for zero strains. Relationships between all these
moduli are derived. Section III presents relationships between
the objective Jaumann rate of the Cauchy stress and deforma-
tion rate, which appear to be connected by elastic moduli B.
The rate of the second Piola-Kirchhoff stress and Lagrangian
strain are connected by elastic moduli C. Possible applica-
tions of the rate equations to simplified linear solutions for
complex nonlinear elasticity problems are outlined. Various
reasonable definitions of the bulk modulus and compressibil-
ity (bulk compliance) under nonhydrostatic stresses and their
relationships with B moduli are presented in Sec. IV. An ap-
proximation for small distortions with respect to a prestressed
intermediate configuration is described in Sec. V. Elastic
moduli C̃ are introduced as coefficients of the quadratic elastic
energy in terms of small distortions. They also directly appear

in equations of motion and wave propagation. Issues related
to the presence of small rotations in the elastic energy and
invariance under rigid-body rotations in the current configura-
tion are addressed. An example of simple shear is considered.
Section VI presents a particular case when the intermedi-
ate configuration is under hydrostatic pressure. All equations
from the previous sections are simplified for this case, and
some new relationships are derived. Consistency conditions
for moduli B and corresponding compliances are derived
based on the existence of the generalized equation of state
under hydrostatic loading. This is done for the data obtained
for a single crystal and polycrystalline samples. Relationships
are presented between bulk and shear moduli of the isotropic
polycrystal and moduli B under pressure. It is proved that
the Gibbs energy is a quadratic form in small strains with
moduli B. It is also proven that the elastic energy for small
isochoric strains is a quadratic form with the deviatoric pro-
jection of moduli B. The rest of the components of B can
be determined from the consistency conditions. Hydrostatic
loading and isotropic deformation are obtained through en-
ergy minimization in Sec. VI D 7. Simplifications for isotropic
materials and cubic crystals are presented. The principle of
superposition for defects and inelasticity in nonlinear elas-
ticity with application to superdislocation and promotion of
phase transformations by dislocation pileups are considered
in Sec. VII. A summary of the current work is presented in
Sec. VIII. The tensor notations used in the paper are presented
in Appendix A. Appendix B contains a derivation of some
equations. Appendix C describes an analysis of the invariance
under superposed rigid-body rotations in the current config-
uration. Appendix D treats a simple shear under hydrostatic
pressure. An analysis of the previous approaches is given in
Appendix E.

II. MAIN DEFINITIONS

A. Kinematics

The motion of an elastic body is presented by a continuous
function r = r(r0, t ), where r0 and r are the positions of mate-
rial points in the undeformed (stress-free, σ = 0) �0 and the
current deformed � configurations under the Cauchy (true)
stress tensor σ, respectively; t is time. Let us consider a homo-
geneously deformed intermediate configuration �∗ described
by position vector r∗ = r∗(r0, t ), which can be arbitrarily
chosen depending on the goals. The following multiplicative
decomposition of the total deformation gradient F0 from the
reference configuration �0 to the current configuration � is
valid, see Fig. 1:

F0 := ∂r
∂r0

= ∂r
∂r∗

· ∂r∗
∂r0

= F · F∗,

F := ∂r
∂r∗

, F∗ := ∂r∗
∂r0

, (1)

where F∗ is the deformation gradient describing the deforma-
tion from the reference configuration �0 to the intermediate
configuration �∗ and F is the deformation gradient describing
the deformation from the intermediate configuration �∗ to the
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FIG. 1. The reference stress-free configuration �0, the deformed
(current) configuration � under the Cauchy stress σ, and an arbitrary
intermediate configuration �∗ with initial stress σ∗. The multiplica-
tive decomposition of the deformation gradient F0 = F · F∗ is valid.

current configuration �. In the component form,

F0,i j := ∂ri

∂r0, j
= ∂ri

∂r∗k

∂r∗k

∂r0, j
= FikF∗k j,

Fik := ∂ri

∂r∗k
, F∗k j := ∂r∗k

∂r0, j
. (2)

In contrast to the intermediate configurations in elastoplas-
ticity [52,53] and theory of phase transformations [54,55],
which correspond to the stress-free state after unloading after
plastic deformation and phase transformation, the intermedi-
ate configuration here can be chosen arbitrarily based on the
problem in hands and convenience. For example, to derive re-
lationships for small strains superposed on the finite strains, an
intermediate configuration is chosen close to the current one;
to derive the rate equations, they are infinitesimally close. The
intermediate configuration may correspond to the chosen pre-
stressed state, particularly hydrostatically prestressed, to study
the effect of this stress on elastic moduli or wave propagation.
Prestressing can be heterogeneous, e.g., due to heterogeneous
loading or inelastic deformation gradient F in, e.g., plastic,
thermal, transformational, or others; then the decomposition
(1) should be substituted with F0 = F · F∗ · F in [52–55]. In
general, the intermediate configuration and multiplicative de-
composition can be introduced for each point locally through
the field of F∗, which is incompatible, i.e., a continuous vector
function r∗(r0) does not exist. This is similar to incompati-
ble plastic and transformational deformation gradients in the
elastoplasticity [52,53] and the theory of phase transforma-
tions [54,55]. For example, when the hydrostatic pressure is
much larger than the deviatoric stresses and the elasticity rule
is presented in terms of pressure-dependent elastic moduli,
then for the heterogeneously loaded body, the intermediate
configuration for each point is under current local hydrostatic
pressure (i.e., is obtained by local relaxation of the deviatoric
stresses) and is generally incompatible. If the field F∗(r0) is
associated with the current heterogeneously deformed config-
uration, it is compatible.

Equation (1) implies for Jacobian determinants

J0 := detF0 = JJ∗, J := detF, J∗ := detF∗, (3)

where det is the determinant of a tensor, and J0, J , and J∗ char-
acterize the volume ratios for the corresponding deformation
gradients.

The Lagrangian total strain E0 and strains based on F∗ and
F are defined as

E0 = 1
2

(
FT

0 · F0 − I
)
, E∗ = 1

2 (FT
∗ ·F∗ − I),

E = 1
2 (FT · F − I), E0 = FT

∗ ·E·F∗ + E∗, (4)

where the decomposition of E0 in the last Eq. (4) can be
checked using the multiplicative decomposition in Eq. (1) and
I is the second-order unit tensor (see Appendix A). In the
component form,

E0,i j = 1
2 (F0,kiF0,k j − δi j ), E∗i j = 1

2 (F∗kiF∗k j − δi j ),

Ei j = 1
2 (FkiFk j − δi j ), E0,i j = F∗kiEkl F∗l j + E∗i j . (5)

B. Energy and stresses

We will not consider temperature or entropy variation
here for brevity, but they can be trivially included. Then the
Helmholtz energy ψ0 for isothermal processes or the internal
energy U0 for isentropic processes per unit volume in the
reference configuration �0 and the intermediate configuration
�∗ are

ψ0 = ψ0(E0), ψ = ψ0/J∗ = ψ (0) + σ∗ : E + ψ̃ (E ),
(6)

where ψ (0) and σ∗ are the energy and the second Piola-
Kirchhoff stress at E = 0 [see Eq. (8)], and ψ̃ (E ) contains
quadratic and higher order terms in E. The constitutive equa-
tions and, in particular, elastic moduli, will be isothermal if
the Helmholtz energy is used and isentropic (adiabatic) if the
internal energy U0 is utilized. In the component form, Eq. (6)
can be presented as

ψ = ψ0/J∗ = ψ (0) + σ∗i jE ji + ψ̃ (Emn). (7)

The second Piola-Kirchhoff stress in the reference T 0 and
intermediate T configurations are defined as follows:

T 0 = J0 F0
−1 · σ · F0

T −1 = ∂ψ0

∂E0
,

T = JF−1 · σ · FT −1 = ∂ψ

∂E
= σ∗ + ∂ψ̃

∂E
,

T 0 = J∗F−1
∗ · T · FT −1

∗ , T = J−1
∗ F∗ · T 0 · FT

∗ ,

σ∗ := σ|E=0 = T |E=0. (8)

It is clear that for F = I, one has E = 0 and σ = T = σ∗,
which justifies presentation (6) for ψ . In the component form,

T0,i j = J0F−1
0,ikσkl F

−1
0, jl = ∂ψ0

∂E0,i j
,

Ti j = JF−1
ik σklF

−1
jl = ∂ψ

∂Ei j
= σ∗i j + ∂ψ̃

∂Ei j
,

T0,i j = J∗F−1
∗ik TklF

−1
∗ jl , Ti j = J−1

∗ F∗ikT0,kl F∗ jl . (9)
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It follows from Eq. (8) that

σ = J0
−1F0 · T 0 · F0

T = J0
−1F0 · ∂ψ0

∂E0
· F0

T

= J−1F · T · FT = J−1F · ∂ψ

∂E
· FT , (10)

σi j = J−1
0 F0,ikT0,kl F0, jl = J−1

0 F0,ik
∂ψ0

∂E0,kl
F0, jl

= J−1FikTklFjl = J−1Fik
∂ψ

∂Ekl
Fjl . (11)

Note that while σ∗ := σ|E=0 = T |E=0 has the physical
meaning of stresses, in the thermodynamic treatment (e.g.,
application of thermodynamic laws to derive elasticity rules
or temperature evolution equation), σ∗ should be treated just
as a constant in the linear term in Eq. (7) assuming the fixed in-
termediate configuration. The intermediate configuration and
σ∗ can be varied in the final equations.

C. Elastic moduli in the reference and intermediate
configurations

The elastic moduli in the reference C0 and intermediate C
configurations are defined as follows:

C0(E0) := ∂T 0

∂E0
= ∂2ψ0

∂E0∂E0
,

C(E ) := ∂T
∂E

= ∂2ψ

∂E∂E
, (12)

C0,i jkl (E0,mn) := ∂T0,i j

∂E0,kl
= ∂2ψ0

∂E0,i j∂E0,kl
,

Ci jkl (Emn) := ∂Ti j

∂Ekl
= ∂2ψ

∂Ei j∂Ekl
. (13)

In particular, C(E ) can be evaluated at F = I, i.e., at E0 =
E∗, when the intermediate configuration coincides with the
current one, like in Refs. [30,31].

To derive relationships between C and C0, we first present

FT
∗ ·E·F∗ = FT

∗
2∗ FT

∗ ·E = FT
∗

2∗ FT
∗ ·I4

s :E, (14)

F T
∗il ElkF∗k j = F∗liF∗k jElk

= 1
2 (F∗liF∗k j + F∗kiF∗l j )Elk, (15)

where we took into account the symmetry of Elk , or with the
symmetrizing fourth-rank tensor,

F∗liF∗k jElk = F∗liF∗k j I
4
s,lkmnEnm

= 1
2 F∗liF∗k j (δlnδkm + δlmδkn)Enm

= 1
2 (F∗niF∗m j + F∗miF∗n j )Enm

= 1
2 (F∗liF∗k j + F∗kiF∗l j )Elk . (16)

Then we evaluate

∂E0

∂E
= ∂ (FT

∗ ·E·F∗)

∂E
= ∂ (FT

∗
2∗ FT

∗ ·I4
s :E )

∂E

= FT
∗

2∗ FT
∗ ·I4

s , (17)

∂E0i j

∂Ekl
= F T

∗imF T
∗ jnI4

s,nmkl = F∗miF∗n jI
4
s,nmkl

= 1

2
(F∗kiF∗l j + F∗liF∗k j ), (18)

which can be directly obtained from Eq. (16). Note that in a
similar expression in Refs. [30,31], symmetrization is miss-
ing; this, however, did not affect the final results.

Next, using Eqs. (8) and (17), we obtain

T = J−1
∗ F∗ · ∂ψ0

∂E0
· FT

∗ ,

C = ∂T
∂E

= J−1
∗ F∗

2∗ F∗ · ∂2ψ0

∂E0∂E

= J−1
∗ F∗

2∗ F∗ · ∂2ψ0

∂E0∂E0
:
∂E0

∂E

= J−1
∗ F∗

2∗ F∗ · C0:(FT
∗

2∗ FT
∗ ·I4

s )

= (J−1
∗ F∗

2∗ F∗ · C0 · FT
∗

2∗ FT
∗ ):I4

s

= J−1
∗ F∗

2∗ F∗ · C0 · FT
∗

2∗ FT
∗

= J−1
∗ F∗

4∗ F∗
3∗ F∗

2∗ F∗ · C0. (19)

Similarly, in component form, we derive

Ci jkl = ∂Ti j

∂Ekl
= J−1

∗ F∗inF∗ jm
∂2ψ0

∂E0,mn∂Ekl

= J−1
∗ F∗inF∗ jm

∂2ψ0

∂E0,mn∂E0,st

∂E0,st

∂Ekl

= 1

2
J−1
∗ F∗inF∗ jmC0,mnst (F∗ksF∗lt + F∗lsF∗kt )

= J−1
∗ F∗lt F∗ksF∗inF∗ jmC0,mnst , (20)

where we took into account the symmetry of C0,mnst , in the
given case over permutation of s and t . Thus

C(E ) = J−1
∗ F∗

4∗ F∗
3∗ F∗

2∗ F∗ · C0(E0),

Ci jkl (Eab) = J−1
∗ F∗imF∗ jnF∗ksF∗ltC0,mnst (E0,ab). (21)

Equation (21) gives the relationship between elastic moduli in
two different configurations connected by deformation gradi-
ent F∗. Note that C0 is a function of E0 and C is a function of
E, and can be expressed via Eq. (21) in terms of E0 and F∗.
They do not keep the symmetry of the initial nondeformed
lattice and for general E0 they have the symmetry of the
trigonal crystal, i.e., all 21 unequal components. They have the
complete Voigt symmetry, i.e., they are invariant with respect
to exchanging indices 1 ↔ 2, 3 ↔ 4, and (1, 2) ↔ (3, 4).
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D. Elastic constants of all orders in the stress-free reference configuration

To find the functional relationship C0(E0), we need to know the explicit expression for the energy ψ0(E0). Usually, it is
defined in terms of the elastic constants of all orders in the stress-free reference configuration. Let us expand

ψ0(E0) = ψ0(0) + 1/2E0:C2
0:E0 + 1/(3!)

(
E0:C3

0:E0
)
:E0 + 1/(4!)E0:

(
E0:C4

0:E0
)
:E0

+ 1/(5!)(E0:
(
E0:C4

0:E0
)
:E0):E0 + · · · , (22)

ψ0(E0,mn) = ψ0(0) + 1/2C2
0,i jkl E0, jiE0,lk + 1/(3!)C3

0,i jkle f E0,i jE0,kl E0, f e + 1/(4!)C4
0,i jkle f qst E0,i jE0,kl E0, f eE0,ts

+ 1/(5!)C5
0,i jkle f qstmnE0,i jE0,kl E0, f eE0,tsE0,nm + · · · , (23)

where the 2nth-rank tensors Cn
0 are n-order elastic constants of the undeformed crystal, which possess the symmetry of the

undeformed crystal, and contain complete information about the elastic energy, moduli, and stress measures at any strain E0.
By definition,

C2
0 =:

∂2ψ0

∂E0∂E0

∣∣∣∣
E0=0

= ∂T 0

∂E0

∣∣∣∣
E0=0

, C3
0 =:

∂3ψ0

∂E0∂E0∂E0

∣∣∣∣
E0=0

= ∂2T 0

∂E0∂E0

∣∣∣∣
E0=0

,

C4
0 =:

∂4ψ0

∂E0∂E0∂E0∂E0

∣∣∣∣
E0=0

= ∂3T 0

∂E0∂E0∂E0

∣∣∣∣
E0=0

, C5
0 =:

∂5ψ0

∂E0∂E0∂E0∂E0∂E0

∣∣∣∣
E0=0

= ∂4T 0

∂E0∂E0∂E0∂E0

∣∣∣∣
E0=0

, (24)

C2
0,i jkl =:

∂2ψ0

∂E0,i j∂E0,kl

∣∣∣∣
E0,cd =0

= ∂T0,i j

∂E0,kl

∣∣∣∣
E0,cd =0

, C3
0,i jkle f := ∂3ψ0

∂E0,i j∂E0,kl∂E0,e f

∣∣∣∣
E0,cd =0

= ∂2T0,i j

∂E0,kl∂E0,e f

∣∣∣∣
E0,cd =0

,

C4
0,i jkle f st =:

∂4ψ0

∂E0,i j∂E0,kl∂E0,e f ∂E0,st

∣∣∣∣
E0,cd =0

= ∂3T0,i j

∂E0,kl∂E0,e f ∂E0,st

∣∣∣∣
E0,cd =0

,

C5
0,i jkle f stmn =:

∂4ψ0

∂E0,i j∂E0,kl∂E0,e f ∂E0,st E0,mn

∣∣∣∣
E0,cd =0

= ∂3T0,i j

∂E0,kl∂E0,e f ∂E0,st∂E0,mn

∣∣∣∣
E0,cd =0

. (25)

Examples of the elastic moduli are given up to the third order in Refs. [56–58], the fourth order in Refs. [59,60] at small strains
(e.g., 0.02–0.03), and up to the fifth order for finite strains (0.37 for Si I) in Ref. [61].

The knowledge of the above elastic constants allows one to determine elastic moduli C0(E0) according to Eq. (12),

C0(E0) = C2
0 + C3

0:E0 + 1/2
(
C4

0:E0
)
:E0 + 1/(3!)

((
C5

0:E0
)
:E0

)
:E0 + · · · , (26)

C0,i jkl (E0,ab) = C2
0,i jkl + C3

0,i jkle f E0, f e + 1/2C4
0,i jkle f st E0, f eE0,ts + 1/(3!)C5

0,i jkle f stmnE0, f eE0,tsE0,nm + · · · . (27)

Equation (21) can be utilized to determine moduli C(E ) for an arbitrary intermediate configuration. In particular, they can be
evaluated at F = I, i.e., at E0 = E∗, when the intermediate configuration coincides with the current one, like in Refs. [30,31].
For finite deviation of the intermediate configuration from the current one, one may need higher order elastic moduli in the
intermediate configuration to evaluate energy and stresses. That is why the choice of the intermediate configuration that coincides
with the current one is the most convenient and popular.

