## IOWA STATE COLLEGE

## Journal of Science

Published on the first day of October, January, April and July.

## EDITORTAL BOARD

FDitor-in-Chisw, R. E. Buchanan.
Assoolats Edmors: P. E. Brown, Secretary; O. J. Drake, A. H. Fuller, I. E. Melhus, E. A. Benbrook, P. Mabel Nelson, V. E. Nelson, E. W. Lindstrom, O. R. Sweeney.

Business Commixies: P. E. Brown, Chairman; A. H. Fuller, V. E. Nelson, Jay W. Woodrow.

All manuscripts submitted for publication should be addressed to R. E. Buchanan, Room 110, Central Building, Iowa State College, Ames, Iowa
All remittances should be addressed to P. E. Brown, Bus. Mgra, Boom 25 Hall of Agriculture, Iowa State College, Ames, Iowa
Single Copies: One Dollar; Annual Subscription Three Dollars; In Canada, Three Dollars and a Quarter; Foreign, Three Dollars and a Half.


## THE PHYSICAL-CHEMICAL PROPERTIES OF ALCOHOLGASOLINE BLENDS

III. THE A. S. T. M. DISTILLATION OURVES AND REID VAPOR PRESSURE

Luo M. Chitstensen, R. M. Hixon and Ellis I. Fulmer
From the Department of Chemistry, Iowa State College
Accepted for publication August 26, 1933
Within the last few years, the A. S. T. M. distillation data have become one of the most commonly used specifications for motor fuel. These temperature specifications are changed to meet seasonal conditions to give the higher test gasoline of winter and the less volatile gasoline of summer. Aside from the anti-knock qualities, the distillation characteristics are also the major differences between the premium, regular and competitive grades of fuels sold at any one season.

The correlation of motor performance with the A.S. T. M. distillation curve for the fuel has resulted from the research work of many individuals. A summary and bibliography of this is given in the recent paper by Blair and Alden (1). While the automotive engineer and petroleum technologist are not in complete agreement as to what these specifications should be for the fuel to give maximum motor performance the following general statement is frequently given.

1. The temperature of distillation of the first 10 per cent of the fuel is a relative measure of its starting qualities. This fraction will also be a relative measure of the loss of fuel by evaporation during storage.
2. The temperature of distillation of the first 30 per cent of a fuel is a relative measure of the acceleration qualities of a fuel. This fraction also determines the performance of a cold motor on choke.
3. The temperature of distillation of the first 60 per cent of a fuel is a relative measure of the performance of the hot motor under driving conditions.
4. The temperature of distillation of the last 10 per cent of a fuel is a relative measure of the amount which will condense on the cylinder walls and cause crankcase dilution.

The distillation range for gasoline has changed greatly in the last twenty years. The gasolines of twenty years ago had a relatively low initial temperature and final temperature $\left(70^{\circ}-250^{\circ} \mathrm{F}\right.$.) The increased demand for gasoline has caused more of the higher fractions to be sold as gasoline with resulting increase in both the initial and final temperatures. The introduction of the cracking process has created greater supplies of the low boiling fractions with a resulting lowering of the initial temperature of present grade gasolines. The regular fuels available in the midwest have an initial temperature of about $100^{\circ} \mathrm{F}$. and a final temperature of about $400^{\circ} \mathrm{F}$., these temperatures varying somewhat with the season and variety of the gasoline.

## DISTILLATION DATA FOR ALCOHOL BLENDS

Alcohol forms azeotropic mixtures with various hydrocarbons. It can accordingly be predicted that a lowering of the distillation temperature will be caused by the addition of alcohol to gasoline. This prediction has been verified by Ross and Ormandy (2) for British gasolines, by Schweitzer (3) for French gasolines, by Spausta (4) for Austrian gasolines and by Bureau of Standards (5) for American gasolines.

Samples of twenty different brands of gasoline sold commercially in the midwest have been examined in this laboratory. The data reported in table 1 for varying concentrations of alcohol in gasoline are typical of the results found for all the gasolines investigated. The data of Ross and Ormandy (2) have been plotted in figure 1 and the data of table 1 if plotted in the same manner give similar distillation curves. The data of Brown (6) are the only published data which are not in complete agreement with


Fig. 1. Comparison of the A. S. T. M. distillation curves for a premium gasoline, (C) a lower grade of gasoline, (A) and a 10 per cent alcohol blend with the latter gasoline (B). Data taken from Ross and Ormandy. the above, a higher initial temperature being reported by him ${ }_{B}$ for the alcohol-gasoline mixtures than for the original gasoline. In using the A. S. T. M. method, the initial boiling point recorded is a function of the proportion of the low boiling constituents as well as their boiling point. This may account for the higher initial point reported by Brown. This increase in the initial temperature of distillation of the alcohol blends might also be obtained by using gasolines very poor in low boiling constituents, but it certainly is not characteristic of the commercial grades of fuels in this or in the foreign countries from which data are available.
As pointed out above, the A. S. T. M. distillation data for a fuel can be used as a qualitative measure of the performance of the fuel in a motor. The data of table 1 have been plotted in figure 2 in such a manner as to emphasize the influence of the alcohol content of the fuel on the temperature of volatilization of the successive fractions. The temperature of volatilization of the 10 per cent, 30 per cent, 60 per cent and 90 per cent fractions are of particular interest; referring to these fractions as plotted in figure 2 it is seen:

1. That the initial temperature of distillation and the temperature of the first 10 per cent distilling are not appreciably changed until alcohol concentrations of 40 per cent or more are reached. So far as volatility of fuel is concerned there should be no appreciable difference in starting qualities of the blends containing 10 per cent or 20 per cent alcohol and that of the original gasoline. The easier starting qualities reported for the alcohol blends particularly in winter weather are probably due to the fact that alcohol forms explosive mixtures with air over a wider range of
proportions than does gasoline. It would also be concluded that the alcohol blends would show no greater loss in storage than would the original gasoline.

TABLE 1. Influence of absolute alcohol concentration upon the A. S. T. M. distillation range of alcohol gasoline
Gasoline dried over $\mathrm{CaCl}_{3}$. Absolute aloohol dehydrated with CaO

| $\begin{gathered} \hline \text { Percentage } \\ \text { distilled } \end{gathered}$ | Alcohol content of blend percentage by volume |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nil. | 0.5 | 1.0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 | 15.0 |
|  | ${ }^{\circ} \mathrm{F}$ |
| Initial | 101 | 100 | 100 | 101 | 100 | 100 | 102 | 104 | 101 |
| 5 | 125 | 119 | 119 | 118 | 119 | 121 | 121 | 122 | 123 |
| 10 | 137 | 133 | 138 | 136 | 134 | 129 | 130 | 131 | 132 |
| 20 | 165 | 169 | 169 | 161 | 169 | 142 | 142 | 144 | 144 |
| 30 | 193 | 191 | 196 | 190 | 188 | 163 | 151 | $15 \%$ | 152 |
| 40 | 218 | 214 | 220 | 215 | 214 | 208 | 195 | 182 | 158 |
| 50 | 241 | 242 | 242 | 240 | 238 | 236 | 232 | 230 | 215 |
| 60 | 266 | 268 | 272 | 268 | 268 | 260 | 260 | 258 | 247 |
| 70 | 295 | 294 | 293 | 293 | 293 | 291 | 290 | 286 | 282 |
| 80 | 326 | 327 | 328 | 327 | 327 | 322 | 321 | 318 | 316 |
| 90 | 368 | 371 | 371 | 371 | 374 | 375 | 370 | 368 | 341 |
| Final | 400 | 401 | 398 | 398 | 400 | 398 | 400 | 401 | 394 |
| Residue \% | 2.0 | 2.0 | 1.5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| Recovery \% | 95 | 95 | 94 | 95 | 94 | 95 | 95 | 95 | 90 |
| Bar. mm. Hg. | 730 | 730 | 730 | 730 | 730 | 730 | 730 | 730 | 720 |
| Boom t. F. ${ }^{\circ}$ | 73 | 73 | 73 | 73 | 73 | 73 | 73 | 73 | 73 |

Table 1. continued

| $\overline{\text { Percentage }}$ distilled | Alcohol content of blend percentage by volume |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20.0 | 30.0 | 40.0 | 50.0 | 60.0 | 70.0 | 80.0 | 90.0 | 100 |
|  | ${ }^{\circ} \mathrm{F}$ |
| Initial | 103 | 100 | 104 | 106 | 108 | 138 | 145 | 150 | 173 |
| 5 | 123 | 125 | 130 | 138 | 140 | 148 | 154 | 169 | 174 |
| 10 | 133 | 134 | 138 | 140 | 154 | 162 | 168 | 171 | 174 |
| 20 | 145 | 150 | 160 | 165 | 165 | 167 | 171 | 172 | 174 |
| 30 | 154 | 163 | 165 | 167 | 169 | 170 | 172 | 173 | 174 |
| 40 | 159 | 167 | 167 | 169 | 171 | 171 | 173 | 174 | 174 |
| 50 | 163 | 169 | 169 | 171 | 172 | 172 | 173 | 174 | 174 |
| 60 | 233 | 180 | 171 | 172 | 173 | 173 | 173 | 174 | 174 |
| 70 | 271 | 266 | 239 | 173 | 174 | 174 | 174 | 174 | 174 |
| 80 | 306 | 300 | 295 | 284 | 176 | 175 | 174 | 174 | 174 |
| 90 | 330 | 338 | 342 | 325 | 336 | 176 | 175 | 174 | 174 |
| Final | 391 | 390 | 388 | 383 | 379 | 376 | 358 | 358 | 174 |
| Residue \% | 2.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.5 | 0.5 | 0.2 | 0 |
| Recovery \% | 97 | 97 | 98 | 98 | 97 | 98 | 98 | 98 | 98 |
| Bar. mm. Hg. | 720 | 733 | 736 | 733 | 736 | 736 | 736 | 730 | 730 |
| Room t. F. ${ }^{\circ}$ | 73 | 73 | 90 | 73 | 90 | 90 | 90 | 90 | 90 |

2. That the temperature of volatilization of the first 30 per cent of the fuel is much lower for the alcohol blends than for the original gasoline. The greater volatility of this fraction undoubtedly accounts for the better acceleration of the alcohol blends particularly noticeable in cold weather. The data of Ross and Ormandy, figure 1, offer a direct comparison in this respect of a third grade gasoline, a 10 per cent alcohol blend with the same third grade gasoline and a premium fuel.
3. That the temperature of volatilization of the first 60 per cent of the fuel is very slightly affected by 10 per cent alcohol and depressed approximately $30^{\circ} \mathrm{F}$. by 20 per cent alcohol. In harmony with this fact, very little difference can be observed in the power output of the hot motor under road conditions when operating on the 10 per cent blend or the original gasoline. The general observation has been that motor operation is smoother on the blend than on the original gasoline.


Fig. 2. The temperature of distillation of various fractions of alcohol-gasoline blends as a function of the alcohol concentration in the blend.
4. That the temperature of volatilization of the last 10 per cent of the fuel is not affected by 10 per cent alcohol but is lowered by addition of the 20 per cent or more of alcohol. The decrease in oil dilution reported for the alcohol blends is probably due to better combustion and lower flame temperatures rather than to greater volatility of this fraction of the fuel.

The slight effect of water on the A. S. T. M. distillation data for 10 per cent alcohol-90 per cent gasoline fuel is shown in table 2. The A. S. T. M. distillation data for a 10 per cent butanol- 90 per cent gasoline blend and for a 10 per cent acetone-90 per cent gasoline blend are also shown in table 2, as examples of blends not containing constant boiling mixtures.

TABLE 2. Influence of absolute ethanol, aqueous ethanol, n-butanol and acetone upon distillation range

| Percentage distilled | Gasoline | 10 per cent abs, ethanol 90 per cent gasoline | 10 per cent abs. ethanol 0.4 per cent $\mathrm{H}_{2} \mathrm{O}$ 89.6 per cent gasoline | 10 per cent n-Butanol 90 per cent gasoline | 10 per cent acetone 90 per cent gasoline |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{F}$ |
| Initial | 101 | 104 | 100 | 102 | 96 |
| 5 | 125 | 122 | 121 | 121 | 106 |
| 10 | 137 | 131 | 130 | 143 | 114 |
| 20 | 165 | 144 | 142 | 170 | 132 |
| 30 | 193 | 152 | 153 | 190 | 158 |
| 40 | 218 | 182 | 163 | 207 | 195 |
| 50 | 241 | 230 | 230 | 230 | 227 |
| 60 | 266 | 258 | 254 | 237 | 257 |
| 70 | 295 | 288 | 283 | 281 | 281 |
| 80 | 326 | 318 | 317 | 315 | 311 |
| 90 | 368 | 368 | 368 | 371 | 370 |
| Final | 400 | 401 | 397 | 393 | 396 |
| Residue \% | 2.0 | 2.0 | 1.5 | 1.5 | 1.5 |
| Recovery \% | 95 | 95 | 96 | 97 | 98 |
| Bar. Hg. mm. | 730 | 730 | 738 | 736 | 738 |
| Room t. ${ }^{\circ} \mathrm{F}$. | 73 | 73 | 73 | 73 | 73 |

REID VAPOR PRESSURE AND VAPOR LOCK
The vapor pressures of gasoline with varying percentages of absolute alcohol are recorded in table 3. These have been measured by the A. S. T. M. method using dry equipment instead of wet. It will be noted that

TABLE 3. Reid vapor pressure of alcohol blends

| Percentage <br> Ethanol in blend | Reid vapor pressure <br> (dry) lbs. sq. in. |
| :---: | :---: |
| 0 | 7.5 |
| 4 | 7.5 |
| 8 | 7.8 |
| 10 | 8.4 |
| 15 | 8.7 |
| 20 | 8.6 |
| 30 | 8.7 |
| 50 | 6.9 |
| 100 | Too small to measure |

the addition of 10 per cent or 20 per cent alcohol to gasoline causes an increase in the vapor pressure of approximately one pound per square inch. This has been used (6) as an argument that the alcohol blends will show a greater tendency toward vapor lock than the original gasoline.

Vapor lock has been troublesome only in the last few years as a result of the tendency to market gasolines with larger quantities of low boiling constituents. While it is encountered in the more volatile gasolines it can-
not be directly correlated with the vapor pressure of the gasoline. The recent work of Blair and Alden (1) would indicate that vapor lock is due almost entirely to the presence of small amounts of very low boiling constituents in the gasoline. They have presented evidence to show that vapor lock in a particular motor could be correlated with the vapor equivalent of seventy-seven different gasolines of variable composition where the vapor equivalent was expressed as:


Referring to figure 2, it will be seen that the addition of alcohol to gasoline does not alter appreciably the volatility of these low boiling constituents which would distill over in the first 15 per cent of the fuel. Attention should also be called to the fact that the high latent heat of alcohol would tend to decrease the tendency of the fuel to give vapor lock.

The data of table 4 would also support this conclusion. These data report the loss in weight on exposure to air for varying lengths of time of

TABLE 4. Evaponation rates of alcohol blends in open bealcers at $29^{\circ} \mathrm{C}$.
in hood (no draft)

| Alcohol in <br> blend <br> Vol. petg. | Evaporation loss percentage of original by weight |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 hour | 3 hours | 7 hours | 17 hours | 41 hours | 65 hours |  |
| 0 | 6.0 | 11.5 | 17.8 | 27.0 | 39.4 | 48.6 |  |
| 1 | 6.3 | 12.2 | 18.6 | 28.3 | 41.5 | 50.6 |  |
| 2 | 6.3 | 11.3 | 19.6 | 29.5 | 42.1 | 53.2 |  |
| 4 | 7.8 | 13.3 | 22.6 | 32.7 | 45.9 | 56.2 |  |
| 6 | 6.4 | 12.9 | 21.3 | 33.3 | 45.2 | 56.3 |  |
| 8 | 6.4 | 13.5 | 22.4 | 35.5 | 49.9 | 59.2 |  |
| 10 | 5.5 | 10.9 | 21.8 | 34.5 | $109 t$ | - |  |
| 15 | 5.4 | 11.6 | 19.7 | 32.1 | 56.7 | 65.9 |  |
| 20 | 5.3 | 11.3 | 19.4 | 32.3 | $53.6^{*}$ | 68.1 |  |
| 30 | 4.5 | 11.6 | 17.3 | 28.6 | $48.9^{*}$ | 66.4 |  |
| 50 | 3.5 | 8.3 | 14.3 | 24.1 | 41.5 | 61.6 |  |
| 100 | 0.7 | 2.3 | 4.5 | 10.2 | 24.6 | 42.0 |  |
|  |  |  |  |  |  |  |  |

Note: Separated into two phases.
a series of 150 cc. beakers containing 100 cc . of blends of varying percentages of alcohol in gasoline. These data are shown graphically in figure 3. It will be observed that for the first three hours the loss in weight due to evaporation decreased slowly as the alcohol concentration in the blend increased. After the more volatile fractions of the gasoline had vaporized (between 10 and 20 per cent) the rate of evaporation increased for those beakers containing alcohol, the 10 per cent and 20 per cent blends showing the maximum volatility after 17,41 , and 65 hours exposure. This relationship would be expected from the distillation curves but it could not be anticipated from the Reid vapor pressure measurements.

Observations regarding the tendency of various fuels to cause vapor lock have been made on a car particularly sensitive to this difficulty. While these observations have been qualitative in nature, they would indicate that vapor lock will not be encountered on blending alcohol with a gasoline which is itself free from this tendency. The addition of alcohol to a gasoline which would cause vapor lock in this motor did not appear either to increase
or decrease this tendency. It is apparent that if such difficulty were encountered it could be eliminated by purchasing gasoline of lower volatility for use in preparing the alcohol blends.


Fig. 3. The loss in weight by evaporation at room temperature from 100 gram samples of alcohol-gasoline blends at various periods of time as a function of the alcohol concentration in the blend.

## STORAGE OF ALCOHOL BLENDS

It has been claimed that alcohol gasoline blends could not be stored under commercial conditions because of water absorption and evaporation.

TABLE 5. Change in distillation range of alcohol blends during storage

| Percentage distilled | 50,000 gallon tank |  | 5500 gallon tank |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Initial | After 66 days April 11-June 16 | Initial | After 13 days April 28-May 11 |
| Initial | $95^{\circ} \mathrm{F}$ | $104^{\circ} \mathrm{F}$ | 113 | 110 |
| 10 | 130 | 137 | 140 | 140 |
| 20 | 143 | 143 | 149 | 148 |
| 30 | 139 | 150 | 158 | 157 |
| 40 | - | 160 | 213 | 212 |
| 50 | 168 | 212 | 237 | 238 |
| 60 | - | 247 | 259 | 257 |
| 70 | - | 298 | - | - |
| 80 | - | 334 | - | - |
| 90 | 378 | 380 | - | - |
| Final | 417 | 416 | 390 | 392 |
| Residue \% | 1.5 | 1.5 | 1.4 | 1.2 |
| Recovery \% | 96 | 97 | 97 | 96 |

Data are presented in table 5 for two separate storage tanks operating in regular commercial practice. The 50,000 gallon tank was under observation from the date the blend was prepared, April 11th, until emptied on June 16th. During this time alcohol-gasoline was withdrawn as needed to supply the trade. The blend still analyzed 10 per cent alcohol at the end of this time and was stable to $-76^{\circ} \mathrm{F}$. The distillation curve shows a loss of the more volatile fraction. The 5,500 gallon storage tank was also in regular commercial trade during the period of April 28th to May 11th. The changes were too slight to be observed in the distillation data or by change in turbidity temperature.

## LITERATURE CITED

1. BuAbr, M. G. AND R. C. ALDEN
2. Significance of the A. S. T. M. distillation curve. Ind. Eng. Chem. 25: 559-62.
3. Ross, J. D. and W. R. Ormandy
4. Experiences with alcohol motor fuels. Trans. Inst. of Chem. Engr. 4: 104-14.
5. SCHwerizim, Charles
6. The present status of the question of alcohol gasoline. Chimie et Industrie, 28: 12-22.
7. Spausila, Franz
8. The stability of alcohol, benzol-gasoline blends in the presence of water. Erdol and Teer, 8: 282.
9. Gage, V. b., S. W. Sparbow and D. R. Harpir
10. Comparison of alcogas with aviation gasoline. National Advisory Committee for Aeronautics Report No. 89
11. Brown, G. G.
12. Agricultural alcohol in American motor fuels. Paper presented before Am. Pet. Inst. May 18, 1933 (Tulsa, Oklahoma meeting).

## THE PHYSICAL-CHEMICAL PROPERTIES OF ETHYL ALCOHOL GASOLINE SYSTEMS

IV. INFLUENCE OF ALCOHOL CONCENTRATION UPON SPECIFIC VOLUME, FLUIDITY, AIR-TO-FUEL RATIO, CALORIFIC VALUE, LATENT HEAT, AND FALL IN TEMPERATURE ON EVAPORATION

Leo M. Christensen, R. M. Hixon and Elhis I. Fulmer

From the Department of Chemistry, Iowa State College
Accepted for publication August 26, 1933
As stated in the preceding papers of this series, it is the purpose of the researches here described to supply information on the physicalchemical properties of ethyl alcohol-gasoline blends which will be of value in the consideration of the proposal to utilize alcohol from agricultural products in motor fuel. In the first two papers of this series $(4,5)$ are given the results of studies on the water-holding capacity and water absorption of such blends and in the third paper (6) are given data on vapor pressure, distillation range and evaporation rates. In this paper there are presented data on specific volume, fluidity, correct air-to-fuel ratio, calorific value, latent heat, and fall in temperature on evaporation.

The blends were prepared with the same gasoline and alcohol used in the work previously described. The alcohol was dried over lime to a water content which could not be detected with potassium permanganate or anhydrous copper sulphate. The gasoline was dried over calcium chloride. The gasoline was a representative mid-continent grade purchased locally.

## 1. SPECIFIC VOLUME OF ETHYL ALCOHOL-GASOLINE SYSTEMS

The specific gravities were measured by means of a chainomatic Westphal balance. The data obtained for $25^{\circ} / 25^{\circ}$ were calculated to $25^{\circ} / 4^{\circ}$. The data so obtained are given in table 1.

There are also given values calculated on the assumption that the density is a linear function of composition. It will be noted that these values are greater than the experimental values, that is the system has undergone an expansion on mixing. From the differences between the calculated and experimental specific volumes it is seen that the expansion is dependent upon the concentration, being at a maximum at about $8-10$ per cent of alcohol. The expansion amounts to $0.2-0.3$ per cent for alcohol concentrations from $4-30$ per cent of alcohol.

These results are in harmony with those of Balada (2) who observed the expansion and also the fact that the systems show a cooling on mixing. In order to test the latter point qualitatively, ethyl alcohol and gasoline were mixed in flasks at room temperature and the temperature of the mixture measured. These preliminary data are given in table 1. It is evident that the temperature fall is easily detected and is apparently at a maximum at the concentrations which show a maximum expansion. Data are not available for the exact calculation of the heat absorption accompanying the mixing of the alcohol and gasoline. While the amount of heat absorbed may be small, it is of interest to note that the heat content of the blend will be increased by the amount of heat absorbed, compared to the values ob-
tained by assuming a linear relationship of the heat contents of the pure substances.

The specific gravity of the fuel is of importance in carburetion since a large increase would cause a change in fuel level and in flow into the venturi. The data show the density of the 10 per cent alcohol-gasoline blend to be only 0.6 per cent greater than the gasoline used in making the blend. This is about 60 per cent of the increase to be expected without taking the expansion into consideration. This observed change in specific gravity of the 10 per cent blend corresponds to a difference of $1.2^{\circ}$ Baume, which is less than the variation in the specific gravity among various gasolines as shown by Ricardo (15). Evidently this slight increase is of no practical significance in carburation.
2. THE VISCOSITIES AND FLUIDITIES OF FTHYL ALCOHOL-GASOLINE SYSTEMS

The viscosities were measured by means of an Ostwald viscosimeter completely immersed in a water thermostat at $25^{\circ} \mathrm{C}$. The values so obtained are given in table 2. The data were calculated to give the coefficients of viscosity and fluidities, making use of the densities of table 1. It

TABLE 1. Densities and speoifo volumes of ethyl alcohol-gasoline systems

| Ethanol \% by vol. 1 | $\begin{gathered} \text { Sp. G. } \\ 25^{\circ} / 4^{\circ} \\ \text { exp. } \end{gathered}$ | Sp. G. $25^{\circ} / 4^{\circ}$ calc. ${ }^{2}$ | Sp. G. calc. minus Sp. G. obs | Specific volume exp. | Specific volume calc. ${ }^{8}$ | Expansion per 100ce blend | Lowering in $t^{\circ} \mathrm{C}$. on mixing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.7212 | 0.7212 | 0 | 1.3866 | 1.3866 | 0 | 0 |
| 1 | 0.7214 | 0.7219 | 0.0005 | 1.3863 | 1.3855 | 0.08 | - |
| 2 | 0.7217 | 0.7226 | 0.0009 | 1.3856 | 1.3843 | 0.13 |  |
| 4 | 0.7225 | 0.7239 | 0.0015 | 1.3841 | 1.3820 | 0.21 | 1.5 |
| 6 | 0.7236 | 0.7252 | 0.0016 | 1.3820 | 1.3797 | 0.23 | - |
| 8 | 0.7246 | 0.7265 | 0.0019 | 1.3800 | 1.3775 | 0.25 | - |
| 10 | 0.7257 | 0.7278 | 0.0021 | 1.3780 | 1.3752 | 0.27 | 2.5 |
| 15 | 0.7292 | 0.7310 | 0.0018 | 1.3714 | 1.3695 | 0.19 |  |
| 20 | 0.7323 | 0.7342 | 0.0019 | 1.3656 | 1.3638 | 0.18 | 2.2 |
| 30 | 0.7384 | 0.7408 | 0.0022 | 1.3543 | 1.3523 | 0.20 | 2.0 |
| 50 | 0.7520 | 0.7537 | 0.0017 | 1.3298 | 1.3295 | 0.03 | 1.9 |
| 100 | 0.7859 | 0.7859 | 0 | 1.2724 | 1.2724 | 0 | 0 |

1 refers to cc. of alcohol per 100 cc . blend before mixing
${ }^{2} \mathrm{Sp} . \mathrm{G}$. $=0.7212+0.000647 \times$ per cent alcohol
${ }^{8}$ Sp. V. $=1.3866+0.001142 \times$ per cent alcohol
will be noted that neither the viscosities nor fluidities are additive. It will be noted that the addition of alcohol up to 6 per cent yields systems of lower viscosity than either liquid alone. Up to, and including 50 per cent alcohol, the highest concentration in the series, the observed viscosities are less than those calculated on a linear basis. Up to and including 5 per cent alcohol the fluidity is greater than that of either liquid alone. Up to 20 per cent alcohol the fluidities are greater than those calculated on the additive basis while above 20 per cent, and up to 50 per cent, the highest concentration of alcohol used, the fluidities are less than those calculated on the additive basis.

Bingham (3) outlines four classes of fluidity curves: I. The simplest case in which the fluidity is additive. There is no volume change on mixing, and it is assumed that the components neither dissociate nor interact with each other on mixing. II. There is a well defined expansion on mixing, accompanied by the absorption of heat. In such mixtures the fluidity
is generally greater than calculated. This increase in fluidity may be attributed to breaking down of association or to dissociation which give rise to the increase in volume. III. There is a contraction on mixing, accompanied by the evolution of heat. In such cases the fluidity is generally less than calculated. IV. When there is a combination of dissociation and association the curve may show a positive curvature over a part of its course and a negative curvature over a part, there being a point of inflection. A pair of liquids may fall into type II and yet have a tendency to unite chemically, provided the effect of dissociation predominates in all mixtures.

Evidently the fluidity curve for ethyl alcohol-gasoline mixtures falls into type IV. An examination of the data in the International Critical Table (11) shows the following systems of ethyl alcohol with another organic liquid which produce mixtures with fluidites greater than those calculated. Ethyl alcohol benzene (Dunstan (7), Getman (10), Findley (9);

TABLE 2. Viscosities and fludities of ethyl alcohol-gasoline systems

| Ethanol <br> \% by <br> vol. | relative <br> viscosity <br> $25^{\circ} \mathrm{C}$. <br> (a) | Coeff. of <br> viscosity <br> x103 <br> (b) | Coeff. of <br> vis. x103 <br> calc. <br> (c) | c-b | (d) | Fluidity <br> observed <br> (e) | Fluidity <br> calc. <br> (f) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.723 | 4.645 | 4.645 | 0 | (8) |  |  |
| 0 | 0.711 | 4.569 | 4.701 | 0.132 | 215.3 | 215.3 | $\pm 0$ |
| 1 | 0.710 | 4.555 | 4.758 | 0.223 | 219.9 | 214.1 | $\pm 4.8$ |
| 2 | 0.714 | 4.596 | 4.871 | 0.275 | 217.6 | 212.9 | $\pm 6.2$ |
| 4 | 0.723 | 4.661 | 4.984 | 0.323 | 214.5 | 208.2 | $\pm 6.3$ |
| 6 | 0.724 | 4.673 | 5.097 | 0.424 | 21.9 | 205.8 | +8.1 |
| 8 | 0.745 | 4.816 | 5.209 | 0.493 | 207.6 | 203.5 | +4.1 |
| 10 | 0.767 | 4.983 | 5.492 | 0.509 | 200.6 | 197.6 | $\pm 3.0$ |
| 15 | 0.800 | 5.219 | 5.774 | 0.555 | 191.6 | 191.7 | -0.1 |
| 20 | 0.868 | 5.711 | 6.339 | 0.628 | 175.1 | 179.8 | -4.1 |
| 30 | 1.040 | 6.968 | 7.467 | 0.459 | 143.5 | 156.2 | -12.1 |
| 50 | 100 | 1.470 | 10.29 | 10.29 | 0 | 97.1 | 97.1 |

1 coeff. of viscosity $=4.645+0.05645 \times$ per cent alcohol
2 fluidity $=215.3-1.182 \times$ per cent alcohol
ethyl alcohol-ethyl acetoacetate (Dunstan and Stubbs (8) ) ; ethyl alcohol paraldehyde (Muchin (13) ; and ethyl alcohol-benzaldehyde (Dunstan (7); ethyl alcohol-anisol Baker (1).

The data on the ethyl alcohol-gasoline systems are especially analogous to the data (Dunstan (7)) on ethyl alcohol-benzene systems. The alcohol concentrations up to 20 per cent by weight (at $25^{\circ}$ ) show fluidities greater than for either solvent alone. The fluidities are greater than calculated up to 71 per cent by weight from which point the fluidity is as calculated. The effect of temperature upon such systems is striking. The data of Getman (10) and Findlay (9) show that at $15^{\circ}, 20^{\circ}, 25^{\circ}$ and $30^{\circ}$ there is a range of high concentrations of alcohol in which the fluidity is less than calculated while for $35^{\circ}$ and $40^{\circ}$ at concentration of alcohol greater than 70 per cent the fluidity is as calculated. At all temperatures the fluidities for alcohol concentrations less than 70 per cent are greater than calculated.

The data in table 2 show the fluidity of a 10 per cent alcohol-gasoline blend to be only 3.5 per cent less than for the gasoline and viscosity to be only 2.0 per cent greater than for gasoline. This variation is less than the
variation among various gasolines as shown by the data of Ricardo (15). This change in viscosity is so small as to be of no practical significance.

## 8. THE AIR-FUEL RATIOS OF ETHYL ALCOHOL-GASOLINE SYSTEMS

Ricardo (15) gives the air-fuel ratios of ethyl alcohol and of various gasolines. The air fuel ratio is the weight of air required to completely burn a pound of fuel. In table 3 are found calculated values for the airfuel ratios of alcohol-gasoline systems. The value for gasoline is the average for eight gasolines. The theoretically correct air-fuel ratios will be a linear function of the composition by weight.

These calculations show that the 10 per cent blend requires about 4 per cent lower air-fuel ratio than does the gasoline. The data of Ricardo (15) for eight gasolines show a variation among the samples of 5 per cent. It is doubtful whether carburetor adjustments, in commercial practice are made to such close limits.

## 4..THE CALORIFIC VALUES OF ETHYL ALCOHOL-GASOLINE BLIMNDS

Ricardo (15) calculated the calorific value of ethyl alcohol and of various gasolines. The values include the latent heat of evaporation of the fuel and do not include the latent heat of the water formed by the combustion. In table 3 are given calorific values for ethyl alcohol-gasoline systems assuming these to be a linear function of composition. The data show the calorific value of the 10 per cent blend to be 3 per cent less than that of the gasoline. The variation in the calorific values of the eight gasolines amounts to 7 per cent. Because of the lower air-fuel ratio and the lower calorific value of the 10 per cent blend, it would be expected that the heat content of the air-fuel mixture would not be greatly affected and Ricardo (15) shows this to be practically the case for pure alcohol and gasoline.

## 8. THE LATENT HEATS OF HHHYL ALCOHOL-GASOLINE BLBNDS

In table 3 are given values for the latent heats of evaporation of ethyl alcohol-gasoline systems on the assumption that they are a linear function of composition. The values for gasoline and ethyl alcohol are taken from Ricardo (15). There are also given calculated values for the fall in tem-

TABLE 3. Air-fuel ratios, oalorifio values, latent heats, and fall in temperature on evaporation of ethyl alcohol-gasoline systems

| Ethanol \% by vol. | Air-fuel ratios for complete combustion by wt. | Calorific values including latent heat at constant volume <br> B T U/gal | Latent heat at constant pressure of 1 atm. B T U/gal. | Fall in temp. of correct airfuel ratios due to latent heat $\mathrm{F}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 14.8 | 116,000 | 820 | 33.8 |
| 1 | 14.7 | 115,650 | 837 | 34.9 |
| 2 | 14.7 | 115,290 | 850 | 36.0 |
| 4 | 14.6 | 114,590 | 880 | 38.2 |
| 6 | 14.5 | 113,880 | 910 | 40.4 |
| 8 | 14.3 | 113,180 | 940 | 42.5 |
| 10 | 14.2 | 112,470 | 975 | 44.7 |
| 15 | 13.9 | 110,700 | 1060 | 50.2 |
| 20 | 13.6 | 108,940 | 1140 | 55.6 |
| 30 | 13.1 | 105,410 | 1300 | 66.3 |
| 50 | 11.9 | 98,350 | 1650 | 88.4 |
| 100 | 9.0 | 80,700 | 2560 | 143.0 |

perature, on evaporation, of the alcohol-gasoline systems at the proper airfuel ratio.

Since the latent heat of alcohol is nearly three times that for gasoline, it is evident that this factor is of considerable importance in carburation. The air-fuel mixture will become colder upon evaporation for the blend than for gasoline. Ross and Ormandy (14) state that greater heat input to the intake manifold is desirable when using alcohol blends than when using gasoline. Practically, this is subject to some correction in view of the effect of alcohol upon the distillation range as shown in a previous paper of this series.

## 6. AIR-FUEL RATIOS IN PRACTICAL USE

From the data presented it can be predicted that the carburetor setting for a 10 per cent blend should be the same as that for gasoline and that the same air-fuel ratio will result. Information supplied by L. T. Brown of the Mechanical Engineering Department, Iowa State College (unpublished) shows this to be the result observed in dynammeter test. Numerous road tests by Moyer and Paustian (12) show that the 10 per cent blend can be used interchangeably with gasoline without any carburetor adjustments whatever.

