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1. INTRODUCTION 

1.1. Background of Non-destructive Testing 

Non-destructive testing (NDT) techniques are means by which materials and 

structures may be inspected without impairment of their performance. NDT techniques play a 

vital role in a variety of industries for evaluating the integrity of critical components. Defects 

may occur in a material or component during manufacturing, where the location and size of 

the defect will influence subsequent performance of the component. Other defects, such as 

fatigue cracks or stress corrosion cracking, may be generated within a material or specimen 

during service. It is, therefore, necessary to have a reliable means for detecting the presence 

of defects at the manufacturing stage and monitoring the rate of growth of defects during the 

service life of a component or assembly. A typical NDT system (Figure 1.1) involves the use 

of a transducer for energizing the test specimen. The energy/specimen interaction is sampled 

by the receiving transducer. The received signal is then analyzed for evaluating the integrity 

of the test object. The diverse nature of NDT applications have led to the development of a 

variety of inspection techniques employing different forms of excitation energy. 

Electromagnetic, radiographic and ultrasonic techniques are some common examples. 

Based on the frequency of the excitation source, electromagnetic NDT methods can 

span the entire electromagnetic spectrum. Magnetostatic flux leakage (MFL) and electrostatic 

potential drop NDT are zero frequency( de) methods. Eddy current and remote field NDT are 

low frequency techniques and can be classified as quasi-static. 
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Figure 1.1 A generic NDT system 

X-ray radiographic and microwave are wave-based methods. The underlying physics 

and the mathematical governing equations for each technique is different. Another commonly 

used NDT method relies on the propagation of ultrasonic waves in a material. 

Ultrasonic techniques are capable of detecting internal defects in thick specimen. In 

this method, sound waves of short wavelength and high frequency are propagated through 

specimen and reflections or echoes from the backwall, discontinuities and anomalies are 

detected, and analyzed. 
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1.2. Inverse Problems in NDE 

Characterization of test specimen on the basis of information in the response from 

energy/specimen interaction is referred to as the 'inverse problem' [4]. Inverse problems in 

NDT address the crucial issue of defect characterization wherein the information in signals is 

used to identify the shape, size and location of defects in materials. The strategy employed for 

solving these problems is a function of the underlying physical process. Based on the energy 

propagation process, the methods for solving inverse problems have to be appropriately 

tailored. 

As the frequency increases from low to high, the amount of information contained in 

the signal increases. Static methods such as iv1FL generate signals containing information that 

can be extracted solely on the basis of amplitude measurements. Methods in which the 

interaction process between energy and specimen is diffusive, provide both amplitude and 

phase information. Finally, wave based methods provide amplitude, phase and range 

information to the signal analyst. The static methods, therefore, contain less information as 

compared to diffusion or wave based methods, making the inverse problem or signal 

characterization more difficult. 

Thus, ultrasonic or microwave NDT data, being richer in content, lend themselves to 

procedures such as holography and tomography for obtaining solutions to inverse problems. 

Additionally, data intensive methods that are capable of utilizing vast amounts of information 

can be used. 

Several methods have been proposed to solve inverse problems. A taxonomy of 

inverse problem solution methods [4] is described in Figure 1.2. 
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Figure 1.2 Taxonomy of inverse problem solution methods [4] 

Of the different methods shown in Figure 1.2, direct analytical methods are more 

difficult particularly when the governing differential equations are nonlinear and crack shapes 

are arbitrary. These equations are, therefore, solved using numerical computational 

techniques. However, numerical models cannot be used directly for solving inverse problems. 

As a result, it is more common to see signal classification approaches which are being used 

increasingly in many commercial applications. In this class of techniques, the solutions to 

inverse problems are obtained as assignments of a measured signal to a known class of 

defects. These inversion techniques are typically independent of the underlying physics of the 

NDE process. 

Matched filters [30] is an example of a signal classification method that has received 

considerable attention. Matched filters are linear filters whose transfer functions are matched 

to input signals. In their application to NDE, the technique of using matched filters requires a 
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data bank of input signals from the complete variety of defects that may be encountered. The 

technique consists of building an array of filters, each one of which is matched to a known 

signal. The unknown signal is then classified by observing the outputs of the filter array. 

1.3. Feature Based Signal Classification 

Feature based methods are more often used than matched filters because matched 

filters require storage of the entire signal whereas feature based methods reduce the input 

signal dimension by storing only the extracted features. Feature based methods involve two 

steps - feature extraction and classification. Feature extraction is defined as the reduction in 

dimensionality of the pattern vectors by means of a linear transformation that extracts certain 

invariant attributes of the pattern classes under consideration. There are different types of 

features - physical, structural and mathematical. Physical and structural features are 

extensively used by human beings for classification purposes as they are easily detected by 

eye or other sensory organs. Color, texture etc. are examples of physical features whereas 

shape is an example of a structural feature. Mathematical features are, however, more 

suitable for machine implementation and are more general in scope. Statistical means, 

correlation coefficients, eigenvalues and eigenvectors of covariance matrices, etc. are 

examples of mathematical features. 

Once a feature vector is generated, it is input to a signal classifier for classification 

into a defect class. Numerous classification methods have been developed [29] and used for 

various applications. The simplest and most intuitive classification algorithm is the K-means 

clustering algorithm that maximizes the distance between clusters of different classes, while 

minimizing the variance of features within a given class. More recently, Artificial Neural 
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Networks (ANNs), another category of classifiers are being extensively used, largely due to 

their capability to model complex functions. 

1.4. Reliability of Classification 

A lot of work has been done in the areas of feature extraction and selection as well as 

pattern classification for NDE problems. However, attempts to quantify the confidence or the 

reliability of the classification decision by signal classifiers have been very few and far in 

between. This thesis addresses the issue of predicting the confidence associated with a 

classification decision. A neural network based inverse problem solution in ultrasonic NDE is 

considered where the inversion process is formulated as a pattern recognition problem and 

the signal is directly classified as belonging to one of a set of known defect classes. Various 

approaches for reflecting the certainty in a classification decision have been discussed and a 

new method has been proposed. 

1.5. Organization and Scope 

The organization of this thesis is as follows: 

The details of ANN s and the need for confidence measure are described in the 

problem statement covered in Chapter 2. Chapter 3 gives a brief description of several 

methods for error estimation reported in literature along with an evaluation of their merits 

and demerits. 

Chapter 4 covers 'fuzzy' approaches taken to determine the confidence measure in a 

classification decision. The fuzzy K-means algorithm and the Multi-Layer Perceptron are also 

described in Chapter 4. 
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Chapter 5 outlines the details of the method used for determining the reliability of the 

Radial Basis Function network. A new method for resolving the shortcomings of the other 

existing methods is proposed and described in Chapter 6. 

Results of implementations of the different methods are included following the 

description of each technique. Finally, the conclusions reached in course of this study along 

with a discussion of the potential future work are covered in Chapter 7. 
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2. PROBLEM STATEMENT 

2.1. Background 

2.1.1. Introduction 

Ultrasonic NDT is most commonly used in the inspection of piping welds and 

pressure vessels in reactors. Pipes and vessels are designed to have an added amount of wall 

thickness or a specific corrosion allowance based on conditions such as pressure, acceptable 

corrosion rates and the expected life of the equipment. Extremely high corrosion rates could 

lead to wall thinning or stress related cracking (also called Intergranular Stress Corrosion 

Cracking - IGSCC) resulting in dangerous conditions with regard to pipe and pressure 

ratings. IGSCC occurs in the heat affected zones (HAZ) of stainless steel piping welds and 

propagates in a branch-like manner along the grain boundary. There are two phases of 

IGSCC, initiation and growth. IGSCC results mainly from following three factors: 

• A tensile stress on the inner diameter of the weld region 

• A sensitized grain structure 

• A corrosive environment 

All three conditions are required to produce IGSCC but removal of any one condition is 

sufficient to stop its progress. A tensile stress always exists on the inner diameter of the pipe 

weld region. The smaller the diameter and the thinner the pipe material, the greater the 

residual stress. Material sensitization occurs either during manufacturing due to improper 

heat treatment or milling, or during welding of austentic stainless steels at high temperatures 

(between 900-1600° F). During large temperature changes, the carbon migrates to the grain 
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boundary and interacts with the chromium to create chromium carbides. A corrosive 

environment on the inner diameter of the weld region includes, among other highly corrosive 

mediums, substantial quantities of oxygen and boric acid. This corrosive medium attacks the 

low chrome areas formed due to sensitization at the grain boundary. IGSCCs tend to be 

extremely tight, and are often highly branched at the crack tip. IGSCC is thus, intimately 

related to the type of pipe material, environmental conditions, temperature and cyclic loads 

superimposed on a mean stress on the process pipe or vessel which may be in an aggressive 

environment. 

Due to the combined effects of stress, environment and sensitization, if pipes and 

vessels become too thin, the cracks may propagate in them long enough resulting in 

considerable damage. For this reason, in the particular case of nuclear power plant tubing, the 

ability to distinguish the ultrasonic reflections from IGSCC is critical. To avoid any mishap, 

it is important to detect IGSCC as soon as it occurs. Since the cracking occurs on the insides, 

close to the weld region in the heat affected zones, inspection of welds contains reflections 

not only from IGSCC but also from other weld joint features, such as root welds and 

counterbores (ridges machined prior to welding to match unequal pipewall thickness). This 

makes it difficult to distinguish between the IGSCC and other benign signals. 

Figure 2.1 shows the 3-D geometry of pipes in the weld region. Figure 2.2 is the cross 

section taken along the axis. 

The inverse problem considered in this thesis is the analysis and classification of 

ultrasonic weld inspection signals into cracks, counterbores and rootwelds. 
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Figure 2.1 3-D geometry of the weld region of pipe 

Heat Affected Zone (HAZ) 
Rootweld 

Pipe Outer Diameter 

Pipe Inner Diameter 

Counterbore 

Figure 2.2 Cross-section of the pipe along the axis 

The approach used is a feature based method for solving the classification problem 

which consists of the following steps: 

1) Feature extraction, where characteristic features (physical or mathematical) in the signal 

that carry the discriminatory information are extracted. 
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2) Classification, which involves the use of a clustering algorithm or neural network to 

assign each feature vector to one of the known classes. 

3) Confidence Measure detennination, where the reliability of the classification decision is 

determined, quantitatively. 

Each of these steps are described below. 

2.2. Feature Extraction 

A variety of algorithms have been developed over the years for identifying features in 

ultrasonic waveforms. Features have been derived from time, spatial and frequency domains 

such as wavelet coefficients [39], principle components [9] etc. 

The research in this thesis focuses more on the concept of reliability of the 

classification performance and hence the optimality of features is not central to this work. 

Consequently, the features used for the classification are very simple, intuitive quantities. The 

simple two dimensional feature vector is easier to implement for reliability calculation. Also 

it is easier to understand and interpret the results obtained. 

Typical signals reflected from a crack, a counterbore and a root weld are shown in 

Figure 2.3. 

It is seen (from Figure 2.3) that there are considerable similarities between the 

different classes of signals making signal classification a challenging task. The differences in 

signals are used to derive discriminating features that reduce the dimensionality of the input. 

Three physical features are considered based on the differences observed in the signals. For 

instance, the number of significant peaks and the peak amplitude are seen to be different for 

each of the three classes. 
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Figure 2.3 Typical Signals 

The crack signals have the largest amplitude, followed by those of the counterbore, 

with the rootweld having the smallest amplitude. The third feature is the pulsewidth, 

computed using the Hilbert transform. The support of the Hilbert transform decreases from 

rootweld to counterbore to crack. Thus, the features selected are number of peaks, peak value 

of the amplitude and the pulse width and are calculated as follows: 

Number of peaks: Let P represent the peak value of the signal. All peaks having an 

amplitude greater than or equal to k* P are retained where 0 < k ~ 1. The rest of the peaks are 

discarded. For example, if k = 0.25, all peaks with amplitudes upto 25% of the peak 

amplitude (P) are counted. Let l(i) be defined as follows and x be an N point long A-scan: 



I(i)= {
1, if 
0, 

x(i)~k* P 

otherwise 

N 

Number_ of_ peaks= LI (i) 
i=I 
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i=l,2, ... N (2.1) 

(2.2) 

Peak Value: The peak value (P) is the largest amplitude value of the signal under 

consideration, defined simply as 

P = max[x(i)] 
Js;iSN 

1'5:i'5:N (2.3) 

Pulsewidth: To evaluate the pulsewidth, the Hilbert transform, x , of the A-scan, x is 

first calculated to get 

~ 

x[n]= Lh[n-m]x[m] n=l,2, ... N (2.4) 

where 

{
2sin 2 (mz I 2), 

h[n] = mz n :;t 0, 
0, n=O. 

(2.5) 

The magnitude of (x2 [n]+x2 [n])1'2 is calculated and plotted as shown in Figure 2.3. 

The pulse width is then calculated as the difference between two points on the curve at 10% 

of the peak amplitude. 

Thus the three features identified above reduce the dimension of the input signal 

from 1800 (length of the normal A-scan) to 3. These features then form components of a 

feature vector which describes the signal under consideration. The feature vectors of the 

signals are then classified by a selected classifier. 
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Figure 2.4 Mean and Covariance plots of the ultrasonic data 

In addition to the above features selected by observing the raw signal, mean and 

covariance values for the different classes were plotted in Figure 2.4. They were estimated 

as: 

} N 

m=-:Lx(i) 
Ni=! 

8 =(yr * y) I (N -1), 

where y is defined as 

(2.6) 

(2.7) 



1 N 

y(i) = x(i) - -L:x(j), 
N j=1 

whereN= 1800. 

15 

(2.8) 

These parameters (Figure 2.4) are also seen to contain discriminatory information. 