III. RATE OF THE CAUCHY STRESS VERSUS
DEFORMATION RATE

A. Kinematics

Let v = ∂
∂t r(r0, t ) = ṙ(r0, t ) be the material velocity vec-

tor and t is time. Using the invertibility of the relationship
r = r(r0, t ), i.e., r0 = r0(r, t ), the velocity can be expressed
as a function of r and t , v = v(r, t ), i.e., in spatial (Eulerian)
presentation. Let us define the velocity gradients in configura-
tions �0 and �, respectively:

∂v

∂r0
= ∂

∂r0

∂r
∂t

= ∂

∂t

∂r
∂r0

= ∂

∂t
F = Ḟ,

∂vi

∂r0, j
eie j = ∂

∂r0, j

∂ri

∂t
eie j = ∂

∂t

∂ri

∂r0, j
eie j

= ∂

∂t
F0,i j eie j = Ḟ0,i j eie j, (28)

l = ∂v

∂r
= ∂v

∂r0
· ∂r0

∂r
= Ḟ · F−1,

l = ∂vi

∂r j
eie j = ∂vi

∂r0,k

∂r0,k

∂r j
eie j = ḞikF−1

k j eie j . (29)

We took into account the permutability of the spatial and
time derivative in the material description in terms of (r0, t ).
As it follows from Eq. (29), this is not the case for variable
reference configuration, i.e., in spatial presentation in terms
of (r, t ).

The velocity gradient can be decomposed into the sym-
metric deformation rate d and the antisymmetric spin
tensor w:

l = d + w, d = l s = (Ḟ · F−1)s,

w = las = (Ḟ · F−1)as,

li j = di j + wi j, di j = (
ḞikF−1

k j

)
s
, wi j = (

ḞikF−1
k j

)
as

.

(30)
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All these tensors are defined in the current configuration and
independent of the reference configuration. We will use the
known relationship between Ė and d [52,63]:

d = F−1T · Ė · F−1, Ė = FT · d · F. (31)

B. Stress rate - deformation rate relationships

In computational mechanics, it is traditional to find the
relationship between some objective time derivative of the
Cauchy stress and the deformation rate for different material
models [62]. The coefficients in such relationships are used
as an input in various computational codes (e.g., ABAQUS or
DEALII). We will do this here for nonlinear elasticity. The
time derivative of the constitutive equation T = ∂ψ

∂E for an
arbitrarily chosen fixed intermediate configuration (including
stress-free configuration) yields

Ṫ = C : Ė, Ṫi j = Ci jkl Ėlk . (32)

Note that because the intermediate configuration is fixed, there
are no terms with σ̇∗ and Ḟ∗. It is derived in Appendix B that

σ̇ + σ(d : I) − l · σ − σ · lT

= 1

J
(F

2∗ F · C · FT 2∗ FT ) : d = C̄ : d, (33)

where

C̄ = 1

J
F

2∗ F · C · FT 2∗ FT

= 1

J
F

4∗ F
3∗ F

2∗ F · C

= 1

J0
F0

4∗ F0
3∗ F0

2∗ F0 · C0. (34)

Equation (21) and multiplicative decomposition (1) were uti-
lized. The tensor C̄ is the tensor of elastic moduli in the
current configuration, which is independent of the choice of
the reference configuration. Note that the intermediate config-
uration was utilized for generality; it is not necessary for the
derivation of Eq. (33).

In component notations,

σ̇i j + σi j (dklδlk ) − lilσl j − σiml jm

= 1

J
Flt FksFinFjmCmnst dlk = C̄i jkl dlk,

C̄i jkl = J−1Flt FksFinFjmCmnst

= J−1
0 F0,lt F0,ksF0,inF0, jmC0,mnst . (35)

The left-hand side (LHS) of Eq. (33) is known as the Truesdell
objective rate of the Cauchy stress,

∇
σTr := σ̇ + σ(d : I) − l · σ − σ · lT = C̄ : d, (36)

which gives one more physical interpretation of the tensor
of elastic moduli in the current configuration C̄. Using the

definition of the Jaumann objective derivative
∇
σJ := σ̇ − w ·

σ − σ · wT in Eq. (33), it can be expressed as

∇
σJ = σ̇ − w · σ − σ · wT

= C̄ : d − σI : d + d · σ + σ · d, (37)

∇
σ J,i j = σ̇i j − wikσk j − σikw jk

= C̄i jkl dlk − σi jδmndnm + dikσk j + σikdk j . (38)

Using derivations in Appendix B, Eq. (37) can be transformed
to

∇
σJ = σ̇ − w · σ − σ · wT

= (
C̄ − σI + σ · I4

s + (
I4

s · σ
)T )

: d = B : d, (39)

B := C̄ − σI + σ · I4
s + (

I4
s · σ

)T
, (40)

Bi jkl := C̄i jkl − σi jδkl + 1
2 (σilδ jk + σikδ jl + σk jδli + σl jδki ).

(41)

Thus the relationship between the Jaumann derivative of the
Cauchy stress and the deformation rate is described by the
effective elastic moduli tensor B. The tensor B was introduced
in Ref. [29] as the coefficients in the relationship between
stresses and small strains of the predeformed crystals and
in Refs. [30,31] as the derivative of the Cauchy stress with
respect to small strain increment from the current configura-
tion; thus, Eq. (40) is an alternative definition convenient for
numerical realization in the modern finite-element codes (see
Sec. III C). It is easy to check directly (and since B connects
two symmetric tensors) that Bi jkl is symmetric with respect to
permutations i ↔ j and k ↔ l , but is generally not symmetric
in (i, j) ↔ (k, l ). The effective elastic moduli tensor B is the
main elastic moduli tensor used for the evaluation of crystal
lattice instability [6–10]. Here, it is introduced through the
objective stress rate versus deformation rate relationship.

Using transformations from Appendix B, Eq. (39) can also
be presented as

σ̇ = B : d + [(
I4

as · σ
)T − σ · I4

as

]
: w, (42)

σ̇i j = Bi jkl dlk + 1
2 (σk jδli − σ jlδik

− σilδ jk + σikδ jl )wlk . (43)

C. Time integration

Let us introduce the distortion tensor β with respect to the
intermediate configuration �∗, as well as its symmetric ε and
antisymmetric ω parts:

β := F − I = ε + ω,

ε := (β)s, ω := (β)as. (44)

For infinitesimal distortions, i.e., infinitesimal difference be-
tween the current and intermediate configurations, |β| � 1,
the velocity gradient is l � β̇, the deformation rate is d � ε̇,
and spin is w � ω̇. Then Eq. (43) can be integrated for small
time increment:

σ(t + 
t ) = σ(t ) + B : ε̇
t

+ [(
I4

as · σ
)T − σ · I4

as

]
: ω̇
t, (45)

σi j (t + 
t ) = σi j (t ) + Bi jkl ε̇lk
t + 1
2 (σk jδli

− σ jlδik − σilδ jk + σikδ jl )ω̇lk
t . (46)

214105-6



NONLINEAR ELASTICITY OF PRESTRESSED SINGLE … PHYSICAL REVIEW B 104, 214105 (2021)

Equation (46) is used in numerical algorithms for the solution
of boundary-value problems. Many finite-element programs
(e.g., ABAQUS or DEALII) use the fourth-rank tensor relating
objective stress rate and deformation rate as the input from
the user-developed material models. While we presented the
simplest explicit integration, any implicit integration scheme
(e.g., predictor-corrector, backward Euler, Crank-Nicolson,
etc.) can be applied in the traditional way.

If an intermediate configuration �∗ is updated, then small
strain ε and rotations ω are evaluated with respect to updated
configuration �∗ without remembering previous values of ε

and ω, Eq. (45) can be presented in terms of small strains ε =

ε = ε̇
t and rotations ω = 
ω = ω̇
t :

σ(t + 
t ) = σ(t ) + B : ε + [(
I4

as · σ
)T − σ · I4

as

]
: ω, (47)

σi j (t + 
t ) = σi j (t ) + Bi jklεlk + 1
2 (σk jδli

− σ jlδik − σilδ jk + σikδ jl )ωlk . (48)

IV. BULK MODULUS AND COMPRESSIBILITY

While it is well known that the bulk modulus K := −V ∂ p
∂V ,

where p = − 1
3σ:I is the pressure and V is the deformed vol-

ume of the system, we need to understand how this follows
from the definitions used above and which elastic moduli does
K correspond to: C0, C̄, or B? For this purpose, we need to
give strict definitions of the bulk modulus and compressibil-
ity for the general stress-strain state. Also, the importance
of mentioning the exact components of the strain or stress
tensors that are fixed in the chosen definition of the bulk
moduli and compressibility for the general stress-strain state is
illustrated.

A. Hydrostatic loading of material with elastic
energy depending on volume

For liquids and gases, since under hydrostatic loading
stress, the work per unit reference volume V0 or more gen-
erally V∗ (in the intermediate configuration) is −V −1

∗ pdV =
−pdJ , it then follows that

−V −1
∗ pdV = −pdJ = dψ → p = −∂ψ

∂J
= −V∗

∂ψ

∂V
, (49)

where we remind that ψ is the elastic energy per unit vol-
ume V∗ in the intermediate configuration �∗. Then the bulk
modulus in the intermediate configuration K∗ can be defined
as

K∗ := −∂ p

∂J
= ∂2ψ

∂J2
= −V∗

∂ p

∂V
= V 2

∗
∂2ψ

∂V 2
. (50)

We use subscript ∗ to distinguish this modulus from the mod-
uli C in the intermediate configuration because for K∗ the
derivative is calculated for the Cauchy stress, while for C,
it was evaluated for the second Piola-Kirchhoff stress. When
the intermediate configuration coincides with the current one,
then V∗ = V , the elastic energy is defined per unit current
volume and is designated as ψc, and

p = −V
∂ψc

∂V
, K = −V

∂ p

∂V
= V 2 ∂2ψc

∂V 2
= − ∂ p

∂ ln V
, (51)

i.e., the classical definition is obtained. The following alter-
native expressions for K are valid for any fixed intermediate
configuration:

K = − V

V∗

∂ p

∂ (V/V∗)
= −J

∂ p

∂J
= J

∂2ψ

∂J2
= − ∂ p

∂ε0
= JK∗,

ε0 : = ln J, (52)

where ε0 is the logarithmic volumetric strain. Comparison of
Eqs. (51) and (52) leads to d ln V = dε0 = d ln V

V0
= dV

V0

V0
V ,

which means that the increment of the logarithmic strain is
independent of the reference configuration (volume).

Compressibility or bulk compliance is determined as

k = 1

K
= − 1

V

∂V

∂ p
= −∂ ln V

∂ p
= −∂ε0

∂ p
= −1

J

∂J

∂ p
. (53)

Note that all the above equations are strict if ε0 is the
only strain-related variable; otherwise, derivatives should be
calculated at fixed other strain-related variables or deviatoric
stress, which will be discussed below.

B. General elastic material

Bulk modulus. Let us consider a general stress-strain state
and find the explicit connection between K and B. We de-
compose the Cauchy stress and the deformation rate into the
spherical and deviatoric (σdev and ddev) parts:

σ = −pI + σdev, d = 1
3 ε̇0I + ddev, σdev:I = ddev:I = 0,

(54)

since d:I = J̇/J = ˙ln J = ε̇0 [52,63]. Substituting Eq. (54) in
Eq. (39), we obtain

∇
σJ = −ṗI + σ̇dev − w · σdev − σdev · wT

= B : (1/3 ε̇0I + ddev), (55)

where we took into account that w · I + I · wT = 0. Calculat-
ing the trace of Eq. (55), we derive

−ṗ = 1/9 ε̇0I:B:I + 1/3 I:B:ddev

= 1/9 ε̇0I:B:I + 1/3 I:B:ε̇dev. (56)

One can define different bulk moduli using Eq. (52), i.e., − ∂ p
∂ε0

,
under various constraints on the strain or stress states. One of
the natural definitions is to fix the deviatoric strain; then from
Eq. (56), we obtain

KV = − ∂ p

∂ε0

∣∣∣∣
εdev

= 1/9 I:B:I = 1/9 Bii j j = 1/9 (C̄ii j j + 3p).

(57)

Here, the subscript V is for Voigt, because the relationship
(57) between KV and B corresponds to the bulk modulus of the
polycrystalline aggregate based on the Voigt averaging (i.e.,
for the same strain in all crystals [65,69,70]). The last equality
was obtained using the relationship (41) between the tensors
B and C̄ for an arbitrary σ. Thus KV corresponds to the moduli
B, which is clear since it connects the components of the
Jaumann rate of the Cauchy stress and the deformation rate.

Note that generally, the bulk modulus in Eq. (57) can be de-
termined for arbitrary strain or stress states (which contribute
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to the definition of B); the small strain increment should
be pure volumetric (isotropic) only. In particular, the current
state can be an isotropically strained material with respect to
the stress-free state or material under hydrostatic pressure p,
which produces a generally anisotropic strain. In particular, let
one impose in atomistic simulations F = J1/3I and calculate
the energy ψ (J ). Then from the power balance

σ : ddt = −pdε0 + σdev : ddevdt = J−1dψ, (58)

where we took into account Eq. (54), ddev = 0 implies

−pdε0 = −pJ−1dJ = J−1dψ (J )

→ p = −∂ψ (J )

∂J
|F=J1/3I . (59)

Then Eqs. (57) and (59) imply that the same relationships like
in Sec. IV A are applicable:

KV = − ∂ p

∂ε0

∣∣∣∣
F=J1/3I

= −J
∂ p

∂J

∣∣∣∣
F=J1/3I

= J
∂2ψ

∂J2

∣∣∣∣
F=J1/3I

= −V
∂ p

∂V

∣∣∣∣
F=J1/3I

= V 2 ∂2ψc

∂V 2

∣∣∣∣
F=J1/3I

. (60)

Compressibility. Let us introduce the fourth-rank compli-
ance tensor λ, inverse to B, by the relationship λ : B = I4

s
[λi jmnBnmlk = 1

2 (δilδ jk + δikδ jl )]. Then producing double con-
traction of λ and both sides of Eq. (55), we obtain

1/3 ε̇0I + ddev = λ:
(−ṗI+ ∇

σdev,J
)
. (61)

The trace of Eq. (61) has the form

ε̇0 = −I:λ:I ṗ + I:λ:
∇
σdev,J. (62)

Similar to the bulk moduli, one can define different compress-
ibilities using Eq. (53), i.e., − ∂ε0

∂ p , under various constraints
on the strain or stress states. One of the natural definitions
is to impose

∇
σdev,J= 0, i.e., to fix deviatoric stress σdev and

rotations ω; then from Eq. (62) we obtain the bulk compliance
(compressibility):

kR = −∂ε0

∂ p

∣∣∣∣
σdev

= I:λ:I = λii j j . (63)

Here subscript R stands for Reuss because the relationship
(63) between kR and λ corresponds to the compressibility of
the polycrystalline aggregate based on the Reuss averaging
(i.e., for the same stress in all crystals) [64,65]; the subscript
ω for fixed rotation is omitted for brevity but should always
be kept in mind. Similar to the bulk modulus, generally, the
compressibility in Eq. (63) can be determined for arbitrary
strain or stress states (which contribute to the definition of λ);
the small stress increment should be pure hydrostatic only.
In particular, the current state can be an isotropically strained
material with respect to the stress-free state or material under
hydrostatic pressure p, which generally produces anisotropic
strain.

Note that generally KV �= 1/kR, because derivatives ∂ p
∂ε0

|εdev

and ∂ε0
∂ p |σdev are evaluated while fixing different parameters that

do not correspond to each other. It is known that KV = 1/kR

for cubic crystals and isotropic materials only, because for

them fixation of small deviatoric strain and stress is equiva-
lent.

One can define an alternative bulk modulus KR and com-
pressibility kV by the following equations:

KR := − ∂ p

∂ε0

∣∣∣∣
σdev

= 1

kR
= 1

λii j j
,

kV := −∂ε0

∂ p

∣∣∣∣
εdev

= 1

KV
= 9

Bii j j
. (64)

In particular, if for the entire straining σdev = 0 and loading
is hydrostatic, then energy can be calculated for hydrostatic
loading as ψ (J ), and Eq. (59) implies

−pJ−1dJ = J−1dψ (J ) → p = −∂ψ (J )

∂J

∣∣∣∣
σdev=0

. (65)

Then again, the same relationships like in Sec. IV A are appli-
cable:

KR = − ∂ p

∂ε0

∣∣∣∣
σdev=0

= −J
∂ p

∂J

∣∣∣∣
σdev=0

= J
∂2ψ

∂J2

∣∣∣∣
σdev=0

= −V
∂ p

∂V

∣∣∣∣
σdev=0

= V 2 ∂2ψc

∂V 2

∣∣∣∣
σdev=0

. (66)

To summarize, there is no unique bulk modulus and compress-
ibility under general stress-strain states; they can be defined
by derivatives − ∂ p

∂ε0
and − ∂ε0

∂ p , respectively, under various
constraints on the strain or stress states, which should be
very clearly stated. For one of them, KV = 1/kV , we fix the
deviatoric strain, and for another, KR = 1/kR, we fix the devi-
atoric stress. Generally, the bulk modulus and compressibility
can be determined for arbitrary strain or stress states (which
contribute to the definition of B). For KV = 1/kV , a small
strain increment should be purely volumetric (isotropic) only
and for KR = 1/kR, a small stress increment should be pure
hydrostatic pressure only. If the entire loading corresponds to
isotropic straining or hydrostatic loading, then two different
energy functions ψ (J ) can be defined, and the bulk modulus
for both loadings can be in addition defined in terms of the
second derivative of energy. While there is no averaging in the
definition of the bulk modulus and compressibility for a single
crystal, the expression for KV = 1/kV in terms of components
Bi j coincides with the Voigt average for a polycrystal, and
the expression for kR = 1/KR in terms of components λi j

coincides with the Reuss average. Neglecting the difference
between the two types of bulk moduli/compressibilities may
lead to quantitative misinterpretation of experiments and qual-
itative contradictions, which will be illustrated in Sec. VI B 3.

