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ABSTRACT

Graphics Processing Units (GPUs) have become increasingly popular for graphical and general

purpose applications. Researchers rely on simulators to evaluate potential hardware improvements.

Existing GPU simulators simplify details of the architecture which leads to inaccuracies at low

levels of abstraction. To properly evaluate the effects on power, performance and area, more

accurate simulators are required. In this paper we present a new configurable design created with

a hardware description language to model the Nvidia Tesla architecture at the register transfer

level. Parameters and modularity allow for new hardware designs to be generated quickly. This

new design is capable of simulating a subset of parallel thread execution instructions. Using our

new design, we provide insight in how scaling the number of processors affects performance and

power per computation. A synthesizable design modeled after the Tesla architecture allows users

to better evaluate the effectiveness of architectural changes by comparing commercial simulation

and synthesis results.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Power, performance, and area (PPA), are three of the most important metrics to a hardware

engineer. Hardware engineers aim to design systems which meet performance requirements while

minimizing power and area overhead. These three metrics are tightly connected, and their trade-

offs are well analyzed in the design of computing platforms. For example, a performance increase

may come with an increase in area. This increase in area can result in fewer processors on a chip,

and end in a net loss of performance. Power often scales with area, and is a growing concern as

transistor sizes continue to shrink. GPUs contain a lot of duplicate instances, so a minor change

can have a large impact on a design. To effectively evaluate changes to hardware, engineers need

to evaluate the effects those changes have on PPA.

In 2001 most GPUs took advantage of a single instruction multiple data (SIMD) execution model

[2]. GPUs processed vectors of data in parallel. In 2006, Nvidia released the Tesla architecture which

changed the execution model from SIMD to single instruction multiple thread (SIMT) [1]. Newer

architectures such as the Pascal architecture [3], released in 2016, expand upon the hardware, but

share many similarities with its 2006 predecessor. Both use the compute unified device architecture

(CUDA) to execute threads in parallel [4]. Although these architectures share many similarities,

specific details are left unknown to researchers. To fill knowledge gaps and better understand the

hardware, researchers and engineers rely on simulation tools to identify possible improvements.

Several GPU simulation tools exist to help software developers find inefficiencies and suggest

ways to improve their code [5, 6, 7]. To evaluate hardware changes, users require more detailed

designs to simulate [8, 9]. Abstract simulators struggle to provide accurate power and area esti-

mations. Synthesizable designs give more accurate power and area results, but require more detail

to model the same architectures. Current designs containing this level of detail deviate from the
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models they try to replicate or are not readily available. Improper use of these designs can lead

to incorrect conclusions [10]. There is a need for more accurate designs which can be simulated to

give further insight into the GPU design space.

1.2 Main Contributions

In this paper we present a new design for exploring the GPU design space. We present a

highly configurable and scalable general purpose GPU (GPGPU) modeled after the Nvidia Tesla

architecture. This model can be synthesized and used in cycle accurate simulation to estimate

power, performance, and area trade-offs using commercial software. The model supports a subset

of parallel thread execution (PTX) instructions to support a wide range of applications.

We demonstrate how our design can be used to determine the effectiveness of hardware changes.

A set of configured parameters is given to provide an implementation of the Tesla architecture.

Using our tool, we provide insight into how many streaming processors may be appropriate for

a single multiprocessor. We give a detailed analysis on how the number of streaming processors

can impact performance and reduce the amount of power required per computation. There are

many other configurations left unexplored which may provide further insight into positive hardware

changes.

Other papers, which will be discussed in Chapter 3, have presented similar designs modeling

the Tesla architecture. Our design differs by offering increased configuration support for easier

exploration. Some previous approaches have made simplifications which deviate from the design

they attempt to replicate. We try to model the Tesla architecture as accurately as possible with

the information that is available. Our design is fully synthesizable, allowing for accurate power and

area analysis. The source code for our model is available for anyone to use or expand upon [11].

1.3 Overview

Since our model is based off of an existing architecture, we will begin by describing the Tesla

architecture in Chapter 2. Chapter 3 will present additional information in the field which may
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be beneficial to the reader. We will then discuss the details of our design, and how it relates to

the Tesla architecture in Chapter 4. Lastly, in Chapter 5 we go into the results of our simulation,

and demonstrate how our design can be used to properly explore the GPU design space. There

we present a Tesla configuration and hardware exploration before closing with a conclusion and

possible future work.
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CHAPTER 2. BACKGROUND

In this chapter we discuss important background information which may be beneficial for readers

unfamiliar with GPU architecture or architecture design. A brief introduction about GPUs and the

CUDA programming model is given. We then explain some details about the Tesla architecture to

serve as a comparison for our own implementation.