An equal number of cracks, counterbores and rootwelds were taken and their mean and 

covariance values were estimated using Equations (2.6) and (2.7) respectively. 

The plots show that cracks have the largest mean and covariance values. Counterbores 

have lower and rootwelds have the lowest mean and covariance values. The plot of mean 

values shows that there exist some signals from both counterbore and rootweld classes that 

have values that are not completely discriminatory. Thus, the mean m by itself is not 

sufficient to help in classifying a signal. 

2.3. Classification 

Classification or pattern recognition is one of the basic attributes of human beings. All 

objects around us have a certain description which includes discriminating features that 

distinguish them from other objects. A human brain, being an extremely sophisticated 

information processing system, can perform pattern recognition of concrete items as well as 

abstract views. Recognition of concrete patterns may be considered as a psychophysiological 

problem [14], where a person receives a physical stimulus and makes an inference based on 

past experience. Thus, classification may be regarded as a problem of discriminating the 

input data with the help of features or invariant attributes among its members. In most cases, 

a human being far exceeds any automatic recognition system in its classification capabilities. 

However, there is still a necessity for automatic classifiers in areas of hazardous environment 



16 

or where recognition efficiency may be degraded by human factors such as fatigue. In other 

situations, the discrimin~ting features of the input stimulus may be too cryptic. Consequently, 

there has been a considerable development of theory and techniques for the design of 

computer algorithms for simulating pattern recognition capabilities of a human brain. This 

has resulted in the emergence of Artificial Neural Network (ANN). ANNs are computer 

algorithms which attempt to simulate the performance of neurons in the human brain. 

2.3.1. Modeling Capabilities of Artificial Neural Networks 

ANNs are widely used in pattern classification applications largely due to their 

capability for modeling complex functions. There are many different kinds of ANNs. 

Rosenblatt's Perceptron Model [7], the Hopfield Network [7], Multi-Layer Perceptron [9], 

Radial Basis Function Network [9], etc. are some examples. Neural networks especially find 

extensive application in industry in modeling processes which are inherently difficult to 

understand. In general, physical systems are characterized with the help of mathematical 

models. Very accurate models can be built when the physics underlying the system being 

modeled is known. However, in many cases, the physics underlying the system is not well 

understood or too complex and intractable. In such cases, empirical methods are used to 

develop approximate mathematical models. Generalizers can be used to generate such 

empirical models automatically because they infer the parent function from available sets of 

data. Most generalizers perform very well if the systems they model are well behaved. For 

example, data which is linear and normally distributed can be modeled successfully using 

statistical methods. ANNs have shown to provide good approximating functions for 

nonlinear models with high computation speeds even with large dimensionality of problem. 
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This is largely due to their highly parallel structure. ANNs also have a powerful 

representational capacity. ANNs are used extensively in this capacity. 

It has been shown that a Multi-Layer Perceptron (MLP) with a single hidden layer 

trained using backpropagation learning algorithm is sufficient to approximate any function, 

provided that enough nodes are present in the hidden layer [31]. The Radial Basis Function 

Network (RBFN) also has similar capabilities. An overview of the MLP and RBFN which are 

more commonly used in NDE applications is given in the following sections. 

2.3.2. Multi-Layer Perceptron (MLP) 

MLPs are a class of feedforward neural networks that typically consist of three types 

of layers, namely , the input layer, the hidden layers and the output layer. In this sense they 

are a generalization of the single layer perceptrons [9]. 

L 

Yhj 

Wji 

Notation used for MLP: 

Number of hidden layers 

Number of nodes in the h1h layer, h=l,2, ... L 

Input to the i1h node of the h1h layer 

Output from lh node of h1h layer 

Weight connecting the i1h node of (h-1)1h layer to/h node of h1h layer 

Bhj Bias for the fh node 

Nodes in different layers are connected to each other via weights. The input to the ih 

node of the h1h layer is the weighted sum of all the outputs from the h-l1h layer. The model of 

each neuron in the network is associated with a continuously differentiable transfer function. 

The most commonly used form satisfying this condition is the sigmoidal transfer function. 
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This is mathematically described as follows: Let Xhi be the input to the lh node of the h1h 

layer and Ym be the corresponding outputs. Then, 

1 
yhj = 1 -~h· ' +e ~ 

where 

Sh-I 

<t>hj = I w jix hi + ehj 
i=I 

for j = 1,2, ... Sh and h = 1,2, .... L 

(2.9) 

(2.10) 

The 8hj term is the bias for the lh node and Sh is the number of neurons in the h1h 

layer. A conventional MLP structure is shown in Figure 2.5. 

Hidden Layer 1 2 

Input Vector 

Figure 2.5 Architecture of an MLP 

Output 
Vector 

Typically, a neural network operates in two phases, namely training and testing. In the 

training phase of the MLP, the desired outputs are clamped to the output nodes for the 

corresponding inputs. The network 'learns' these input-output mapping by iteratively 

minimizing an error function. In this case, the error function, E, is the sum of the square of 
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the difference between the calculated ( yj) and the desired output. This is given by the 

following equation: 

N 

E= L/Yj-yj)2' (2.11) 
j=l 

where N is the number of output nodes. 

MLPs have been successfully applied to solve complex problems by training them in 

a supervised manner using the popular back.propagation algorithm. Since this algorithm is 

based on the error correction rule, it can also be considered as a generalization of the Least 

Means Square (LMS) [11] algorithm. The backpropagation performs a stochastic gradient 

des.cent in the weight space. Basically, the error backpropagation process consists of two 

passes through the different layers of the network. In the forward pass, an input vector is 

applied to the input layer and its effect is propagated forward to the output layer to provide 

the response of the network to the input stimulus. The weights of the connections in the 

network remain fixed. In the backward pass, error is propagated backwards from the output 

layer and the weights are adjusted l,lsing an error correction rule so as to make the actual 

response move closer to the desired response. 

2.3.3. Radial Basis Functi.on Network (RBFN) 

Unlike Multi-Layer Perceptrons (MLPs), RBFNs use a distance metric in the input 

space to determine the hidden layer activations. As a result, the contours of constant 

activation of the hidden layer are hyperspheres instead of hyperplanes as with MLPs. The 

contours are finite in length and form closed regions of significant activation, as opposed to 
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MLPs where the contours are infinite in length and form semi-infinite regions of significant 

activation. This feature of RBFNs is exploited to produce a local reliability measure. 

The RBFN consists of three layers of nodes as shown in Figure 2.6. Each successive 

layer is exhaustively interconnected by feedforward arcs. 

Unweighted Weighted 

Input Vector Output Vector 

Hidden Layer 

Figure 2.6 Architecture of an RBFN 

Notations used for RBFN: 

H Number of hidden nodes 

Transfer function of the hidden node 

Center of the basis function at hth hidden node 

Width of the basis function at hth hidden node 

Activation at the output of hth node 

Output from/h node of output layer 

1) The first layer is simply a fanout of the inputs to the hidden layer and are not weighted 

connections. 
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2) The hidden layer consists of H radial units plus one bias node with a constant activation of 

one. The transfer function of the hidden node is computed using a basis function <j>, 

(2.12) 

where ah is the output of the unit h in the hidden layer for a given input x. 

Each RBF node is characterized by two internal parameters, namely xh and ah: xh is the 

position of the basis center in the N-dimensional feature space and ah is a distance scaling 

parameter which is the width in the input space over which the unit will have a significant 

influence. The connections in the second layer of the RBFN represent weights of the linear 

combination. 

3) The output layer has nodes which are linear summation units. The value of the ith output 

node Yi is given by 

(2.13) 

where wih are the interconnection weights from the hidden nodes to the th output node. The 

(H+l)th node is the bias node with aH+I =l. 

2.3.3.1. Training the RBFN 

There are several variations m the techniques for training the RBFN. The most 

commonly used technique is based on the algorithm suggested in [45]. This method trains the 

RBFN in three sequential stages: 

1) The first stage consists of determining the number of unit centers H and position of the 

unit centers xh by the K-means clustering algorithm, an unsupervised technique that 

places unit centers centrally among clusters of training points. 
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2) Next the unit widths are determined using a nearest neighbor heuristic that ensures the 

smoothness and continuity of the fitted function. The width of any hidden unit is taken as 

the RMS (root mean square) distance to the P nearest unit centers, where Pis a design 
I 

parameter. 

3) Finally, the weights of the second layer of connections are determined by linear 

regression, the objective function to be minimized being the sum of the squared error as 

given in Equation (2.11). 

2.3.3.2. Adaptive K-Means Algorithm to Determine Hand xa. 

> 
The optimality of an RBFN for a particular application is largely dependent on the 

number of nodes in the hidden layer. By taking an excess number of nodes we may overfit the 

function being approximated by a higher order function. In this case, the training points may 

give acceptable error but the test points would give unsatisfactory results. Similarly, taking 

too few hidden nodes would result in a sub-optimal model. 

The conventional K-Means algorithm is largely dependent on the number of clusters, 

K, the choice of the initial cluster centers and the order in which the data is presented. 

Linearly separable data are reasonably clustered by the K-means algorithm depending on the 

spatial properties of the training data. In training RBFNs, adaptive forms of the K- Means 

algorithms have been used to obtain optimum results. The method used for determining the 

clusters automatically is shown in the flowchart in Figure 2.7 [17]. 
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Set Initial number of cluster centers n0 

Choose n0 initial centers 

Preset threshold value a 

Find cluster centers using K-Means Algorithm 

Find the largest "diameter" R of clusters 

Find minimum distance d between two cluster 

Save cluster centers 

Decrement n0 by one 

Find cluster centers using K-Means Algorithm 

Find the largest "diameter" R of clusters 

Increment n0 by one 

Find minimum distance d between two cluster centers 

Increment n0 by one 

Output number and locations of cluster centers 

Figure 2.7 Flowchart for adaptive K-Means Algorithm [17] 
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In this algorithm, the number of clusters is automatically adjusted on the basis of 

spatial distribution of the samples. The K-Means algorithm is first applied by arbitrarily 

selecting the cluster centers, n0. The minimum intercluster distance (d) is then calculated. 

d = . Ip.in . . {dist(X; - Xi)} for i, j = 1,2, ..... n0 . 
1:s;1,1:s;no ·'"' 1 • 

(2.14) 

where X's are the n0 cluster centers and dist is the Euclidean distance given by 

(2.15) 

in an m-dimensional space. 

The diameter (Dk) of the k1h cluster is defined as the maximum distance between two 

samples in cluster k. The largest diameter (R) is computed next. If x' s are the points in the 

cluster k, the intracluster distance Dk is given by 

(2.16) 

where Nk is the number of points in cluster k and, 

(2.17) 

When d >aR., (where a is a preset threshold value) it means that the scatter plot of the points 

belonging to the largest cluster exceeds the 'threshold value that has been preset as a fraction 

of the largest diameter R. This intracluster distance can be reduced by increasing the number 

of clusters, n0• Therefore, if d >aR., the number of cluster centers is incremented. Otherwise, 

it is decremented. The K-Means algorithm is iterated to obtain the new cluster centers. The 

algorithm converges when the number of clusters does not change. 
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2.4. Why Do We Need a Confidence Measure? 

As discussed earlier, ANNs are used extensively in pattern recognition due to their capability 

of forming highly nonlinear boundaries between different classes of patterns. ANNs have 

many useful characteristics such as learning capability, generalization, noise and fault 

tolerance, etc. However, there has been a general lack of theory that allows for calculation of 

estimated errors on ANN solutions for validation and verification purposes. 

Besides, different types of networks have different generalization properties and these 

generalization capabilities of ANNs have not been completely understood [2]. Due to the 

inherently abstruse nature of their highly parallel, dense interconnections, the reliability of a 

network decision has not yet been characterized. 

Assumptions, whether implicit or explicit, that lead to network outputs being 

considered reliable may also be inappropriate, especially if the input presented to the ANN 

has not been covered by the training data. In general, the training data that the ANN 'learns' 

from, may or may not cover all possible inputs that the network may encounter in the future. 

Consequently, when the decision of an ANN is required critical (as in the case of nuclear 

power plants), the users of ANNs have to be aware of the uncertainty associated with the 

ANN output. 

Providing a figure of merit for the ANN performance is necessary when addressing its 

reliability particularly with respect to test data not similar to the training data. A figure of 

merit in the form of an error bound on the ANN solution can help interpret the overall 

relationship between the input signals and the network outputs. For example, if the estimated 

error is too large, it can be interpreted as lack of reliability of the ANN decision for a 
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particular input. Accurate classification is of importance in any classification problem. 

However, besides improving the classification accuracy it is also important to_ determine 

quantitatively the confidence the network has in its decision. Preventive actions would be 

taken only if the confidence expressed is high enough. 

Therefore, error estimation is very important assurance of the diagnosis obtained from 

a network essential in a practical implementation of the automated signal classification 

systems based on ANNs. 

2.5. Research Contribution 

The objective of this study was to develop a technique for evaluating the classification 

performed by a neural network in a quantitative manner. 

The contribution of this thesis is twofold - Two approaches for reliability estimation 

have been developed based on (i) fuzzy methods and (ii) error regression model. 

Classification is implicitly a binary decision. However, such a binary approach can 

sometimes be misleading. Two different signals or patterns may not have the same degree of 

belongingness to a particular class. This quality of 'degree of membership in a class' is used 

by humans in daily life as it conveys more information. Fuzzy concepts attempt to· quantify 

this multivalued possibilities of a decision by replacing the more commonly used binary 

decision by one which can have a spectrum of values. Motivation in this area has been mainly 

due to the fact that utility of fuzzy set theory lies in its capability to model ambiguous or 

uncertain data. Since the outputs of fuzzy systems are membership values, they can be 

directly used to determine the certainty measure of a classification. The methods proposed to 

determine the confidence measure estimation involve the application of fuzzy membership 
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sets to the conventional methods of pattern classification. Chapter 4 describes 'fuzzy' 

approaches that have been investigated for reflecting confidence in a classification decision. 