V. APPROXIMATION FOR SMALL DISTORTIONS WITH
RESPECT TO AN INTERMEDIATE CONFIGURATION

A. Elastic energy

Using Eqs. (4) and (44), for the general case of finite
distortions β = F − I = ε + ω,

E = 1
2 (FT · F − I) = ε + 1

2βT · β

= ε + 1
2 (ε · ε + 2(ε · ω)s + ωT · ω). (67)
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The energy per unit volume in the intermediate configuration
�∗ in the quadratic in E approximation is

ψ = ψ0/J∗ = ψ (0) + σ∗ : E + 1
2 E : C : E. (68)

The corresponding second Piola-Kirchhoff stress is

T = σ∗ + C : E. (69)

For small distortions β, substituting Eq. (67) in Eq. (68), we
obtain in quadratic in distortions approximation

ψ = ψ (0) + σ∗ :
(
ε + 1

2βT · β
) + 1

2βT : C : βT , (70)

ψ = ψ (0) + σ∗i j
(
ε ji + 1

2βk jβki
) + 1

2Ci jklβi jβkl , (71)

where 1
2βT : C : βT = 1

2ε : C : ε due to symmetry of C, but
we will keep the expression with βT for a while in order to
express the final quadratic form like 1

2C̃i jklβi jβkl with moduli
C̃i jkl to be determined.

The second Piola-Kirchhoff stress in linear in distortions
approximation reduces to

T = σ∗ + C : ε. (72)

We transform

σ∗ : βT · β = β · σ∗ : βT = βT :
(
I4

t · σ∗
)

: βT , (73)

βi j I
4
t,i jklσ∗lmβkm = σ∗lmδikδ jlβi jβkm = σ∗ jmδikβi jβkm

= σ∗ jlδikβi jβkl . (74)

or more straightforwardly σ∗i jβk jβki = σ∗i jδmkβk jβmi =
σ∗l jδkiβi jβkl . Then,

ψ = ψ (0) + σ∗ : ε + 1
2βT : C̃ : βT

= ψ (0) + σ∗i jε ji + 1
2C̃i jklβi jβkl ,

C̃ := C + I4
t · σ∗, C̃i jkl := Ci jkl + σ∗l jδki. (75)

The tensor C̃i jkl is not symmetric with respect to i ↔ j and
k ↔ l and does not possess the Voigt symmetry, but it is
symmetric in exchange between pairs i j and kl . Equation (75)
was suggested in Ref. [27]. For the intermediate configuration
infinitesimally close to the current one, we have C̄ � C and
σ∗ � σ. Then it follows from the comparison of Eqs. (40) and
(75) that

B := C̃ − I4
t · σ − σI + σ · I4

s + (
I4

s · σ
)T

= C̃ − σI + σ · I4
s + (

I4
as · σ

)T
, (76)

Bi jkl := C̃i jkl − σi jδkl + 1
2 (σilδ jk + σikδ jl + σk jδli − σl jδki ).

(77)

Note that if the higher-order terms in E will be utilized in
Eq. (68), stress σ∗ will not contribute to the higher-order terms
in β, because E does not contain higher than the second-order
terms in β. Decomposing β into ε and ω in Eq. (67), we obtain
(see Appendix B)

ψ = ψ (0) + σ∗ : ε + 1
2ε : Cεε : ε + ω:Cωε :ε

+ 1
2ω : Cωω : ωT ,

Cεε := C + I4
s · σ∗ : I4

s , Cωε := I4
as · σ∗ : I4

s ,

Cωω := I4
as · σ∗ : I4

as, (78)

ψ = ψ (0) + σ∗i jε ji + 1
2Cεε

i jklεi jεkl + Cωε
i jklεklω ji

+ 1
2Cωω

i jklωklω ji,

Cεε
i jkl := Ci jkl + 1

4 (σ∗l jδki + σ∗liδk j + σ∗ jkδli + σ∗ikδl j ),

Cωε
i jkl := 1

4 (σ∗liδk j − σ∗l jδki − σ∗ jkδli + σ∗ikδl j ),

Cωω
i jkl := 1

4 (σ∗liδk j − σ∗l jδki + σ∗ jkδli − σ∗ikδl j ). (79)

The tensor Cεε possesses full Voigt symmetry. The tensor Cωε
i jkl

is symmetric in k ↔ l and antisymmetric in i ↔ j. The tensor
Cωω

i jkl is antisymmetric in i ↔ j and k ↔ l , and invariant under
exchange of pairs (i j) ↔ (lk), (kl ) ↔ ( ji), (i j) ↔ (kl ).

A delicate moment in consistent keeping in Eq. (70) all
quadratic in distortion terms is that in the linear in E term, we
keep all quadratic terms, but in the quadratic in E term, we
retain the linear term E = ε only. This modifies elastic moduli
C by I4

s · σ∗ : I4
s and also shows that the energy depends on

the small rotations ω. Small rotations may be related to ε for
specific loadings (e.g., for simple shear), thus also changing
elastic moduli.

As a general conclusion, it follows from Eqs. (72), (47),
and (78) that

T �= ∂ψ

∂ε
, C �= ∂2ψ

∂ε∂ε
, σ �= ∂ψ

∂ε
,

σ �= 1

J

∂ψ

∂ε
, B �= ∂2ψ

∂ε∂ε
, (80)

despite that this is expected from small strain theory.
In many works (e.g., Refs. [44–46]), where the effect of

initial stresses and rotations is neglected, the energy under
the small strain increment in �∗ is approximated like in tradi-
tional small strain theory, i.e.,

ψ − ψ (0) � 1
2ε:C:ε. (81)

In atomistic simulations, the energy is calculated for differ-
ent distortions β and then is approximated by the quadratic
function (81). If these evaluations are performed under initial
stresses and with small rotations, then all neglected terms in
Eq. (78) are attributed to C and produce significant error in C.
This will be shown in the examples below.

B. Equation of motion and wave propagation
in the prestressed solids

It is shown, e.g., in Ref. [27] that the Lagrangian equations
of motion are

ρ
∂2ui

∂t2
= C̃s

i jkl

∂2uk

∂r∗ j∂r∗l
, C̃s

i jkl := 1

2
(C̃i jkl + C̃ilk j ), (82)

i.e., they utilize the same tensor C̃ like in Eq. (75) for the
energy but symmetrized with respect to j and l , because the
second derivative in Eq. (82) is symmetric with respect to
j and l . Here ui are components of the displacement vec-
tor u = r − r∗. A similar equation of motion was derived in
Ref. [30] in a different way. While Ref. [27] gave a pure
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FIG. 2. Simple shear F = I + γ mn with the shear strain γ at the
plane with the unit normal n along the unit direction m. Crystal lattice
of any symmetry can be oriented arbitrarily.

mechanical interpretation of C̃, Ref. [30] has generalized it
for thermoelasticity.

Equation (82) results in the following plane-wave propaga-
tion equation [27,30]:

ρv2
wui = C̃s

i jkl k jkluk = Likuk, Lik := C̃s
i jkl k jkl , (83)

where vw is the wave velocity, ki are the components of the
unit vector in the direction of wave propagation, and Lik is the
propagation matrix. As one of the known stability conditions,
the propagation matrix Lik should be a positive definite for all
possible ki to guarantee the possibility of wave propagation
in any direction, which shows an additional importance of the
tensor C̃. Equation (83) shows the possibility to determine the
tensor C̃

s
from the wave propagation experiment, while the

antisymmetric in j and l part of C̃i jkl can be determined from
the expression for elastic energy only.

C. Simple shear

Let us consider a simple shear as an example:

F − I = β = γ mn = γ

⎛
⎜⎝

0 1 0

0 0 0

0 0 0

⎞
⎟⎠,

E = 1

2
(FT · F − I) = 1

2
γ (mn + nm + γ nn)

= 1

2
γ

⎛
⎜⎝

0 1 0

1 γ 0

0 0 0

⎞
⎟⎠. (84)

Here, n is the unit normal to the shear plane, m is the unit
vector in the shear direction, γ is the shear strain, and the
matrices are presented in the coordinate system shown in
Fig. 2. Combining all terms from Appendix B, we obtain from
Eq. (79) for the energy

ψ = ψ (0) + σ∗12ε12 + 1
2

(
C1212 + 1

4 (σ∗11 + σ∗22)
)︸ ︷︷ ︸

Cεε
1212

γ 2

+ 1
4 (σ∗22 − σ∗11)︸ ︷︷ ︸

Cωε
2121

γ 2

+ 1
2γ 2 1

4 (σ∗22 + σ∗11)︸ ︷︷ ︸
Cωω

1221

= ψ (0) + σ∗12ε12

+ 1
2 (C1212 + σ∗22)︸ ︷︷ ︸

Cψ

γ 2. (85)

The last equation in Eq. (85) can be obtained more quickly
by substituting β from Eq. (84) in Eq. (70). Note that from
Eq. (41)

B1212 = C1212 + 1
2 (σ∗11 + σ∗22)

= Cεε
1212 + Cωω

1221 �= Cεε
1212 �= Cψ. (86)

For the straining with β = ε = 1
2γ (mn + nm) and ω = 0

(rotation-free shear), the terms with Cωε
1212 and Cωω

1212 disappear
from the expression for ψ and one obtains

ψ = ψ (0) + σ∗12ε12 + 1
2 (C1212 + 1

4 (σ∗11 + σ∗22))︸ ︷︷ ︸
Cεε

1212

γ 2. (87)

Again, B1212 �= Cεε
1212.

The above example explicitly shows the effect of initial
stress and small rotations on the energy and determination of
the elastic moduli based on energy. If neglected, they produce
errors in the determination of the elastic moduli. Thus, by
comparing Eq. (85) with the simplest theory in Eq. (81), we
see that C1212 is corrected by the term σ∗22. However, when
rotations are absent and Eq. (87) is valid, C1212 is corrected by
the term 1

4 (σ∗11 + σ∗22).

VI. RELATIONSHIPS FOR THE INTERMEDIATE
CONFIGURATION UNDER HYDROSTATIC PRESSURE

In the treatment that follows, the deformed intermediate
configuration under hydrostatic pressure p is considered, i.e.,

σ∗ = −pI, σ∗i j = −pδi j . (88)

This substitution can be made for all equations of the previ-
ous sections. However, this particular case also allows some
qualitatively new results, which are not valid for the general
preliminary stress tensor.

For single crystals, the symmetric deformation gradient
tensor F∗ that produces the intermediate configuration is de-
scribed by the experimentally determined function

F∗ = F∗(p), (89)

which we will call a generalized equation of state. While in
the experiment, depending on the way the crystal is fixed,
generally nonsymmetric F̄∗ may be obtained and can be de-
composed into the symmetric F∗ and the orthogonal r tensors
characterizing rigid-body rotation using polar decomposition
F̄∗ = r · F∗; rotation should be excluded because it can be
made arbitrary by rotating an observer. Relationship (89), in
particular, results in the equation of state

J∗ = detF∗ = J∗(p). (90)

For the cubic crystal and isotropic polycrystalline aggre-
gate, Eq. (90) is the only scalar equation that follows from
Eq. (89). For lower lattice symmetries, the number of inde-
pendent scalar equations in Eq. (89) is equal to the number
of nonzero components of the transformational deformation
gradient that transform the cubic lattice into the lattice of
interest during martensitic phase transformation. The transfor-
mation matrices for such transformations are collected, e.g.,
in Refs. [66,67]. For example, for tetragonal and hexago-
nal lattices, there are two independent equations for F∗11 =
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F∗22 and F∗33; for orthorhombic lattices and monoclinic lat-
tices (with the axis of monoclinic symmetry corresponding
to 〈100〉cubic direction), there are four independent equa-
tions (F∗13 = F∗23 = 0 only); for monoclinic lattices (with
the axis of monoclinic symmetry corresponding to 〈110〉cubic

direction) and triclinic lattices, there are all six independent
equations.

The elastic energies per unit volume in the reference con-
figuration �0 and the intermediate configuration �∗ are

ψ0 = ψ0(E0), ψ = ψ0/J∗ = ψ (0) − pI : E + ψ̃ (E ).
(91)

Similar to the general initial stress, while p has the phys-
ical meaning of pressure, in the thermodynamic treatment
(e.g., application of thermodynamic laws to derive elastic-
ity rules or temperature evolution equation), p should be
treated just as a constant in the linear term in Eq. (91) as-
suming the fixed intermediate configuration. The intermediate
configuration and p can be varied in the final equations. In par-
ticular, in the thermodynamic treatment, pressure-dependent
elastic moduli should not be differentiated with respect to
pressure.

A. Stresses and stress rate

The second Piola-Kirchhoff stress in the reference T 0 and
intermediate T configurations are defined as follows:

T 0 = J0 F0
−1 · σ · F0

T −1 = ∂ψ

∂E0
,

T = JF−1 · σ · FT −1 = ∂ψ

∂E
= −pI + ∂ψ̃

∂E
,

T 0 = J∗F−1
∗ · T · FT −1

∗ , T = J−1
∗ F∗ · T 0 · FT

∗ ,

(92)

where σ is Cauchy (true) stress. It is clear that for F = I one
has σ = T = −pI, which justifies presentation Eq. (91) for
ψ . In the component form

T0,i j = J0F−1
0,ikσklF

−1
0, jl = ∂ψ0

∂E0,i j
,

Ti j = JF−1
ik σkl F

−1
jl = ∂ψ

∂Ei j
= −pδi j + ∂ψ̃

∂Ei j
,

T∗i j = J∗F−1
∗ik Tkl F

−1
∗ jl , Ti j = J−1

∗ F∗ikT0,kl F∗ jl . (93)

It follows from Eq. (92),

σ = J0
−1F0 · T 0 · F0

T = J0
−1F0 · ∂ψ0

∂E0
· F0

T

→ @F = I : −pI = J∗−1F∗ · ∂ψ0

∂E0

∣∣∣∣
E0=E∗

· FT ∗. (94)

For general anisotropic crystals Eq. (94) is the inverse of
Eq. (89), i.e., the generalized equation of state. In the com-
ponent form

σi j = J−1
0 F0,ikT0,kl F0, jl = J−1

0 F0,ik
∂ψ0

∂E0,kl
F0, jl

→ @Fi j = δi j : −pδi j = J−1
∗ F∗ikF∗ jl

∂ψ0

∂E0,kl

∣∣∣∣
E0,ab=E∗ab

.

(95)

Also,

σ = J−1F · T · FT = J−1F · ∂ψ

∂E
· FT

= −pJ−1F · FT + J−1F · ∂ψ̃

∂E
· FT . (96)

σi j = J−1FikTklFjl = J−1Fik
∂ψ

∂Ekl
Fjl

= −pJ−1FikFjk + J−1Fik
∂ψ̃

∂Ekl
Fjl . (97)

All equations from Sec. II C for elastic moduli remain un-
changed. All equations from Sec. III down to Eq. (36) remain
unchanged because they do not use an intermediate con-
figuration. If we consider in Eqs. (37) and (38) stress in
the current configuration σ = −pI, these equations simplify
to

∇
σJ = σ̇ = C̄ : d + p

(
II : d − 2d

)
= (C̄ + p(II − 2I4

s ) : d = B : d,

σ̇ = B : d, B := C̄ + p
(
II − 2I4

s

)
, (98)

∇
σ i j = σ̇i j = C̄i jkl dlk + p(δi jδmndnm − 2di j )

= (C̄i jkl dlk + p(δi jδkl − δikδ jl − δilδ jk )dkl ,

σ̇i j = Bi jkl dkl , Bi jkl := C̄i jkl dlk + p(δi jδkl − δikδ jl−δilδ jk ).

(99)

We took into account that −(w · σ + σ · wT ) = p(w +
wT ) = 0, i.e., the spin tensor does not contribute to the
stress rate for initially hydrostatically loaded crystal. Based
on the definition, we see that in contrast to the general
stress state at time t , for the initial hydrostatic loading ten-
sor Bi jkl = Bkli j . Thus, for this case, tensor B has full Voigt
symmetry. Also, hydrostatic pressure does not change the
symmetry of the stress-free crystal lattice, which significantly
simplifies analysis. Eq. (98) can be integrated for small time
increment:

σ(t + 
t ) = −p(t )I + B : ε̇
t,

σi j (t + 
t ) = −p(t )δi j + Bi jkl ε̇lk
t . (100)

The application of this equation is limited to the case when,
for the next time step, the stress at the previous time step is
hydrostatic. This is the case if the entire loading is hydro-
static, which is of limited interest. However, based on σ(t +

t ), one can update pressure p(t + 
t ) and using Eq. (89),
update F∗(t + 
t ) and the intermediate configuration. This
configuration under updated pressure can be used as a new
intermediate configuration �∗ for the next time step and strain
increment ε̇
t should be calculated with respect to this con-
figuration.

If an intermediate configuration �∗ is updated, then strain ε

is evaluated with respect to updated configuration �∗ without
remembering previous values of ε, Eq. (100) can be presented
in terms of ε = 
ε = ε̇
t :

σ = −p(F∗)I + B : ε,

ε = F−1T
∗ (p)·(E0 − E∗(p))·F−1

∗ (p), (101)
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σi j = −p(F∗mn)δi j + Bi jklεlk,

εlk = F−1
∗ik (p)(E0,i j − E∗i j (p))F−1

∗ jl (p), (102)

where Eqs. (4) and (5) were utilized. Both equations are non-
linearly connected, since p depends on F∗ in the first equation
and F∗ depends on p in the second equation, and should be
solved iteratively, if E0 is prescribed. Of course, one can use
Eq. (45) with general σ dependent expression for the tensor B
in Eq. (40). However, the advantage of utilizing Eq. (100) is
that the tensor B has full Voigt symmetry and the symmetry
of the stress-free crystal lattice, which significantly simplifies
analysis.

