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NOMENCLATURE 

surface pressure coefficient 

total sideforce coefficient based on frontal area 

displacement thickness effect on sideforce coefficient 

radial pressure gradient effect on sideforce coefficient 

skin friction effect on sideforce coefficient 

circulation effect on sideforce coefficient 

diameter of the cylinder 

velocity profile function 

circulation function 

integral of velocity profile function 

velocity profile function 

integral of velocity profile function 

velocity profile function 

integral of the velocity profile function 

inviscid circulation distribution function 

velocity profile function 

integral of the velocity profile function 

length of cylinder 

velocity profile function 
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M velocity profile function 

^ integral of the velocity profile function 

N velocity profile function 

^ integral of the velocity profile function 

p pressure 

p dimensionless spin rate 

P velocity profile function 

•p integral of the velocity profile function 

q freestream dynamic pressure 

Q velocity profile function 

integral of the velocity profile function 

r radial coordinate 

r^ radius of the cylinder 

Rg radius of the boundary layer edge 

R^ Reynolds number based on the cylinder length 

Rg crossflow Reynolds number based on the cylinder diameter 

t time 

T velocity profile function 

"ï integral of the velocity profile function 

u axial component of velocity 

U freestream air velocity 

V radial component of velocity 
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V surface velocity of the cylinder 

w azimutal component of velocity 

X axial component 

Y side force 

z velocity profile function 

^ integral of velocity profile function 

a angle of attack 

P velocity profile function 

Y velocity profile function 

A displacement thickness 

6 boundary layer thickness 

e velocity profile function 

7] transformed radial component 

X velocity profile function 

p coefficient of viscosity 

V kinematic viscosity coefficient 

§ transformed axial coordinate 

p air density 

T surface shearing stress 

cp azimuthal coordinate 

CO spin angular velocity 
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INTRODUCTION 

The study of flight trajectories of spinning shells and missiles re­

quires a complete knowledge of the aerodynamic forces developed during 

their flight. It has long been recognized that when such a body is at an 

angle of attack spin introduces an aerodynamic side force and moment. This 

is what is now commonly known as the "Magnus effect". The prediction of 

these forces and moments for a general case is a very complicated problem. 

For this reason the only theory developed to date assumes low angles of 

attack and is based on the development of a laminar boundary layer that has 

not separated. This theory has not been particularly accurate in the pre­

diction of the Magnus effects. Hence, this study was made in an attempt to 

improve the situation by providing better information concerning these 

effects. 
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HISTORICAL BACKGROUND 

In 1.730 B, Robins (19) expressed the opinion that the lateral deviation 

of the flight path of a cannon ball was due to its spin. This was probably 

the first explanation of what is now called "Magnus effects". In 1853 

Magnus' (13) experimental investigations with spinning cylinders proved that 

the spin produced a force in a direction perpendicular to the normal velocity. 

Thus it appeared that the spin did cause the deviations. Lord Rayleigh 

(18) was the first to mathematically describe Magnus effects. He did this by 

combining a potential flow with circulation. He was careful to note, how­

ever, that his solution was not valid for a viscous fluid. In his theory no 

mechanism for the development of the needed circulation was available so 

that the relationship between the spin rate and the resulting lift was a 

mystery. 

In 1918 Prandtl (17) studied the problem and demonstrated that the cir­

culation could be developed by boundary layer vorticity being shed by separ­

ation. In this case the net vorticity of the shed boundary layer was equal 

to the resulting circulation but of opposite sign. Once the role of the 

boundary layer in creating the circulation was determined, Wood (2 3) studied 

boundary layers for which the streamlines were closed. He found that the 

circulation imparted to the inviscid flow was less than that of the circu­

lation of the motion at the boundary. Glauert (4) solved the rotating 

cylinder problem and his results for the ratio of the cylinder velocity 
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to the circulation velocity wore the same as predicted by Wood. More re­

cently, a numerical analysis of an impulsively rotated cylinder immersed in 

a uniform free-stream was performed by Thoman and Szewczyk (22). They pre­

sented streamline patterns for various Reynolds numbers, cylinder speed to 

freestream speed ratios, and time. From these solutions the cylinder lift 

coefficient as a function of time may be estimated. It is this result that 

has a direct application to the crossflow of a spinning cylinder at low 

angles of attack. 

Howarth (6) studied the boundary layer solution for a rotating sphere 

in still air as well as that for a rotating cylinder at zero angle of at­

tack. Experimental investigations by Gowen and Perkins (5) and Dunn (3) 

have demonstrated that the normal force due to crossflow of a high fineness 

ratio body at low angles of attack developes with distance along the body 

much the same as the flow developes about an impulsively-translating circu­

lar cylinder. Kelly's (9) work for predicting the normal force on a non-

spinning cylinder at an angle of attack used this approach. Platou (16) and 

Buford (1) have both suggested that the crossflow component of the boundary 

layer for spinning bodies can be approximately assumed to be independent of 

the axial component. For this reason the crossflow of a spinning cylinder 

at low angles of attack may be represented by an impulsively rotated cylin­

der. 

Martin (14) used a perturbation solution for the estimation of the 

boundary layer displacement thickness contribution to the Magnus force and 
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moment on a spinning cylinder at low angles of attack. This work was ex­

tended by Kelly (10) and Kelly and Thacker (11). Both of these works 

neglected the inviscid axial circulation development predicted by the im­

pulsively rotated cylinder solution. The work described in this thesis 

carries Kelly's solution to a higher order of approximation and includes 

the effects of the inviscid circulation development. 
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ANALYTICAL INVESTIGATION 

Equations of Motion 

In this investigation boundary-layer theory is used to study the 

exterior flow about an open-end rotating cylinder as shown in Figure la. A 

nonrotating cylindrical coordinate system with the x axis along the longi­

tudinal or spin axis of the cylinder is used. The r coordinate is assumed 

to be perpendicular to the cylinder surface and the azimuth angle coordinate 

is labeled cp. The uniform free stream velocity U is inclined at a small 

angle of attack a and the cylinder is assumed to be spinning at a non-

dimensional roll rate p = r^w/U Wiere (o is the spin angular velocity. In 

the study a perturbation solution about a = p = 0 is used to solve the re­

sulting boundary layer flow equations. 