A fuzzy c-means clustering algorithm is first described where the inputs to the system are 

feature values and the outputs are membership values. This is followed by a fuzzy version of 

the MLP. This method incorporates fuzzy theory into conventional multi-layer perceptron 

neural network. Here, both the inputs as well as the outputs are membership values. Thus, an 

attempt is made to fuse fuzzy logic and conventional classification algorithms to achieve 

results that will reflect the confidence in the classification decision. 

A new method for error estimation of an ANN output has been proposed and 

discussed in Chapter 6. This approach builds a regression model between a set of inputs 

describing the sources of uncertainty in an ANN and the corresponding error in its predicted 

output. Results of this method are presented and compared with the results obtained from 

existing methods. 
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3. LITERATURE SURVEY ON NDE RELIABILITY 

3.1. Statistical Nature of the NDE Process 

In the application of an NDE method, there are many factors that influence the 

outcome of an inspection as to the absence or presence of a flaw. In general, as we have seen 

in the introduction, NDE comprises the application of a stimulus to a structure and the 

interpretation of the response to the stimulus. Repeated inspections of a specific flaw can 

produce different magnitudes of stimulus response because of variations in setup and 

calibration of the measuring instrument. This variability is inherent in any measurement 

process. In addition, differences in the material properties, flaw geometry and flaw 

orientation, all contribute to different response magnitudes even when the flaws are of the 

same size. When the signal interpretation is being done either manually or in an automated 

fashion, the interpretation of the response is further influenced by the capability of the 

interpreter, the mental acuity of the inspector due to fatigue or emotional outlook, and the 

ease of access and environment at the inspection site. Since many critical inspection 

decisions are being made by skilled operators, human factors are considered primary 

contributors to the unreliability in the interpretation process. In the case of automated 

inspectors, the most important factors introducing variation in response interpretation are: 

• Differences in the physical properties of flaws of nominally identical sizes 

• Basic repeatability of the magnitude of the NDE signal response when a specific flaw is 

independently inspected by an inspector using the same equipment 
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• Human factors associated with inspectors 

• Differences introduced by changes in inspection hardware 

These factors must be addressed explicitly or implicitly in every NDE reliability experiment. 

This thesis addresses issues of reliability related to automated flaw classification 

systems using artificial neural networks. The capabilities of these systems are highly 

dependent on the quality of the training data as well as the variabilities in the measurements 

on which they have been trained. These factors affect the reliability of flaw detection and 

classification. The following sections briefly describe some probabilistic as well as 

deterministic methods that are used for determining NDE reliability. Probabilistic concepts 

related to NDE reliability analysis are discussed first and then applied to compute the 

reliability of a neural network decision. 

3.2. Probability of Detection (POD) and Probability of False Alarm (PF A) 

An engineering approach to the reliability issue is based on the application of 

probability of detection (POD) curve as a tool for assessing NDE capabilities. POD curves 

denote inspection capabilities as a function of flaw size. A typical POD curve is shown in 

Figure 3 .1. Such a curve is obtained by generating flaws in components and passing the 

components repetitively through an inspection process. Flaws spanning a range of shapes and 

sizes are considered and the responses are ordered in terms of actual flaw size. Responses are 

then grouped into statistically significant samples to allow calculation of a point estimate of 

detection for the sample group. This means that if the flaw of size a was inspected n times 

and detected successfully p times, the point estimate for detection for size a flaw is pin. The 

point estimate of detection is plotted as a function of flaw size for that sample group. 
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Flaw size 

Figure 3.1 A Typical POD Curve 

Successive grouping and plotting of the point estimate for detection is used to 

generate the POD curve. A large number of observations and a large quantity of data are 

required to generate an accurate POD curve, and hence to describe the capability and 

reliability of the NDE technique being assessed. In similar manner, POD curves may be 

generated to reflect other flaw parameters of interest, such as flaw depth [41]. It is also 

possible to extract additional information concerning the inspection and evaluation process 

from the POD curves. For instance, the shape of the POD curve provides a qualitative basis 

. for assessment of the degree of control for a given data set and a criterion for grouping 

similar data sets [41]. Each POD curve is unique to the specificity of the inspection process, 

to the degrees of control in the inspection process and to the nature and distribution of the 

flaws. The cost of data generation, precision in data collection, and the discipline required for 

specific applications, have resulted in many attempts to generalize and model POD curve 

prediction. No satisfactory model has been generated so far. 
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Although the POD curve provides a graphical method for quantification of NDE 

reliability, all the contributing factors are not reflected by the curve. The POD curve reflects 

only the positive success for the inspection tool applied. There is an interdependence between 

the inspection stimuli and inspector responses which is schematically presented in Figure 

3.2. The 'True positive' (TP) is defined as the conditional probability of the flaw being 

correctly identified when it was present. 'False positive' (FP) indicates the probability of a 

flaw being incorrectly indicated when it was actually absent. Similarly, 'False negative' (FN) 

misses a flaw and 'True negative' correctly indicates a safe condition. Therefore, 

Total opportunities for positive calls = TP + FN 

Total opportunities for negative calls = FP + TN 

This then helps us to define POD and another independent probability called the probability 

of false alarm (PF A) in terms of the above conditional probabilities as, 

POD = TP I (TP + FN), and (3.1) 

PFA=TN I (FP+ TN) (3.2) 

Stimuli 

POSITIVE NEGATIVE 

POSITIVE True Positive False Positive 
TP FP 

Response 

NEGATIVE False Negative True Negative 
FN TN 

Figure 3 .2 Interdependence of response and stimuli 
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Accept ~+--Reject --+ 

p(ylxO) p(ylxl) 

POFA Measurement output y 

Figure 3 .3 The pdfs of peak amplitude of signal with and without flaw 

The probability of detection of a particular flaw of a given size usmg a given 

measurement system can also be determined by generating a conditional probability density 

function (pdf) [42] of the measurement signal as shown in Figure 3.3. This is given by the 

following equation, 

= 

POD= f p(ylxl)dy (3.3) 
T 

The figure shows the distributions of the peak amplitude of the signal in the absence 

of a flaw, p(ylxO), and in the presence of a flaw, p(ylxl). To decide whether the observed 

response is a flaw or not, a threshold T is chosen such that all signals above the threshold are 

considered flaws. When the flaw and noflaw pdfs overlap, two types of errors result. The first 

type of error is 'false alarm' which is the FP region in Figure 3.2. The second type of error is 

'false acceptance' corresponding to FN in Figure 3.2. The probability of false alarm (PFA) is 

computed as 
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~ 

PFA = f p(ylxO)dy (3.4) 
T 

The probability of false acceptance (POF A) is defined as 

T 

POFA= f p(ylxl)dy (3.5) 

As the flaw size becomes smaller and smaller, the mean of p(ylxl) decreases and the 

p(ylx 1) curve shifts towards the left. This results in an increase in the overlap between the 

two distributions and the corresponding POD is reduced. Similarly, as the flaw size increases, 

the p(ylx 1) curve shifts towards the right, decreasing the overlap between the two 

distributions and consequently increasing the POD. 

However, the POD curve does not directly reflect the nature of the calibration of the 

inspection tool or the decision criteria used in the generation of the curve. Also, there is a 

further need in the industry to classify pie signal observed as belonging to one of several 

classes, where a simple accept-reject decision is not sufficient. Automated classification 

systems including neural networks are becoming increasingly popular for performing signal 

classification. The overall classification accuracy depends on both the accuracy of the 

classification tool and on the statistical nature of the measurement process. 

3.3. Method for Error Estimation on the Outputs of ANNs 

As discussed before, in an automated signal classification system based on an ANN, 

there are several sources of uncertainties. These include the distribution of the available data 

which strongly influences the function that the ANN approximates. If dense and uniformly 

distributed data is available, the neural network closely approximates the mapping between 
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the inputs and the outputs. However, if the data is not sufficient and not uniformly 

distributed, regions with scarce data will have a poorer fit than regions with dense data. fu 

addition, it is possible that in the training process the network error converges to a local 

minimum instead of a global minimum. All these factors contribute to an unreliable network 

decision. 

A method developed for estimating the confidence of a decision made by an ANN is 

briefly described in the following section. 

3.3.1. Stacked Generalization 

One of the earliest schemes, namely stacked generalization, was proposed by Wolpert 

in [34] for minimizing the generalization error rate of one or more generalizers. As the name 

suggests, it consists of stacking two generalizers together. The primary generalizer performs 

classification or function approximation while the second generalizer estimates the error in 

the output from the primary generalizer for a novel input. 

Now how would this translate to an ANN? Under certain restrictions, a 

backpropagation ANN providing a function mapping can be considered as a generalizer. The 

restrictions are as follows [35]: 

• Let L be a training data set in Rm X Rn space where m is the dimension of the input space 

and n is the dimension of the output space. The first restriction requires that the training 

of the generalizer be_ independent of the order in which data is presented. 

• Subject to some training accuracy, when a generalizer is presented with an input from the 

training set L, the generalizer must produce an output which is the same as the one 
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corresponding to this input in L. This means that for an input which is not new to the 

network, the output should _be the same as the one on which it was trained. 

• The input-output mapping of the generalizer must be single valued. This means that two 

or more outputs corresponding to a single input vector are not allowed. 

• To map the desired function, a generalizer requires at least k training pairs in the learning 

set, k > m, where mis the dimension of the input vector. 

• The components of all input vectors in the training set lie on a hyperplane having a 

dimension which is the same as the dimension of the input of the generalizer. 

Since the multi-layer perceptron with backpropagation can be made to satisfy these 

restrictions, it qualifies as a generalizer. Stacked generalization can, therefore, be 

implemented on ANNs. The essence of the method of stacked generalization is as follows: 

Let G be a generalizer (an ANN). A training set L of all input-output pairs is partitioned into 

two sets, namely the singleton set { (x, y)} and {L-(x, y)}, as shown in Figure 3.4. A novel 

input is represented by q lying outside of L. Given this partition, the network G is trained 

using the data in { L-(x,y)}. G is then presented with x as input. The output g of G and the 

difference vector fromx to its nearest neighbor in {L-(x,y)}, ~'are recorded. 

~ = min[dist(Xi, x)j for i=l,2, ...... N-1, (3.6) 

where N is the total number of points in L and dist( a, b) is as defined in Equation 

(2.15). 

In general, since G has not been trained with the pair (x,y ), the output g will differ 

from y. Thus for a combination of x and ~' there is an error of (g - y) in the network decision 

at the output. 
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L - (x,y) 

? e Element of L' 

Error of G's guess 

• • 
• 

Input - Nearest Neighbor 

Figure 3.4 Stacked generalization for a single generalizer 

This information can be cast in a new input-output domain where point (x, ~)is the 

input and error (g - y) is the corresponding output. Choosing different partitions of L gives us 

other input-output pairs in the new domain. Taken together, these points constitute a training 

setL'. Another generalizer (neural network) Fis trained on the training setL'. 

Next, G is trained on the entire set L and then presented the new input q. Let p be the 

corresponding output of G. q and the distance from q to its nearest neighbor in Lare input to 

F. The output of F represents the error in the output of G to the input q. Adding this 

estimated error (or fraction thereof) back to the output g gives the final output corresponding 

to x. A flowchart depicting this method is as shown in Figure 3.5. 



(g-y) 

NetworkG 
trained on 
{L-(x,y)} 
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NetworkF 

trained on {L'} 

Figure 3.5 Flow Diagram for the different steps in stacked generalization 

The results of implementing this method are presented at the end of this chapter. In 

literature, this method is also called the Cross Validation Partition Criterion (CVPC). 

3.4. Implementation and Results for Stack Generation 

The data used for implementation of the stacked generalization algorithm consists of 

ultrasonic weld inspection input signals to be classified into cracks, counterbores and 

rootwelds. A detailed description of this signal classification problem was given earlier. 

The raw signals acquired by the ultrasonic data acquisition system were 1800 points 

long. Preprocessing the signals involved reducing its dimension by extracting discriminating 
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features. As mentioned in Section 2.2, the optimality of the features selected is not central to 

this work. Only two significant features were selected so that in a two dimensional feature 

space the analysis was tractable. The features used are the peak value and the pulse width of 

the raw ultrasonic signal. The training data used in the implementation included a total of 93 

signals distributed as 46 crack signals, 21 counterbore signals and 26 rootweld signals. The 

test data for validation consists of 10 cracks, 10 counterbores and 10 rootwelds. The plots of 

the training and test data in the two dimensional feature space are shown in Fi~e 3.6 and 

Figure 3.7 respectively. 
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Figure 3.6 Training Data 
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Figure 3.7 Test Data 

The primary MLP neural network architecture had 2 input nodes, a single hidden 

layer consisting of 10 nodes and three output nodes each one representing one of the three 

classes. It was trained using backpropagation algorithm. 

The steps involved in the implementation of stack generalization are as follows: 

L Partition L into L1 and L2 such that 

{ }
N-1 

Li=L-L2= xi i=I • 

2. Train the primary network G using L1. 
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3. Test network with element XN in L2. Let d be the desired output and y be the network 

output. 

4. Calculate the error e = ld-yl. 

5. Find the nearest neighbor of x in Li. 

6. Repeat steps 1through5 withL2={xi}, i=l,2, ... N 

7. The set of input output pairs { (x, X1), e} for the training set L' for the second network F. 

The second network F was trained to predict the error for an input test data. The test 

data set consisting of 30 signals was presented to the primary network G which gave the 

classification result. The output of F predicted the error in the classification of G. The 

secondary network had two hidden layers with 22 and 8 nodes, respectively. 