B. Consistency conditions utilizing single crystal data

Here, we will find which constraints on the elastic com-
pliances and moduli are imposed from the experimental
generalized equation of state (89) under hydrostatic loading,
which is usually obtained using an x-ray diffraction measure-
ment of the change of lattice parameters under hydrostatic
pressure, we will call them the consistency conditions. We
will consider two cases: (a) when the generalized equation of
state is obtained from the experiment on a single crystal and
(b) when it is extracted from the polycrystalline sample.

One of the universal consistency conditions for any crystal
symmetry can be immediately found from the equation of
state (90) when the intermediate configuration coincides with
the current one: it defines the bulk modulus K and compliance
k, which are connected to elastic moduli and compliances by
Eqs. (57) and (63), respectively:

KV = −J∗
∂ p

∂J∗

∣∣∣∣
εdev

= − ∂ p

∂ ln J∗

∣∣∣∣
εdev

= 1/9 I:B:I = 1/9 Bii j j,

(103)

kR = −∂ ln J∗
∂ p

∣∣∣∣
σdev

= I:λ:I = λii j j . (104)

Equations (103) or (104) are routinely used to check the
correctness of the determined elastic moduli or help to find
n elastic moduli from n − 1 experiments or atomistic simula-
tions that do not involve K or k. Note that Eqs. (103) and (104)
are not equivalent.

Below we will derive all consistency conditions related to
the generalized equation of state (89) under hydrostatic load-
ing. When σ represents hydrostatic state of stress, Eq. (98)
reduces to the following equation:

−ṗI = B(p) : d. (105)

1. Consistency conditions for elastic compliances

Inverting Eq. (105) by double contraction with elastic com-
pliance λ(p) (λ(p) : B(p) = I4

s ) gives

d = −λ(p) : I ṗ. (106)

From the other side, it follows from Eq. (89) that

d∗ := (Ḟ∗·F∗−1)s =
(

dF∗(p)

d p
·F−1

∗

)
s

ṗ. (107)

Since under hydrostatic loading d = d∗, by comparing
Eq. (106) and Eq. (107), we obtain

λ(p) : I = −
(

dF∗(p)

d p
·F−1

∗

)
s

→ λi jkk = −
(

dF∗im(p)

d p
F∗−1

m j

)
s

. (108)

Equation (108), which we call a consistency condition for
elastic compliances, imposes linear constraints on the elas-
tic compliances coming from the experimental generalized
equation of state (89) under hydrostatic loading. The number
of constraints is equal to the number of independent strain
components that appear under hydrostatic pressure for a given
symmetry of a lattice. It equals to the number of independent
lattice parameters or components of the transformation strain
tensor for phase transformation from the cubic to the given
lattice. Thus it is two for hexagonal, trigonal, rhombohedral,
and tetragonal lattices, three for orthorhombic, four for mon-
oclinic, and six for triclinic.

In particular, the trace of Eq. (108) in combination with the
definition (63) of the bulk compliance kR leads to

kR = λii j j = I : λ(p) : I = −dF∗(p)

d p
:

F−1
∗ = −dF∗im(p)

d p
F∗−1

mi . (109)

Since dJ∗/J∗ = d ln J∗ = dF∗ : F−1
∗ = dF∗imF∗−1

mi [52,63],
Eq. (109) is equivalent to Eq. (104). For example, if F∗ is
a diagonal tensor (for orthorhombic lattices), then Eq. (108)
takes the following form:

λ11kk = − 1

F∗11

dF∗11(p)

d p
= −d ln [F∗11(p)]

d p
,

λ22kk = − 1

F∗22

dF∗22(p)

d p
= −d ln [F∗22(p)]

d p
,

λ33kk = − 1

F∗33

dF∗33(p)

d p
= −d ln [F∗33(p)]

d p
. (110)

Recall, that λ11kk , λ22kk , and λ33kk are linear compliances
along the orthorhombic axes [68]. For hexagonal and tetrag-
onal systems, F∗11 = F∗22 and λ11kk = λ22kk , and nontrivial
Eqs. (110) in more explicit form are

λ1111 + λ1122 + λ1133 = −d ln [F∗11(p)]

d p
,

λ3311 + λ3322 + λ3333 = −d ln [F∗33(p)]

d p
. (111)

With the Voigt designation, Eq. (111) looks like

λ11 + λ12 + λ13 = −d ln [F∗1(p)]

d p
,

(112)

2λ13 + λ33 = −d ln [F∗3(p)]

d p
,

where symmetry λ32 = λ23 and λ23 = λ13 is taken into ac-
count.
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2. Consistency condition for elastic moduli

Let substitute in Eq. (105) deformation rate d∗ for hydrostatic loading from Eq. (107):

−ṗI = B(p) :

(
dF∗(p)

d p
·F−1

∗

)
s

ṗ → B(p) :

(
dF∗(p)

d p
·F−1

∗

)
s

= −I → Bi jkl (p)

(
dF∗lm(p)

d p
F∗−1

mk

)
s

= −δi j, (113)

where symmetrization can be omitted due to symmetry of Bi jkl in k and l . Equation (113) represents the desired linear constraints
on elastic moduli.

As an example, for orthorhombic lattices, Eq. (113) simplifies to

B(p) :
d ln [F∗(p)]

d p
= −I, Bi jkk (p)

d ln [F∗kk (p)]

d p
= −δi j . (114)

For hexagonal and tetragonal crystals, Eq. (114) reduces to

[B11(p) + B12(p))]
d ln [F∗11(p)]

d p
+ B13(p)

d ln [F∗33(p)]

d p
= −1, 2B13(p)

d ln [F∗11(p)]

d p
+ B33(p)

d ln [F∗33(p)]

d p
= −1. (115)

The difference between consistency conditions for compliance and moduli is that the former constrains the sum of some
compliances, but the latter constrains the weighted sum of elastic moduli.

Let us express for comparison the constraints on compliances Eq. (112) for hexagonal and tetragonal lattices in terms of elastic
moduli. We recollect relationships between λi j and Bi j for hexagonal and tetragonal (classes 4mm, 4̄2m, 42m, and 4/mmm)
systems [68]:

λ11 + λ12 = B33/B, λ13 = −B13/B, λ33 = (B11 + B12)/B, B = B33(B11 + B12) − 2B2
13. (116)

Substituting them in Eq. (112), we obtain consistency conditions for compliances expressed in terms of elastic moduli:

B33 − B13

B
= −d ln [F∗1(p)]

d p
,

B11 + B12 − 2B13

B
= −d ln [F∗3(p)]

d p
. (117)

They are equivalent to Eq. (115) and can be obtained from Eq. (115) by solving them for d ln[F∗1(p)]
d p and d ln[F∗3(p)]

d p . Due to
nonlinearity of these constraints in terms of Bi j , their application is less convenient than in Eq. (115) or Eq. (112) for λi j .

Equivalence of the consistency conditions for elastic moduli and compliances can be proven in the general case. Indeed,
producing double contraction of both sides of Eq. (108) with B, we obtain

B : λ(p) : I = I4
s : I = I = −B :

(
dF∗(p)

d p
·F−1

∗

)
s

, Bi jabλabkk = I4
s,i jkk = δi j = −Bi jab

(
dF∗am(p)

d p
F∗−1

mb

)
s

, (118)

which coincides with Eq. (113). We can also present Eq. (108) in terms of elastic moduli

B−1(p) : I = −
(

dF∗(p)

d p
·F−1

∗

)
s

, B−1
i jkk = −

(
dF∗im(p)

d p
F∗−1

m j

)
s

(119)

and Eq. (113) in terms of elastic compliances

λ−1(p) :

(
dF∗(p)

d p
·F−1

∗

)
s

= −I, λ−1
i jkl (p)

(
dF∗lm(p)

d p
F∗−1

mk

)
s

= −δi j . (120)

Due to inversion, these are nonlinear constraints on the elastic moduli and compliances, which are less convenient than the
original linear constraints (108) and (113).

3. Constraint involving the bulk modulus

As a particular case of Eq. (113), let us try to derive the constraint related to the definition of the bulk modulus KV the way
we did for bulk compliance, i.e., by finding the trace of the consistency condition. First, with the help of the definition of the
deformation rate (30), when the current configuration coincides with the intermediate configuration, d∗ = (Ḟ∗ · F−1

∗ )s and its
decomposition (54) into spherical and deviatoric parts d∗ = 1

3 ε̇0∗I + ddev∗, we obtain(
dF∗(p)

d p
·F−1

∗

)
s

= d∗
dt

d p
=

(
1

3
ε̇0∗I + ddev∗

)
dt

d p
,

(
dF∗im(p)

d p
F∗−1

m j

)
s

= d∗i j
dt

d p
=

(
1

3
ε̇0∗δi j + ddev∗,i j

)
dt

d p
. (121)
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Then finding the trace of Eq. (113), we derive

−3 = I : B(p) :

(
1

3
ε̇0∗I + ddev∗

)
dt

d p
= (3KV ε̇0∗ + I : B(p) : ddev∗)

dt

d p
= 3KV

dε0∗
d p

∣∣∣∣
σdev

+ I : B(p) :

(
dF∗(p)

d p
·F−1

∗

)
dev

,

−3 = Biikl (p)

(
1

3
ε̇∗0δkl + ddev∗,kl

)
dt

d p
(3KV ε̇0∗ + Biikl (p)ddev∗,kl )

dt

d p
= 3KV

dε0∗
d p

∣∣∣∣
σdev

+ Biikl (p)

(
dF∗km(p)

d p
F∗−1

ml

)
dev

. (122)

We used definition Eq. (57) of the bulk modulus KV = 1/9 I:B:I = 1/9 Bii j j and also that pressure derivatives are evaluated at
fixed σdev and ω, like in the initial Eq. (113). With ε0∗ := ln J∗ = detF∗ from Eq. (52) for the current configuration coinciding
with the intermediate configuration, Eq. (122) can be presented in the form

KV
d ln J∗

d p

∣∣∣∣
σdev

+ 1

3
I : B(p) :

(
dF∗(p)

d p
·F−1

∗

)
dev

= −1, KV
d ln J∗

d p

∣∣∣∣
σdev

+ 1

3
Biikl (p)

(
dF∗km(p)

d p
F∗−1

ml

)
dev

= −1. (123)

Equation (123) is clearly not equivalent to the constraint (103) on the bulk modulus KV , because it explicitly depends on the
deviatoric part ( dF∗(p)

d p ·F−1
∗ )dev. However, this is noncontradictory because careful utilization of the definitions leads to

KV
d ln J∗

d p

∣∣∣∣
σdev

= − d p

d ln J∗

∣∣∣∣
εdev

d ln J∗
d p

∣∣∣∣
σdev

�= −1, (124)

because derivatives are evaluated for different and nonequivalent constraints. Thus Eq. (123) represents a noncontradictory
constraint on I : B(p) : ( dF∗(p)

d p ·F−1
∗ )dev, which is part of the general constraints (113).

If we would neglect this difference and insert KV
d ln J∗

d p = − d p
d ln J∗

d ln J∗
d p = −1 in Eq. (123), we would obtain

I : B(p) :

(
dF∗(p)

d p
·F−1

∗

)
dev

= Biikl (p)

(
dF∗km(p)

d p
F∗−1

ml

)
dev

= 0 → nonsense, (125)

because it does not follow from the general constraints (113). This became more evident, e.g., for hexagonal and tetragonal
crystals, for which (ln F∗11)dev = (ln F∗22)dev = − 1

2 (ln F∗33)dev, and (125) simplifies to

Biikl (p)

(
dF∗km(p)

d p
F∗−1

ml

)
dev

= Biikk (p)

(
d ln[F∗kk (p)]

d p

)
dev

= (Bii11(p) + Bii22(p) − 2Bii33(p))

(
d ln[F∗11(p)]

d p

)
dev

= 2(B11(p) + B12(p) − B13(p) − B33(p))

(
d ln[F∗11(p)]

d p

)
dev

= 0{}
→ B11(p) + B12(p) − B13(p) − B33(p) = 0 → nonsense, (126)

because there is no relationship between these 4 elastic moduli
for tetragonal and hexagonal lattices. Thus constraint (103)
on the elastic moduli expressed in terms of bulk modulus
KV = 1/9 I:B:I = 1/9 Bii j j cannot be directly derived from
the trace (56) of the general constraint (55). This is in contrast
to the constraint (104) on elastic compliances expressed in
terms of bulk compliance kR = I:λ:I = λii j j , because it is
strictly derived in Eq. (109) from the trace of the general
consistency condition for elastic compliances, Eq. (108).

The difference between these results for bulk modulus and
compressibility are in general Eqs, (56) and (62) and the fact
that consistency conditions are based on the relationship be-
tween hydrostatic pressure p and some deformation gradient
F∗, which includes anisotropic strain. For hydrostatic loading,
Eq. (62) gives

ε̇0 = −I:λ:I ṗ = kR ṗ → kR = −I:λ:I. (127)

However, for hydrostatic loading, we cannot set in Eq. (56)
ε̇dev = 0 and receive KV = 1/9 I:B:I, instead, we obtain the
more general Eq. (123). Expression KV = 1/9 I:B:I is derived
independently in Eq. (103) under nonhydrostatic stresses but
fixed εdev.

Thus either of constraints on bulk moduli KV = 1/9 I:B:I
or KR = 1

kR
= 1

λii j j
can be applied as one of the equations for

finding all elastic moduli, provided that KV and KR are cor-
rectly determined from the experiments or atomic simulations.
Modulus KV is easier to calculate by prescribing an isotropic
expansion to the lattice, calculating energy, the stress tensor,
and pressure and using KV = −V ∂ p

∂V |εdev = V 2 ∂2ψc

∂V 2 |F=J1/3I =
− ∂ p

∂ε0
|εdev . Calculation of KR should be produced under hy-

drostatic loading, i.e., lattice parameters under fixed volume
should be varied to relax all deviatoric stresses, which
requires many more calculations. Then KR = −V ∂ p

∂V |σdev =
V 2 ∂2ψc

∂V 2 |σdev=0 = − ∂ p
∂ε0

|σdev . Also, KV imposes a linear con-
straint on B components, but KR represents a nonlinear
constraint. Both these results demonstrate some advantage of
using a KV -related constraint in comparison with KV -related
constraint. However, relaxation of deviatoric stresses for each
pressure should be performed in any case to find all other
elastic moduli under pressure.

C. Consistency conditions utilizing data
from polycrystalline sample

Utilizing function F∗(p). While for single crystal the load-
ing is clear, i.e., pressure is applied, and deformation is
measured, for polycrystalline aggregates, due to different ori-
entation and interaction of crystals, there is a distribution of
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stress and strains. For applied pressure, p, in gas or liquid,
each crystal of a polycrystalline aggregate possesses its own
stress tensor σ, which causes its own F∗ in the crystallo-
graphic axes of each crystal. The x-ray diffraction measures
are averaged over the aggregate change in lattice parameters.
That is, in a thought experiment, all crystals are rotated to the
same orientation of their cells, like for a single crystal, then
each component of F∗ is averaged over the aggregate and
is related to the averaged pressure in a polycrystal, which is
equal to pressure p in a liquid. Then the dependence F∗(p)
in terms of averaged F∗ and p can be used in equations of
Sec. VI B the same way as for a single crystal.

This approach is simple, straightforward, and differs from
the case when one uses some effective properties of the poly-
crystalline aggregate instead of F∗(p), e.g., effective bulk
and shear moduli for isotropic polycrystal in terms of elastic
moduli of a single crystal.

Utilizing effective elastic properties. There are numerous
methods of determining the effective elastic properties of
heterogeneous materials. The simplest way to determine the
effective elastic properties is to assume that all crystals have
the same strain or distortion (Voigt approximation [65,69,70]),
for which averaging is performed for elastic moduli BV

and the same stress (Reuss approximation [64,65,70]), for
which averaging is performed for elastic compliances λR. For
isotropic polycrystals, the effective bulk modulus Kp and shear
modulus μp are bounded by

KR = 1/kR � Kp � KV , μR = 1/sR � μp � μV , (128)

where s is shear compliance. According to Ref. [70], a good
approximation is

Kp = KH = 1
2 (KV + KR), μp = μH = 1

2 (μV + μR).

(129)

It is clear that these equations are valid for any pressure.
For cubic crystals only KH = KV = KR. For an effective
anisotropic (textured) polycrystalline aggregate, similar lower
Reuss and upper Voigt bounds on elastic moduli can be formu-
lated in an energetic sense, and one of the possible Hill-type
averaging is

Bp(p) = 1
2 (BV (p) + BR(p)), BR(p) = λ−1

R (p), (130)

see, e.g., Ref. [71]. For triclinic crystals,

KV = 1/9 Bii j j

= 1/9 (B11 + B22 + B33 + 2(B12 + B23 + B13)),

kR = λii j j = λ11 + λ22 + λ33 + 2(λ12 + λ23 + λ13),

μV = 1/15 (B11 + B22 + B33 − (B12 + B23 + B13)

+ 3(B44 + B55 + B66)),

15/μR = 4(λ11 + λ22 + λ33) − 4(λ12 + λ23 + λ13)

+ 3(λ44 + λ55 + λ66). (131)

While for a single crystal we do not produce any averag-
ing, Eqs. (103) and (104) for single crystals coincide with
Eq. (131) for KV and kR for polycrystalline aggregate. This
is because it is easy to show that KV and kR in Eqs. (103)
and (104) for arbitrary crystals are independent of crystal

orientation. That is why we added subscripts V and R for
single crystals to underline that KV is based on the Voigt
approximation, and kR is based on the Reuss approximation.