The boundary layer equations for incompressible laminar flow over the 

cylinder may be written (10) to order (ô/r^)^ as 

(ru)^ + (rv)^ + = 0 (1) 

wu u u 
uu + vu + —^ = v(u + — + —% (2) 
x r r  r r r r  

WW p w w -w 

uw + vw + —^ + — = - + v(w + — + ^ ) (3) 
x r r r pr rr r r' 

where u, v, and w are the flow velocity components in the x, r, and cp 

directions respectively and the subscripts denote differentiation with 

respect to the coordinate direction. The axial pressure gradient p^ is of 



Figure la. Rotating cylinder 
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higher order than (ô/r^)^ and, thus, is neglected. The radial pressure 

gradient p^ is of order (6/L)* so it is neglected when u, v, and w are 

calculated but the radial component of the momentum equation 

wv 2 p 
CP w r V , V ... 

uv + w + —* - — = - — + — (rv ) (4) 
X  r r r  p r r r  

is used after u, v, and w are determined to calculate a correction of the 

previous solution due to the radial pressure gradient. 

The boundary conditions at the cylinder surface are 

u = V = 0 
(5) 

w = pU 

However, the conditions at the outer edge of the boundary layer require more 

discussion. Both Martin (14) and Kelly (10) assumed that no circulation 

was present in the inviscid outer flow. It has been established that there 

is indeed a circulation caused primarily by the eventual separation of the 

boundary layer, the resulting shed vorticity inducing an equal but opposite 

circulation in the outer flow. It is through this mechanism, at angles of 

attack sufficiently large for separation to occur, that the moving wall com­

municates its effects to the outer flow. It has been suggested by Buford 

(1) that the crossflow component of the flow over a spinning slender 

missile is similar to that about a rotating circular cylinder placed per­

pendicular to the freestream. If we assume this to be true, the crossflow 

along the x axis of a spinning cylinder at low angles of attack is similar 

to the unsteady solution of the flow over an impulsively rotated cylinder. 
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This leads to an axial circulation distribution for the spinning missile. 

For these reasons the boundary conditions at the outer edge were assumed to 

be similar to those of a slender body of revolution at an angle of attack 

when acted upon by the superposition of a uniform freestream velocity U and 

an axial irrotational vortex distribution r(x). The resulting boundary 

conditions are 

u = U cos a = U(1 - ~) 
(6) 

Rq^ k(x)I^ 
w ̂  U a sin cp (1 + —r) + "i; 

r znr 

where = 2nrQV, k(x) is the fraction of that corresponds to the invis-

cid circulation r(x), and is the distance from the cylinder axis to the 

outer edge of the boundary layer. 

In this investigation the solution of these boundary layer equations 

is carried out by a perturbation process suggested by Martin (14) and Kelly 

(10). The velocities are assumed to be in the form 

U = "o + *1 + "2 

^ = Vg + Vj + Vj (7) 

F " "l + *2 

lAere the subscript corresponds to the order of the perturbation quantities 

a and p. For example, the 2 subscripted dimensionless velocities involve 

terms of order a^, p^, and otp. Since, at a = 0, u and v are even functions 
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of p and w is an odd function, u^ and are independent of p and is in-

—, 
dependent of p . 

Substituting the assumed velocities into Equations 1 through 3, the 

zero order solution (O! = p = 0) equations are 

Vo + Vo ° K (=̂ "0 
X r r 

\diere v is the kinematic viscosity coefficient. Using the normal dimen-

sionless boundary layer coordinates, 

I = ̂  # (10) 
0 

r^-r ^ r— 

Equation 8 is satisfied when 

"0 ' ̂ (U) 

where f is an unknown function of T] and Equation 9 transforms to 

[(1 + TlDf-j^^]^+ ff^+ ° (14) 

To reduce Equation 14 to a system of ordinary differential equations 

we assume 

f(U§) = fo(TD + ff^CH) + S'fgCH) (15) 



The resulting set of equations is 

fo'"=-Vo" (10 

h ' "  =  - ' o "  (1?) 

fg'"' - Zfo'fz' - %" - 3fo''f2 - - £i" - 2f,f," 

+ fl': (18) 

with boundary conditions 

fgCO) = fo'(O) = 0 fo'(=) = 2 

fl(0) = f^'(O) = 0 = 0 (19) 

fgCD) = f2'(0) = 0 fg'C») = 0 

For perturbations of order a and p, Equations 1 through 3 become 

(ru^)^ + (rv^)p + =0 (20) 

Vi +Vo +Vo = 
X X r r rr 

(21) 

V w "l "^1 

Vl +Vl + T" = # (*l + + --3^3--) <22) 
X r rr 

Assuming 

"l ~ cos cp K (23) 

= «(^'^ cos cp L (24) 
0 X 
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w, = = 2 
1 2 

(—) [2 - (1 - k)g] + -(1 + —y ) sin 9 H (25) 

The transformed equations become 

2K - TlK^ + §Kç + (1 + T]§)L^ + ̂ L+(1+ (26) 

(1 +% - fif:: - %=T| + SEg) - (SfiK " 

- (iif^ - f - (K^ - M. 
T] 2 (1+71D 

) = 0 

£8^^+ + (1 + "05)8-^^+ (i_k) = 0 

(l + T15)f^^ 

(27) 

(28) 

R 
(l + Tl§)f^(SHç-T]H^(l + -^)+ (Tf^ - f + §fg+ 0' 