2.1 GPUs and CUDA

GPUs have been quickly growing in popularity since the introduction of general purpose appli-

cations [12]. The highly parallel architecture is well suited for problems which can be broken into

several independent pieces. GPUs have grown from focusing on rendering objects to a screen, to

solving complex differential equations and implementing artificial intelligence [13]. Since the release

of CUDA, Nvidia GPUs have taken advantage of a SIMT execute model. Threads executing the

same functions run in parallel to reduce the total execution time. SIMT models benefit from shar-

ing an instruction cache and decode unit. Additionally, SIMT models remove some responsibilities

from the programmer such as scheduling and divergence [1].

2.1.1 CUDA Programming Model

The CUDA programming model partitions GPU programs, called kernels, into grids and blocks

[4]. These grids and blocks can be one, two, or three dimensional. A Grid contains an array of

blocks which are distributed to streaming multiprocessors to execute threads within a block. Blocks

are partitioned further by the hardware into warps which contain thirty-two threads. Programmers

specify grid and block dimensions, and can influence how warps are partitioned. Threads belonging

to a warp are grouped together, and execute in parallel with one another. Memory access latency

caused by cache misses are hidden by zero overhead swaps to other warps [14].



5

The Tesla architecture, as with all Nvidia GPU architectures released after Tesla, support

the CUDA programming model. Newer architectures continue to use CUDA as the programming

model scales well with decreasing transistor sizes [15]. In a SIMT execution model, all threads in

a warp execute the same instruction with that threads particular data. Thread indices, unique to

the thread in a block are used along with the block index to access specific data for that thread.

The SIMT model is perfect for GPUs, as only one instruction cache and decode unit is required

for parallel execution on a streaming multiprocessor. This shared hardware reduces overhead and

allows more processors to fit onto a single die.

2.2 Nvidia Tesla

This paper presents a GPGPU design to evaluate the effects of hardware changes on PPA. Since

our implementation is modeled after the Tesla architecture, it is important to know some details

about the hardware. In this next section we discuss these details, and provide some background

information in GPU related hardware problems.

2.2.1 Basic Architecture

Figure 2.1 shows one of eight texture processing clusters (TPCs) on a Tesla GPU [1]. Blocks

are distributed to the streaming multiprocessors (SMs) on the TPC units. These blocks are further

split into warps. Each SM contains a scheduling unit which issues warps to the pipeline for execu-

tion. The Tesla architecture contains eight streaming processors (SPs) per multiprocessor. These

processors share two special function units (SFUs). Each multiprocessor contains a shared memory

for fast memory accesses among threads in a block.

The overall pipeline to execute threads in a GPU is similar to a simple CPU. A shallow pipeline

depth along with a simpler instruction set architecture (ISA) allow for less complicated and smaller

hardware. Several streaming processors exist in parallel on a streaming multiprocessor in order to

execute threads belonging to the same warp in parallel. With a warp size of thirty-two threads,

the warps are split into four execution rows which execute one after the other. Since only one warp
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Figure 2.1 Nvidia Tesla Texture Processing Cluster from [1]

is provided at most every four pipeline cycles, the Tesla warp scheduler uses a clock at one fourth

the frequency to reduce power consumption. More recent architectures contain enough streaming

processors to execute all threads in a warp simultaneously, removing the need for execution rows.

Unlike CPUs, register files in a GPU can exceed the size of the L1 caches. GPU register files

need to be large to support zero overhead warp switching. Each thread reserves its own registers

in the register file. Newer architectures can support as many as 2048 active threads in a single

multiprocessor. To reduce the latency of accessing these register files, the register file is partitioned

to processor specific groups. Base register addresses are tracked by each warp to provide the

indexing into the register file for the executing threads. This index is the same for all threads in a
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warp execution row, as each thread indexes a separate partition of the register file. The operands

of the register file are then passed to the respective streaming processors to process the data before

writing results to memory or back to the register file.

2.2.2 GPU Related Problems

Two major problems which GPUs face in comparison to single core CPUs are thread divergence

and non-coalesced memory accesses. Software developers must be aware of both of these issues to

maximize the performance of their GPU applications. Multicore CPUs use a multiple instruction

multiple thread or MIMT execution model. Thread divergence is a problem unique to the SIMT

execution model. Additionally, memory access contention on a multicore CPU can often be solved

with additional memory banks. These memory banks scale poorly with increasing parallel cores,

so alternative solutions are implemented on GPUs.

In a SIMT execution model, each thread currently executing, is issued the same instruction.

Thread divergence occurs when these threads branch to separate execution paths. Each path can no

longer be executed at the same time, as they require different instructions to be read. Supporting

additional read ports to instruction memory is expensive, and results in fewer processors per die.

Instead, during thread divergence, only one path is executed at a time. When the current path

reaches the designated convergence point, the other path executes. After both have reached the

convergence point, the paths merge, returning to normal execution. Threads not currently on the

executing path are masked, resulting in no data changes. This causes a reduction in performance

as not all processors are fully utilized. Since the pascal architecture release in 2016, threads in the

same warp are capable of executing separate paths simultaneously, reducing the performance loss.

