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I. INTRODUCTION 

Thulium, atomic number 6$, was discovered in 1879 by P. T. Ci eve and 

named after Thule, the ancient name of Scandanavia. Thulium is a member 

of a family of elements called the Lanthanides or, more commonly, the 

rare earths. This series of elements begins with lanthanum, atomic 

number 57j and ends with lutetium, atomic number 71» 

The conduction band of the rare earths except cerium, europium and 

ytterbium consists of three electrons — nominally, one 5d and two 6s. 

This is why the rare earths behave the same chemically and are so difficult 

to separate from one another. Also, one would expect the transport proper­

ties such as the electrical resistivity, Seebeck coefficients and the 

thermal conductivity to be quite similar. However, experimentally the 

transport properties are very anomalous (1-7). This behavior is attributed 

to the influence of the incomplete 4f electron shell on the conduction 

electrons. Thulium has twelve 4f electrons of which two are unpaired. 

3 
According to Hund's rules, the tri valent thulium ion has a ground 

state configuration. 

Electrical resistivity measurements have been made on polycrystalline 

thulium from 1.3 to 300°K by Colvin et al. (7). A maximum in the resis­

tivity at 54.5°K was interpreted as the Neel temperature. 

Measurements of the Seebeck coefficients of polycrystal1Ine thulium 

by Born _e;t aj.. (8) exhibited a sharp maximum In the Seebeck coefficient at 

55°K and no other anomalies. The sharp maximum was Interpreted as the 

onset of antiferromagnetlsm. / 

Jol 11 ffe et aj_. (9) have measured the thermal conductivity of 
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polycrystal1ine thulium at 291°K. They found a thermal conductivity of 

0.l40 (watt/cm-°K) and a Lorenz number of 3.45x10^ (volt/°K)^. The thermal 

conductivity of polycrystal1ine thulium has been measured from 2 to lOO^K 

by Aliev and Volkenshteïn (10). An anomaly was found at 53°K and was 

interpreted as the Neel temperature. 

The heat capacity of polycrystalline thulium has been measured 

between 15 and 260°K by Jennings ej^ (II). A lambda anomaly was 

observed near 55°K which was associated with the onset of antiferromagnetic 

ordering. Thulium was found to have a Debye temperature of l67°K. 

Lounasmaa and Sundstrôm (12) have measured the heat capacity of thulium 

between 3 and 25°K and have found no anomalies. 

The magnetic moment of polycrystalline thulium has been measured at 

4.2°K and from 20 to 300°K in applied fields of 3 to 18 kOe by Rhodes et al. 

(13). Antiferromagnetism was found to set In below 5I°K and Curie-Weiss 

behavior was observed above 5I°K. The effective number of Bohr magnetons, 

was found to be 7.6 in agreement with the theoretical value 7.56. 

The inverse susceptibility was extrapolated to the temperature axis to 

obtain a Curie temperature of 20°K. This Curie temperature is in good 

agreement with the 22°K as calculated by Neel (14,15). A tendency toward 

ferromagnetIsm was observed at 4.2°K. Davis and Bozorth (I6) have measured 

the magnetic moment of polycrystal1Ine thulium from 1.3 to 300°K In applied 

fields up to 12 kOe and have found a Neel temperature of 60 K and a Curie 

temperature of 22°K. 

Jelinek ̂ al_. (I7) have measured the A. C. susceptibility of poly­

crystal line thulium from 4.2 to 90°K in an applied field of 10 Oe. Maxima 

in the susceptibility curves were observed at 57.5 and 30°K. The maximum 
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at 57.5°K was interpreted as the Neel point. 

Using a thulium single crystal Koehler et al. (18,19,20) have deter­

mined the magnetic structure by neutron diffraction measurements. Thulium 

was found to be a paramagnet above 56°K, a sinusoidally modulated antifer-

romagnet between 38 and 56°K, and a ferrimagnet below 38°K. All moments 

were found to lie along the hexagonal axis. These structures are illus­

trated in Figure 1. 

Because of the magnetic and crystalline anisotropy of thulium, single 

crystal data are necessary for the understanding of its transport 

properties. 
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Figure 1. The ordered spin structure of thulium as observed by neutron 

diffraction (19). 
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II. REVIEW OF THEORY 

A. Electrical Resistivity 

The question, "What impedes the flow of electrons in a metallic 

lattice?", has been of interest for several decades. Houston (21) and 

Bloch (22) have shown that the wave vector of an electron does not change 

in the presence of a perfectly periodic potential, and thus a perfect 

lattice has zero resistivity. The electrical resistivity of a metal is 

caused by the scattering of electrons by lattice aperiodici ties. In the 

rare earths the deviations from periodicity which scatter electrons are: 

(1) defects (impurities, vacancies, dislocations and twins); 

(2) thermal motion of the ions (phonon scattering); and 

(3) thermal motion of the magnetic moments (magnon scattering). 

These scattering processes are discussed in this order below. 

Theoretically the electrical resistivity is treated in the framework 

of formal transport theory. A general description of this theory is given 

by Ziman (23,24). If the electronic scattering can be described by a 

relaxation time, then the electrical conductivity can be formally calculated 

from 

CT.j = (ef/4â A) r TV.dA , (2.1) 

^F 

\ 

where e is the electronic charge, fi is Planck's constant divided by 2jt, T 

is the relaxation time, v. is the icomponent of the electron velocity at 

the Fermi surface, and is an elementary area of the Fermi surface with 

normal In the direction. 

If the various electronic scattering processes are independent, then 
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the resistivity may be written 

p = + Pp , (2.2) 

where Pj^ is the residual resistivity (resistivity due to defects) and pp 

is the lattice resistivity (resistivity due to phonon scattering). This is 

known as Matthiessen's rule and its validity is discussed by Ziman (2), 

p.285). For a magnetic material the resistivity can be written 

P = pR + Pp + Pm ; (2.3) 

where P|^ is the resistivity due to magnon scattering. 

If the number of defects is small and the temperature is not too low, 

then Pg is, to a good approximation, independent of temperature. 

The temperature dependence of Pp is described analytically by the 

Bloch-Gruneisen formula 

Pp = A (T/8p)5 Jç^ep/T) , (2.4) 

where A is a constant depending on Fermi surface parameters, 8^ is the 

Oebye temperature, and Jg belongs to the class of Debye integrals. A 

derivation of this formula is given by Ziman (2),p.357). In the limit 

T » Gp Jg behaves as (Gp/T)^ so that 

pp ~ T . (2.5) 

For the opposite limit T « 0^ is constant and so 

pp~T^ . (2.6) 

This behavior is verified experimentally for many metals. 
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For non-cubic materials, the resistivity and conductivity are second 

rank tensors. Now the Fermi surface of a hexagonal lattice has hexagonal 

symmetry and thus from Equation 2.1 it follows that the principal axes are 

the a-axis (<1120 direction), the b-axis (<1010 direction), and the 

c-axis (<0001> direction). Furthermore, Boas and Mackenzie (25) have 

shown that there will be no anisotropy in the basal plane of a hexagonal 

lattice for any physical property which is represented by a linear function 

between two vectors. The conductivity is a function which relates the 

applied electric field and the current density. Hence, the electrical 

resistivity tensor is completely determined by measuring the resistivity 

when current is applied parallel to the c-axis and when current is applied 

parallel to either the a- or b-axis. 

In the rare earths the magnetic moment arises from the incomplete k f  

electron shell. The exchange interaction between a conduction electron and 

the 4f shells is given by the HamiI tonian 

1 N 
K= n"' S Vj 6(r-R^)(g-l) , (2.7) 

n=l 

where N is the number of ions, is the exchange integral (a measure of 

the overlap of the conduction electron wave function and the 4f shell wave 

function), r is the position vector of the conduction electron, is the 

position of the n^*^ ion, g is the Lande g-factor, is the total angular 

momentum of the ion, and a is the spin angular momentum of the conduc­

tion electron. 

The ordered spin structures of the heavy rare earths can be expressed 

analytically by 
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< J* > = M'J cos (q'R^) , (2.8a) 

< > = M'J sin > (2.8b) 

< > = MJ cos (q-R^-0) , (2.8c) 

where M and M' are temperature dependent amplitude functions, q is the wave 

vector describing the magnetic periodicity, and 0 is a phase angle. Since, 

in the rare earths, the magnetic periodicity is incommensurate with the 

lattice periodicity, extra planes of energy discontinuity (magnetic supepf 

zone planes) are formed. Equations 2.7 and 2.8 with first order perturba­

tion theory predict the position, t, of the magnetic superzone planes to 

be 

Z = 1/2 (T+q) , (2.9) 

where T is a reciprocal lattice vector. The first order perturbation in 

energy is 

E(k) = l/2{E(k) + E(1(+2Z) + [(E(k) - E(k+2Ï))^ 

,  (2.10) 

where E(k) is the unperturbed energy, k is the wave vector of an electron, 

and 

+ 2M'^ + 2M' (M^+M'^)'^^ . (2.11) 

The energy gap at the new zone is given by 

A = V^JM^ . (2.12) 

The effect of magnetic superzones on an ellipsoidal Fermi surface can be 
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seen in Figure 2. 

If the various electronic scattering mechanisms are independent, then 

the relaxation time can be written 

1/T = 1/Tj^ + 1/Tp + 1/T^ ,  (2.13) 

where is the defect scattering relaxation time, Tp is the phonon 

scattering relaxation time, and is the spin scattering relaxation time. 