R 2 R 2 

+ (1 +11?) (1 + -^) H^( - (1 +%S)2(1 + ̂ ) 

- 2§(1 + Tlg)H^= 0 

|(l+f)H 

(29) 

To reduce these equations to a set of ordinary differential equations the 

profile functions g, H, K, and L are expanded in a fashion similar to that 

used in the expansion of f. The resulting set of equations is, then, 

(30) ^O' = - 2Ko - 2HQ 

= - 3K^ T Y - 2Hi - (.8604 - T1)Hq - T1(Lq' - K^') 

Lg' = 7]Kg' - 4K2 - TIL^' - - 2H2 - (.8604 - T])H^ 

0̂" = fo''0o - + ̂ fo'Kq - foKo' 

(31) 

(32) 

(33) 

/ 
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TIK, 
K/' = -flKo" + fo"(L^ + T]LQ -71Y + "T^ 

+ ̂ o(f -h"> - + sfi'Ko *h"%- ̂ V 

Kg" = -ZHK^" -n\" - %' + fo'-Lg + Kg(4fQ' -Tlfo") 

(34) 

- K/(2f, + 710 + K (4f, ' - Tlf/ ' + —~ • + -f) >1 V- 1 . ,-Q, 

5T|fn/ 

^l"+ 2 0 2 

57f ' 
- Ko'(3f2 + 27|f^) + KQ(4fg' - Tlf^" + + f^) 

+ L^(f^" + 271f^") + LgCEg + 2Tlf^" + Tl^fg") (35) 

Sq" = - Vo' (36) 

Si'' = ^0'8l - Vl' - 2fi8o' - %o" (37) 

S2" - 2^0*82 + ^ 1 ^ 1  '  ̂0^2* " ̂ ^l®l' ' ̂̂2®o' " 

^— f 'e 
S(l-k) 0 ®0 

"o" 

"1" 

W 

= f. II 

( 8604 + 371) ^ ,, 

(38) 

(39) 

(40) 

Hg" = 2fg'Hg - %' - .860471HQ" - ('8604^+ 37]) 

+ H. 



12 

+ »o'J 
(.8604 - TP 

- 3fg - (.8604 + -
(.8604 - -n) 

Hfr 

- «0%' - (41) 

with boundary conditions 

gg(0) = 8^(0) = ggCO) = 0 

Hq(0) = H^(0) = Hg(0) = 0 

Kq(0) = K^(0) = Kg(0) = 0 

Lq(0) = L^(0) = L2(0) = 0 

ggC") = Hq(«) = 2 

gj^(") = ggM = 0 

H^(») = Hg(m) = 0 

Kq(") = K^(=) = Kg (4 = 0 

(42) 

It may be noticed that 

®0 ®0 ^0* (43) 

from Equations 36 and 39. 

Equations 1 through 3 for perturbations of order a^, ap, and p^ 

become 

(rug)^ + (rvg) ̂ + Wg =0 

9 

(44) 

WiUi 

V2 + "l"l + % + ̂ 0^2 + ̂ 1^ + ~ 
X X X r r 

J£ 
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"2 "2 
= u (ug + ~r + ) (45) 

rr 

w.w, 
 ̂% ̂ "2 'l"l 

V2 + Vl V2 + Vl + r + r 
X X r r 

"2 "2 " "2 Aa^r/ 
V , r CDCD V 0 

= - (Wg + — + —^ ) + —p— sin cp cos cp 
rr 

+ ) o;p (46) 

where the last two terms of Equation 46 are the slender body pressure 

gradient terms in the cp direction. If we assume 

—2 
Ug + ^ ap sin cp P + ^ a^(Q + I COS 2cp) -

(47) 

*2 ° rr" ̂Ux OP sin fp + a'(Y + e cos 2ip) 

• 2? (4*) 

Wg = ap cos cp M + ±2JL_2S jj (49) 

Transformation of thô equations results in 

|Pç - TIP^ + 4P + (1 + - 2M = 0 (50) 

§Tg - TIT^ + 4T + (1 + Tl© + 2N = 0 (51) 

iQç - flQ^ + 4Q + (1 + = 0 (52) 
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^^Tl^Tg Sf^gZ^ - (f + §fg + §) 2^^ - + 5Zg) 

(53) 

- (1 + = 0 

P ̂ 4f^ + §f^g - - (1 + Tl§) ^ " 4(1 ^ 

(54) 

[' [iL_7 
+ w ] 

+ Çf^Pç + p^(S - f - gfg) - (1 + %)P^^ + (1 + %)f^^ 

(2 - (1 - k)g( = 0 (55) 
+ Tl§ ( ) VÏ 

T Mf _ + Çf _ - Tlf, f i. 
"Ti • -Tm (1 + m) ^ 

+ Y§ -f-Sf^ - (1 + %)T^^+ (1 + 'n§)f^^s+ (1 + %)K^ 

f: 
+ K j 2K - + §Kg - J L + (1 + = (56) 

{ Q Uf. + §f_ - Tlf. •Tl ' =-TT§ ^ ^ (1 + Tg) ~ ^ " Sfg) " (1 
JL_] 
+ %) J 

+ Çf^Qg + Q^(S - f - §fç) - (1 + T1§)Q^^+ (1 + 'n?)f^^Y 

+ (1 + 7)S)K^ + K| 2K - 1K^ + §Kg - I L - (1 + = 0 

(57) 

0. 2 
(1 + T15) ^ "'' •*" - (1 + 16(j. ) 

+ (1 + 
R 

(1 + -^) H^ + K(§Hg - + (1 + 11g)LH 
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S 
+ (1 - -p") - HL = 0 

4(1 + $) ̂ + ""^^^TIT) 

- Ife^ - (1 - B(l + TI)^L8^ 

+ CT^ + (1 + -^> I ViVn5 " " '''' 