A common solution for thread divergence is to use a stack to track information of various paths

[16]. The stack tracks a convergence PC, the PC of the other path, which threads are on the other

path, and a state. The taken path is usually executed first. When the path reaches the convergence

point, the not taken path begins to execute. Once both paths reach the convergence point, the

threads in both paths merge back together, and the stack entry is popped. The warp stack can
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handle any combination of nested divergence. In the worst case, each thread diverges onto its own

path. This will require a warp stack with as many entries as there are threads in a warp.

Non-coalesced memory accesses occur when threads executing in parallel issue a memory request

which take additional cycles to service [17]. CPUs often use banks for expanding the number of

read ports on the cache. GPUs partition the cache into banks, similar to how the data of a cache

line is separated into blocks and indexed by a block offset. There are as many bank partitions in the

cache as there are streaming processors on a multiprocessor. This allows for all executing threads

to perform reads and writes simultaneously as long as they dont request different addresses from

the same bank. Same bank accesses are allowed if the data requested is the same. If two or more

threads request access to the same bank with different addresses, then a non-coalesced memory

access occurs. Since the requests cant be serviced in parallel, non-coalesced memory accesses add

to the total time of execution.

To distribute load data and identify non-coalesced memory accesses, hardware is needed to

detect and distribute data based on the thread requests. One way to handle a non-coalesced

memory access is to use a first in first out (FIFO) queue to request loads and stores to memory.

The benefit of this approach is that non-coalesced accesses can be dealt with while other warps

execute. Additional hardware is necessary in the condition that both a memory request and another

warp in write back need to write results to the register file at the same time.
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CHAPTER 3. RELATED WORK

Nvidia introduced the Tesla GPU architecture in 2006 [1]. This architecture unified the vertex

and pixel processors to enable more active hardware across a range of applications. A more recent

example is the Pascal architecture released in 2016 [3]. Both of these architectures are built around

the compute unified device architecture (CUDA) [4]. CUDA is a scalable architecture which takes

advantage of shrinking transistor sizes so more devices can be fitted onto a single die [15]. The newer

architectures share many similarities between their predecessors [18]. These GPUs execute graphics

and general purpose applications by launching kernels from a host CPU [14, 12]. Unfortunately,

specific hardware details and design decisions are kept secret. This presents a problem to newcomers

looking to learn, and researchers wanting to suggest hardware improvements.

In order for researchers to effectively explore the design space, they rely on simulators with

various levels of abstraction. By simulating trusted benchmarks [19, 20, 21, 22], researchers can

discover ways to improve the hardware. Abstract, but faster, simulators exist [7, 23, 5, 6] which

are useful for researching hardware and software improvements. Careful use of these tools are

important as misuse can lead to incorrect results [10]. More accurate simulators can be run on

FPGAs [24, 25, 26, 27], and operate on many workloads when connected to a host CPU [8, 28].

These implementations can differ from the desired hardware, so the correct device needs to be

used. Statistical and visual approaches have also been taken to help identify bottlenecks, and

suggest improvements to compute systems or code [17, 29, 30].

GPUSim [7] provides a detailed simulator for executing CUDA applications. This model is

highly configurable and closely models modern graphics architecture. In addition to identifying

performance bottlenecks in code, the configurability can provide insight for potential hardware

improvements. GPUSim contains a ported version to gem5 as well [23]. These models are not

synthesizable, and cannot provide detailed power and area analysis. GPUSim can be used for
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suggesting possible hardware improvements, but more detailed analysis is required to confirm the

value of these improvements.

Flexgrip offers a configurable GPU modeled after the Tesla architecture [9]. This model can be

run on a FPGA using a subset of parallel thread execution (PTX) instructions to execute CUDA

Kernels. While Flexgrip is synthesizable, it is not open source or available to all researchers.

Flexgrip was designed to accelerate GPU applications on a FPGA. The design contains some

configurable parameters to support multiple FPGA designs, but not enough to easily explore the

entire GPU design space.

Nyami is another synthesizable design which models general purpose GPUs on a FPGA [8].

Nyami contains full compiler support to execute trusted benchmarks. Since the design is modular,

it can be used to evaluate hardware changes. Nyami resembles a MIMT execution model to remove

the hassle of thread divergence. As a result, the concept of warps does not exist. Since the model

differs from modern GPU architecture, users need to be careful when evaluating potential hardware

improvements.

Current GPU architectures run many threads in parallel, and swap between threads to hide

memory latency [31, 32, 33]. Topics such as thread divergence [34] and warp scheduling [16] are

examples of problems now solved by hardware. Various implementations have been compared to

explore the strengths and weaknesses between hardware architectures [35, 36]. Software applications

are an important consideration when designing hardware. The CPU and GPU need an interconnect

for communicating workloads [37, 38, 39]. Data movement from CPU to GPU is a growing concern

as GPU applications may execute faster, but the time it takes to move the data can result in more

execution time overall [40]. Additionally, the hardware must support various programming models

and applications [41, 42].