If the temperature is not too low, the following approximations can be 

made 

T„ ~ constant , (2.l4a) 

Tp~T"' , (2.14b) 

T„~V^ [I (2.14c) 

Elliott and Wedgewood (26) used Equation 2.1 and Equations 2.7 through 2.14 

to calculate the temperature dependence of the resistivity for some of the 

heavy rare earths. They obtained the following expressions for the a-axis 

resistivity, p^, and the c-axis resistivity, p^, 

o o 
Pg = Oj + p,T + Y, (1-1/2 M -M') , (2.15a) 

a, + p_T + Y, (1-1/2 rf-M'Z) 

where 

r  =  ( 3 m V j J / 4 E p k p )  S  \ t . I  



kx ,ky 

ky =/& 

kx.ky 

k y  =~X 

Figure 2. The effect of magnetic superzone planes (k^ = ± on an ellipsoidal 
Fermi surface 
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In the last expression the sum is over all superzones which slice the Fermi 

surface, Ep is the Fermi energy, and kp is the electron wave vector evalua­

ted at the Fermi surface. Cf, P, y are taken as adjustable parameters to 

fit the experimental data, a is a measure of the residual resistivity, 

P is the high temperature slope, 7 is a measure of the spin disorder 

resistivity, and the temperature dependence of M and M' is determined by 

neutron diffraction measurements. 

This theory predicts a maximum in and an increase of slope in 

with decreasing temperature below the ordering temperature. This agrees 

qualitatively with the experimental data on dysprosium, holmium, and 

erbium. 

A serious draw-back to this theory is the assumption of an ellipsoidal 

Fermi surface. The Fermi surface of thulium in the paramagnetic tempera­

ture region as calculated by Freeman et al. (27) is shown in Figure 3 -

Shown in Figure 4 are three vertical cross-sections of the thulium Fermi 

surface and the effect of magnetic superzones planes. Physically, the 

effect of the superzone planes is to decrease the projected area of the 

Fermi surface along the hexagonal axis (<0001> direction). At the ordering 

temperature, the integral in Equation 2.1 will decrease rapidly, and thus 

p^ will increase sharply. The resistivity will also decrease below the 

ordering temperature because of the increase in order. This decrease 

coupled with the increase due to the superzone planes gives the maximum in 

below the ordering temperature. 

In the basal plane direction, the Fermi surface is distorted very 

little by the superzones and so p^ Just decreases faster below the ordering 

temperature. 



Figure 3. The complete Fermi surface for thulium as calculated 
by Freeman et al. (27). This is the hole surface in 
the double zone representation. 



A •H 

K 

r r 
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Figure 4. Some vertical cross-sections of the thulium Fermi surface. The effect of 
the magnetic superzones (horizontal lines) is demonstrated by comparing 
the paramagnetic Fermi surface (light solid line) and the perturbed Fermi 
surface (heavy solid lines). 
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Mackintosh (28) has considered the effect of spin wave scattering at 

low temperatures on the resistivity and has obtained the following 

expression 

Pg^, = CT^exp (-e/kT) , (2.16) 

where C is a constant, € is the minimum energy to excite a spin wave, and 

k is the Boltzmann constant. Because of the high impurity scattering at 

low temperatures a comparison with experiment is difficult to make. 

Above the ordering temperature the magnetic moments are disordered 

which results in a spin-disorder resistivity, . Dekker (29) used the 

exchange interaction (Equation 2.7) and a spherical Fermi surface to 

obtain the following expression for the spin-disorder resistivity in the 

rare earths 

p^= (3«Nm/2fte^Ep) (g-1)^ J(J+l) , (2.1?) 

where N is the number of atoms, m is the electronic mass, and the rest of 

the symbols are as defined earlier. This expression predicts p^ is 

independent of temperature in agreement with experiment. This expression, 

however, does not predict the anisotropy in which is observed experi­

mentally in the single crystal data. 

B. Seebeck Coefficients 

In the presence of an electric field, E, and a temperature gradient, 

VT, the current flux, J, and the energy flux, U, In a metal are expressed by 

J = Lgg'E + Lgy'VT , (2.18a) 
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U - L^g-E + L^-VT , (2.18b) 

where the coefficients are tensors. The justification of these equations 

follows from the linearity of the Boltzmann integral equation (23,p.270). 

I f VT = 0 and T  ^  0 ,  then J = and U = Thus the 

electrical conductivity, a, and the Peltier coefficient, 11, are related to 

the transport coefficients by 

e = , (2.19) 

n = . (2.20) 

If J = 0, then E = L^^L^^'VT and U = (Lpp-L^^L^^L^^)*VT. The Seebeck 

coefficient, S, and the thermal conductivity, K, are given by 

s = , (2.21) 

K = (LrT-LTjLjgl-j.j) . (2.22) 

The coefficients in Equation 2.18 are not completely independent; for 

it can be shown by the application of Onsager's theorem (23,p.273) to 

Equation 2.18 that 

TLjT=-4E • (2-23) 

Thus it is sufficient to measure the electrical conductivity, thermal con­

ductivity, and the Seebeck coefficient to completely determine the coeffi-r 

cients in Equations 2.18. The first Kelvin relation is 

n = ST , (2.24) 
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which is obtained by substituting Equations 2.20 and 2.21 into Equation 

2.23. 

If both a heat current and an electrical current are flowing in a 

metal, then the increase of energy per unit volume, Q, is 

Q. = E'J - V'U . (2.25) 

Equation 2.25 can be written in terms of a, K, and S and is given by 

Q = + V.(K.VT) - (T||) • (J-VT) , (2.26) 

where the first term is the irreversible Joule heat produced by the current 

J, the second term is the net flow of heat, and the last term is the 

reversible Thomson heat. The coefficient of J'VT is the Thompson coeffi­

cient, |i, and is given by 

H = T(9S/ÔT) , (2.27) 

(the second Kelvin relation). 

In the relaxation time approximation formal transport theory gives the 

following expression for the Seebeck coefficients (23,p.379) 

S . .  = (flVT/3e) S Ca:j(E) ̂  ^ ̂ , (2.28) 

^ F 

where 

CRJJ(E) = I T v.dij . (2.29) 

For cubic symmetry Equations 2,29 and 2.28 become 
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CT(E) = i e ^ / ] 2 i t ^ h )  J Tvdi ,  (2.30) 

S = («^k^T/3e) ["^ 1na(E)] . (2.31) 
E = EP 

If the mean free path, A(E) = T(E)V(E)J  is a slowly varying function at the 

Fermi surface, then Equations 2.30 and 2.31 become 

a(E) = (eVl2A) A(E) S(E) , (2.32) 

S = («\^T/3e) [-^ In A(E) + "^ In 2(E)] , (2.33) 

E ^ ^F 

where 

2(E) = ; dj . (2.34) 

In Equation 2.33 the sign of the second term depends upon the detailed 

geometry of the zone: it is positive for electron surfaces and is negative 

for hole surfaces. If the energy dependence of A can be neglected, then 

S < 0 for electron surfaces and S > 0 for hole surfaces. 

For magnetic materials there are three sources of thermoelectricity: 

electron diffusion, phonon drag, and magnon drag. To a first approximation 

these sources of thermoelectricity are independent (30,p.113) so that the 

total Seebeck coefficient is just the sum 

S = Sq + Sp + ,  (2.35) 

where is the electron diffusion coefficient, Sp is the phonon drag 

coefficient, and is the magnon drag coefficient. 
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If the Fermi surface is spherical and the mean free path is indepen­

dent of energy, then by Equation 2.33 the electron diffusion coefficient is 

Sjj = U^kVseEp) . (2.36) 

Thus the electron diffusion coefficient is a linear function of temperature. 

Since VT / 0, the phonons are not in thermodynamic equilibrium, but 

are moving as a heat current. At high temperatures (temperatures greater 

than the Debye temperature, 0p) the phonon mean free path is short and the 

asymmetry of the phonon distribution is not communicated to the electrons. 

However, at low temperatures (T < 8^) the phonon mean free path is long 

and the electrons are dragged along by the phonon current. Ziman (23,p.409) 

and MacDonald (30,p.101) have shown for normal processes that 

Sp-lVe, T<0p ; (2.37a) 

Sp~l/eT, T>0p : (2.37b) 

Sp constant/e, T > 0^ . (2,37c) 

These equations predict a phonon drag peak around G^/IO to 0^/5, which is in 

fair agreement with experiment. If Umklapp processes predominate, then 

Sp > 0 and if |Sp| > js^l then the total Seebeck coefficient can change 

sign. 

Besides the phonon energy current, in the rare earths there will also 

be a magnon current. Bailyn (31) finds for normal processes identical 

temperature dependences for and Sp. Furthermore, he shows Sj^ can change 

sign for Umklapp processes. Because phonon and magnon drag effects overlap, 

it is difficult in practice to distinguish between them. Generally the 
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magnon drag peaks will be found around 20°K, however, recently Blatt et al. 

(32) have found magnon drag peaks in iron at 200°K. 

Since the Seebeck coefficient is the most sensitive of the transport 

coefficients to the electronic structure magnetic superzone planes will 

have a dramatic effect. Mackintosh [c.f. Sill (33,p.107)] has extended 

the theory of Elliott and Wedgewood (26) and has obtained the following 

expressions for the a-axis Seebeck coefficient, S^, and the c-axis Seebeck 

coefficient, S^, 

5 g = (n^kV2eEp)[3-p^/p] , (2.38a) 

S^ = (AV2eEp) [3/(1-0)-p^/p] ^ (2.38b) 

where p^ is the magnetic scattering resistivity, p is the total resistivity, 

and 

6 = (3*/4) (|Z|/kp) (A/Ep) . 

The symbols in the last equation are defined in Equation 2.15. Equations 

2.38 predict that S^ will increase and S^^ will decrease below the ordering 

temperature. For the heavy rare earths, the agreement with experiment is 

poor. 

The rare earths have three electrons in the 5d and 6s conduction bands. 

The total Seebeck coefficient is not the algebraic sum of the Seebeck 

coefficients for each carrier, but the weighted sum 

S = S cr.S./E cr. , (2.39) 
. 1 1 . 1  

where cr. is the electrical conductivity of carrier i and S. is the Seebeck 
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coefficient of carrier i. 

If there is one group of carriers, but several independent scattering 

mechanisms, then the total Seebeck coefficient is given by another weighted 

sum 

S = S (S./K.) / S (1/K.) , (2.40) 
i i 

where K. is the thermal conductivity due to the iscattering mechanism 

and Sj is the Seebeck coefficient characteristic of the iscattering 

mechanism. The derivation of Equations 2.39 and 2.40 are given by 

MacDonald (30). 