For higher-symmetry crystals, Eqs. (131) trivially simpli-
fies. For example, for tetragonal and hexagonal single crystals,
we obtain from Eq. (131) for bulk modulus and bulk compli-
ance

KV = 1/9 (2B11 + 2B12 + 4B13 + B33),

kR = 2λ11 + 2λ12 + 4λ13 + λ33

= B11 + B12 − 4B13 + 2B33

B33(B11 + B12) − 2B2
13

→ KR = 1

kR
= B33(B11 + B12) − 2B2

13

B11 + B12 − 4B13 + 2B33
, (132)

where Eq. (116) was used. Using expressions for KV , KR, μV ,
and μR, one can find expressions for KH and μH , and then by
equating it to the experimental value Kp, obtain the desired
two constraint equations on elastic moduli of single crystals.
Reuss, Voigt, and Hill averages for bulk or/and shear moduli
were arbitrarily and routinely used in different papers as one
or two of the equations for determination of all elastic moduli,
and of course, the results depend on which approximation for
Kp and μp is chosen. Thus, in contrast to a more detailed and
precise approach based on the experimental function F∗(p),
approaches utilizing effective elastic properties of polycrys-
talline sample for finding elastic moduli of single crystals
always include an error related to the chosen theory for effec-
tive elastic moduli. Thus the approach based on F∗(p) is much
more preferred. Then Eq. (131) can be used for comparison
of theoretically predicted elastic moduli of a polycrystal at
different pressures with experiment.

On the other hand, Eq. (131) can be used to find pressure-
dependent elastic moduli for polycrystalline aggregates. They
also can be used to calibrate some nonlinear isotropic poten-
tials, like the Murnaghan potential ([63,72]), which is broadly
used for simulation of deformation processes under high pres-
sure (e.g., Refs. [4,5]). Murnaghan potential possesses five
elastic constants, four of which, bulk and shear moduli and
their pressure derivatives, can be found from the elastic mod-
uli of single crystals and their pressure derivative.

D. Expressions for small distortions in
the intermediate configuration

1. Expression for the elastic energy

Limiting ourselves to quadratic terms in E in ψ , we obtain
for the energy per unit volume in the intermediate configura-
tion �∗ from Eq. (68):

ψ = ψ0/J∗ = ψ (0) − pI : E + 1
2 E : C : E. (133)

Utilizing

F = I + β = I + ε + ω, ε := (β)s, ω := (β)a (134)

and Eq. (67),

E = ε + 1
2βT · β = ε + 1

2 (ε · ε + 2(ε · ω)s + ωT · ω),
(135)
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we evaluate

I : E = ε : I + 1
2βT : β = ε0 + 1

2 (ε : ε + ωT : ω),

ε0 : = ε : I. (136)

For small strains and rotations with respect to the intermediate
configuration �∗, substituting Eqs. (135) and (136) in the
expression for the elastic energy in Eq. (133), we obtain in
quadratic in distortions approximation

ψ − ψ (0) = −p
[
ε : I + 1

2βT : β
] + 1

2βT : C : βT

= −pε : I + 1
2βT : C̃ : βT

= −pεkk + 1
2C̃i jklβi jβkl ,

C̃ : = C − pI4
t , C̃i jkl := Ci jkl − pδ jlδik . (137)

Note that if higher order terms in E will be utilized in
Eq. (133), pressure p will not contribute to the higher order
terms in β, because E does not contain higher than the second-
order terms in β.

After decomposition of β into ε and ω in Eq. (137), we
obtain a more detailed expression

ψ − ψ (0) = −p
[
ε : I + 1

2 (ε : ε + ωT : ω)
] + 1

2ε : C : ε

= −p
(
ε : I + 1

2ωT : ω
) + 1

2ε :
(
C − pI4

s

)
: ε,

(138)

ψ − ψ (0) = −p
[
εkk + 1

2 (εi jεi j + ωi jωi j )
] + 1

2Ci jklεi jεkl

= −p
(
εkk + 1

2ωi jωi j
)

+ 1
2

[
Ci jkl − 1

2 p(δikδ jl + δilδ jk )
]
εi jεkl . (139)

A delicate moment in consistent keeping in Eq. (138) all
quadratic in distortions terms is that in the linear in E term
we keep all quadratic terms but in the quadratic in E term,
we retain the linear term E = ε only. This modifies elastic
moduli C by −pI4

s and also shows that the elastic energy
depends on the small rotations ω. Small rotations may be
related to ε for specific loadings (e.g., for simple shear), thus
also changing the elastic moduli. Also, distortion β or strain
ε may include higher order components, (e.g., ε = 1

2γ (mn +
nm + γ

1−γ 2 kk) (which, as we will discuss later, represents at
ω = 0 an isochoric rotation-free shear). Here, k is the unit
vector orthogonal to n and m. Then the quadratic part of
ε : I, namely, γ 2

1−γ 2 � γ 2 will effectively contribute to elastic
moduli. We will discuss this later in more detail. The same is
generally true for the general stress tensor σ∗ in the interme-
diate configuration.

Comparing with Eq. (78) for the general stress tensor σ∗ in
the intermediate configuration,

ψ = ψ (0) + σ∗ : ε + 1
2ε : Cεε : ε + ω:Cωε :ε

+ 1
2ω : Cωω : ωT , (140)

we conclude that

Cεε = C − pI4
s , Cωε = 0, Cωω = −pI4

as, (141)

Cεε
i jkl = Ci jkl − 1

2 p(δikδ jl + δilδ jk ), Cωε
i jkl = 0,

Cωω
i jkl = 1

2 p(δikδ jl − δilδ jk ). (142)

2. Expressions for stresses

Corresponding to Eq. (133), the second Piola-Kirchhoff
and Cauchy stresses are

T = −pI + C : E, (143)

σ = J−1(−pF · FT + F · (C : E ) · FT ). (144)

Using a polar decomposition of F = R · U into the orthogonal
rotation tensor R and the symmetric right stretch tensor U , we
obtain from Eq. (144):

σ = J−1R · [−pU · U + U · (C : E ) · U ] · RT

= J−1R · [−p(2E + I) + U · (C : E ) · U ] · RT . (145)

The linear in distortions expression for stress T is obtained
from Eq. (143):

T = −pI + C : ε, Ti j = −pδi j + Ci jklεkl . (146)

As a general conclusion, it follows from Eqs. (138) and
(146) that T �= ∂ψ

∂ε
and C �= ∂2ψ

∂ε∂ε
, despite that this is expected

in the small strain theory. Since in many atomistic simulations
elastic moduli at any pressure are determined as coefficients
of the quadratic form in terms of ε, this may lead to significant
errors. Of course, if one drops the terms 1

2 (ε : ε + ωT : ω)

in Eq. (138) for ψ , then T = ∂ψ

∂ε
and C = ∂2T

∂ε∂ε
hold. How-

ever, this would be an inconsistent step, since (a) we need to
keep these terms when we will derive the elastic moduli in
the current configuration and (b) in atomistic calculations its
contribution to the energy cannot be eliminated.

Let us elaborate Eq. (145) for the Cauchy stress σ for
small distortions. In the linear approximation in distortions,
we obtain

J = 1 + (I : β) = 1 + ε0, J−1 = 1 − I : ε = 1 − ε0,

(147)
since (1 + ε0)(1 − ε0) = 1 − ε2

0 � 1. Utilizing Eqs. (134) and
(135) in Eq. (145) and limiting ourselves by the linear in
distortions terms in 1/J = 1 − I : ε, E = ε and U = I + ε,
R = I + ω (because the second-order terms will be neglected
in expression for σ), we derive

σ = (1 − I : ε)(I + ω) · [−p(I + ε)2

+ (I + ε) · (C : ε) · (I + ε)] · (I + ωT ). (148)

Then, neglecting quadratic and higher order terms in β in
Eq. (148), we obtain

σ = −p(I + 2ε − II : ε) + C : ε

= −pI + (
C + p

(
II − 2I4

s

))
: ε,

σ = −pI + B̃ : ε, B̃ := C + p
(
II − 2I4

s

)
, (149)

σi j = −p(δi j + 2εi j − δi jεmm) + Ci jklεkl

= −pδi j + (Ci jkl + p(δi jδkl − δikδ jl − δilδ jk ))εkl ,

σi j = −pδi j + B̃i jklεkl ,

B̃i jkl : = Ci jkl + p(δi jδkl − δikδ jl − δilδ jk ). (150)

In the limit when the intermediate configuration coincides
with the current one, Eq. (149) is equivalent to the rate
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equation (98), C = C̄, and B̃ = B, or its integrated form
Eq. (100). Since below we will consider a small difference
between the intermediate and current configurations, we will
neglect differences between B̃ and B. While sometimes the
elastic moduli Bi jkl are called the elastic constants [34,38–
40,46,73], they are not, because they are functions of pressure
or volume.

Equations similar to Eq. (150) were presented in Ref. [74]
with elastic moduli depending on volumetric strain instead of
pressure, which are, of course, connected by an equation of
state. Explicitly, Eq. (150) appeared in Ref. [29] and then it
was rederived in Ref. [30] as a particular case of Eq. (48) for
the general initial stress σ. Comparing Eqs. (6) and (150), we
obtain

B = C̃ + p(II − I4), Bi jkl = C̃i jkl + p(δi jδkl − δilδ jk ).

(151)

The tensor C̃i jkl is not symmetric with respect to i ↔ j and
k ↔ l and does not possess the Voigt symmetry, however, it is
symmetric with respect to (i, j) ↔ (k, l ). At the same time,
Bi jkl does possess the Voigt symmetry (i ↔ j, k ↔ l , and
(i, j) ↔ (k, l )), but is not symmetric with respect to j ↔ l
and i ↔ k. Symmetrizing Eq. (151) with respect to j ↔ l , we
obtain

C̃s
i jkl = Bs

i jkl := 1
2 (Bi jkl + Bilk j ). (152)

Similar to the general case, for hydrostatically prestressed
solid, it follows from Eqs. (139), (146), and (149) that

T �= ∂ψ

∂ε
, C �= ∂2ψ

∂ε∂ε
, σ �= ∂ψ

∂ε
,

σ �= 1

J

∂ψ

∂ε
, B �= ∂2ψ

∂ε∂ε
, (153)

despite that this is expected from small strain theory.

3. Equation of motion and wave propagation under pressure

The equations of motion (82), by allowing for Eq. (152),
become

ρ
∂2ui

∂2t
= Bs

i jkl

∂2uk

∂r∗ j∂r∗l
. (154)

The corresponding plane-wave propagation equation is

ρv2
wui = Bs

i jkl k jkluk = Likuk, Lik := Bs
i jkl k jkl . (155)

As one of the known stability conditions, the propagation
matrix Lik should be positive definite for all possible ki to
guarantee the possibility of wave propagation in any direction,
which shows in addition the importance of the symmetrized
tensors C̃

s
and tensor Bs, which coincide when the initial

stress reduces to the hydrostatic pressure. Equation (155)
shows the possibility to determine the symmetrized tensors C̃

s

and Bs from the wave propagation experiment. The antisym-
metric part of C̃ can be determined from the elastic energy
only, the antisymmetric part of B can be determined from the
stress-strain relationship only.

4. Gibbs energy

First, neglecting higher than the second-degree terms in
distortions β, we obtain for the Jacobian determinant ([63]):

J = 1 + I : β + 1
2 (I : β)2 − 1

2β : β

= 1 + ε0 + 1
2ε2

0 − 1
2 (ε : ε + ω : ω). (156)

Let us calculate the Gibbs energy G := ψ + pJ per unit vol-
ume of the intermediate configuration utilizing Eq. (138) for
ψ :

G − ψ (0) := ψ − ψ (0) + pJ

= −p
(
��ε : I + 1

2βT : β
) + 1

2ε : C : ε

+ p
[
1 +��I : ε + 1

2 (I : ε)2 − 1
2β : β

]
= p + 1

2ε :
(
C + p

(
II − 2I4

s

))︸ ︷︷ ︸
B

: ε

= p + 1
2ε : B : ε

→ G = ψ + pJ = ψ (0) + p + 1
2ε : B : ε, (157)

since β : β + βT : β = 2ε : β = 2ε : (ω + ε) = 2ε : ε, and ε :
ω = 0 as the double contraction of the symmetric and anti-
symmetric tensors. Thus the terms with small rotations ω in
the expression (138) for ψ are compensated in and disappear
from Eq. (157) for the Gibbs energy G. This confirms that they
could not be neglected in Eq. (138) for ψ . While Gibbs energy
is defined at prescribed θ , in a similar way at prescribed en-
tropy we can define the enthalpy U + pJ , which will possess
the same expression as G, since we do not distinguish here
between isothermal and adiabatic processes.

The most important conclusion from Eqs. (149) and (157)
is that

σ + pI = ∂G

∂ε
, B = ∂σ

∂ε
= ∂2G

∂ε∂ε
. (158)

Thus the effective elastic moduli in the current configuration
B, defined as the derivative of the Cauchy stress with respect
to small strain ε superposed in the intermediate configuration
at pressure p, can be obtained as the second derivative of the
Gibbs energy per unit volume of the intermediate configura-
tion with respect to small strains ε. The relationship between
the superposed Cauchy stress σR + pI, the Gibbs energy G,
small strains ε, and the effective elastic moduli in current
configuration B are similar to those in the traditional linear
elasticity if G is used instead of an elastic energy. A nontra-
ditional point in such a presentation, which was criticized in
literature [42], is that usually the Gibbs energy is expressed
in terms of stresses and used to find strains. Despite this, it
is strictly justified here that the Gibbs rather than the elastic
energy should be used to define the superposed Cauchy stress
and the effective elastic moduli B in the current configuration.
This is generally not surprising, because in contrast to clas-
sical thermodynamics, modern nonlinear continuum theory
[29–31,63,72], considering thermodynamic functions with re-
spect to an arbitrary prestressed reference state, always mixes
variables, e.g., the use of stress σ∗ (pressure p) and strain E
in elastic (internal or free) energy ψ in Eqs. (6) and (91). The
Gibbs energy in nonlinear elasticity is almost never expressed
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in terms of stresses, since it is practically impossible to inverse
the stress versus strain relationship.

Next, using Eqs. (57) and (158), we obtain for bulk modu-
lus

KV = 1/9 I:B:I = 1/9 I:
∂2G

∂ε∂ε
:I = 1/9

∂2G

∂εii∂ε j j
= ∂2G

∂ε2
0

,

(159)

since

ε = 1

3
ε0I + εdev → dε

dε0
= 1

3
I → ∂2G

∂ε2
0

= dε

dε0
:

∂2G

∂ε∂ε
:

dε

dε0
= 1

9
I :

∂2G

∂ε∂ε
: I. (160)

Thus the bulk modulus KV is the second derivative of the
Gibbs energy with respect to small volumetric strain for pure
isotropic strain increment. This contrasts with the statement in
Ref. [33] that the bulk modulus K , unlike the B, is a second
derivative of energy ψ , rather than of G.

5. Gibbs energy for finite strain

Let us derive an expression for the Gibbs energy for finite
strain E in the quadraticin E approximation. First, for finite
E, the Jacobian determinant [Ref. [63], Eq. (1.8.1)] is

J = (1 + 2I1(E ) + 4I2(E ) + 8I3(E ))1/2, (161)

where Ii(E ) are invariants of E:

I1(E ) = I : E = Eii, I2(E ) = 1
2 ((I : E )2 − E : E )

= 1
2 ((Eii )

2 − Ei jEi j ),

I3(E ) = 1
6

(
(I : E )3 − 3(I : E )E : E + 2E : E · E

)
= 1

6

(
(Eii )

3 − 3EiiEi jEi j + 2Ei jE jkEki
)
. (162)

For quadratic in E approximation, I3 can be neglected and

J � 1 + I1(E ) + 2I2(E ) − 1
2 (I1(E ) +���2I2(E ))2

� 1 + I : E + 1
2 (I : E )2 − E : E

= 1 + Eii + 1
2 (Eii )

2 − Ei jEi j . (163)

Let us calculate the Gibbs energy G := ψ + pJ per unit
volume of the intermediate configuration utilizing Eq. (133)

for ψ :

G − ψ (0) : = ψ − ψ (0) + pJ =����−pI : E + 1
2 E : C : E

+ p[1 +���I : E + 1
2 (I : E )2 − E : E]

= p + 1
2 E :

(
C + p

(
II − 2I4

s

))︸ ︷︷ ︸
B

: E

= p + 1
2 E : B : E

→ G = ψ + pJ = ψ (0) + p + 1
2 E : B : E, (164)

i.e., G has the same expression for finite E as for small strains,
involving elasticity moduli B. The function U + p(J − 1)
close to the enthalpy, similar to the Gibbs energy, was defined
for finite strain in Ref. [32] up to the fourth degree in E
approximation, and explicit expressions for B and higher-
order elastic moduli were given for cubic crystals. However,
practical application of Eq. (164) for determination of elastic
moduli (this was the main goal in Ref. [32]) even up to the
second degree in E approximation is limited to a small strain.
First, since in atomistic simulations one can find B from G
for small E � ε, then why one would do this for finite strain?
Second, in Ref. [32] and the following papers [35–37], the
relation between G and stress σ was not given. In fact, for
finite components of E not negligible in comparison with 1,

σ + pI �= ∂G

∂E
= B : E, (165)

because for a linear T − E relationship, σ − E relationship
contains non-negligible nonlinear terms.

6. Elastic energy for isochoric deformation with respect
to the intermediate configuration

For this particular case, J = det (I + β) = 1, and it follows
from Eq. (157),

ψ j=1 − ψ (0) := Gj=1 − ψ (0) − p = 1
2ε j=1 : B : ε j=1,

(166)

where subscript j = 1 means that the parameter is determined
at J = 1.