Reducing this set of equations to a set of ordinary ones we get 

Po' = ̂  - 4?^ + %' 

Pi' = 2M^ + T|P^' - 5P^ - TIPq '  

Pg' = ZMg + ̂Pg' - 6P2 -

®0' = 2No - 4TQ + -qT^' 

e^' = 2N^ + TIT^' - 5T^ - 7)e^' 

Gg' = 2Ng + Tllg' - 6Tg - Tle^' 

Yq' = "H^o' - 4% 

Yj^' = TlQ^' - 5Q^ - TIYq '  

Yg' = TlQj' - 6Q2 - TlY/ 

= -fi''%o + fi'^o' - Ao''Cfi + %) - T^o'' - :fo''A 
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+ fo'\' - Vl" 

' = + Zfo'^z' + + 2(2'**' - V2" 

- » - 3(2^0" - 3fo"*2 - "l"\ - ^2"^0 

(71) 

' ' - W - ^ 0 " ' 0  (72) 

' = -«l'':o + fl'Zo' - :o''(2fl + " " %"' " 

* ^ o ' h ' - W  <») 

' '  -"^i" *  "o'^z ^  ̂ h' \ '  ^ 'W • V2" 

- :i''(2fi + X) - 3f,zy. - 3fo'':, - 2f^-z^ - f,'':* 

(74) 

- W ' + - •'^0' ') - Vo' - 4Ko + 2%So (75) 

- -2%"+Po'a - 2fj - Wo)+P^(4f, - !!£„•• + fo')-Vi' 

- 4Kj + Po(3%' - 1]%" + £0 + 5f^' - Df^") + 

+ + 211fo' •) + 2(K(,gj - - IKQ + ̂  K^gj,) (76) 

= -2'np^" - Ti^p^-'-y^'+p^'a - 2f^ - ny+PgCef^' - Tifp) 

+ Pq'(T] - Sfg - Tlf^ - TI'Y + P^(fQ + 4TlfQ' -

+ 6f^' - Tlf^") + PqCZf^ - 1+ 4%^' - + efg' - Tlf^") 

4K2 - 2T]K^ + ̂  Kq + PgCfg" + 2Tlf^' ' + STl^f^' ') 
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+ Pl(£l' • + 2%' ') + Pjfo' • + 1 f So) 

T) 2k 
+ 2K^(g^ + 2 *0^0 (77) 

' = Vo" + ̂ o(4fo' - - Vo' + 

+ 2=0=0 + 10=0' (?*) 

' = - 2T1TQ" + TQ'(1 - 2f^ - Hfp) + T^(4fQ + fg' - Tlf^j") 

- %' + To(3%' - ffg" + fo + 5fl' - + Vo" 

+ e^(f^" + ZHfg") + K^(5Kq - TIKQ- + 2HQ) + K^'(LQ - 1]^ 

+ Kq[2H - y + 2T1KQ +• (.8604 + T1)HQ] + K^' (L^ + 2T1LQ - fK^) 

(79) 

' = -2%^" - T]2Tq " + T^'d - 2f^ - Tlf^j) - fpT^' 

+ Tq'(H - Sfg - Tlf^ - T|2y + - "Hfo") 

+ T^(fQ + 4%^' - T)2f^" + 6f^' - T]f^") + TQ(2f^ + 4Tlf^' 

- + 6^2' - Tfg'') + %(^2" + + Sfl^fg") 

+ + 2Tlfo") + Yo" + *2'(to - ̂ *0) 

+ K2(6KQ + 2Hjj - TIKQ') + K^'(L]^ + 2%^ - T\K^ - T\\)  

+ K^(3K^ + 2H^ - y + 5%^ + 21%^ - TI^Kq ' )  

+ K^' (L, + 2T]L, + T^L.) + (.8604 - T)) (K^H^ + + K^H^) 
0 ̂ 2 
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\ 
+ Kq(2H2 + 2T1H^ - — - y) (80) 

' = + Q^(4f,' - 7)f^") - f^(^' + 2K^: - T|%' 

- :Ko*o + ̂ ofo' (81) 

' = -2T19o" + (^'(1 - 2f^ - Tiy + Q^(4fQ + fg' - Tlfg") 

- Vl' + %(371fg' - ffo" + fg + 5f^' - Tlf^") + Y,fo" 

+ YQ(f^" + 2TlfQ") + K^(5KQ - TIKQ' - 2HQ) + K^'(LQ - Tiy 

+ KQ'(L^ + 2T1Lq - TI^KQ) + KQ[2T1KQ - 2H^ - Y - (.8604 + T])HQ] 

(82) 

' = -2T1Q^" - *îl\" + Q^'d - 2f^ - Tlf^) -

+ - Tlfg") + %'(T1- Sfg - Tlf^ - n'y 

+ Q/fo+ 4TlfQ' - Vf^" + 6f^' - Tlf^") 

+ Qq(1 + 2f^ + 471f^' - + 6fg' - Hf^") 

+ ̂ ^(fg" + 271f^" + Sffg") + Yj^(fj^" + 2TlfQ") + 

+ K2'(L O  -Tiy + KgCeKg - 2H q  -TIK Q ' )  

+ K^' (Lj^ + 2T1Lq  - TlK^ - TI^Kq) +K^(3K^ " ̂ ^1 " "f + ^TlK^ 

- 2'f]HQ - TI^KQ') + KQ'CL^ + 2T1L^ + TfL^) 

- (.8604 - Tj) (K^Hg + KqH^ + H^K^) (83) 

= 2^0*^0 - Vo' - 16 - 2n 4. 2LqHq' + 4H^' (84) 
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= - 2#^" + %(2f^' + 2TlfQ') + N^'C-HfQ - 2f^) + 

- fgN^' - 13.7664 + 3.4416 + H^(8Hq + 2KQ) 