## SUMMARY

1. Systems of ethyl alcohol and gasoline expand on mixing. The maximum expansion is $0.2-0.3$ per cent at $4-30$ per cent alcohol. The density of the 10 per cent alcohol blend is about 0.6 per cent greater than for the basal gasoline. This difference is well within the limits of variation for vaxious gasolines.
2. Neither the viscosities nor fluidities are additive. Systems containing up to 6 per cent alcohol have lower viscosities and higher fluidities than either the ethyl alcohol or gasoline alone. Up to 20 per cent alcohol the fluidities are greater than calculated on an additive basis while from 20 per cent up to 50 per cent alcohol, the highest concentration used, the fluidities are less than calculated on the additive basis. The viscosity of the 10 per cent blend is only 3.0 per cent greater than for gasoline. This is well within the limits of variation for various gasolines.
3. Using the values of Ricardo (13) for gasoline and alcohol the following characteristics were considered. The air-to-fuel ratio of a 10 per cent blend is about 4 per cent lower than for gasoline, while the variation among gasolines may be 5 per cent.
4. The calorific value of the 10 per cent blend is 3 per cent less than for the base gasoline while the variation among gasolines may be 7 per cent. Data are calculated for the latent heats and fall in temperature upon evaporation for the various blends. These factors show that with the blends there will be a greater heat input to the intake manifold which is equivalent to an increase in heat content.
5. All these data indicate that the carburetor setting for a 10 per cent blend should be the same as for gasoline and that the same air-to-fuel ratio would result. This is in harmony with data from dynammeter and road tests.

## LITERATURE CITED

1. Bakirr, Frank
2. The viscosity of ether-alcohol mixtures. J. Chem. Soc. London. 101: 1409-16
3. Balada, Adolf
4. Czechoslovakian alcohol-gasoline mixture. Chem. Obzor, 7: 240-244.
5. Bingham, Eugene C. 1922. Fluidity and plasticity. McGraw-Hill.
6. Christensen, Lido. M., R. M. Hixon, and Elits I. Folmer
7. The physical-chemical properties of alcohol-gasoline blends. I. Influence of alcohol concentration and of temperature upon the water-holding eapacity. Iowa State Coll. Jour. Sei., 7, 461-6
8. 1933. II. Influence of anhydrous ethyl alcohol con
1. II. Influence of anhydrous ethyl alcohol concentration upon water absorption, Iowa State Coll. Jour. Sci. 8: 175-179.
6
III. The A.S.T.M. distillation curves and Reid vapor pressure. Iowa State Coll. Jour. Sci. 8: 237-244.
2. Dunstant, Albert E.
3. The viscosity of liquid mixtures, Part I. J. Chem. Soc. London, 85: 817-27.
4. Dunstan, Alberer E., and James A. Stubbs
5. The relation between viscosity and chemical constitution. Part III. The enolic-ketonic tautomerism. J. Chem. Soc. London. 93: 1919-27.
6. Findlay, atiexander
7. The viscosity of binary mixtures at their boiling points. Z. phys. Chem. 69: 203-17.
8. Gmiman, Frederick H.
9. Viscosite de systemes a deux liquides. Journ. d. chim. phys. 4: 386. 404.
10. International critical tables.
11. 5: 37 et seq. McGraw-Hill.
12. MoyEr, R. A. and R. G. Pausttan
13. Road tests on alcohol-gasoline mixtures. Iowa State Coll. Progress Rpt. No. VII.
14. Muciin, $G$.
15. Fludität Messungen an Lösungen. Z. Elektrochem. 19: 819-21.
16. Ross, J. R. and W. R. Ormandy
17. Experiences with alcohol motor fuels. Trans. Inst. Chem. Engr. 4: 104-14.
18. Ritardo, Harry R.
19. The high-speed internal-combustion engine. Table 10, London.

# A BOTANICAL SURVEY OF LEE COUNTY, IOWA 

Jess L. Fultsi<br>From the Department of Botany, Iowa State College

Accepted for publication August 29, 1933
This botanical survey of Lee County in southeastern Iowa was made because of the unique location, climate and soil of this area, and because the herbarium of Iowa State College contained few plants from this part of the state.

Lee County occupies a broadly triangular elevated plateau, bounded on its southeast and southwest sides along the Mississippi and Des Moines rivers by strips of low bottomlands that vary from five miles wide near Wever to a few hundred yards at Keokuk, where its point projects some fifteen miles further south into Missouri than any other section of Iowa. It is separated from Illinois on the east by the Mississippi River and from Missouri on the west and south by the Des Moines.

Between the upland plateau and the bottomlands is an extensive area of rolling hills more or less covered with timber. The uplands are cut by two trough-like drainage systems, both of which rise in the northwest corner of the county and proceed in a southeast direction through the timbered hills and down to the Mississippi and Des Moines rivers respectively. Between these two drainage systems is a broad flat ridge which roughly divides the county into equal parts.

According to the records of the United States Weather Bureau the annual mean temperature at Keokuk, situated at the southern tip of the county, is $52^{\circ} \mathrm{F}$. which is $3^{\circ}$ warmer than Des Moines. The average annual precipitation is 35.1 inches at Keokuk and 32.4 at Des Moines. The $25^{\circ}$ isotherm for January runs a little north of Lee County as compared to the $20^{\circ}$ isotherm through Des Moines.

There are three major groups of soil types in Lee County, which are distributed as follows: (1) the silt loams of the upland prairie in the northern half of the county which are adapted to corn production; (2) the poorer loam and silt loams in the hilly part of the southern half of the county that are suited chiefly to small grains and hay, and (3) the fertile but mostly poorly drained bottomland clays, loams and sands; the two former being suited to corn and the latter to truck crops.

The time available made it necessary to confine the work to a consideration of the flowering plants and ferns with particular attention to exact locations of plants and their distribution within the county, to soil relationships of the flora, to a general survey of the distribution of crop plants in their relation to the native and introduced vegetation, to the wider

[^0]distribution in Iowa of the trees and shrubs of Lee County, and to plants not heretofore reported in the state.

## EARLIER PLANT COLLECTIONS IN LEE COUNTY

Although there has been no published account of the flora of Lee County, at least three other collections had been made prior to June 1931. These plants were examined and the records included in this paper. The earliest collections were those of the late Dr. Ehringer of Keokuk who made a collection of Lee County plants about thirty years ago which are now preserved in the herbarium of Carthage College at Carthage, Illinois. There were 22 species in this collection which were labeled "from Lee County" and a number more labeled "from Iowa" that undoubtedly came from Lee County. In this paper only those labeled "from Lee County" are recorded.

Another collection made by Mrs. Kate O'Bleanus about 30 years ago is preserved by her at her home near Keokuk. In this collection there were approximately 87 species from Lee County whose names, with a few changes, are included in this paper.

The most recent collection from Lee County is deposited in the herbarium of Iowa Wesleyan at Mt. Pleasant, Iowa, and was made by Professor H. E. Jaques and some of his students during the summer of 1929. There were 87 species in this collection, all of which have been included.

Besides these three collections, there are 14 species, mostly trees and shrubs, which were collected by the late Dr. L. H. Pammel and deposited in the Iowa State College Herbarium before June 1931.

## RESULTS OF THE SURVEY

## INCLUDED SPECIES

After our plants were collected, and identified, and the identification of the specimens in the previously mentioned collections were checked, they were listed in the order of Gray's Manual (7th edition). Locations and field notes were given in each case where available. In addition part of the names included in a list of plants published in the Iowa Farmer and Horticulturist at Burlington and Fairfield, Iowa, about seventy-five years ago ${ }^{2}$ were included.

The following is a list of the capital letters used to indicate the several collections:
$\mathrm{F}=$ Plants collected and identified by Jess L. Fults.
$\mathrm{I}=$ Plants in the Iowa State College Herbarium before June 1, 1931.
$0=$ Plants in the collection of Mrs. Kate $\mathrm{O}^{\prime}$ 'Bleanus.
W = Plants collected by Prof. H. E. Jaques and students of Iowa Wesleyan at Mount Pleasant, Iowa.
$\mathrm{C}=$ Plants collected by Dr. Ehringer of Keokuk, Iowa, and placed in the herbarium of Carthage College, Carthage, Illinois.
$B=$ Plant names published in the Iowa Farmer and Horticulturist, Vol. 1, Nos. 2, 3, 4, and 7, as occurring in southeastern Iowa, about 75 years ago.

## SYSTEMATIC LIST AND FIELD NOTES

The nomenclature of Gray's Manual (7th edition) was followed, or of Britton and Brown's Flora of the Northern States and Canada in those

[^1]cases where the plant was not described in Gray or when the name in Britton and Brown seemed preferable.

## SYSTBMATIC LIST AND FIELD NOTES <br> POLYPODIAOEAE

Adiantum pedatum L. FWC
Sec 8 T68N-R5W Marion silt loam.
Asplenivm acrostichoides SW.
C
Asplenium platyneuron (L) Oakes
F
Sec 24 T68N-R4W Lindley loam.
Athyrium Filix-femina (L). Both.
FC
Sec $13 \mathrm{~T} 66 \mathrm{~N}-\mathrm{B} 6 \mathrm{~W}$ Memphis silt loam.
Infrequent in this locality.
Botrychium virginiamum (L.) Sw.
F
Sec 26 T66N-R5W
Infrequent.
Filix fragilis (L.) Underw.
FC
Sec 13 T66N-R6W Marion silt loam.
Onoclea sensibilis L.
W
Osmunda Claytoniana L.
FC
Sec $26 \mathrm{~T} 66 \mathrm{~N}-\mathrm{R} 6 \mathrm{~W}$ Genesse very fine sandy loam. Polystichum acrostichoides (Michx.) Schott.

## FW

Sec 13 T63N-R6W Marion silt loam.
Infrequent in this locality.
Woodsia obtusa (Spreng.) Torr.

## FWC

Sec 23 T66N-R6W Genesee very fine sandy loam.
Fairly common.
See 19 T65N-R5W
Equisetum arvense L. F
Vicinity of the Gabel Farm.
Equisetum Kansamum Schaffner
F
Sec 33 T67N-R6W
Infirequent.
Sec 28 T67N-R5W Buckner Joam.
Frequent on this soil.
Equisetum robustuin A. Br.
F
Sec 27 T67N-R7W Genesee silt loam.
Only two or three plants.
Sec 13 T65N-R5W Genesee silt loam.
Sec 29 T65N-R5W Wabash fine sandy loam.

Juniperus virginiana L.
F
Sec 26 T66N-B5W Lindley loam.
Associated with Gleditsia triacanthos in open park-like stands.
${ }^{3}$ See 19 T65N-R5W.

## TYPHACEAE

Typha latifolia L. FW
Sec 33 T68N-R3W Wabash clay. Common in wet places.

NAJADACEAE
Potamogeton dimorphus Raf.
W

Alisma Plantago-aquatioa L. FB
Sec 13 T66N-R5W Genesee very fine sandy loam. Infrequent.
Sagittaria latifolia Willd.
F
See 4 T68N-R3W Wabash silty clay loam. Common in very wet locations.

GRAMINEAE
Agropyron repons (L.) Beauv.

## F

Sec 1 T65N-R5W Genesee very fine sandy loam. Along railroad track. Naturalized from Europe.
Agropyron Smithii Bydb.

## F

Sec 2 T66N-R6W Lindley loam.
Common along railroad track.
Agrostis alba L.
FW
Sec 8 T67N-R5W Marion silt loam.
Frequent in shady woods.
Sec 2 T66N-R6W Marion silt loam.
Common along roadsides.
Sec 23 T66N-R5W Genesee silt loam.
Frequent.
Sec 3 T65N-R6W Buckner fine sandy loam.
Infrequent.
Agnostis hyemalis (Walt.) B.S.P.
FO
Vicinity of Gabel Farm4.
Agrostis perennans (Walt.) Tuckerm.
F
Sec 19 T67N-R5W Genesee very fine sandy loam.
Frequent in shady woods.
Alopeourus gevioulatus L.
F
Vicinity of Gabel farm.
Andropogon furcatus Muhl.
F
Sec 34 T68N-R7W Lindley loam.
Aristida graoilis Ell.
F
Infrequent.
Aristida oligantha Michx.
F
Sec 36 T67N-R6W Putnam silt loam.

- Sec. 19 T65N-R5W.


## Avena sativa L .

 WIntroduced from Europe.
Bouteloua curtipendula (Michx.) Torr. F
Seo 30 T68N-R3W Buckner silt loam. Infrequent.
Bromus japonious Thunb.
F
Vicinity of Gabel farm. Introduced from Japan by way of Europe.
Bromus purgane L.
F
Sec 26 T66N-B5W Lindley loam.
Infrequent in shady woods.
Sec 13 T66N-R6W Marion silt loam.
In deep shady woods.
Bromus secalimus L.
F
Naturalized-firom Europe.
Bromus tectormm L.
F
Bee 36 T67N-R6W Lindley loam.
Common along railroad track.
Extensively naturalized from Europe.
Calamagrostis Macouniana Vasey.
F
See 27 T69N-RTW Grundy silt loam.
Infrequent.
Cenohrus pavoiflorus Benth.
= Cenchrus aaroliniamus Walt.

## F

Sec 28 T67N-R5W Buckner fine sand.
Frequent in sand.
Dactylis glomerata $\mathrm{L}_{\text {. }}$
F
See 16 T65N-R5W Marion silt loam.
Infrequent near lake shores.
Naturalized from Europe.
Danthonia spioats (L.) Beauv.
F
Diarthena americana Beaup.
F
Sec 14 T66N-R6W Genesee very fine sandy loam.
Rere in this locality.
Digitania sanguinalis (L.) Scop.
F
Sec 36 T67N-R6W Lindley loam.
Frequent. Naturalized from Europe.
EChinochloa Crus-galli (L.) Beauv.
F
Sec 29 T67N-R7W Union stony loam.
Frequent in wet ditches along the road. Naturalized from Europe.
Elymus striatus Willd.
F
Sec 29 T65N-R5W Wabash silt loam.
Frequent.
Elymus glabriflorus (Vasey) Scrib. \& Ball.
F
Sec 14 T66N-R6W Genesee very fine sandy loam.
Frequent in shady woods. First specimen to be placed in Iowa State College Herbarium from Iowa.

```
Elymus virginious L.
F
Sec 8 T67N-R5W Marion silt loam.
Elymus robustus Scribn, and J. G. Sm.
F
Sec 22 T67N-R5W Buckner loam.
Frequent.
Sec 28 T68N-R5W Genesee very fine sandy loam.
Sec 2 T66N-R6W Lindley lomm.
Common.
Elymus virginicus var. submutious Hook.
FW
Sec 8 T67N-R5W Genesee very fine sandy loam.
Eragrostis hypoides (Lam.) B.S.P.
F
Sec 24 T69N-R4W Genesee very fine sandy loam.
Infrequent.
Eragrostis cilianensis (All.) Link.
    = E. megastachy, (Koeler) Link.
F
Sec 24 T69N-R4W Genesee very fine sandy loam.
Infrequent in a wet sand creek bottom.
Sec 21 T66N-B6W Buckner silt loam.
Frequent. Naturalized from Europe.
Eragrostis pectinacoa (Michx.) Steud.
FW
Sec 34 T67N-R5W Buckner loam.
Frequent.
Eragrostis pilosa (L.) Beauv.
F
Sec 4 T66N-R7W Buckner very fine sandy loam.
Infrequent. Found between ties of railroad track.
Festuca mutans Willd.
F
Sec 29 T65N-R5W Wabash fine sandy loam.
Frequent in shady woods.
Festruca octoflora Walt.
FC
Sec 16 T65N-B5W Marion silt loam.
Glyceria borealis (Nash) Batch.
F
Sec 20 T68N-R3W Wabash silty clay loam.
Infrequent. In standing water.
Glyocria nervata (Willd.) Trin.
F
Vicinity of Gabel farm.
Hordeum jubatwm L.
F
Sec 19 T65N-R5W Putnam loam.
A miserable weed introduced from Europe.
Hordeum pusillum Nutt.
F
Vicinity of Gabel Farm.
Hystrix patula Moench.
    =-H. Hystrix Millsp.
F
Sec 8 T65N-R5W Marion silt lo@m.
Infrequent.
Leersia oryzoides (I.) Sw.
F
Sec 21 T68N-R3W Wabssh silt losm.
Only location found.
```

```
Leersia virginica Willd.
F
Frequent in shady woods.
Leptoloma cognatum (Schultes) Chase
F
Sec 4T66N-R7W Buckner very fine sandy loam.
Rather rare. Growing in a road.
Panicum agrostoides Spreng.
O
Panioum capillare L.
F
Sec 11 T68N-B5W Grundy silt loam.
Frequent in upland soils.
Paniowm dichotomiflorum Michx.
F
Frequent.
Panioum huachucae Ashe.
F
Bec 23 T68N-R5W Lindley loam.
Very variable in its characters.
Panicwm implicatum Scribn.
F
Panicum latifolium L.
    = mavrocarpon Le Conte
F
Sec 29 T65N-R5W Wabash fine sandy loam.
Panicum Scribnerianum Nash.
F
Sec 34 T67N-R5W Buckner Ioam.
Infrequent.
Phleum pratense L.
W
Commonly cultivated. Introduced from Europe.
Poa compressa L.
F
Naturalized from Europe.
Poa pratensis L.
W
Very common.
Setaria glanca (L.) Beauv.
F
Sec 11 T68N-R5W Grundy silt loam.
Common. Naturalized from Europe.
Setaria viridis (L.) Beauv.
F
Sec 1 T65N-R5W Genesee very fine sandy loam.
Infrequent along roads.
Naturalized from Europe.
Sorghum halepense (L.) Pers.
F
Sec 29 T68N-R3W Wabash clay.
```

```
Spartina Miohauxiana Hitchc.
F
Sec 22 T68N-R3W Wabash clay.
Common along roads.
Sphenopholis pallens (Spreng.) Scribn.
O
Sorghastrun mutans (L.) Nash
F
Sec 21 T67N-B7W Lindley loom.
Infrequent.
Sporobolus cryptandrus (Torr.) Gray
F
Sec 28 T67N-R5W Buckner fine sand.
Triodia flava (L.) Hitchc.
    = Tridens flavus (L.) Hitchc.
F
T
Triplasis purpurea (Walt.) Chapm.
F
Sec 27 T67N-B5W Buckner loam.
Infrequent. Leaves have a very acid taste.
Carbx Asa-Grayi Bailey
    = Carez Grayi Carey
    = Carex Grayi Carey
F
Sec 33 T68N-R3W Wabash clay.
Bare. Only one plant found.
Carex brachyglossa Mack.s
F
Sec 29 T65N-R5W Wabash fine sandy loasm.
Carex brevior (Dewey) Mack.5
F
Sec 36 T66N-R6W Marion silt loam.
Infrequent on upland soils.
Carez Biolonellii Britt.
F
Sec 16 T65N-R5W Marion silt loam.
Rare at this date-June 29, 1932.
Carez aephalophora Muhl.
FC
See 13 T66N-R6W Marion silt loam.
Frequent in shady woods.
Carez oristatella Britt.
    = cristata Schwein.
F
Sec 23 T66N-R6W Genesee very fine sandy loam.
Sec 4T66N-R7W Buckner very fine sandy loam.
Frequent.
Carex conjuncta Boott.
F
Sec 14 T66N-R6W Genesee very fine sandy loam.
Carex crus-corvi Schuttlw.
F
Sec 33 T68N-R3W Wabash clay.
Carex Davisii Schwein. & Torr.
F
Sec 29 T65N-R5W Wabash fine sandy loam.
Seemed to spread by rhizomes.
```

${ }^{6}$ Described by Mr. Kenneth K. Mackenzie since the last editions of Gray"s "New Manual of Botany" and Britton and Brown's "Flora of the Northern States and Canada.'

Carex festucacea Willd.
F
See 32 T67N-R7N Buckner very fine sandy loam.
Note the hollow stems which are rare in this genus.
Carex gravida Bailey.
F
Carex hirsutula Mack.
F
Sec 36 T66N-R6W Marion silt loam.
Note the hairy leaves.
Carex hystricina Muhl.
C
Cares Jamesii Schwein.
F
Carex lambinosa Michx.
F
Sec 36 T67N—R6W Lindley loam.
Carex lawiflora Lam.
C
Carex lupuliformis Sartwel.
F
Sec 20 T68N-R3W Wabash silty clay loam.
Carex lupulina Muhl.
F
See 19 T65N-R5W Wabash clay.
Sec 28 T67N-R6W Lindley loam.
Sec 33 T68N-R3W Wabash clay. Infrequent.
Carex muskingumersis Schwein.
F
See 33 T68N-R3W Wabash clay.
Frequent.
Carex pennsylvanica Lam.
F
Cares plana Michx. (C. Muhlenbergii var. enervis Boott.)
F
Sec 28 T67N-R5W Buckner flne sand.
Carex retrorsa Schwein.
F
Sec 29 T67N-R7W Marion silt loam.
Common in wet ravines.
Carex rosea Schkuhr.
F
Sec 23 T66N-R6W Genesee very flne sandy loam.
Carex scoparia Schkuhr.
F
Sec $29 \mathrm{~T} 65 \mathrm{~N}-\mathrm{B} 5 \mathrm{~W}$ Wabash flne aandy loam,
Infrequent.
Carex Shriveri Britt.
= C. gramularis var, Haleana (Olney) Portar
F
Sec 13 T66N-R6W Marion silt loam.
Infrequent.
Carex straminea var, eohinodes Fernald
F
Sec 19 T65N-R5W Putnam silt loam.
Carex tenella \$chkuhr.
F
Carex tribuloides Wahlenb.
F
Sec 23 T66N-R6W Genesee very flne sandy loam.
Frequent.
Sec 19 T65N-R5W Wabash clay.
Infrequent on this soil.

Carex typhina Michx.
F
Sec 33 T68N-R3W Wabash clay.
Carex umbellata Schkuhr.
F
Sec 23 T66N-R6W Genesee very fine sandy loam.
Infrequent in damp woods.
Carex vulpinoidea Michx.
F
Sec 28 T68N-R4W Lindley loam.
Carex santhocarpa Bicknell.
$=C$. setacea var. ambigua (Barratt) Fernald
F
Sec 13 T66N-R6W Marion silt loam.
Frequent in shady woods.
Cyperus acuminatus Torr. \& Hook.
${ }^{4}$
Sec 5 T67N-R5W Marion silt loam.
Rare. An annual.
Cyperus esculentus L.
F
Sec 27 T67N-R7W Union stony loam.
Cyperus filiculmis Vahl.
F
Sec 3 T65N-R6W Buckner fine sandy loam.
Rare. In the school house yard $1 / 4$ mile west of Connables, Iowa.
Cyperus Schweinitzii Torr.
F
Sec 27 T67N-R5W Buckner loam.
Frequent on sandy bottom soils.
Heavily infected with Puccinia cyperii Arth.
See 34 T67N-R5W Buckner loam.
Frequent.
Sec 36 T67N-R6W Lindley loam.
Infrequent in this soil.
Cyperus speciosus Vahl.
= C. ferax Rich. of Gray's Manual
C
Eleocharis aoicularis (L.) R. \& S.
F
Sec 4 T68N-R3W Wabash silty clay loam.
Common in wet mud.
Eleocharis obtusa (Willd.) Schultes
F
Sec 19 T65N-R5W Wabash clay.
Infrequent.
Sec 36 T67N-R6W Lindley loam.
Common on railroad track ballast.
Eleocharis palustris (L.) R. \& S.
F
Sec 19 T65N-B5W Wabash clay.
Common in wet places.
Soirgus americamus Pers.
F
Sec 2 T66N-R6W Marion silt loam.
Rare along railroad track.
Soirpus atrovirens Muhl.
F
Sec 16 T65N-B5W Marion silt loam.
Common in wet ground.
Scirpus oyperimus (L) Kunth.
F
Sec 20 T68N-R3W Wabash silty clay loam.
Infrequent.

Scirpus lineatus Michx.
F
Scirpus validus Vahl.
FC
Sec 33 T68N-R3W Wabash clay. Infrequent.

## ARACEAE

Arisaema Dracontium (L.) Schott. W
Arisaema triphyllum (L.) Schott. FOB

COMMELINACEAE
Commelina virginioa $L$.
F
Bec 28 T67N-R5W Buckner loam.
Tradescantia reflexa Raf.
F
Tradescantia virginiana L.
OCB

## JUNCACEAE

Junous acuminatus Michx.
F
Sec 19 T65N-R5W Wabash clay.
Infrequent.
Junous baltious var. littoralis Engelm.
F
Sec 36 T67N-R6W Lindley loam.
Infrequent.
Juncus bufonins L.
$F$
Sec 33 T68N-R4W Lindley loam.
Juncus effusus L.
F
Junous secundus Beauv. var. 1
F
Sec 29 T65N-R5W Wabash fine sandy loam.
Infrequent.
Junous temiis Willd.
$F$
Sec 33 T67N-R6W Putnam loam.
Frequent to common in shady places along paths.
Sec 19 T65N-R5W Putnam loam.
Common in shady places.
Juncus Torreyi Coville.
F
See 36 T67N-R6W Lindley loam. Frequent along railroad tracks.

LILIACEAF
Allium canadense L.
F
Allium mutabile Michx.
F
Sec 36 T67N-R6W Lindley loam.
Infrequent.

## Asparagus offioinalis L .

## FW

See 13 T65N-R5W Grundy silt loam.
A common escape. Introduced from Europe.
Erythronium albidum Nutt.
0
Hemerocallis fulva I.
F
Sec 31 T66N-R5W Genesee very fine sandy loam. Frequent as an escape.
Lilium Miohiganense Farw.
F
Sec 36 T67N-R6W Lindley loam.
Rare. $1 / 4$ mile S.W. of Junction of the A. T. and S. F. railroad with the hard road from Donnellson to Keokuk, Iowa.
Polygonatum commutatum (R, \& S.) Dietr.
F
Sec $13 \mathrm{~T} 66 \mathrm{~N}-\mathrm{R} 5 \mathrm{~W}$ Genesee very fine sandy loam.
Polygonatum commuiatum (B. \& S.) Dietr.
0
Smilacina racemosa ( $\mathrm{L}_{\mathrm{c}}$ ) Desf.
FO
Sec 14 T66N-R6W Genesee very fine sandy loam.
Frequent under dense shade.
Smilax ecirrhata (Engelm.) Wats.
F
Smilax rotundifolia L.
F
Seo 11 T65N-R5W Lindley loam.
Infrequent.
Trilliun reourvatum Beck.
OBF
Uvularia grandiflora Sm.
FB
Deularia perfoliata L .
W
AMARYLLIDACEAE
Hyposis hirsuta (L.) Coville. 0

## IRIDACEAE

Belamoanda chinensis (L.) DO.
F
See 25 T68N-R4W Marion silt loam.
Infrequent as an eacape. Introduced from Europe.
Iris versicolor L.
FWB
Sec 19 T65N-R5W Wabash clay. Infrequent.
Sisyrinohium campestre Bicknell
FO
Sec 28 T64N-R4W Memphis silt loam.
Rare.
OROHIDAOEAE
Cypripedium parviflorum Salisb. var. pubescens (Willd.) Knight
0

## SALICACEAE

Populus alba L.
F
Sec 27 T67N-B7W Marion silt loam.
Introduced from Europe.

Populus deltoides Marsh.
F
Sec 17 T65N-R5W Lindley loam.
In a dry creek bottom. Frequent.
Populus tremuloides Michx.
F
Sec 28/33 T67N-R6W Putnam loam.
Salix anygdaloides Anders.
I
Saliz discolor Muhl.
I
Salix nigra Marsh.
F
Sec 27 T67N-B7W Grenesee silt loam.
Sec 28 T66N-R5W Memphis silt loam,
Sec 26 T66N-R5W Genesee silt loam.
Salix interior Rowlee.
= S. Iongifolia Muhl.
F
Sec 4 T68N-B3W Wabash silty clay loam. Common.
Sec 4 T67N-R5W Memphis silt loam. Frequent.

## JUGLANDACEAE

Carya alba (L.) K. Koch.
F
Infrequent.
Carya cordiformis (Wang.) K. Koch.
F
Sec 30 T69N-R3W Lindley loam.
Frequent.
Carya ovata (Mill.) K. Koch.
F
Sec 27 T67N-BTW Marion silt loam.
Common.
Juglans cimerea L.
F
Juglans nigra L.
I

## BETULACEAE

## Betula rigra L.

F
Sec 12 T65N-R6W
Frequent along Sugar Creek.
Carpinus aaroliniana Walt.
FB
Corylus americana Walt.
FW
Sec 17 T65N-R5W Lindley loam.
Ostrya virginiana (Mill.) Willd.
FWB
Common in shady woods.

## FAGACEAE

## Quercus alba L.

FW
Sec 30 T69N-R3W Lindley loam.
Common.
Querous bicolor Willd.
F
Sec 20 T65N-R5W Putnam loam.
Sec 28 T67N-R6W Genesee silt loam.
Sec 14 T66N-R6W Genesee very fine sandy loam.
X Quercus Bushii Sargent
(Querous velutina $x$ marilandioa)
F
Sec 33 T67N—R7W
Quorous imbricaria Michx.
W
Quercus macrocarpa Michx.
F
Sec 2 T66N-R6W Genesee very fine sandy loam.
Sec 34 T68N-R7W Lindley loam.
Common on this soil.
Quercus marilandica Muench.
F
See 8 T65N-R5W Marion silt loam.
Quite common in one location near Summit School.
Quercus maxima Ashe.
FI
Sec 8 T67N-R5W Marion silt loam.
Querous Muhlenbergii Engelm.
F
Quercus palustris Muench.
F
Frequent.
Quercus stellata Wang.
FW
Sec 36 T66N-R6W
Sec 25 T66N-R6W Marion silt loam.
Querous velutina Lam.
FW
UBTICACEAE
Cannabis sativa L.
F
Sec 34 T67N-R5W Buckner loam.
Frequent. An introduction from Europe.
Celtis occidentalis L.
F'W
Sec 32 T66N-R6W Buckner loam.
Celtis ocoidentalis
var. crassifolia (Lam.) Gray
I
Humulus Lrupulus L.
F
Laportea canadensis (L.) Gaud.
$=$ Urticastrum divaricatum (L.) Kuntze
F
Sec 32 T66N-R6W Wabash silt loam. Frequent in shady woods along streams. Maclura pomifera (Raf.) Schneider. F
Sec 2 T66N-R5W Lindley loam.
An escape in the southern part of Iowa. Native from Missouri to Texas.

```
Morus alba L.
F
Frequent as an escape. Naturalized from Europe.
Morus rubra L.
I
Parietaria pennsylvanica Muhl.
C
Ulmus americana L.
FW
Sec 34 T66N-R6W Buckner silt loam.
Common.
Ulmus fulva Michx.
W
Ulmus racemosa Thomrs.
I
Urtica gracilis Ait.
F
```


## SANTALACEAE

```
Comandra umbellata (L.) Nutt. 0
```


## ARISTOLOCHIACEAE

```
Asarum canadense L. FOB
```


## POLYGONACEAE

```
Dioscorea villosa L.
FW
Sec 19 T65N-R5W
In second growth hickory woods.
See 2 T66N-R6W Genesee very fine sandy loam.
Common.
Polygonum acre HBK.
F
Frequent.
Polygorum avioulare L.
F
Polygonum Convolvulus L.
F
Sec 1 T65N-R5W Genesee very fine sandy loam.
Infrequent. Naturalized from Europe.
Polygonum Hydropiver L.
0
Polygonum lapathifolium L.
F
Polygonum Muhlenbergii (Meisn.) Wats.
C
Polygomum pennsylvanioum L .
F
See 21 T66N-R6W Marion silt loam.
Common along roads in loose soil.
Sec 22 T68N-R3W
Sec 1 T65N-R5W Genesee very fine sandy loam.
Infrequent along railroad tracks.
Polygonum Persicaria L.
W
Naturalized from Europe.
Polygonum ramosissimum Michx.
F
Sec 28 T67N-R5W Buckner loam.
Infrequent.
```

Polygomem sagittatum L.
Sec 19 T67N-R5W Genesee very fine sandy loam.
Infrequent.
Polygonum scandens L.
F
Polygonmm terne Michx.
F
Sec 28 T64N-R4W Memphis silt loam.
Infrequent on dry hill knolls.
Polygomum virgiviamem L.
F
Sec 30 T68N-R3W Buckner silt loam.
Frequent.
Rumex Acetosella L.
FW
Introduced from Europe.
Bumex altissimus Wood.
F
Bumex Britamnica L.
0
Rumex orispus L.
F
Naturalized from Europe.
Rumex verticillatus L.
F
Sec 28 T67N-R6W Lindley loam.
Infrequent. Growing in water with some sedges.

## CHENOPODIACEAE

Chenopodium album L.
FB
Sec 29 T65N-R5W Wabash fine sandy loam.
Common. Naturalized from Europe.
Chenopodium ambrosioides I.
FB
Sec 10 T66N-B6W Putnam loam.
Infected with Cercospora dubia (Biess.) Wint.
Chonopodium urbioum L.
C
Cyololoma atriplioifolium (Spreng.) Coulter. F
See 36 T67N-H6W Lindley loam. Common on railroad ballast.
Sec 28 T65N-R5W Buckner fine sand. Sec 27 T67N-R5W Buckner loam.

## AMARANTHACEAE

Aonida tuberoulata Moq.
F
Sec 33 T68N-R3W Wabash clay.
Frequent.
Amaranthus blitoides Wats.
F
Sec 14 T67N-R5W Buckner very fine sandy loam.
Frequent. Naturalized from west of the Rocky Mountains,
Froelichia oampestris Emall.
$\mathrm{F}^{=}=\boldsymbol{F}$. floridana (Nutt.) Moq.
Sec 28 T67N-B5W Buckner fine sand.
Infrequent. Along fences.
Sec 32 T67N-R5W Buckner fine sandy loam.

Phytolacca decandra L. F
Sec 13 T65N-R6W
Infrequent.
Sec 36 T68N-R3W Wabash clay.
Rare at this date, July 29, 1931.

## NYOTAGINACEAE

Allionia nyctaginea Michx.
= Oxybaphrs nyctaginea (Michx.) Sweet.
F

## CARYOPHYLLACEAE

Cerastium mutams Raf.
CF
Cerastivm viscoswm L.
C
Cerastium vulgatum $L$.
F
Sec 17 T65N-R5W Lindley loam.
Common but only a few flowers at this date. Naturalized from Europe.
Dianthus barbatus L.
W
Saponaria officinalis L.
F
Sec 1 T65N-R5W Genesee very fine sandy loam.
Common along railroad track.
Bec 28 T67N-R5W Buckner loam.
Frequent to common. Naturalized from Europe.
Silene alba Muhl.
$\mathrm{F}_{\mathrm{F}}=$ S. nivea (Nutt.) Otth.
F
Sec 4 T66N-R7W Buckner very fine sandy loam.
Silene antirthina L.
C
Silene media (L.) Cyrill.
0
Silene stellata (L.) Ait.

## FB

Sec 4 T66N-R7W Buckner very fine sandy loam.
Infrequent.
AIZOAOEAE
Mollugo verticillata L.

## F

Sec 29 T67N-R7W Marion silt loam.
Naturalized from further south.
POBTULACAOEAE
Claytonia virginia L.