Without careful consideration, results from existing designs can lead to incorrect conclusions. To

reduce research time and provide more accurate results, a new design is beneficial. Nvidias most

recent architectures share many similarities with the Tesla architecture. A synthesizable design

modeling the Tesla architecture would allow users to better understand current GPU hardware.
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To make this design efficient for research, many desirable parameters should be easily configurable.

We propose an implementation of this design to serve as an effective educational and research tool

for exploring the GPU design space.
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CHAPTER 4. DESIGN DETAILS

This chapter covers the design details and decisions for our configurable GPGPU. We first

present a top level model of our design, and how it compares to the Tesla architecture. The details

of the pipeline are discussed next. Then we describe how we solved GPU specific problems such

as thread divergence and non-coalesced memory accesses. We end discussion of the design by

describing the parameters which can be configured, and how to properly simulate the model.

4.1 Design Comparison

Figure 4.1 Configurable GPGPU Model
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Figure 4.1 shows the top level model of our configurable GPGPU. The most notable differences

between our design and the Tesla model is the removal of the texture processing cluster, special

functional units, and the cache hierarchy. We wanted to provide a base implementation to improve

upon, and therefore we decided to remove these features. With the removal of the cache hierarchy,

threads will not miss on the shared memory cache. These features may be a good starting point

for future work.

Several streaming multiprocessors exist in parallel. Each of the multiprocessors contain a single

warp scheduler, instruction, constant and shared memory cache, as well as a single decode unit.

Streaming processors exist on multiprocessors to execute threads in a warp. The global scheduler

serves as the interconnect between the CPU and GPU, and is responsible for distributing blocks to

the multiprocessors.

We chose to implement a global scheduler as an easy way to distribute blocks to the streaming

multiprocessors. This relieves the user from the burden of having to do it manually. Instead

the user provides information about the kernel, the data to process, and the rest is taken care of

automatically. When blocks are sent to the multiprocessors to initialize, the warps are created

automatically as well. We do not recommend including the global scheduler during synthesis.

Instead we recommend only to synthesize one multiprocessor to reduce total synthesis time.

4.2 Pipeline

The pipeline was broken into four major stages, five including scheduling. These stages can

be seen in Figure 4.2. Blocks and warps are first created in the warp unit. This unit then passes

the warps to the rest of the pipeline for execution. All threads of a warp currently in the pipeline

execute the same instruction on their specific register values. The results are then written to

memory or back to the register file for further processing.
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Figure 4.2 Configurable GPGPU Pipeline for a streaming multiprocessor

4.2.1 Warp Unit

The warp unit contains all the information about the blocks and warps currently active on the

multiprocessor. Warps track information about the current PC, thread mask, base register address,

warp state, and warp ID. A warp scheduler selects which warp should enter the rest of the pipeline.

The selected warp will then pass its information to the fetch stage.

Warps are broken into rows of execution depending on the number of threads per warp and

the number of processors available on a multiprocessor. The Tesla architecture requires four rows

of execution as there are thirty-two threads in a warp, but only eight streaming processors. The

warp scheduler only needs to provide a new warp when all rows of execution have completed for the

previous warp. For configurations where the warp size matches the number of streaming processors,

the concept of warp rows is removed.

We chose to implement a round robin scheduling algorithm for the warp scheduler. This is

different than the Tesla architecture which prefers a prioritized greedy algorithm which only swaps

warps on stalls or if higher priority warps are ready. The benefits of a round robin scheduler is the

ability to keep the pipeline busy, while completely removing the need for forwarding logic. Without

forwarding logic, the same threads of a warp cannot exist in multiple locations of the pipeline

simultaneously.
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4.2.2 Fetch

Since the same threads cannot occupy different stages of the pipeline, a shorter pipeline consist-

ing of four main stages was chosen. Fetch is the first stage encountered after the warp is selected

by the scheduler. This stage simply fetches the instruction pointed at by the PC of the selected

warp. Additionally, if multiple rows of threads exist in a warp, an offset may be added to the warps

base register address to properly index into the register file.

4.2.3 Decode

Decode is the next stage of the pipeline. In the decode stage, the fetched instruction is decoded

to produce the required control signals. Since the control signals are not necessary for retrieving

source operands from the register file, the operands are also gathered in the decode stage. The

register file was partitioned for each streaming processor that exists on a multiprocessor. The

splitting of the register file allows for each thread currently executing to retrieve or store operands

in parallel.

Each thread belonging to the same row of a warp, index the same address in their own partition

of the register file. A base register address is provided by the warp scheduler and offset by the

source and destination bits of the instruction. The base register address allows for each thread to

reserve a variable amount of registers, the same as the Tesla architecture. The total number of

registers a thread can reserve is limited by the source and destination widths of the instruction.

This value can be configured to provide for more registers if needed.