C. Thermal Conductivity 

In non-magnetic metals heat is transported by electrons and phonons. 

To a first approximation these carriers are assumed to be independent, and 

the total thermal conductivity, K, is given by the algebraic sum 

K = Kj_ + Kg , (2.41) 

where is the lattice thermal conductivity (due to phonon carriers) and 

Kg is the electronic thermal conductivity (due to the conduction electrons). 

For magnetic materials magnons can also transport heat and in the above 

approximation the total thermal conductivity is 

K = Kj_ + Kg + K^ , (2.42) 

where K^^ is the thermal conductivity associated with the magnon carriers. 

Thermal resistance arises from the scattering of the carriers by their 

environment. Phonons are scattered by the conduction electrons, boundaries, 

other phonons, and magnetic moments. If the various scattering mechanisms 
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are independent (Matthiessen's rule) the lattice thermal resistance, 

Wl = 1/K^, can be written 

I 

WL  = wj + Wp + Wp + + Wp , , . (2.43) 

where Wp, Wp, Wp, Wp, and Wp are the lattice thermal resistances due to 

phonon-phonon, phonon-electron, phonon-boundary, phonon-impurity, and 

phonon-magnetic moment scattering respectively. 

From kinetic theory the thermal conductivity of a group of carriers 

is given by 

K = 1/3 Cv A , (2.44) 

where C, v, and A are the specific heat, average speed, and mean free path 

of the carrier respectively. At high temperatures, T > 8^, the mean square 

displacement of an atom is proportional to the absolute temperature. Thus 

A~ 1/T, and since C~ constant in this temperature range, the thermal 

conductivity becomes 

Kp=l/Wp~s/T , (2.45) 

where s is the speed of sound in the crystal. 

Phonon-phonon scattering processes are described by the momentum and 

energy relationships 

/ 

q + q' = q" + T (2.46a) 

f i v  +  f f \ > '  =  ,  (2.46b) 

where q and q' are the wave vectors of the interacting phonons, q" is the 

wave vector of the resultant phonon, T is a reciprocal lattice vector, v 
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v' are frequencies of the interacting phonons, and v" is the frequency of 

the resultant phonon. Peierls (3^) has pointed out that for N-processes 

(T = O) the phonon energy is redistributed into different phonons without 

altering the total energy flow. Hence, the thermal resistivity for 

N-processes is zero. In U-processes (f / O) if energy is to be conserved 

(23) 

ftv" ~ k0p/2 , (2.47) 

and the rate at which these processes occur is proportional to 

exp (-Av/kT) exp (-Av'/kT) ~ exp (-Gp/ZT) . (2.48) 

Hence, A fw exp (0jj/2T) and in the limit T < 0^, C ̂  (7/0^)^. Thus from 

Equation 2.44 

Kp = lA/p- s(T/0jj)^ exp (0[j/2T) . (2.49) 

Equations 2.45 and 2.49 are derived rigorously by solving the linearized 

Boltzmann equation (23). 

For T << 0JJ, A is of the order of centimeters and is limited by the 

physical size of the sample. The thermal resistance for boundary scattering 

is given by 

Kp=l/Wp~s/T3 . (2.50) 

The temperature dependence of the thermal conductivity for phonon-phonon 

and phonon-boundafy scattering is summarized by the dotted curve in Figure 

5. 

The phonon-electron scattering process is expressed by 
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q + k = K' , (2.51) 

where k and k' are the initial and final electron wave vectors respectively. 

Ziman (23,p.319) shows that if the phonons interact with a gas of free 

electrons in equilibrium, the thermal resistivity can be expressed by 

Wp ̂  (p^/T) (n^e/k)^ (3Nk/C)^- , (2.52) 

where p|^ is the lattice electrical resistivity, N is the number of atoms, 

and n^ is the number of conduction electrons per atom. The equality holds 

for N-processes, while the inequality is for U-processes. In the limit 

T > Gp, C ̂  eNk, and p^ T. Thus 

Kp = 1/Wp ~ (k/eng)^ . (2.53) 

3 5 
In the opposite limit T < 8^, C~ T , and Pj^~ T . Therefore, 

Kp = 1/Wp ~ T^ . (2.54) 

The thermal conductivity for phonon-electron scattering is shown by the 

dashed curve in Figure 5 -

The temperature dependence of the phonon-impurity lattice resistivity 

varies with the type of impurity. The general effects of impurity 

scattering, however, is to lower the maximum of the lattice thermal conduc­

tivity. 

In magnetic materials, the magnetic moments will also scatter phonons. 

Very little theoretical work has been done on this problem, although Stern 

(35) has shown that the phonon-magnetic moment interaction leads to a 

sharp dip in the thermal conductivity at the transition temperature. This 



24 

PHONONS (U-PROCESSES) 
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T 

Figure 5. The lattice and electronic thermal 
conductivity of a metal 
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is in qualitative agreement with the observed thermal conductivity of CoFg. 

in most metals the electrons transport the major portion of the 

thermal energy. The conduction electrons are scattered by phonons, other 

conduction electrons, impurities, and magnetic moments. If the various 

scattering mechanisms are independent, the electronic thermal resistance, 

Wg = 1/Kg, can be written as the sum 

We = + Wg + + w" , (2.55) 

where the superscripts indicate the scattering mechanisms. 

If the electronic scattering is elastic and can be described by a 

relaxation time, T, then from formal transport theory (23) the electronic 

thermal conductivity for the principal axes is given by 

(Kg);; = LqT C<7..(Ep) -L^aj! (Ep) Oa.j/ÔE)^^] ,  (2.56) 

where 

Lq = A^/3e^ , (2.57) 

is the Lorenz number, and 

a. .(E) = f T V. dJ. , (2.58) 

is the electrical conductivity. The second term in Equation 2.56 is 

generally small and can be neglected. Thus 

(Kg)Ii " ̂0% (Ep) , 

or in terms of the electrical resistivity tensor 
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(K^).. p. J /T LQ  (2.59) 

This is the Wiedemann-Franz law and it is exactly obeyed if the electronic 

scattering is elastic. A general Lorenz function, L, can be defined as 

where K and p are experimentally determined. L is plotted as a function of 

temperature and regions in which L is independent of T the electronic 

scattering is elastic, while in regions where L is dependent on T the 

electronic scattering is inelastic. In what follows the principal axes 

notation will be dropped for clarity. 

In electron-phonon interactions the quantized energy of a phonon can 

be gained or lost by the electron, and so the process can be very inelastic. 

Ziman (23,p.385) using the variational technique to solve the Boltzmann 

equation for electron-phonon scattering derives the following expression 

for electronic thermal resistivity 

where and J_ belong to the class of Debye integrals, is a constant, 

% i s the Fermi radius, and «^is the Debye radius. In the limit T< 8^ 

L = Kp/T • , (2 .60)  

w[ = (4pg/LoT) [(T/0jj)̂  {Jg(8Q/T) - (l/2«̂ ) Ĵ (8p/T)] 

+ (3/«̂ ) (%cg)̂  (T/ê )̂  05(8̂ /1)] (2.61)  

Equation 2.61 becomes 

P P 2 
Wg = l/Kg ~ T (2.62) 

while in the opposite limit T> 8^^ 
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Wg = I/Kg -* p^/LgT "w constant . (2.63) 

At high temperatures the Wiedemann-Franz law is obeyed and the electron-

phonon scattering is elastic. 

Electron-impurity scattering is generally elastic and the thermal 

resistance can be calculated from the Wiedemann-Franz law. The residual 

electrical resistivity is independent of temperature and so 

Wg = l/Kg ~ T . (2.64) 

If only impurities and phonons are the important scattering mechanisms, 

the electronic thermal resistivity becomes 

Wg = A/T + BT̂  . (2.65) 

This equation predicts a maximum in the thermal conductivity for T < 0^. 

The electronic thermal conductivity of a typical metal is shown in Figure 

5. Equation 2.65 can be rewritten as 

T/Kg = A + BT̂  . (2.66) 

The linearity of a T/K versus T^ plot, where K is the experimentally 

measured thermal conductivity, will indicate if the electron-phonon and 

electron-impurity are the dominant scattering mechanisms for T < 0^. 

Just as in the case of phonon-phonon scattering only U-processes 

give a finite resistivity for electron-electron scattering. Ziman (23) 

E 2 
predicts that W^T and should be large enough to observe in a monovalent 

metal such as sodium. However, experimentally this effect has not been 

observed. 
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The conduction electrons are scattered elastically by paramagnetic 

moments. This is verified experimentally in that the spin-disorder resis­

tivity, psr- is independent of temperature (cf. Equation 2.17). Thus from 

the Wiedemann-Franz law 

WgM _ 1/T . (2.67) 

Kasuya (36), using the s-d interaction model, calculated the transport 

coefficients for ferromagnetic metals and alloys. He does not obtain an 

explicit expression for the temperature dependence of the thermal conduc­

tivity, but does indicate that the Lorenz function is temperature dependent. 

His method could be carried over to the rare earths by the use of an s-f 

exchange interaction model. 

The effect of magnetic superzones is to redistribute the states into 

which the conduction electrons can scatter. This will have a profound 

effect on the electronic thermal resistivity. The effect of superzones 

will be discussed in more detail in section V. 

In magnetic metals how much heat the magnons transport is still an 

unanswered question. Magnons are scattered by the same particles and 

quasi-particles as phonons. if the scattering mechanisms are independent 

the magnon thermal resistivity is given by 

«M = "S + "5 + "5 + "M + "S • 

Kasuya (36) shows that for temperatures below 10°K the magnon free path is 

determined by the sample dimensions. The magnon specific heat is 

Cj, ̂  73/2 so from Equation 2.44 
M 
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(2.69) 

Kasuya also shows that the thermal resistivity for magnon-magnon scattering 

will be zero for both U-processes and N-processes. At present there are 

no theoretical expressions for the other terms in Equation 2.68. 