## OFB

Portulaca oleracea L.
F
Sec 10 T66N-R6W Putnam loam.
Infrequent. In plowed corn fields.
Naturalized from Europe.
NYMPHAEAOEAE
Castalia tuberosa (Paine) Greene.
C
RANUNCULACEAE
Anemone canadensis L.
F

```
Sec 33 T68N-R3W Wabash clay.
Common in wet bottomland soils.
Anemone quinquefolia L.
0
Anemone virginiana L.
FB
Sec 13 T66N-R6W Marion silt loam.
Infrequent in damp shady woods.
Sec 2 T65N-R5W Lindley loam.
Sec 13 T65N-R6W
Anemonetla thaliotroides (L.) Spach.
F
Aquilegias canadensis L.
OWB
Clematis Pitcheri T. \& G.
F
Sec 2 T66N-R6W Genesee very fine sandy loam.
Infrequent.
See 2 T66N-R5W Genesee very fine sandy loam.
Delphinium axureum Michx.
WB
Delphinium tricorne Michx.
0
Hepatica acutiloba DC.
0
Raminoulus aoris L.
0
Ramunculus abortivus L.
FO
In shady woods.
Ranunoulus fascioularis Muhl.
FOB
Ramunoulus septentrionalis Poir.
F
Thalictrum dasyoarpum Fisch. \& Lall.
F
Sec 23 T68N-R5W Grundy silt loam.
Frequent.
```

                                    MENISPERMACEAE
    Menispermum canadense $L$.
FB
Sec 2 T66N-R6W Marion silt loam.

ANONACEAE
Asimina triloba Dunal. FW
Sec 1 T65N-R5W Memphis silt loam. Frequent on north slopes to Mississippi Biver. Podophyllum peltatum L . FO

BERBERIDACEAE
Berberis vulgaris L.

## I

Naturalized from Europe.
Caulophyllum thalictroides (L.) Michx.
C

Sanguinaria canadensis L. OB

Corydalis aurea Willd. OF
Dicentra canadensis (Goldie) Walp. FB

Arabis canadensis L. F
Barbarea vulgaris R.Br. C
Brassios juncea (LL) Cosson
F
Naturalized from Europe.
Brassiaa nigra (L.) Koch.
FW
Sec 1 T65N-R5W Genesee very fine sandy loam.
Common along railroad near Sandusky, Iowa.
Naturalized from Enrope.
Capsella Bursa-pastoris (L.) Medic.
WO
Naturalized from Europe.
Cardamine hirsuta L.
C
Cardamine parviflora L.
F
Draba caroliniara Walt.
F
Rrysimum cheiranthoides $\mathrm{L}_{\text {. }}$
FB
Sec 24 T69N-R4W Genesee very fine sandy loam.
Frequent.
Lepidium densiflormm Schrad.
= L. apetalum in Gray's Manual.
F
Lepidium virginioum L.
FW
Sec 27 T67N-R7W Genesee silt loam.
Radicula palustris (L.) Muench.
F
See 31 T67N-R5W Putnam loam.
Infrequent.
Raphamus satious L.
W
Sisymbrium altissimum L. F
Sisymbrium canescens Nutt.
F
Siwymbrienm officinale (L.) Scop.
FO
See $24 \mathrm{~T} 69 \mathrm{~N}-\mathrm{R} 4 \mathrm{~W}$ Genesee very fine sandy loam. Naturalized from Europe.

## CAPPARIDACEAE

Polanisia trachysperma T. \& G.
F
Sec 32 T66N-R6W Buckner very fine sandy loam.
Frequent in this soil.
See 33 T68N-R3W
Common in sand along leveew, etc.

## SAXIFRAGACEAE

## Heuchera hispida Pursh.

## F

## Sec 9 T65N-R5W Lindley loam.

Bare.
Penthorum sedoides L.
F
Sec 4 T68N-R3W Wabash silty clay loam.
Infrequent in wet soil.
Ribes missowriense Nutt.
$=$ gracile Michx.
F
See 1 T65N-R5W Memphis silt loam.
PLATANACEAE
Platanus ocoidentalis L.
I
ROSACEAE
Agrimonia gryposepala Wallr.
F
See 15/22 T66N-R6W Grundy silt loam.
Infrequent.
Agrimonia parviflora Ait.
F
Arunous sylvester Kosteletzsky
$=$ A. Arumous (Le) Karst.
FB
Sec 9 T65N-R5W Lindley loam.
Infrequent.
Sec 23 T66N-R6W Genesee very fine sandy loam.
Infrequent.
Crataegus Crus-galli L.
F
Sec 19 T65N—R5W
Crataegus Marganetta Ashe.
F
Sec 8 T67N-R5W Marion silt loam.
Crataegus mollis (T. \& G.) Scheele.
IF
Fragaria virginiana Duchesne
F
Sec 20 T65N-R5W Wabash fine sandy loam.
Gewm canadense Jacg.
= album J. F. Gmel.
F
Soc 14 T66N-R6W Genesee very fine sandy losm.
Geum virginianum L.
Sec 4 T68N-R3W Wabash silty clay loam.
Frequent.
Sec 3 T65N-R6W Wabash silt loam.
Inf́requent.
Mahus ioensis (Wood) Britt.
$=$ Pyrus ioonsis (Wood) Bailey
F
Sec 23 T68N-R5W Lindley loam.
Frequent.
Sec 30 T65N-R5W
Abundant.
Potentilla arguta Pursh.
F
Sec 36 T67N-R6W Lindley loam.
Inffrequent.

Potentilla canadensis I.
FO
Sec 29 T67N-B7W Marion silt loam.
Potentilla monspeliensis L .
FW
Sec 23 T66N-R6W Genesee very fine sandy loam.
Prunus americana Marsh.
F
Sec 36 T66N-R6W Buckner silt loam.
Prumus Persion (Lん) Stokes.
I
Prumus serotina Ehrh.
F
Sec 2 T65N-R5W Lindley loam.
Infrequent.
Prumus virginiona L.
F
Sec 13 T66N-R5W Grenesee very fine sandy loam.
Rasa setigera Michx.
C
Rosa virginiana Mill.
F
Sec 13 T66N-R6W Marion silt loam.
Frequent.
See 14 T67N-R5W Buckner fine sand.
Frequent.
Rosa Woodsii Lindl.
I
Rubus Baileyamus Britt.
$=R$. villosus var. humifusus T. \& $G$.
I
Rubus villosus Ait.
FW
See 36 T66N-R6W Buckner silt loam.
Along railroad tracks.
Spiraca alba DnRoi.
F
Sec 19 T65N-R5W Wabash clay. Infrequent.

LEGUMINOSAE
Amorpha canescens Pursh.
P
See 17 T65N-R5W Marion silt loam.
Frequent.
Sec 28 T67N-R6W
Found on a steep eroded slope.
Amorpha frutioosa I.
IB
Amphioarpa Pitcheri T. \& G.
F
See $36 \mathrm{~T} 66 \mathrm{~N}-\mathrm{R} 6 \mathrm{~W}$ Buckner fine silt loam.
Apios tuberosa Muench.
$F$
See 9 T65N-R5W Lindley loam.
Infrequent in shady woods.
Astragalus canadensis I.
F
Sec 14 T66N-R6W Marion silt loam.
Astragalus distortus T. \& G.

Baptisia bracteata (Muhl.) Ell.
F
Sec 33 T68N-R4W Lindley loam.
Baptisia leucantha T. \& G.
$F$
See 15/22 14/23 T66N-R6W Putnam silt loam.
Frequent.
Sec 17 T65N-R5W Marion silt loam.
Infrequent.
Cassia Chamaecrista L.
FWB
See 32 T67N-R7W Memphis silt loam.
Common along roadbanks.
Cercis omadensis I.
F'W
Crotalaria sagittalis I.
F
Sec 15 T66N-R6W Putnam loam.
Infrequent.
Desmodium bracteosum var. Longifolium (T. \& G.) Robinson
F
Sec 25 T66N-R4W Marion silt loam.
Infrequent.
Desmodium oonaderse ( $\mathrm{L}_{\mathrm{c}}$ ) DC.
FB
See 11 T65N-R5W Grundy silt lomm.
Infrequent along railroad tracks.
Desmodium Dillenii Darl.
C
Desmodivm grandiflorum (Walt.) DC.
F
Sec 13 T66N-R6W Marion silt loam.
Infrequent.
Sec 9 T65N-R5W Lindley loam.
Desmodium illinoense Gray
F
Sec 14 T67N-R5W Buckner very fine sandy loam.
Frequent.
Desmodium mudiflorvm ( $\mathrm{L}_{4}$ ) DC.
F
Seo 23 T68N-R5W Lindley loam.
Desmodium parioulatum (L.) DO.
C
Gleditsia triacanthos I.
FW
Sec 26 T66N-R5W Memphis loam.
Lespedesa capitata Michx.
F
Sec 24 T66N-R6W Marion silt loam.
Infrequent.
Lespedeara violacea ( $\mathbf{L}_{0}$ ) Pers.
$F$
Sec 13 T66N-R6W Marion silt losm.
Infrequent.
Lespedera virginica ( $L_{\mathrm{H}}$ ) Britt.
F
Sec 20 T67N-RTW Union stony loam. Infrequent.
Meaicago Tupulina I.
F
Sec 36 T67N-R6W Sindley loam.
Frequent along railroad.

Medioago sativa $\mathrm{L}_{\mathrm{L}}$
FW
Sec 14 T65N-R5W Genesee silt loam.
Along roadsides.
Melilotus alba Desr.
FWO
Sec 1 T66N-R6W Lindley loam.
Naturalized from Europe.
Petalostomum purpurewm (Vent.) Bydb.
F
Psoralea Onobrychis Nutt.
F
Sec 36 T68N-R4W Marion silt loam.
Infrequent.
Sec 1 T65N-R5W Genesee very fine sandy loam.
Robinia Pseudo-Acacia L.
F
Native further south.
Strophostyles helvola ( $\mathrm{L}_{\mathrm{H}}$ ) Britt.
F
See 32 T67N-RTW Memphis silt loam.
Frequent.
Sec 28 T67N-R6W Genesee silt loam.
Frequent. Found on a steep eroded slope.
Tephrovia virginiana (L.) Pers.
FB
Sec 28 T67N-R5W Buckner fine sand.
Trifolium hybridum L.
F
Introduced from Europe.
Trifolium pratense $\mathrm{I}_{\mathrm{s}}$.
FWO
See 1 T66N-R6W Lindley loam.
Infrequent along roadsides.
Introduced from Europe.
Trifolium repens $L_{\text {. }}$
FO
Sec 2 T66N-R6W Lindley loam.
Infrequent along roads. Doubtfully indigenous to America.
OXALIDAOEAE
Oxalis cymosa Small
$=$ comioulata I. (Gray's Manual)
See $26 \mathrm{~T} 66 \mathrm{~N}-\mathrm{R} 5 \mathrm{~W}$ Geresee silt loam.
Infrequent. Nearly prostrate.
Sec 14 T66N-R6W Genesee very fine sandy loam.
Oxalis striota I.
FOW
Oxalis violacea L.
OB
GERANIACEAE
Geranium carolinianum L. $F$
Geranium maculatum $\mathrm{L}_{\text {. }}$
FO
RUTACEAE
Ptelea trifoliata L.
WB

Zanthoxylum amerioanum Mill.

## F'W

See 30 T69N-R3W Lindley loam.
Infrequent. Leaves have a lemon odor.
See 1 T65N-R5W Memphis silt loam.
Infrequent on north slopes to Mississippi River.

## SIMARUBACEAE

Ailanthus glanaulosa Desf.
I
Introduced from Asia.

## POLYGAIACEAE

Polygala sanguinea L.
CF
Sec $8 \mathrm{~T} 65 \mathrm{~N}-\mathrm{R} 5 \mathrm{~W}$ Marion silt loam.
Infrequent.
See 23 T66N-R6W Genesee very fine sandy loam.
Sec 33 T68N-R4W Memphis silt loam.
Frequent.
Polygala vertioillata L.
F
Sec 23 T66N-R6W Genesee very fine sandy loam.
Infrequent.

## EUPHORBLACEAE

Aoalyphat virginica I.
F
Sec 36 T67N-B6W Lindley loam.
Common on railroad track ballast.
Croton appitatus Michx.
0
Croton glandulosus L.
var. septentrionalis Muell. Arg.
$F$
See 33 T67N-R5W Buckner fine sand.
Infrequent.
Sec 28 T66N-R5W Buckner fine sand.
Frequent.
Sec 10 T66N-R6W Putnam silt loam,
Frequent. Said to make horses slobber.
Croton monanthogymss Michx.
C
Euphorbia oorollata L.
FB
Sec 11 T68N-R5W
Common.
Sec $32 \mathrm{~T} 67 \mathrm{~N}-\mathrm{R} 7 \mathrm{~W}$
Frequent along railroads.
Eivphorbia Cyparissias I.
C
Kuphorbia maculata L.
FCB
Sec 29 T67N-R7W Lindley loam.
Infrequent.
Euphorbia Pophus L.
C

Rhus canadensis Marsh.
F
Quite common.

## Rhus glabra L.

F
See 10 T68N-R4W Lindley loam.
Common.
Sec 29 T65N-R5W Wabash fine sandy loam.
Sec 33 T67N-R6W Putnam loam.
Frequent along roads.
Celastrus soandens L.
F
Gec 2 T66N-R6W Genesee very fine sandy loam.
Infrequent.
Evonymus atropurpureus Jacq.
WB
ACERAOEAE
Acer Negundo L.
F
See 32 T66N-R6W Wabash silt loam.
Frequent.
Acer nigrum Michx.
= A. saccharum var. nigrum (Michx.) Britt.
F
See 33 T67N-R7W Memphis silt loam.
Common.
Acer saccharinum L.
FW
Sec 2 T66N-R6W Marion silt loam.
Frequent on upland soils.
Acer saccharum Marsh.
W

Staphylea trifolia I.
WF
STAPHYLEACEAE

SAPINDAOEAE
Aesculus glabra Willd.
F
Lesculus glabra Willd.
var. arguta (Buckley) Robinson
FW
See 1 T65N-R5W Memphis silt loam.
Infrequent in hickory maple woods.
BALSAMINACEAE
Impations biflora Welt.
F
See 13 T66N-R5W Genesee very fine sandy loam.
Impatiens pallida Nutt.
FWB
Sec 23 T66N-R6W Genesee very fine sandy loam. Common.

RHAMNACEAE
Ceanothus americamus L.
FWB
Sec 2 T66N-R6W Genesee very fine sandy loam.
Infrequent.
See 28 T67N-R6W Genesee silt loam.
Frequent.
Rhammis lanceolata Pursh.
F
See 26 T67N-R7W Memphis loam.
Infrequent.

## VITACEAE

Psedera quinquefolia (L.) Greene. C
Titis cordifolia Michx.
F
Rare
Vitis labrusca L .
W
Cultivated.
Vitis vulpina L.
F
tillaceae
Tilia amerioana L .
F
Sec 32 T67N-B7W Lindley loam.
Infrequent to frequent.
Tilia ewropaea L.
C
Cultivated.
MALVACEAE
Abuttion Theophrasti Medic.
F
See 20 T68N-RAW Grundy silt loam.
A common cornfield and barnyard weed.
Althaea rosea Cav.
F
See 13 T65N-R5W Genesee silt loam.
An escape from cultivation.
Introduced from China.
Hibisous militaris Cav.
FB
Sec 36 T63N-B3W Wabash clay.
Infrequent.
Malva rotundifolia L.
0
Naturalized from Europe.
Sida spinosa L.
F
Sec 10 T66N-R6W Marion silt loam.
Sec 33 T68N-R3W Wabash clay.
Infrequent. Naturalized from the tropics.
HYPERIOACEAE
Hyperioum Asoyron L.
F
Sec 27 T67N-R7W Lindley loam.
Very infrequent. A shrub with large yellow flowers.
Hyperioum cistifolum Lam.
F
Sec 2 T 66 N -R6W Genesee very fine sandy loam. Infrequent.
Hyperioum ellipticum Hook.
C
Hyporioum perforatum $L$.
FB
Sec 15 T66N-R6W Putnam loam.
Frequent.
Sec 29 T65N-R5W Wabash sandy loam.
Iypericum prolifoum L.
FB
Soc 26 T67N-B7W Memphis silt loam.
Infrequent.

Hyperiown punctatum Lam.

## F

Sec 4 T66N-B7W Buckner very fine sandy loam.
Frequent along railroad tracks.
CISTAOEAE
Lechea temuifolia Michx.
F
Sec 2 T66N-R6W Genesee very fine sandy loam.
Jee 28 T64N-R4W Lindley loam.
Frequent.
VIOLACEAE
Tiola palmata L.
0
Viola papilionacea Pursh.
F
Fiola pedata Is
OB
Tiola sabriuscula Schwein.
$=$ eriooarpa Schwein.
FOB
Viola striata Ait.
THYMELAEACEAE
Diroa palustris L.

## LYTHRACEAE

Cuphea petiolata (L.) Koehne.
C
Lythrum alatwm Pursh.
FB
Sec 1 T65N-R5W Genesee very fine sandy loam.
Infrequent in wet ditches.
Sec 2 T66N-R6W Genesee very fine sandy loam.
ONAGRAOEAE

## Circaea Iutetiana L.

FB
Sec 33 T67N-R6W Putnam loam.
Common in shady woods.
Ludroigia polycarpa Short \& Peter.
FB
See 29 T67N-RTW Lindley loam.
Infrequent along roads.
Oenothera laciniata Hill.
F
Sec 29 T67N-R7W Lindley loam.
Infrequent. Introduced from the western plains.
Oenothera muricata L.
F
Sec 28 T68N-R4W Genesee very fine sandy loam.
Infrequent. Found in a timothy field.
Oenothera rhombipetala Nutt.
F
Sec 32 T66N-R6W Buckner fine sand.

## UMBELLIFERAE

## Anethum graveolens Is.

W
Chaerophyllum prooumbens ( $\mathrm{I}_{\mathrm{s}}$ ) Crantz.
F

```
Cionta maculata L.
FB
Sec 32 T67N-B6W Marion silt loam.
Infrequent.
Sec 2 T65N-R5W Lindley loam.
Along a roadside.
Cryptotaenia oanadensis (L_) DC.
FC
Sec 29 T65N-R5W Wabash fine sandy loam.
Infrequent in shady woods.
Davous Carota L.
F
Sec 36 T68N-R6W Putnam loam.
Infrequent on upland soils.
Sec 2 T65N-R5W Lindley loam.
Naturalized from Europe.
Eryngium yucoifoliam, Michx.
F
Sec 36 T67N-R6W Lindley loam.
Infrequent.
Osmotrhiza Longistylis(Torr.) DC.
FO
Sec 29 T65N-R5W Wabash fine sandy loam.
Frequent in shady woods.
Osmorhisa Claytoni (Michx.) Clarke.
W
Pastinaoc sativa L.
FW
Sec 1 T65N-R5W Genesee very fine sandy loam.
Common along railroad banks.
Sec. }28\mathrm{ T68N-R4W Grundy silt loam.
Naturalized from Europe.
Sanicula canadensis I.
FW
Sec 13 T65N-R6W
In shady woods.
Taenidia integerrima (L.) Drude.
F
Thaspium barbinode (Michx.) Nutt.
F
Sec 23 T68N-R5W Lindley loam.
Zivia aurea (L.) Koch.
F
Sec 9 T65N-R5W Lindley loam.
Infrequent.
Sec 32 T67N-R6W Marion silt loam.
```

                                    CORNACEAE
    Cornus alternifolia L.f.
I
Corvus Amomum Mill.
IC
Cormus asperifolia Michx.
FW
Bec 14 T65N-R5W
In shady woods.
Sec 25 T66N-RAW Marion silt loam.
Frequent.
Cormus ciroinata L'Hér.
I

Cornus paniculata L'Hér.
FB
Sec 28/33 T67N-R6W Putnam loam.
Fairly common.
PRIMULACEAE
Anagallis arvensis L.
C
Androsace ocoidentalis Pursh.
F
Steironema ciliatum ( $\mathrm{In}_{\mathrm{H}}$ ) Raf.
F
Sec 9 T65N-R5W Lindley loam.
Infrequent in shady woods.
See 29 T67N-R7W Union atony loam.
Infrequent.
Bec $23 \mathrm{~T} 66 \mathrm{~N}-\mathrm{R}$-WW Gencsee very fine sandy loam.
Infrequent.
Steironema lanceolatum (Walt.) Gray.
F
Sec 4 T68N-R3W Wabash silty clay loam.
Frequent.
OLEACEAE
Frasimus americana Is
=F. pemnsylvanica var. lanceolata (Borkh.) Sarg.
F
Sec 36 T66N-R6W Buckner silt loam.
Fraximus lanceolata Bork.
F
Sec 14 T66N-R6W Genesee very fine sandy loam.
Infrequent.
Fraxinus nigra Marsh.
I
Fraxinus pennsylvanica Marsh.
F
Sec 32 T67N-R5W Buckner fine sandy loam.
A small tree.
See 29 T65N-R5W Wabash fine aandy loam.
Infrequent to rare.
Syringa vulgaris L.
W
Cultivated.
GENTIANAOEAE
Sabbatia campestris Nutt.
F
Sec 33 T68N-R4W Lindley loam.
Very rare.
APOCYNACEAE
Aрооушим саппавітит L.
F
Sec 22 T68N-R3W Wabesh clay. Growing in water.
Apooymun medium Greene.
E
See 26 T68N-R4W Marion silt loam. Infrequent.

## ASCLEPLADACEAE

Acerates floridana (Lam.) Hitchc.
FO
See 15/22 T66N-R6W Buckner silt loam.
See 19 T65N-R5W Putnam loam.

Asolepias amplexicaulis 8 m .

## F

See 33 T67N-R5W Buckner fine sand.
Infirequent.
Asclepias incarnata L.

## FB

Sec 2 T66N-R6W Genesee very fine sandy losm.
Infirequent.
See 4 T68N-R3W Wabash silty clay loam.
Infrequent.
Asolepias purpurascens L.
FWB
Asolepias quadrifolias Jacq.
FOB
Asolepias syriana L.
F
See $20 \mathrm{~T} 68 \mathrm{~N}-\mathrm{R} 4 \mathrm{~W}$ Grundy silt losm.
Common.
Asclepias tuberosa L.
FWB
Sec 19 T65N-R5W Wabash clay.
Infrequent.
Asolepias verticillata L.
F
Sec 36 T66N-R6W Marion silt loam.
Infrequent.
Gonolobus laevis Michx.
C

## CONVOLVULACEAE

Convolvulus arvensis L.
FW
Sec 13 T66N-R5W Grenesee very fine sandy loam.
Frequent along roads and fences.
Naturalized from Europe.
Convolvulue sepium $L$.
FW
See 17 T65N-R5W Marion silt loam.
Fairly common.
Cusouta glomorata Chois.
C
Ipomoea coocinea I.
0
Ipomoea hedoracea Jacq.
F
Sec 26 T67N-R6W Grundy silt loam.
Infrequent. Introduced from tropical America.
Ipomoea pandurata (L.) G.F.W. Mey.
See 28 T64N-R4W Lindley loam.
Frequent.

Phlox divaricata L.
FOB
Phlox panioulata L.
0
Phlox maoulata $L_{\text {. }}$
0
Polemonium reptons L.
FOB
Sec 14 T66N-R4W

## HYDROPHYLLACEAE

Ellisia Nyotelea L. OWFB
Hydrophyllum appendioulatum Michx.
WCO
Hydrophyllum virginianem L. FOB

## BORAGINACEAE

Cynoglossum officinale I.
FO
See 26 T66N-R5W Lindley loam.
Rare in this soil.
Sec 20 T65N-R5W Wabash fine sandy loam.
Infrequent. Naturalized from Europe.
Zchium vulgare L.
C
Lappula virginiana ( $L_{0}$ ) Greene.
F
Sec 24 T67N-R4W Lindley loam.
Infrequent.
Lithospermum Gmelini (Michx.) Hitchc.
0
Mertensia virginioa (L.) D.O.
0
Myosotis virginioa ( $\mathrm{L}_{\mathrm{H}}$ ) B.S.P.

## VERBENACEAE

Lippia lanoeolata Michx.
F
Sec 4 T68N-R3W Wabash silty clay loam.
Common in wet places.
See 1 T65N-R5W Genesee very fine sandy loam.
Frequent in wet soils.
Terbena bracteosa Michx.
FW
See 36 T65N-R6W Lindley loam.
Common on railroad ballast.
Verbena stricta Vent.
FW
Sec 6 T68N-R3W Buckner very fine sandy loam. Pink flowers. Rather rare.
Sec 29 T07N-R5W Buckner very fine sandy loam.
White flowers. Very rare.
Bec 14 T66N-R6W Genesee very fine sandy loam.
Blue flowers. Common in overgrazed pastares.
Verbena urticifolia L.
FB
Sec 33 T67N-R6W Lindley loam,
Infrequent at this date (July 14, 1931).
Sec 28 T68N-R4W Lindley loam.
Frequent at this date (July 21, 1931).
LABLATAE
Agastache repetoides (L.) Kitze.
0
Blephilia ciliata ( $L_{0}$ ) Raf.
WB
Blephilia hirsuta (Pursh.) Benth.
FB

Hedeoma hispida Pursh.
F
Sec 28 T64N-R4W Memphis silt loam. On dry hills under shade.
Sec 36 T66N-B6W Buckner silt loam.
Hedeoma pulegioides ( $\mathrm{L}_{\mathrm{H}}$ ) Pers.
F
Lamium amplexicaule L.
CF
Leonurus Cardiaca I.
FW
See 3 T65N--R6W Wabash silt loam.
Naturalized from Enrope.
Lycopus amerioams Muhl.
FC
Sec 30 T68N-R3W Buckner silt loam.
Infrequent.
Lycopus virginicus L .
CB
Marrubium vulgare $L$.
F
Sec 19 T65N-R5W Putnam loam.
Naturalized firom Europe.
Monarda didyma Is.
W
Monarda mollis L.
FW
Sec 2 T66N-R6W Genesee very fine sandy loam.
On dry hills.
Monarda punotata L.
F
Nepeta Cataria L.
FW
Sec 2 T66N-R6W Genesee very fine sandy loam. Infrequent.
Sec 4 T66N-R5W Buckner fine sand.
Frequent. Naturalized from Europe.
Nepeta hederacea (L.) Trevisan
OC
Prumella vulgaris L.
FB
Pyoanthenum flexwosum (Walt.) B.S.P. F
Sec 2 T66N-R6W Marion silt loam.
Frequent.
Pyonarthemum pilosum Nutt.
FB
Sec 28 T68N-R4W Memphis silt loam. Frequent.
Scutellaria lateriflora L.
F
Sec 30 T68N-R3W Buckner silt loam.
Infrequent.
Soutellaria parvula Michx.
F
Sec 13 T66N-R6W Marion silt loam.
Infrequent. An annual.
Soutellaria versicolor Nutt.
FW
Sec 1 T65N-R5W Memphis loam.
Frequent under maple-hickory shade.
Staohys palustris L.
F
Sec 4 T68N-R3W Wabash silty clay loam.
Frequent.
Stachys temnifolia Willd.
F
Sec 30 T68N-R3W Buckner silt loam.
Frequent.
Teuorium annadense L.
FB
Sec 2.T66N-R6W Lindley loam.
Frequent in damp ground.

SOLANAOEAE
Datura Stramonium L.
F
Sec 14 T68N-R3W Wabash loam.
Infrequent. Naturalized from Asia.
Physalis heterophylla Nees.
FW
Sec 33 T67N-R/W Marion silt loam.
Infrequent.
Physalis lanoeolata Michx.
F
Sec 2 T66N-R6W Marion silt loam.
Bare.
Physalis longifolia Nutt.
F
Bec 28 T64N-R4W Lindley loam.
Infrequent.
Solanum carolinense I.
FW
Sec 29 T65N-R5W Wabash fine sandy loam.
Bec 28 T67N-R5W Buckner fine sand.
Naturalized from the south.
Solamem Duloamana L.
FB
Introduced from Europe.
Solamem nigrum I.
F'B
See 28 T67N-R5W Buckner fine sand. Frequent.
Solamem rostratum Dunal.
F
Sec 26 T67N-B7W. Putnam loam.
Infrequent. Found in a barnyard.
Adventive from the western plains.
SCROPHULABIAOEAE
Agalinis temifolia (Vahl.) Raf.
FB
$=$ Genardia of Gray's Manual.
Castilleja cocoinea (L.) Spreng.
00
Dasystoma grandiflora (Benth.) Wood.
$=$ Gerardia grandiflora Benth.
F
Sec $20 \mathrm{~T} 67 \mathrm{~N}-\mathrm{R} T \mathrm{~W}$ Union stony loam.
Infrequent.
Gratiola negleota Torr.
$=$ virginiana L. in part

Linaria vulgaris Hill.

## FW

Naturalized from Europe.
Otophylla auriculata (Michx.) Small.
= Gerardia of Gray's Manual.
F
Sec 2 T66N-R6W Lindley loam.
Infrequent.
Pentstemon Digitalis (Sweet) Nutt.
$=P$. laevigatus var. Digitalis (Sweet) Gray
F
Sec 33 T68N-R4W Memphis silt loam.
Frequent.
Pentstemon hirsutus (L.) Willd.

$$
=\text { P. pubescens Ait. }
$$

OCB
Sorophularia lanceolata Pursh. = S. leporella Bicknell.
F
See 33 T67N-R5W Buckner fine sandy loam.
Infrequent.
Ferbascum Blattaria L.

## FB

See 1 T65N-R5W Memphis silt loam.
Infrequent in shady woods.
Introduced from Europe.
Derbasoum Thapsus L.
FWB
See 2 T66N-R6W Lindley loam.
Infrequent along roads.
See 22 T67N-R5W Buckner loam.
Frequent. Naturalized from Europe.
Venoniaa arvensis L.
C
Veronica peregrina L.
F
Veronica serpyllifolia $\mathrm{L}_{\text {. }}$
C
Teronica virginioa L.
F
Sec 24 T68N-B4W Lindley loam.
Frequent.
Sec 2 T66N-R6W Marion silt loam.
Infrequent.
OROBANCHACEAE
Orobanohe uniflora L. C

Tecoma radioans DC.
FB
Sec 2 T66N-R6W Lindley loam.
An escape from cultivation.
Catalpa speciosa Warder.
F
Sec 2 T65N-R5W Lindley loam. Frequent.

## ACANTHACEAE

Dianthera americana L. F Ruellia ciliosa Pursh. F
Sec 20 T65N-R5W Putnam loam.
Common along roads.
PHRYMACEAE

## Phryma Leptostachya L.

 FPLANTAGINACEAE

Plantago aristata Michx.
FW
Plantago lanceolata $\mathbf{L}$.
FW
Naturalized from Europe. Plantago major L.
W
Plantago Purshii R. \& S.
C
Plantago Rugelii Dene.
F
Sec 23 T66N-R6W Genesee very fine sandy loam. See 24 T68N-R7W Lindley loom.
Common.
Plantago virginica L.
F
RUBIACEAE
Cephalanthus occidentalis L. FB
Galium Aparine L.
F
Galium conoinnum T. \& G.
FW
Galium triflorum Michx.
FW
See 28 T68N-R4W Memphis silt loam.
Frequent in damp woods.

## CAPRIFOLIAOEAE

## Lomicera dioica L.

0
Sambucus oanadensis L.
FW
Symphorioarpes orbiculatus Muench.
W
Symphorioarpos racemosus Michx.
F
Native further north and east.
Triosteum aurantiaoum Bicknell.
F
Tiburnum Lentago L.
F
Sec 2 T66N-R6W Genesee very fine sandy loam. Infrequent.
Viburmum prunifolium $L$.

Campanila amerioana L.
FWB
See 2 T66N-R6W Lindley loam.
Frequent.
Sec 14 T66N-R6W Genesee very fine sandy loam.
Sec 13 T66N-R5W Genesee very fine sandy loam.
Specularia perfoliata (L.) A. DC.
FW
Lobelia cardinalis L .
C
Lobelia inflata L.
FOB
Sec 29 T68N-R4W
Infrequent.
Lobelia spioata Lam.
W
Lobelia syphilitica L.
FB
OOMPOSITAE
Aohillea lamulosa Nutt.
F
Native from Saskatchewan to New Mexico and westward.
Aohillea Millefolium L.
F
Adventive from Europe.
Ambrosia psilostachya DC.
C
Ambrosia trifida L.
FB
Very common along roads.
Antennaria neglecta Greene.

## F

See 30 T69N-R3W Lindley loam.
Infrequent.
Antennaria plantaginifolia (L.) Richards.
F
Anthemis Cotula L.
FCW
Sec 19 T65N-R5W Putnam loam.
Very common. Naturalized from Europe.
Arotium minus Bernh.
F
Sec 8 T67N-R5W Marion silt loam.
Frequent. Naturalized from Earope.
Artemisia annua L.
C
Aster azureus Lindl.
C
Aster cordifolinas I.
C
Aster Drummondii Lindl.
C
Aster eriooides L.
FC
Aster laevis L.
FCB
Sec 21 T67N-R7W Lindley loam.
Infrequent.

```
Aster lateriflorus (L.) Britt.
C
Aster lateriflorus (L.) Britt.
    var. bifrons (Gray) Fernald.
C
Aster multiflores Ait.
FB
Frequent.
Aster sagittifolius Wedemeyer.
W
Aster salicifolins Ait.
C
Aster sericeus Vent.
O
Aster Shortii Lindl.
CB
Astor tenuifolume L.
C
Aster Tradescanti I.
F
Sec 13 T65N-R5W Genesee very fine sandy loom.
Bidens bipinnata L.
F
Sec 33 T67N-R5W Buckner fine sand.
Infrequent. First specimen from Iowa to the I.S.C. Herbarium.
Bidens frondosa L.
C
Bidens involucrata (Nutt.) Britt.
F
Sec 36 T67N-R6W Grundy silt lomm.
Very common. A bad fall weed.
Brauneria pallida (Nutt.) Britt.
F'W
Sec 36 T67N-R6W Lindley loam.
Infrequent.
Centawrea Cyanus I.
W
Introduced from Europe.
Chrysanthemum Levaanthemum L.
F
See 26 T67N-R6W Grundy silt loam.
Infrequent. Naturalized from Europe.
Chrysanthemum Parthenium (L.) Bernh.
W
Cirsium altissimam (L.) Spreng.
C
Cirsium discolor (Muhl.) Spreng.
F
Very common.
Cirsium undulatum (Nutt.) Epreng.
F
Sec 21 T67N-R5W Buckner fine sand.
Along railroad. Fairly common.
Coreopsis palmata Nutt.
FW
See 29 T65N-R5W Wabash fine sandy loam.
Only one specimen found at this date (June 15, 1932).
Coreopsis tripteris L.
C
```

```
Erechtites hieracifolia (L.) Rat.
C
Erigeron anmuns (L.) Pers.
W
Erigeron canadensis L.
C
Erigeron ramosus (Walt.) BSP.
F
Eupatorium altissimum L.
F
Sec 11 T66N-R6W Genesee very fine sandy loam.
Fairly common on creek banks.
Eupatorium purpurewm L.
F
Eupatorium serotinum Michx.
F
Sec 20 T65N-R5W Wabash fine sandy loam.
Infrequent.
Eupatorium urtioaefolium Reichard.
F
Frequent.
Gnaphalium purpureum L.
F
Sec 27 T67N-R7W Grenesee silt loam.
Infrequent. A low annual.
Helenium autumnale L.
FB
Sec 11 T66N-R6W Genesee very fine sandy loam.
Frequent.
Helianthus annures I.
F
Sec 33 T68N-R3W Wabash clay.
Common.
Helianthus doronicoides Lam.
C
Helianthus petiolanis Nutt.
F
Sec 27 T67N-R5W Buckner loam.
Native of the western plains.
Probably introduced in Iowa.
Helianthus scaberrimus Ell.
W
Helianthus strumosus L.
F
Sec 25 T68N-R4W Lindley loam.
Frequent.
Sec 28 T68N-R4W Grenesee very fine sandy loam.
Frequent.
Heliopsis helianthoides (I.) Sweet.
F
Sec 4 T66N-R7W Buckner very fine sandy loam.
Krigia amplexiaunlis Nutt.
    (Cynthia virginioa (L.) D. Don.)
F
Sec 9 T65N-R5W Lindley loam.
Rare.
Kuhnia eupatorioides I.
F
Sec 28 T67N-R5W Buckner fine sand.
Infrequent.
```

```
Laotuoa canadensis L.
FC
Sec 4 T66N-R7W Buckner very fine sandy loam.
Sec 20 T68N-R4W Grundy silt loom.
Common.
Sec 2 T65N-R5W Lindley loam.
Lactuca floridana (L.) Gaertn.
C
Lactuca soariola L.
F
Sec 4 T66N-R7W Buckner very fine sandy loam.
Very common. Naturalized from Europe.
Lactuca villosa Jacq.
F
Blue flowers.
Lepachys pinnata (Vent.) T. & G.
OF
Leptilon canadense (L.) Britt.
    = Erigeron canadensis L.
F
Sec }8\mathrm{ T65N-R5W Marion silt loam.
Infrequent.
Leptilon divariaatus Michx.
F
Sec 27 T67N-R7W Genesee silt loam.
Frequent in low ground.
Sec 14 T67N-R5W Buckner very fine sandy loam.
Frequent in bottomland soils.
Liatris oylindracea Michx.
C
Liatris pyonostachya Michx.
FB
Sec 24 T66N-R6W Marion silt loam.
Liatris scariosa Willd.
FB
Frequent on upland soils.
Parthenium integrifolium L.
FWB
Sec 36 T66N-R6W Marion silt loam.
Infrequent.
Sec 8T65N-R5W Marion silt loam.
Frequent on upland soils.
Polymnia oanadensis L.
W
Prenanthes alba L.
F
Infrequent.
Prenanthes aspera Michx.
C
Rudbeckia hirta L.
FWB
Sec 29 T65N-R5W Wabash fine sandy loam.
Only one specimen at this date (June 25, 1932).
Sec 17 T65N-R5W Putnam loam.
Frequent.
Rudbeckia subtomentosc Pursh.
C
Rudbeckia triloba L.
FB
Sec 26 T66N-R5W Genesee silt loam.
Infrequent.
```

Silphivm integrifolium Michx.
F
Sec 6 T66N-R6W Genesee very fine sandy loam. Frequent.
Silphium laciniatum L.
FB
Sec 1 T66N-R6W Putuam loam.
Infrequent.
Silphium perfoliatum L .
FB
See 36 T66N-R6W Marion silt loam.
Infrequent to common.
Solidago canadensis L.
C
Solidago Latifolia L.
C
Solidago rigidinusoula Porter.
= S. speciosa var. angustata T. \& G.
F
Solidago serotina Ait.
F
Frequent.
Solidago speciosa Nutt.
CB
Solidago temiifolia Pursh.
CB
Sonohus oleraceus L.
WC
Tanacetum vulgare $\mathrm{I}_{\text {. }}$
F
Sec 20 T65N-R5W Wabash fine sandy loam.
A frequent eacape along fences.
Tarasacum erythrospermum Andra.
F
Taraxacum offioinale Weber.