4.2.4 Execute

After decode, the operands are sent to the execution stage. Here each of the streaming processors

are instantiated, each receiving their respective operands. Supported instructions can be found in

Table 4.1. These instructions were chosen from a subset of PTX compute capability 2.0 instructions

[4]. Currently, only integer operations are supported. Some instructions were added or modified to

better implement a general purpose application.
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In addition to streaming processor specific hardware, some hardware in the execution stage is

shared among all processors. This hardware includes the L1 shared memory and constant caches. A

branch and load store evaluation unit is also provided for determining if there is thread divergence

or non-coalesced memory accesses. These issues will be addressed in Section 4.3.

Table 4.1 Supported Instructions

Instruction Representation Description

NOP 000000-xxxxx-xxxxx-xxxxx-xxxxx-000000 No operation

MAD 000000-ddddd-11111-22222-33333-000001 Multiply add

MUL 000000-ddddd-xxxxx-22222-33333-000010 Multiply

ADD 000000-ddddd-11111-22222-xxxxx-000011 Add

SUB 000000-ddddd-11111-22222-xxxxx-000100 Subtract

SLT 000000-ddddd-11111-22222-xxxxx-000101 Set if less than

SGT 000000-ddddd-11111-22222-xxxxx-000110 Set if greater than

SHR 000000-ddddd-11111-22222-xxxxx-000111 Shift register right

SHL 000000-ddddd-11111-22222-xxxxx-001000 Shift register left

NOT 000000-ddddd-xxxxx-22222-xxxxx-001001 Logical NOT

AND 000000-ddddd-11111-22222-xxxxx-001010 Logical AND

OR 000000-ddddd-11111-22222-xxxxx-001011 Logical OR

XOR 000000-ddddd-11111-22222-xxxxx-001100 Logical XOR

MV 000001-ddddd-11111-xxxxx-xxxxx-xxxxxx Move register to register

MVI 000010-ddddd-xxxxx-iiiii-iiiii-iiiiii move immediate to register

LD 000011-ddddd-11111-xxxxx-xxxxx-xxxxxx Load from shared memory

LDC 000100-ddddd-11111-xxxxx-xxxxx-xxxxxx Load from constant memory

LDS 000101-ddddd-11111-xxxxx-xxxxx-xxxxxx Load from special register

BEQ 000110-xxxxx-11111-lllll-lllll-llllll Branch equal to zero

BNE 000111-xxxxx-11111-lllll-lllll-llllll Branch not equal to zero

ST 001000-xxxxx-11111-22222-xxxxx-xxxxxx Store to shared memory

SSY 111101-xxxxx-xxxxx-lllll-lllll-llllll Set synchronous point

BAR 111110-xxxxx-xxxxx-xxxxx-xxxxx-xxxxxx Barrier synchronization

EXIT 111111-xxxxx-xxxxx-xxxxx-xxxxx-xxxxxx Exit warp

It is important to note that memory accesses to L1 or the constant cache occur in the execution

stage as well. To prevent latency issues, address offsets must be computed in separate cycles using

the add instruction. This decision was made to reduce the number of pipeline stages from five to

four. The stage reduction reduces the amount of wasted cycles if no other warps are ready to enter
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the pipeline. This allows the same warp currently executing to re-enter the pipeline in fewer cycles.

With four pipeline stages, two active warps are enough to fully utilize the pipeline hardware.

4.2.5 Write Back

The final stage of the pipeline is the write back stage. In this stage, the control signals choose

which data to store into the register file. If a thread is masked by the warp mask then no value is

written back for that thread. Additionally, the write back stage signals the warp unit to update.

The warp unit updates the warp that was in the pipeline with the next PC to execute, changes to

the thread mask, and the state of the warp.

For configurations where the warp executes in rows, the warp executing is only updated when

the last row is in the write back stage. This was done to prevent warp rows from taking separate

paths, say if one branched but the other did not. In this case we would not want the first row to

re-enter the pipeline as it would be executing the incorrect instructions. Furthermore we did not

want the rows to track their own PC as the Tesla architecture did not support this feature.

4.3 Thread Divergence and Memory Accesses

This next section is about the problems faced in GPUs which are not common to CPUs. These

problems include warp divergence and non-coalesced memory accesses. The hardware of the Tesla

architecture was taken into consideration in the solution to each of these problems. Solutions to

these problems provided by other papers were also taken into consideration [8, 9].

4.3.1 Thread Divergence

Thread divergence occurs when threads belonging to the same warp take a different path of

execution. A branch is a common example where one thread may take the branch, but another

thread may not. Thread divergence is an issue for SIMT architectures as multiple threads execute

the same instruction in parallel. If the paths of the threads diverge, then multiple instructions

are required for the threads to execute simultaneously. The cost to provide these instructions can



18

quickly become large. A simple solution used by the Tesla architecture is to execute the diverging

paths one at a time.