+ 2H^'(Lq - Tiy + 2Hq'(L^ + T]Lq -11Y 

+ (.8604 -T1)(LQHQ' -TIKqHQ') (85) 

= -2T1N^" - TI^NQ" - N^'(2f^ + Tlfg) + %' + 4fQ'Ng 

- No'(3f2 + 2T]f^) + 3Ni(f^ + Tlf^') + Nq (1 + + 2%f^') 

+ (.8604 -T\)T\- 2Hg ' (L^ + TlK^) + 

+ [2L^ + 2T1Lq - 2T1K^ + (.8604 + 71) (L^ - 71K^) ] 

+ Hq' [2L^+ 271L^ - 27IK2 + (.8604 + 71) (L^ + TlL^ - 71K^) 

- ^*(.8604 - 71)Kq] + H^[4H^ + + 2(.8604 - 71) 

+ ( 8604 + 7D(4HQ + Kq)]+HQ2[.7403 + 1.72087] - 371^] 

H L 
--^(.8604 - 71) (86) 

= 2^0*^0 - W + + %go' - 2goHQ - LQSQ- (87) 

= -211MQ" + MQ(2f^ + 271f^') - + 2f^) + 3f^'M^ 

- Vl'  + + 1-7208 Hq  - KqS^ + 7)%' + %o'K^ 

\ ^o®o' ' ̂®0®1 " ®0®0 " ̂ 0®l' " ̂ l®o' 

- f Vo' (8*) 
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Mg'' = -2T1M^" - + fgMg' + 4fQ'M2 - (2f^+'ny 

+ 3N^(f; + Hfo') - N^'CSfg - 2T]f^) + + 2fg' + 2Tf^') 

+ 4H2 + 1.7208 + (.8604 - T]HQ - 2K^gg 

- Sz'O-o - •^V - Sl'&l - •^'=1 - ¥ ''o + f V 

- S^(\ + 2 ̂ 0 2 8604 Hq) 

• % ' f + ̂2 + f ='1 + ? V 
- go[2H2 - ̂  K^' + .8604 ^ (.8604 - H^] 

- "P" (^0^0 ' ~ ^®0^0 ' ̂0®0 ' "*• ^0®0 (G*) 

Then the boundary conditions become 

Po(0) = P^CO) = PgfO) = 0 

SqCO) = e^(0) = 6^(0) = 0 

Yq(0) = Y^(0) = Y2(0) = 0 

^o(O) = X^(0) = Xg(0) = 0 

\ ' ( 0 )  = X^'(O) = A^'(O) = 0 

Zq(0) = 2^(0) = 22(0) = 0 

Zq'CO) = Zi'(O) = Z2'(0) = 0 

Pq(0) = P^(0) = P2(0) = 0 
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(^(0) = Qj^(O) = QgCO) = 0 

Tq(0) = T̂ (0) = TgCO) = 0 (90) 

Mq(0) = M^(0) = M^(0) = 0 

NqCO = N^(0) - Ng(0) - 0 

Xq'(») = (») = Ag' (») = 0 

' (") = Zg'(4) =0 

PqC") = Pj^C") = Pg ~ ® 

9q (®) = Qj^C®) = = 0 

Tq(®) = T^(") = Tg(=) = 0 

Mq(<*') = Mj^(«') = Mg(«0 = 0 

No(®°) = N^(4) = Ng(=) = 0 

The preceding equations of motion and boundary conditions are suf­

ficient to determine the boundary layer velocity profiles if the circula­

tion distribution k(x) is known. The two-dimensional numerical analysis of 

an impulsively rotated cylinder immersed in a uniform freestream as pre­

dicted by Thoman and Szewczyk (22) indicates that the cylinder lift coeffi­

cient is given by; 

(91) 
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where V is the surface speed of the cylinder and f is an unknown function 

of V/U^. To apply this result to the spinning cylinder crossflow we let 

U = U sin a 
CO 

t = —^ (92) 
U cos a 

_L = P 
U sin Of 

00 

Since the local circulation strength is given by 

r = %C U d (93) 
L 

we find that 

.6 X tan a s i n  a .  

Assuming small oc and transforming x to the dlmenslonless coordinate we 

find that 

where is the crossflow Reynolds number based on the cylinder diameter. 

R c = »  • ( 9 6 )  

Figure lb shows the function f. This function was estimated by a curve fit 

of rotating cylinder data (8). We see that the circulation ,1s of order 

for reasonable crossflow Reynolds numbers. In particular, for p/sin a =0.25 

we find 
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Figure lb. Circulation function for spinning cylinders 
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f = 22 —^ (97) 
sin a 

which leads to a circulation distribution 

k = .0328 §' (98) 

If, on the other hand, p/sln a =7.0 we find that 

f = .5278 J + 26.406 (99) 
sin a 

so that 

k = .0015(.5278 + 26.406 ") R f (100) 
P C 

Profile Functions 

The formulation of the equations of motion has led to the following 

results for the boundary layer velocity profiles: 

f — 2 2 
^ = 2 + Q:(y ) cos 9 K + (g) a p sin cp P + (^) (Q + T cos 2 cp)a^ 

(101) 

5 •• if ̂  Ctf,, - f - ffj) + cos ç L 
X ^ Ox 

x^ X^ I  
+ zr a p sin (p P + V— a^(Y + e cos 2 cp) 
"o "x "o "x 

X ' X 
(102) 

U " 2^"7^[^ - (1 - k)gj + j(l + sin cp H + a p cos cp M 
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+ ~ sin 2(0 N (103) 
r r ^ 

The profile function Equations 16 through 19, 30 through 43, and 60 

through 90 were solved numerically by digital computer using the Iowa State 

University computer package DNODE. DNODE solves a system of first order 

differential equations using the predictor-corrector equations of R. L. 