## W

Vernonia altissima Nutt.
Sec 20 T68N-R3W Wabash loam.

## DISCUSSION OF THE SURVEY

## Herbaceous Plants

This survey showed that of the 648 species known to occur in Lee County, 550 of them were herbaceous plants. Of this number, 337 species belonged to the ten most common families as follows: 64 grasses (Gramineae), 58 composites (Compositae), 44 sedges and rushes (Cyperaceae and Juncaceae), 35 species in the pea family (Leguminosae), 23 species in the rose family (Rosaceae), 21 mints (Labiatae), 18 buckwheats (Polygonaceae), 16 buttercups (Ramunculaceae), 16 mustards (Cruciferae), 15 species in the lily family (Liliaceae), 13 in the carrot family (Umbelliferae), and the same number in the figwort family (Scrophulariaceae).

In the grass family there was a wide variety of species scattered through 35 genera. Some of the more common ones were Alopecurus along roadsides, Cenchrus in sandy fields and railroad ballast, Digitaria often a pest in cornfields, Elymus species along roads, Hystrix in dense shady woods, Panicum species in uplands and bottomlands, Poa species in pastures where the shade was moderate, and Setaria along the edges of fields and roads. Some of the genera, which were rare were Aristida and Bouteloua
in the Mississippi bottom northeast of Fort Madison, Calamagrostis on the upland soils, Danthonia along the top of the Des Moines bluffs, Diarrhena in the hilly sections near Argyle, and Triplasis in the sandy soils between Montrose and Fort Madison.

Some of the most abundant genera of the composite family (Compositae) were Achillea in the hilly sections, Ambrosia along roads and creeks and in wet bottomlands, Anthemis which is abundant in the hill sections June 15 to August 1, and Bidens, a troublesome and abundant weed in September, in upland and hill sections. Erigeron is another genus which was abundant in June and July. Lactuca species were common along railroad tracks and Silphium was common in the bottomlands. Vernonia was a common summer pasture weed. The uncommon genera were Brauneria, Chrysanthemum, Gnaphalium and Krigia.

The most abundant sedges (Cyperaceae) in uplands, hills and bottomlands, were species of Carex although Eleocharis was probably the most common genus in wet or swampy bottomlands. Scirpus species were commonly found in wet roadside ditches in the hill and upland sections. Some of the rarest sedges were Carex Asa-Grayi in the undrained bottom northeast of Fort Madison and Scirpus americanus along a railroad track near New Boston.

## Trees and Shrubs

The available data show that 97 species of trees and shrubs occur in Lee County of which 56 are trees and 41 shrubs; 68 species were collected by this survey, 18 by Professor H. E. Jaques, and 20 by other collectors.

One tree and one shrub new to Iowa were found in this survey, as follows:

1. An oak hybrid (Quercus marilandica $\times$ Quercus velutina $=$ Quercus Bushii Sarg.)
2. Black Haw (Viburnum prunifolium L.)

The oak hybrid was found only once in a grove of Black Jack Oak near Summit School and the Black Haw was found along the Mississippi bluffs, south of Montrose, on a shady, damp, east exposure.

Five other species and one variety which are particularly characteristic of Lee County and southeastern Iowa were found. The one species particularly adapted to Lee County was the Papaw which was found exclusively and in abundance along the warm, damp Mississippi bluffs above Keokuk. It is found mostly further south and east, in Illinois, etc. The Ohio Buckeye (Aesculus glabra L.) and its variety (A. glabra var. arguta) were found along the bluffs below Montrose. Both of these are found native in the extreme southern counties although there is one station of the species as far north as Boone county. The Hop Tree or Wafer Ash (Ptelea trifoliata L.) occurred mostly in sandy bottoms along the Des Moines. It is further distributed in Iowa along the Mississippi to Scott County and west to Wapello although there is one specimen from Cass county in the Iowa State College Herbarium. The Red Bud (Cercis canadensis L.) was found growing vigorously along the Des Moines River. It is native from Lee county to Muscatine and as far west as Mills county. In Illinois it is
well distributed except in the northwest corner of the state. The Overcup Oak (Quercus lynata) has been recorded by Dr. L. H. Pammel from a single station north of Keokuk. Otherwise it is known only in Appanoose county. In Illinois it has only been found in the southern quarter of the state. There are many other species of trees and shrubs in Lee county but they are either widely distributed in Iowa or not particularly abundant.

## Plant Indicators

From an examination of the field notes and from field experience, it seems that the plants of Lee County are either sub-specific or quite general in their local soil requirements. Many of the plants of sandy, sandy loam, and clay soils were found to be relatively specific while most of the species on silt loam, and loam soils were very general in their requirements.

It was found that Cenchrus pauciflorus, Cycloloma atriplicifolium, Polanisia trachysperma, Sporobolus cryptandrus, Cyperus esculentus, and Cyperus Schweinitzii were good indicators of sandy areas.

Typha latifolia, Eleocharis acicularis, Eleocharis palustris, Hibiscus militaris, Carex lupulina and Anemone canadensis were particularly characteristic of the clay soils northeast of Fort Madison. Phytolacca decandra is a very large shrub-like herb that was found only once along the Mississippi in this area.

The largest number of species found on any one soil type was 120 on the silt loam soils. Abutilon Theophrasti, Bidens involucrata, Cassia Chamaecrista, Leptilon canadense, Panicum capillare, Scirpus atrovirens and Ulmus americana seemed to be the best indicators.

The number of species on the loam soils was practically the same as on the silt loam types ( 117 species). The most common species were Baptisia bracteata, Carex vulpinoidea, Daucus Carota, Digitaria sanguinalis, Elymus robustus, Hibiscus Trionum, Malus ioensis, Prunus serotina, Quercus alba and Rhus glabra.

The commonest species of the flora on the sandy loams in the bottomlands were such species as Agropyron repens, Amaranthus blitoides, Cyperus filiculmis, Eragrostis hypnoides, Leptilon divaricatum, Monarda mollis, Polanisia trachysperma, and Verbena stricta.

The flora of the stony loam soils near Croton and northeast of Denmark was very limited but distinctive. Dasystoma grandiflora and Steironema ciliatum were the most characteristic species.

The higher yearly average temperature and precipitation as compared to the rest of Iowa ${ }^{6}$ was reflected in the flora by the presence of such species as Allium mutabile, Commelina virginica, Elymus glabriflorus, Gnaphalium purpureum, $\bar{X}$ Quercus Bushii, and Viburnum prunifolium which have not been found in Iowa before as far as known. Two of these, Allium mutabile, and Gnaphalium purpureum are at the northern limits of their ranges in Lee County, while the other five species are well within their ranges and will probably be found later at other stations in the state.

The Papaw (Asimina triloba) is another species which, although found in Des Moines and Fremont counties, is particularly adapted to the local

[^2]conditions along the Mississippi bluffs above Keokuk where the precipitation and temperature are very similar to those further south and east.

## SUMMARY

1. A systematic list of the 645 known species of flowering plants of Lee County, Iowa, was made of which 456 species were collected and identified by this survey; 92 species by the late Dr. Ehringer of Keokuk, Iowa, whose specimens are now in the Carthage College Herbarium, Carthage, Illinois ; 87 species by Professor H. E. Jaques, Iowa Wesleyan, Mt. Pleasant, Iowa; 87 species by Mrs. Kate O'Bleanus of Lee County, Iowa; and 17 species by various collectors whose plants were in the Iowa State College Herbarium prior to June 15, 1931.
2. It was found that 333 species of the 645 were contained in the ten largest families as follows: Gramineae 63, Compositae 58, Cyperaceae and Juncaceae 44, Leguminosae 35, Rosaceae 23, Labiateae 21, Polygonaceae 19, Ranunculaceae 15, Cruciferae 16, Liliaceae 15, Umbelliferae 13, and Scrophulariaceae 13.
3. A total of 97 species of trees and shrubs were recorded.
4. One tree $X$ Quercus Bushii, and one shrub, Viburnum prunifolium, were recorded the first time for Iowa. These two species and Asimina triZoba, Aesculus glabra, Aesculus glabra var. arguta, Petelea trifoliata, Cercis conadensis, and Quercus lyrata were found to be the most distinctive species of Lee county and southeastern Iowa.
5. An unusual number of Quercus species was found which were as follows: Quercus alba, Quercus bicolor, Quercus imbricaria, Quercus macrocarpa, Quercus marilandica, Quercus maxima, Quercus Muhlenbergii, Quercus palustris, Quercus rubra, Quercus stellata, Quercus velutina, and X Quercus Bushii (Quercus velutina $x$ marilandica).
6. Practically all the plants collected by this survey were listed according to the soil type on which they occurred. From this list and field experience it was found that the flora on sandy and clay soils was made up of a much smaller number of species than the loam, silt loam or sandy loam soils, but was more definitely characteristic.
7. The most characteristic species of sand soil were found to be Cenchrus pauciflorus, Cycloloma atriplicifolium, Polanisia trachysperma, Sporobolus cryptandrus and Cyperus esculentus; those of clay soils were Typha latifolia, Eleocharis palustris, Eleocharis acicularis, Hibiscus militaris, Carex lupulina and Anemone canadensis; those of silt loams were Abutilon Theophrasti, Bidens involucrata, Cassia Chamaecrista, Leptilon canadensis, Panicum capillare, Scirpus atrovirens and Ulmus americana; those of loam soils were Baptisia bnacteata, Carex vulpinoidea, Daucus Carota, Digitaria sanguinalis, Elymus robustus, Hibiscus Trionum and Quercus alba; those on sandy loams were Agropyron repens, Amaranthus blitoides, Cyperus filiculmis, Enagrostis hypnoides, Leptilon divaricatum, and Polanisia trachysperma; and those on stony loams were Dasystoma grandiflora and Steironema ciliatum.
8. The more favorable temperature and precipitation conditions of the county as compared to the rest of Iowa are reflected in the flora by the presence of such species as Allium mutabile, Commelina virginica, Elymus glabriflorus, Gnaphalium purpureum, $\bar{X}$ Quercus Bushii, Viburnum prunifolium, and Asimina triloba which, with the exception of the last, probably occur in Iowa exclusively in Lee County.

# LINKAGE DATA ON THE R-g $\mathrm{g}_{1}$ CHROMOSOME OF MAIZE ${ }^{1}$ 

J. B. Wentz and S. N. Smith<br>From the Farm Crops and Soils Section, Iowa Agricultural Experiment Station

Accepted for publication September 14, 1933
The corn plant has been more completely analyzed genetically than any other plant species. Through the individual and co-operative efforts of geneticists working with maize, approximately 300 genes have been studied and ten linkage groups have been established. The R-g1 group gets its designation from the fact that $R$, a factor for aleurone color, and $\mathrm{g}_{1}$, a factor causing golden plants, were the first genes found to be in this group.

In 1930 Dr. R. A. Emerson and his associates at Cornell University compiled all the linkage data available on maize and distributed a mimeographed report showing the linkage groups as they had been built up to that time. At that time the R-g group contained 14 genes, some of which had been definitely located on the chromosome.

The present paper presents linkage data on the $R$ - $g_{1}$ chromosome collected by the authors since the report of Emerson and his associates in 1930.

## SUMMARY OF DATA

Table 1 presents a summary of the data on all characters studied and indicates whether the linkages are in the coupling or repulsion phase. Following the table there is a list of the gene symbols used together with the characters of the plant or seed affected by these genes.

All the data in table 1 are from $F_{2}$ progenies. All seedling counts were made in the greenhouse including golden plants. Wherever $\mathrm{gm}_{2}$ is involved the percentages of recombination were necessarily determined from the proportion of normal and abnormal seedlings grown from normal seeds taken from ears segregating for germless seeds. This makes it necessary to determine the linkage relations by the use of only two phenotypic classes. In most cases where two seedling characters are involved only three phenotypes could be distinguished.

Where only two or three phenotypic classes were available the percentage of recombinations was determined by reducing the numbers to percentages and making comparisons in Owen's tables (6). The numbers obtained by use of Owen's tables were further checked by use of a formula suggested by Collins (1). In the one case where all four phenotypes could be distinguished Emerson's formula (2) was used to calculate the gametic ratio and the corresponding crossover value was checked by Immer's tables (3).

[^3]TABLE 1. Summary of linicage data on the $R-g_{1}$ chromosome

| $\begin{aligned} & \text { Genes } \\ & \mathbf{X Y} \end{aligned}$ | Linkage phase | Number of individuals |  |  |  |  | Percentage recomb. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | XY | Xy | XY | xy | Total |  |
| $\mathrm{Gm}_{2} \mathrm{G}_{1}$ | Coupling | 4402 | 1335 |  |  | 5737 | 44.8 |
| $\mathrm{Gm}_{2} \mathrm{Pg}_{8}$ | Coupling | 3552 | 1023 |  |  | 4575 | 42.6 |
| $\mathrm{Pg}_{1} \mathrm{G}_{1}$ | Coupling | 2519 | 325 | 332 | 626 | 3802 | 19.2 |
| $\mathrm{Gm}_{2} \mathrm{I}_{2}$ | Repulsion | 1958 | 560 |  |  | 2518 | 50.0 |
| $\mathrm{Gm}_{2} \mathrm{~L}_{6}$ | Repulsion | 1799 | 625 |  |  | 2424 | 50.0 |
| $\mathrm{G}_{1} \mathrm{I}_{2}$ | Repulsion | 2957 | 1011 |  |  | 5377 | 48.0 |
| $\mathrm{G}_{1} \mathrm{~L}_{4}$ | Repulsion | 2525 | 991 |  |  | 4808 | 39.0 |
| $\mathrm{Pg}_{1} \mathrm{~L}_{4}$ | Repulsion | 1303 | 521 |  |  | 2456 | 37.0 |
| $\mathrm{Pg}_{1} \mathrm{I}_{2}$ | Coupling | 1725 | 531 |  |  | 3014 | 46.0 |

List of gene symbols
$\mathrm{Gm}_{2} \mathrm{gm}_{2}$-Germless seeds
$\mathbf{P g}_{1} \mathrm{pg}_{1}$-Pale green seedlings
$\mathrm{I}_{2} 1_{3}$ Yellow seedlings
$\mathrm{L}_{4} 1_{4}$-Yellow seedlings
$\mathrm{G}_{1} \mathrm{~g}_{1}$-Golden plants

## DISCUSSION

Each of the linkages reported in table 1 will be discussed separately along with any explanatory notes which seem necessary.

$$
g m_{2} \text { and } g_{1}
$$

In an earlier paper Wentz (7) reported independent inheritance of these two genes. In the earlier paper, however, the data were on the repulsion phase and were not so extensive. It is entirely possible that the low linkage value shown in table 1 would not be indicated in the repulsion data.

On the basis of the 44.8 per cent of recombinations the gametic ratio would be $1.23: 1$. Table 2 shows the observed numbers of normal and golden plants and the numbers calculated on the basis of the 1.23:1 gametic ratio.

TABLE 2. Observed and colculated numbers of normal and golden plants on the basis of a gametic ratio of 1.28:1

|  | Normal | Golden | Total |
| :--- | :---: | :---: | :---: |
| Observed | 4402.00 | 1335.00 | 5737 |
| Calculated | 4406.59 | 1330.41 | 5737 |
| Deviation | -4.59 | +4.59 |  |

For comparison, seed was planted from ears from the same progenies but which were not segregating for germless seeds. The numbers of normal and golden plants obtained from these ears were 4,897 and 1,633 respectively. This is an excess of just 0.5 golden plants. This indicates that the shortage of golden plants from the ears segregating for $\mathrm{gm}_{2}$ must have been due to linkage of the $g_{1}$ factor with the lehtal $\mathrm{gm}_{2}$ factor.

$$
g m_{2} \text { and } p g_{1}
$$

Earlier $F_{2}$ repulsion data (7) gave only a slight indication of linkage between these two factors. The coupling data in table 1 indicate quite definitely that there is a loose linkage between the two genes. The 42.6 per cent of recombinations corresponds to a gametic ratio of $1.35: 1$ and
the numbers of normal and pale green seedlings calculated on this basis fit the observed numbers very closely as seen in table 3.

TABLE 3. Observed and caloulated numbers of normal and pale green seedlings on the basis of a gametic ratio of 1.35:1

|  | Normal | Pale green | Total |
| :--- | :---: | :---: | ---: |
| Observed | 3552.00 | 1023.00 | 4575.00 |
| Calculated | 355.95 | 1022.05 | 4575.00 |
| Deviation | +0.95 | -0.95 |  |

When seed was planted from ears not segregating for $\mathrm{gm}_{2}$ the ratio of normal to pale green seedlings was 3,728 to 1,190 . This is a shortage of 39.5 pale green seedlings as compared to a probable error of 20.48 . This is a fair fit indicating that the large shortage of pale green seedlings from the ears segregating for $\mathrm{gm}_{2}$ was no doubt due to linkage between the genes causing germless seeds and pale green seedlings.

$$
p g_{1} \text { and } g_{2}
$$

Less extensive data published by the senior author (7) in 1930 showed a recombination percentage of 14.5 in the coupling phase. This is reasonably close to the 19.2 per cent shown in table 1 . The gametic ratio corresponding to 19.2 per cent of recombinations is $4.23: 1$. The observed number in each of the $F_{2}$ phenotypes is shown in table 4 as compared to the numbers calculated on the basis of the gametic ratio of $4.23: 1$. It will be seen that the calculated numbers fit the observed numbers very closely giving a P value of .95 .

TABLE 4. Observed and calculated numbers in each phenotypic class aalculated on the basis of a gametic ratio of $4.28: 1$

|  | $\mathrm{Pg}_{2} \mathrm{G}_{1}$ | $\mathrm{pg}_{1} \mathrm{G}_{1}$ | $\mathrm{Pg}_{1} \mathrm{~g}_{1}$ | $\mathrm{pg}_{1} \mathrm{~g}_{1}$ | Total |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Observed | 2519.00 | 325.00 | 332.00 | 626.00 | 3802.00 |
| Calculated | 2519.96 | 329.25 | 329.25 | 623.54 | 3802.00 |
| Deviation | -.96 | -4.25 | +2.75 | +2.46 |  |

$$
\begin{aligned}
& X^{2}=.0878 \\
& P=.95
\end{aligned}
$$

$$
g m_{2} \text { and } l_{3}
$$

The data in table 1 show a small deficiency of $\mathrm{l}_{2}$ seedlings while linkage in the repulsion phase should have caused an excess of $l_{2}$ seedlings. When seed was planted from ears not segregating for $\mathrm{gm}_{2}$ the ratio of normal to yellow seedlings was 3,352 to 1,080 . This is a deficiency of 28 yellow seedlings which is not quite as large a deficiency as observed from the ears segregating for $\mathrm{gm}_{2}$.

The data in table 1 do not show evidence of linkage between $\mathrm{gm}_{2}$ and $1_{2}$. This is surprising as previous data on $\mathrm{gm}_{2}$ by Wentz (7) and on $\mathrm{l}_{2}$ by Jenkins and Bell (4) and Lindstrom (5) place $\mathrm{gm}_{2}$ and $1_{2}$ both to the left of R. Dr. R. A. Emerson who is preparing a new summary of the linkage groups has reported, by correspondence with the senior author,
other irregularities in the $\mathrm{R}-\mathrm{g}_{1}$ group. There may be some peculiarity about the structure of the $\mathrm{R}-\mathrm{g}_{1}$ chromosome.

$$
g m_{2} \text { and } l_{4}
$$

The numbers in table 1 show a slight excess of yellow seedlings but hardly enough to suggest linkage. The deviation from the expected number of yellow seedlings on the basis of independent inheritance is only 19 with a probable error of 14.37.

When seed was planted from ears not segregating for $\mathrm{gm}_{2}$ the ratio of normal to yellow seedlings was 1,113 to 393 . Here there is an excess of 16.5 yellow seedlings with a probable error of 11.32.

$$
g_{1} \text { and } l_{2}
$$

The data on $g_{1}$ and $l_{2}$ fit fairly well the numbers expected on the basis of independent inheritance as shown in table 5. Here the value of $\mathbf{P}$ is .10.

TABLE 5. Observed and calculated numbers in each phenotypio class on the basis of independent inheritanoe

|  | Observed | Calculated | Devistion |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{G}_{1} \mathrm{I}_{2}}$ | 2957 | 3024.56 | -67.56 |
| $\mathrm{g}_{1} \mathrm{~L}_{2}$ | 1011 | 1008.19 | +2.81 |
| $\mathrm{G}_{1} \mathrm{l}_{2}+\mathrm{g}_{1} \mathrm{l}_{2}$ | 1409 | 1344.25 | +64.75 |
| $\begin{aligned} & \mathbf{X}^{2}=4.6358 \\ & \mathbf{P}=.10 \end{aligned}$ |  |  |  |

The shortage of normal green plans with the very slight excess of golden plants might indicate a small amount of linkage. When the theoretical numbers are calculated on the basis of 48 per cent of recombinations or a gametic ratio of $1: 1.08$ they fit the observed numbers a very little closer than when independent inheritance is assumed. Table 6 compares the observed and theoretical numbers calculated on the basis of the $1: 1.08$ gametic ratio.

TABLE 6. Observed and caloulated numbers in eaoh phenotypio class calculated on the basis of a gametio ratio of $1: 1.08$

|  | Observed | Calculated | Deviation |
| :--- | :---: | :---: | :---: |
| $\mathrm{G}_{1} \mathrm{I}_{2}$ | 2957 | 2999.21 | -42.21 |
| $\mathrm{~g}_{1} \mathrm{I}_{2}$ | 1011 | 1033.54 | -22.54 |
| $\mathrm{G}_{1} I_{2}+\mathrm{g}_{1} \mathrm{I}_{2}$ | 1409 | 1344.25 | +64.75 |

$$
\begin{aligned}
& X^{2}=4.2920 \\
& \mathbf{P}=.10
\end{aligned}
$$

It will be noted that the fit would have been much closer except for the rather large excess of yellow seedlings. This excess of yellow seedlings can be largely accounted for by the fact that the yellow seedling counts were made about three weeks earlier than the green and golden counts. The golden plants cannot be classified satisfactorily until they are 12 to 15 inches tall. There was no doubt some loss of plants by injury and dis-
ease between the time the yellow seedlings were counted and the time that the green and golden plants were counted.

When the yellow seedlings are disregarded the numbers of green and golden plants observed fit very closely the numbers calculated on the basis of the gametic ratio of $1: 1.08$ as shown in table 7.

TABLE 7. Observed and caloulated mumbers of green and golden plants on the basis of a gametio ratio of 1:1.08

|  | Observed | Calculated | Deviation |
| :--- | :---: | :---: | ---: |
| $\mathrm{G}_{1} \mathrm{I}_{2}$ | 2957 | 2951.05 | +5.95 |
| $\mathrm{~g}_{3} \mathrm{~L}_{2}$ | 1011 | 1016.95 | +5.95 |

$$
g_{1} \text { and } l_{4}
$$

The observed numbers in table 1 indicate linkage in the repulsion phase. By reducing the numbers to percentages and comparing them in Owen's tables it is found that they come nearest fitting the percentages corresponding with 39 per cent of recombinations. This is a gametic ratio of $1: 1.56$. When the theoretical numbers are calculated on the basis of this gametic ratio they compare with the observed numbers as shown in table 8.

TABLE 8. Observed and caloulated numbers in each phenotypio class calculated on the basis of a gametic ratio of 1:1.66

|  | Observed | Calculated | Deviation |
| :---: | :---: | :---: | :---: |
| $\overline{G r}_{2} \mathrm{~L}_{4}$ | 2525 | 2587.42 | -62.42 |
| $\mathrm{g}_{1} \mathrm{~L}_{4}$ | 991 | 1018.59 | $-27.59$ |
| $\mathrm{G}_{1} \mathrm{l}_{4}+\mathrm{g}_{1} \mathrm{l}_{4}$ | 1292 | 1202.00 | +90.00 |

The value of $\mathbf{P}$ in table 8 is only .01 . It can be seen, however, that the big deviation is in the third class which consists of $G_{1} 1_{4}$ and $g_{1} 1_{4}$ seedlings. There is an excess of the yellow seedlings. This excess can at least partly be accounted for by the fact that the counts on normal green and golden plants were necessarily made after the plants were 12 to 15 inches tall while the counts on yellow seedlings were made when the seedlings were still small. There no doubt was some loss of plants through injury and disease between the time the yellow seedlings were counted and the time that the counts were made on green and golden plants. In order to eliminate this possible error the theoretical numbers of green and golden plants were calculated disregarding the yellow seedlings. Table 9 shows that the fit is very close when the yellow seedlings are disregarded.

TABLE 9. Observed and caloulated mumbers of green and golden plants on the basis of a gametic ratio of 1:1.56

|  | Observed | Calculated | Deviation |
| :--- | :---: | :---: | :---: |
| $\mathrm{G}_{1} \mathrm{~L}_{4}$ | 2525 | 2522.83 | +2.17 |
| $\mathrm{~g}_{1} \mathrm{~L}_{4}$ | 991 | 993.17 | -2.17 |

## $p g_{1}$ and $l_{4}$

The data on $\mathrm{pg}_{1}$ and $\mathrm{l}_{4}$ indicate linkage in the repulsion phase. By comparison in Owen's tables we find that the recombination percentage must be about 37 . This is a gametic ratio of $1: 1.7$. When the theoretical numbers are calculated on the basis of this gametic ratio they fit the observed numbers very closely as shown in table 10 where the value of $\mathbf{P}$ is .70.

TABLE 10. Observed and calculated mumbers in each phenotypio class on the basis of a gametio ratio of 1:1.7

|  | Observed | Calculated | Deviation |
| :--- | :---: | :---: | :---: |
| $\mathrm{Pg}_{1} \mathrm{I}_{4}$ | 1303 | 1212.23 | -9.23 |
| $\mathrm{pg}_{1} \mathrm{~L}_{4}$ | 521 | 529.78 | -8.78 |
| $\mathrm{Pg}_{1} \mathrm{I}_{4}+\mathrm{pg}_{1} \mathrm{I}_{4}$ | 632 | 614.00 | +18.00 |

$$
\begin{aligned}
& \mathbf{X}^{2}=.7381 \\
& \mathbf{P}=.70
\end{aligned}
$$

$$
p g_{1} \text { and } l_{2}
$$

The data on $\mathrm{pg}_{1}$ and $\mathrm{l}_{2}$ fit reasonably well the numbers expected on the basis of independent inheritance. Table 11 shows the value of P to be .30 when the observed numbers are compared with the numbers calculated on the basis of independent inheritance.

TABLE 11. Observed and calculated numbers in each phonotypic class on the basis of independent inheritance

|  | Observed | Calculated | Deviation |
| :--- | :---: | ---: | ---: |
| $\mathbf{P g}_{1} \mathrm{I}_{2}$ | 1725 | 1695.38 | +29.62 |
| $\mathrm{pg}_{1} \mathrm{~L}_{2}$ | 531 | 565.13 | +34.13 |
| $\mathrm{Pg}_{1} \mathrm{I}_{2}+\mathrm{pg}_{1} \mathrm{l}_{2}$ | 758 | 753.50 | +4.50 |

$$
\begin{aligned}
& \mathbf{X}^{2}=2.6075 \\
& \mathbf{P}=.30
\end{aligned}
$$

Although the observed numbers are close to those calculated on the basis of independent inheritance it can be seen that the deviations present are in the right direction to indicate a low linkage value in the coupling phase. Table 12 was prepared to compare the observed numbers with calculated numbers on the basis of a low linkage. A recombination value of 46 per cent was assumed. This is a gametic ratio of $1: 1.17$. The numbers calculated on this basis fit very closely the numbers observed. The value of P is .98 .

TABLE 12. Observed and calculated mumbers in each phenotypio class on the basis of a gametic ratio of 1:1.17

|  | Observed | Calculated | Deviation |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{Pg}_{1} \mathrm{I}_{2}}$ | 1725 | 1726.04 | -1.04 |
| $\mathrm{pg}_{1} \mathrm{~L}_{2}$ | 531 | 534.45 | $-3.45$ |
| $\underline{\mathrm{Pg}_{1} 1_{2}+\mathrm{pg}_{1} \mathrm{l}_{2}}$ | 758 | 753.50 | +4.50 |

## SUMMARY AND CONCLUSIONS

In this paper linkage data are presented on five genes previously found to be located on the $\mathrm{R}-\mathrm{g}_{1}$ chromosome.

In the main these data substantiate the relative positions of the genes on the chromosome as summarized by Emerson and his associates in 1930. There is, however, one decided inconsistency. Data presented here on the linkage relations of $\mathrm{gm}_{2}$ with $\mathrm{pg}_{1}$ and $\mathrm{g}_{1}$, and previous data on $\mathrm{gm}_{2}$ and R , place $\mathrm{gm}_{2}$ at the left end of the chromosome and since previous data place $\mathrm{I}_{2}$ and $\mathrm{l}_{4}$ at opposite ends of the chromosome there should be linkage between $\mathrm{gm}_{2}$ and either $\mathrm{l}_{2}$ or $\mathrm{l}_{4}$. At the present time there is no way of explaining this lack of agreement in the relative positions of the genes. It is hoped that further data bringing in other genes on the chromosome will afford some solution.

## LITERATURE CITED

1. Collins, G. N.
2. Measurement of linkage values. Jour. Agr. Res. 27:881-891.
3. Emmason, R. A.
4. The calculation of linkage intensities. Amer. Nat. 50:411-420.
5. TMMER, F. R.
6. Formulae and tables for calculating linkage intensities. Genetics, 15:81-98.
7. Jenkins, M. T. and M. A. Behl
8. The inheritance, interaction and linkage relations of genes causing yellow seedlings in maize. Genetics, 15:253-282.
9. Lindstzom, E. W.
10. Genetic factors for yellow pigment in maize and their linkage relations. Genetics, 10:442-455.
11. Owins, F. V.
12. Calculating linkage intensities by product moment correlation. Genetics, 80:110.
13. Wentr, J. B.
14. The inheritance of germless seeds in maize. Iowa Agr. Exp. Sta. Res. Bul. 121.

# IRREGULAR SPOROGENESIS AND POLYEMBRYONY IN SOME LEGUMINOSAE 

John N. Martin and John R. Watt<br>From the Department of Botany, Iowa State College

Accepted for publication September 22, 1933
The prevalence in species of Angiosperms of irregularities in meiosis, polymorphism in spores, multiple embryo sacs, or polyembryony is commonly regarded as indicative of a hybrid constitution. Since plants so constituted are generally quite variable in many of their features, they are usually not dependable as to types but are inviting of improvement by selection and other breeding methods. Any disclosures, therefore, pertaining to the constitution of crop plants as important as the clovers and alfalfa are worthy of consideration.

Although the features herein considered pertain especially to Trifolium pratense L., T. repens L., Melilotus alba Des., Medicago sativa L., and Vicia americana Muhl. of the family Leguminosae, they are probably as prevalent in other species of the family but have escaped notice owing to limited morphological studies.

In Melilotus alba two types of pollen (fig. 5), the larger of which was commonly multinucleate and several times the size of the normal type, were observed by Rogers (8) and Castetter (1). The study of the development of the giant pollen grains furnished considerable evidence that they were tetrads in which the division walls had been omitted.

The origin of the embryo sac directly from the mother cell, a method characteristic of the Lily family, has been reported to occur in Melilotus alba by Guignard (2) and Young (9) and in Medicago arborea by Guignard (2) and Hèrail (3), whereas, in Melilotus alba and in the Grimm and common varieties of Medicago sativa the senior writer $(5,6)$ and Reeves (7) found that the embryo sacs in the ovules observed were the products of one megaspore as is customary in Dicotyledons. Although these discrepancies may be due to errors in observation, marked variations in the forming of embryo sacs would be in accord with the other irregularities prevalent in the ovules of these species.

Much variation in the number of mother cells per ovule (figs. 1, 4, 7, 8, and 9) have been observed in Trifolium pratense, T. repens, Medicago sativa, Melilotus alba, and Vicia americana by the senior author (6). Multiple tetrads of megaspores were noted in all the species, and occasionally in Melilotus alba and Medicago sativa two or more embryo saes in the process of development in the same ovule were observed (figs. 1 and 4). The other extreme in which the ovules form no mother cells was found to occasionally occur in Trifolium pratense. Several mother cells and as many as three embryo sacs in the same ovule in process of development were observed by Reeves (7) in both the Grimm and common strains of alfalfa.