A set synchronous point instruction (SSY) is used to mark a convergence point where the

diverging threads will merge back to the same path. Whenever a potentially divergent instruction is

encountered, a SSY instruction is required prior to the divergent instruction to setup a convergence

point. A warp stack is used to keep track of diverging thread information. Each warp contains

a warp stack which tracks the PC set by the SSY instruction, a PC for the threads on the path

not currently executing, a thread mask to mark threads on the other path, and a state. The state

determines which path is being executed.

When a branch causes threads to diverge, an entry is pushed onto the warp stack. The threads

on the taken path execute first. When these threads reach the convergence point marked by the

SSY PC, the warp switches to execute the not taken path. The current thread mask will be swapped

with the thread mask on the warp stack to enable and disable the appropriate threads. When the

not taken path reaches the convergence point, both paths merge to execute in parallel again. This

is done by ORing the current thread mask and the thread mask on the warp stack. When merging,

the top entry of the warp stack is popped.

4.3.2 Non-Coalesced Memory Accesses

Another common problem with GPUs is non-coalesced memory accesses. In order for all threads

to load or store data to memory in parallel, the shared memory cache is split into banks. One bank

exists for each streaming processor. These banks split up the cache in the same way that a block

offset splits entries in a cache line. The least significant bits of the address determine the bank

to access. Contention for one of the banks can occur when two or more threads need to access

the same bank on the same cycle. If the threads accessing the same bank are not using the same

address, then a non-coalesced memory access occurs. As a result, it will take multiple cycles for all

threads to perform the desired request on the memory.
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A common solution to this problem is to use a FIFO queue to stagger the memory requests.

This solution causes more issues as a load request may finish in the same cycle that another thread

is trying to write back to the register file. The result is new contention for storing write back data

or the memory loaded value into the register file. Again this could be solved by introducing another

FIFO queue to stagger writes to the register file.

An alternative solution was chosen for the design of our GPGPU. We decided to utilize the warp

stack to diverge threads during non-coalesced memory accesses. This would cause the threads that

were unable to access the cache on the previous attempt, to do so next time the warp enters the

pipeline. Once all threads have accessed the cache, then normal execution can resume.

The downside to this approach is that the shared memory cache may be idle when it could be

handling a non-coalesced access. This approach however greatly reduces the amount of additional

logic required to handle non-coalesced memory accesses. Additionally the warp stack which already

exists offers a zero cost solution beyond detecting the access issue.

4.4 Configurability

This section outlines what parameters can be configured to implement various GPGPU designs.

Table 4.2 shows all of the parameters which can be configured. By changing the associated value,

the hardware will update automatically to match the desired configuration.

For more processing power the number of multiprocessors and streamining processors can be

modified with the NUM MP and SP PER MP parameters. Grid and block dimensions are sepa-

rated into a DIM and DIM WIDTH parameter. This is because the x, y, and z dimensions are

packed into a single register value. The DIM WIDTH parameter specifies the number of bits used

to represent an individual dimension. By default these dimensions are large, but can be increased if

needed. The number of active blocks and warps supported by a multiprocessor can also be changed.

All of the caches can be configured. The caches, as well as the register file partitions, were

implemented using block rams. Only the instruction and register file data widths can be modified,

as the constant and shared memory cache entries should fit into the register file. Information about
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the instruction can also be easily modified to support new instructions without needing to worry

about breaking already existing hardware. The source and destination widths are beneficial for

allowing more or less registers to be allocated per thread.

Table 4.2 Configurable Parameters

Parameter Description

SYNTHESIS One when synthesizing, removes simulation specific hardware

GRID DIM Combined grid dimension width for x, y, and z dimensions

BLOCK DIM Combined block dimension width for x, y, and z dimensions

GRID DIM WIDTH Individual grid dimension width

BLOCK DIM WIDTH Individual block dimension width

NUM PARAMS Number of parameter registers

NUM MPS Number of streaming multiprocessors

SP PER MP Number of streaming processors per multiprocessor

NUM BLOCKS Maximum number of active blocks per multiprocessor

NUM WARPS Maximum number of active warps per multiprocessor

WARP WIDTH Number of threads in a warp

I DATA WIDTH Data width of instruction cache

I ADDR WIDTH Number of bits in instruction address

R DATA WIDTH Data width of register file

R ADDR WIDTH Number of bits in register file address

C ADDR WIDTH Number of bits in constant cache address

L ADDR WIDTH Number of bits in shared memory cache address

CONTROL WIDTH Number of control signals

OP WIDTH Number of bits in opcode

FUNC WIDTH Number of bits in function Code

DEST WIDTH Number of bits in destination

SRC WIDTH Number of bits in source

IMM WIDTH Number of bits in immediate

Some limitations exist with these parameters. Most should be specified in powers of two for

efficient hardware utilization. The L ADDR WIDTH specifies the total address width of the shared

memory, not the address width of each bank. The R ADDR WIDTH on the other hand specifies

the address width for each partition of the register file. The total space is the number of bits in

the address multiplied by the number of streaming processors per multiprocessor.
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4.5 Simulation

In order to simulate the design the user must initialize information about the kernel. Information

about the kernel is gathered from the global scheduler by reading a kernel cache. Similar to the

instruction cache, the kernel cache reads kernel specific instructions to decode information about

the kernel. These instructions are listed in Table 4.3. The kernel cache should be initialized with

the kernel information using a memory file. This can be done by modifying a mem file type with

cache entries defined as hexadecimal values separated by white space.