The results are presented in Table 3.1. 

The first three columns indicate the three outputs of the primary network G. The first 

ten samples are crack signals and the desired output for this class is 0-1-0. The next ten 

samples are counterbores and the last ten are rootwelds with desired outputs 1-0-0 and 0-0-1 

respectively. The output with the maximum activation is rounded off to 1 and the signal is 

assigned to the class represented by that node. The last column indicates the 

misclassifications with a '*'. The fourth column represents the output from the secondary 

MLP. fu order to use this information for reliability calculation, the error estimated by the 

network F is applied as an error bound on each value obtained at the three output nodes of the 

primary network G. Let Oi, i=l,2,3 be the output of the three nodes of G. If the range of 

values 0 1 ± E overlaps with either of the intervals [02 - E, 02 + E] or [03 - E, 03 + E], the 
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decision is said to be ambiguous. As seen in Table 3.1, column 4, in some of the 

misclassifications such as points 5 and 29, the error estimated by F was high. However, this 

trend did not appear for test points 10, 14, 21, 22, 27 which had also been misclassified. Also, 

points 23, 26 and 28 had a relatively higher error estimate inspite of correct classification. 

Table 3.1: Results of Stack Generation 

Output from neural network G Output 
from 

ANNF 
Signal no. node for node for node for estimated 

counterbores cracks rootwelds error(E) 
1 0.0000 1.0000 0.0000 0.0004 
2 0.0000 1.0000 0.0000 0.0003 
3 0.0000 1.0000 0.0000 0.0004 
4 0.0000 1.0000 0.0000 0.0003 
5 0.0001 0.0316 0.6432 0.0024 * 
6 0.0141 0.9980 0.0000 0.0008 
7 0.0000 1.0000 0.0000 0.0003 
8 0.0000 1.0000 0.0000 0.0003 
9 0.0000 1.0000 0.0000 0.0004 
10 0.9541 0.0002 0.0029 0.0008 * 
11 1.0000 0.0000 0.0000 0.0000 
12 1.0000 0.0000 0.0000 0.0001 
13 0.8082 0.1100 0.0000 0.0001 
14 0.4545 0.6871 0.0000 0.0003 * 
15 0.9998 0.0000 0.0000 0.0000 
16 1.0000 0.0000 0.0000 0.0000 
17 1.0000 0.0000 0.0086 0.0000 
18 1.0000 0.0000 0.0000 0.0000 
19 0.8621 0.0915 0.0000 0.0001 
20 1.0000 0.0000 0.0000 0.0000 
21 1.0000 0.0000 0.0787 0.0000 * 
22 0.0510 0.0239 0.0262 0.0005 * 
23 0.0000 0.0011 0.9874 0.0051 
24 0.0000 0.0000 0.9998 0.0003 
25 0.9996 0.0000 0.8735 0.0003 * 
26 0.0059 0.0000 0.8662 0.0055 
27 1.0000 0.0000 0.2847 0.0001 * 
28 0.0003 0.0008 0.9024 0.0033 
29 0.9702 0.0000 0.1479 0.0042 * 
30 0.0000 0.0000 0.9999 0.0001 

'*' represents misclassified signals 
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The error estimate obtained from F indicates that the range of allowable values at the 

output nodes defined by the intervals [Oi -E, Oi + E] did not consistently show an overlap in 

case of ambiguous signals as required. In many cases it failed to indicate ambiguous 

decisions completely. This implementation showed that the method of stack generation was 

not suited for the ultrasonic signal classification problem under consideration. More 

importantly, the drawback with this method is the use of a second neural network to evaluate 

the primary neural network which automatically raises the question of reliability of the 

second neural network. 
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4. FUZZY METHODS FOR CONFIDENCE MEASURE 

4.1. Motivation to Use Fuzzy Logic 

Utility of fuzzy set theory lies in its capability to model ambiguous or uncertain data. 

Since the outputs of fuzzy systems are values of membership or "belongingness" to a class, 

they are used to determine a measure of certainty. Two approaches have been taken and 

results have been presented. The first approach uses the fuzzy version of the intuitive K­

nearest neighbor algorithm. In this algorithm, the inputs to the system are feature values 

whereas the outputs are membership values. The second method incorporates the fuzzy 

theory into the conventional multi-layer perception neural network. Here, both the inputs as 

well as the outputs are membership values. The results are compared and possible ways of 

improving their performance are discussed. This kind of a classification system finds an 

application in the development of a sophisticated inferencing expert system. This 

implementation is able to characterize, with a certain confidence, the different types of 

ultrasonic signals obtained as reflections from cracks, counterbores or rootwelds. Besides 

correct classification, the output of the system is also representative of its confidence in the 

classification decision. 

4.2. Theory of Fuzzy Sets 

Given a universe of objects U, a conventional crisp subset A of U is defined by 

specifying the objects from U that are members of A. This is characteristically written as 



{
I, XE A 

u A (x) = 0, x e A or 
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(4.1) 

for all xE U. Fuzzy sets are derived by generalizing the concept of a characteristic function to 

a membership function u: U-7[0,I]. Most crisp operations and set properties have analogs in 

fuzzy set theory [ 6]. 

The advantage provided by fuzzy sets is that the degree of membership in a set can be 

specified. This can be especially advantageous in pattern recognition, where frequently, 

objects may not clearly be members of one class or another. Using crisp techniques, an 

ambiguous object will be assigned to a single class with a definiteness may not be justified. 

On the other hand, fuzzy techniques will specify to what degree the object belongs to each 

class, offering information that is more useful in a practical implementation. 

Given a sample of vectors {x1, x2, x3, •••• , xn}, a fuzzy c partition of these vectors 

specifies the degree of membership of each vector in each of the c classes. This is represented 

by the matrix U of size c x n, where each element of the matrix 

for i=l,2, ... c and k=l,2, .. n (4.2) 

is the degree of membership of Xk in class i. The following partitions must be true for U to be 

a fuzzy c partition: 

c 

I. LU;k =I 
i=I 

m 

2. 0 < L uik < I 
k=I 

3. Uik E [0,1] 
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The first property implies that the vector's memberships in the c classes must sum to 

1 for mathematical tractability. The second property implies that the total membership 

contribution of m samples assigned to the i'h partition should not exceed n, the number of 

vectors in the given set. The last property reiterates the fuzzy requirement for the membership 

values to have a continuous spectrum of values between 0 an 1, unlike the crisp case. 

4.3. K-Nearest Neighbor (KNN) Algorithm 

The K-means or KNN algorithm represents one of the most popular methods for 

clustering data. Several variations of this algorithm are found in literature. The common 

feature of all these algorithms is that they cluster samples based on the Euclidean distance. 

The conventional K-means algorithm forms K clusters of samples and assigns a class label to 

each sample. The fuzzy K-Nearest Neighbor algorithm [5] is different from its conventional 

version in that it assigns class membership to a sample vector rather than assigning the vector 

to a particular class. The advantage of this method is that no arbitrary assignments are made 

by the algorithm. In addition, the membership values provide a level of assurance to 

accompany the resultant classifications. For example, if a vector is assigned a membership 

value of 0.9 in one class and a membership value of 0.05 in the two remaining classes, it is 

reasonable to assign the vector to the class of membership value of 0.9. On the other hand, if 

the vector is assigned memberships 0.55, 0.44 and 0.01 in class one, two and three, 

respectively, then classification of the vector based on these results should be made with 

hesitation. However, it is certain that the vector does not belong to class three. In such a case, 

the vector must be examined further to determine its classification, since it exhibits almost 

equal degrees of membership to both classes one and two. Clearly, the membership 
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assignments can be useful in the classification process. The flowchart of this algorithm is 

presented in Figure 4.1 

The first step in this technique is the assignment of membership values to the known 

samples. While assigning membership values to the known samples, each sample from the 

training set is considered one at a time. The value of k, (the number of neighbors considered 

during the assignment of membership values to the training samples) nearest neighbors to 

each sample x is then chosen and the membership is then assigned to x in all classes 

according to Equation ( 4.3) [5]. The membership sample vector x to the jth class is given by 

·(x) = {0.51+(njlk)*0.49 if j=i 
µJ (njlk)*0.49 if j=t:-i 

(4.3) 

when x belongs to class i. 

Assign class memberships to training data 

l 
Input unknown sample 

1 
Determine K nearest neighbors 

1 
Assign membership to this sample in all 

classes as a function of the distance of the 

KNN and their membership values 

Figure 4.1 Flowchart of the fuzzy KNN algorithm 
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This value of k need not be the same as K, the number of nearest neighbors 

considered during the assignment of membership values to an unknown sample. fu Equation 

( 4.3), k is the number of neighbors that are considered and nj is the number of neighbors from 

k belonging to the jth class. This method attempts to juz:z.ify' the memberships of the known 

samples, which are within the regions of intersection in the sample space, and leaves the 

samples that are well away from this area with a complete membership in the known class. 

As a result, the decision of an unknown sample lying close to the boundary will be 

influenced to a lesser extent by the known samples that are in the fuzzy' area of the class 

boundary. The next step is to determine the membership values of the unknown sample, with 

respect to the training data. µi(x) is computed using Equation (4.4) [5]. 

(4.4) 

where µi(x) is the membership value of vector x to ith class, µij is the membership value of the 

jth nearest neighbor to the ith class, Xj is the jth nearest neighbor from the known samples and 

K is the number of neighbors. The variable m determines how heavily the distance is 

weighted when calculating each neighbor's contribution to the membership value. When 

m=2, the contribution of the neighboring point is weighted by the reciprocal of its distance 

from the point being measured. As m is increased, the neighbors are more evenly weighted, 

whereas when m is decreased, the neighbors are more heavily weighted. 
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4.3.1. Implementation of Ful.7.y KNN Algorithm 

The data used in this implementation are the same feature vectors obtained as 

explained in section 3.4. 

The first step in the implementation of the fuzzy K-Nearest Neighbor algorithm was 

the assignment of class memberships to the training points. This was done using Equation 

(4.3) with k=8. Since, there were three classes under consideration, namely, cracks, 

counterbores and rootwelds, a set of ~/s were obtained with i= 1,2, ..... 93 and j=l,2,3 

(number of classes). The test points were chosen such that at least some were in the regions 

close to the possible boundary between two classes. The test points were now assigned 

membership values to all three classes using Equation (4.4) with K=8 and m=2. A decision 

was said to be ambiguous if the most significant output value was around 0.5. The results of 

the application of this KNN algorithm for classifying ultrasonic NDE signals are tabulated in 

Table 4.1. The first column indicates the number of test points in each class. The second 

column represents percentage of accurate classification. The last column indicates percentage 

of the misclassified signals where the network decision indicated uncertainty. 

Classes 

Cracks 

Counterbores 

Rootwelds 

Table 4.1: Results of the Fuzzy K-Nearest Neighbor Algorithm 

Total number of test 

data 

10 

10 

10 

Correct 

Classification 

80% 

70% 

70% 

Ambiguous 

misclassifications 

100% 

66.67% 

33.33% 
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The table shows that in the two-dimensional feature space (pulse width and peak 

value), the classification accuracy for cracks was 80%. 8 out of 10 cracks were correctly 

classified. Both the misclassified signals had the significant output membership values less 

than or equal to 0.5 ± 0.15. Thus, all the misclassified test points indicated ambiguity. Among 

the counterbore signals, three signals were assigned to the wrong class. These points occur 

close to class boundaries and 2 out of the 3 misclassifications indicated ambiguity. The 

rootwelds did not perform as well and only 1 of the 3 misclassifications ·reflected an 

uncertainty. 

The fuzzy KNN method is only a simple demonstration of the use of a fuzzy approach 

for quantifying the confidence in a classification decision against the conventional binary 

decision process which can be incorporated in an automated signal classification system. A 

possible improvement in the results could be obtained by using features that are more 

discriminatory than the simple features considered here. The next section extends the fuzzy 

approach to the commonly used Multi-Layer Perceptron. 

4.4. Introduction to Fuzzy MLP 

As described in Chapter 2, ANNs have been used successfully in a large number of 

fields to model dynamic and non-linear systems, chaotic chemical systems and other 

chemical reactions, system identification and control, process fault diagnosis in NDT etc. 

fu the fuzzy MLP approach, signals are classified into one of the three desired classes, 

namely, cracks, counterbores and rootwelds, with a certainty measure reflected by a 

membership value to a class. 
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Each input feature vector Fj is expressed in terms of membership values in terms of 

low, medium and high. 

F ' { F low F medium F high F low F medium F high} 
j = jl ' jl ' jl '· • • • • • • • • jn ' jn ' jn 

That is, an n-dimensional feature vector is converted into a Jn-dimensional feature 

vector. In the simple case studied here, there are two features under consideration. After 

converting these feature values to membership values, a 6-dimensional vector is obtained. 

The membership assignment is done using Gaussian membership sets: 

(4.5) 

where i =1,2, ... n and c/et and ~set are the center and width of the membership 

function. 

The output membership values are then calculated. For a 3-class problem, the 

membership of the ith pattern to class k is defined by Equation (4.6) [1]. 

(4.6) 

where 

(4.7) 

is the weighted distance of the pattern Fi to the center of the kth class, fd and fe are the 

denominational and exponential constants, Ok is the mean vector, and Vk is the standard 

deviation of the features in the kth class. The value of fd decides the effective contribution 

of Zik to the calculation of µk(Fi). This value of fd is decided by the range of the values of Zik 
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obtained. If Zik has a range of values significantly greater than 1, fd is kept closer to 1. On the 

other hand if the range of Zik is around 1, fd is made very small (closer to 0), thus, ensuring 

that the denominator of ( 4.6) contributes to the corresponding membership value. Similarly, 

the value of le decides the weightage that is given to Zik in contributing to the output 

membership value. 