The development that several embryo sacs in the same ovule may attain and the possibility of two or more of them functioning have received very little attention in the legumes. Jönsson (4) reported polyembryony in

Trifolium pratense. How the embryos were formed was not ascertained, but in view of the tendency of Trifolium pratense to form multiple mother cells, it is quite plausible that they were the products of separate embryo sacs.

## OBSERYATIONS ON POLYEMBRYONY IN ALFALFA AND SWEET CLOVER

In some experiments on the germination of alfalfa seeds ${ }^{1}$ at Iowa State College in 1930 one seed with two radicles protruding was discovered (fig. 2). The removal of the testa revealed two separate, perfect embryos equal in size. They were oppositely oriented and one cotyledon of each embryo was enclosed between the cotyledons of the other (fig. 3.) The axes of the hypocotyls and radicles, although oppositely oriented, were parallel except for the slight opposite curving of the tips of the radicles. The position and orientation of the embryos with reference to the micropyle were very similar and corresponded to the relative position and orientation of multiple embryo sacs in ovules. There was considerable evidence that the embryos were products of separate embryo sacs.

Owing to the close fitting together of their cotyledons, the two embryos did not require much extra space and their presence in the dormant seed was probably scarcely manifest in the size and shape of the seed.

Morphological studies of the seeds of Melilotus alba at Iowa State College have occasionally disclosed, in addition to the normal embryo, other structures suggestive of aborted embryos. A case in which polyembryony was quite evident is shown in figure 6 which represents a section of a seed more than half mature with one normal and one miniature embryo in an early stage of differentiation. The secondary embryo, excepting its arrested development, was apparently normal, for it was typical of normal embryos at certain stages in their early development. It was terminal on a suspensor that was nearly normal in type. It occupied an area that resembled an embryo sac and that was separate from the embryo sac of the primary embryo. The two embryos and areas occupied by them were similarly located and oriented in the seed. Their location and orientation corresponded to those of multiple embryo saes in an ovule. The zygotic origin of both embryos was, therefore, indicated by both morphological and circumstantial evidence.

## DISCUSSION

In the ovules of the legumes included in this article the nucelli are slender, seldom more than five or six layers of cells in thickness through the sporogenous region. The competition, therefore, for space as well as for food and water among multiple mother cells or embryo sacs must be exceedingly severe, the result being that all but the survivor usually succumb early in the struggle. In case a parity in competition between a number of mother cells or embryo saes in an ovule occurs and persists, the situation is much more favorable to the abortion of all mother cells or embryo saes than to the normal development of two or more of them. The early establishment and maintenance thereafter of a parity in competition between two embryo sacs that permits the normal development of two embryos in the same ovule, as in the polyembryonate alfalfa seed, must be extremely rare. A condition of multiple mother cells or embryo sacs in ovules is therefore

[^4]

DESCRIPTION OF FIGS. 1-9.

1. Lengthwise section of ovule of Medicago sativa showing one megaspore and one two-nucleate embryo sac. 2. Polyembryonate seed of alfalfa showing the two radicles protruding. 3. The relative positions of the two embryos in seed shown in 2. 4. Lengthwise section of ovule of Meldotus alba showing two embryo sacs in process of development. 5. Two types of pollen in Melilotus alba, 6. Lengthwise section of an immature seed of Melilotus alba showing two embryos. 7. Three mother cells shown in the cross section of an ovule of Trifolum pratense. 8. One mother cell and one row of megaspores in Trifolium repens. 9. A number of mother cells in Vicia ameriaana.
usually so obscured by later growth that traces of it in the mature seed are only detectable by microscopical studies.

Owing to the delicacy in the technique required in the study of sporogenesis and the development and functioning of embryo sacs, the number of ovules and especially the number of plants included are relatively small. Consequently, irregularities of common occurrence in the reproductive processes in both anthers and ovules may escape notice. It is quite probable, therefore, that further studies will show that the nucelli of these and other species of legumes are generally arenas where mother cells and embryo sacs compete for supremacy with the result that traces of more than one embryo in a seed is a common occurrence. The frequency of multiple mother cells and embryo saes in the ovules of the few species investigated favor such a prediction.

Some features in connection with seed production in the clovers, alfalfa, and vetch may be related to the irregularities in the ovales previously described.

In most, if not all, cultivated legumes the abortion of ovules is a common occurrence. In the five species included in this discussion, the abortion of ovules that regularly occurs ranges from 50 per cent in red clover to 80 per cent or more in sweet clover. This regular abortion of orules which is manifested in their resorption soon after fertilization is apparently a result of competition between ovules.

In addition to this regular abortion of ovales there are other disturbances in seed production that may be due to irregularities within the orules. Throughout the middle states the average yield of red clover seed is about one-twelfth of the seed production capacity of red clover plants. Most of this failure to produce seed is due to insufficient pollination, but some of it is probably due to failure of ovules to produce mother cells and to competition between mother cells or embryo saes that interferes with the normal development of ovules and seeds. The dropping of the flowers and young pods so common in sweet clover and alfalfa may be in part due to these irregularities in the ovules, the seriousness of their effects depending upon environmental conditions. Similar causes, may in part be responsible for the common occurrence in alfalfa of seeds with no or only partially developed embryos. In Vicia americana the failure of ovules to become seeds is apparently associated with an early disintegration of embryo saes, a phenomenon that may be traceable to an innate tendency toward irregularities in the ovules.

Although the tendency toward irregularities within the orules has not been shown definitely to contribute to the failure of seed production in the legumes, it certainly deserves consideration in a program of developing better seed producing plants, an achievement very much needed in red clover and alfalfa.

## SUMMARX

1. Two types of pollen in Melilotus alba and the tendency of Trifolium pratense, T. repens, Melilotus alba, Medicago sativa and Vicia americana to produce multiple mother cells and embryo sacs are discussed.
2. Polyembryony in Medicago sativa and Melilotus alba is described.
3. The probable relation of the irregularities in the reproductive processes to seed production in these legumes is discussed.

## REFERENCES

1. Castettier, E. F.
2. Studies on the comparative cytology of the annual and biennial varieties of Melilotus alba. Amer. Jour. Bot. 12: 270-286.
3. Guignard, L.
4. Recherches d'embrogenie vegetale comparee. I. Legumineuses. Ann. Sci. Nat. Bot. VI, 12: 5-166, Figs. 214.
5. Heranl, J.
6. Organes reproducteurs et formation de 1'oeuf cher les phanèrogames. p. 80, Paris.
7. Jönsson, B.
8. Polyembroni hos Trifolium pratense. Bot. Notiser, 134-137.
9. Cor, JH. S., and J. N. Martin
10. Sweet clover seed. J. S. Dept. Agr. Bul. 844.
11. Martin, J. N.
12. Comparative morphology of some Leguminosae. Bot. Gaz. 58: 154 167.
13. Rmeves, R. G.
14. Development of ovale and embryo sac of alfalfa. Amer. Jour. Bot. 17: 239-246.
15. Rogirs, W. E.

1917 Notes on Melilotus alba, white sweet clover. Proc. Iowa Acad. Sci. 24: 415-423.
9. Young, W. J.
1905. The embryology of Melilotus alba. Proc. Indiana Acad. Sci. 133-141.

# NOTES ON THE IMMIGRANT FLORA OF IOWA, I 

R. I. Crattit<br>From the Department of Botany, Iowa State College

Accepted for publication September 24, 1933
In the year $1929^{1}$ the writer offered for publication a systematic list of the introduced plants of the state, which grew without cultivation and had become more or less naturalized, with notes regarding their frequency, range within the state, and their native habitat. Special attention was called also to those introduced plants which were dangerous to agriculture, and whose eradication or control was advisable.

In the three years since the paper was prepared, much work has been done in securing additional data regarding our introduced flora, and at this time the following appended list, systematically arranged, numbering thirtyfive species worthy of recognition, is offered.

The original list contained 263 numbers and those now offered increase the list to 298. The total number of Iowa Pteridophyta and Flowering Plants represented in the Herbarium at this date, September 15, 1933, is 1,613 , of which the immigrant flora forms 18.4 per cent. This percentage will be greatly increased as time passes, through the destruction of many of our native plants, and the introduction of foreign species, many of them undesirable. In the appended list additional data are given, especially regarding those plants which threaten to become serious pests.
264. Sorghum halepense (L.) Pers. Johnson Grass. Frequent in cultivation and often escaped. It is a native of Asia.
265. Phalaris canariensis L. Bird-seed Grass. Frequent as an escape around dwellings; a native of Europe.
266. Arrhenatherum elatius (L.) Beauv. Oat-grass. Occasional in fields and waste places. Introduced from Europe.
267. Hemerocallis fulva L. Yellow Day Lily. Frequent as a garden escape. A native of Europe.
268. Betula pendula Roth. (B. alba L. in part). The common European White Birch in cultivation, but rare as an escape. This tree is especially liable to insect injury.
269. Polygonum dumetorum L. A European perennial. Rare unless overlooked on account of its close resemblance to one of our native species.
270. Fagopyrum esculentum Moench. Buckwheat. This common cultivar often persists for several years. Owing to our early frosts it is becoming less common in cultivation in this latitude.
271. Amaranthus spinosus L. The Thorny Amaranth. A rare introduction from Tropical America. It is common and very troublesome in our Southern States.

[^5]272. Arenaria serpyllifolia L. Rare in dry soil, Emmet Co. A native of Europe.
273. Delphinium cultorum Voss. The common Candle Larkspur of the gardens. It is very hardy and profuse bloomer and a frequent escape. It is of hybrid origin, a mingling of several Old World species.
274. Berberis Thunbergii DC. The Japanese Barberry, and a frequent escape. It is a valuable ornamental shrub, being immune to the grain rust which uses its near relative $\boldsymbol{B}$. vulgaris as a winter host.
275. Alyssum alyssoides L. The common Sweet Alyssum which occasionally escapes to pastures and waste places. A native of Europe.
276. Chorispora tenella DC. This little crucifer from Asia has become established along a highway north-east of Sioux City.
277. Erysimum parviflorum Nutt. Western Wormseed. Infrequent; an introduction from the Western Plains.
278. Radicula amphibia (L.) Druce. An aquatic species, recently introduced from Europe to a river bank in Emmet Co.
279. Reseda lutea L. Sweet Mignonette. A garden cultivar from Europe, and an occasional escape.
280. Geranium pusillum Burm. fil. An occasional weed in lawns. A native of Europe.
281. Oxalis corniculata L. This is the species common around greenhouses. It is not the 0 . corniculata of our older manuals which is now 0 . cymosa Small.
282. Ailanthus altissima (Mill.) Swingle. The Chinese Tree-of-Heaven. It is quite common in cultivation and occurs as an escape from seed and also by suckering.
283. Euphorbia Peplus L. A rare introduction from Europe, and fortunately not likely to prove troublesome.
284. Falcaria vulgaris Bernh. Sicklewort. A deep-rooted perennial from Europe. It spreads both by seeds and by running roots. It has been found well established in Sioux and Guthrie counties, and should be eradicated.
285. Borago officinalis L. Borage. This garden escape was collected in Benton County by the late Dr. L. H. Pammel. It is a native of Europe.
286. Madia glomerata Hook. Tarweed. This common native of the western plains has been collected as a waif in Mahaska and Emmet counties.
287. Bidens bipinnata L. This European Spanish Needle has made its appearance in S.E. Iowa. It is very common in the Atlantic States.
288. Anthemis tinctoria L. The Yellow Ox-eye Camomile of Europe occurs as a garden escape in Clayton Co .
289. Centaurea diffusa Lam. This Bachelor's Button or Knap-weed is thoroughly established in Sioux Co. It is a native of S.E. Europe.
290. Centaurea repens L. Russian Knap-weed. This noxious introduction from S.E. Europe has made its appearance in Sioux Co. It is a hardy perennial and spreads by seed and by its extensive running roots. It should be added to our list of unlawful weeds.
291. Sonchus uliginosus Bieb. One of our Perennial Sow Thistles. This European plant is frequent in N.E. Iowa. It is a close relative, perhaps only a variety, of the unlawful species, S. arvensis.
292. Crepis capillaris (L.) Wallr. A harmless little plant introduced from Europe into waste places.
293. Hieracium virosum Pall. One of the European Hawkweeds. It has been collected in Floyd and Howard counties. This is its first recorded appearance in the United States.
294. Hartmannia speciosa (Nutt.) Small. (Oenothera Nutt.) White Primrose. Introduced on R.R. right-of-way, Kossuth Co. and probably elsewhere. A perennial plant worthy of cultivation.
295. Anethum graveolens L. Dill. An escape around gardens.
296. Centaurea diffusa Lam. One of the Star Thistles. Established in Sioux Co. (Dr. A. L. Bakke).
297. Centaurea repens L. Russian Knap-weed. A deep-rooted perennial, recently introduced in Sioux Co. (Dr. A. L. Bakke). It should be classed with our unlawful weeds.
298. Hieracium virosum Pallas. One of the Hawkweeds. Floyd Co. (Dr. Ada Hayden). Howard Co. (Kathryn Shields). The only known localities in America.

# PHYLLOPHAGA OF IOWA ${ }^{1}$ 

Bernard V. Trafis

## From the Section of Entomology, Iowa Agricultural Experiment Station

## Accepted for publication November 29, 1933

The genus Phyllophaga Harris (Gr. phyllon -leaf; phagein-to eat) includes a large group of beetles popularly known as "June-bugs" or "Maybeetles" whose larvae are the common white grubs of the fields. From an economic point of view the depredations of both larvae and adults are well known. The adults frequently defoliate trees and shrubs by night and deposit their eggs in the soil by day, whereas the larvae or "grubs" are subterranean in habit and destroy the roots of numerous acres of farm, truck, and garden crops as well as great areas of grassland.

The contents of this paper are based upon data from 102,258 adult specimens taken in Iowa by various collectors during the past ten years. These specimens are represented by thirty-three species, one of which, $\boldsymbol{P}$. gracilis (Burm.), is recorded in this state for the first time.

It has been impossible to compare specimens with the original types, so the synonymy given is that recorded in the literature. The species will be discussed in the order as given by Leng (1920) in his catalogue. The keys are adapted from Horn (1887), and since the females are so very similar the keys are of necessity arranged from the male characters.

## DISTRIBUTION

The genus Phyllophaga is known to occur only in the Western Hemisphere from Hudson Bay to Argentine, including the West Indian Islands. From fifteen to twenty species may be found in most localities except along the Western Coast. Many species are known to have a rather wide distribution, whereas others have been taken only in limited areas. Junk (1912) listed 231 species for the world, many of which are synonyms or races; Leng (1920) catalogued 97 species from the United States and Canada; Leng and Mutchler (1927) reported 10 more species, and since that time 11 additional ones have been described from the United States and Canada, making a total of 118 species north of Mexico.

## HISTORICAL REVIEW

Genus PHYLLOPHAGA Harris (1926)
Logotype-hirticula Knoch.

[^6][^7]Trichesthes Erichson, 1847, Nat. Ins. Deutschl., 3:658. (Original not seen). Triohestes Blanchard, 1850, Cat. Coll Ent., 1:141.
Tostegoptera Blanchard, 1850, Cat. Coll. Ent. I:149. Eugastra Le Conte, 1856, Acad. Phil., Jour., (2), 3:233.
Endrosa Le Conte 1856, Acad. Phil., Jour., (2), 3:234.
Gymmis Le Conte, 1856, Acad. Phil., Jour., (2), 3:262.
Harris (1826) separated the species of Melolontha into two genera; he retained Melolontha for those species with an antennal club of four segments, and proposed the name Phyllophaga for those species with an antennal club of three segments. The generic name Phyllophaga was rejected by most early workers on the grounds that the original description failed to mark the limits of the genus. Melsheimer (1853) accepted the latter name in his catalogue, but his paper does not seem to have been followed by later systematists. The species now included in this genus have been placed in numerous genera by different authors, and European workers still recognize Lachnosterna Hope. Glasglow (1912) revived the name Phyllophaga because the original publication was accompanied by the valid species quercina, hirsuta, hirticula, and balia. He designated P. hirticula (Knoch) as the genotype (logotype).


Fig. 1. Ventral view of tip of male abdomen showing charactres.

## DESCRIPTION OF GENUS

Body oval, oblong, or cylindrical, yellowish brown to piceous. Elytra without striae or grooves. Six visible ventral segments rather firmly united, but with distinct sutures. Mesosternum densely punctate, with more or less dense vestiture of hair. Coxae transverse, not prominent. Antennae lamellate with a three-jointed club. Tarsal claws with a single tooth beneath near the middle.

## BROODS

Life histories of June-beetles vary in length from one to four years, depending upon biotic conditions and the species concerned. In general, however, it requires three years in Iowa to complete the development from egg to adult. There are three broods, designated as broods A, B, and C, the adults of one brood appearing each year. Four species, namely, $\boldsymbol{P}$. quercus, gracilis, ephilida, and spreta have been reported in the literature as occurring in Iowa, but since the year in which the adults of these species were taken was not recorded, it is impossible to determine the brood to
which they should be referred. Records of the species for these three broods are shown in table 1. The data include the notes published by H. E. Jaques in 1926, 1927, and 1928; many records kindly sent to the writer by Dr . H. B. Hungerford and Prof. M. H. Swenk; unpublished notes of R. L. Webster, formerly of the Iowa Agricultural Experiment Station; many unpublished records of Dr. W. F. Wickham and Prof. H. E. Jaques; data from specimens in the collection of Iowa State College and several thousand collected by members of the department and the writer during the past three years.

TABLE 1. Phyllophaga of Lowa

| Phyllophaga Species | Number of specimens of each species |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Brood A | Brood B | Brood C | Total |
| P. hirtioula (Knoch) | 41,084 | 825 | 193 | 42,102 |
| P. implicita (Horn) | 9,980 | 14,662 | 1,609 | 17,208 |
| $\boldsymbol{P}$. fusca (Froel.) | 937 | 38 | 5,531 | 15,549 |
| P. trietio (Fab.) | 10,647 | 75 | 10 | 10,732 |
| P. putilis (Lec.) | 2,062 | 3,440 | 1,914 | 7,416 |
| P. rugosa (Mels.) | 2,993 | 1,363 | 733 | 5,089 |
| P. inverse (Horn) | 507 | 316 | 83 | 906 |
| P. orassissima (Blanch.) | 157 | 111 | 381 | 649 |
| P. hornii (Smith) | 560 | 3 |  | 563 |
| P. vehemens (Horn) | 255 |  | 179 | 434 |
| P. anaia (Lec.) | 352 | 4 | 41. | 397 |
| $\underset{P}{P}$ drakii (Kirby) | 211 | 5 | 124 | 340 |
| P. fraterna Harris | 208 | 3 | 4 | 213 |
| $\boldsymbol{P}$. ilicis (Knoch) | 140 | 5 | 4 | 149 |
| P. micans (Knoch) | 91 | 31 | 15 | 137 |
| P. cremulata (Froel.) | 53 | 13 | 36 | 102 |
| P. marginalis (Lec.) | 53 |  |  | 53 |
| $P^{P}$. prunina (Lec.) | 52 | 1 |  | 53 |
| P. congrala (Lec.) | 44 |  |  | 44 |
| P. fervida (Fab.) | 14 |  | 14 | 28 |
| P. nitida (Lec.) | 25 | 1 |  | 26 |
| P. balia (Say) | 23 |  |  | 28 |
| P. bipartita (Horn) | 14 | 1 | 2 | 17 |
| P. fosteri (Burm.) | 3 | 2 | 6 | 11 |
| P. corrasa (Lec.) | 8 | 1 |  | 9 |
| P. vilifrons (Lec.) | 4 |  |  | 4 |
| P. barda (Horn) | 2 |  |  | 2 |
| P. lanceolata (Say) |  |  | 1 | 1 |
| P. longitarsa (Say) |  | 1 |  | 1 |
| $\boldsymbol{P}$. $\boldsymbol{P}$. graoilis (Burm.) ( |  |  |  |  |
| P. quercus (Knoch) <br> P. spreta (Horn) |  |  |  |  |
| P. ephilida (Say) |  |  |  |  |
| Total | 70,477 | 20,901 | 10,880 | 102,258 |

## KEY TO THE MALES OF GENUS PHYLLOPHAGA

1. Hind tibia with both spurs free
 p. 340

Body with vestiture of scales or hair.
lanocolata
3. Body with vestiture of scales. lanocolata $\qquad$ Body with vestiture of hair. 4
4. Margin of pronotum crenulate oremulata
tristis ..... p. 339
Margin of pronotum entire or irregular. ..... p. 341
5. Fixed spur of hind tibia not more than one-third length of free spur (plate IX, fig. 41) ..... 6
Fixed spur of hind tibia more than one-third length of free spur (Plate IX, fig. 88) ..... 7
6. Antennae ten-segmented equidida ..... p. 318
Antennae nine-segmented Iongitarsa ..... p. 319
7. Hind tibia excavated at base of fixed spur (Plate IX, figs. 39, 40).... 8 Hind tibia truncate at apex (Plate IX, fig. 38) ..... 12
8. Mesosternum with sparse vestiture of long hair ..... gracilis ..... p. 319
 ..... 9
9. Fixed spur of hind tibis strongly arcuate, angularly bent at tip (Plate IX, fig. 39) futilis ..... p. 320
Fixed spur on hind tibia straight or feebly arcuate (Plate IX, fig. 38) 10
10. Penultimate ventral segment without tranverse elevation congrua ..... p. 321
Penultimate ventral segment with transverse elevation. ..... 11
11. Elytra pruinose pruming ..... p. 322
Elytra glabrous corrosa ..... p. 333
12. Antennae ten-segmented ..... 13
Antennae nine-segmented ..... 30
13. Elytra with vestiture of hair. ..... 14
Elytra without vestiture of hair. ..... 15
14. Body with rows of erect hair. hirtioula ..... p. 337
Body uniformly clothed with hair. idicis ..... p. 338
15. Elytra pruinose ..... 16
Elytra glabrous ..... 17
16. Body robust, slightly iridescent; small roughened area at apex of penultimate ventral segment. crassissima ..... p. 322
Body elongate; feebly elevated, arcuate ridge on penultimate ventral segment micans ..... p. 325
17. Ridge of penultimate ventral segment divided (smooth at middle) ..... 18
Ridge of penultimate ventral segment not divided ..... 19
18. Ridge of penultimate ventral segment narrowly and deeply divided bipartita ..... p. 324
Ridge of penultimate ventral segment broadly divided
hornii
hornii ..... 327 ..... 327
19. Hind tibia with fired spur hooked at tip. vehomens ..... p. 325
Hind tibia with fixed spur feebly arcuste or straight ..... 20
20. Punctures on pronotum coarse, evenly and closely placed .rugosa ..... p. 334
Punctures on pronotum fine and rather evenly placed, or moderately coarse and unevenly placed. ..... 21
21. Ridge of penultimate ventral segment overhanging at ends. ..... 22Ridge of penultimate ventral segment feebly elevated, not overhang-ing at ends, roughened, often with cupuliform excavation behindridge25
22. Ridge of penultimate ventral segment rather strongly arcuate (Plate IV, fig. 34) ..... 23
Ridge of penultimate ventral segment nearly straight (Plate IX, fig. 35) ..... 24
23. Ends of ridge on penultimate ventral segment reaching hind marginof segment ................................................................................................................ 327Ends of ridge on penultimate ventral segment not reaching apex ofsegment per ofandia .-......p. 328
24. Last segment with strong, median, transverse ridge at base; hind tibia with spurs slender, lanceolate. ..... fusco .....-_-p. 326
Last segment without median transverse ridge at base; hind tibia with spurs broad, flattened, lanceolate ..... dralai _-_-_p. 329
25. Club of antennae one-third longer than stem. ..... spreta ${ }^{\text {an }}$.-......p. 331
Club of antennao little if any longer than stem. ..... 26
26. Pronotum with punctures moderately coarse, irregularly placed, with  ..... alis .......-p. 330 Pronotum with punctures moderately fine, rather regularly placed...... 27
27. Bidge on penultimate ventral segment feebly elevated, broad, feebly excavated behind ..... 28
Ridge on penultimate ventral segment, narrow, strongly arcuate, ..... 29
28. Color usually dark brown; hind tibia with fixed spur broad, much flattened, rather obliquely truzcate.................................................................... ..... $1 a$-ano..p. 332Color usually reddish brown; hind tibia with fixed spur feebly flat-
29. Bidge of penultimate ventral segment with deop cupuliform excava- tion behind ........................................................................................................... ..... p. 330Ridge of penultimate segment with shallow cupuliform excavation
30. Ridge of penultimate ventral segment broadly divided. ..... nitida .--......p. 337
Bidge of penultimate ventral segment not divided. ..... 31
31. Ridge of penultimate ventral segment narrow, deeply excavated be- hind ..... balia _--.-.-p. 335
Ridge of penultimate ventral segment narrow, feebly excavatedbehind3232. Ridge of penultimate ventral segment feebly elevated, with small
tuberosity on each side; body ovate.............................................implicita .....  335
Ridge of penultimate ventral segment with feebly arcuate ridge, with- out the tuberosity; body elongate. vilifrons ..... 336
DESCRIPTION OF SPECIES
Phyllophaga lanceolata (Say)
(Plate I, fig. 1)
182418501855 Tastegoptera lanceolata Burmeister, Handb. Ent., 4, pt. 2: 356.
1856
1856 Lachnasterna lanceolata Le Conte, Acad. Phil., Jour., (2), 3: 237.
18871887Lachnosterna lanceolata Horn, Ent. Am., 3: 143.
1889
1916
1916 Phyllophaga lanceolata Glasglow, III. Nat. Hist., Bul. 11: 371
1919 Lachnosterna lanceolata Hayes, Jour. Econ. Ent., 12: 109.
1928 ..... Phyllophaga lanceolata Sim, N. J. Dept. Agr., Circ. 145: 9.

[^8]Body robust, subopaque, brownish to piceous, with vestiture of elongate, yellowish scales. Clypeus subconcave, rather broadly and vaguely emarginate, moderately reflexed; coarsely, deeply punctate; suture sinuate. Frons convex; punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum subconvex, short and broad, widest in front of middle, sides angulate, crenate; punctures similar to those on frons, not so dense. Mesosternum with sparse vestiture of moderately long, scale-like hairs. Tooth of claw subbasal, small. Elytra granulate, rugulose, punctures similar to thase on pronotum, much sparser; costae broad, feebly elevated, more or less glabrous.

Length, $13-17 \mathrm{~mm}$; width, $7-9 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen with second, third, and fourth ventral segments with short, strongly elevated carina at middle; penultimate ventral segment with deep, transverse depression, apex abruptly and deeply emarginate; last ventral segment vaguely depressed, apex broadly and deeply emarginate. Hind tibia obliquely truncate; upper spur long, slender, slightly curved, acute; lower spur movable, slender, slightly curved, twisted at tip, acute, three-fourths length of upper.

Female: Antennal club shorter than funicle. Body ovate, wingless. Abdomen with second, third, and fourth ventral segments glabrous at middle, with piceous, roughened, elevated carinae; penultimate ventral segment vaguely concave; last ventral segment convex, apex broadly, not deeply emarginate.

Collected only at Ames and Sioux City. Food plants unknown.

## Phyllophaga ephilida (Say)

(Plate I, fig. 3)

Body elongate, moderately shiny, rufocastaneous, head and thorax darker. Clypeus concave, broadly, feebly emarginate, broadly reflexed; punctures moderately fine, dense, not deeply impressed; suture subangulate. Frons subconvex; punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum short and convex, widest at middle, sides arcuate, entire ; more coarsely, not so closely punctate as frons. Mesosternum with sparce vestiture of yellowish hair. Tooth of claw intramedian, strong. Elytra with punctures finer and denser than on pronotum; sutural costae strong, discal, and submarginal costae broad, feebly elevated.

Length, $14-19 \mathrm{~mm}$. ; width, $8-10 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with roughened, semicircular de-
pression near apex, apex feebly emarginate; last ventral segment with rough, median depression, apex with moderately narrow and deep emargination. Hind tibia squarely truncate; upper spur long, lanceolate, subacute; lower spur fixed, obliquely truncate, obtuse, one-third length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with shallow, transverse depression near apex; last ventral segment convex, apex entire.

Jaques (1926) reported this insect as occurring in Iowa.

## Phyllophaga longitarsa (Say)

(Plate I, fig. 2)
1824 Melolontha longitarsa Say, Acad. Phil., Jour., 3: 241, in Le Conte ed, 2, 1889, p. 141.

1853 Phyllophaga longitarsa Melsheimer, Cat. Coleop. J. S.: 59.
1855 Trichestes longitarsis Burmeister, Handb. Ent., 4, pt. 2: 359.
1856 Laohnasterna longitarsis Le Conte, Acad. Phil., Jour., (2), 3: 240.
1856 Lachnosterna longitarsis var. frontalis Le Conte, Acad. Phil, Jour., (2), 3: 239.
1887 Lachnosterna longitarsus Horn, Am. Ent. Soc., Trans., 14: 226.
1889 Lachnasterna longitarsis Smith, U. S. Nat. Mus., Proc., 11: 496.
1916 Phyllophaga longitarsa Glasglow, III. Nat. Hist., Bul, 11: 371.
1916 Phyllophaga longitarsa Forbes, III. Agr. Expt. Sta., Bul, 186: 234.
1925 Phyllophaga longitarsa Hayes, Kans. Agr. Expt. Sta., Tech. Bul. 16: 23-28.
1927 Phyllophaga longitarsa Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 17.
1928 Phyllophaga longitarsa Sim, N. J. Dept. Agr., Circ.. 145: 11.

Body slender, elongate, moderately shiny, pale yellow, head fuscous to piceous. Clypeus concave, abruptly and deeply emarginate, broadly reflexed; smooth, to coarsely and feebly punctate; suture angulate. Frons convex; coarsely, densely, rather deeply punctate. Antennae composed of nine segments. Pronotum convex, widest at middle, sides subangulate, entire ; punctures coarser, sparser, and more feebly impressed than on frons. Mesosternum with sparse vestiture of long yellowish hair. Tooth of claw different in male and female. Elytra rugulose, punctures much finer and denser than on pronotum; sutural costae strong, discal and submarginal costae indistinct.

Length, $10-13 \mathrm{~mm}$. ; width, $5-7 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with narrow, longitudinal, median depression; last ventral segment concave, apex broadly, feebly emarginate. Hind tibia obliquely truncate; upper spur lanceolate, curved, acute; lower spur fixed, slender, lanceolate, acute, one-third length of upper. Tooth of claw near base.

Female: Antennal club slightly shorter than funicle. Penultimate ventral segment with transverse, lateral depression; last ventral segment convex, apex entire. Tooth of claw nearly median.

A small light brown species, collected at Columbus Junction, Ames, Iowa City and Sioux City. Nothing is known regarding its feeding habits.

## Phyllophaga gracilis (Burmeister)

(Plate I, fig. 5)

[^9]Lachnosterna inana Le Conte, Acad. Phil., Jour., (2), 3: 242.
Lachnosterna inana Horn, Am. Ent. Soc., Trans., 14: 242.
Lachnosterna inana Horn, Ent. Am., 3: 144.
Endnosa volvula Horn, Am. Ent. Soc., Trans., 14: 235.
Lachnosterna gracilis Horn, Am. Ent. Soc., Trans., 14: 230.
Lachnosterna graoilis Horn, Ent. Am., 3: 143.
Laohnosterna gracilis Smith, U. S. Nat. Mus., Proc., 11: 497.
Phyilophaga gracilis Glasglow, M1. Nat. Hist., Bul. 11: 372.
Phyllophaga gracilis Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 23.
Phyllophaga gracilis Sim, N. J. Dept. Agr., Circ. 145: 13.
Phyllophaga gracilis Luginbill, Ann. Ent. Soc. Am., 21: 84.
Body elongate, moderately shiny, pale brown, head and thorax darker. Clypeus concave, rather deeply and abruptly emarginate, broadly reflexed; punctures moderately coarse, not deeply impressed; suture angulate. Frons broad, flat; punctures similar to those on clypeus, not so dense. Antennae normally composed of ten segments. Pronotum convex, widest in front of middle, sides arcuate, vaguely crenate; punctures similar to those on frons, not so dense. Mesosternum with sparse vestiture of short, inconspicuous, yellowish hairs. Tooth of claw intramedian, small. Elytra with punctures similar to those on pronotum, denser; sutural costae strong, discal and submarginal costae indistinct.

Length, $10-13 \mathrm{~mm}$.; width, $5-6 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen flattened at middle; penultimate ventral segment with narrow, arcuate ridge; last ventral segment feebly depressed at middle, apex with shallow, rather broad emargination. Hind tibia excavated at base of lower spur; upper spur long, lanceolate, curved, subacute; lower spur fixed, linear, decurved, subacute, equal to upper.

Female: Antennal club equal to funicle. Penultimate ventral segment slightly depressed at sides; last ventral segment narrow, apex entire.

One female specimen bearing the label "Iowa" is in the collection of Iowa State College.

## Phyllophaga futilis (Le Conte)

(Plate I, fig. 4)

1850
1853
1855
1856
1856
1856
1873
1887
1887
1887
1887
1916
1916
1916
1927
1928

Lachnosterna futilis Le Conte, Agassiz, Lake Superior: 226.
Phyllophaga futilis Melsheimer, Cat. Coleop. U. S.: 59.
Ancylonycha gibbosa Burmeister, Handb. Ent., 4: 324.
Lachnosterna decidrua Le Conte, Acad. Phil., Jour., (2), 3: 246.
Lachnosterna servicornis Le Conte, Acad. Phil., Jour., (2), 3: 247.
Lachnasterna futilis Le Conte, Acad. Phil., Jour., (2), S: 243.
Lachnosternas futilis Le Conte, Acad. Phil, Proc., 330.
Lachnasterna futilis Horn, Ent. An., S: 144.
Lachnosterna serricornis Horn, Ent. Am., 3: 144.
Lachnosterna gibbosa Horn, Am. Ent. Soc., Trans., 14: 230.
Lachnosterna gibbasa Horn, Ent. Am., 3: 143.
Lachnosterna gibbosa Devis, Jour. Econ. Ent., 9: 275.
Phyllophaga futilis Glasglow, IIl. Nat. Hist., Bul. 11: 371.
Phyllophaga futilis Forbes, IIl. Agr. Expt. Stan, Bul. 186: 225.
Phyllophaga futilis Langston, Miss. Agr. Expt. Stan, Tech. Bul. 15: 25.
Phyllophaga futilis Sim, N. J. Dept. Agr., Circ. 145: 43.
Body ovate, moderately shiny, rufotestaceous, head darker. Clypeus flat, feebly and abruptly emarginate, moderately reflexed; closely, rather coarsely punctate; suture sinuate. Frons convex; punctured similar to
clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest in front of middle, sides arcuate, entire or vaguely irregular; punctures similar to those on frons, much sparser. Tooth of claw median, long. Elytra rugulose, punctures similar to those on pronotum, more closely placed; sutural costae strong, narrow, discal costae wide, elevated, submarginal costae indistinct.

Length, $12-17 \mathrm{~mm}$.; width, $7-9 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen with moderately broad, median, longitudinal depression; penultimate ventral segment with arcuate roughened ridge; last ventral segment with deep cupuliform concavity, with elevation overhanging at apex. Hind tibia excavated; upper spur broad, lanceolate, obtuse; lower spur fixed, lower half strongly arcuate, apical half straight, subequal to upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with transverse depression; last ventral segment convex, apex excavated on either side of middle, leaving median triangular tooth.