The final subject to be considered in this section is the experimental 

separation of Kg, and K^ (cf. Equation 2.42). At high temperatures 

the electronic scattering is elastic and Kg can be determined from the 

Wiedemann-Franz law 

where p is the experimentally measured resistivity of the same specimen 

which was used in the thermal conductivity measurements. If magnon 

carriers are unimportant at high temperatures, then the lattice thermal 

conductivity can be found from Equation 2.41 

Kg = LQT/p , (2.70) 

KJ_ = K - LQT/P (2.71) 

If at high temperatures only electron-phonon interactions are 

important, then from Equations 2.52 and 2.62 

K|_ = (k/en^)^ (T/p^) ^ 

Kg = 1/3 (jfk/e)^ (T/p J , 

and 

p E 
Thus for a monovalent metal K^ Kg. In practice, however, Wp » Wp and 
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Kg » If impurities are a dominant mechanism in the scattering of 

electrons, then the lattice thermal conductivity can be of the same order 

of magnitude as the electronic thermal conductivity. At present there is 

no way of disentangling from K^. 
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ill. EXPERI MENTAL PROCEDURE 

A. Sample Preparation 

The thulium used in this study was separated from the other rare 

earths by the ion exchange process (37) at the Ames Laboratory. 

Single crystals of all the heavy rare earths except thulium and 

ytterbium have been grown by the strain anneal technique (38). The strains 

which nucleate the grain growth in the annealing process are induced 

thermally by arc-melting on a cold copper hearth. Temperatures near the 

melting temperature in the annealing process are necessary for the grain 

boundaries to have sufficient energy to move. 

in the early attempts to grow thulium single crystals, the metal 

would sublime in the annealing process because of its high vapor pressure. 

This problem was solved by suspending the arc-melted button in a 1 in. 

diameter tantalum crucible. The tantalum crucible was sealed under 0,5 atm. 

of helium in an arc-welder. The small volume of the crucible allowed the 

thulium button and its vapor to come into equilibrium with a loss of less 

than 5% of the button. 

The annealing furnace is shown in Figure 6. This furnace has a 

gradient temperature region (25°C/cm.) and a constant temperature region. 

To get optimum grain growth for thulium, the following annealing program 

was used: 12 hours at 1200°C in the gradient region, 12 hours at ]300°C in 

the gradient region, and 16 hours at 1425°C in the constant temperature 

region. Single crystals on the order of 1 x 1 x 2 cm. were observed. The 

grain size was limited by the size of the arc-melted button. Because of 

the vapor pressure problem, large arc-melted buttons were impossible to 

get. An alternate method, to get a larger strained specimen, might be to 
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first cast the thulium into a cylinder inside a sealed tungsten crucible 

and then strain the cylinder mechanically. 

The crystals were oriented by Laue back reflection of X-rays. The 

samples were cut to the approximate dimensions by a Servomet spark erosion 

apparatus and then hand lapped to the final dimensions with carborundum 

paper. The samples were in the form of rectangular parallelepipeds with 

the approximate dimensions of 1 x 1 x 6 mm. The sample dimensions were 

measured with a Steinmeyer 25-50 mm. metric micrometer and a 25 mm. gauge 

block. This instrument was accurate to within + 0.001 mm. The a-axis, -

b-axiSj and c-acis crystals were cut such that the a^ b, and c axes were 

respectively parallel to the long dimension. The sample dimensions are 

listed in the Appendix. 

Impurity analyses were made on scrap material of the button from 

which the single crystals were cut. A quantitative vacuum fusion analysis 

was made for the dissolved gas impurities and a semi-quantitative analysis 

was made for the other impurities. Sample impurities and resistivity 

ratios are listed in the Appendix. Twins were also observed after the 

button had been etched. It was estimated that they occupied approximately 

1% of the total volume of a crystal. 

B. Measurement of the Electrical Resistivity 

If a metal of cross-sectional area, k, is carrying a current, I, a 

voltage per unit length, V/L, will be developed parallel to the direction of 

the current and is given by 

V/L = p I/A , (3.1) 

where p is the electrical resistivity. 
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The electrical resistivity was measured as a function of temperature 

from 1.3 to 300°K by the standard 4-probe technique. The resistivity 

measuring circuit is shown in Figure 7 and the circuit of the constant 

current supply is shown in Figure 8. The voltage, \l, was measured with a 

Honeywell model 2768 six dial potentiometer, Guildline 5214/9660 photocell 

galvanometer amplifier, and a Guildline type SR21/9461 secondary galvano­

meter. The voltage, V, could be read with a resolution of 0.01 microvolts 

with this system. The current, 1, was measured with a 0.1 ohm standard 

resistor. The voltage across the standard resistor was measured with a 

Leeds and Northrup type K-3 potentiometer and a Leeds and Northrup type 

9834 null detector. The current was measured to five significant figures. 

Since thermal emfs generally have a constant sign, they were eliminated by 

measuring the voltage, V, with forward and reverse current. 

The sample holder and voltage probes are shown in Figure 9« The 

distance, L, between the voltage contacts was measured on a traveling 

microscope. This instrument was accurate to within + 0.0001 cm. The 

samples were electropolished and the ends were tinned with indium solder 

by using an ultrasonic soldering gun. The current leads were then soldered 

to the ends of the sample. The voltage contacts were held in place under 

the tension of a spring. 

The sample temperature was measured by thermocouples anchored directly 

beneath the sample. For temperatures above 25°K a Cu versus constantan 

thermocouple was used, while a Cu versus AuFe thermocouple was used below 

25°K. Because of the low melting temperature of the AuFe wire, indium 

solder was used to make the thermocouple junctions. The calibration used 

for the Cu versus constantan thermocouple was that of Powell ̂  al_. (39). 
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The AuFe wire had a composition of O.O3 at. % Fe and the roll from which 

it came was calibrated by W. Gray of this Laboratory who made a comparison 

with a calibrated germanium resistor. Because of inhomogenities in the 

wire, two thermocouples prepared from the same roll will differ by several 

microvolts at low temperatures. These thermocouple calibrations were 

corrected at the boiling points of liquid helium, hydrogen and nitrogen by 

a method described by Rhyne (40). 

The thermocouple voltages were measured with a Leeds and Northrup 

type K-3 potentiometer and a Leeds and Northrup type 9834 null detector. 

The absolute accuracy of the temperature measurement is estimated to be 

+ 0.5°K while the relative accuracy is about 0.1°K over the range 1.3 to 

300°K. 

The dewar system and the heat leak chamber have been described by 

Col vin e^ (7). From 4.2 to 300°K the temperature of the sample was 

stabilized to within + 0.1°K by automatically controlled heaters on the 

inside wall of the heat leak chamber. The automatic temperature control 

bridge, amplifier, and power supply have been described by Rhyne (40). 

Various cryogenic liquids were used to get the desired temperature range. 

Liquid helium was used from 4.2 to 25°K, liquid hydrogen was used from 20 

to 80°K and liquid nitrogen was used from 77 to 300°K. For temperatures 

below 4.2°K, helium was condensed into the sample chamber and pumped on with 

a Welch model 1397 Duo-seal vacuum pump. The pressure over the liquid 

helium and hence the temperature was controlled by a manostat (41) between 

the vacuum pump and the sample chamber. 
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C. Measurement of the Seebeck Coefficients 

If a metal has a temperature gradient, AT/L, and is electrically 

insulated, a voltage per unit length, AV/L, will be developed in a direction 

parallel to the temperature gradient and is related to AT/L by the following 

equation 

AV/L = SAT/L , (3.2) 

where S is the Seebeck coefficient. To measure the latter experimentally 

the basic thermoelectric circuit shown in Figure 10 is used. The open 

circuit potential difference, AV^^, is given by 

A'AX = - I Ë • <1? . 
AX 

—* 

where E is an electric field and dr is an infinitesimal displacement along 

the circuit. From the definition of the Seebeck coefficient 

E = SVT , (3.4) 

Equation 3.3 becomes 

T4AT T ^0 

' 
TQ T4:&T T 

and therefore 

T4AT T4AT 

'^^X = { • (5.5) 

In the limit AT/T « 1 

^"AX = 'V^x) " • (3-6) 

Thus, only the difference in Seebeck coefficients can be measured. The 



ko 

BASIC THERMOELECTRIC CIRCUIT 
AND SIGN CONVENTION 

TtAT T 

AVi 

>AX 
_ LIM 

AX 

AT-^0 AT 

BASIC MEASURING CIRCUIT 

T+AT SAMPLE (X) 

S —1 

L'oj 

A=COPPER 
C=CONSTANTAN OR AU-FE 

^EAC=EAC(T+AT)-E^C(T) 

S^x - AVAY SAP /AE AX ®AC -AC 

<'1E«̂ (T) I AC 

:)Eac(TW) 
AVax 

Figure 10. The basic thermoelectric power circuit 



41 

Thomson heat, p., and the Seebeck coefficient are related by one of the 

Kelvin relations (Equation 2.27) 

T 
S(T) = J (jj/T)dT . 

0 

Bore Jius et al. (42) have measured the Thomson heat of lead and thus 

determined the absolute Seebeck coefficient. Since S = 0 for a supercon­

ductor, Christian et al. (43) have measured S for lead at low temperatures 

against NbySn. Hence, the circuit can be calibrated by replacing the 

sample (X) with lead. 

The sample holder and heat leak chamber are shown in Figure 11. A 

description of the gradient heater, main heater, and the temperature 

control sensing elements is given by Sill (33) and Trego (44). The elec­

tronics for the automatic temperature control and the dewar system are the 

same as used in the resistivity measurements. 

After the samples were run in the resistivity apparatus, they were 

electropolished again and retinned with indium before they were soldered 

into this sample holder. The absolute temperature and temperature gradient 

were measured with Cu versus constantan and Cu versus AuFe (0.03 at. % Fe) 

thermocouples. The thermocouple junctions were soldered to the ends of the 

sample to insure good thermal contact. 