1 
Low Medium 

20 55 70 110 130 
Pulse width 

1 

Low Medium High 

0 55 90 100 115 210 

Peak Value 
Figure 4.4 Membership sets for the inputs 
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This method of calculating the weighted distance is suitable for the application under 

consideration because the distance is inversely proportional to the variance of the features in 

a given class. This means that features having a larger variance are given less importance in 

influencing the output decision than features having smaller variance. 

The multi-layer perceptron is trained with these input-output pairs before testing with 

unknown data. 

4.4.1. Implementation 

The data used in the implementation of the fuzzy KNN is used once again in the 

implementation of the fuzzy MLP. This implementation requires that each input feature 

vector, x=[peak_ value, pulse_ width] be expressed in terms of membership to each of the sets 

low, medium and high. The limits of these membership sets formed for the available training 

data are shown in Figure 4.4. Gaussian membership functions were used. Thus the input 

signal which was originally a two dimensional feature vector is now converted to a 3x2-

dimensional input vector. The.output membership values for the corresponding training input 

points are obtained using equations (4.6) and (4.7) withfd=land.fe=2. Using these inputs and 

outputs, a single hidden layer MLP with 7 hidden nodes, was trained. 

The results are presented in Table 4.2. They show an improved classification accuracy 

in the case ~f fuzzy MLP as compared to the fuzzy KNN. This improvement could be 

attributed to a neural network's capability of modeling non-linearities. However, the issue of 

importance is the classification reliability rather than classification accuracy. 



Classes 

Cracks 

Counterbores 

Rootwelds 
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Table 4.2: Results of the Fuzzy Multi-layer Perceptron 

Total Number of 

Test Data 

10 

10 

10 

Correct 

Classification 

80% 

70% 

90% 

Ambiguous 

Misclassifications 

100% 

33% 

100% 

The output values are the confidence values since the network was trained to 'learn' 

an output that was a membership value, unlike conventional class labels. In the case of the 

misclassified signals, the output values were in the range 0.5 ± 0.1 for the crack and the 

rootweld signals. However, two counterbore signals were misclassified as cracks or 

rootwelds with a high degree of confidence, i.e. output at the respective nodes > 0.8. This can 

be explained as due to the fact that the misclassified counterbores were very close to both 

crack and rootweld training points in the given feature space. 

The method of using fuzzy MLP gives us more information than a conventional MLP. 

The ambiguous points can then be further investigated more rigorously thereby reducing the 

effort and computation required to process large volumes of data. 

4.5. Conclusion 

In the KNN classifier with the nearest neighbor sample membership assignment, the 

number of misclassified vectors with high assigned memberships (greater than 0.8) in the 

wrong class is a small percentage of the total misclassified signals. In addition, the correctly 

classified signals were given relatively higher membership values in their own classes than in 
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other classes. Therefore, the nearest neighbor initialization technique does produce 

membership assignments that give an indication of the degree of correctness of classification. 

In the fuzzy MLP, output values are direct indications of the confidence of membership of 

input signals to the assigned class. Therefore, these reflect the certainty of the classification 

decision. 
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5. AN ANN ARCIDTECTURE THAT COMPUTES ITS OWN 
RELIABILITY 

5.1. Introduction 

As mentioned in the previous chapter, it has been shown that an MLP with a single 

hidden layer and trained using backpropagation is sufficient to approximate any function 

given adequate number of nodes in the hidden layer. The Radial Basis Function Network 

(RBFN) has been shown to have a similar capability to represent arbitrary functions [32]. 

One of the earliest work in estimating the reliability of the RBFN was done by J. A. Leonard 

et al [3], where a method is proposed using an RBFN that computes its reliability. The 

underlying idea for determining the reliability of network decision is explained in detail in 

this chapter. This method is applicable to functional approximation problems. A suitable 

modification of the method for ultrasonic NDE classification problem is also described. 

5.2. Why RBFNs ? 

The characteristic feature of RBFNs is the concept of a local neighborhood. RBFNs 

partition data into local clusters and limit the distance over which data may influence its 

prediction. Empirical non-linear models of process data have been constructed using ANNs. 

Since network models are not based on any underlying physical theory and are highly non-

linear, their predictions are not expected to be reliable when extrapolating beyond the range 

of the original training data. In addition, it is difficult to recognize when the network is 

extrapolating, especially if the inputs are correlated. The distribution of the training data may 

be non-uniform which implies that there exist areas of poor local fit. The aim is to extend the 
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network being used such that it has the capability of reflecting its reliability by indicating 

local regions of poor fit. Conventional methods for training ANNs use only global measures 

of goodness of fit, usually in terms of the sum squared training error given by Equation (5.1). 

N 

E= L(.Yj-yj)2 (5.1) 
j=l 

where N is number of network outputs and y and y are the target and network output 

respectively. 

This, however, may not strongly reflect local regions of poor fit. A separate goodness 

of fit is thus needed for each output, since different dependent variables may be fit with 

different accuracy. Thus, the inputs to the RBFN are still the same feature vectors as used in 

Chapter 4. The number of output nodes, however, increases. M outputs will require an 

additional M outputs to indicate the accuracy of each model prediction, and one output to 

indicate when the network is operating in a region of insufficient training data. The block 

diagram is shown in Figure 5.1. 

Xl 

-. X2 

NETWORK 

Yl 

Y2 

CL(Yl) 

CL(Y2) 

Extrapolation flag 

Figure 5 .1 Block diagram of network determining reliability 
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5.3. Reliability Definition 

Reliability is determined by two factors: 

Extrapolation: Whether or not the model is being applied in a domain of the independent 

variables where training data were available. 

Local goodness of fit: How accurate the is model for given independent variables. 

In this approach, we can include extra outputs indicating extrapolation and confidence 

limits on network predictions. Important features of this approach are: 

1) There is no assumption of specific distribution for the data. This is of particular interest 

since the data which is being processed has an unknown probability density function. 

2) It is a non-parametric, non-convex method for computing reliability [3]. 

5.4. Reliability Measures 

The determination of reliability consists of two steps: 

1) The first step is to check if the model is extrapolating. If it is, the model output is 

unreliable since the network has not satisfactorily learned the output associated with the 

given input. 

2) If the network is not extrapolating, model fit accuracy needs to be estimated. This is given 

as a confidence interval on each network output. 

5.4.1. Extrapolation/Data Density Measure 

Extrapolation is defined as any local region of input space with little or no training 

data to support a model prediction. This parameter is, therefore, linked with the estimation of 

the density of the training data in the region where the test data appears. The goal of this 
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measure is to determine whether there is sufficient training data in the vicinity of the test 

point to make a reliable prediction. A consequent warning is generated if the local density of 

the training points falls below a certain threshold. 

The transfer function of an RBF hidden unit is like a multivariate Gaussian given by 

(5.2) 

where ah is the output of the unit h in the hidden layer given the input x. xh and <Jh are 

the center and width, respectively, of the transfer function at the hidden node h. Since each 

RBF unit is centered on a subset of the training data by the clustering algorithm, as the test 

point moves away from the training data, the value of the maximum activation will decrease. 

A small value of the activation, say < 0.5, would then indicate extrapolation. The value of the 

optimum threshold is entirely problem dependent. While this is an obvious and intuitive 

definition for extrapolation, it indicates how far the test data is from a training data and does 

not indicate the amount/density of training data. Hence, it is not an ideal measure. 

A more satisfactory measure for extrapolation that has been proposed is the local 

probability density function (pdf) of training data. If it is possible to calculate the local pdf for 

a given data set, it can be directly used to reflect the density of the training data around the 

test point. A well-known method of density estimation when the form of the pdf is not known 

a priori is Parzen windows [43]. The Parzen estimator is given by 

K 

p(x)= IIK L If~·cp(x-xh/CJ) (5.3) 
k=I 
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where p(x) is called the Parzen density estimate for x, K is the available number of training 

points, N is the dimension of the input, er is the width of the hidden unit, xh is the location of 

its center and <p is a window function satisfying 

00 

J <p(y)dy = 1 <p(y);::: 0 (5.4) 
-oo 

It has been shown by Specht [ 44] that Parzen windows can be implemented by 

RBFNs. Its direct implementation in network form requires radial units of identical width 

centered at every data point. However, in the RBFNs considered here, 

1) there are fewer units than data points, 

2) radial units are not centered at data points, and 

3) widths of the activation functions of each hidden node are not identical. 

The key idea in quantifying extrapolation is to estimate the data density using the unit 

centers and widths determined when the RBFN is trained for functional approximation. 

Towards this end, a two stage approach is used: 

1) Probability density functions (pdt) are estimated at each hidden unit center using Parzen 

windows 

2) Based on these pdfs, the probability at arbitrary test points are determined by means of an 

interpolation formula. 

At each hidden unit h, the Parzen density estimate based on the unit width crh and unit 

activation function ah(x) is 

K 

Ph = P (xh) = IIKVh L ah(xk) (5.5) 
k=I 
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where K, as before, is the number of training points and, 

00 

(5.6) 
-oo 

A simplified model has been proposed where activation functions are sharply defined 

hyperspheres rather than Gaussian distributions. 

= 0 if II x - xh II > c.ah (5.7) 

where c is a constant defined as the smallest positive real number that allows the 

hyperspheres to cover the training data completely. Given this activation function, Equation 

(5.5) simplifies to, 

(5.8) 

where Vh is the volume of the hypersphere at node h, nh is the number of training points 

falling inside Vh and K is the total number of training points. An important point to note here 

is that because the hidden units overlap, an arbitrary point x may be contained in more than 

one hidden unit and hence may be associated with more than one density estimate. This 

implies that I',nh > K. Therefore, an estimate of local density for any point can be obtained 
h 

by averaging. 

H 

Lah(X)Ph 

· ( ) h=I PX------ H 

Lah(x) 
h=l 

(5.9) 
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If a point is contained in none of the hyperspheres, both the numerator and the 

denominator are equal to zero. 

Let V0 to be the complement of the space covered by the hypersheres. The activation 

function for a test point falling in V0 is 

(5.10) 

i.e. a 0=l if and only if the activation of all hypersplieres is zero. With this definition Equation 

(5.9) can be rewritten as 

H 

L%(X)Ph 
h=O 

p(x) = H 

Lah(x) 
h=O 

= H 

L ah(x) + 1- max(ah) 
h=1 

the right hand side of the equality stemming from the fact that p0 = 0. 

(5.11) 

In the case that ah is a continuous variable as given by Equation (5.1), the Parzen 

window estimate of density [43] at unit centers using a Gaussian window of width ah is 

(5.12) 

where all the terms in the above equation are the same as defined earlier. In this case, 

the effective number of points associated with any hidden unit h is 

K 
nh= I.ah(xk) 

k=l 
(5.13) 

As indicated in Equation (5.11), the density contributions from active hidden units 

need to be combined to estimate the density at a test point x. With continuous activations, 

Equation (5.11) calculates a weighted average of unit densities, rather than a simple average. 
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If the test point is close to a unit center, the corresponding activation will be high. If the test 

point is far away from the unit center, activation and hence its weighted contribution will be 

small. If the test point is far away from all the units, the complementary activation function 

will approach unity while the numerator simultaneously approaches zero. The resulting 

density will consequently approach zero. 

In order to interpret p(x) as 'sufficient' amount of data, the threshold value is set such 

that it is equal to the minimum of all phs of the overall training set. This means that the 

network is not extrapolating if 

p(x) > T where T =min{ Ph} for h = 1,2, ... H. 

provided the confidence interval local to the minimum p is acceptable. If not, a higher 

threshold level corresponding to an acceptable confidence interval is selected. 

5.4.2. Confidence Limits 

A confidence limit is used to indicate the regions that have a poor local fit to the 

function that the network is modeling. In this method the model for the accuracy of the fit for 

a given output in the region of the test point is similar to the confidence limits placed on a 

random variable. First of all, a local confidence limit for each RBF unit is developed. Then, 

the confidence limit for model prediction is obtained by taking a weighted average of the 

confidence limits over all contributing units. If the training points are associated 

unambiguously with hidden units (crisp case), the local estimate for variance of model 

residual output i within domain of hidden unit h is 
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(5.14) 

where nh is the number of points inside the hypersphere and Eij is the error on output i for 

sample j obtained in the training phase. For Gaussian RBF units, this can be generalized to 

(5.15) 

where ah(Xk) is the activation of xk in unit h and nh is as defmed by Equation (5.13). 

The 95% confidence limit for expected value of the residual associated with output i 

for unit h is given by 

(5.16) 

where t95 is the critical value of Student's t-statistic for 95% confidence and nh-1 degrees of 

freedom. Since the effective number of data points in a radial unit nh is a continuous-valued 

function, the value of t95 is calculated by rounding nh to the nearest higher integer. The final 

average confidence limit of the output node i is then calculated using the following equation, 

(5.17) 

This is an average of the local confidence limits weighted by the contribution of each 

hidden unit. 

This method assumes the residuals of the model to be independent and normally 

distributed with a zero mean and constant variance over the neighborhood defined by each 

hidden unit in the RBFN. This constant variance may vary from unit to unit. However, for 

this assumption to be accurate, all of the systematic variations of the dependent variable have 
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to be taken into consideration by the model implying that the model exactly matches the form 

of the function that is being approximated. Since, the true functional form is unknown and 

the model is empirical, the assumption of normally distributed errors may not be entirely 

accurate. Nonetheless, this method provides a good indication of the relative accuracy of the 

model prediction for the problem under consideration. 