Many specimens from Ames, Des Moines, Central City, Leon, Clermont, Muscatine, Hampton, Mt. Pleasant, Amana, Bloomfield, Pleasant Valley, Dubuque, Dyersville, Davenport, Atlantic, Farmersburg, Marshalltown, Waverly, Missouri Valley, Onawa, Chariton, Grinnell, Sioux City, Oakland, Creston, Keokuk, Morning Sun, Mt. Union, Towa City, Kossuth County, Appanoose County, Lee County, Cerro Gordo County, Clayton County, Fremont County, Sioux County, Monroe County, Floyd County, Des Moines County, Wapello County, Page County, and Lyon County. Collected feeding on bur oak, elm, butternut, hawthorne, gooseberry, hazel, cherry, plum, privet, Cornus, Caragana, apple, linden, birch, buckeye, and wild plum.

## Phyllophaga congrua (Le Conte)

(Plate II, fig. 6)

| 1850 | Ancylonycha fervens Blanchard, Cat. Coll. Ent., 1: 133 (preoccupi |
| :---: | :---: |
| 1856 | Lachnosterna congrua Le Conte, Acad. Phil., Jour., (2), 3: 243. |
| 1873 | Ancylonycha congrua Le Conte, Acad. Phil., Proc., 330. |
| 1887 | Lachnosterna aongrua Horn, Am. Ent. Soc., Trans., 14: 232. |
| 1887 | Lachnosterna congrua Horn, Ent. Am, 3: 144. |
| 1889 | Laohnosterva congrua Smith, U. S. Nat. Mus., Proc., 11: 498. |
| 1916 | Lachnosterna congrua Davis, Jour. Econ. Ent., 9: 273. |
| 1916 | Phyllophaga congrua Glasglow, Ill. Nat. Hist., Bul. 11: 372. |
| 1916 | Phyllophaga congrua Forbes, Ill. Agr. Expt. Sta., Bul. 186: 233. |
| 1927 | Phyllophaga congrua Langston, Miss, Agr. Expt. Stan, Tech. Bul. 15. 27. |
| 1928 | Phyllophaga congrua Sim, N. J. Dept. Agr., Circ. 145: 37. |

Body rather robust, moderately shiny, castenous to piceous. Clypeus concave, with moderately broad, shallow emargination, broadly reflexed; punctures coarse and dense, not deeply impressed; suture sinuate. Frons convex; more closely and coarsely punctate than clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at base, sides sinuous, margin entire; punctures similar to those on frons, not so dense or so deeply impressed. Tooth of claw moderately strong, median. Elytra rugulose, punctures similar to those on pronotum; sutural costae broad, strong, discal costae vague, submarginal costae narrow.

Length, $15-19 \mathrm{~mm}$. ; width, $8-11 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen with moderately broad, median depression; penultimate ventral segment acutely notched at middle by longitudinal, median depression, with roughened, semicircular
area near apex; last ventral segment with deep, triangular depression, apex sinuous, bilobed at middle. Hind tibia with deep excavation at base of fixed spur; upper spur slender, lanceolate, slightly decurved, acute; lower spur fixed, linear-lanceolate, slightly twisted and decurved, acute, threefourths length of upper.

Female: Antennal club shorter than funicle. Abdomen with vague, longitudinal depression; penultimate ventral segment feebly depressed laterally; last ventral segment broadly, and shallowly emarginate.
Known only from Missouri Valley and Onawa. Found feeding on the leaves of ash and walnut.

## Phyllophaga prunina (Le Conte)

(Plate II, fig. 7)

1846
1850
1853
1855
1856
1887
1887
1889
1916
1916
1927
Anoylonycha pruinosa Melsheimer, Acad. Phil., Proc., 2: 139 (preoccupied̃).
Anoylonycha pruinosa Blanchard, Cat. Coll. Ent., 1: 133.
Phyllophaga pruinosa Melsheimer, Cat. Coleop. U. S. 59.
Anoylonycha fraterna Burmeister, Handb. Ent., 4, pt. 2: 322 (not Harris).
Lachnosterna prunina Le Conte, Acad. Phil., Jour. (2), 3: 251.
Laohnosterna prunina Horn, Am. Ent. Soc., Trans., 14: 234.
Lachnosterna prunina Horn, Ent. Am., 3: 144.
Lachnosterna prumina Smith, U. S. Nat. Mus., Proc., 11: 498.
Phyllophaga prunina Glasglow, Ill. Nat. Hist., Bul. 11: 371.
Phyllophaga prunina Forbes, Ill. Agr. Expt. Sta., Bul. 186: 234.
Phyllophaga prunina Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 29.

Body ovate, elytra pruinose, head, pronotum, scutellum, and pygidium shiny, castaneous to piceous. Clypeus flat, rather abruptly and deeply emarginate, narrowly reflexed; coarsely, moderately deeply punctate; suture angulate. Frons convex; coarser and more deeply punctate than clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides subangulate, serrate; punctures variolate, not so dense as on frons. Tooth of claw median, strong. Elytra rugulose, finely and moderately closely punctate; costae distinct, broad, feebly elevated.

Length, $17-18 \mathrm{~mm}$.; width, $9-11 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with strongly elevated, roughened, transverse ridge ; last ventral segment concave, elevated at base, apex broadly , rather deeply emarginate. Hind tarsa deeply excavated at base of lower spur; upper spur slender, lanceolate, subacute; lower spur cylindrical, subacute, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment feebly, transversely depressed; last ventral segment deeply depressed at middle, apex broadly and deeply emarginate.

Specimens have been taken at Leon, Ames, Dyersville, Manchester, Mt. Pleasant, and Keosauqua. Collected on the leaves of white oak, hazel and hawthorne.

## Phyllophaga crassissima (Blanchard)

(Plate II, fig. 8)

Ancylonycha crassissima Blanchard, Cat. Coll. Ent., 1: 133. Ancylonyoha forvida Blanchard, Cat. Coll. Ent., 1: 133 (not Fab.). Phyllophaga crassissima Melsheimer, Cat. Coleop. U. S.: 59. Lachnosterna obesa Le Conte, Acad. Phil., Jour., (2), 3: 251.

## 1856

1873
1875
1887
1887
188
1887
1889 Lachnosterna orassissima Smith, U. S. Nat. Mus., Proc., 11: 499.
1916 Lachnasterna orassissima Davis, Jour. Econ, Ent., 9: 273.
1916 Phyllophaga orassissima Glasglow, III. Nat. Hist., Bul. 11: 372.
1916 Phyllophaga onassissima Forbes, Ill. Agr. Expt. Sta., Bul. 186: 233.
1922 Lachnosterna crassissima Hayes, Am. Micr. Soc., Trans., 41: 1-29.
Body ovate, robust, feebly iridescent, pruinose, rufocastaneous. Clypeus concave, rather abruptly and shallowly emarginate, broadly reflexed; punctures moderately coarse, closely placed, not deeply impressed; suture subangulate. Frons subconvex; punctures coarser and less deeply impressed than on clypeus. Antennae composed of ten segments. Pronotum short, broad, convex, widest in front of middle, sides arcuate, crenate; punctures similar to those on frons, evenly placed, but not so deeply impressed. Tooth of claw strong, different in male and female. Elytra slightly rugulose, less densely punctate than pronotum; sutural costae strong, discal and submarginal costae indistinct.

Length, $15-21 \mathrm{~mm}$.; width, $9-12 \mathrm{~mm}$.
Male: Antennal club longer than stem. Abdomen flattened at middle; penultimate ventral segment with feeble, roughened, transverse ridge; last ventral segment with smooth, median depression, rather broadly, moderately deeply emarginate. Hind tibia squarely truncate; upper spur slender, slightly curved, acute; lower spur fixed, sublinear, obtuse, about one-half length of upper. Tarsal claw with tooth intramedian.

Female: Antennal club subequal to funicle. Penultimate ventral segment with vague, median, longitudinal depression; last ventral segment slightly flattened, with moderately wide, deep depression. Tarsal claw with tooth median.

Taken only at lights; Pleasant Valley, Bloomfield, Sioux City, Davenport, Keosauqua and Muscatine.

## Phyllophaga inversa (Horn)

(Plate II, fig. ${ }^{9}$ )
1887
1889
1916
1916
,
Phyllophaga inversa Forbes, 111. Agr. Expt. Sta., Bul. 186: 224.
1928 Phyllophaga inversa Sim, N. J. Dept. Agr., Circ. 145: 36.
Body ovate, moderately shiny, rufocastaneous to dark brown. Clypeus subconcave, rather abruptly and shallowly emarginate, broadly reflexed; punctures moderately coarse, not deeply impressed; suture sinuate. Frons convex; more coarsely and closely punctate than clypeus. Antennae composed of ten segments. Pronotum irregularly convex, short and broad, widest at middle, sides angulate, vaguely crenate; coarser, more sparsely, and not so deeply punctate as frons. Tooth of claw median, moderately large. Elytra rugulose, punctures indistinct, finer, more closely placed
and not so deeply impressed as on pronotum; sutural costae broad, strong, discal and submarginal costae broad, moderately elevated.

Length, $15-18 \mathrm{~mm}$.; width, $8-11 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen with broad, median depression; penultimate ventral segment with median, semicircular, roughened depression; last ventral segment with broad, transverse depression, apex slightly sinuous. Hind tibia obliquely truncate; upper spur slender, lanceolate, twisted at apex, acute; lower spur fixed, broad, curved, obtuse, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with transverse depression; last ventral segment convex, apex broadly and feebly emarginate.

Recorded from Leon, Ames, Dubuque, Dyersville, Iowa City, Chariton, Davis County, and Appanoose County. The known host plants are white oak, hickory, willow, hazel, hawthorne, cherry, Caragana, plum, and walnut.

> Phyllophaga bipartita (Horn)
(Plate III, fig. 10)

1887
1889
1916
1916
1916
1925
1927 1928

Lachnosterna bipartita Horn, Am. Ent. Soc., Trans., 14: 242.
Lachnosterna bipartita Smith, U. S. Nat. Mus., Proc., 11: 500. Lachnosterna bipartita Davis, Jour. Econ. Ent., 9: 272.
Phyllophaga bipartita Glasglow, III. Nat. Hist., Bul. 11: 373.
Phyllophaga bipartita Forbes, Ill. Agr. Expt. Sta., Bul. 186: 228.
Phyllophaga bipartita Hayes, Kans. Agr. Expt. Sta., Tech. Bul. 16: 28.
Phyllophaga bipartita Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 34.
Phyllophaga bipartita Sim, N. J. Dept. Agr., Circ. 145: 29.
Body oblong, moderately shiny, castaneous to piceous. Clypeus subconcave, broadly, not deeply emarginate, moderately reflexed; coarsely, rather deeply punctate; suture sinuate. Frons with punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides arcuate, crenate; punctured similar to frons. Tooth of claw long, median. Elytra somewhat rugulose, punctures similar to those on pronotum, less deeply impressed; sutural costae strong, first discal costae broad, distinct, submarginal costae indistinct in posthumeral region.

Length, $15-19 \mathrm{~mm}$.; width, $8-10 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen with moderately broad, longitudinal depression ; penultimate ventral segment with roughened, transverse carina, narrowly divided at middle; last ventral segment concave, with vague longitudinal depression, apex acutely emarginate. Hind tibia obliquely truncate; upper spur flattened, slightly curved, lanceolate, subacute; lower spur fixed, broad, lanceolate, curved, acute, two-thirds length of upper.

Female: Antennal club slightly shorter than funicle. Penultimate ventral segment with feeble, transverse depression extending obliquely foreward; last ventral segment excavated on each side of middle, leaving broad, triangular, median tooth at apex.

Taken at McGregor, Dyersville, Keokuk, and Keosauqua on white oak, the only known food plant in the state.

## Phyllophaga micans (Knoch)

## (Plate III, fig. 11)

1801
1817
1850
1855
1856
1856
1887
1887
1889
1916
1916
1927
1928

Melolontha micans Knoch, Neue Beytr. Ins., 1: 77.
Melolontha micans Schönherr, Syn. Ins., 1: 171.
Anoylonycha mioans Blanchard, Cat. Coll. Ent., 1: 138.
Anoylonycha mioums Burmeister, Handb. Ent., 4, pt. 2: 323.
Lachnosterna sonoria Le Conte, Acad. Phil., Jour., (2), 3: 246.
Lachnosterna micans Le Conte, Acad. Philo, Jour., (2), 3: 247.
Lachnosterna micans Horn, Am. Ent. Soc., Trans., 14: 242. Lachnosterna mioans Horn, Ent. Am., 3: 142.
Lachnosterna micans Smith, U. S. Nat. Mus., Proc., 11: 500.
Phyllophaga micans Glasglow, I11. Nat. Hist., Bul. 11: 371.
Phyllophaga micans Forbes, Ill. Agr. Expt. Sta., Bul. 186: 227. Phyllophaga micans Langston, Miss, Agr. Expt. Sta., Tech. Bul. 15: 35. Phyllophaga micans Luginbill, Ann, Ent. Soc. Am., 21: 76.

Body elongate, pruinose, brownish-black. Clypeus concave, feebly and broadly emarginate, moderately reflexed; punctures moderately coarse and deeply impressed; suture sinuous. Frons convex; slightly more coarsely and sparsely punctate than clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides arcuate, entire, much coarser and more sparsely punctate than frons. Tooth of claw median, strong. Elytra with punctures like pronotum but finer; sutural costae broad, not strongly elevated, discal and submarginal costae broad, indistinct.

Length, $15-17 \mathrm{~mm}$.; width, $8-9 \mathrm{~mm}$.
Male: Antennal club shorter than stem. Abdomen broadly flattened at middle; penultimate ventral segment with feebly elevated, roughened, arcuate ridge ; last ventral segment deeply depressed at middle, apex broadly, rather deeply emarginate. Hind tibia obliquely truncate; upper spur lanceolate, curved, subacute; lower spur fixed, broad, squarely truncate, one-half length of upper.

Female: Antennal club shorter than funicle. Abdomen with vague longitudinal depression; penultimate ventral segment feebly and transversely depressed; last ventral segment strongly elevated at base, feebly flattened at middle, apex rather deeply and broadly emarginate.

Collections have been made at Leon, Iowa City, Mt. Pleasant, and Keosauqua. Found feeding on hickory and shingle oak.

## Phyllophaga vehemens (Horn)

(Plate III, fig. 12)

[^10]Body ovate, widened posteriorly, shiny, dark brown to piceous. Clypeus subconcave, rather broadly, not deeply emarginate; punctures moderately coarse, not deeply impressed; suture angulate. Frons convex; punctures similar to those on clypeus, more deeply impressed and less dense near suture. Antennae composed of ten segments. Pronotum convex, widest
in front of middle, sides arcuate, vaguely crenate; punctures finer, not so deeply impressed as on frons. Tooth of claw median, strong. Elytra rugulose, punctures similar to those on pronotum, finer; sutural costae broad, distinct, discal and submarginal costae broad, feebly elevated.

Length, $21-23 \mathrm{~mm}$. ; width, $11-13 \mathrm{~mm}$.
Male: Antennal club shorter than stem. Abdomen broadly fiattened at middle; penultimate ventral segment with strong, sinuate, roughened ridge; last ventral segment with cupuliform depression, apex broadly, not deeply emarginate. Hind tibia squarely truncate; upper spur long, linear, obtuse; lower spur fixed, linear, hooked at tip, three-fourths as long as upper. Metathoracic femur broadly angulate.

Female: Antennal club shorter than funicle. Penultimate ventral segment with transverse depression; last ventral segment convex, apex broadly, not deeply emarginate.

This species has been collected at Onawa, Missouri Valley, Sioux City, Oskaloosa, Wapello County, Van Buren County, and Iowa County. Taken on ash and walnut.

## Phyllophaga fusca (Froelich)

(Plate III, fig. 13)

1789
1792
1817
1837
1850
1856
1884
1887
1887
1889
1916
1916
1916
1925
1928
1928

Melolontha fervida Oliver, Entom., 1: 24 (preoccupied).
Melolontha fusca Froelich, Natur., Stueck., 26: 99.
Meloiontha forvens Gyllenhall, Syn. Ins., 1, pt. 3: 74.
Bhisotrogus forvens Kirby, Feun. Bor.-Am., 4: 132.
Anoylonycha fusca Blanchard, Cat. Coll, Ent., 1: 133.
Lachnosterna fusca Le Conte, Acad. Philo, Jour.g (2), 3: 244.
Lachnosterna fusca Casey, N. Am. Coleop., pt. 1: 39.
Lachnosterna fusca Horn, Am. Ent. Soc., Trans, 14: 245.
Lachnasterna fusca Horn, Ent. Am., 3: 144.
Lachnosterna fusca Smith, U. S. Nat. Mus., Proc., 11: 505.
Lachnasterna fusca Davis, Jour. Econ. Ent., 9: 274.
Phyllophaga fusca Glasglow, II. Nat. Hist., Bul. 11: 373.
Phyllophaga fhusca Forbes, IIl. Agr. Expt. Sta., Bul. 186: 223.
Phyllophaga fusca Hayes, Kans. Agr. Expt. Sta., Tech. Bul. 16: 41-45.
Phyllophaga fusca Sim, N. J. Dept. Agr., Circ, 145: 24.
Phyllophaga fusca Luginbill, Ann. Ent. Soc. Am., 21: 66.
Body oblong, shiny, light brown to piceous. Clypeus concave, broadly and feebly emarginate, broadly reflexed; punctures moderately fine, not deeply impressed; suture subangulate. Frons convex; punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides arcuate, indented where hairs arise from margin; punctures similar to those on frons, more sparse. Tooth of claw median, strong. Elytra vaguely rugulose; punctures denser, not so coarse as on pronotum; sutural costae strong, first discal costae wide, feebly elevated, submarginal costae narrow, distinct.

Length, $17-23 \mathrm{~mm}$. ; width, $10-12 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with transverse ridge, roughened at middle, overhanging at ends; last ventral segment with roughened, median depression, apex entire. Hind tibia obliquely truncate; upper spur long, slender, acuminate; lower spur fixed, slightly curved, obliquely truncate, two-thirds length of upper.

Female: Antennal club shorter than funicle. Abdomen with vague, median depression; penultimate ventral segment with transverse depression
extending obliquely forward to base; last ventral segment convex, apex rather broadly and feebly emarginate.

Common, known from Central City, Ames, Des Moines, Leon, Sioux City, Hampton, Marquette, Amana, Bloomfield, Dubuque, Dyersville, Davenport, Edgewood, Manchester, Keokuk, Farmersburg, Waukon, Oneida, Arlington, Iowa City, Mt. Pleasant, Stockport, Chariton, Muscatine, Grinnell, Clermont, Oakland, New Hampton, Mt. Union, Boone County, Taylor County, Allamakee County, Iowa County, Des Moines County, Powesheik County, Van Buren County, Louisa County and Hamilton County. The host plants include bur oak, hickory, elm, willow, butternut, shingle oak, red oak, white oak, walnut, silver poplar, large-toothed aspen, gooseberry, hazel, poplar, privet, plum, box elder, birch, Caragana, linden, cherry, hawthorne, quaking aspen, Cornus and wild plum.

## Phyllophaga hornii (Smith)

(Plate IV, fig. 14)


Body oblong, moderately shiny, deep brown to piceous. Clypeus flat, moderately broad, not deeply emarginate, narrowly reflexed; punctures coarse, dense, rather deeply impressed; suture sinuate. Frons subconvex; punctures similar to those on clypeus, but less dense. Antennae composed of ten segments. Pronotum convex, widest back of middle, sides broadly angulate, feebly crenate; punctures much coarser, not so dense as on frons. Tooth of claw median, long. Elytra rugulose, with punctures as dense as on pronotum, much finer, not so deeply impressed; sutural, discal, and submarginal costae wide, moderately strong.

Length, $19-21 \mathrm{~mm}$.; width, $10-12 \mathrm{~mm}$.
Male: Antennal club slightly longer than funicle. Abdomen broadly flattened at middle; penultimate ventral segment with strong arcuate ridge broadly divided, smooth at middle; last ventral segment deeply, rather broadly depressed at middle, apex deeply and abruptly emarginate. Hind tibia squarely truncate; upper spur flattened, curved, subacute; lower spur lanceolate, obtuse, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with strong, transverse depression near apex; last ventral segment with shallow, transverse depression near apex, apex sinuate.

A large dark species, taken at Leon, Mt. Pleasant, Mahaska County, and Davis County on hickory and shingle oak.

## Phyllophaga fervida (Fabricius)

(Plate IV, fig. 15)

## 1775

1801
1826
1853
1855

Melolontha fervida Fabricius, Species Ins.: 32.
Melolontha queroina Knoch, Neue Beytr. Ins., 1: 74.
Phyllophaga quercina Harris, Mass. Agr. Jour, and Rpts., 10: 1-12.
Phyllophaga fervida Melsheimer, Cat. Coleop. U. D.: 59.
Ancylonyoha quercina Burmeister, Handb. Ent., 4, pt. 2: 319.

```
1888 Lachnosterna arouata Smith, Ins. Life, 1: 183.
1889 Laohnosterna arouata Smith, U. S. Nat. Mus., Proce, 11: 503.
1889 Lachnosterna fervida Chittenden, U. S. Dept. Agr., Bur. Ent. Bul. 19: 1-77.
1916 Phyllophaga fervida Glasglow, Ill. Nat. Hist., Bul. 11: 370.
1916 Phyllophaga fervida Forbes, Ill. Agr. Expt. Sta., Bul. 186: 230.
1927 Phyllophaga fervida Langston, Miss. Agr. Expt. Sta, Tech. Bul. 15: 42.
1928 Phyllophaga fervida Sim, N. J. Dept. Agr., Circ. 145: 28.
1928 Phyllophaga fervida Luginbill, Ann. Ent. Soc. Am., 21: 65.
```

Body ovate, shiny, brown to piceous. Clypeus flat, abruptly, not deeply emarginate, narrowly reflexed; punctures moderately fine, not deeply impressed; suture sinuate. Frons convex; punctures similar to those on clypeus, less dense. Antennae composed of ten segments. Pronotum convex, widest at middle, sides broadly arcuate, irregular; punctures similar to those on frons. Tooth of claw median, strong. Elytra rugulose, punctures finer and denser than on pronotum ; sutural costae broad, strong, diseal and submarginal costae moderately broad, indistinct.

Length, $18-21 \mathrm{~mm}$.; width, $10-11 \mathrm{~mm}$.
Male: Antennal club slightly longer than stem. Abdomen broadly flattened at middle; penultimate ventral segment with transverse, arcuate, overhanging ridge reaching hind margin of segment; last ventral segment flattened, apex broadly, moderately deeply emarginate. Hind tibia obliquely truncate; upper spur lanceolate, obtuse; lower spur lanceolate, subacute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment transversely depressed; last ventral segment convex, apex broadly and deeply emarginate.

Collected in Hamilton and Van Buren Counties. Food plants unknown.

## Phyllophaga anxia (Le Conte)

(Plate IV, fig. 16)

```
1850
1850
1850
1853
1855
1855
1856
1856
1856
1856
1866
1873
1873
1884
1887
1888
1889 Lachnosterna dubia Smith, U. S. Nat. Mus., Proc., 11: 504.
1889 Lachnosterna inseparata Smith, Ent. Am., 5: 93.
1897 Liachnosterna alpina Linell, U. S. Nat. Mus., Proc., 18: 726.
1916 Phyllophaga anxia Glasglow, Ill. Nat. Hist., Bul. 11: 371.
1916 Phyllophaga anaia Forbes, IIl. Agr. Expt. Sta., Bul. 186: 227.
1927 Phyllophaga anxia Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 47.
1928 Phyllophaga anaia Luginbill, Ann. Ent. Soc. Am., 21: 71.
1928 Phyllophaga anxia Sim, N. J. Dept. Agr., Circ. 145: 29
```

Body oblong, shiny, light brown to piceous. Clypeus concave, rather abruptly, not deeply emarginate, moderately reflexed; punctures moderate-
ly coarse, evenly placed, denser at base, not deeply impressed; suture sinuate. Frons convex; less densely, more irregularly punctate than base of clypeus. Antennae composed of ten segments. Pronotum convex, widest in front of middle, sides angulate, vaguely indented; punctures evenly placed, feebly impressed, not so dense as on frons. Tooth of claw moderately strong, median. Elytra rugulose, punctures similar to those on pronotum, not so coarse or so deeply impressed; sutural, discal, and submarginal castae prominent and narrow.

Length, $19-24 \mathrm{~mm}$. ; width, $10-12 \mathrm{~mm}$.
Male: Antennal club slightly longer than stem. Abdomen broadly flattened at middle; penultimate ventral segment with arcuate, transverse ridge not reaching hind margin, overhanging at ends, roughened at middle; last ventral segment with smooth median depression, apex broadly, not deeply emarginate. Hind tibia obliquely truncate; upper spur flattened, lanceolate, slightly curved, subacute; lower spur fixed, broad, lanceolate, curved, obtuse, two-thirds length of upper.

Female: Antennal club much shorter than funicle. Abdomen with vague, median depression; penultimate ventral segment transversely depressed at apex; last ventral segment with apex broadly, not deeply emarginate.

Locality records are: Marquette, Leon, Ames, Edgewood, Manchester, Ruthven, Farmersburg, Arlington, Dubuque, Iowa City, Mt. Pleasant, Chariton, New Hampton, Van Buren County, and Davis County. Hazel, wild plum, white oak, quaking aspen, elm, willow, large-toothed aspen, linden, privet, and poplar are the known host plants in Iowa.

## Phyllophaga drakii (Kirby)

(Plate V, fig. 18)

[^11]Body oblong, shiny, light to dark brown. Clypeus concave, abruptly, rather deeply emarginate, moderately reflexed; densely and finely punctate; suture subangulate. Frons convex; punctures similar to those on clypeus, slightly coarser. Antennae composed of ten segments. Pronotum convex, widest in front of middle, sides arcuate, entire ; punctures irregularly placed, much finer, sparser, and not so deeply impressed as on frons. Tooth of claw median, long and strong. Elytra vaguely rugulose, more closely and finely punctate than pronotum; sutural costae narrow, strong, discal, and submarginal costae indistinct.

Length, $26-27 \mathrm{~mm}$. ; width, $12-14 \mathrm{~mm}$.
Male: Antennal club longer than stem. Abdomen broadly flattened at middle; penultimate ventral segment with transverse ridge roughened
at middle; overhanging at ends; last ventral segment with median, roughened depression, apex sinuous. Hind tibia obliquely truncate; upper spur slender, lanceolate, slightly curved, subacute; lower spur fixed, slender, lanceolate, acute, two-thirds length of upper.

Female: Antennal club much shorter than funicle. Penultimate ventral segment with vague, transverse depression at apex extending obliquely to base on either side; last ventral segment convex, apex broadly emarginate.

This large species has been collected at Ames, Central City, Dyersville, Manchester, Farmersburg, Arlington, Dubuque, Iowa City, Chariton, Oakland, New Hampton, Grinnell, Cerro Gordo County, and Van Buren County. The food plants are white oak, wild plum, hazel, poplar, willow, birch, and large-toothed aspen.

## Phyllophaga barda (Horn)

(Plate V, fig. 17)

[^12]Body oblong, moderately shiny, dark brown to piceous. Clypeus subconcave, rather broadly and deeply emarginate; punctures coarse, not deeply impressed; suture sinuate. Frons convex; more coarsely punctate than clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides angulate, irregular; punctures variolate. Tooth of claw median, strong. Elytra rugulose, less coarsely, more densely punctate than pronotum; sutural costae broad, strong, discal, and submarginal costae broad, feebly elevated.

Length, $21-22 \mathrm{~mm}$. ; width, $10-12 \mathrm{~mm}$.
Male: Antennal club slightly shorter than stem. Abdomen broadly flattened at middle; penultimate ventral segment with broad, strongly arcuate carina, deeply excavated behind; last ventral segment concave, apex feebly emarginate. Hind tibia squarely truncate; upper spur lanceolate, curved, obtuse; lower spur fixed, broad, linear, obtuse, two-thirds length of upper.

Female: Antennal club shorter than funicle. Abdomen vaguely flattened at middle ; penultimate ventral segment deeply, broadly, and transversely depressed; last ventral segment convex, apex rather broadly and deeply emarginate.

Only two specimens have been taken in Iowa, both of which were secured by Prof. H. E. Jaques at Mt. Pleasant. There have been no food plants recorded for this state.

## Phyllophaga marginalis (Le Conte)

## (Plate V, fig. 19)

1856
1887
1887
1889
1916
1928
1928

Body oblong, shiny, rufocastaneous to piceous. Clypeus subconcave, rather abruptly and deeply emarginate, narrowly reflexed; coarsely and deeply punctuate; suture sinuate. Frons convex; punctured similar to clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest back of middle, sides angulate, crenate; punctures of thorax very sparse, especially on dise, coarse and deeply impressed. Tooth of claw median, long. Elytra rugulose, punctures moderately dense, fine, and deeply impressed; sutural costae strong, discal costae rather broad, distinct, submarginal costae strong.

Length, $16-21 \mathrm{~mm}$.; width, $8-11 \mathrm{~mm}$.
Male: Antennal club longer than stem. Abdomen broadly flattened at middle ; penultimate ventral segment with short, strongly arcuate ridge; last ventral segment with median depression, apex entire. Hind tibia obliquely truncate; upper spur long, slightly curved, acute; lower spur fixed, broad, acute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment transversely and laterally depressed; last ventral segment subdepressed, apex broadly, feebly emarginate.

Specimens have been taken on bur oak, gooseberry, and hazel at Hampton, Leon, Marquette, and Iowa City.

## Phyllophaga spreta (Horn)

(Plate VI, fig. 20)

[^13]Specimens of this species were not available so the following is a copy of Horn's original deseription.
"Oblong, elytra slightly wider at middle, castaneous or fuscous, shining. Clypeus feebly emarginate, margin very narrowly reflexed, densely and moderately coarsely punctured, front rather more coarsely but less densely. Thorax narrower in front, sides posteriorly nearly parallel, in front oblique, the margin entire, with short distinct ciliae, disc moderately convex, the punctures small, sparsely but equally placed, a slight depression of the base on each side. Elytral punctures equal to those of the thorax, more closely placed, surface slightly rugulose on each side of the suture, the costae distinct but feebly elevated, the submarginal distinct posteriorly. Pygidium sparsely punctate, smoother near the apex. Metasternum densely punctate, the hair moderately long and close; sides of abdomen with sparse punctures bearing short hairs. Claws curved, the tooth moderate in size and median $\begin{gathered}\text {. Last joint of maxillary palpi short, fusiform, not impressed. }\end{gathered}$ Length . $66-.72$ inch ; $16.5-18 \mathrm{~mm}$.
"Male.- Antennal club nearly a third longer than the entire stem. Abdomen slightly flattened at middle, penultimate segment with a short, feeble elevated, transverse ridge a short distance in front of the posterior margin. Last segment very slightly concave. Inner spur of hind tibia two-thirds the length of the outer and broader.
"Variations.-The two male specimens before me do not vary, except slightly in color and size.
"In this species the clypeus is more feebly emarginate than usual in those with the punctures of its surface dense and the border narrowly reflexed. On the other hand the antennal club of the male is unusually long,
exceeding that of any species of the fusca group. The facies and sculpture are very like a small fusca."

A very rare species known only from the type specimens. (Iowa and Maryland, Horn, 1887).

## Phyllophaga fraterna Harris <br> (Plate VI, fig. 21)

1841
(hyllophaga fnaterna Harris, Rpt. Ins. Inj. Veg.: 29.
hylophaga fraterna Melsheimer, Cat. Coleop. U. S.:
1856 Laahnosterna cognata Le Conte, Acad. Phil., Jour., (2), 3: 248.
1856 Laohnasterna fraterna Le Conte, Acad. Phil., Jour., (2), 3: 249.
1887 Laohnosterna fraterna Horn, Am. Ent. Soc., Trans., 14: 251.
1887 Lachnosterna cognata Horn, Am. Ent. Soc., Trans., 14: 252.
1887 Lachnasterna fraterna Horn, Ent. Am., 3: 144.
1889 Lachnosterna fratema Smith, U. S. Nat. Mus., Proc., 11: 508.
1889 Lachnosterna nova Smith, U. S. Nat. Mus., Proc., 11: 508.
1889 Lachnosterna nova Smith, Ent. Am., 5: 95.
1889 Lachnosterna nova Smith, U. S. Nat. Mus., Proc., 11: 509.
1916 Lachnosterna fraterna Davis, Jour. Econ. Ent., 9: 274.
1916 Phyllophaga fraterna Glasglow, Il. Nat. Hist., Bul. 11: 371.
1916 Phyllophaga fraterna Forbes, IIl. Agr. Expt. Sta., Bul. 186: 228.
1927 Phyllophaga fraterna Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 48.
1928. Phyilophaga fraterna Sim, N. J. Dept. Agr., Circ. 145: 36.

Body elongate, sides nearly parallel, shiny, rufocastaneous to piceous. Clypeus flat, with abrupt, moderately deep emargination, rather broadly reflexed; punctures moderately coarse, dense, deeply impressed; suture subangulate. Frons convex; punctures similar to those on clypeus, slightly coarser. Antennae composed of ten segments. Pronotum convex, widest at middle; sides subangulate, feebly crenate; punctures irregularly placed, sparser, coarser, and more feebly impressed than on pronotum. Tooth of claw median, strong. Elytra rugulose, more finely and closely punctate than pronotum; sutural costae broad, strong, discal and submarginal costae indistinct.

Length, $15-18 \mathrm{~mm}$. ; width, $7-8 \mathrm{~mm}$.
Male: Antennal club subequal to funicle. Abdomen depressed at middle; penultimate ventral segment with roughened, feebly arcuate ridge; last ventral segment concave, apex feebly emarginate. Hind tibia obliquely truncate; upper spur long, lanceolate, obtuse; lower spur fixed, broad, curved, subacute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with transverse depression at apex; last ventral segment convex, apex with broad, shallow emargination.

This species has been collected at Iowa City, Columbus Junction, Dyersville, Keosauqua, Mt. Pleasant, and Jackson County. White oak and hazel are the host plants.

## Phyllophaga fosteri (Burmeister)

(Plate VI, fig. 22)

1855
1856
1856
1856
1887

Ancylonycha fosteri Burmeister, Handb. Ent., 4: 325.
Lachnostorna semioribrata Le Conte, Acad. Phil, Jour., (2), 3: 247.
Lachnosterna lugubris Le Conte, Acad. Phil., Jour., (2), S: 248.
Lachnosterno lutescens Le Conte, Acad. Phil., Jour., (2), 3: 249.
Lachnosterna semioribrata Horn, Am. Ent. Soc., Trans., 14: 252.

```
1887
Lachnosterna lutescens Horn, Ent. Am., 3: 144.
Lachnosterna politula Horn, Am. Ent. Soc., Trane., 14: }248
Lachnosterna fosteri Horn, Am. Ent. Soc., Trans., 14: }252
Laohnasterna semioribrata Smith, U. S. Nat. Mus., Proc., 11: }508
Laohnasterma fosteni Smith, U. S. Nat. Mus., Proc., 11: }508
Lachnosterna nova Smith, Ent. Am., 5: 95.
Laohnasterna nova Smith, U. S. Nat. Mus., Proc., 11: }509
Phyllophaga fosteri Glasglow, Ill. Nat. Hist., Bul. 11: }372
Phyllophaga fosteri Forbes, Ill. Agr. Expt. Sta., Bul. 186: }233
Phyllophaga fosteri Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 50.
Phyllophaga fosteri Luginbill, Ann. Ent. Soc. Am., 21: 74.
Phyllophaga fosteri Sim, N. J. Dept. Agr., Circ. 145:39.
```

Body oblong, moderately shiny, rufocastaneous. Clypeus flat, deeply, almost abruptly emarginate, feebly, rather broadly reflexed; punctures moderately coarse, deeply impressed; suture subangulate. Frons subconvex; punctures similar to those on clypeus, not so dense. Antennae composed of nine segments. Pronotum convex, widest at middle, sides arcuate, crenate; punctures irregular, much coarser, not so dense or deeply impressed as on frons. Tooth of claw median, strong. Elytra with punctures finer, more closely placed, not so deeply impressed as on pronotum; sutural costae strong, discal costae broad, feebly elevated, submarginal costae narrow, strong.