The basic thermoelectric measuring circuit is shown in Figure 10. if 

there is a temperature difference, AT, then 

A'AX = ' (3'S) 

AEAC = SacÀT + =2 ' (3-") 
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where is the net voltage difference between the hot and cold thermo­

couples, is the sensitivity of the thermocouples at the average tempera­

ture of the sample, and ej and e2 are extraneous voltages caused by thermals 

in the circuit. To keep e^ and small the thermocouple and voltage leads 

are insulated with teflon tubing and are run continuously to the ice bath. 

Experimentally, it was found that when AT = 0, e^ was a function of 

temperature but remained approximately the same function for various 

samples (X) in the circuit. For a lead sample and a thulium sample. 

Equation 3.5 becomes 

Â ATm " ̂ATm̂ l̂ ®1 ' 

A^APb ̂  ̂APb^^2 ®1 ' 

and 

"̂aTo, - %Pb = ̂ 2̂ • • (3.8) 

Thus if the temperature gradient is kept approximately constant for all 

samples, e^ will be virtually eliminated. If e^ and eg are assumed to be 

negligible, then Equations 3«5 and 3.6 become 

^ • AVAX^AC/A^AC * 

Since E^g(T) and E^g(T+AT) are generally large but nearly equal 

numbers, ideally these numbers should be subtracted electrically to elimi­

nate gross errors in AE^g. However, since the thermocouples are soldered 

to the ends of the sample this can not be done in a straight forward manner. 

A Dauphinee comparator circuit (33) shown in Figure 12 was used to obtain 
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directly. The complete thermoelectric circuit used in this experi­

ment is shown in Figure 13» The voltages and were measured to a 

resolution of 0.01 microvolts with the Honeywell potentiometer system used 

in the resistivity measurements. The absolute temperature was measured 

with a Leeds and Northrup type K-3 potentiometer and 9834 null detector. 

The emf versus temperature curves for these thermocouples were obtained 

by the same method used in the previous section. However, it was also 

necessary to differentiate these curves to obtain the sensitivities, 

The Cu versus constantan curve was differentiated on the computer, but the 

Cu versus AuFe curve was done graphically because of rapid changes in 

curvature. Because of inhomogeneities in the thermocouple wires, AE^^ ̂  0 

when AT = 0. To correct for this effect AE^^ was measured as a function of 

temperature with AT = 0 for both the Cu versus constantan and Cu versus 

AuFe thermocouples. 

The relative Seebeck coefficient between the Cu wires and a sample of 

99.999% pure lead (obtained from American Smelting and Refining Corporation) 

was measured. The absolute Seebeck coefficient data of Christian et al. 

(43) for lead was then used to obtain the absolute Seebeck coefficient of 

the Cu leads. Thus from Equation 3.9 the absolute Seebeck coefficient of 

thulium was obtained. 

Because both the Cu versus constantan and Cu versus AuFe thermocouples 

had very low sensitivities in the 20 to 30°% range, the Seebeck coefficient 

was obtained by the weighted average 

s = [(30-T) SauF, + (T-20) S(.̂ ]̂/IO , (3.10) 

where is the Seebeck coefficient determined by the AuFe thermocouple 
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and S- is the Seebeck coefficient determined by the constantan thermo-
Con 

couple. 

All measurements were taken by the steady state heat flow method. 

Also because the rare earths absorb helium at low temperatures all measure-

-5 
ments were made with a vacuum of 1 x 10 torr in the vacuum chamber. 

D. Measurement of the Thermal Conductivity 

If a metal of cross-sectional area. A, and length, L, has a tempera­

ture gradient, AT/L, and is electrically insulated, an energy flux, Q/A, 

will be developed in a direction parallel to the temperature gradient. 

The energy flux is related to the temperature gradient by the following 

equation 

Q/A = KAT/L , (3.11) 

where K is the thermal conductivity. 

The thermal conductivity was measured by the steady state heat flow 

method with corrections for radiation and conduction heat losses. 

The apparatus used to measure the thermal conductivity of thulium was 

designed and constructed by D. W. Boys (45) and is described in detail in 

his Ph.D. dissertation. 
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IV. RESULTS 

A. Electrical Resistivity 

The electrical resistivity of thulium in the three crystallographic 

directions was measured as a function of temperature" from 1.3 to 300°K. 

The results of these measurements are shown in Figure 14. The residual 

resistivities have not been subtracted out. Because and Pj^ are identical, 

only pg is shown for clarity. 

With decreasing temperature p^ decreases linearly down to 57.5°K, 

increases rapidly at 57.5°K, goes through a maximum, and then decreases 

smoothly to the residual level. The 57.5°K transition is in agreement with 

the neutron diffraction results of Koehler et aj_. (19). They found a Neel 

temperature of 56°K. The basal plane resistivity does not exhibit a 

maximum, but only goes through a change of slope at the Neel temperature. 

No anomalies are observed in the 30 to 40°K range for either crystallo­

graphic direction. 

Alstad et aj^ (46) show that the polycrystalline resistivity, 

is given by 

Ppoly = '/3Pc + 2/3Pa • (^-') 

Ppoly calculated from the single crystal data of this study and the experi­

mental polycrystal line resistivity of Colvin et^. (7) are shown in 

Figure 15. The experimental curve shows a more pronounced maximum and is 

lower in absolute magnitude. This discrepancy would be understandable if 

in Colvin's polycrystal1ine sample the small crystallites showed a prefe­

rential orientation of the c-axis parallel to the long direction of the 

sample. 
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B. Seebeck Coefficients 

The thermoelectric power of thulium for the three crystallographic 

directions was measured as a function of temperature from 7 to 300°K. The 

results are shown in Figure l6. Because the Seebeck coefficients are more 

sensitive to impurity scattering than the other transport properties both 

and are shown. The b-axis crystal is of higher purity than the 

a-axis crystal, and the effects of the impurities is quite evident below 

20°K. 

Both and exhibit sharp maxima at 57.5°K, while has a sharp 

maximum at 55°K. This is in good agreement with the Neel temperature 

determined by Koehler et al. (19) and the resistivity measurements of this 

study. The a and b-axis coefficients have no other anomalies, but the 

c-axis coefficient has a sharp minimum at 32°K. This is in agreement with 

the results of Jel inek _et £l_. (17), who observe a sharp peak at 30°K in the 

A. C. susceptibility of polycrystal1ine thulium. The neutron diffraction 

data of Koehler et a[l_. (19), however, indicate that the fer ri magnet le­

ant i fer romagneti c transition should be approximately 38°K. 

C. Thermal Conductivity 

The thermal conductivity of thulium in the b and c crystallographic 

cirections was measured as a function of temperature from 5 to 300°K. The 

results are shown in Figure 17. Both and exhibit highly peaked 

maxima at low temperatures which is characteristic of high purity metals. 

With increasing temperature the slope of decreases sharply at 58°K, 

while the slope of changes sign at 56.5°K. These transition temperatures 

are in agreement within experimental error with the other transport 
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properties. There are no other anomalies observed in but has a 

small anomaly at 30°K which is in agreement with the anomaly observed in 

the c-axis Seebeck coefficient. 

The Lorenz function for the b and c crystallographic directions was 

calculated from Equation 2.60 and plotted as a function of temperature. 

The results are shown in Figure 18. At high temperatures (T > 0̂ , 6̂  = 

I67°K) the Lorenz functions are nearly independent of temperature, while at 

low temperatures they are very dependent on temperature. Both functions 

exhibit anomalies at 57°K. 
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V. DISCUSSION 

The theory of magnetic superzones has been one of the most significant 

developments toward understanding the anomalous behavior of the conduction 

electrons in the heavy rare earths. Mackintosh (28) and Elliott and 

Wedgewood (26) have explained qualitatively the anomalies observed in the 

resistivities of terbium, holmium, dysprosium, and erbium around the magne­

tic transitions. Freeman et al « (27) predict on the basis of their 

calculated Fermi surface for thulium and a second order perturbation 

calculation of the positions of the superzone planes, that will increase 

sharply at the Neel temperature and go through a maximum, while and 

will just decrease more rapidly below the Niel temperature. The experimen­

tal results for thulium are in good agreement with this prediction. 

Below the Néel temperature the moments lie along the hexagonal axis 

and the amplitude of the moments is sinusoidally modulated. This magnetic 

structure (cf. Equation 2,8) can be described analytically by 

< > = 0 , (5.1a) 
n n 

< > = MJ cos (q*R ) . (5.1b) 
n n 

If the magnetic structure is described by the above equations, then from . 

Equations 2.15 the electrical resistivity of thulium is given by the 

following phenomonological expressions 

Pg = a, +P,T+ 7^ (1 - 1/2 M^) , (5.2a) 

a + 3 T + Y, (I - 1/2 M^) 

l - T M  ' (5.2b) 



57 

where Où, g, y are obtained from the experimental data as described in 

Section II. M is the reduced moment per atom and its temperature depen­

dence is deduced from the neutron diffraction data for thulium (19). The 

2 
temperature dependence of M and M is shown in Figure 19. A comparison 

between the resistivities as calculated from Equations 5.2 and the experi­

mental resistivities is shown in Figures 20 and 21. r = .86 gave the best 

fit for phowever, Elliott and Wedgewood (26) had predicted a value of 

r = .29 for thulium. Since |, where is the position vector of the 

superzone planes (cf. Equation 2.15), the number of superzone planes will 

greatly affect the value of P. On the basis of first order perturbation 

theory, Elliott and Wedgewood predict only four superzones, while Freeman 

et al. (27) using second order perturbation theory predict eight planes. To 

a first approximation this will effectively double F. The poor fit at low 

temperature is probably due to the assumption of linear temperature depen­

dence for phonon scattering, the neglect of spin wave scattering, and the 

assumption that the magnetic structure is represented by a sine wave. The 

squaring of the magnetic structure will be discussed in more detail later. 

Mackintosh (cf. Equation 2.16) suggests a T exp(-6/kT) dependence for the 

spin wave scattering resistivity at low temperatures, which would have the 

effect of pulling the theoretical curve closer to the experimental curve. 