Table 4.3 Kernel Instructions

Instruction Representation Description

GRID 0000-dd-zzzzz-zzzzz-yyyyy-yyyyy-xxxxx-xxxxx Grid dimensions

BLOCK 0001-dd-zzzzz-zzzzz-yyyyy-yyyyy-xxxxx-xxxxx Block dimensions

PARAM 0010-dd-ddddd-ddddd-ddddd-ddddd-ddddd-ddddd Parameters

INSTR 0011-ii-iiiii-iiiii-iiiii-iiiii-iiiii-iiiii-iiiii Single instruction

CONST 0100-dd-ddddd-ddddd-ddddd-ddddd-ddddd-ddddd Single constant

DATA 0101-dd-ddddd-ddddd-ddddd-ddddd-ddddd-ddddd Single piece of data

WARP 0110-dd-ddddd-ddddd-ddddd-ddddd-ddddd-ddddd Warps per block

REG 0111-dd-ddddd-ddddd-ddddd-ddddd-ddddd-ddddd Registers per thread

START 1111-xx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx-xxxxx Start distributing

The GRID and BLOCK instructions specify the grid and block dimensions of the kernel. The

PARAM instruction is used to setup pointers to memory locations and is stored in special registers

contained by the blocks. INSTR, CONST, and DATA instructions specify data to store to the

respective caches. Only one thirty-two bit value can be stored at a time, and subsequent values

should be given by multiple instructions. WARP specifies the number of warps per block. This

instruction makes it easier to recognize how many warps need to be allocated for a block. REG

specifies the number of registers reserved in the register file by each thread. START will tell the

global scheduler to begin distributing blocks to multiprocessors ready to receive them.

When distributing blocks to the multiprocessors, warps begin execution as soon as they are

initialized. The warp unit can initialize new warps belonging to the same block while other warps

execute. Warps are initialized with the correct base register address, PC, thread mask, thread IDs,
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warp, and block IDs. The block initialized holds information about the parameters, grid and block

dimensions, and tracks the state of barrier synchronization.
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CHAPTER 5. Results

In this chapter we present our synthesis results for various configurations of the GPGPU. We

first present a configuration that resembles the original Tesla architecture. Next we show how

re-configuring the number of streaming processors affects power, performance, and area. After

analyzing the results we wrap up with a conclusion and possible future work.

5.1 Tesla Configuration

The first configuration of our GPGPU closely resembles that of the Tesla architecture. The most

important parameters and their configurations are shown in Table 5.1. The number of processors per

multiprocessor was set to eight to match the Tesla architecture. We chose sixteen multiprocessors

as the Tesla architecture contains eight TPC units, each with two multiprocessors. The maximum

number of active blocks and warps on a multiprocessor was set to four and sixteen respectively.

These values were chosen to allow for a maximum of 512 active threads per multiprocessor. The

address widths of the caches and register files were reasonably chosen to support 512 active threads.

Table 5.1 Tesla Configuration

Parameter Value

NUM MPS 16

SP PER MP 8

NUM BLOCKS 4

NUM WARPS 16

WARP WIDTH 32

I ADDR WIDTH 8

R ADDR WIDTH 9

C ADDR WIDTH 6

L ADDR WIDTH 10

The Tesla configuration was synthesized using Cadence Encounter with a 65nm process. We

chose to use a clock frequency of 300 MHz for this experiment, but the design was valid for clock
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frequency of up to 700 MHz. Table 5.2 shows some synthesis results for this design. The slack

was a positive value meaning a faster clock could have been used. A total power consumption of

11.55W was observed. The lower power consumption is due to the lack of a cache hierarchy, special

function units, and other specialized hardware we chose not to implement. The design consumed a

total of 4.912 million cells from the 65nm library. These cells resulted in a total area consumption

of 25.41 mm2.

Table 5.2 Tesla Synthesis Results for 300 MHz Clock

Slack Power Cells Area

2 ps 11.55 W 4.912 M 25.41 mm2

These results appear to be reasonable given the limitations of the design. The critical path

was observed to be through the multiply add unit as expected. Each module was synthesized

individually prior to the synthesis of the Tesla configuration, and no major issues were observed.

The next section demonstrates what can be learned from comparing the synthesis results of various

configurations.

5.2 Scaling Processors

One of the questions we wanted to explore was at what point it becomes beneficial to scale

the number of multiprocessors instead of the number of streaming processors. We ran synthesis on

configurations of four, eight, sixteen, thirty-two, and sixty-four streaming processors per multipro-

cessor. Since register file partitions were instantiated for each processor, we set the register address

width to maintain the same total number of registers. The synthesis results can be observed in

Figure 5.1.