Length, $14-18 \mathrm{~mm}$.; width, $8-10 \mathrm{~mm}$.
Male: Antennal club subequal to funicle. Abdomen broadly flattened at middle; penultimate ventral segment with moderately arcuate roughened ridge; last ventral segment with smooth cupuliform depression, apex feebly emarginate. Hind tibia squarely truncate; upper spur lanceolate, slightly curved, obtuse; lower spur fixed, broad, acute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with narrow, transverse depression at apex extending obliquely forward; last ventral segment strongly elevated at base, apex feebly, broadly emarginate.

Collected at Marquette, Iowa City, and Mt. Pleasant. The food plants have not been reported for Iowa.

## Phyllophaga corrosa (Le Conte)

(Plate VI, fig. 23)
1856
Lachnosterna aorrosa Le Conte, Acad. Phil., Jour., (2), 3: 249.
1856 Lachnosterna aff inis Le Conte, Acad. Phil., Jour., (2), S: 256.
1887 Lachnosterna affinis Horn, Am. Ent. Soc., Trans., 14: 233.
1887 Lachnosterna aff inis Horn, Ent. Am., 3: 144.
1887 Lachnosterna corrosa Horn, Ent. Am., 3: 144.
1889 Lachnosterna affimis Smith, U. S. Nat. Mus., Proc., 11: 498.
1916 Phyllophaga corrosa Glasglow, IIl. Nat. Hist., Bul. 11: 371.
1916 Phyllophaga corrasa Forbes, Ill. Agr. Expt. Sta, Bul. 186: 232.
1925 Phyllophaga corrasa Hayes, Kans. Agr. Expt. Sta., Tech. Bul. 16: 45.
1928 Phyllophaga corrosa Sim, N. J. Dept. Agr., Circ. 145: 24.
Body oblong, moderately shiny, castaneous to piceous. Clypeus concave, rather abruptly and deeply emarginate, narrowly reflexed; coarsely and closely punctate; suture sinuate. Frons subconvex; punctuation similar to that of clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides angulate, serrate; more coarsely, less closely punctate than frons. Mesosternum with sparse vestiture of moderately long, yellowish hair. Tooth of claw median, slender and long. Elytra rugulose, more closely, less coarsely punctate than pronotum; sutu-
ral costae wide and strong, discal costae indistinct, submarginal costae indistinct in posthumeral region.

Length, $17-20 \mathrm{~mm}$. ; width, $8-10 \mathrm{~mm}$.
Male: Antennal club shorter than stem. Abdomen flattened medially; penultimate ventral segment with feebly arcuate, roughened ridge, slightly excavated behind; last ventral segment with smooth, median depression, with transverse ridge at base, apex feebly and broadly emarginate. Hind tibia vaguely excavated at base of lower spur; upper spur flattened, elliptical, slightly curved, obtuse; lower spur fixed, subacuminate, curved, twothirds length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with oblique, lateral depression; last ventral segment with deep, subtriangular, median depression, apex excavated on each side of middle leaving broad, median tooth.

A few individuals have been taken at Ames, Dyersville and Iowa City. Feeds on white oak and hawthorne.

## Phyllophaga rugosa (Melsheimer)

(Plate VII, fig. 24)


Body oblong, shiny, rufocastaneous to piceous. Clypeus flat, deeply, moderately broadly emarginate, punctures coarse, deeply impressed; suture angulate. Frons convex, more coarsely and deeply punctate than clypeus. Antennae composed of ten segments. Pronotum convex, widest at middle, sides angulate, vaguely crenate; irregularly and variolately punctate. Tooth of claw median, strong. Elytra rugulose, punctures similar to those on clypeus, not so dense; sutural costae broad, strong, discal and submarginal costae broad, feebly elevated.

Length, $18-23 \mathrm{~mm}$. ; width, $9-11 \mathrm{~mm}$.
Male: Antennal club slightly longer than funicle. Abdomen broadly flattened at middle; penultimate ventral segment with strongly arcuate ridge, roughened at middle; last ventral segment concave, smooth, apex abruptly and deeply emarginate. Hind tibia obliquely truncate; upper spur lanceolate, obtuse; lower spur fixed, curved, acute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Abdomen vaguely flattened at middle; penultimate ventral segment with transverse depression; last ventral segment feebly concave, apex broadly, not deeply emarginate.

Extremely abundant: Des Moines, Ames, Hampton, Leon, Amana, Marquette, Ruthven, Maquoketa, Guttenburg, Dubuque, Dyersville, Pleasant Valley, McGregor, Algona, Sioux City, Davenport, Atlantic, Manchester, Marshalltown, Arlington, Iowa City, Mt. Pleasant, Muscatine, Sioux City, Clermont, Oakland, Keokuk, Grinnell, Marion County, Monona County,

Sioux County, Linn County, Wapello County, Mills County, Lyon County, Boone County, Page County, Pottawattamie County, Davis County, Cedar County, Cherokee County, and Van Buren County. Collections have been made from buckeye, apple, linden, birch, walnut, silver poplar, privet, cherry, box elder, mock orange, Cornus, Caragana, bur oak, hickory, elm, willow, ash, butternut, quaking aspen, wild plum, hawthorne, red oak, white oak, hackberry, large-toothed aspen, hazel, cottonwood, and plum.

## Phyllophaga implicita (Horn)

(Plate VII, fig. 25)

Body ovate, moderately shiny, brown to piceous, head and pronotum darker. Clypeus flat, deeply and abruptly emarginate, moderately reflexed; punctures moderately coarse, not deeply impressed; suture sinuate. Frons convex; punctures denser, slightly coarser than on clypeus. Antennae composed of ten segments. Pronotum convex, widest in front of middle, sides angulate, feebly crenate; punctures not so coarse, much sparser than on frons. Tooth of claw slightly intramedian. Elytra rugulose, punctures finer than on pronotum, not so deeply impressed; sutural costae wide, strong, discal, and submarginal costae indistinct.

Length, $14-18 \mathrm{~mm}$. ; width, $8-10 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen broadly flattened at middle ; penultimate ventral segment with strongly arcuate, feebly elevated, roughened transverse ridge; last ventral segment convex, apex broadly, not deeply emarginate. Hind tibia obliquely truncate; upper spur lanceolate, subacute; lower spur fixed, arcuate, one-half length of upper.

Female: Antennal club subequal to funicle. Penultimate ventral segment with feeble transverse depression; last ventral segment flattened, apex rather broadly and deeply emarginate.

Occurs almost everywhere: Ames, Des Moines, Keokuk, Central City, Hampton, Ruthven, Fort Dodge, Marquette, Maquoketa, Columbus Junction, Algona, Pleasant Valley, Iowa City, Cylinder, Sioux City, Dubuque, Davenport, Atlantic, Farmersburg, Bryant, Red Oak, Sharpsburg, Humbolt, Marshalltown, Grinnell, Clermont, Muscatine, Oakland, Creston, Boone, New Hampton, Morning Sun, Mt. Union, Keosauqua, Mt. Pleasant, Wapello County, Monroe County, Lee County, Boone County, Jefferson County, Des Moines County, Davis County, and Madison County. Collected from bur oak, hickory, elm, ash, butternut, red oak, white oak, hackberry, largetoothed aspen, quaking aspen, willow, cherry, hazel, poplar, gooseberry Caragana, birch, and silver poplar.

## Phyllophaga balia (Say)

(Plate VII, fig. 27)

```
1855
1856
1887
1887
1889
1916
1916
Ancylonycha comata Burmeister, Handb. Ent., 4, pt. 2: 337.
Lachnosterna balia Le Conte, Acad. Phil., Jour., (2), 3: 255.
Lachnasterna balia Horn, Am. Ent. Soc., Trans., 14: 262.
Lachnosterna comata Horn, Ent. Am., 3: 143.
Lachnosterna balia Smith, U. S. Nat. Mus., Proc., 11: 516.
Phyllophaga balia Forbes, 111. Agr. Expt. Sta., Bul. 186: 235.
Phyllophaga balia Glasglow, Il. Nat. Hist., Bul. 11: 371.
```

Body elongate, moderately shiny, dark brown to piceous, head and thorax darker. Clypeus flat, broadly, moderately deeply emarginate, narrowly reflexed; punctures coarse, moderately closely placed, rather deeply impressed; suture sinuous. Frons subconvex; more coarsely and irregularly punctate than clypeus, with sparse vestiture of long erect hair. Antennae normally composed of nine segments. Pronotum convex, widest at middle, sides subarcuate, vaguely indented; punctures coarser, sparser and not so deeply impressed as on frons, more densely punctate at sides. Tooth of claw strong, median. Elytra rugulose, punctures indistinct; sutural costae strong, discal and submarginal costae indistinct.

Length, $15-16 \mathrm{~mm}$. ; width, $8-9 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with broad, obtusely arcuate, roughened ridge, deeply excavated behind; last ventral segment with a smooth, cupuliform, median depression, transversely elevated at base, apex entire. Hind tibia obliquly truncate; upper spur slender, lanceolate, subacute, lower spur fixed, lanceolate, subacute, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with moderately deep, transverse depression, apex of last ventral segment feebly excavated at sides leaving short, median, triangular tooth.

This species has been collected at Marquette, Ames, Dyersville, Farmersburg, Dubuque, Iowa City, and Mt. Pleasant. Food plants include white oak, willow, hazel, box elder, and birch.

## Phyllophaga vilifrons (Le Conte)

(Plate VII, fig. 26)
1856 Lachnasterna vilifrons Le Conte, Acad. Phil,, Jour., (2), 3: 255.
1856 Lachnosterna hirticeps Le Conte, Acad. Phil., Jour., (2), s: 255.
1887 Lachnosterna hirticeps Horn, Ent. Am., 3: 145.
1887 Lachnosterna villiforns Horn, Am. Ent. Soc., Trans., 14: 144.
1889 Lachnasterna villifroms Smith, U. S. Nat. Mus, Proc, 11: 516.
1916 Phyllophaga villifrons Glasglow, II. Nat. Hist., Bul. 11: 372.
1916 Phyllophaga villifrons Forbes, III. Agr. Expt. Sta., Bul. 186: 234.
1928 Phyllophaga villifrons Luginbill, Ann. Ent. Soc. Am., 21: 89.
Body elongate, shiny, rufocastaneous. Clypeus flat, abruptly, rather deeply emarginate, moderately reflexed; punctures coarse, deeply impressed; suture angulate. Frons convex; punctures similar to those on clypeus, less densely placed. Antennae composed of nine segments. Pronotum convex, widest at middle, sides arcuate, crenate at base; punctured similar to frons. Tooth of claw median, strong. Elytra more densely and more finely punctate than pronotum; sutural costae strong, discal and submarginal costae indistinct.

Length, $14-16 \mathrm{~mm}$. ; width, $7-9 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen broadly flattened at middle; penultimate ventral segment with broad, feebly arcuate, roughened ridge; last ventral segment longitudinally depressed, apex feebly emarginate.

Hind tibia obliquely truncate; upper spur flattened, lanceolate, acute; lower spur fixed, broad, slightly curved, obtuse, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment vaguely and transversely depressed, with broad, roughened depression at sides; last ventral segment flat, apex feebly and broadly emarginate.

This rare species has been taken at McGregor, Ames, Dubuque, and Iowa City on linden and birch.

## Phyllophaga nitida (Le Conte)

(Plate VIII, fig. 30)

[^14]Body elongate, shiny, dark brown. Clypeus flat, abruptly, rather deeply emarginate, punctures coarse, deeply impressed; suture feebly sinuate. Frons convex; punctures similar to those on clypeus, but coarser, Antennae composed of nine segments. Pronotum convex, widest at middle, sides arcuate, irregular ; punctures similar to those on frons, sparser and not so deeply impressed. Tooth of claw median, strong. Elytra rugulose, punctures much finer and denser than on pronotum; sutural costae strong, discal and submarginal costae narrow, feebly elevated.

Length, $20-21 \mathrm{~mm}$. ; width, $8-9 \mathrm{~mm}$.
Male: Antennal club shorter than stem. Abdomen moderately depressed at middle; penultimate ventral segment with transverse ridge, strongly elevated at sides, divided at middle; last ventral segment with broad, median depression, apex feebly and broadly emarginate. Hind tibia obliquely truncate; upper spur lanceolate, curved, acute; lower spur fixed, broad, acute, two-thirds length of upper.

Female: Antennal club shorter than funicle. Abdomen with vague, median depression; penultimate ventral segment feebly, transversely depressed; last ventral segment slightly flattened, apex irregular, broadly and feebly emarginate.

The locality records include Hampton, Ames, Farmersburg, Dyersville and Dubuque. Feeds on hazel, white oak, linden, privet, cornus, and birch.

## Phyllophaga hirticula (Knoch)

(Plate VIII, fig. 29)

Melolontha hirticula Knoch, Neue Beytr. Ins., 1: 79.
Melolontha hirsuta Say, Acad. Phil., Jour., 3: 243, in Le Conte ed., 2: 142 (not Knoch).

## 1817

1826 Phyllophaga hirticula Harris, Mass. Agr. Jour. and Rpts., 10: 1-12.
1850
1853
1855

## 1856

1873
1887
1887
Ancylonycha oremilata Blanchard, Cat. Coll. Ent., 1: 133.
Phyllophaga hirticula Melsheimer, Cat. Coleop. Ũ. S.: 59.
Anoylonycha hirtioula Burmeister, Handb. Ent., 4: 327.
Laohnosterna Zirtioula Le Conte, Acad. Phil., Jour., (12), 3: 254.
Lachnosterna oremulata Le Conte, Acad. Phil., Proc.: 330.
Lachnosterna hirtioula Horn, Am. Ent. Soc., Trans., 14: 266.
Lachnosterna hirtioula Horn, Ent. Am., 3: 143.

```
1 8 8 9 \text { LacMnosterna hirtioula Smith, U. S. Nat. Mus., Proc., 11: 516.}
1916 Lachnasterna hirticula Davis, Jour, Econ. Ent., 9: 275-276.
1916 Phyllophaga hirtioula, Glasglow, Il. Nat. Hist., Bul. 11: }371
1 9 1 6 ~ P h y l l o p h a g a ~ h i r t i o u l a ~ F o r b e s , ~ I l l . ~ A g r . ~ E x p t . ~ S t a n , ~ B u l . ~ 1 8 6 : ~ 2 1 9 . ~
1927 Phyllophaga hirticula Langston, Mies. Agr. Expt. Sta., Tech. Bul. 15: 58.
1928 Phyllophaga hirtioula Luginbill, Ann. Ent. Soc. Am., 21: 57.
```

Body oblong, moderately shiny, dark brown, with sparse vestiture of both long and short hairs. Clypeus flat, deeply, and abruptly emarginate, moderately reflexed; punctures coarse, rather deeply impressed; suture sinuate. Frons convex; punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum irregularly convex, widest at middle, sides arcuate, coarsely serrate; punctures variolate, moderately dense. Tooth of claw median, strong. Elytra strongly rugulose, punctures finer than on frons; long, erect hairs in rows along costae; sutural costae broad, strong, discal and submarginal costae feebly elevated, rather broad.

Length, $16-19 \mathrm{~mm}$.; width, $8-11 \mathrm{~mm}$.
Male: Antennal club longer than funicle. Abdomen broadly flattened at middle; penultimate ventral segment with broad, arcuate, roughened, feebly elevated ridge; last ventral segment with broad, rather deep, median depression, apex with broad, moderately deep, emargination. Hind tibia obliquely truncate; upper spur long, curved, lanceolate, subacute; lower spur broad, curved, lanceolate, acute, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with vague, transverse depression; last ventral segment flattened, with semi-circular depression at apex, apex broadly and shallowly emarginate.

Very abundant, taken at Ames, Leon, Hampton, Maquoketa, Guttenburg, Dubuque, Marquette, Dyersville, Onawa, Missouri Valley, Davenport, Mt. Pleasant, Clermont, Chariton, Muscatine, Washington County, Marion County, Monroe County, Des Moines County, Van Buren County, and Wapello County. Elm, bur oak, hickory, willow, ash, butternut, shingle oak, hawthorne, red oak, white oak, gooseberry, hazel, and quaking aspen are the host plants.

## Phyllophaga ilicis (Knoch)

(Plate VIII, fig. 28)

## 1801

1830
1850
1853
1855
1855
1856
1856
1856
1887
1887
1887
1887
1887
1887
1889
1912
1916
1916
1916

[^15]Body oblong, subopaque, castaneous, with vestiture of moderately long, recumbent hair. Clypeus flat, abruptly and deeply emarginate, moderately reflexed; densely, coarsely, and deeply punctate; suture subangulate. Frons subconvex; punctures coarser, not so dense as on clypeus. Antennae composed of ten segments. Pronotum convex, widest at middle, sides subangulate, crenate; punctures coarser, not so closely placed, more deeply impressed than on frons. Tooth of claw median, long. Elytra finely rugulose, punctures much finer than on pronotum; sutural, discal, and submarginal costae wide, feebly elevated.

Length, $19-23 \mathrm{~mm}$. ; width, $10-12 \mathrm{~mm}$.
Male: Antennal club slightly longer than funicle. Abdomen with moderately wide depression at middle; penultimate ventral segment with arcuate ridge feebly elevated at middle; last ventral segment concave, apex broadly and feebly emarginate. Hind tibia obliquely truncate; upper spur long, lanceolate, curved, obtuse; lower spur fixed, slightly curved, subacute, one-half length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment with deep, transverse depression; last ventral segment convex, apex rather deeply and abruptly emarginate.

Marquette, Leon, Hampton, Maquoketa, Guttenberg, Dubuque, Dyersville, Arlington, Ames, Mt. Pleasant, Marengo, Clayton County, Buchanan County, Delaware County, Jones County, Woodbury County, Van Buren County, Lee County, Iowa County, Scott County, Jefferson County, Jackson County, and Appanoose County. Taken on hickory, ash, butternut, shingle oak, hawthorne, red oak, white oak, large-toothed aspen, hazel, Cornus, and linden.

## Phyllophaga crenulata (Froelich)

(Plate IX, fig. 31)

\footnotetext{
1792 1817
1826 Phyllophaga georgiona Harris, Mass. Agr. Jour. and Rpts., 10: 1-12.
1850 Ancylonycha cremulata Blanchard, Cat. Coll. Ent., 1: 133.
1853 Phyllophaga georgicana Melsheimer, Cat. Coleop. U. B.: 59.
1855 Ancylonycha crenulata Burmeister, Handb. Ent., 4: 327.
1856 Lachnosterna cremulata Le Conte, Acad. Phil, Jour., (2), 3: 258.
1887 Lachnosterna oremulata Horn, Am. Ent. Soc., Trans., 14: 272.
1887 Lachnosterna cremulata Horn, Ent. Am., 3: 143.
1889 Lachnosterna cremulata Smith, U. S. Nat. Mus., Proc., 11: 518.
1916 Lachnosterna oremulata Davis, Jour. Econ. Ent., 9: 273-274.
1916 Phyllophaga cremulata Glasglow, Ill. Nat. Hist., Bul. 11: 370.
1916 Phyllophaga cremulata Forbes, M1. Agr. Expt. Sta., Bul. 186: 231.
1925 Phyllophaga cremilata Hayes, Kans, Agr. Expt. Sta., Tech. Bul. 16: 58-63.
1927 Phyllophaga cremslata Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 63.
1928


Body oblong, moderately shiny, light brown to piceous, with conspicuous vestiture of moderately long, erect hairs. Clypeus subconcave, not broadly, rather abruptly, moderately deeply emarginate, broadly reflexed; punctures coarse, deeply impressed, finer at base; suture angulate. Frons convex; punctures similar to those on clypeus. Antennae composed of ten segments. Pronotum irregularly convex widest in front of middle, sides angulate, coarsely serrate; punctures similar to those on frons, less dense
and not so deeply impressed. Mesosternum with sparse vestiture of long, yellowish hair. Tooth of claw median, long, moderately strong. Elytra with moderately fine, feebly impressed punctures, slightly denser than on pronotum; sutural costae broad; feebly elevated, discal and submarginal costae narrow, indistinct.

Length, $17-20 \mathrm{~mm}$. ; width, $9-11 \mathrm{~mm}$.
Male: Antennal club equal to funicle. Abdomen convex; penultimate ventral segment vaguely concave, roughened at middle; last ventral segment smooth, almost glabrous, with median, transverse elevation, apex entire. Hind tibia obliquely truncate; upper spur long, slender, flattened, subacute; lower spur movable, slightly curved, slender, acute.

Female: Antennal club slightly shorter than funicle. Penultimate ventral segment slightly depressed laterally; last ventral segment pubescent, convex, apex entire.

This species has been taken at Ames, Clermont, Pleasant Valley, Columbus Junction, Hampton, Leon, MeGregor, Iowa City, Mt. Union, Keokuk, Oakland, Muscatine, Mt. Pleasant, Linn County, Delaware County, Lee County, Appanoose County, and Hamilton County. Bur oak and gooseberry are the host plants.

## Phyllophaga quercus (Knoch)

(Plate IX, fig. 32)

[^16]Body elongate, pruinose, rufocastaneous. Clypeus concave, abruptly and deeply emarginate, moderately reflexed; punctures coarse, not deeply impressed; suture angulate. Frons convex; more coarsely, less closely punctate, than clypeus. Antennae composed of nine segments. Pronotum convex, widest at middle, sides arcuate, entire; punctures similar to those on frons, not so dense. Tooth of claw median, strong. Elytra punctures similar to those on pronotum, denser; sutural costae strong, narrow, discal, and submarginal costae narrow, indistinct.

Length, $14-16 \mathrm{~mm}$. ; width, $7-8 \mathrm{~mm}$.
Male: Antennal club equal to stem. Abdomen feebly flattened at middle; penultimate ventral segment vaguely depressed at middle, with broad, roughened area; last ventral segment rough, feebly, transversely impressed, apex vaguely and broadly emarginate. Hind tibia obliquely truncate; upper spur long, linear, slightly curved, obtuse; lower spur movable, slender, curved, obtuse, three-fourths length of upper.

Female: Antennal club shorter than funicle. Penultimate ventral segment transversely and feebly impressed, long, yellowish hairs at sides; last ventral segment small, slightly flattened, apex entire.

This species has been listed by Prof. H. E. Jaques as occurring in Iowa.

## Phyllophaga tristis (Fabricius)

(Plate IX, fig. 33)

1781 1801

Lachnasterna tristis Le Conte, Acad. Phil., Jour., (2), 3: 261
Lachnasterna orinita Le Conte, Acad. Phil., Jour., (2), 3: 261, (not Burmeister).
1873 Lachnosterna tristis Le Conte, Acad, Phil., Proc.: 330.
1887 Lachnosterna crinita Horn, Ent. Am., 3: 145.
1887 Lachnosterna tristis Horn, Am. Ent. Soc., Trans., 14: 286.
1887 Ladhnosterna tristis Horn, Ent. Am., 3: 143.
1889 Lachnosterna tristis Smith, U. E. Nat. Mus., Proc., 11: 522.
1913 Lachnosterna tristis Davis, Jour. Econ. Ent., 6: 277.
1916 Lachnosterna tristis Davis, Jour. Econ. Ent., 9: 277.
1916 Phyllophaga tristis Glasglow, II. Nat. Hist., Bul. 11: 370.
1916 Phyllophaga tristis Forbes, III. Agr. Expt. Sta., Bul. 186: 229.
1925 Phyllophaga tristis Hayes, Kans, Agr. Expt. Sta., Tech. Bul. 16: 66-72.
1927 Phyllophaga tristis Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 72.
1928 Phyllophaga tristis Luginbill, Ann. Ent. Soc. Am., 21: 61.
Body oblong, moderately shiny, testaceous, with sparse vestiture of long, yellowish hair. Clypeus concave, entire; punctures sparse, coarse, rather feebly impressed; suture sinuous. Frons convex; with coarse, close, deeply impressed punctures. Antennae composed of ten segments. Pronotum convex, sides angulate, entire; punctures not so coarse or so closely placed as on frons. Tooth of claw different in male and female. Elytra more closely and finely punctate than pronotum; sutural costae broad, feebly elevated, discal and submarginal costae indistinct.

Length, $12-14 \mathrm{~mm}$.; width, $6-8 \mathrm{~mm}$.
Male: Antennal club subequal to stem. Abdomen vaguely flattened; penultimate ventral segment with short transverse ridge; last ventral segment elevated at base, apex entire. Hind tibia obliquely truncate; upper spur lanceolate, slightly curved, obtuse; lower spur movable, linear, obtuse, four-fifths length of upper. Tooth of claw intramedian.

Female: Antennal club equal to funicle. Penultimate ventral segment with feeble transverse depression; last ventral segment convex, apex entire. Tooth of claw more nearly median.

This species has been collected at Ames, Leon, Hampton, Farmersburg, Dyersville, Dubuque, Mt. Pleasant, Chariton, Muscatine, Iowa City, Allamakee County, Scott County, Appanoose County, Des Moines County, and Van Buren County. Bur oak, elm, willow, and white oak are the known host plants for Iowa.

## ACKNOWLEDGMENTS

Many entomologists and collectors have given their kind assistance in the preparation of this paper and the writer wishes to express his appreciation of their help.

Dr. Carl J. Drake of Iowa State College, has been instrumental in making this paper possible by his encouragement and help both in directing the problem and in criticising the manuscript. Drs. H. H. Knight and H.
M. Harris, Iowa State College, have given many valuable suggestions which have aided in the preparation of this paper.

For numerous records and the gifts and loan of specimens, the writer wishes to extend his thanks to: Prof. H. E. Jaques of Iowa Wesleyan College; Dr. H. B. Hungerford of Kansas University ; Prof. M. H. Swenk of Nebraska University; Prof. J. J. Davis of Purdue University; Prof. J. M. Langston of Mississippi A. and M.; Prof. C. L. Cartwright of Clemson College ; Mr. Harlow B. Mills, Mr. Lyle G. Weber and Mrs. A. D. Worthington all of Iowa State College.

The writer is greatly indebted to his wife, Mrs. E. L. Travis, for carefully checking each drawing and assisting in the shading of the illustrations.

Special asknowledgments are due to Dr. George C. Decker of Iowa State College for his assistance in collecting many thousands of specimens and for his helpful criticisms of the manuscript.

## LITERATURE CITED

Bail, E. D. AND E. V. Walitir
1919. Injury from white grubs in Iowa. Iowa Agr. Expt. Sta., Circ. 60: 1-4. Bertizold, A. A.
1827. Latreille's natürliche Familien des Thierreichs. (German translation of Latreille's Familles naturelles. 1825). 602 pp. Indust.-Compt., Weimar. (Original not seen).
Blanohard, E.
1845. Histoire des Insects, 1. 398 pp . Didot, Paris.
1850. Catalogue de la Collection entomologique. Classe des insectes Ordres des Colóptères. 1, with an introduction by H. Milne-Edwards. 128 pp . Paris Museum d 'histoire Naturelle.
Blatoriwey, W. .
1910. An illustrative descriptive catalogue of the Coleoptera or Beetlea (exclusive of the Rhynchophora) known to occur in Indiana. 1386 pp . Nature Publishing Co., Indianapolis, Indiana.
Burgmister, H. C. C.
1855. Handbuch der Entomologie, 4, pt. 2. 570 pp. G. Reimer, Berlin.

Cashy, T. I.
1884. Contributions to the destructive and systematic coleopterology of North America. Pt. 1. 198 pp. Collins' printing house, Philadelphia.
Chimprandens, $F$. F .
1899. Some Insects Injurious to Garden and Orchard Crops. U. E. Dept. Agr., Bur. Ent. Bul. 19: 1-77.

Davis, J. J.
1913. The Life Cycle of Lachnosterna tristis Fabr. Jour. Econ. Ent., 6: 276278.
1916. A Progress Report on White Grub Investigations. Jour. Econ. Ent., 8: 261-281.
1920. New Species and Varieties of Phyllophaga III. III. Dept, of Regist. and Education, Div. Nat. Hist. Survey, Bul. 13: 329-338.
Drakr, C. J., B. V. Travis, and C. V. Collins
1932. A preliminary Report on the Control of White Grubs with a Rotary

Plow. Jour. Econ. Ent., 25: 199-207.

ERTCHSON, W. F.
1846. Naturgeschichte der Insecten Deutschlands. Erste Abtheilung. Coleoptera. 3, pt. 1. 968 pp. Nicolai, Berlin. (Original not seen).
Fabracius, J. C.
1775. Systema Entomologiae. 832 pp. Flensburgi et Lipsiae, Korte.
1781. Species Insectorum, 1. 552 pp. Hamburgi et Kilonii, Bohn.

Forzes, S. A.
1916. A General Survey of the May Beetles (Phyllophaga) of Illinois. Ill. Agr. Expt. Sta., Bul. 186: 215-257.
FROLick, J. A.
1792. Bemerkungen ïber einige selten Käfer aus der Insecten-Sammlung des Hr. Rudolph in Erlangen. Der Naturforscher, stück. 26: 66-165.
Glasglow, R. D.
1916. Phyllophaga Harris (Lachnosterna Hope); a revision of the synonymy, and one new name. III. Dept. Regist. and Education, Div. of Nat. Hist. Survey, Bul. 11: 365-379.
Gxichantati, L.
1817. Synonymia Insectorum (Schönherr), 1, pt. 3. 266 pp. Roret, Paris.

Harris, T. W.
1826. Minutes towards a History from American Species of Melolonthinae Particularly Injurious to Vegetation. Mass. Agr. Jour. and Bpts., 10: 1-12. (Facsimile seen).
1841. A Report on the Insects of Massachusetts Injurious to Vegetation. 459 pp. Published by Legislature.
Hayes, W. $P$.
1919. The Life Cycle of Lachnosterna lanceolata Say. Jour. Econ. Ent., 12: 109-117.
1920. Life Histories of Some Kansas Lachnosterna. Jour. Econ. Ehtr, 13: 303. 318.
1922. External Morphology of Lachnosterna orassissima Blanch. (Scara-baeidae-Coleoptera). Am. Micr. Soc., Trans., 41: 1-19.
1925. A Comparative Study of the History of Certain Phytophagous Scarabaeidae Beetles. Kans. Agr. Expt. Sta., Tech. Bul. 16: 1-146.
Henntz, N. M.
1830. Description of eleven new species of North American insects. American Philosophical Society, Trans., (2), 3: 253-258.
HOPE, F. W.
1837. The Coleopterists Manual. 1. Lamellicorn Insects of Linneus and Fabricius. 121 pp. Bohn, London.
Horns, G. H.
1887. Revision of the species of Lachnosterna of America North of Mexica. Am. Ent. Soc., Trans, 14: 209-296.
1887. Notes on Lachnosterna. Entomologica Americana. 3: 141-145.

Ithigkr, J. K. W.
1802. Olivier's Entomologie, Translated with notes, by J. W. Illiger. Braunschweig. (Original not seen).

Jagurs, H. E.
1922. Brood A of the May beeties extends its range in Iowa. Iowa Acad. Sci., Proc., 29: 163-164.
1925. The 1924 outbreak of Brood A of white grabs in Iowr. Iowa Acad. Sci., Proc., 32: 423-424.
1926. A Preliminary Survey of May Beetles (Phyllophaga spp.) in Iowa Iowa Acad. Sci., Proc., 33: 337-339.
1927. A further report on the May Beetles (Phyllophaga spp.) in Iowa. Iowa Acad. Sci., Proc., 34: 314-315.
1928. The distribution of white grabs in Iowa in 1927. Iowa Acad. Sci., Proc., 35: 303-304.
JUNE, W.
1912. Coleopterorum Catalogus. Pars. 49: 183-200. W. Junk, Berlin.

KibBy, W. F.
1837. Fauna Boreali-Americana (Richardson, J.) pt. 4. The Insects. 325 pp .

Knoor, A. W.
1801. Neue Beyträge zur Insectenkunde. Theil 1. Schwickert, Leipzig.

LACORDAREI, J. T.
1856. Histoire naturelle des Insectes. Genera des Col6optères, où expoé Methodique et critique de tous les genres proposes jusqu' ici dans cet ordre d'insectes. 3: 594 pp . Roret, Paris.
Langstion, J. M.
1927. Phyllophaga of Mississippi. Miss. Agr. Expt. Sta, Tech. Bul. 15: 1-103.

Le Contre, J. I.
1850. General remarks upon the coleoptera of Lake Superior. In Louis Agassiz Lake Superior, its Physical character, vegetation, and animals compared with those of other and similar regions. pp. 201-242. Boston.
1856. Synopsis of the Melolonthidae of the United States. Aead. Nat. Sci. Phil., Jour., (2), 3: 225-288.
1873. Systematic notes on the Coleoptera of North America. Acad. Nat. Sci. Phil., Proc. 321-336.
1883. The Complete Writings of Thomas Say on the Entomology of North America, 2: 814 pp . S. E. Cassino and Co., Boston.
Leng, C. W.
1920. Catalogue of the Coleoptera of America North of Mexico. $470 \mathrm{pp} . J$. D. Sherman, Mt. Vernon, N. Y.

[^17]Mutsheimirn, F.E.
1846. Descriptions of New Species of Coleoptera of the United States. Acad. Nat. Sci. Phil, Proc, 2: 134-160.
1853. Catalogue of the described Coleoptera of the United States. Revision by Haldeman and Le Conte. 174 pp. Smithsonian Institution.
Ouvier, A. G. 1789. Entomologie où Histoire Naturelle des Insectus Coléoptères. 1. 478 pp. Baudonin, Paris.
Bin, R. J.
1928. Phyllophaga (Scarabacidse) of the United States and Canada N. J. Dept. of Agr., Circ. 145: 1-60.
SGKÖNHISR, C. J.
1806. Synonymia Insectorum order Versuch seiner Synonymie aller bisher bekanaten insecten nach Fabricius Systema Eleutheratorum geordnet. von, C. J. Schönherr, 1, 289 pp. Marquard, Stockholm.

SHIMH, J. B.
1888. Notes on Lachnosterna fusca, auct. Insect Life, 1: 180-185.
1889. Notes on the species of Lachnosterna of Temperate North America, with Descriptions of New Species. U. S. Nat. Mus., Proc., 11: 481-525.
1889. Some new species of Lachnosterna. Entomologica Americana. 5: 93-99.

Travis, B. V., and E. R. Beckiar
1931. A Preliminary Report on intestinal Protozoa of White Grubs (Phyllophaga spp.-Coleoptera). Iowa State College Jour. Sci., 5: 223-235.
Travis, B. V.
1932. A Discussion of Synonymy in the Nomenclature of Certain insect flagellates with the description of a new flagellate from the larvae of Ligyrodes relictus Say (Coleoptera-Scarabaeidae). Iowa State College Jour. Sci., 6: 317-323.
1933. Notes on the habits of June beetles in Iowa (Phyllophaga-Coleoptera) Iowa State College Jour. Sci., 7: 397-406.