Since the Fermi surface of thulium is anything but ellipsoidal, a detailed 

agreement between theory and experiment can not be expected, however, the 

theory is successful in that it does predict on a semiquantitative basis 

the anomaly at the Neel temperature. 

Above the Néel temperature, the resistivity is almost linear with 

temperature and the spin disorder resistivity, is obtained by a linear 



58 

1.0 

MIT). MOMENT (T) 
MOMENT (0) 

(-

CM 

Z 
a  
z < 

M2(T,. [MOMENT(TQ 

I-
i 

?0 30 60 20 

TEMPERATURE T («K) 

Figure 19. The reduced moment per atom and the reduced moment per 
atom squared as a function of temperature for thulium 



60 

40 

CALCULATED 

EXPERIMENTAL 

160 200 120 240 40 80 280 

TEMPERATURE T ( • K > 

Figure 20. The calculated and experimental electrical resistivity 
as a function of temperature for the c-axis thulium 
crystal 



100 

80 

EXPERIMENTAL 

> 

g 
M 
Ul 
K 

40 

20 

200 0 40 80 120 160 240 280 
TEMPERATURE T C K ) 

Figure 21. The calculated and experimental electrical resistivity as a function of 
temperature for the a-axis thulium crystal 



61 

extrapolation of the high temperature resistivity to zero temperature. It 

is found that p^= 22.3 - cm, 7.4 pH - cm, and the high temperature 

slope of is greater than that of p^. These observations can be explained 

by the anisotropy of the Fermi surface. The conductivities for the a and c 

directions are obtained from Equation 2.1. 

CT = {e^/knh) J TV di , (5.3a) P XX 
"F 

J  Tv^dJ^  •  ( 5 . 3b )  

^F 

If impurity scattering is neglected, and if the sample temperature is above 

the Née I temperature, the relaxation time is given by 

1/T = PT + I/T3 , (5.4) 

where (PT) ' is the relaxation time for phonon scattering and I/t^ is the 

relaxation time for spin disorder scattering. is independent of tempera­

ture for magnetic disorder scattering (cf. Equation 2.17). If v^ ~ v. 

then Equations 5-3 become 

pg = l/CTg = (4it^Ve^) (1/T) (J d/^) ^ , 

^F 

p^ = 1/cr^ = (4«^Ve^) (1/T) (J dÀ^) ' 

^F 

Use of Equation 5.4 for 1/T then yields 

"a =  ̂ ' (5.5a) 



62 

Pc (^«Ve ) [ -j. ] . (5.5b) 

^F ^F 

These equations are linear in T and are in the form 

Pa = (dpg/dT) T + , (5.6a) 

Pc= (dPc/dT) T + p^ . (5.6b) 

From Figure 1 the projected area of the Fermi surface in the c direction is 

greater than the projected area in the basal plane direction, i.e. 

J ' d ^ > J " d i  .  ( 5 . 7 )  
Ep Ep 

Hence, from Equation 5.5, 5.6 and 5.7 the following results are obtained 

(dPg/dT) > (dp^/dT) , (5.8a) 

. (5.8b) 

which is in agreement with experiment. This result is also verified for 

gadolinium, terbium, dysprosium, holmium, erbium, and yttrium. This is not 

surprising since all these elements have similar high temperature Fermi 

surfaces (47). Thus, even through the assumption is quite crude, 

the fact that Equations 5.8 predict the correct behavior for all the heavy 

rare earths leads one to conclude that the Fermi surface anisotropy is 

responsible for the anisotropies observed in the resistivities. It is 

unfortunate that the band structure calculations for thulium are not avail­

able for it would be interesting to make a numerical evaluation of 

Equations 5.3. 
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The thermal conductivity will be discussed next because of its 

relationship to the electrical resistivity through the Wiedemann-Franz law. 

From Figure 17 the thermal conductivities of both crystallographic 

directions are constant at room temperature. This is typical of most metals 

and is also an indication that the radiation corrections were quite good. 

One of the most striking features is the large anisotropy in the 

thermal conductivity above the Neel temperature. Above the Debye tempera­

ture (167°K) the Lorenz function, L. for both axes is a slowly varying 

function of temperature and becomes nearly independent of temperature at 

300°K (cf. Figure 18). Thus, the electron scattering is elastic at room 

temperatures and the Wiedemann-Franz law holds. Hence, the ratio of to 

is given by 

"e/Kb = Pb/Pc ' '5.9) 

and from Equation 5.8b 

K^>K^ .  (5.10) 

This is in agreement with experimental results. Therefore, the anisotropy 

in the high temperature thermal conductivity is due to the anisotropy of 

the Fermi surface. 

At room temperature the electronic thermal 'conductivity, K^, can be 

determined from the Wiedemann-Franz law (Equation 2.59) and a knowledge of 

the electrical resistivity. The results at 300°K are 

(Kg)̂  = L̂ T/p|j = ,084 watt/cm°K , 

(Kg)^ = L^T/p^ = . 156 watt/cm°K 

Thus from Equation 2.42 the lattice thermal conductivity plus the magnon 
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thermal conductivity, can be determined with the above results for 

Kg to get 

(K^ + K^) = .066 watt/cm°K , 

(K^ + K^)^ = ,094 watt/cm°K 

Presently there is no way of separating and 

At about 16°K both and exhibit sharp maxima which are  typical of 

relatively pure metals. If electron-impurity and electron-phonon interac­

tions give rise to the dominant scattering mechanisms, then from Equation 

2.60 

T/Kfa = Ab + BfaT^ , (5.11a) 

T/Kc = + BcT^ , (5.11b) 

where A is the electron-impurity scattering constant and B is the electron-

phonon scattering constant. Plots of T/K versus T for both crystal lo-

graphic directions are shown in Figure 22. The plots are linear up to 20°K 

which indicates that the electrons are the dominant carriers and that 

electron-impurity and electron-phonon scattering are the dominant 

mechanisms. The following values were obtained for the constants 

Aj^ = 34.2 (°K)^ cm/watt 

A^ = 35.8 (°K)^ cm/watt 

B, = 8*4 X 10 3 cm/watt - \ 
D 

B^ = 13.1 X 10 ^ cm/watt - °K 

Now at low temperatures Equations $.11 become 



65 

130 

120 

110 

100 -

90 

C-AXIS 
$ 
a 80 
% 
s, 
I 

o. 70 

B-AXIS 

60 

50 

40 

30. 
1000 3000 7000 9000 

Figure 22. 
3 

T/K as a function of T for the b and c-axis 
thulium crystals 



66 

(5.12a) 

(5.12b) 

Since electron-impurity scattering is elastic, tiie Wiedemann-Franz law holds 

and 

There is a considerable discrepancy between the two determinations. This is 

probably due to other scattering mechanisms at low temperature such as spin 

waves. 

Magnetic superzones were quite successful in explaining the electrical 

resistivity anomalies. However, in the case of thermal conductivity, it is 

not certain that this simple approach will be valid because of inelastic 

scattering. On the other hand, it will be instructive to see the effects 

of superzones if elastic scattering is naively assumed. From Equations 

2.56 and 2.58 the thermal conductivity is given by 

(5.13a) 

(5.13b) 

where p° and p° are the residual resistivities. Thus, the constant and 

are related to the residual resistivities via 

A^ = Py/L^ = 70.5 (°K)^ cm/watt , 

A^ = p°/L^ = 143 (°K)^ cm/watt 

F 

(5.14) 

and 
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T/Ky = Ab . (5.12a) 

T/KQ = Ac . (5.12b) 

Since electron-impurity scattering is elastic, the Wiedemann-Franz law holds 

and 

Kb = ' (5''3a) 

Kc=LoT/p° , (5.13b) 

where p° and p° are the residual resistivities. Thus, the constant and 

are related to the residual resistivities via 

A|^ = p°/L^ = 70.5 (°K)^ cm/watt , 

A^ = p°/L^ = 1^3 (°K)^ cm/watt 

There is a considerable discrepancy between the two determinations. This is 

probably due to other scattering mechanisms at low temperature such as spin 

waves. 

Magnetic superzones were quite successful in explaining the electrical 

resistivity anomalies. However, in the case of thermal conductivity, it is 

not certain that this simple approach will be valid because of inelastic 

scattering. On the other hand, it will be instructive to see the effects 

of superzones if elastic scattering is naively assumed. From Equations 

2.56 and 2.58 the thermal conductivity is given by 

Kj. = f Tv.di. , (5! 14) 

^F 

and 
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F 

(5.15a) 

K OC r TV dJL 
XX XX 

F 

(5.15b) 

At the Neel temperature large portions of the Fermi surface are destroyed 

in the z direction, while in the x direction there is little loss in the 

projected area (cf. Figure 4). Hence, as the temperature decreases through 

the Neel temperature, will decrease sharply, while will remain 

unchanged. Experimentally, decreases sharply below the transition and 

thus the superzone theory does predict qualitatively the correct behavior. 

Just as in the case of the electrical resistivity, superzones do not 

affect and K^. The anomalous change in slope at the Neel temperature 

for and is due to the change in order. Now decreases linearly 

with temperature and by the Wiedemann-Franz law Kj^ should be constant; 

however, at the Néel temperature pj^ decreases very rapidly and hence 

should increase. Although experimentally Kj^ is not constant above the Néel 

temperature, this argument does predict the correct increase in Kj^ below 

the transition. 

it is interesting to note that goes through a smooth maximum at 

45°K and that goes through a smooth minimum at 40°K. Even though the 

scattering in this temperature range is inelastic the thermal conductivity 

and the electrical resistivity are still intimately related. 

The observed Seebeck coefficients of thulium are very anomalous. 

Equations 2.37 predict a phonon drag peak between 16 and 32°K for thulium, 

however, and exhibit some sort of drag peak around 45°K. This 
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suggests that magnon drag effects may be important. 