Let us consider examples of one-parametric isochoric dis-
tortions. One of examples is simple shear F = I + γ mn.
However, rotation-free shear, F = I + 1

2γ (mn + nm), ω = 0,
is not isochoric because det (F ) = 1 − 1

4γ 2. The straightfor-
ward way to correct this is to use the tensor F is = J (F )−1/3F:
det (F is) = J (F )−1det (F ) = 1. In particular, for the rotation-
free shear, F = (1 − 1

4γ 2)−1/3(I + 1
2γ (mn + nm)), then

ε = F − I = β =

⎛
⎜⎜⎜⎝

1
(1− 1

4 γ 2 )1/3 − 1
1
2 γ

(1− 1
4 γ 2 )1/3 0

1
2 γ

(1− 1
4 γ 2 )1/3

1
(1− 1

4 γ 2 )1/3 − 1 0

0 0 1
(1− 1

4 γ 2 )1/3 − 1

⎞
⎟⎟⎟⎠

� 1

2

⎛
⎜⎜⎜⎝

γ 2

6 γ 0

γ
γ 2

6 0

0 0 γ 2

6

⎞
⎟⎟⎟⎠ + O(γ 4), det(I + ε) = 1 + γ 6

1728
� 1. (167)
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A simpler option is to use the expression for finite strain E for
simple shear from Eq. (84),

ε = β = 1

2
γ

(
mn + nm + 1

2
γ nn

)

= 1

2

⎛
⎜⎜⎝

0 γ 0

γ 1
2γ 2 0

0 0 0

⎞
⎟⎟⎠, det(I + ε) = 1. (168)

This and other correction options for different strain states can
be obtained by placing unknown x in some positions and de-
termining it from J = 1 or J = 1 + O(x3). An important point
here is that some components of the strain tensor are of higher
order of smallness. They should be kept when the elastic
energy is evaluated in atomistic simulations. However, when
substituted in Eq. (166), the second-order terms can be ne-
glected because they produce higher than second-order terms
in the expression for energy. In particular, for strain (168),
ε = 1

2γ (mn + nm) contributes to the energy. Then, when ne-
glecting second-order terms in distortions, incompressibility
constraint in Eq. (156) reduces to ε0 = 0. Decomposing small
strain

ε = 1
3ε0I + εdev (169)

into spherical and deviatoric parts, Eq. (166) results in

ψ j=1 − ψ (0) = 1
2εdev : B : εdev. (170)

It is clear that not all components of B contribute to the
energy and can be found by calculating ψ j=1. It was men-
tioned in Ref. [37] that shear moduli only can be determined,
but as we will show explicitly, not only. To find an ex-
plicit expression for the contributing tensor, we utilize the
volumetric (V = 1/3 I I ) and deviatoric (D) parts of the

symmetrizing fourth-order unit tensor I4
s = V + D , Vi jkl =

1/3 δi j δkl , Di jkl = 1/2 (δik δ jl + δil δ jk − 2/3 δi j δkl ) . The
tensors V and D possess the following properties:

V : V = V , D : D = D , V : D = D : V = 0 ,
V : A = 1/3(I : A)I , D : A = Adev , A = V :

A + D : A , i.e., they allow one to separate the volumetric
and deviatoric parts of a symmetric tensor A. The matrix
presentation of tensors I4, I4

s , I4
as, V , and D is given in

Appendix B. Then we can present Eq. (170) as

ψ j=1 − ψ (0) = 1
2ε : D : B : D : ε = 1

2ε : B j=1 : ε,

B j=1 := D : B : D, (171)

i.e., ψ j=1 depends on the deviatoric projection B j=1 of the
tensor B. In the explicit form,

B j=1 =
(

B1−3 B1−6

BT
1−6 B4−6

)
, B4−6 =

⎛
⎜⎜⎝

B44 B45 B46

B45 B55 B56

B46 B56 B66

⎞
⎟⎟⎠,

(172)

with

B1−3 = 1

9

⎛
⎜⎜⎝

B̂11 B̂12 B̂13

B̂12 B22 B̂23

B̂13 B̂23 B̂33

⎞
⎟⎟⎠, (173)

B̂11 = 4B11 − 4B12 − 4B13 + B22 + 2B23 + B33,

B̂12 = −2B11 + 5B12 − B13 − 2B22 − B23 + B33,

B̂13 = −2B11 − B12 + 5B13 + B22 − B23 − 2B33,

B̂22 = B11 − 4B12 + 2B13 + 4B22 − 4B23 + B33,

B̂23 = B11 − B12 − B13 − 2B22 + 5B23 − 2B33,

B̂33 = B11 + 2B12 − 4B13 + B22 − 4B23 + 4B33, (174)

B1−6 =

⎛
⎜⎜⎝

B̂14 B̂15 B̂16

B̂24 B̂25 B̂26

B̂34 B̂35 B̂36

⎞
⎟⎟⎠ = 1

3

⎛
⎜⎜⎝

2B14 − B24 − B34 2B15 − B25 − B35 2B16 − B26 − B36

−B14 + 2B24 − B34 −B15 + 2B25 − B35 −B16 + 2B26 − B36

−B14 − B24 + 2B34 −B15 − B25 + 2B35 −B16 − B26 + 2B36

⎞
⎟⎟⎠. (175)

Matrix B j=1 has the block structure: the 3 × 3 upper left block
B1−3 contains all Bi j for i, j = 1, 2, 3 (which participate in
the definition of the bulk modulus K), the 6 × 6 upper right
block B1−6 contains all Bi j for i = 1, 2, 3 and j = 4, 5, 6,
and the 3 × 3 lower right block B4−6 contains all Bi j for
i, j = 4, 5, 6. Evidently, B4−6 is not affected by the deviatoric
projection and can be found by determining the energy under
different combinations of all shear strains supplemented by
second-order normal strains making them isochoric.

This is a very important result that for isochoric deforma-
tion and up to the second order in distortion β approximation,
the elastic energy ψ j=1 − ψ (0) differs from the Gibbs po-
tential Gj=1 − ψ (0) by β-independent term p only and it
represents a quadratic form in small strains with the effec-
tive elastic moduli B j=1. Then the effective elastic moduli

B j=1 can be determined from the atomistic simulations,
by calculating the elastic energy ψ j=1 − ψ (0) for different
volume-preserving distortions β and then approximating re-
sults by the quadratic function (81).

The question arises: since B j=1 does not include all com-
ponents of the tensor B, how then to determine the remaining
components with using Eq. (157) for Gibbs energy. The
answer is straightforward: they can be found from the con-
sistency conditions for B introduced in Sec. VI B. Let us
do some accounting while using Voigt presentation of the
tensors B and B j=1 as symmetric 6 × 6 matrices. For the
lowest (triclinic) symmetry, matrix B has total 36 components,
including 6 diagonal and 30/2 = 15 independent off-diagonal
components, i.e., total 21 independent components. Since
B j=1 is contracted from both sides by εdev with 5 independent

214105-19



VALERY I. LEVITAS PHYSICAL REVIEW B 104, 214105 (2021)

components, it is equivalent to a 5 × 5 matrix, 25 components,
including 5 diagonal and 20/2 = 10 independent off-diagonal
components, i.e., total 15 independent components.

Thus one needs 15 calculations for 15 independent iso-
choric distortions to find the equations for 15 components of
B j=1 and consequently B. Missing six components of the B
tensor can be found from six consistency conditions (113) that
come from the measurement of six components of deforma-
tion gradient F∗(p) in Eq. (89). This is illustrated in more
detail in Appendix B.

For higher symmetry, there are fewer missing component
of the tensor B and fewer components of deformation gradient
F∗(p) in Eq. (89). For example, for orthorhombic, tetragonal
(classes 4mm, 4̄2m, 42m, and 4/mmm), hexagonal, and cubic
lattices B1−6 = 0, i.e., three missing equations disappear. For
monoclinic and orthorhombic lattices, three missing equations
for matrix B1−3 can be substituted with three equations for
diagonal deformation gradient F∗(p). For trigonal, tetragonal,
and hexagonal lattices, two equations for diagonal deforma-
tion gradient F∗(p) supplement two independent equations
from the system of equations (B24) for strains different from
aF∗(p) for arbitrary a. For an isotropic material,

B = 3KV + 2μD → B j=1 = 2μD, (176)

where μ is the shear modulus, and we took into account that
V : D = 0. For cubic and isotropic materials, one consistency
condition, e.g., for bulk moduli, substitutes one missing equa-
tion. Next, we can present Eq. (157) for the Gibbs energy as

G − ψ (0) − p

= 1
2ε : B : ε = 1

2ε : I4
s : B : I4

s : ε

= 1
2ε : (V + D) : B : (V + D) : ε

= 1
2ε : (V : B : V + D : B : D + 2V : B : D) : ε

= 1
2ε :

(
KII+ 2

3 II : B : D
)

: ε + ψ j=1 − ψ (0),

(177)

where we took into account 1
9 II : B : II = KII [see definition

of K in Eq. (57)].
Also, Eq. (158) can be elaborated as

σ + pI = ∂G

∂ε
= ∂G

∂ε0
I + ∂G

∂εdev
= ∂G

∂ε0
I + ∂G − ψ j=1

∂εdev

+ ∂ψ j=1

∂εdev
�= ∂G

∂ε0
I + ∂ψ j=1

∂εdev
(178)

because of cross V − D term in Eq. (177), i.e., there is no
sense to use ψ j=1 for the presentation of stresses. However,
based on Eq. (171),

B j=1 = ∂2ψ j=1

∂ε∂ε
, (179)

which is part of Eq. (158).

7. Hydrostatic loading and isotropic deformation
through energy minimization

In many papers, e.g., Refs. [38,39,44] for tetragonal and
hexagonal crystals, energy is calculated as a function of vol-
ume for parameter c/a that minimizes an energy. However,

they do not describe what does this minimization mean in
terms of stress state. Here, we will show for an arbitrary
crystal, that energy minimization at fixed volume leads either
to pure hydrostatic stress state or to isotropic deformation with
respect to the current state. The power balance is

σ : ddt = −pdε0 + σdev : ddevdt = J−1dψ, (180)

where we considered Eq. (54). For fixed volume, one has
dε0 = 0. If the energy is minimized with respect to all strains
(or lattice parameters) at fixed volume, then dψ = 0 and
Eq. (180) can be satisfied at σdev = 0 or ddev = 0 only.

It is stated in Ref. [33] that the equilibrium c/a at pre-
scribed p does not correspond to the energy minimum.
However, as it was just proven, c/a corresponding to the pure
hydrostatic loading does minimize the energy at fixed volume
dε0 = 0. It is also stated in Ref. [33] that the equilibrium
c/a at prescribed p corresponds to the Gibbs energy mini-
mum. This can be proven in the general case. Substituting
ψ = G − pJ in Eq. (180), we obtain

−pJ−1dJ + σdev : ddevdt = J−1(dG − pdJ − Jd p)

→ σdev : ddevdt + d p = J−1dG. (181)

Thus for constant p and strains minimizing G, i.e., for d p =
dG = 0, Eq. (181) results in σdev = 0 or ddev = 0, i.e., either
in hydrostatic loading or isotropic deformation.

E. Simplification for isotropic materials and cubic crystals

For isotropic materials and cubic crystals, the intermedi-
ate configuration under hydrostatic pressure is produced by
isotropic deformation. Then Eqs. (1) and (4) simplify to

F∗ = aI → F0 = aF J∗ = a3,

J0 = a3J, E∗ = 1
2 (a2 − 1)I,

E0 = a2E + 1
2 (a2 − 1)I, → E = (

E0 − 1
2 (a2 − 1)I

)
/a2.

(182)

To derive the relationships between C and C0 for isotropic
materials and cubic crystals, we use Eq. (182):

∂E0

∂E
= a2I4

s ,
∂E0i j

∂Ekl
= a2I4

s,i jkl = 1

2
a2(δkiδl j + δliδk j ).

(183)

These equations are a particular case of Eq. (17). Next, using
Eqs. (8) and (182), we obtain for the second Piola-Kirchhoff
stress in the intermediate configuration:

T = 1

a
T 0 = 1

a

∂ψ0

∂E0
, Ti j = 1

a
T0,i j = 1

a

∂ψ0

∂E0,i j
. (184)

Based on Eq. (21), the relationship between elastic moduli in
the intermediate and stress-free configurations reduces to

C(E ) = aC0(E0), Ci jkl (Emn) = aC0,i jkl (E0,mn). (185)

Equations (26) and (27) for E0 = E∗ simplify to

C0(E∗) = C4
0 + 1

2 (a2 − 1)C6
0 : I + 1

8 (a2 − 1)2(C8
0 : I) : I

+ 1/(3!) 1
8 (a2 − 1)3

((
C10

0 : I
)

: I
)

: I + · · · ,

(186)
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C0,i jkl (E∗ab) = C4
0,i jkl + 1

2 (a2 − 1)C6
0,i jkl f f

+ 1
8 (a2 − 1)2C8

0,i jkl f f ss

+ 1/(3!) 1
8 (a2 − 1)3C10

0,i jkl f f ssmm + · · ·
(187)

Equation (94) with the help of Eq. (182) reduces to the tradi-
tional equation of state

−pI = 1

a

∂ψ0

∂E0

∣∣∣∣
E0= 1

2 (a2−1)I
,

−pδi j = 1

a

∂ψ0

∂E0,kl
|E0,ab= 1

2 (a2−1)δab
. (188)

The consistency condition (108) for elastic compliances re-
duces to

λ(p) : I = −1

a

da(p)

d p
I = −d ln a(p)

d p
I

→ λi jkk = −1

a

da(p)

d p
δi j = −d ln a(p)

d p
δi j . (189)

Since for cubic crystals λ11kk = λ22kk = λ33kk and λ1122 =
λ1133, then Eq. (189) leads to

λ1111 + 2λ1122 = −1

a

da(p)

d p
= −d ln a(p)

d p
. (190)

For a cubic system, due to symmetry, the bulk compliance is

k = λiikk = 3(λ1111 + 2λ1122). (191)

Then Eq. (190) can be transformed to

k = −3
d ln a(p)

d p
= −d ln a3(p)

d p
= −d ln J (p)

d p
, (192)

i.e., it coincides with constraint related to the bulk compli-
ance. We eliminated subscript R for k, because for a cubic
system the Reuss and Voigt approximations for bulk modu-
lus/compressibility coincide.

The consistency condition (113) for elastic moduli B re-
duces to

−ṗI = −B(p) : I
1

a

da(p)

d p
= −B(p) : I

d ln a(p)

d p

→ δi j = −Bi jkk
1

a

d p

da
= −Bi jkk

d p

d ln a
. (193)

Since for cubic crystals B11kk = B22kk = B33kk and B1122 =
B1133, then Eq. (193) leads to

B1111 + 2B1122 = d p

d ln a
. (194)

For a cubic system, due to symmetry, the bulk modulus is

K = 1
9 Biikk = 1

3 (B1111 + 2B1122). (195)

Then Eq. (194) can be transformed to

K = 1

3

d p

d ln a
= d p

d ln a3
= d p

d ln J
, (196)

i.e., it coincides with constraint related to the bulk modulus.

VII. THE PRINCIPLE OF SUPERPOSITION FOR DEFECTS
AND INELASTICITY IN NONLINEAR ELASTICITY

One of the particular cases of application of Eq. (47) [or
Eq. (101)] is when the stress σ(t ) (pressure p) is homoge-
neous (i.e., satisfies the equilibrium equation) and there is a
relatively small perturbation of strains that can be described
within the small strain approximation. Then all nonlinearities
are included in a homogeneous solution, which automatically
satisfies the equilibrium equations. Then the boundary-value
problem should be solved for small-strain linear elastic con-
stitutive relationships between increments of stress 
σ =
σ(t + 
t ) − σ(t ) and strain ε and rotations ω. If, as it is
done in the traditional linear elasticity, the effect of small
rotations is neglected, then the constitutive equations for the
linearized incremental problem coincide with those for linear
elasticity. In particular, one can apply known analytical so-
lutions for defects (e.g., cracks, point defects, dislocations,
disclinations, inclusions of different phases and twins) and
their evolution by just changing traditional elastic moduli C0

with stress-dependent elastic moduli B. The Eshelby solution
for ellipsoidal inclusion is another example, which is broadly
used for the description of phase transformations, twinning,
cracks, and effective elastic properties of polycrystalline and
multiphase materials.

The principle of superposition can be used while combin-
ing different dislocations, inclusions, grains, etc. Also, the
small-strain incremental inelastic problem can be included
in a standard way similar to the linear elastic material, like
elastoplasticity, creep, phase transformation, damage, etc.

One of the possible limitations on stress σ(t ) for analytical
solutions is that it should preserve the full Voigt symmetry,
like in linear elasticity, because analytical solutions were not
found for Bi jkl �= Bkli j . In addition, the nonexistence of ana-
lytical solutions for low-symmetry lattices also limits the type
of applied stress σ.

As an example, let us consider a homogenous isotropic
body under pressure p as the intermediate reference config-
uration. Utilizing dislocation theory within linear elasticity
approximation, the normal and shear stress fields of the su-
perdislocation (which could also approximate a dislocation
pileup) in the polar coordinate r, φ are [75]

σrr = σφφ = −p + μ∗N |b∗|
2[π (1 − ν(p))]

sin φ

r

= −p + μ(p)(3K (p) + 2μ(p))N |b∗|
[π (3K (p) + 4μ(p))]

sin φ

r
,

τ = μ(p)N |b∗|
2[π (1 − ν(p))]

cos φ

r

= μ(p)(3K (p) + 2μ(p))N |b∗|
[π (3K (p) + 4μ(p))]

cos φ

r
, (197)

where b∗ is the Burgers vector in the intermediate configura-
tion under pressure p, N is the number of dislocations, and
ν is the Poison ratio. Generally, b∗ = F∗ · b, but for isotropic
material b∗ = ab. Pressure-dependent moduli K (p) and μ(p)
can be found in terms of B(p) using equations for the effective
elastic properties (129) and (131) for crystals of arbitrary
symmetry. Similarly, these expressions can be generalized

214105-21



VALERY I. LEVITAS PHYSICAL REVIEW B 104, 214105 (2021)

for single crystals, using analytical solutions for anisotropic
elasticity from [75] and can be used to determine the interac-
tion between dislocations, dislocation and other defects and
inclusions.