1023 AND G. O. DECKER (co-authorship)
1933. A Study on the use of arsenical dust for the control of June beetles. Iowa State College Jour. Aci., 7: 493-498.

## Walktar, F.

1866. Description of Coleoptera, In Lord, J. K., Naturalist in Vancouver Island and British Columbia, 2: 30-311.

## WEBstysi, R. L.

1915. Potato Insects. Iowa Agr. Expt. Stan, Bul. 155: 359-420.
1916. Common Corn Insects, Iowa Agr. Expt. Sta., Circ. 23: 1-16.
1917. White Grubs in Iowa. Iowa Agr. Expt. Sta, Circ. 29: 1-4.

## EXPLANATION OF PLATES

The illustrations of the male and female organs are original, except number 20, which is a copy of the male genitalia, as drawn by Smith (1889). The sketches were all drawn to the same scale. Arrangements of the drawings for each species of the genus Phyllophaga are as follows: upper left, hind view of the male claspers; lower left, left male clasper; lower right, xight male clasper; and the upper right ventral view of female genitalia. Since the penis sheath is not of great specific value, only the distal end of the sheath is figured. The page listed with the figure refers to the description of the species in the text.

PLATE I



Fig. 4. P. futilis (Lee) 320


PLATE I


## Plate II






PLATE II


PLATE III


Fig. 12. P. vehemens (Horn) .......-................................................................................................


ANO 1 (1) A电 Ob (1) 0


Fig. 16. P. anxia (Lec.) _-_..................................................................................... 328

PLATE IV


## PLATE V



Fig. 19. P. marginalis (Lee.) ...-......................................................................................... 330

PLATE V


## PLATE VI






PLATE VI


## PLATE VII






PLATE VII


## PLATE VIII





PLATE VIII


## PLATE IX

Fig. 31. P. cremulata (Froel.) ..... p. 339
Fig. 32. P. quercus (Knoch) ..... p. 340
Fig. 33. P. tristis (Fab.) ..... p. 341
Fig. 34. P. inversa, abdomen with arcuate carina ..... p. 323
Fig. 35. P. fusca, abdomen with carina nearly straight ..... p. 326
Fig. 36. P. tristis, clypeus entire ..... p. 341
Fig. 37. P. gracilis, clypeus emarginate ..... p. 319
Fig. 38. $P$. vehemens, apex of hind tibia obliquely truncate ..... p. 325
Fig. 39. $P$. futilis, apex of hind tibia excavated ..... p. 320
Fig. 40. P. congrua, apex of hind tibia excavated ..... p. 321
Fig. 41. P. ephilida, fixed spur of hind tibia short ..... p. 318

PLATE IX


## Author Index

Becker, Elery R., 83, 527, 533
Bird, Paul A., 183
Brown, P. E., 1, 409
Cratty, R. I., 309
Coile, H. D., 415
Christensen, Leo M., 175, 237, 245
Clark, Vena, 427
Collins, Mervyn Avery, 187
Cranor, Katherine, 427
Crouch, H. B., 513
Edgar, Rachel, 17, 397
Errington, Paul L., 127
Erwin, A. T., 385
Fisher, Velma, 427
Folsom, J. W., 461
Foster, Richard Lindley, 191
Fulmer, Ellis I., 175, 237, 245
Fults, Jess L., 251
Guest, Harlan Preston, 197
Hager, Anna, 391
Hamerstrom, F. N., 537
Hixon, R. M., 175, 237, 245
Hussong, Victor, 199
Trwin, M. R., 75
Killinger, Gordon B., 203
Kubichek, W. F., 107
Kurtz, Edwin B., 205
Levine, Norman D. 83

Lykken, Louis, 207
Martin, John N., 303, 449
Meyer, Alwine, 427
Mortenson, Francis N., 211
Nelson, John Albert, 213
Olson, Harold Cecil, 217
Perrin, Louise, 427
Ramsbottora, John Melville, 221
Reynolds, Howard, 415
Roudabush, Robert L., 527, 533
Schulze, Ferdinand, 225
Smith, F. B., 1, 409
Smith, S. N., 295
Snedecor, George W., 75
Suit, R. F., 131
Sundt, Alice, 427
Swain, Ralph B., 519
Towne, Edmund B., 229
Travis, Bernard V., 313, 537
Van Ess, Marion Weston, 397
Waters, Nelson F., 367
Watt, John R., 303
Wentz, J. B., 295
Werkman, C. H., 415
Willis, W. Hillman, 231
Wright, George F., 235
Yeager, J. Franklin, 391, 519

## Subject Index

Acanthaceae, 285
Aceraceae, 275
Acetone, effect of, on activity of insect, 521
Acetyl content of cellulose acetate rayon, 398, 399
Acetyl values for diacetate and monoacetate, 401
Acid production in Robinson's medium, 419
Action of lipolytic bacteria on some simple triglycerides and natural fats, 187
Activity of insects, instrument of recording, 519
Ailanthus altissima, 310
Aizoaceae, 267
Alcohol blends, 238
storage of, 243
Alcohol concentration, influence of, upon air-to-fuel ratio, 248
upon calorific value, 248
upon fall in temperature on evaporation, 248, 249
upon fluidity, 246
upon latent heat, 248
upon speciffe volume, 245
Alcohols, determination of, 416, 417
Alcohol-gasoline blends, physical-chemical properties of, 175,237

Alfalfa, polyembryony in, 304
Alismaceae, 254
Alkali, effect of, on weight and acetyl content of cellulose acetate rayon, 398 , 399
Alkaline hydrolysis of cellulose acetate rayon, 397
Alyssum alyssoides, 310
Amaranthaceae, 266
Amaranthus spinosus, 309
Amaryllidaceae, 262
Anacardiaceae, 274
Analysis of fabrics, 17
An entomotograph, an instrument for recording the appendicular or locomotor activity of insects, 519
Anethum graveoletus, 311
Angiosperms, plasmodesms in leaves and stems of some, 449
Anhydrous ethyl alcohol concentration upon water absorption, influence of, 175
Anonaceae, 268
Anthemis tinatoria, 310
Apocynaceae, 279
Appendicular activity of insects, instrument for recording, 519

## Araceae, 261

Aremaria serpyllifolia, 310
Aristolochisceas, 265

Arrhenatherum elatins, 309
Asclepiadaceae, 279
Ash, grain of, in composted straw, 413
A.S.T.M. distillation curves and Reid vapor pressure, 237

Babesia citelli n. sp. from Citellus tridecemlineatus, 527
description of, 529
Bacteria, lipolytic, action of, on triglycerides and fats, 187
Balsaminaceae, 275
Benzol, effect of, on activity of insect, 521
Berberidaceae, 268
Berberis Thunbergii, 310
Betula pendula, 309
Betulaceae, 263
Bidens bipinnata, 310
Bignoniaceae, 284
Birds, trichomonads from, 537
Bobwhite quail (Colimus virginianus), winter survival of, 127
Bobwhite winter survival in an area heavily populated with grey fozes, 127
Boraginaceae, 281
Borago officinalis, 310
Botanical survey of Lee County, Iowa, 251
Bourletiella arvalis, 466
B. hortensis, 466
B. spinata, 467

Brahma and Leghorn fowl, growth and sexual maturity in, 367
Bryophyllum calycimum, use as host to determine relationship between crowngall and hairyroot, 143
Butter, bacteriological deterioration of, organisms causing, 213
microflora of churns causing deterioration of, 217
rancidity of, 199
Butyl-acetonic fermentation in sugar media, 415

Calcium supplements in pigs rations, 222
Campanulaceae, 286
Capparidaceae, 269
Caprifoliaceae, 285
Carbon dioxide, concentration of, in soil air under crops and in fallow soils, 1
percentage of, in air of fallow soil, 7
percentage of, in soil air under corn and other crops, 8, 9, 10, 12
production of, in soil, 1
Carbon, organic, loss of, in composted straw, 413
Caryophyllaceae, 267
Correlation between the organisms found microscopically and the bacteriological deterioration of butter, 213
Cast iron, white, 207
Catalog and host-index of the species of the coccidian genus Eimeria, 83
Cellulose acetate rayon, alkaline hydrolysis of, 397
effect of alkali on weight and acetyl content of, 398,399

Cellulose contents, loss of, in composted straw, 411, 412
Cellulose, diacetate, acetyl values for, 401 monoacetate, acetyl values for, 401
Centavira diff usa, 310
Centaurea repens, 310
Chenopodiaceae, 266
Chordelies minor, trichomonad from, 537
Chorispora tenella, 310
Churns, microflora of, and inoportance in deterioration of butter, 217
Chromosome, $\mathbf{R}-\mathrm{g}_{1}$, of maize, 295
Cistaceae, 277
Citellus franklini, Anosoma hixsoni n. sp. from, 527
Citellus tridecemlinoatus, Babesis citelli n . sp. from, 527
development of Trypamasoma iowensis in blood of, 533
Trypomasoma iowensis from, 527
Cleaning of furs, dry and mechanical,
results of tests for, abrasion, loss in weight from, 431, 436 breaking strength, 431, 435
color reflection, 432,434 diameter of hair, 434, 435 elasticity, 431, 436 ether-soluble content, 431 gloss, 431, 433, 434 length of hair, 431,435 number of hairs to sq. in., 434 shrinkage, 435
Clostridia, nitrogen-fixing, metabolism of, 231
Clastridium acetobutylicum, use of, to produce solvents from glucose, 416
Coccidian genus Eimeria, catalog and hostindex of, 84, 93
Colimus virginianus (bobwhite quail), winter mortality of, 127
Colloids in Iowa soils, properties of, 203
Color reflection of dyed furs, 432
Commelinaceae, 261
Comparative analysis of three hundred fabrics, 17
Comparative calcium and phosphorus retention of pigs fed rations supplemented with limestone, bone meal and "dicapho', 221
Compositae, 286
Composts, decomposition of, 410
treated, analyses of samples of, 410 , 411, 412
Concentration of carbon dioxide in the soil air under various crops and in fallow soils, 1
Contraction of isolated heart and Mal pighian tube of Periplometa orientalis, rate of, 391
method to determine, 391
Convolvulaceae, 280
Copper, influence of, on graphitization behavior of white cast iron, 207
Cornaceae, 278
Corn, papoon, literature on, 385
Susquehannah, literature on, 385
sweet, first reference to, in literature, 386
sweet, genetic studies of, 388, 389
sweet, origin, 387, 388
sweet, origin and importance as an Indian food plant in the United States, 385
varieties of, in Mexico, 386
Crepis capillaris, 311
Cruciferae, 269

Decomposition of straw in the production of artiffial manure, 409
Delphinium cultorum, 310
Development of Trypanosoma iowensis in the blood of the striped ground squirrel, Citellus tridecemlineatus, 533
Deviation, standard, computation of, 80
Diacetate cellulose, acetyl values for, 400 , 401
Dicyrtoma hageni, 472
Dioyrtomina opalina, 471
Digestibility of milk in vivo as affected by certain physical treatments, 211
Dry-cleaning, effect of, upon furs, 427
loss of pigment in furs from, 434
Ducks, game, food of five, 107
Effect of dry-cleaning and mechanical cleaning upon furs, 427
Eimeria, catalog and host-index of species of, 84,93
size of oocysts of species, 84
Entomotograph, instrument for recording appendicular or locomotor activity of insects, description of, 519
Ereunetes pusilhus, species of Trichomonos from, 537
Erysimum parviflorum, 310
Ethyl alcohol gasoline systems, properties of, 245
Ethyl alcohol, influence of anhydrous, upon water absorption, 175
Ether-soluble content of fur pelts, 431
Euphorbin Peplus, 310
Euphorbraceae, 274
Fabric, cellulose acetate rayon, alkaline hydrolysis of, 397
Fabrics, classification of, 17, 18, 19, 20
Fabrics, method of analysis of, 21
Fabrics, comparative analysis of, 17, 21
Fagaceae, 264
Fagopyrum esculentum, 309
Falcaria vulgaris, 310
Fats, action of lipolytic bacteria on, 187
Fermentation, butyl-acetonic, in sugar media, 41§
oxidation-reduction potentials in, and solvents production in, 421
Fermentations, analyses of, 416-425
Flagellate, protozoan, from woodchuck, 513
Flora, immigrant, of Iowa, 309
Food of game ducks, 107
summary of vegetable and animal, 124

Food plant, Indian, corn as, 385
Fowl, mature, weight of, 379
correlation between sexual maturity and, 383
sexual maturity of, average age of, 382
Fowls, early maturity of, dependent upon two pairs of genes, 374
Frequencies, unequal, method of computation of chi-square and standard deviation for, 79,80
Fumariaceae, 269
Furfural and some of its derivatives, 235
Furfuraldehyde-yielding constituents of composted straw, loss of, 412, 413
Furfural, production of, from concentrated solutions of xylose, 191
Furs, dry-cleaning and mechanical cleaning of, results of tests for:
abrasion, loss in weight from, 431, 436
breaking strength, 431, 435
color reflection, 432, 434
diameter of hair, 434, 435
elasticity, 431, 435
ether-soluble content, 431
gloss, 431, 433
length of hair, 431, 435
number of hairs to sq. in., 434
shrinkage, 431, 437
Genes for maturity in fowl, 378
Genes, linkage data on, found on R-g chrosome, 286
Geraniaceae, 273
Geranium pusillum, 310
Gentianaceac, 279
Gramineae, 254
Graphitization behavior of white cast iron, influence of copper on, 207
Ground squirrel, striped, development of Trypanosoma iowensis in blood of, 533
Growth and sexual maturity in Brahma and Leghorn fowl, 367
Growth in fowl, relation of, to sexual maturity, 375

Hair of furs, deterioration of, during process of cleaning, 431
Hairyroot pathogens
control of, by grafting practices, 155
host range, of, $134,135,136$
occurrence of, 132
Hairyroot, prevalence of, relation to woolly aphid injury, 134
Hartmannia speoiosa, 311
Heart, isolated, rates of contraction of insect (Periplaneta), 391
Hemerocallis fulva, 309
Herbaceous plants of Lee County, Iowa, 290
Hexamita intestinalis, 515
H. marmotae n. sp., a protozoan flagellato
H. muris, differential characters, 515
H. pulchra, comparative studies with $H$. marmotae, 515
Hieracium virosum, 311
Homogeneity, chi-square test for, 75
outline for hypothesis of, in experiment, 76
Host-index for Eimeria, 83, 93
Hybrids, reciprocal, in fowl, sexual maturity of, 382
Hydrogen sulfide, liquid, reactions of inorganic compounds with, 197
Hydrolysis, alkaline, of cellulose acetate rayon, 397
Hydrophyllaceae, 281
Hypericaceae, 276
Indian food plant, corn as, in United States, 385
Influence of anhydrous ethyl alcohol concentration upon water absorption, 175
Influence of copper on the graphitization behavior of white cast iron, 207
Inheritance of time of sexual maturity, 367
Inorganic compounds, reactions of, with liquid hydrogen sulfide, 197
Iowa, Lee County, botanical survey of, 251
Lee County, groups of soils, 251
Iowa, notes on immigrant flora of, 309
Iowa, Phyllophaga of, 313
Iowa soils, properties of soil solutions and colloids in, 203
Iridaceae, 262
Irregular sporagenesis and polyembryony in some Leguminosae, 303
Juglandaceae, 263
Juncaceae, 261
Labiatae, 281
Leaves, plasmodesms in, 451
Leghorn fowl, growth and sexual maturity in Brahma and, 367
Leguminosae, 271
Leguminosae, irregular sporogenesis and polyembryony in some, 303
Life expectancy of physical property, 205
Lignin, decomposition of, in composted straw, 412, 413
Liliaceae, 261
Linkage data on the $\mathrm{R}-\mathrm{g}_{1}$ chromsome of maize, 295
Lipolytic bacteria, action of, on simple triglycerides and some natural fats, 187
Lipolytic organisms, relationships of, to rancidity of butter, 199
Liquid hydrogen sulfide, 197
Locomotor activity of insects, instrument for recording, 519
Lythraceae, 277
Madia glomerata, 310
Maize, linkage date on R -g $\mathrm{g}_{1}$ chromosome of, 295
varieties of, in Mexico, 386

Malpighian tube of insect (Periplaneta), rates of contraction of isolated heart and, 391
Malvaceae, 276
Manufacture of artificial zeolites and the control of zeolite water softeners, 183
Manure, artificial, decomposition of straw in production of, 409
original organic matter, analyses of, 412
Marmota monax, Hexamita marmotae, $n$. sp. from, 513
Martyniaceae, 284
Maturity in fowl, genes for, 378
Mechanical cleaning, effect of, on furs, 427
Media, differential, for Pseudomomas rhizogenes and Ps. tumefaciens, 152
Media, sugar, butyl-acetonic fermentation in, 415
Menispermacese, 268
Motabolism of some nitrogen-fixing Clostridia, 231
Microflora of churns and its importance in the deteriorstion of butter, 217
Milk in vivo, digestibility of, as affected by physical treatments, 211
Monoacetate cellulose, acetyl values, 401
Mother cells, multiple, in some Leguminosae, 304, 306
Najadaceae, 254
Night-hawk (Chordelies minor), species of Trichomonas from, 537, 539
Nitrogen-fixing Clostridia, 231
Notes on the immigrant flora of Iowa, I., 309
Nyctaginaceae, 267
Nymphaeaceae, 267
Nyroos aff inis (lesser scaup duck), food habits of, 121
N. americana (red head), food habits of, 107
N. collaris (ring-necked duck), food habits of, 110
N. marila (greater scaup duck), food habits of, 117
N. valisineria (canvas-back), food habits of, 114
Observations on Hexamita marmotae n. sp., a protozoan flagellate from the woodchuck (Marmota monax Linn.), 513
Oleaceae, 279
Onagraceae, 277
On the chi-square test for homogeneity, 75
On the rates of contraction of the isolated heart and Malpighian tube of the insect, Periplaneta orientalis: method, 391
Orchidacese, 262
Organisms, correlation of, with deterioration of butter, 213

Organolead compounds, 229
Organometallic compounds of Group II, 225
Orobanchaceae, 284
Oxalidaceae, 273
Oxalis commiculata, 310
Papaveraceae, 269
Periplaneta americana, appendicular activity of, 519, 520, 521
entomotograms of, 524
$P$. orientalis, rates of contraction of isolated heart and Malpighisn tube of, 391, 394
method to determine, 392, 394
Phalaris canariensis, 309
Phosphorus retention in pigs rations, 221
Phrymaceae, 285
Phyllophaga, distribution of, 313
Phyllophaga of Iowa, 313
P. anxia, 328
P. balia, 335
P. barda, 330
P. bipartita, 324
P. congrua, 321
P. corrosa, 333
P. crassissima, 322
P. cremulata, 339
P. drakir, 329
P. ephilida, 318
P. fosteri, 332
P. fervida, 327
P. fraterna, 332
P. fusca, 326
P. futudis, 320
P. gravilis, 319
P. hirticula, 337
P. hornit, 327
P. ilicis, 338
P. implicita, 335
P. inversa, 323
P. lanceolata, 317
P. longitarsa, 319
P. marginalis, 330
P. micans, 325
P. nitida, 337
P. prunina, 322
P. querous, 340
P. rugasa, 334
P. spreta, 331
P. tristis, 341
P. vehemens, 325
P. vilifroms, 336

Physical-chemical properties of alcoholgasoline blends.
III. The A.S.T.M. distillation curves and Reid vapor pressure, 237
II. The influence of anhydrous ethyl alcohol concentration upon water absorption, 175
Physical-chemical properties of ethyl alcohol systems.
IV. Influence of alcohol concentration upon specific volume, fluidity, air-tofuel ratio, calorific value, latent heat,
and fall in temperature on evaporation, 245
Physical property, life expectancy of, 205
Phytolaccaceae, 267
Pinaceae, 253
Pisobia melanotos (pectoral sandpiper), species of Trichomonas from, 537
P. mimutilla (least sandpiper), species of Trichomonas from, 537
Plantaginaceae, 285
Plantanaceae, 270
Plant indicators in Lee County, Towa, 292
Plasmodesms, functioning of, 449
Plasmodesms in epidermal tissue, method of study, 450
in leaves, 451
in the leaves and stems of some Angiosperms, 449
in stems, 452
two types of, 455
Polemoniaceae, 280
Pollen, types of, in Melilotus alba, 304
Polyembryony in Leguminosae, 304
Polygalaceae, 274
Polygonaceae, 265
Polygonum dumetorwm, 309
Polypodiaceae, 253
Portulacaceae, 267
Primulaceae, 279
Production of furfural from concentrated solutions of xylose, 191
Protozoan flagellate from woodchuck, 513
Pseudomomas rhizogenes, age and virulence of, 155
Ps. rhizogenes R.B.W.K., and S.; its host relations and characteristics, 131
Ps. rihizogenes and Ps. tumefaciens, differences between, 158
Ps. thizogenes and Ps. tumefaciens, differential media for, 152
Ps. rhizogenes, association of, with hairyroot of nursery stock, 135
host range of, 140
influence of environmental and host conditions on infection by, 137
on hardwood cuttings, 144
response of, to morphological and physiological tests, 148
Pseudomonas tumefociens and Ps. rhizogenes, differential host of, 142
difference between, 158
Ptenothrix marmorata, 475
P. olympia, 473
P. wnicolor, 472
P. texensis, 474
P. vittata, 475

Radioula amphibia, 310
Rancidity of butter, relationships of a lipolytic organism to, 199
Ranunculaceae, 267
Rayon, cellulose acetate, alkaline hydrolysis of, 397
Rayon, effect of alkali on weight and acetyl content of cellulose acetate, 398,399

Reactions of inorganic componnds with liquid hydrogen sulfide, 197
Redescription of North American Sminthuridae, 461
Reid vapor pressure, 237
Relationships of a lipolytic organism to rancidity of butter, 199
Report on the food of five of our most important game ducks, 107
Reseda lutea, 310
Rhamnaceae, 275
Rosaceae, 270
Rubiaceae, 285
Rutaceae, 273
Salicaceae, 262
Sendpiper, trichomonad from, 537
Santalaceae, 265
Sapindaceae, 275
Saxifragaceae, 270
Scrophulariaceae, 283
Sexual maturity, and growth in fowl, 367, 369, 375
in mammals, 367
Simarubaceae, 274
Sminthuridae, Redescriptions of North American, 461
Sminthurinus aureus, 463
S. elegans, 464
S. fitchi, 470
S. floridanus, 469
S. minutus, 462
S. packardi, 470
S. purpurescens, 469
S. quadrimaoulatus, 462
S. remotus, 461

Soil air, concentration of carbon dioxide in, 1
tube for sampling, 4, 5
Soil, fallow, percentage of air in, 7
Soil solutions, properties of, in Iows soils, 203
Soils in Iowa, soil solutions in, 203
colloids in, 203
Solanaceae, 283
Solvents from
sources, 418 glucose, with nitrogen
Solvents, production of, in glucose-peptone medium, 424
Some properties of the soil solutions and the colloids in certain Iowa soils, 203
Sonahus uliginasus, 311
Sorghum halepense, 309
Sporogenesis, irregular, in Leguminosae, 303
Squirrel, striped ground, development of Trypanosoma iowensis in blood of, 533
Staphyleaceae, 275
Statistics on brahma and leghom fowl and $F_{1}$ and $F_{s}$ hybrids, 371
Stems, plasmodesms in 452
older regions, 453
primary meristem, 452
Straw, decomposition of, in production of artificial manure, 409

Susquehannah or papoon corn, early literature on, 385
Sweet clover, polyembryony in, 304
Sweet corn, first reference to, in literature, 386
genetic studies of, as mutant, 389
origin, 387, 388
Textiles, analysis of, fabric, fiber, yarn, 24
Three new trichomonads from birds, 573
Thymelaeacese, 277
Tiliaceae, 276
Trees and shrubs of Lee County, Iowa, 291
Trichomonads, three new, from birds, 537
Trichomonas (Tritrichomonas) chordeilis n. sp. in intestines of night-hawk, description of, 539
T. iowensis n . sp. in intestine of nighthawk, description of, 540
T. pisobiae n. sp. in intestines of sandpipers, description of, 538
Trichomonas, species of, comparative sizes of, in sandpipers, 537
Triglycerides, action of lipolytic bacteria on, 187
Trophozoites of Hexamita marmotae n. sp., correlation of, 514
Trypomosoma hixsoni n. sp. description of, 529
from Citellus franklini, 527
T. iowensis, development of in blood of striped ground squirrel, 533
T. fowensis, pathogenicity of, 528
T. iowensis, in blood of ground squirrel, resemblance of, to $T$. lewisi in rat, 534
T. lewisi, comparison with T. iowensis, 527
T. lewisi, in blood of rat, life cycle of, 533
T. iowensis, intermediate host for, 528
T. iowensis n. sp. and Babesia citelli n. sp. from Citellus tridecemlineatus, and Trypanosoma hixsoni, n. sp. from Citellus framklini, 527
Trypanosomes, first appearance after injection, 534
relationship between, 528
measurements of, 534
Typhaceae, 254
Umbelliferae, 277
Urocyon oimercoargentews, (grey foxes), in vicinity populated with bobwhite, 127
Urticaceae, 264
Variance in age at first egg among progeny of males of fowl, analysis of, 373
Verbenaceae, 281
Violaceae, 277
Vitaceae, 276
Water absorption, influence of anhydrous ethyl alcohol concentration upon, 175
Water softeners, zeolite, control of, 183

White cast iron, graphitization behavior
of, influence of copper on, 207
Winter survival of bobwhite, 127
Xylose, production of furfural from, 191

Zea saccharata, (sweet corn), 388
Zein, preparation of, 417
Zeolites, artificial, manufacture of, 183
Zeolite water softeners, control of, 183


[^0]:    ${ }^{1}$ The author is deeply indebted to R. I. Cratty, Gurator of the Iowa State College Herbarium, for assistance in identification, criticism, and suggestions in making the study comprising this paper; and to Dr. I. E. Melhus for generous assistance in organization of the problem, carrying out the field studies, and assisting in the preparation of the manuscript.

[^1]:    ${ }^{2}$ Our Native Plants, Iowa Farmer and Horticulturist, Vol. I., Nos. 2, 3, 4 and 7.

[^2]:    ${ }^{6}$ There were no available data on soil moisture in Lee County, but from United States Weather Bureau records (data from July 15, 1871, to December 31, 1908) it was found that the annual mean precipitation at Keokuk was 35.1 inches as compared to 32.4 at Des Moines. The mean annual temperature was $3^{\circ} \mathrm{F}$. higher and the minimum January temperatures $10^{\circ} \mathrm{F}$. higher at Keokuk.

[^3]:    1 Journal Paper No. J125 of the Iowa Agricultural Experiment Station, Ames, Iowa. Project No. 182.

[^4]:    ${ }^{1}$ The seeds were brought from Montana by the junior author. They were claimed to be Grimm but origin and strain were not definitely known.

[^5]:    1 Cratty, R. I. 1929. The immigrant flora of Iowa, Iowa State College Jour. Sci. 3: 247-269.

[^6]:    Melolontha Fabricius, 1775, Syst. Ent. :31.
    Phyllophaga Harris, 1826, Mass. Agr. Jour. and Rpts., 10:6. (Facsimile seen). Stenothorax Harris, 1826, Mass. Agr. Jour. and Rpts., 10:8. (Frasimile seen). Rhisotrogus Berthold, 1827, Nat. Fam. d. Thierreichs: 362 (original not seen).
    Lachnosterna Hope, 1837, Coleop. Man., pt. 1:99.
    Holotricha Hope, 1837, Coleop. Man., pt. 1:99.
    Anoylonycha Blanchard, 1845, Hist. Ins., 1:216.

[^7]:    1 Joarnal Paper No. J129 of the Iowa Agricultural Experiment Station, Ames, Iowa Project No. 128.

[^8]:    2 Specimen not seen.

[^9]:    1855
    1856
    Trichestes gracilis Burmeister, Handb. Ent., 4: 361.
    Endrosa wolerula Le Conte, Aced. Phil., Jour., (2), 3: 335.

[^10]:    1887 1889 1916 1916 1916 1925 1927 1928 1928

    Lachnasterna vehemens Horn, Am. Ent. Soc., Trans., 14: 244. Lachnosterna vehemens Smith, U. S. Nat. Mus., Proc., 11: 501. Lachnasterna vehemens Davis, Jour. Econ. Ent., 9: 277-278. Phyllophaga vehemens Glasglow, 71. Nat. Hist., Bul, 11, 373. Phyllophaga vehemens Forbes, III. Agr. Expt. Sta., Bul. 186: 231. Phyllophaga vehemens Hayes, Kans. Agr. Expt. Sta., Tech. Bul. 16: 35-41. Phyllophaga vehemens Langston, Miss. Agt. Expt. Sta., Tech. Bul. 15: 38. Phyllophaga vehemens Sim, N. J. Dept. AgT., Circ. 145: 28. Phyllophaga vehemens Luginbill, Ann. Ent. Soc. Am. 21: 67.

[^11]:    1837 Rhisotrogus draloii Kirby, Fauna Br.-Am., pt. 4: 133.
    1850 Lachnosterna consimilis Le Conte, Agassiz, Lake Superior: 226.
    1853 Phyllophaga consimilis Melsheimer, Cat. Coleop. U. S.: 59.
    1856 Lachnosterna drakii Le Conte, Acad. Phil., Jour., (2), S: 245.
    1884 Lachnosterna consimilis Casey, N. A. Coleop., pt. 1. 39.
    1884 Lachnosterna drakei Casey, N. A. Coleop., pt. 1: 39.
    1888 Lachnosterna grandis Smith, Ins. Life, 1: 181.
    1889 Lachnasterna grandis Smith, U. S. Nat. Mus., Proc., 11: 505.
    1912 Lachnosterna drakei Junk, Coleop. Cat., pt. 49: 190.
    1916 Lachnosterna grandis Davis, Jour. Econ. Ent., 9: 275.
    1916 Phyllophaga drakii Glasglow, Ill. Nat. Hist., Bul. 11: 371.
    1916 Phyllophaga dralcii Forbes, 111. Agr. Expt. Sta., Bul. 186: 232.
    1927 Phyllophaga drakii Langston, Mis8. Agr. Expt. Sta., Tech. Bul. 15: 44.
    1928 Phyllophaga dralee Sim, N. J. Dept. Agr., Circ. 145: 25.

[^12]:    1887
    1889
    1916
    1916
    1927
    1928
    Lachnostorna barda Horn, Am. Ent. Soc., Trans., 14: 248.
    Lachnostorna barda Smith, U. S. Nat. Mus, Proc., 11: 507.
    Phyllophaga barda Glasglow, Ill. Nat. Hist., Bul. 11: 373.
    Phyllophaga barda Forbes, H1l. Agr. Expt. Sta., Bul. 186: 325.
    Phyllophaga barda Langston, Miss. Agr. Expt. Sta., Tech. Bal. 15: 47. Phyllophaga barda Sim, N. J. Dept. Agr., Circ. 145: 31.

[^13]:    1887 Lachnosterna spreta Horn, Am. Ent. Soc., Trans, 14: 250.
    1889 Lachnosterna spreta Smith, U. S. Nat. Mus., Proc., 11: 508.
    1916 Phyllophaga spreta Glasglow, Il. Nat. Hist., Bul. 11: 373.

[^14]:    1856 Lachnosterna nitida Le Conte, Acad. Phil., Jour., (2), 3: 256.
    1887 Lachnosterva nitida Horn, Ent. Am., 3: 145.
    1887 Lachnosterna limula Horn, Am. Ent. Soc., Trans., 14: 264.
    1889 Lachnasterna nitida Smith, U. S. Nat. Mus., Proc., 11: 516.
    1889 Lachnosterna innominata Smith, Ent. Am., 5: 98.
    1916 Phyllophaga nitida Glasglow, I1. Nat. Hist., Bul. 11: 372.
    1916 Phyllophaga nitida Forbes, Ill. Agr. Expt. Sta., Bul. 186: 233.
    1928 Phyllophaga nitida Sim, N. J. Dept. Agr., Circ. 145: 33.

[^15]:    Melolontha ilicis Knoch, Neue Beytr. Ins., 1: 71.
    Melolontha porcina Hentz, Am. Soc. Phil., Trans., (2), 3: 253.
    Ancylonycha ilicis Blanchard, Cat. Coll. Ent., 1: 133.
    Phyllophaga itiois Melsheimer, Cat. Coleop. U. S.: 59.
    Ancylonycha ilicis Burmeister, Handb. Ent., 4, pt. 2: 326 (not Knoch).
    Ancylonycha fimbriata Burmeister, Handb. Ent., 4: 326.
    Lachnosterna ilicis Le Conte, Acad. Phil., Jour., (2), 3: 253.
    Lachnosterna ciliata Le Conte, Acad. Phil., Jour., (2), 3: 253.
    Lachnosterna subtonsa Le Conte, Acad. Phil., Jour., (2), 3: 254.
    Lachnosterna ilicis Horn, Am. Ent. Soc., Trans., 14: 268. Lachnosterna ilicis Horn, Ent. Am., 3: 144.
    Lachnosterna ciliata Horn, Am. Ent. Soc., Trans., 14: 269.
    Lachnosterna ciliata Horn, Ent. Am, 3: 144.
    Lachnosterna subtonsa Horn, Ent. Am., 3: 144.
    Lachnosterna fimbriata Horn, Ent. Am., 3: 143.
    Lachnosterna ilicis Smith, U. S. Nat. Mus., Proc., 11: 517.
    Lachnosterna ilicis var. Burmeisteri Junk, Coleop. Cat., pt. 49: 193. Laohnosterna ilicis Davis, Jour. Econ, Ent., 9: 276.
    Phyllophaga ilicis Glasglow, Ill. Nat. Hist., Bul, 11: 371.
    Phyllophaga ilicis Forbes, Ill. Agr. Expt. Sta., Bul. 186: 230.

[^16]:    1801 Melolontha quercus Knoch, Neue Beytr. Ins., 1: 72.
    1802
    1817
    Melolontha fervida Schönherr, Syn. Ins., 1, pt. 3: 171.
    1855 Anoylonycha querous Burmeister, Handb. Ent., 4, pt. 2: 340.
    1856 Endnosa querous Le Conte, Acad. Phil., Jour., (2), 3: 235.
    1887 Lachnosterna querous Horn, Am. Ent. Soc., Trans., 14: 281.
    1887 Lachnosterna querous Horn, Ent. Am., 3: 138.
    1889 Lachnosterna quercus Smith, U. S. Nat. Mus., Proc., 11: 520.
    1916 Phyllophaga querous Glasglow, Ill. Nat. Hist., Bul. 11: 371.
    1927 Phyllophaga querous Langston, Miss. Agr. Expt. Sta., Tech. Bul. 15: 66.
    1928 Phyllophaga querous Luginbill, Ann. Ent. Soc. Am., 21: 85.

[^17]:    AND A. J. MUTCHLER
    1927. Supplement to catalogue of the Coleoptera of America, North of Mexico. 78 pp. J. D. Sherman, Mt. Vernon, N. Y.

    ## Lineli, M. L.

    1897. New Species of American Coleoptera family Scarabaeidae. U. S. Nat. Mus., Proc., 18: 721-731.

    Luginbill, $P$.
    1928. The Beetles of the Genus Phyllophaga Inhabiting South Carolina. Ann. Ent. Soc. Am. 21: 47-91.