In order to be able to calculate the limits of dispersion of the data points, instead of 

local confidence limit of the expected value of model prediction, the variance of residuals is 

calculated as before. Assuming the residuals to be normally distributed, confidence limits on 

the residuals can be set based on the standard normal distribution. However, the true mean or 

variance of the residuals is not known and only a finite sample is available for their 

estimation. The mean may be non-zero because of the mismatch between empirical and true 

model forms. In order to account for this uncertainty variance of the mean and residuals are 

pooled. In deriving CLhi• the total variance would be sh/Ink (variance of the mean) plus sh?· 

Hence a more accurate estimate CLhi is given by 

CLhi = tgs *sh;* (1 + llnh ) o.s (5.18) 

where all the terms are the same as defined in Equation (5.16). 

5.5. Application of the Validity Index Network to Ultrasonic NDE 

The problem under consideration is a classification problem. In a normal 

classification problem, the outputs are class labels. The target output vector to be learned has 

a value one for the output node corresponding to the correct class and zero for the other 

output nodes. Using this formulation, if the network has enough representational capacity and 

the training data are dense enough, the network output will represent the local relative 
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probability densities of the classes. The classification is given by the output node with the 

highest value. 

The accuracy of the network outputs is largely dependent on the training data. fu 

regions of sparse training data, variance in the network outputs increases and hence, the 

uncertainty increases. The reliability of classification can therefore be reflected by the density 

of training data in the vicinity of test data, by the extrapolation flag. Extrapolation measures 

are useful in such cases, but the corresponding measurements of uncertainty are not. This is 

due to the fact that in functional approximation problems the training targets represent the 

desired outputs and the residual errors represent the lack of fit. 

5.6. Implementation and Results 

fu the NDE classification problem, given an input signal, the network classifies it as 

belonging to one of three classes - namely cracks, counterbores and rootwelds. For a network, 

this translates to three output nodes, each one representing one class. The training targets are, 

thus, an encoding of a symbolic variable while the desired network outputs are the pdfs. By 

minimizing the error during training, the classifier is made to 'learn' the pdfs. If the relative 

probabilities of membership of each class for each training sample were known, the problem 

could be reduced to one of functional approximation. However, this information is precisely 

the information that is unknown. 

Certain modifications to the algorithm are necessary before this method can be 

applied to the classification problem. First, the classification problem needs to be reduced to 

that of functional approximation. To achieve this, class labels at the outputs are replaced by 

degrees of membership of each training sample to its corresponding class. Membership 
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values are obtained by calculating the weighted distance of each training sample in the 

feature space from the mean of that class scaled by the variance of the feature. 

Mathematically, 

(5.19) 

where Zilc is the weighted distance of the pattern F (pulse_ width, peak_value)i to the 

center of the kth class, Ok is the mean of all the training vectors for class k, and Vk is the 

standard deviation of the features in the kth class. The output membership value, Uik. for "J(h 

input vector to class i is then given by 

(5.20) 

This is very similar to the Mahalanobis distance metric and in fact is the same metric 

used to assign output membership values in the implementation of the 'fuzzy' MLP in 

Chapter4. 

Once the inputs and the outputs are obtained, the adaptive K-means algorithm 

(Section 2.3.3.2) can be used to obtain an optimal number of hidden nodes for the RBF. For 

the simulation carried out, the optimum number of hidden nodes was found to be 8. The 

width was taken as the RMS distance to P nearest cluster centers given by Equation (5.19). 

Let dist(x ,y) be the Euclidean distance between x and yin an n-dimensional space defined in 

Equation (2.15). In this same domain, let xi. x2, ••••• Xp be the P nearest cluster centers to x. 

Then, 

CT= 
(dist{X,X1 } )2 + (dist{X,X2 } )2 + .... (dist{X,XP} r 

p (5.21) 
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The least error was obtained for P=2. After training the RBFN, the local densities 

associated with each hidden unit, Ph was calculated using Equation (5.12). The minimum 

density associated with the hidden nodes was 0.109 x 10-13• The values for density have all 

been divided by 10-13 for normalization. To evaluate the local estimate for variance of the 

residual error on training data, Equation (5.15) was used and the result is substituted in 

Equation (5.16) to obtain confidence limits on the training data for each hidden node during 

training. The confidence limits for the test data are then obtained using Equation (5.17). Let 

0 1, 0 2 and 0 3 be the three output nodes of the RBFN. Let CLi. CL2 and CL3 be the 

confidence limits estimated by this method. If the intervals 0 1 ± CL1, 02 ± CL2, and 03 ± 

CL3 have any overlapping regions, the decision of the RBFN is said to be ambiguous. 

The results obtained using this technique are shown in Table 5.1. 

The misclassifications are marked by a '*' in the last column. In each of the Figures 

5.2, 5.3 and 5.4, the training signals are represented by 'c', 'b' and 'r' for the crack, 

counterbore and rootweld class respectively. The test points are shown by a *. 

As shown in Figure 5.2, points 5 and 10 occur in areas of low density of training data. 

This is reflected by the corresponding density flags having values lower than the minimum 

density of training data associated with the hidden nodes. The confidence intervals for 

outputs corresponding to point 5 are large and result in an overlap reflecting ambiguity in the 

classification. This, however, does not happen in the case of point 10. 
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Table 5.1: Results of the RBFN network 

Output from RBFN at density Confidence limit at 
_flail 

Index nodel node2 node3 Pmm= nodel node2 node3 
no. counterbores cracks rootwelds O.I09 
1 0.0000 1.0000 0.0000 0.4113 0.0002 0.0000 O.OIOO 
2 0.0000 1.0000 0.0000 0.3973 0.0102 0.0004 0.0023 
3 0.0000 1.0000 0.0000 0.2156 0.0219 0.0020 0.0111 
4 0.0000 1.0000 0.0000 0.2323 O.OOIO 0.0041 0.0023 
5 0.0021 0.1618 0.5432 0.0123 0.0013 0.3429 0.2351 *5 
6 0.0141 0.9980 0.0000 0.1217 0.0043 0.0009 0.0564 
7 0.0000 0.9900 0.0000 0.3324 0.0006 0.0496 0.0045 
8 0.0000 0.8611 0.0000 0.3136 0.0345 0.0765 0.1858 
9 0.0000 1.0000 0.0000 0.2973 0.0384 0.0675 0.0089 
IO 0.8573 0.0322 0.0059 0.0001 0.2945 0.0036 0.0575 *IO 
11 1.0000 0.0000 0.0000 0.4411 0.0004 0.0045 0.0047 
12 1.0000 0.0000 0.0000 0.3534 0.0013 0.0076 0.0056 
13 0.8586 O.OIOO 0.0001 0.2115 0.0687 0.0574 0.0253 
14 0.4900 0.5871 0.1300 0.1109 O.IOOO 0.2874 0.0039 *14 
15 0.9998 0.0000 0.0000 0.2215 0.0376 0.0500 0.0520 
16 1.0000 0.0000 0.0000 0.2737 0.0385 0.0002 0.0000 
17 1.0000 0.0000 0.0000 0.2218 0.0024 0.0076 0.0200 
18 0.9020 0.0000 0.0000 0.1435 O.I089 0.0013 0.2006 
19 0.7059 0.1515 0.0076 0.1976 0.2545 0.3985 O.I008 *19 
20 1.0000 0.2188 0.0000 0.2034 0.0000 0.1312 0.0013 
21 0.1787 O.IOOO 1.0000 0.3199 0.0987 0.0012 0.0453 
22 0.1518 0.1237 0.1247 0.0000 O.I022 0.3176 0.2997 *22 
23 0.2857 O.OOll O.IOOO 0.0105 0.0000 0.0006 0.0001 *23 
24 0.0000 0.0010 0.9795 0.3976 0.0001 0.0012 0.0043 
25 0.5769 0.0108 0.9995 0.1238 0.0005 0.0967 0.0007 
26 0.0678 0.0000 0.7845 0.1295 O.IOOO 0.1996 0.0200 
27 0.5847 0.0000 0.7800 0.1124 0.0001 0.0195 O.IOIO 
28 0.3792 0.0001 0.4099 0.1048 0.1184 0.0001 O.I099 #28 
29 O.I024 0.0000 0.9496 0.1131 0.0124 0.1843 0.0078 
30 0.0000 0.0000 1.0000 0.1367 0.0073 0.0009 0.0012 
'*'represents misclassified signals 
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Figure 5.2 Test Signals for Cracks 

Points 14 and 19, shown in Figure 5.3, have sufficient training data in their vicinity as 

indicated by their respective density flags. The corresponding confidence limits, when 

applied to the output nodes, indicate ambiguity of the test points as required. Points 22 and 23 

shown in Figure 5.4, have very low activation values at all three outputs. This can be 

explained as due to the fact that the points occur in a region devoid of any training data. As 

such, since there is not sufficient density of training points in this region, the confidence 

limits have no meaning. Point 28 is an example of a case where the classification rule gives 

the right decision. However, the density flag indicates an area of low training data density 

reflecting poor reliability of the neural network decision. 
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5.7. Conclusion 

Thus, we see from the implementation of the validity-index network, the 

confidence limits can be applied to the output nodes of an RBFN to indicate ambiguity in the 

classification decision. In addition, the extrapolation flag gives added information to the user 

regarding the density of the training data in the vicinity of the test point. Thus, in addition to 

classifying the input signals, this extended RBFN gives additional information regarding the 

quantity and the quality of the training data. 
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Figure 5.3 Test Signals for Counterbores 
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Test Rootweld Signals 
200 

'C 

180 
'C 'C 'C 'C 

160 

140 'C 'C 

'C 'C 'C 
'C 

1120 
Q) 
::::! 

'C <F 'C'!C 'C 
'C 

'C 'C 'C 'C 

~ 100 'C'C 

""' <ll 
Q) 

a.. 80 

60 

'CC'C 'C 

i:Ji:J 1P 'C 
'C 'C 'Cc: 

'C 'C 'C 'C 
i:J 

'C i:J 'C 'C i:J i:J .q, i:J 
~ i:J 

i:J lf( 22 

40 

20 

lf( 28 
*23 

i:J lf( lf( 

i:J i:J i:J i:J i:J ,. ,. ,. 
llE,. llE 

lf(,. ,. 
,. f,. 

fff,. ,. it+ lf( ,. 
,. ,. ,-illE 

0 
30 40 50 60 70 80 90 100 110 

Pulsewidth -> 

~ 
Figure 5.4 Test Signals for Rootwelds 



72 

6. A NEW l\1ETHOD FOR COl\fl>UTING RELIABILITY OF ANN 
CLASSIFICATION 

6.1. Motivation 

Automated signal classification systems are becoming increasingly popular in many 

applications. This is especially the case in industries such as aerospace, nuclear power, etc., 

where large volumes of data are analyzed and the analysis is greatly influenced by operator 

fatigue. 
' I' 

<" 

In all these applications automated signal classification systems must perform with a 

high level of confidence. In general, a high classification accuracy can be attained at the cost 

of false positive (FP) signals as seen in Chapter 3. However this is not feasible in practice 

" 
since a false alarm would imply unjustified plant shutdown, resulting in significant financial 

repercussions. Statistical techniques, involving estimation of POD curves, reflect the 

uncertainty in data acquisition processes. However, the POD plots as a function of the flaw 

size do not reflect the confidence of the classifier. 

The existing method for computing reliability of a classification decision, described 

earlier in Chapter 3 (Section 3.3), involves the use of a secondary network to make 

predictions of error bounds on the outputs of the primary network. However, the use of a 

second ANN to predict the performance of the first ANN is not convincing, since this raises 

the issue of the error and confidence associated with the second network. In this chapter, a 

new method is described for quantifying the reliability of a neural network based signal 

classification system. The validity-index network, described in Chapter 5, is a reasonable 
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approach but its application is restricted to Radial Basis Function Networks (RBFNs). In this 

thesis, new approach which overcomes both the above mentioned problems has been 

proposed. First, the method does not involve the use of a second neural network to compute 

the reliability and second, the approach is independent of the type of neural network 

employed as a classifier. The approach is fairly general and is applicable to MLP and RBFN 

networks or other automated signal classification systems. 

6.2. Description of the New Method 

In any ANN based signal classification system, there are several factors that 

contribute to the lack of reliability of the network decision. The most significant factors are 

the quality of the training data and the accuracy of the training process. If these two factors 

are quantified, one can formulate an expression for calculating the error bound on the 

network output which in turn can be mapped onto the reliability of the decision. The quality 

of the training data is said to be poor when the training points are not diverse enough and they 

do not cover the entire input domain. Accuracy of the training process is related to the 

convergence of the network. Most of the training algorithms, especially those based on 

gradient descent methods, result in convergence of the ANN to a local minimum as against a 

global minimum of the error surface. This may greatly affect the reliability of the 

classification performance. 

The new method, proposed here, attempts to quantify these sources of uncertainty in a 

neural network decision. In the implementation of this method, the training data is first 

partitioned into two sets for training and validation purposes. The training set is used for 

estimating the learning error of the network. This is followed in the second step by the 
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development of a regression model which relates the error in classification to the training 

error. This model also predicts the error. bound on the output of the network based on the 

error measures computed. The details of the procedure are described below. 