Crane (2). The program integrates equations as an initial value problem. 

The equations of motion for the rotating cylinder are, however, of the two-

point boundary value type. For this reason guesses of the unknown initial 

values are made and then the differential equations are integrated from the 

cylinder surface to the edge of the boundary layer. If the results are 

not satisfactory, the initial values are adjusted and the integration is 

repeated. This process is continued until the solutions satisfy the outer 

edge boundary conditions. 

Figures 2 through 12 show the result of these calculations. In some 

cases difficulties prevented the calculation of the profile functions of 

order In fact, it was found that it was necessary to guess the ini­

tial values for some of these highest order profile functions very accurate­

ly before the numerical solution converged to the correct value for large 

values of the independent variable T|, It should be noted that the profile 

functions of order are dependent upon the previous profile function 

solutions of lower order. For this reason it is likely that some of the 

numerical instability encountered is due to roundoff errors. 
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6 

£^"(0) = 1.328229 

Kq'(O) = 0.6641145 

z "(0) = 0.996267 
5 

4 

3 

2 

1 

0 
Profile function 

Figure 2. Velocity profile functions f^', gg, and z^' for a spinning 

cylinder 
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0.8673711 

0.2767444 

. 2  .4 0 . 6  . 2  

Profile function 

Figure 3. Velocity profile functions PQ and for a spinning cylinder 
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Mq'(O) = -1.505663 

Tq'(O) = -2.426632 

Yq'(O) = 0.0 

-2.0 •1.5 -1.0 

Profile function 

-0.5 

Figure 4. Profile functions MQ, and YQ for a spinning cylinder 
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5 . 

N-'(O) = 10.01601 

Profile function 

Figure 5. Profile function for a spinning cylinder 
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-15 -10 5 0 5 

Profile function 

Figure 6. Velocity profile functions L^, and for a spinning 

cylinder 
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20 15 10 0 5 

Profile function 

Figure 7. Velocity profile functions L^, and for a spinning 
cylinder 
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f^''(0) = 0.6943221 

gl'(O) = H^'(O) = -0.2201043 

K '(0) = -0.3752374 

.4 .5 -.4 -.3 0 . 1  . 2  .3 .5 2 .1  

Profile function 

Figure 8. Velocity profile functions f^', g^, and for a spinning 

cylinder 
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I = 0.3471159 
1 

I = -0.6693016 
1 

-.4 

Profile function 

Figuirre 9. Velocity profile functions z^' and for a spinning cylinder 
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5i  

M '(0) = 0,9396016 

-1.0 -0.5 0.5 1. 0  0 

Profile function 

Figure 10. Velocity profile function for a spinning cylinder 



N^'(O) = 0.5215917 

P '(0) = -2.764019 

-1.5 0 0.5 -1 .0  -0.5 

Profile function 

Figure 11. Velocity profile functions and P^ for a spinning cylinder 
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T I(0) = 4.500066 

2 . 0  1 .0  -2.0 -1.0 0 

Profile function 

Figure 12. Velocity profile function for a spinning cylinder 
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The sideforce coefficient calculated to order is independent of the 

profile function of order except for the skin friction effect. The skin 

friction effect calculated to order f made only a small contribution to the 

total Magnus force. For this reason and since convergent solutions for some 

of the second order functions were not found, the second order term in the 

skin friction effect was neglected in the total Magnus force calculation. 

Sideforce Calculations 

The calculation of the Magnus force involves contributions due to the 

displacement thickness, the radial pressure gradient, skin friction, and 

the circulation distribution. The displacement thickness calculation in­

volves an imaginary warped cylindrical body generated by adding the boundary 

layer displacement thickness to the cylinder. The solution for an inviscid 

flow about this new surface results in the appearance of a side force, the 

displacement thickness contribution to the total Magnus force. The dis­

placement thickness effect is calculated assuming that the pressure through­

out the boundary layer is constant in the radial direction. The radial 

pressure gradient contribution takes into account the pressure change from 

the outer edge of the boundary layer to the cylinder surface The surface 

shearing stress is an asymmetric function of cp for the rotating cylinder. 

Integration of this shearing stress over the cylinder surface provides 

another contribution to the total Magnus force. The final contribution is 

that due to the axial circulation distribution caused by vorticity shed 
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into the crossflow wake. Tlie local side force is related to the local cir­

culation strength by Rayleigh's (Ig) theory for the lift on a rotating cir­

cular cylinder placed normal to the freestream. The total Magnus force, 

then, is obtained by integration of all local side force contributions over 

the length of the cylinder. 

To calculate the displacement thickness of a three-dimensional boundary 

layer Moore's (15) definition in cylindrical coordinates is used 

(104) (w, -w) dr C = 0 

where u^ and are the inviscid flow velocities at the boundary layer edge 

"l = 

(105) 
Wj = U(2 a sin cp - k]^ 

and 5^ are the boundary layer thicknesses for the u and w profiles 

respectively. A is the desired displacement thickness. Transformation of 

Equation 104 to dimensionless coordinates yields 

(1 

'n 2 
+ ^ (2 a sin cp - kp)(^ - Y Ç + ̂  
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[  ̂ " "2  ̂ u = 0 

0 J 9 
+ 2 \ (1 - % S) % f =0 (106) 

whore T] is the value of T) at the boundary layer edge. Since 6 is assumed 
e 

to be much smaller than r^, r is set equal to r^ in Equations 101 and 103. 

This allows the determination of the velocities for substitution in 

Equation 106. To reduce Equation 106 to a set of ordinary differential 

equations it is assumed that A may be expanded in powers of a and p just 

as the velocity components were expanded previously. 

à = C(x,cp) + 6(x, 9,0!,^ + \lt(x,(p,aSp^,ap) (107) 

where 

c. So + SC; + s'ç. 