The effect of magnetic superzones on the Seebeck coefficients has been 

considered by Mackintosh (33). He predicted (cf. Equations 3.38) that 

will decrease and will increase below the Néel temperature. This does 

not agree with the experimental results. Both erbium and thulium have the 

same type of magnetic structure transitions at their respective Néel 

temperatures, however, there is no similarity between their respective 

Seebeck coefficients. Obviously the Seebeck coefficients are so sensitive, 

to the detailed scattering mechanisms at the transition temperature, that 

a very accurate theoretical analysis will be needed to understand these 

phenomena. 

To further complicate matters, thulium has two carriers (the s and d 

conduction electrons) and also there is the possibility of Umklapp processes 

for both magnon and phonon drag effects. A starting point, towards the 

understanding of the Seebeck coefficients for thulium, might be an experi­

mental and theoretical study of the single crystal Seebeck coefficients of 

Iutetium. 

The final points to be discussed are the anomalies observed in and 

around 30°K and the squaring off of the magnetic structure. There is no 

observed anomaly in p^ around 30°K for thulium, however, for erbium the 

squaring off of the magnetic structure is reflected in its c-axis resisti­

vity. This suggests in thulium the squaring process might be gradual. 

Furthermore, neutron diffraction measurements indicate a graduate appear­

ance of the higher order harmonics around 38°K. Also, Elliott (48,49) 

suggests that a gradual squaring process in thulium is energetically 
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possible. Magnetic moment measurements and a careful neutron diffract 

study in tiie 25 to 40°K range might resolve this issue. 
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VIM. APPENDIX 

A. Sample Dimensions 

Sample dimensions of all the samples used In this study are listed in 

Table 1. The average cross-sectional areas are also listed. Samples 

Tm(aj), Tm(bj), and Tm(cj) were used for the electrical resistivity and 

thermoelectric power measurements, while samples of larger cross-section 

Tm(b2) and Tm(c2) were needed for the thermal conductivity measurements. 

Table 1. Sample dimensions and cross-sectional areas 

Sample 
Length 

(cm) 
Height 
(mm) 

Width 
(mm) 

Cross-sectional 
Area (mm)^ 

Tm(a^) 0.716 1.074 1.259 1.352 

Tm(b,) 0.770 1.190 1.311 1.559 

Tm(Cj) 0.791 0.801 1.016 0.814 

Tmfbg) 0.723 1.224 1.250 1.532 

Tm(cp) 0.724 1.166 1.450 1.690 

B. Sample Impurities 

The gaseous impurities were determined by vacuum fusion analysis and 

the other impurities were determined by semi-quantitative analysis. The 

analyses were done on the same grains from which the crystals were cut. 

The impurities are listed in Table 2. All impurities are recorded in ppm by 

weight. Lanthanum, cerium, neodymium, samarium, europium, gadolinium, and 

terbium were not detected. 

Table 2. Sample impurities 

I m p u r i t i e s T m ( a ^ ) T m ( b ^  g ) T m ( c ^  ̂  

A1 < 60 < 60 < 60 

Ca <20 <20 <20 

Cr <20 <20 < 20 
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Table 2. (Continued) 

Impurities Tm(a^) Tm(bj 2) Tm(cj 2) 

Fe < 50 < 50 < 50 

Mg < 10 < 10 < 10 

Ni < 50 < 50 < 50 

Si < 60 < 60 < 60 

Er < 30 < 30 < 30 

Yb < 10 < 10 < 10 

Lu < 200 < 200 < 200 

Ho < 200 < 200 < 200 

Y < 200 < 200 < 200 

Mn T FT 

Cu T T 

W FT 

Dy T FT T 

Y FT 

O2 83 61 100 

"2 
3 

"2 
5 1 4 

The residual resistivity 2) the resistance ratio (p^gg/p^ g) 

are also indicative of sample purity. In Table 3y the residual resistivity 

and resistance ratios are listed for all the samples. The residual 

resistivities are in units of (j, O-cm. 

Table 3» Residual resistivities and resistance ratios 

Sample 

Tm(a^) 

Tm(bj 2) 

Tm(cj 2) 

Residual Resistivity 

2.39 

1.73 

3.65 

Resistance Ratios 

38.1 

51.0 

12.9 
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C. Tabulation of the Electrical Resistivity Data 

The resistivities are recorded in units of pfi-cm and the temperatures 

are in K. 

Table h. Experimental data for the a-axis crystal 

p T P T P T 

2.388 1.3 2.388 3.9 2.516 11.0 

2.388 1.8 2.388 4.2 2.590 12.0 

2.387 2.1 2.388 5.0 2.701 13.0 

2.388 2.4 2.390 6.0 2.834 14.0 

2.387 2.7 2.396 7.0 3.025 15.0 

2.388 3.0 2.407 8.0 3.200 16.0 

2.388 3.3 2.427 9.0 3.718 18.0 

2.388 3.6 2.462 10.0 4.452 20.1 

5.351 22.2 23.29 45.9 40.02 77.8 

5.901 24.0 24.08 46.7 40.66 79.4 

7.387 26.0 26.31 49.1 42.06 83.9 

8.502 28.0 27.31 50.1 44.18 91.5 

10.29 30.3 28.77 51.7 46.35 99.5 

10.08 30.4 29.95 53.0 50.34 115.0 

11.71 32.3 31.41 54.6 54.24 130.8 

13.01 33.8 33.18 57.0 57.76 145.7 

14.65 36.0 33.68 58.2 61.20 160.5 

15.56 37.1 34.36 60.0 66.02 181.9 

16.40 38.1 34.79 61.0 70.31 201.5 

17.82 39.8 35.54 63.4 74.54 221.2 

18.17 40.3 36.63 66.6 78.55 240.8 

19.35 41.6 37.41 69.0 82.95 261.4 

20.71 43.1 38.41 72.1 87.18 280.9 

22.05 44.5 39.52 75.7 91.19 299.6 
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Table 5. Experimental data for the b-•axis crystals 

P T P T P T 

1.730 2.7 1.730 4.2 1.761 9.0 

1.730 3.0 1.731 5.0 1.798 10.0 

1.731 3.3 1.733 6.0 1.902 12.0 

1.730 3.6 1.736 7.0 2.114 14.0 

1.729 3.9 1.746 8.0 2.461 16.0 

2.949 18.1 15.98 39.3 42.03 91.1 

3.633 .20.2 18.41 42.2 44.66 101.1 

3.688 20.3 21.97 46.3 49.44 120.3 

4.453 22.2 25.53 50.1 54.42 141.4 

5.522 24.5 29.07 54.0 58.76 160.5 

6.492 26.2 31.11 56.5 63.25 180.7 

6.891 26.8 31.92 58.0 67.54 200.6 

7.703 28.3 32.76 60.3 71.91 221.1 

8.442 29.3 34.44 65.3 76.20 241.6 

10.35 32.1 36.23 70.9 80.25 261.1 

12.81 35.4 37.97 76.6 84.34 280.9 

13.57 36.3 39.72 82.7 88.12 298.9 

Table 6. Experimental data for the c-•axis crystal 

P T P T P T 

3.641 1.4 3.647 4.2 4.413 13.0 

3.643 1.7 3.649, 5.0 4.729 14.0 

3.642 2.1 3.657 6.0 5.102 15.0 

3.644 2.4 3.677 7.0 5.558 16.0 

3.644 2.7 3.708 8.0 6.093 17.0 

3.645 3.0 3.764 9.0 6.715 18.0 

3.645 3.3 3.848 10.0 7.416 19.0 

3.645 3.6 3.981 11.0 8.218 20.0 

3.646 4.0 4.161 12.0 8.389 20.3 

9.121 21.0 25.73 43.3 19.06 68.6 

10.01 22.0 25.81 44.1 19.38 71.1 
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Table 6. (Continued) 

P T P T P T 

10.88 22.7 25.85 45.4 19.68 73.6 

10.96 23.0 25.72 47.1 • 19.96 75.8 

11.93 24.0 25.40 48.7 20.23 77.9 

12.91 24.7 24.92 50.0 20.51 80.1 

12.93 25.0 24.35 51.2 21.09 84.9 

13.94 26.0 23.69 52.3 21.98 92.1 

14.89 26.7 22.32 53.9 22.92 100.1 

17.53 29.4 21.24 54.9 23.88 108.3 

19.37 31.1 20.86 55.2 25.33 120.8 

21.61 33.6 20.29 55.7 26.87 134.3 

22.80 35.2 19.90 56.0 28.17 145.6 

23.60 36.3 18.60 56.8 29.91 160.6 

23.87 37.3 17.80 57.5 31.92 177.8 

24.02 37.6 17.81 57.9 33.93 195.0 

24.57 38.9 17.92 59.4 35.91 211.7 

25.02 40.1 18.21 61.9 38.10 229.9 

25.37 41.4 18.48 64.2 40.52 249.6 

25.53 42.1 18.73 66.1 43.62 274.3̂  

47.05 300.7 

0. Tabulation of the Seebeck Coefficient Data 

The Seebeck coefficients are recorded in units of }jLVolts/°K and the 

- o_ 
temperatures are in K. 