Each simulation had a positive or zero slack, with the values ranging from zero to seven pico-

seconds. The results were recorded for individual multiprocessors rather than all sixteen. We

measured power, area, and the total number of gates. Gates here is the number of library cells

instantiated. The total number of transistors will be larger. We again chose a clock frequency of
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Figure 5.1 Synthesis results for variable number of streaming processors. Clock set to 300

MHz.

300 MHz to ensure fair synthesis results. We did not want the larger designs to close in on the

maximum possible frequency as additional buffer logic could skew power and area results.

When the number of streaming processors is low, the overhead from the rest of the hardware

makes up the majority of the streaming multiprocessor. As a result there is little power and area

increase as the number of processors increase initially. From sixteen to thirty-two this amount has a

more significant increase. The total area consumption for a single multiprocessor more than doubles

as the number of processors increase from thirty-two to sixty-four. Even though the number of

processors doubles, increasing the area beyond double means less than half the multiprocessors can

fit in the same area as the previous die. This results in a net loss in performance since there will

be fewer total streaming processors.

These results did not come as a surprise. When designing the hardware for detecting non-

coalesced memory accesses, we noticed the amount of hardware increased quadratically with the

number of processors. This is caused by needing to compare the requested shared memory addresses

with each other, as well as requiring more banks. This theory was further supported when the

critical path through the multiprocessor changed from the multiply add unit to the detection
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hardware and shared memory cache. We also note that there was some additional overhead required

to increase the warp size to sixty-four to support the sixty-four processors.

Because of this insight, we were able to determine that the optimal number of streaming pro-

cessors per multiprocessor was thirty-two. After adjusting for the increase in area, we were able to

determine the increase in the number of processors per unit area and the power reduction per pro-

cessor. These results can be seen in Table 5.3. We assume that adding additional multiprocessors

scales linearly. The reported values are in reference to the previous number of processors.

Table 5.3 Adjusted increase of number of processors and power reduction per processor

for doubling processors on a multiprocessor

SP Increase Increase in Processors Per Unit Area Reduction in Total Power Per Processor

4 to 8 83% 49%

8 to 16 81% 47%

16 to 32 32% 32%

32 to 64 -5% 8%

Each doubling of the number of streaming processors shows an improvement in the number

of processors per unit of area until doubling to sixty-four processors per multiprocessor. This is

caused by the area consumption more than doubling. All doublings saw a reduction in power per

processor in an equivalent amount of area. This is due to a larger ratio of power being spent on

processor execution rather than the overhead from the rest of the multiprocessors. At thirty-two

processors per multiprocessor, we recorded an improvement in the number of processors of 32% and

a reduction in power per processor of 32%. Adding additional processors leads to a performance

loss. For this reason, thirty-two processors per multiprocessors appears to be the best option.

5.3 Conclusion

Power, performance, and area are important metrics to consider in the design of hardware.

GPUs are massive and complex architectures which need detailed analysis to accurately determine

hardware improvements. Our configurable GPGPU is based off an early CUDA architecture, but

can be scaled to newer architectures as well. The design can easily be configured to realize various
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hardware changes. Designs can be synthesized using commercial software to provide PPA results.

The full source code is available for anyone to expand or try out their own designs [11].

Using this new configurable GPGPU, we were able to gain insight into GPU hardware. We

provided a base configuration to model the Tesla architecture. Additionally we were able to observe

how changing the number of processors per multiprocessor impacted the power, performance, and

area of the GPGPU. This insight allowed us to make conclusions about the optimal number of

streaming processors per streaming multiprocessors. Additionally, the synthesis results gave us a

better understanding of what gains we can expect by scaling the number of processors.

5.4 Future Work

We have only provided a base model to explore the GPU design space. There are several areas

which can be improved upon to more accurately represent current hardware. The major pieces

missing are rendering specific hardware support and a cache hierarchy. Expanding the ISA to

include special function units, floating point operations, or a more optimized execution pipeline

would be a great contribution to the current design.

Only a shared memory cache exists on the current architecture. Multiple levels of cache, texture

memory, and DRAM may be beneficial. While the current model can give insight into many

applications, a proper cache hierarchy may be necessary for others. This would allow the model

to properly simulate cache misses and lead to more accurate performance results. Additionally the

global scheduler could be changed to initialize the DRAM instead of the caches specific to each

multiprocessor. The DRAM could also serve as a location to store a frame buffer.

Our design was created to be easily configurable, but there is still room to simplify simulation

setup. To simulate the design, the user has to manually specify kernel details in a memory initial-

ization file. This can be tedious and prone to error. Compiler support would be a useful addition

to automatically generating a binary which can be run on our model. This would allow for trusted

benchmarks to be more easily ported and executed on the model.
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