= (108) 

* = + S'tj 

For terms independent of a and p Equation 106 becomes 

Upon substitution of terms of A that are of zero order in a and p and 

expansion of the resulting equation in powers of §, Equation 109 may be 

directly integrated to yield 

Cq = 0 (110) 



40 

^2 = - IT + Fi) (112) 

where 

r 

Fj = r f^-dn 

•) dT] 

(113) 

The integrals and F^ are readily calculated numerically from the known 

velocity profile functions and are constants. 

For terms linear in a and p Equation 106 becomes 

à + i r  ' ~ f ' \  ?  9 Kdii? +. 
0 "b 0 J X 

(2a sin cp-k^ (^ - ^ ) 

i C 
Tie 

i -
§̂)|̂  f (2-g) + I t2+(.8604 - Tl)?] sincpH^ dT\ 

= 0 (114) 

Direct integration of Equation 114 yields 

6 o=0 (115) 

^1 = - Ç cos cp Kq (116) 

, xa 
Og = cos f 

" I T 
+ F, F.-Hi .4302 

(117) 

where 
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Ko = v") 
Kl = 5 V'i 

Ho = i V (118) 

«1 = 1 

% 
Fg = J Tld - -f-) iT\ 

% 

Ho = i 

The integrals are readily calculated from the known velocity profile 

functions and are constants. 

For the second order terms (o!^,ap,p^) Equation 106 becomes 

^ (Q + cos 2c(jr) + * sin cpP 
U ^0 ^0 

§r ® f 
d71+ ^ (1 - d7]j 

X 

2 

+ ̂ (2 a sin cp - kp) ^ 5+ S'') 
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cos cp M + ~~ sin 2 cp N 

Then the solution of Equation 119 may be written; 

to = 0 

dT) ( =0 (119) 

9 

(120) 

ijf = -
2r_ 

r„0! 
+ "1Î" 2o + = a cos sin cp(/1^ - zV^) 

4r_ 
cos 2 cp (2T - ztC +^J (121) 

where 

•2 = (^oQo- 'Qi' - -Ç- - f <=- <p \<v T) 

x'gp 
8r ̂  sin <p [f j CMj , - 2"%) + 4Pj - 2t\ -Mg] 

V - 2̂ 0 +̂ 0) - '•'̂ 1 + -̂ 0] (122) 

n = 
00 

^0 " i "0'''^ 

^0 ' 

Qo = 1 



43 

% = 1 

ifo - 5 (123) 

CO f1 
Ml = 

œ 
/% 

N", = \ N dTl 
J- Jq J-

^1 = \ 

1̂ • ![ Q^dl 

"Ti = ( 

CO 

%, = f z dTl 

These integrals may be calculated from the known velocity profile functions 

and are also constants. 

Only terms containing sin cp contribute to the asymmetry of the displace-
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ment thickness with respect to the vertical plane. For this reason the 

Magnus force is dependent on these terms only. The Magnus displacement 

thickness is, then 

= oF Si" [''̂ 1 • 24 

+«0(1+ V -^Voj] (124) 

Upon application of the Munk-Jones (20) theory to the case of flow over 

slender bodies of revolution at incidence, the generated displacement thick­

ness distorts the velocity potential by an amount 

"0' 
<p = - 0 — (125) 

where Rq is the radius of the new surface. The surface pressure coefficient 

is then 

r 

T 

- (12-^ - + 3»^ - 2% - [ (126) 

and, thus, the force per unit length 

2TT 

i .. 
may be integrated along the body to calculate the Magnus side force con-

^TT 
y = - q ? C r sin cp d 9 

Jn "n 
(127) 

tribution due to the displacement thickness 

pL 
Y, = \ y dx (128) 

•^0 
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The side force coefficient based on the cross sectional area is, then 

\ ' ? j- if <4) - ^0 

- «(A, + (129) 

The radial pressure gradient contribution to the Magnus force is cal­

culated using the r component of the momentum equation correct to order 

(Ô/L). 

IT • - 7 (130) 

The velocity profile Equation 103 can then be substituted into Equation 130. 

The resulting equation for the radial pressure gradient is transformed to 

dimensionless coordinates. Since only pressure gradient terms with sin cp 

asymmetry will contribute to the Magnus force, the Magnus pressure gradient 

IS 

^aE_^in_(g (2 _ .8604(1 - V)] 

- (p fo'S' { (131) 

The radial pressure gradient contribution to the side force per unit length 

is calculated by 

.2" (-«> 
Yg = j sin cp ^ P^d T] d cp (132) 

Defining 
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(133) 

Tl. 

4 •>„ ' 1  

and calculating the side force using 

' i ''2'" (134) 

results in the radial pressure gradient contribution to the Magnus side-

force coefficient based on the cross sectional area 

2 3.4428 .L. 22.0339 , 
\ =" 

] (135) 

The integrals and F^ are readily calculated numerically from the known 

velocity profile functions and are constants. 

The skin friction contribution to the Magnus force per unit length 

is calculated by 

217 

^0 

r y  ̂ =  ̂ r̂  T cos cp d 9 (136) 

where T is the surface shearing stress 

T . (137) 

Equation 103 is substituted into Equation 137. Note that only the terms 

involving cos cp will be nonzero after integration so the shearing stress 
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that contributes to the Magnus force is 

\ 9 ("o' + V ̂  to 

Substituting this result into Equation 136 and integrating, the Magnus 

force per unit length is found. The total force is 

''a '  i  " 3  

from which the skin friction contribution to the side force coefficient is 

calculated to be 

r 
" o '  - +  " . 6  

•4. '• 

The derivatives of the profile function M are known from the velocity 

profile solutions and are constant. 