Table 7. Experimental data for the a-axis crystal 

S T ST ST 

-0.369 7.6 -1.70 38.4 -0.984 86.3 

-0.392 8.5 -1.76 40.9 -0.977 91.5 

-0.406 • 9.5 -1.82 43.4 -0.965 96.4 

-0.421 10.5 -1.83 46.0  -0.942 101.5 
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Table 1 ,  (Continued) 

S T S T S T 

-0.438 11.8 -1:71 48.4 -0.878 111.4 

-0.474 12.8 -1.54 50.9 -0.792 121.4 

-0.512 13.8 -1.25 53.5 -0.674 131.0 

-0.556 14.9 -0.898 56.1 -0.547 141.0 

-0.612 15.8 -0.723 57.5 -0.423 150.8 

-0.659 16.8 -0.702 58.9 -0.263 164.7 

-0.691 17.8 -0.758 61.0 -0.123 175.7 

-0.736 18.8 -0.762 62.7 0.048 190.3 

-0.843 21.6 -O.8I8 64.0 0.223 205.9 

-0.901 23.0 -0.837 66.8 0.399 220.7 

-0.975 25.0 -0.887 70.4 0.611 242.0 

-1.08 27.3 -0.934 74.7 0.808 261.1 

-1.17 28.9 -0.963 78.4 1.02 282.0 

-1.26 31.2 -0.896 71.6 1.22 300.3 

-1.43 33.8 -0.946 76.5 

-1.57 36.3 -0.971 81.4 

Table 8. Experimental data for the b-axis crystal 

S T S T S T 

-0.053 7.3 -1.15 31.6 -0.935 80.9 

-0.057 8.6 -1.42 35.0 -0.94$ 91.5 

-0.064 9.5 -1.52 37.0 -0.898 101.4 

-0.067 10.5 -1.53 38.1 -0.760 120.7 

-0.083 11.5 -1.71 42.3 -0.529 140.1 

-0.104 12.5 -1.72 45.4 -0.273 159.5 

-0.182 14.5 -1.67 47.5 -0.020 179.9 

-0.303 16.6 -1.48 50.6 0.201 199.8 

-0.435 18.5 -1.15 53.7 0.451 219.8 

-0.595 20.7 -0.894 55.8 0.707 240.9 

-0.597 21.2 -O.662 57.5 0.888 261.2 

-0.744 23.7 -0.665 59.8 1.04 281.5 
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Table 8. (Continued) 

S T S T S T 

-0.830 25.7 -0.762 63.7 1.24 300.5 

-0.912 26.8 -0.824 68.6 

-1.03 29.7 -0.867 74.2 

Table 9. Experimental data for the c-•axis crystal 

S T S T S T 

0.236 7.3 -0.072 11.7 -1.01 20.7 

0.233 7.8 -0.156 12.6 -1.02 21.3 

0.213 8.8 -0.284 13.6 -1.15 22.7 

0.174 9.7 -0.463 15.1 -1.39 25.0 

0.150 10.2 -0.634 16.7 -1.62 26.7 

0.017 10.7 -0.872 19.2 -1.85 28.7 

-2.09 30.6 -1.48 56.7 -1.91 121.2 

-2.24 32.8 -1.53 57.1 -1.78 130.3 

-1.95 34.9 -1.65 58.8 -1.60 140.5 

-1.89 36.9 -1.70 59.1 -1.39 150.5 

-1.90 38.8 -1.81 61.9 -1.19 160.5 

-1.90 40.8 -1.95 65.5 -0.980 170.0 

-1.91 42.9 -2.04 70.7 -0.787 180.6 

-1.90 45.0 -2.08 75.9 -0.565 190.6 

-1.75- 48.9 -2.13 79.1 -0.337 200.4 

-1.64 50.8 -2.14 85.9 0.012 216.5 

-1.53 . 52.1 -2.15 90.9 0.360 231.2 

-1.45 53.7 -2.17 91.0 0.733 246.5 

-1,46 54.7 -2.12 100.8 1.09 261.9 

-1.45 55.6 -2.02 111.3 1.59 281.8 
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E. Tabulation of the Thermal Conductivity Data 

The thermal conductivities are in units of watts/cm-°K and the tempera-

tures are in °K. 

Table 10. Experimental data for the b-axis crystal 

K T K T K T 

0.133 5.1 0.209 8.0 0.238 10.0 

0.195 7.5 0.223 9.1 0.245 11.1 

0.247 12.2 0.127 33.4 0.102 71.8 

0.246 13.4 0.121 35.7 0.105 75.9 

0.242 14.7 0.113 37.5 0.111 101.2 

0.230 16.1 0.108 40.1 0.115 120.9 

0.221 17.6 0.108 43.3 0.121 141.1 

0.209 18.6 0.100 47.1 0.128 161.1 

0.204 19.6 0.095 50.6 0.132 181.1 

0.192 20.9 0.092 53.5 0.133 200.9 

0.194 21.5 0.090 55.8 0.136 220.8 

0.181 22.7 0.093 56.5 0.137 240.9 

0.180 23.6 0.091 57.8 0.138 260.8 

0.165 25.5 0.092 59.2 0.141 280.8 

0.146 28.4 0.097 62.8 0.143 298.5 

0.136 30.7 0.096 66.8 

Table 11 . Experimental data for the c -axis crystal 

K T K T K T 

0.132 5.4 0.197 13.7 0.123 24.7 

0.181 7.6 0.179 15.7 0.118 25.5 

0.195 8.8 0.159 17.8 0.116 26.8 

0.203 9.7 0.149 19.4 0.110 28.5 

0.209 10.7 0.136 21.5 0.107 30.0 

0.207 11.7 0.132 21.7 0.107 • 31.4 

0.206 12.6 0.128 23.6 0.105 32.4 
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Table 11. (Continued) 

K T K T K T 

0.105 33.2 0.158 57.4 0.220 140.7 

0.104 34.2 0.163 58.5 . 0.226 160.6 

0.103 36.1 0.163 59.6 0.231 180.9 

0.104 37.9 0.160 61.0 0.232 201.0 

0.103 39.7 0.166 62.4 0.239 221.1 

0.104 41.7 0.170 66.6 0.239 240.9 

0.107 44.4 0.176 70.5 0.240 261.0 

0.112 47.3 0.184 80.6 0.241 280.8 

0.121 50.7 0.194 9 0 . 7  0.241 298.6 

0.132 53.6 0.202 100.7 

0.144 56.1 0.211 121.0 

F. Discussion of Errors 

Tiie electrical resistivity (cf. Equation 3.1) is computed experimen­

tally from 

p = (V/l)A/L . (8.1) 

The absolute fractional error is 

ôp/p = C(6V/V)^ + (6m/l)^ + (6L/L)^ + (6A/A)^]'^^ . (8.2) 

The relative error is determined by the first two terms. The current was 

stable to within 0.02% over the period of measurement and was measured for 

both the forward and reverse directions. The potential, V, was measured to 

within 0.02% for low voltages (resistivity is small at low temperatures) 

and to within 0.002% for high voltages (resistivity is large at high tempera­

tures). Thus, the maximum relative error Is 0.04%. The current was 

reversed to eliminate the thermal emfs in the voltage circuit, and the 

temperature control was sufficiently.stable such that no drifting was 
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detectable in either V or I. The absolute error is determined by the last 

two terms in Equation 8.2. The distance between voltage probes, L, was 

measured to within ]%, and the cross-sectional area was measured to within 

4%. Therefore, the absolute error is approximately 4.5%. 

Thermocouples were used to measure the absolute temperature of the 

sample for all the measurements made in this study. The absolute error in 

the temperature was +0.1°K for the 4.2 to 25°K range and JH0.5°K for the 

25 to 300°K range. 

The same method for both the thermoelectric power and thermal conduc­

tivity was used to measure the temperature gradient. The temperature 

gradient is computed by 

" ' Â AC/SAC ' (8-3) 

and the absolute fractional error is computed from 

ô(AT)/T = [(6(AÊ j,)/AÊ ç)̂  + . (8.4) 

AE^g was measured with a Dauphinee comparator and, due to charge decay in 

the resistive-capacitive networks, the comparator always measured 0.5% low. 

As mentioned earlier in Section 111, the sensitivity, was determined 

by differentiating the thermocouple emf versus T curves. is smallest for 

both thermocouples (Cu-Con, Cu-AuFe) in the 20 to 30°K range, and the 

maximum error is estimated to be approximately 1%. Another serious error is 

thermocouple mismatch (due to inhomogenities in the wires). This mismatch 

was measured (cf. Section III) to within approximately 1%. Since the 

thermocouples were soldered to the ends of the sample with indium solder, 

there could exist a small temperature gradient across the junction. There 
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is no practical way to estimate this effect. The maximum error in AT is 

estimated to be approximately 2% at low temperatures and reduces to about 

1% at high temperatures. 

The relative Seebeck coefficient (cf. Equation 3.9) is determined 

from 

' (8.5) 

and the fractional error is computed by 

 ̂Ŵ AX = + (5(AT)/AT)̂ ]'/̂  . (8.6) 

At low temperatures (T < 10°K) was on the order of 0.1 microvolts and 

it was difficult to estimate the error because of thermals in the Seebeck 

circuit. In Section ill a method was described to partially eliminate 

these thermals. The error in was estimated to be about 10% below 

10°K. Above 10°K AV^^ increased rapidly to several microvolts and thus the 

error dropped to less than 1%. The absolute Seebeck coefficient is deter­

mined by 

" ̂A " ̂AX 

and the errors discussed above will also be present in the calibration run 

for Ŝ . The absolute error is estimated to be 10% for T < 10°K and 5% for 

10°K < T < 30°K. Above 30°K the error gradually decreases to 2% and remains 

constant up to room temperature. From the lack of scatter in the data, the 

relative error in S^ is estimated to be within 0.03 microvolts/°K. 

The thermal conductivity (cf. Equation 3.11) is computed from 

K = (Q/AT)(L/A) , (8.7) 
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and the fractional error is given by 

5K/K = C(6Q/Q)^ + (6(AT)/AT)2 ̂  + (ôA/A)̂ ]'''̂  . (8.8) 

The relative error is determined by the first two terms. Now Q. = P-Pg, 

where P is the power produced by the joule heating of the gradient heater 

and PQ is the power lost due to radiation, and conduction through the 

thermocouple and heater leads to the "hot" end of the sample. The error 

in P was estimated to be about 0.5%. Radiation losses were negligible below 

60°K and become significant above 150°K. The conduction losses were esti­

mated to be about 2% below 60°K and were neglected. The technique used 

for radiation corrections is described by Boys (4$) and the error in the 

measurement'of PQ is estimated to be about 2-3%. Thus, the relative error 

is approximately 4%. The absolute error is determined by all the terms in 

Equation 8.8. The length of the sample, L, was measured to within 1% and 

the cross-sectional area was within 4%. Thus, the absolute error is 

within 6 to 8%. 