As an example, let us qualitatively analyze the effect of
dislocation pileup on the drastic reduction of phase trans-
formation pressure due to large plastic shear. For example,
pressure reduced from 52.5 to 6.7 GPa for transformation
from hexagonal nanocrystalline BN to superhard wurtzitic
BN [76] and from 70 to 0.7 GPa for transformation from
graphite to cubic diamond [77], see also review Ref. [78]
for other examples. As the main hypothesis for explaining
such a transformation pressure reduction, strong stress con-
centration at the tip of the plastic-strain-induced dislocation
pileups is considered. Both normal and shear stresses at the tip
of the pileup significantly contribute to the total stresses and
reach the lattice instability criterion under complex loading
(see Refs. [13–15]) and produce local nucleation of the high-
pressure phase. A simple analytical model in Refs. [79,80]
based on Eq. (197) but with pressure-independent elastic mod-
uli was used for analytical estimates, which in fact correspond
well to more complex phase-field modeling [81–83], which
also did not include pressure dependence of the elastic moduli.

Let us demonstrate that allowing for pressure dependence
of the elastic moduli in Eq. (197) can lead to some useful
qualitative analysis. First, due to b∗ = ab, stress concentration
under pressure reduces by a factor of a. Then, phase transfor-
mation starts with crystal lattice instability at the dislocation
pileup, either due to elastic instability or phonon instability.
For elastic shear instability, μ(p) → 0, and the effect of stress
concentrations is getting small. In contrast, for phonon in-
stabilities, shear modulus should not reduce and may even
grow, thus, promoting such transformations by dislocation
pileups will be much more effective. In more detail, for shear
instability, if applied pressure p is much below the instability
pressure, μ can be large enough, and the heterogeneous pres-
sure distribution due to pileup with large N can cause local
instabilities and phase transformations. In this case, the prin-
ciple of superposition is, of course, a big assumption, which
still could work beyond some distance from the tip. Since
screw dislocation does not generate pressure, its contribution
to lattice instability is much lower even for constant μ. Then
transformation may start quite close to pressure, for which
μ(p) = 0, which makes the concentration of shear stresses
small as well. This approach can be applied for single crys-
tals, using equations for dislocations in anisotropic elasticity
presented in Ref. [75].

VIII. SUMMARY

In the paper, a general nonlinear theory for the elasticity
of prestressed single crystals is systematically presented. Var-
ious types of elastic moduli are defined, their importance is
determined, and relationships between them are presented.

A. Prestressing with arbitrary stress σ∗

Complete information about the nonlinear elasticity of a
crystal under arbitrary pressure is contained in the Taylor ex-
pansion of the elastic energy, Eq. (22), to a high enough degree

with respect to the stress-free state. This expansion defines
nth-rank elastic constants Cn

0, which possess the symmetry
of the undeformed crystal. These are the only existing elastic
constants, all other elastic moduli are functions of the initial
stress or pressure, E0, or E, and the deformation gradient F∗.
They have symmetry with respect to exchanging all pairs of
indices and within each pair.

The second-order elastic moduli in the reference C0(E0)
and intermediate C(E ) configurations are defined in a natural
way in Eq. (12) via the first or second derivatives of the sec-
ond Piola-Kirchhoff stress or elastic energy, respectively, with
respect to Lagrangian strains in the corresponding configu-
rations. They also can be found from the linear relationship
(32) Ṫ = C : Ė. They represent tangent moduli in stress-strain
T 0 − E0 or T − E curves at any chosen strain E0 or E0.
Moduli C0(E0) and C(E ) do not keep the symmetry of the
initial nondeformed lattice and for general E0 or E have the
symmetry of a trigonal crystal, i.e., all 21 unequal compo-
nents. They have complete the Voigt symmetry and are related
to each other by Eq. (21). Also, C0(E0) is related to elastic
constants Cn

0 via Eq. (26).
When the intermediate configuration coincides with the

current one, elastic moduli are designated as C̄, see Eq. (34).
These moduli also relate the Truesdell objective rate of the

Cauchy stress and the deformation rate,
∇
σTr= C̄ : d. For finite

deviation of the intermediate configuration from the current
one, one may need higher order elastic moduli in the inter-
mediate configuration to evaluate energy and stresses. That is
why the choice of the intermediate configuration that coin-
cides with the current one is the most convenient and popular.

Elastic moduli B can be introduced from the relationship

(39) between the Jaumann objective derivative
∇
σJ= B : d and

the deformation rate. They are connected to C̄ by Eq. (40). The
tensor Bi jkl is symmetric with respect to permutations i ↔ j
and k ↔ l , but generally is not symmetric in (i, j) ↔ (k, l ).
The finite difference version of this rate equation (45), which
also includes small rotations, is broadly used in numerical
algorithms for the solution of boundary-value problems in
many finite-element programs. This incremental equation was
traditionally utilized for the definition of B moduli. Because
of Eq. (45), the moduli B are the main elastic moduli tensor
used for the evaluation of crystal lattice instability under ho-
mogenous strains and stresses [6–10].

The bulk modulus K and compressibility k under general
stress-strain states can be defined by derivatives − ∂ p

∂ε0
and

− ∂ε0
∂ p , respectively, under various constraints on the strain or

stress states, which should be very clearly stated. For one
of them, KV = 1/kV [Eq. (57)], we fix the deviatoric strain,
and for another one, KR = 1/kR [Eq. (63)], we fix the devia-
toric stress. Generally, the bulk modulus and compressibility
can be determined for arbitrary strain or stress states (which
contribute to the definition of B). For KV = 1/kV , a small
strain increment should be purely volumetric (isotropic) only,
and for KR = 1/kR a small stress increment should be pure
hydrostatic pressure only. If the entire loading corresponds to
isotropic straining or hydrostatic loading, then two different
energy functions ψ (J ) can be defined, and the bulk modulus
for both loadings can be in addition defined in terms of the
second derivative of the energy with respect to J or volume
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V [Eqs. (60) and (66)]. While there is no averaging in the
definition of the bulk modulus and compressibility for a single
crystal, the expression for KV = 1/kV in terms of components
of B coincides with the Voigt average for a polycrystal, and the
expression for kR = 1/KR in terms of components λ = B−1

coincides with the Reuss average. Neglecting differences be-
tween two types of bulk moduli/compressibility may lead to
quantitative misinterpretation of experiments and qualitative
contradictions, which are illustrated in Sec. VI B 3.

Elastic moduli C̃ are introduced in Eq. (75) as coefficients
of the quadratic elastic energy in terms of small distortions.
The symmetrized moduli C̃

s
in Eq. (82) also directly appear

in equations of motion and wave propagation. Because of
this, the moduli C̃

s
are used for the analysis of the crystal

lattice instability with respect to the propagation of small
perturbations. The moduli C̃ are expressed in terms of C in
Eq. (75) and in terms of B in Eq. (76). The tensor C̃i jkl is not
symmetric in exchange between l and j as well as k and i but
is symmetric in exchange between pairs i j and kl .

After decomposing β into small strains ε and rotations ω,
the elastic energy in Eq. (79) contains three types of “mod-
uli.” The tensor Cεε characterizing the contribution of strains
possesses the full Voigt symmetry. The tensor Cωε

i jkl , charac-
terizing coupling between strains and rotations is symmetric
in k ↔ l and antisymmetric in i ↔ j. The tensor Cωω

i jkl , char-
acterizing contribution of small rotations, is antisymmetric
in i ↔ j and k ↔ l , and invariant under exchange of pairs
(i j) ↔ (lk), (kl ) ↔ ( ji), and (i j) ↔ (kl ). Importantly, as it
follows from Eq. (80), none of the traditional relationships
that are expected from small strain theory are valid for pre-
stressed materials.

B. Crystals under initial hydrostatic pressure

All definitions remain the same, and all final equations
for different elastic moduli under pressure can be obtained
as a particular case of the general equations. However, some
new aspects start playing a role, and new relationships can be
found. It is clear that the hydrostatic pressure does not change
the symmetry of the stress-free lattice, and elastic moduli
have much fewer independent components. In particular, new
consistency conditions for moduli B [Eq. (113)] and corre-
sponding compliances [Eq. (108)] are derived based on the
existing generalized equation of state (89) under hydrostatic
loading. This is done for the data obtained for single crystal
and polycrystalline samples. Relationships between bulk and
shear moduli of the isotropic polycrystal and moduli B and
compliances λ under pressure are presented in Eq. (131) in
the Voigt and Reuss approximations. They can be used in the
Hill approximation.

Moduli B under hydrostatic pressure possess new prop-
erties. Thus the tensor B has full Voigt symmetry and is

related to moduli C̃ by relationship C̃i jkl + C̃ilk j = Bi jkl +
Bilk j [Eq. (152)]. The tensor C̃i jkl is not symmetric with re-
spect to i ↔ j and k ↔ l and does not possess the Voigt
symmetry, however, it is symmetric with respect to (i, j) ↔
(k, l ). At the same time, Bi jkl is not symmetric with respect
to j ↔ l and i ↔ k. Because of Eq. (152), symmetrized B
moduli also participate in equations of motion and wave prop-
agation (154) and (155), and, consequently, in the crystal
lattice instability with respect to propagation of small pertur-
bations.

For small distortions in the intermediate configuration, it
is shown that the energy is invariant with respect to small
rigid-body rotations, although it explicitly contains small
rotations. The simple-shear example explicitly shows the
effect of small rotations (and initial stress) on the energy
and determination of the elastic moduli based on energy.
If neglected, there are errors in the determination of the
elastic moduli.

The Gibbs energy or enthalpy is a quadratic form in strains
with moduli B [Eq. (157)] and can be used as a potential for
the Cauchy stress increment. However, there is no proof that
the higher-order elastic moduli derived from the enthalpy or
Gibbs energy are of any use for stress-strain relationships.
It is also proven that the elastic energy for small isochoric
strains is a quadratic form with the deviatoric projection B j=1

of moduli B [Eq. (171)]. The rest of the components of B
can be determined from the consistency conditions (113).
Simplifications for isotropic materials and cubic crystals are
presented in Sec. VI E.

It is proven that hydrostatic loading or isotropic deforma-
tion can be obtained by energy minimization at fixed volume
or by the Gibbs energy minimization at a fixed pressure.

The principle of superposition for defects and inelasticity
in nonlinear elasticity with application to superdislocation and
promotion of phase transformations by dislocation pileups are
considered in Sec. VII.

The obtained results are compared with the known ones.
In some cases, this leads to the strict justification of them and
expanding for the more general case, and in other cases, this
shows various existing errors.
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APPENDIX A: TENSOR NOTATIONS

Vectors and tensors are denoted in boldface type, e.g., A = Ai jeie j , where Ai j are components in the Cartesian system with
unit basis vectors ei and summation over the repeated indices is assumed. Expressions eie j and eieket ed designate the direct or
dyadic product of vectors, which represent second- and fourth-rank tensors, respectively. Let A · B = Aik Bk jeie j and A : B =
tr(A · B) = Ai j B ji be the contraction (or scalar product) of tensors over one and two nearest indices, where tr is the trace
operation (sum of the diagonal components), and Aik Bk j is the matrix product. In the equations, first · is performed, and then :,
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e.g., A : B · K = A : (B · K ). The direct (or dyadic) product of two tensors K and M is the tensor KM of rank equal to the sum
of the two initial ranks. In particular, for the second-rank tensors K = Ki jeie j and M = Mklekel , one has KM = Ki jMkleie jekel .

Superscripts −1 and T denote inverse operation and transposition, respectively, := means equals per definition, subscripts s
and as designate symmetrization and antisymmetrization of the second-rank tensors.

For the scalar product with the higher-order tensors, it is convenient to introduce
n∗, which designates contraction of the closest

basis vector of the second-rank tensor with the nth closest basis vector of a higher than second-rank tensor from the right or left.
Thus

(AAA
4∗ CCC

2∗ EEE)
3∗ BBB = (Aijeiej

4∗ Cklmnekelemen
2∗ Esteset)

3∗ Bcdeced = AijCkcsjEstBcdeieketed.

(A1)

Operations with the smaller n are performed first, starting with ·, which is equivalent to
1∗, parentheses can be used to avoid

ambiguity, if necessary. For vivid and fast operation in index-free notations, it is convenient to designate basis vectors as vertical

bars and arcs connecting contracted basis vectors [52]. All manipulations
n∗ below can be checked using these arcs or in index

form, or can be ignored because corresponding expressions in the component form are always given.

Without giving a general definition, in some particular cases,
n∗ can be applied to a second-rank tensor. For example, for a

symmetric tensor E, it is convenient to present

F T
∗ · E · F ∗ = F T

∗
2∗ F T

∗ · E T = F T
∗

2∗ F T
∗ · E,

(A2)

see Eq. (14) and its application. Here, we took into account a symmetry of FT
∗ ·E·F∗. Similarly, in Eq. (19),

C0::: F T
∗

2∗ F T
∗ ·III4

s = C0 · F T
∗

2∗ F T
∗ :::III4

s = C0 · F T
∗

2∗ F T
∗ ;

(A3)

F ∗
2∗ F ∗ · C0 · F T

∗
2∗ F T

∗ = F ∗
4∗ F ∗

3∗ F ∗
2∗ F ∗ · C0.

(A4)

In Eq. (A3), we used symmetry of the expression in the parentheses with respect to indices 3 and 4, in Eq. (A4), we utilized that
C0 is multiplied by the same tensors F.

The second-rank unit tensor is I = δi jeie j , where δi j is the Kronecker delta. Let us define the following isotropic fourth-rank
tensors that will be used in the paper:

I4 = δilδ jkeie jekel = eie je jei, I4
t = δikδ jleie jekel = eie jeie j . (A5)

For any second-order tensor A,

I4 : A = A : I4 = A, I4
t : A = A : I4

t = AT , (A6)

i.e., I4 is the fourth-order identity tensor and I4
t is the transposing tensor. Then the fourth order symmetrizing tensor, defined as

I4
s = 1

2 (I4 + I4
t ), and the antisymmetrizing tensor, defined as I4

as = 1
2 (I4 − I4

t ) have the following properties:

I4
s : A = A : I4

s = As, I4
as : A = A : I4

as = Aas, (A7)

where As is the symmetric part of A and Aas is the antisymmetric part of A.

APPENDIX B: DERIVATION OF SOME EQUATIONS

1. Derivation of Eq. (33)

Using T = JF−1 · σ · F−1T and expression for Ė in Eq. (32) gives

˙
JF−1 · σ · F−1T = C : (FT · d · F ) = (C · FT 2∗ FT ) : d. (B1)

In component notations,

(C · FT 2∗ FT ) : d = Ci j pqF T
qrF T

psdsreie j = Ci j pqFrqFspdsreie j . (B2)

Expanding the LHS of Eq. (B1) gives

JF−1 · σ̇ · F−1T + JḞ : F−1(F−1 · σ · F−1T ) − JF−1 · Ḟ · (F−1 · σ · F−1T )

−J (F−1 · σ · F−1T ) · ḞT · F−1T = (C · FT 2∗ FT ) : d, (B3)
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JF−1
il σ̇lkF−1

jk + JḞabF−1
ba

(
F−1

il σlkF−1
jk

) − JF−1
in Ḟnp

(
F−1

pl σlk · F−1
jk

) − J
(
F−1

il σlkF−1
ak

)
ḞbaF−1

jb = Ci j pqFrqFspdsr . (B4)

The time derivative of F · F−1 = I gives Ḟ · F−1 + F · Ḟ
−1 = 0, which can be resolved

Ḟ
−1 = −F−1 · Ḟ · F−1, Ḟ

−1T = −F−1T · Ḟ
T · F−1T , (B5)

Ḟ−1
i j = −F−1

ik Ḟkl F
−1

l j , Ḟ−1
ji = −F−1

ki ḞlkF−1
jl . (B6)

Equation (B5) was utilized in Eq. (B3). Operating by 1
J F from the left and by FT from the right on each term in Eq. (B3) and

also using Eq. (B5) gives Eq. (33).

2. Derivation of Eqs. (39) and (42)

Using the fourth-order symmetrizing tensor I4
s , σ · d and d · σ can be presented as

σ · d = σ · (I4
s : d ) = (σ · I4

s ) : d, d · σ = (d : I4
s ) · σ = d : (I4

s · σ) = (I4
s · σ)T : d. (B7)

The transposition of the fourth-order tensor I4
s · σ means the permutation of a pair of the basis vectors (1,2) and (3,4):

I4
s · σ = I4

s,i jkmσmleie jekel = 1
2 (σilδ jk + σ jlδik )eie jekel ,

(I4
s · σ)T = (I4

s · σ )i jkl ekeleie j = 1
2 (σilδ jk + σ jlδik )ekeleie j = 1

2 (σk jδli + σ jlδik )eie jekel . (B8)

Using Eq. (B7) in Eq. (37) gives Eq. (39).
Similarly, using the fourth-order antisymmetrizing tensor I4

as, the tensors w · σ and σ · wT can be transformed to the form

w · σ = (w : I4
as) · σ = w :

(
I4

as · σ
) = (

I4
as · σ

)T
: w, (B9)

σ · wT = −σ · w = −σ · (
I4

as : w
) = −(

σ · I4
as

)
: w. (B10)

Using Eqs. (B9) and (B10) in Eq. (B7), the time derivative of the Cauchy stress σ̇ is obtained in Eq. (42).

3. Derivation of Eq. (78)

Decomposing β into ε and ω in Eq. (67), we obtain the more detailed expression

σ∗ : βT · β = σ∗ : (ε + ωT ) · (ε + ω) = σ∗ : ε · ε + σ∗ : (ωT · ε + ε · ω) + σ∗ : ωT · ω

= ε · σ∗ : ε + 2ω · σ∗ : ε + ω · σ∗ : ωT , (B11)

where we took into account the symmetry of σ∗ and that ωT · ε = (ε · ω)T . Next,

ε · σ∗ : ε = ε : I4
s · σ∗ : I4

s : ε, ω · σ∗ : ε = ω:Cωε :ε, Cωε := I4
as · σ∗ : I4

s ,

ω · σ∗ : ωT = ω : Cωω : ωT , Cωω := I4
as · σ∗ : I4

as. (B12)

In Eq. (B12), we took into account the symmetry of ε and antisymmetry of ω. Substituting Eq. (B12) in the expression for the
energy Eq. (70), we obtain Eq. (78).