The contribution to the Magnus side force due to the circulation dis­

tribution is calculated by 

( ^ pu a k(x) Tq dx (140) 

Since the circulation distribution has the form 

k(x) = C^Rg3/4 |2 (141) 

the Magnus side force coefficient due to the circulation distribution is 

Cy = 256 C (-p^OCP (142) 
4 ^ \ ^ 
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RESULTS AND DISCUSSION 

The contribution to the Magnus force coefficient due to the displace­

ment thickness is 

C = ^ f- f ^0 - + "T 4) "=^^1 
^ \ I \ 

- 2̂ 0̂  + 0>] (127) 

where the numerical values for the integrals of the velocity profile 

functions have the values 

Fq = 0.8604 

JMq = -1.3800 

Mo = -1-6094 

"Pq = 0.7630 

= 0.4826 

(143) 

"B I = -1.5910 

Substitution of these values into Equation 127 yields 

^58.1200 - (J) f (144) 

The contribution to the Magnus force coefficient due to the radial 

pressure gradient is 

"33, 

^ ^ I \ ^ 
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The numerical value of is 

= 1.2883 (145) 

Substitution of this value into Equation 133 yields 

L L 

(146) 

The contribution to the Magnus force coefficient due to the skin friction 

is 

The derivatives of the velocity profile function M have the values 

Mq' = -1.5057 

= 0.9396 
(147) 

Substitution of these values into Equation 137 yields 

'•7584 L ") c = -^ (%2 J -4.0152 - 3-7584 ( (148) 

' I ^ 

The contribution to the Magnus force coefficient due to the circula­

tion distribution is 

256 C R 
C„ = ; (Va? (140) 

where 
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C = .0328 (-7^ g 0.25) 
1 sin a 

= .0015 + .0394 - (-7^ ̂ 7.0) 
p sin a 

Substitution of these results into Equation 140 yields 

C = 8.3968 R/'' f 
4 L 

= (.3840 + 10.0864 ^ (7)^ (-T^ ̂ 7.0) 
p C L sin a 

The total Magnus force coefficient is thus 

(7)^ ] 60.9757 + (7) [-357.3695 + 8.3968 

' I 
, 0.25) (151) 

(150) 

or 

60.9757 + (7) [-357.3695 

+ (.3840 + 10.0864 (7) = 
p C ' R^ d 

- 7'°) (IS:) 

For subsonic incompressible flow with a and p small Equation 152 would be 

expected to be the most useful equation for determining the Magnus force. 

Figures 13 and 14 show a comparison of the present result, Kelly and 

Hauer's (12) wind tunnel data and Kelly's (10) result for the Magnus 



force developed by a cylinder for various p and L/d values. Kelly's result 

predicts a linear variation of the sideforce coefficient with O! for a given 

The data indicates that this is only valid for very small a. The 

addition of the circulation distribution to the theory greatly improves 

Kelly's result for larger a's. The present result is much better in pre­

dicting wind tunnel sideforce values than Kelly's theory at all angles of 

attack. The present result does not always compare favorably with experi­

mental data but since the sideforce magnitude is much smaller than the 

other forces acting on the cylinder, accurate wind tunnel data are very 

difficult to obtain. Often quite different results for experimental Magnus 

force coefficients are obtained between tests run at positive and negative 

spin rates. Varying the nose shape or testing in a different wind tunnel 

can also have large effects on the experimental results. Equation 152 

predicts the shape of the sideforce coefficient, however, very well even 

beyond the expected small angle region of application. No other theoreti­

cal application to date has predicted other than a linear variation of 

Magnus force coefficient with angle of attack at a constant 
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O Experiment, Kelly and Hauer's (12) 

7 = 7.0 
d 

p = .314 

= .77x10 © 

Equation 152 

C =.3972a+ .1999a 
11/4 

+ 16.7275% 

7/4 

O 

Theory, Kelly's (10) 

5 10 15 

Angle of attack - a (degree) 

20 

= .4151 a 

25 

Figure 13. Sideforce coefficient comparison 
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A Experiment, Kelly and Hauer's (12) 

7 = 9.0 
d 

p = .1047 A 

= .77x10 

Equation 152 

C^=. 13250:4- .0666a 

+ 16.7117a 
11/4 

Theory, Kelly's (10) 
C„ = .1384 a 

7/4 

10 15 20 

Angle of attack - a (degrees) 

Figure 14. Sideforce coefficient comparison 
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CONCLUSIONS AND RECOMMENDATIONS 

This study of Magnus force production of spinning cylinders at small 

angles of attack has lead to the following conclusions; 

1. A circulation is developed in the inviscid outer flow by shed 

vorticity in the wake of a spinning rotating cylinder. 

2. The boundary layer displacement thickness is affected little 

by a superimposed circulation distribution. 

3. The use of a crossflow similar to the flow over an impul­

sively rotated cylinder placed normal to the freestream yields reason­

able results for the prediction of the sideforce coefficient. 

4. Effects due to terms of first order in § yield important 

contributions to the sideforce coefficient and should not be neglected. 

5. For large angles of attack the sideforce is produced mainly 

by the circulation induced in the inviscid flow by the shed vorticity. 

6. Equation 152 predicts the nonlinear behavior of the sideforce 

coefficient that previous theories have not. 

7. Equation 152 may even be useful in the estimation of the side-

force coefficient above the assumed "small" angle of attack region. 

8. Although there are wind tunnel tests that have been made on 

finless rotating bodies of revolution in addition to those referenced 

here, many more experimental results are needed to confirm the results 

contained herein. Wide ranges of p, CK, L/d, Reynolds number and Mach 
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number should be covered by these experiments to fill in gaps in 

existing data. 

9. Flow field surveys with a hot wire should be made to validate 

the assumed circulation values and to better understand the flow 

characteristics, particularly in the wake region where vorticity is 

shed from the boundary layer. 

10. When reliable wind tunnel data are available an extensive 

comparison of the theory and experiment should be made to determine 

the validity of the theory. 
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