Notations used: 

L Entire training set 

L1 Training data 

L2 Validation data 

N1 Number of elements in L1 

N2 Number of elements in L2 

G Neural network 

terr Training error 

derr Input error 

cerr Classification error 

x Test data 

y Test output 

d Desired output 

d1 Distance from the nearest neighbor 

d2 Distance from the next nearest neighbor 

~ Density flag 

Xn Nearest input to x from training data 

Yn Training output from network G for input Xn 
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The training set L is partitioned into two sections L1 and L 2 such that both the 

sections contain a uniform distribution of points from all the classes. Let L1 and L2 have N1 

and N2 elements respectively. The classification network G first is trained using the signals in 

set L1• During validation with the signals in L2 , three different types of errors are defined 

namely classification error - error at the output for test data, training error - error at the output 

for training data, and data error - error due to mismatch between test and training data at the 

input. Consider a test sample x in L2• Since the network was not trained with elements from 

L 2 , there will be some deviation of the output from the desired output. Let y be the output of 

G to the inputx. i.e. 

y = G{x} (6.1) 

Let the desired output corresponding to x bed. We can define the output classification 

error to be 

cerr = dist(y, d) (6.2) 

where dist is the Euclidean distance as defined in Equation (2.15). 

In order to correlate the classification error to the input data error, we find the element 

inL1, closest tox. Let 

derr =min {dist(xpx)} 
X;E£i 

(6.3) 

Let the minimum occur for i=n. This implies the nearest neighbor to x in the training 

set L1 is the data point Xn. Let the output of G to the training data Xn be Yn, i.e. 

Yn = G{xn} (6.4) 

The training error for the point Xn is then given by 
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terr = dist(dn, Yn) (6.5) 

Here derr is the distance of test pattern x from its nearest neighbor in Li and terr is 

the training error of the nearest training data. To quantify the density of the training data, the 

mean distance of x from the two nearest neighbors obtained. Let di and di be the distances 

from the two closest points. The density flag 8 is given by 

(6.6) 

As 8 decreases, it indicates that the density of training data in the region of the test 

point is higher. This term can, therefore, be used as an indication of the density of the training 

data in the vicinity of the incoming test point. The average of all 8's for all test samples in the 

validation data is taken as the lower limit for the density threshold, T, i.e. 

(6.7) 

When the 8 of a test point is greater than T, the point is interpreted as occurring in a 

region of relatively low training data density which in turn implies lower reliability of 

classification. On the contrary, if this distance is less that T, training data density and 

therefore the reliability is higher. 

The distributions of derr and terr are plotted with respect to the output classification 

error, cerr, of the test point. These plots can be used directly or after suitable transformation 

to develop a regression model. 

A model that relates the classification error (cerr) to the training error (terr) and 

training diversity (derr) can be expressed as, 
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cerr = f(derr, terr) (6.8) 

For example, if the distribution of terr versus cerr is exponential, the plot of the 

natural logarithm of terr against the natural logarithm of cerr will be linear. A linear 

regression model can then be used to simplify further computation. In the simple case of a 

linear regression model, 

f( derr, terr) = /31 derr + f3iterr + c 

where /31 and f3i are constants and c is an intercept. 

Consider a test pointx. Let the network produce an output 

y = G{x} 

Let XnE L be the nearest neighbor of x and 

Yn= G{xn} 

The input error is defined by 

derr(x) = { dist(Xn, x)} 

Let the training error of Xn be given by, 

terr(x) = dist(yn, d) 

~here d is the desired output for Xn. 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

The classification error for the test point x is obtained by substituting Equations (6.12) 

and (6.13) in Equation (6.8). 

New test inputs presented to a network may or may not occur in regions of dense 

training data. Thus, the closest training data to the test point may or may not be from the 

same class as the one to which the signal is assigned by the network G. For example, 

consider a simple two class problem. Let x be assigned to class I. Let M1 be the set of points 
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in L belonging to class I. Let Xsameclass be the nearest neighbor of x in M 1• Also, let the nearest 

neighbor of x in the full set L be Xnearest· Then, 

distsameclass = dist(Xsameclass, X) 

and distnearest = dist(Xnearest, X) 

Let y be a ratio defined as 

r= distsameclass I distnearest 

(6.14) 

(6.15) 

(6.16) 

where y = 1 if the nearest point belongs to class I and y > 1 if the nearest point 

belongs to another class. In general, it would be expected that the value of r be 1 in all cases. 

However, because of the arbitrary nature of the boundary placement by an MLP during 

training, test points lying very close to the boundary may have r greater that 1. 

In addition to the error, cerr, obtained from the regression model, the ratio yis also an 

important measure which needs to be taken into consideration. A function 17 quantifies this 

information and the error estimated by the regression model to get the final error, E. 

E = 17(~ cerr) (6.17) 

6.3. Implementation and Results 

The training data used here, is the same as that used in the previous implementations. 

The original ultrasonic signals consist of A-scans which are 1800 points long. For simplicity, 

two features namely, pulse width and peak value of the A-scan data are extracted. This 

reduces the dimension of the input signal from 1800 to 2. The two-dimensional feature 

vectors form the inputs for training the MLP. A total of 93 signals were used in the training 
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data set (46 cracks, 21 counterbores and 26 rootwelds). The test data set comprised 30 signals 

(10 cracks, 10 counterbores and 10 rootwelds). 

The step by step procedure in the implementation of the new technique for 

determining the error estimate associated with the classification decision are as follows: 

I. The training data of 93 elements was partitioned into two sections such that L 2 had 30 

elements (10 cracks, 10 counterbores and 10 rootwelds) and Li had 63 elements. 

2. The MLP consisted of 10 hidden nodes in its hidden layer, 2 input nodes and 3 output 

nodes. 

3. This network was trained on the signals in Li using the backpropagation algorithm. 

4. Elements in L 2 were then used for validation. Let 

for XiEL2, i=J,2, .. .30. 

5. The error cerri was calculated using Equation (6.2) for each validation point (30 in this 

case). 

for i=l,2 .. .30. 

6. For each element Xi in L2, the nearest point Xni in Li was located and the distance between 

the two was calculated using Equation (6.3). 

derr(i) = dist(Xni• Xi) for i=l,2 .. .30. 

The second closest point was similarly located and density flag <\ was calculated usmg 

Equation (6.6). Equation (6.7) was used to evaluate density threshold T. 

7. Letyni = G{xnd-

For the nearest point in Li, the training error using Equation (6.5) was also calculated. 

terr( i)= dist( di, y ni) for i=l,2 .. .30. 
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8. The scatter plots of derr versus cerr and terr versus cerr are shown in Figures 6.1 and 6.2 

respectively. It was found that the distance of the validation points from their closest 

neighbor in the training set (derr) was not a good parameter for determining the test error 

cerr. As seen in Figure 6.1 there is no correlation between these two quantities. This may 

be due to the fact that, in case of an MLP, the assignment of a class label to a test point 

does not depend as much on the distance of this point from the training samples as it does 

on the distance from the class boundaries that the MLP 'learns' during the training 

process. The farther the test point is from the boundary, the more confident is the 

classification. fu fact, a test point may be equally far from both the training set and the 

boundary and yet be correctly classified. Hence, for an MLP the test error is not related to 

the distance from the nearest training point. However, this is not necessarily true for other 

types of networks. 
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For example, class assignment in an RBFN involves a clustering process. In this case the 

distance of the test point from its nearest neighbor will definitely have a relationship with 

the test error. Since we are considering an MLP for this implementation, only terr was 

considered in this case. 

9. Two approaches were taken in order to fit a function between terr and cerr. The first 

approach was a simple one in which a logarithmic transformation was applied to both terr 

and cerr. The points in the transformed domain are shown in Figure 6.3. A linear 

regression model was then fitted to this data. The second approach involved fitting the 

best possible function through the data shown in Figure 6.2. This function is shown as a 

solid line in Figure 6.2. The linear model that was obtained had the form 

In cerr= 0.8634 ln terr (6.18) 

The higher order function that best fit the data in Figure 6.2 (obtained using 

TableCurve™ software) was of the form 
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terr= a+ b * cerr+c * cer? * ln(cerr)+ d * cer?·5 + e * cerr0·5 (6.19) 

where a=0.0001947178, b=-0.17850432, c=-0.13924689,d=0.10582571, e=0.084246128. 

10. The test data was then used to evaluate the performance. In addition to the error predicted 

by the regression model (cerr), the ratio r from Equation (6.13) was calculated. To 

calculate the final error using the results from the linear regression model, the following 

empirical relationship was used: 

Eun = 1.5 * r * cerr (6.20) 

Similarly, the overall error while using the higher order model was given by 

Enonlin = 3 * r * cerr (6.21) 

11. The mean distance from two nearest neighbors ( 8) was also recorded. 

These results are recorded in Table 6.1. The misclassified signals have been denoted 

using a '*' in the last column. The first column of the table is an index number for the test 

sample. The next three columns represent the outputs at the three output nodes of the MLP. 
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Table 6.1: Results of classification and reliability analysis parameters 

Outputs density 
01 02 03 flag 

node for node for node for s r counter- cracks rootwelds T=0.085 
bores 
(1) (2) (3) (4) (5) 

0.0000 1.0000 0.0000 0.0764 1.0000 
1.0000 0.0000 0.0000 0.0284 1.0000 
0.0000 1.0000 0.0000 0.1022 1.0000 
0.0000 1.0000 0.0000 0.1025 1.0000 
0.0001 0.0316 0.6432 0.1385 1.6020 
0.0141 0.9980 0.0000 0.0656 1.0000 
0.0000 1.0000 0.0000 0.0546 1.0000 
0.0000 1.0000 0.0000 0.0146 1.0000 
0.0000 1.0000 0.0000 0.0631 1.0000 
0.9541 0.0002 0.0029 0.1125 1.2230 
1.0000 0.0000 0.0000 0.0908 1.0000 
1.0000 0.0000 0.0000 0.0414 1.0000 
0.8082 0.1100 0.0000 0.0434 1.0000 
0.4545 0.6871 0.0000 0.0997 4.0911 
0.9998 0.0000 0.0000 0.0613 1.0000 
1.0000 0.0000 0.0000 0.0213 1.0000 
1.0000 0.0000 0.0086 0.0801 1.0000 
1.0000 0.0000 0.0000 0.0793 1.0000 
0.8621 0.0915 0.0000 0.0800 1.2454 
1.0000 0.0000 0.0000 0.0829 1.0000 
1.0000 0.0000 0.0787 0.0312 1.0000 
0.0510 0.0239 0.0262 0.0975 2.3989 
0.0000 0.0011 0.9874 0.0915 1.0000 
0.0000 0.0000 0.9998 0.0528 1.0000 
0.9296 0.0000 0.8735 0.0346 1.0048 
0.0059 0.0000 0.8662 0.0791 1.0000 
1.0000 0.0000 0.2847 0.0512 1.0000 
0.0003 0.0008 0.9024 0.0891 1.0000 
0.9702 0.0000 0.1479 0.0873 1.0588 
0.0000 0.0000 0.9999 0.0146 1.0000 

Numbers in parentheses indicate column numbers. 
'*' represents misclassified signals 

Linear regression Higher order 
_function 

ce" E ce" E 

(6) (7) (8) (9) 

0.0000 0.0000 0.0003 0.0008 
0.0000 0.0000 0.0003 0.0008 
0.0000 0.0000 0.0003 0.0010 
0.0000 0.0000 0.0004 0.0011 
0.0067 0.0259 0.0054 0.0414 
0.0000 0.0000 0.0003 0.0009 
0.0000 0.0000 0.0003 0.0008 
0.0000 0.0000 0.0003 0.0009 
0.0000 0.0000 0.0003 0.0009 
0.0011 0.0025 0.0019 0.0085 
0.0000 0.0000 0.0002 0.0006 
0.0001 0.0002 0.0006 0.0019 
0.0964 0.1446 0.0323 0.0968 
0.0387 0.9727 0.0169 0.8475 
0.0000 0.0000 0.0002 0.0007 
0.0000 0.0000 0.0002 0.0006 
0.0099 0.0148 0.0068 0.0205 
0.0000 0.0000 0.0002 0.0006 
0.1000 0.4461 0.0331 0.1643 
0.0000 0.0000 0.0002 0.0006 
0.0099 0.0148 0.0068 0.0205 
0.0011 0.0095 0.0019 0.0327 
0.0015 0.0023 0.0023 0.0068 
0.0006 0.0008 0.0013 0.0040 
0.0222 0.0336 0.0116 0.0350 
0.0063 0.0094 0.0052 0.0155 
0.0099 0.0148 0.0068 0.0205 
0.0015 0.0023 0.0023 0.0068 
0.0222 0.0373 0.0116 0.0389 
0.0004 0.0006 0.0011 0.0034 

The output nodes correspond to the classes counterbores, cracks and rootwelds 

respectively. For example, when the signal is classified as a counterbore, the output from the 

MLP is expected to be 1-0-0 or as close to it as possible. The signal is said to be assigned to 

that class whose node has the highest activation. The density flag ( 0) is shown in column 

* 

* 

* 

* 
* 

* 

* 

* 
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four. This is indicative of the density of the training data in the neighborhood of the test 

point. The fifth column in the table represents the r ratio as defined in Equation (6.15). This 

column provides some interesting insights into the operation of the algorithm. The data 

points for which r > 1 are highlighted. The ratio r indicates that the nearest neighbor of the 

test data lies in a class different from the one that it is assigned to. The sixth and the seventh 

columns represent the classification error estimated using the linear regression model 

(Equation (6.18)) and the final error (Equation (6.20)). 

The eighth and the ninth columns represent results using the higher order function 

using Equations (6.19) and (6.21). Let Oi represent the value at the th output node. The 

classification error Eis an error bound on outputs of the MLP. This means that the value of 

the output node can be anywhere in the range Oi ± E. In this case, there are three output 

nodes 01, 02, and 03. If 0 1 ± E, 02 ± E and/or 0 3 ± E have any intersecting regions, it 

indicates that the classification decision is ambiguous. 