4. Derivation of Eq. (85) for simple shear

For F − I = β = γ mn, we evaluate in addition to Eq. (84)

ε = 1

2
γ (mn + nm) = 1

2
γ

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠, ω = 1

2
γ (mn − nm) = 1

2
γ

⎛
⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎠,

βT · β = γ 2nn = γ 2

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠, ε · ω = 1

4
γ 2(nn − mm) = 1

4
γ 2

⎛
⎜⎝

−1 0 0

0 1 0

0 0 0

⎞
⎟⎠,

ε · ε = ωT · ω = 1

4
γ 2(mm + nn) = 1

4
γ 2

⎛
⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎠. (B13)

Let us evaluate

ε:C:ε = 1
4γ 2(mn + nm):C:(mn + nm) = 1

4γ 2(C1212 + C2121 + C2112 + C1221) = γ 2C1212, ε:Cεε :ε = γ 2Cεε
1212, (B14)
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σ∗:ε · ε = 1
4σ∗:γ 2(mm + nn) = 1

4γ 2(σ∗11 + σ∗22) = γ 2(Cεε
1212 − C1212), Cεε

1212 = C1212 + 1
4 (σ∗11 + σ∗22), (B15)

ω:Cωε :ε = 1
4γ 2(mn − nm):Cωε :(mn + nm) = 1

4γ 2
(
Cωε

2121 − Cωε
1221 + Cωε

2112 − Cωε
1212

) = γ 2Cωε
2121, (B16)

σ∗:ε · ω = 1
4σ∗:γ 2(nn − mm) = 1

4γ 2(σ∗22 − σ∗11) = γ 2Cωε
2121, Cωε

2121 = 1
4 (σ∗22 − σ∗11), (B17)

ω:Cωω:ωT = 1
4γ 2(mn − nm):Cωω:(nm − mn) = 1

4γ 2
(
Cωω

1221 − Cωω
2121 + Cωω

2112 − Cωω
1212

) = γ 2Cωω
1221, (B18)

σ∗:ωT · ω = σ∗:ε · ε = 1
4γ 2(σ∗11 + σ∗22) = γ 2Cωω

1221, Cωω
1221 = Cεε

1221 = 1
4 (σ∗11 + σ∗22). (B19)

We took into account the symmetry and antisymmetry properties of all C tensors. Note that the same expressions for Cεε
1212, Cωε

2121,
and Cωω

1221 can be obtained directly from Eq. (79). Combining all terms, we obtain from Eq. (79) for the energy Eq. (85).

5. Matrix presentation of tensors I4, I4
s , I4

as, V , and D

To get a better feeling of the structure of all these tensors, we present first the forth-rank identity tensor in explicit form as
both 9 × 9 matrix and in the Voigt designations as 6 × 6 matrix:

I4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 1 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 1

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

1 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 1 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 1

0 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 0

1 0 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 0

0 1 0

⎞
⎟⎠

⎛
⎜⎝0 0 0

0 0 0

0 0 1

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ĩ
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)

Advantage of the Voigt notations is evident. Similar symmetrizing I4
s and antisymmetrizing I4

as parts of I4 are

I4
s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 1
2 0

1
2 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

0 0 1
2

0 0 0
1
2 0 0

⎞
⎟⎟⎠

⎛
⎝0 1

2 0
1
2 0 0
0 0 0

⎞
⎠

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 1
2

0 1
2 0

⎞
⎟⎟⎠

⎛
⎜⎝

0 0 1
2

0 0 0
1
2 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 1
2

0 1
2 0

⎞
⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B21)

and

I4
as = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎠

⎛
⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B22)

The symmetrizing tensor I4
s has the same presentation in the Voigt notations like I4 (because the Voigt notations are applicable to

the symmetric second-rank and fourth-rank tensors with Ai jkl = Ai jlk = Ajikl ). The antisymmetric and antisymmetrizing tensors
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cannot be presented in the Voigt notations. For spherical and deviatoric parts of I4
s , we have

V = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B23)

6. Equations for matrix B in terms of matrix Bj=1.

Let us assume that we know all components of the matrix B j=1 and we need to find component of matrix B. We can do this
for blocks B1−3 and B1−6 separately from the linear Eqs. (174) and (175):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −4 −4 1 2 1

−2 5 −1 −2 −1 1

−2 −1 5 1 −1 −2

1 −4 2 4 −4 1

1 −1 −1 −2 5 −2

1 2 −4 1 −4 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11

B12

B13

B22

B23

B33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂11

B̂12

B̂13

B̂22

B̂23

B̂33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B24)

and

1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 −1 0 0 −1 0 0

0 2 0 0 −1 0 0 −1 0

0 0 2 0 0 −1 0 0 −1

−1 0 0 2 0 0 −1 0 0

0 −1 0 0 2 0 0 −1 0

0 0 −1 0 0 2 0 0 −1

−1 0 0 −1 0 0 2 0 0

0 −1 0 0 −1 0 0 2 0

0 0 −1 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B14

B15

B16

B24

B25

B26

B34

B35

B36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̂14

B̂15

B̂16

B̂24

B̂25

B̂26

B̂34

B̂35

B̂36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B25)

The rank of matrices of coefficients in Eqs. (B24) and (B25) is 3 and 6 respectively, i.e., there are 3 missing linear independent
equations in each of them, total 6, as we found above.

7. Note for transition from Eq. (138) to Eq. (166)

While our proof of Eqs. (157) and (166) is concise and strict, it is useful to show how the very different expression (138) for
elastic energy with rotations, which does not contain B, transforms to Eq. (166). It follows from Eq. (156)

J = 1 + I : ε + 1
2 (I : ε)2 − 1

2 (ε : ε + ω : ω) = 1 → I : ε = − 1
2 (I : ε)2 + 1

2 (ε : ε + ω : ω). (B26)

Substitution of the expression (B26) for the first-order term I : ε (which does not contribute to moduli in Eq. (138)) in terms of
the second-order terms eliminate rotations and changes elastic moduli to B j=1.

APPENDIX C: INVARIANCE UNDER SUPERPOSED RIGID-BODY ROTATIONS IN THE CURRENT CONFIGURATION

Potentially concerning point in Eqs. (70), (75), and (78) is that E and, consequently, free energy depend on the small rotation
ω, which would violate the principle of material objectivity. To elaborate this, consider transformation of the relevant tensors
under teh superposition of the rigid-body rotation r∗ = Q · r in the current configuration, where Q is the orthogonal tensor, i.e.,
Q · QT = QT · Q = I. We obtain

F∗ = Q · F, FT ∗ = FT · QT , E∗ = 1
2 ((FT · QT ) · (Q · F ) − I) = E, C∗ = C,

β∗ = Q · F − I, ε∗ = (Q · F )s − I, ω∗ = (Q · F )a, βT ∗ · β∗ = FT · F + I − 2(Q · F )s,

ε∗ · ε∗ = ((Q · F )s − I)2, ωT ∗ · ω∗ = −(Q · F )2
a. (C1)
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Any parameters defined in configurations �0 and �∗ are independent of the rigid-body rotations in �. Thus, as it is known, E
is independent of the rigid-body rotations in �, but all its parts (β, ε, and ω) depend on Q. That is why in Eq. (70) the term
E = ε + 1

2βT · β is independent of arbitrary rotations, while the term β : C : βT = ε : C : ε is not. However, when we substitute
in equations for E with its linearized part, ε, we should consider small rotations and invariance of the equations with respect to
small rotations only. For small rotations, Q � I + φ, where φ = −φT is the small antisymmetric rotation tensor. Then

F∗ = Q · F = (I + φ) · (I + ε + ω) � I + ε + ω + φ, β∗ = ε + ω + φ, ε∗ = ε, ω∗ = ω + φ, (C2)

where all higher order products are neglected. Thus ε is invariant with respect to small rigid-body rotations as well as the term
β : C : βT = ε : C : ε, and entire Eq. (70). Since Eqs. (75) and (78) represent a strict algebraic transformation of Eq. (70), they
are also invariant with respect to small rigid-body rotations in �, despite they contain explicitly small rotations ω.

APPENDIX D: SIMPLE SHEAR UNDER HYDROSTATIC PRESSURE

For the initial hydrostatic loading, the following simplifications can be made in the results of Sec. V C. First, we evaluate
using Eqs. (84) that

βT : β = 2ε : ε = 2ωT : ω = γ 2, ε : I = 0, (D1)

and from Eq. (136) that

I : E = ε : I + 1
2βT : β = 1

2γ 2. (D2)

Then from Eq. (138) or as a particular case of Eq. (85), the expression for the elastic energy is

ψ = −p [��ε : I + 1
2 (ε : ε + ωT : ω)]︸ ︷︷ ︸

I:E

+ 1
2ε : C : ε = 1

2 (C1212 − p)︸ ︷︷ ︸
Cψ

γ 2 = 1
2

(
Cεε

1212 + Cωω
1221

)
γ 2,

Cεε
1212 = C1212 − 1

2 p, Cωω
1221 = − 1

2 p. (D3)

Note that from Eq. (86)

B1212 = C1212 − p = Cψ = Cεε
1212 + Cωω

1221 �= Cεε
1212, (D4)

ψ = 1
2 B1212γ

2. (D5)

Equation (D5) is a particular case of Eq. (166), since det (I + γ mn) = 1 and simple shear is an isochoric distortion. It is clear
that the expression for the shear modulus C1212 acquires a correction of −p due to initial pressure, half of which comes from
strains ε : ε and half from rotations ωT : ω.

However, for rotation-free shear, β = ε = 1
2γ (mn + nm) and ω = 0, the term with Cωω

1212 disappears from the expression for
ψ and one obtains

ψ = ψ (0) + 1
2 (C1212 − 1

2 p)︸ ︷︷ ︸
Cεε

1212

γ 2. (D6)

Thus B1212 �= Cεε
1212. Since det (I + 1

2γ (mn + nm)) �= 1 and rotation-free shear is not an isochoric strain, this inequality demon-
strates that for nonisochoric strain or distortion, Eq. (166) is not valid.

The above example shows explicitly the effect of initial pressure and small rotations on the energy and determination of the
elastic moduli based on energy. If neglected, they produce error in determination of elastic moduli.

APPENDIX E: COMPARISON WITH
THE PREVIOUS APPROACHES

In a highly cited paper [44], elastic moduli have been
determined from the quadratic approximation of the elastic
energy for different simple strain states. For cubic crystals,
volume-preserving strains were used, i.e., moduli B were de-
termined based on Eq. (171). However, for tetragonal crystals,
some of the strain states (in particular, with the only nonzero
terms ε11 = ε22 or ε33) are not isochoric, and Eq. (139)
with pressure-corrections of elastic moduli should be used.
Thus elastic moduli C33 and combination C11 + C12 have
been determined with neglected pressure corrections, which
affected each of these moduli and C13. Note that while it

is mentioned in Ref. [44] that the bulk modulus and other
moduli depend on volume, actual calculations were performed
for the volume close to the equilibrium one, i.e., at zero
pressure. However, in Ref. [47], these equations have been
applied at high pressures, but pressure correction was not
mentioned.

In Refs. [45,73] for hexagonal and in Ref. [46] for tetrag-
onal crystals, none of strain states were isochoric, thus, if
applied under applied pressure, all moduli would require pres-
sure corrections according to Eq. (139) for C and Eq. (99)
for B. Note that while the energy was calculated in Ref. [73]
for three different volumes, it is not clear how elastic mod-
uli were evaluated and why they are formally equivalent
to Bi jkl .
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It was suggested for the hydrostatic state in the intermedi-
ate configuration in Ref. [32] for cubic crystals to use the nth
derivatives of the function U + p(J − 1), close to the enthalpy
(instead of internal U or Helmholtz ψ energies) with respect
to the Lagrangian strain tensor to determine “effective” elastic
moduli. It is claimed that these effective elastic moduli de-
scribe under pressure the same phenomena as normal elastic
constants under normal pressure, especially the stress-strain
curves and elastic wave propagation. From the point of view
of determining elastic moduli, the function U + p(J − 1) is
equivalent to the Gibbs energy at the fixed temperature or
enthalpy for the adiabatic process. The same statement for the
Gibbs energy is repeated in Ref. [37] and calculated from the
Gibbs energy with DFT in Refs. [35–37] contain pressure cor-
rections of the type αp with some integer α. However, there
is not any proof that these higher-order elastic moduli are of
any use for stress-strain relationships or some other purposes.
For the second-order elasticity only, such proof was given in
Sec. VI D 4. Also, as it is mentioned in Ref. [31], while the
initial stress σ∗ (or p) contributes to the linear fourth-order
propagation matrix in the wave propagation equation, it does
not contribute to the nonlinear sixth-order propagation matrix.
Thus the higher-order elastic moduli from Refs. [32,35–37]
cannot be directly applied in nonlinear stress-strain σ − ε

and wave propagation equations. Nevertheless, higher-order
effective moduli can be transformed back to the traditional
moduli based on U , ψ or just elastic energy using equations
derived in Ref. [32] and re-derived for neglected rotations
in Ref. [37] using a slightly different method. In Ref. [37],
the second to fourth-order elastic moduli of bcc tungsten
were calculated up to 600 GPa using DFT. The same ap-
proach for the higher-order elasticity with application to
different materials was applied as well in Ref. [35,36], how-
ever, presentation is very confusing. It is explicitly written
that the deformation gradient, Lagrangian strain, and all en-
ergies are evaluated with respect to undeformed state rather
than state under pressure p. The only hint that the reference
configuration is in fact, under pressure p can be found in
the expansion for the free energy that starts with the term
−pEii.

It was suggested in Ref. [33] for body-centered tetragonal
and hexagonal closed packed crystals to use the second deriva-
tives of the Gibbs energy G (instead of Helmholtz energy)
with respect to the strain tensor to determine “correct” elastic
moduli. The treatment in Ref. [33] is not systematic from
the viewpoint of the continuum mechanics (e.g., using energy
and defining elastic moduli in terms of Eulerian strain, which
differs from all papers cited here). Still, these moduli coincide
with B derived in Ref. [29]. Note that in Ref. [33] Bi jkl are
expressed in terms of coefficients Cεε

i jkl in Eq. (79) instead of
C̄i jkl defined in Eqs. (35) and (13), that is why they differ from
expressions in Ref. [30] and Eq. (99).

However, in the later paper [34], an expression for stress
σi j = J−1 ∂ψ

∂εi j
was used, which resulted in “new” elastic co-

efficients connecting σi j and εi j , which was claimed as the
main novelty. Based on strict derivations here and result
in Eq. (153), this is the incorrect equation. The surprise
in Ref. [34] why the classical works [29,30] could not ar-
rive at the same “new” result is easy to resolve: because in

Ref. [29,30] strict finite strain theory is consistently linearized
instead of using intuitive small-strain theory in Ref. [34].

Also, it is stated in Ref. [33] that the bulk modulus K ,
unlike the B, is a second derivative of energy ψ , rather than
of G. This is true if one considers the derivative with respect
to volume, see Eqs. (60) and (66). However, p is not part
of the second Piola-Kirchhoff stress, and V is not part of
Lagrangian strain, as it should be for the definition of moduli
C. At the same time, we derived in Eq. (159) that KV = ∂2G

∂ε2
0

,
i.e., the bulk modulus at an isotropic strain increment is the
second derivative of the Gibbs energy with respect to small
volumetric strain.

Another statement in Ref. [33] was that elastic moduli
determined in Ref. [39] as the second derivatives of the elastic
energy ψ with respect to small strains at pressure p, are C-
moduli instead of B moduli, and should be pressure-corrected.
However, as it was mentioned in reply [42], isochoric strains
were used in all simulations in Ref. [39], which according to
Eq. (171) results in dependence of energy on the deviatoric
projection B j=1 := D : B : D of B-moduli. In reply-to-reply
by Ref. [43], which is correct in practically all points, they
agreed with such a justification from [42].

It was stated in Ref. [37] that, as it follows from Ref. [29],
that for isochoric strains up to the second-order term, the
elastic moduli B can be determined as the second derivatives
of the elastic energy without pressure corrections. As we
see from Eq. (179), this is true, but for B j=1, however, iso-
choric strains were never mentioned in Ref. [29]. In Ref. [38],
pressure-dependence of the elastic moduli for Fe, Xe, and
Si was calculated based on evaluations of the elastic energy
for isochoric strains up to the second-order term. There was
no justification that these results in B moduli, but based on
Eq. (171), this is true. Isochoric strains were probably used be-
cause the bulk modulus and (for hexagonal lattices) ratio c/a
were calculated independently from the simulated equation of
state and c/a(p), which play a similar role as the consistency
conditions Eq. (113). Thus the results in Ref. [38] (as well
as in Ref. [39]) are correct. Responding to critics from [33], it
was demonstrated in Ref. [42] using the correct expression for
energy from [29] that for three isochoric strains, energy indeed
involves moduli B without any pressure corrections. Similar
examples are given in Ref. [8]. However, general proof with
all limitations, like we performed in Sec. VI D 6, was absent
in the literature. Also, small rotations were not considered in
Refs. [8,33,38,39,42].

On the other hand, it is stated in Ref. [41], based on
the expression for energy similar to Eq. (138) but without
rotations, that pressure contributes to the energy and, con-
sequently, to elastic moduli, even for isochoric strains, and
elastic moduli for Ta in Ref. [40] require corrections. Thus,
for cubic lattices under isochoric strains, quadratic in strain ε̃

terms in free energy include pressure correction for C44 and
C11 − C12. The confusion appeared because in Ref. [41] C
moduli were discussed, and their pressure corrections were
calculated correctly, however, in Ref. [40] B moduli were
discussed, and they also were calculated correctly.

In Ref. [41], elastic moduli C were determined from the
expression for energy (138) with allowing for all required
terms but rotations ω. While it is not stated explicitly, but
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it follows from the equations in Ref. [41] that mechanical
instability is determined based on the function similar to the
increment of the Gibbs energy, and, consequently, effective

elastic moduli B. These approach and loadings were applied
in Ref. [84] for finding the pressure-dependent elastic moduli
C for ω − Zr at 0K .
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