6.4. Discussion 

A lot of information can be obtained from Table 5 as discussed below. The 

most important feature of the table is that the misclassifications have been identified 

automatically by the algorithm. This result is discussed in detail for three classes (cracks, 

counterbores and rootwelds) of signals. 
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Figure 6.4 Test Signals for cracks 

6.4.1. Cracks 

The first ten signals in the table are crack signals. The two dimensional plot of these 

test points is shown in Figure 6.4. The test signals are denoted by a *. The training points are 

represented by the letters 'c', 'b' and 'r' for cracks, counterbores and rootwelds respectively.-

Two out of these ten signals have been misclassified. The misclassified points (5 and 10) 

have also been marked. For the correctly classified signals, the E value from the table shows 

that there is no ambiguity in the classification decision. Also, for these signals y=l. For the 

misclassified points, E does not reflect any ambiguity. However, it is observed that r> 1 for 

both these points. The value of the corresponding "/ s indicate that their nearest neighbors do 
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not belong to the class that they have been assigned. The density flag also indicates low 

training data density in the region of both the points 5 and 10. This would reflect the fact that 

during the training process of the MLP, the training boundary was placed in this region in 

such a way that both these points lie very close to the training boundary but on the wrong 

side. 

6.4.2. Counterbores 

In Figure 6.5, the test signals for counterbores are marked with a '*'. ~l signals 

except signal 14 are correctly classified as indicated by the corresponding error bounds and 

value of r. 
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Signal 14 has been wrongly assigned to the crack class. The nearest neighbor to this 

point (shown in Figure 6.5) is a counterbore, however. This is reflected in the large value for 

y. When the error E is incorporated at the output nodes ( 0;,14 ± E), there is a significant 

overlap in the allowable range of values that 0 1,14 (node representing counterbore class) and 

02,u (node representing crack class). 

This overlap is indicative of an ambiguous decision. An interesting point to note is 

that signal #19 has been correctly classified as a counterbore signal with high confidence but 

the corresponding r values is slightly higher than 1. In Figure 6.5, it can be seen that this 

point lies very close to the boundary between cracks and counterbores. It has a crack signal 

which is very slightly closer to it than the nearest counterbore signal which accounts for r> 1. 

In the case of all ten counterbore test points the density flag indicates sufficient training data 

in the neighborhood. 

6.4.3. Rootwelds 

Figure 6.6 shows the test rootweld signals denoted by a '*'. Points 22 and 25 have 

been misclassified but the error bound E indicates an ambiguous decision in each case. The 

density flag has a value greater than T, indicating insufficient data around point 22. Point 25, 

however, does not have this problem. Point 29 has been misclassified with high confidence. 

The value of y, however, is greater than 1 and D>T. Points 21and27 from Table 5 are shown 

in Figure 6.6. They have been misclassified as counterbores. Note that they have a r-=1 as 

well as values of 8 < T. 
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Test Rootweld Signals 
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Figure 6.6 Test Signals for rootwelds 

This indicates that for the training data used, the network identifies these test points as 

the counterbore class with sufficient confidence since neither the error term nor rindicate any 

uncertainty. Also, there is sufficient training data close to these points. This means that, for 

features that were extracted from the available data bank, these test points lie in a region 

defined for another class which is different from its own. In this new technique, however, 

such points will go unnoticed. 

When training data is unevenly scattered, there are empty regions in the input domain 

where the position of the decision boundaries is not known exactly. Whenever a test point 

occurs in this region, the network is extrapolating the decision is not reliable. Thus, whenever 

the value of r> 1 and S> T, the corresponding input signals need further investigation. 
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7. CONCLUSION 

A complete defect classification system has two major sources of uncertainty - one 

source is associated with the data acquisition system which can be quantified by experimental 

POD curves. The other source of uncertainty is associated with the classifier. The new 

technique attempts to quantify the latter case. 

Error estimation for an ANN is important because, in addition to improving 

classification accuracy, the confidence in the classification obtained from an automated signal 

classification system is essential to flaw detection in a practical implementation. 

The issue of reliability of neural networks in an ultrasonic NDE problem has been 

addressed in this thesis. Several existing approaches have been discussed and two new 

approaches have been proposed. 

The stacked generalization approach as proposed by Wolpert in [34] was first 

implemented on the ultrasonic weld inspection data. Several problems were encountered. The 

training error for the secondary network was quite high. Secondly, the error values predicted 

by the second network was not able to reflect the ambiguity in the test points for the problem 

under consideration. Besides, the use of an additional ANN for reliability analysis of the 

primary ANN classifier brought up questions of the reliability of the second network. 

The RBF validity index network was considered next with suitable modifications in 

the original method. The approach performed reasonably well for the ultrasonic NDE 

classification problem. Areas of sparse training data were flagged, thus, giving more 



90 

information to the operator about the reliability of the network decision. However, this 

method is applicable only to an RBFN and cannot be extended to other types of ANNs. 

Two new approaches are suggested to overcome the disadvantages of the above 

methods. The first approach is based onfazzy set theory for determining the confidence in .a 

network decision. This approach required the input features to be assigned membership 

values which was done using Gaussian membership sets. The method gave good results but 

the robustness of the classification was extremely sensitive to the position and width of the 

Gaussian membership sets used in the input feature domain. Even a slight change in the 

width of the membership set results in very poor classification and reliability performance. In 

regions where sufficient training data was not available, there were more misclassifications. 

Also, this method does not give the operator a warning when the test points occurred in 

regions of low training data density. 

Finally, a second method was proposed that used a functional model for estimating 

reliability. The new technique consisted of a regression model which gave an error estimate 

on an output decision based on the available training data and the training error during the 

training process of the ANN. This method does not use an additional network and is 

independent of the architecture of the ANN. The method also has the capability to flag low 

density regions in the input space. The results of the implementation of this new technique 

showed that it was successful in reflecting ambiguity. A more detailed analysis can be done 

only for the critical points flagged as uncertain by the reliability indication process. 



91 

BIBLIOGRAPHY 

[1] S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule 
generation," IEEE Transactions on Neural Networks, Vol. 6, No. 1, pp. 51-63, 
January 1995. 

[2] S. K. Pal and S. Mitra, "Multi-layer perceptron, fuzzy sets and classification," IEEE 
Transactions on Neural Networks, Vol. 3, pp. 683-697, 1992. 

[3] J. A. Leonard, M. A. Kramer and L. H. Ungar, "A neural network architecture that 
computes its own reliability," Computers and Chemical Engineering, Vol. 16, No. 9, 
pp. 819-835, September 1992. 

[4] L. Udpa and S. S. Udpa, "Application of signal processing and pattern recognition 
techniques to inverse problems in NDE," Int. J. of Applied Electromagnetics and 
Mechanics, Vol. 9, pp. 1-20, 1996. 

[5] J. M. Keller, M. R. Gray and J. A. Givens, Jr., "A fuzzy k-nearest neighbor 
algorithm," IEEE Transactions, Vol. SMC 15, No. 4, pp. 580-585, July-August 1985. 

[6] J.C. Bezdek and S. K. Pal, Fuzzy Models for Pattern Recognition, IEEE Press, 1991. 

[7] R. P. Lippmann, "An introduction to computing with neural nets," IEEE ASSP 
Magazine, Vol. 4, pp. 4-22, April 1987. 

[8] D. R. Hush and B. 0. Horne, "Progress m supervised neural networks," ISP 
Magazine, pp. 8-39, January 1993. 

[9] S. Haykin, Neural Networks A Comprehensive Foundation, Macmillan, New York, 
1994. 

[10] B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, New Delhi, 1992. 

[11] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 
1991. 

[12] H. Nomuru, I. Hayashi and N. Wakami, "A learning method for fuzzy inference rules 
by descent method," IEEE International Conference on Fuzzy Systems, pp. 203-210, 
March 1992. · 

[13] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, 
Reading, Massachussetts, 1989. 



92 

[14] L. Udpa, S. A. Mandayam, S. S. Udpa, W. Lord and Y. Sun, Magnetic Flux Leakage 
Inspection of Gas Pipelines: Neural Networks for Signal Characterization, 
Compensation and Identification, GRI Topical Report, ISU, Ames, Iowa, February 
1996. . 

[15] G. W. Snecdor and W. G. Cochran, Statistical Methods, Iowa State University Press, 
Ames, Iowa, Sixth edition, 1967. 

[16] S. A. Mandayam, Invariance Transformations for Processing NDE Signals, PhD. 
Dissertation, Iowa State University, Ames, Iowa, 1996. 

[17] G. Xie, Characterization of Gas Pipeline Defects Using Optimal Radial Basis 
Function Networks, M. S. Thesis, Iowa State University, Ames, Iowa, 1996. 

[18] K. R. Shahani, Evaluation of Various Preprocessing Techniques for Classification of 
Ultrasonic Signals, M. S. Thesis, Iowa State University, Ames, Iowa, 1991. 

[19] A. V. Oppenheim and R. W. Shafer, Discrete-time Signal Processing, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1989. 

[20] L. Udpa, Class notes for Pattern Recognition (EE 529G), Iowa State University, Fall 
1995. 

[21] R. Kuc, Introduction to Digital Signal Processing, McGraw-Hill, Singapore, 1982. 

[22] J.M. Davis, Ultrasonic Training for Detection Sizing, Workshop by Davis NDE Inc., 
Durham Center, ISU, Ames, Iowa, 1995. 

[23] R. W. Weeks, "Stress corrosion cracking in BWR and PWR piping," Proceedings of 
the Intl. S. on Environmental Degradation of Materials in Nuclear Power Plants, pp. 
69-86, Myrtle Beach, Aug 22-25, 1983. 

[24] M. 0. Speidel, "Environmental degradation of steam turbine materials in nuclear 
power systems," Proceedings of the Intl. S. on Environmental Degradation of 
Materials in Nuclear Power Plants, pp. 113-131, Myrtle Beach, Aug 22-25, 1983. 

[25] Ohio State University, "Environmental effects on IGSCC of sensitized steel in high 
temperature solutions," EPRI Report, August 1987. 

[26] R. Thompson and D. 0. Thompson, "Ultrasonics in NDE evaluation," Proceedings of 
the IEEE, Vol. 73, No. 12, pp. 1716-1755, December 1985. 



93 

[27] D.R. Hush and B. G. Horne, "Progress in neural networks," IEEE Signal Processing 
Journal, pp. 8-39, January 1993. 

[28] L. Tarassenko, P Hayton, N. Cerneaz and M. Brady, "Novelty detection for the 
identification of masses in mammograms," University of Oxford, England, 1996. 

[29] J.T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, 
Reading, Massachussetts, 1974. 

[30] L. Udpa and S. S. Udpa, "Application of signal processing and pattern recognition 
techniques to inverse problems," Int. J. of Applied Electromagnetics and Mechanics, 
Vol. 9, pp. 1-20, 1996. 

[31] S. Mandayam, S.S. Udpa, L. Udpa and W. Lord, "Inverse problems in magnetostatic 
NDE," 141h World Conference on NDT, pp. 1631-1634, New Delhi, December 1996. 

[32] K. S. Narendra and K. Parthasarthy, "Identification and control of dynamical systems 
using neural networks," IEEE Trans. Neural Networks, Vol. 1, pp. 4-27, 1990. 

[33] L. Udpa and S. S. Udpa, "Solution of inverse problems in eddy-cur.rent NDE," 
Journal of Nondestructive Evaluation, Vol. 7, Nos.l / 2, pp. 111-120, 1988. 

[34] D. H. Wolpert, "Stacked generalization," Neural Networks, Vol. 5, pp. 241-259, 
1992. 

[35] K. Kim and E. B. Bartlett, "Error prediction for nuclear power plant fault-diagnostic 
advisor using neural networks," Nuclear Technology, Vol. 108, pp. 283-296, 
November 1994. 

[36] K. Kim and E. B. Bartlett, "Error estimation by series association for neural network 
systems," Neural Computation, Vol. 7, pp. 799-808, 1995. 

[37] R. B. Chinnam, W. J. Kolarik and C. V. Manne, "Performance reliability prediction 
of tools in mettle cutting using the validity index neural network," International 
Journal of Modeling and Simulation, Vol. 16, No. 4, pp. 210-217, 1996. 

[38] D. K. Ranaweera, N. F. Hubele and A. D. Papalexopoulos, "Application of radial 
basis function neural network model for short-term load forecasting," IEE 
Proceedings for General Transmission Distribution, Vol. 142, No. 1, pp. 45-50, 
January 1995. 

[39] R. Polikar, Multiresolution wavelet analysis of EEG signals for the detection of 
Alzheimer's disease, M. S. Thesis, Iowa State University, Ames, Iowa, 1995. 



94 

[40] A. P. Berens and P. W. Hovey, "Quantifying NDE capability for damage tolerance," 
Flaw Detection Reliability Criteria - Methods and Results, Vol. 1, pp. 25-35, April 
1984. 

[41] W. D. Rummel, P. H. Todd, Jr., S. A. Frecska and R. A. Rathke, "The detection of 
fatigue cracks by nondestructive testing methods," NASA Cr- 2369, February 1974. 

[42] Subramanya G. K., Probability of detection model for magnetostatic nondestructive 
evaluation, M. S. Thesis, Iowa State University, Ames, Iowa, 1994. 

[ 43] E. Parzen, "On Estimation of a probability density function and mode," Ann. Math. 
Statist., Vol. 3, pp. 1065-1076, 1962. 

[44] D. F. Specht, "Probabilistic neural networks," Neural Networks, Vol. 3, pp. 109-118, 
1990. 

[ 45] J. Moody and C. J. Darken, "Fast learning in networks of locally tuned processing 
units," Neural Comput., Vol. 1, pp. 281-294, 1989. 




