This dissertation has been 61-3034
microfilmed exactly as received

FENSKE, Richard Ferdinand, 1929~
ENERGY LEVELS OF PLATINUM(IIL)
COMPLEXES ON THE BASIS OF LIGAND
FIELD THEORY,

Iowa State University of Science and Technology

Ph.D,, 1961
Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan



ON THE BASIS OF LIGAND FIELD THEORY

by

Richard Ferdinand Fenske

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Reduirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Depafthent

Signature was redacted for privacy.

Dean of Qradudte’{ollege

Iowa State University
Of Science and Technology
Ames, Iowa

1961



).J .

'.A.

TABLE OF CONTENTS

I. INTRODUCTION

A, Nature and Purpose of the Problem
B. Organization of the Thesis
C. Symbolism

II. LIGAND FIELD THEORY: FUNDAMENTAL CONCEPTS,
LITERATURE REVIEW, QUALITATIVE APPROACH

A. Model for Electronic Structure

General principles
Weak field

. Strong field
Intermediate fields

DN

B. Applications to Experiment

Absorption spectra
The spectrochemical series
Magnetic behavior
Miscellaneous applications

DW=

III. GROUP THEORY APPLIED TO QUANTUM MECHANICS

A. Basis Functions for Group Representations

B. The Direct Product

C. The Irreducible Representations of the
Full Rotation Group Under Dy} Symmetry

Iv. LIGAND FIELD THEORY: QUANTITATIVE APPROACH
A. The Schroedinger Equation and Its Solution

1. The free ion
2. Ion in the ligand field

B. The Ligand Field Potential in the Hamiltonian
C. Matrix Elements Due to the Ligand Field

1. Two electron integrals as a sum of
one electron integrals

2. The single electron functions

3. One electron integrals

Page

w W =

14
21
23
26
26
27
28
29
30

30
35

38
43
43

43
47

50
56

56
59
61



(=B
|~
=

V. SYMMETRY ADAPTED FUNCTIONS AND THE MATRIX
ELEMENTS FOR SQUARE -PLANAR SYMMETRY

A. Weak Fiedd Functions

1.
2.

3.

Wave functions of the free ion

Wave functions for ion in the ligand
field

Construction of symmetry adapted
functions

B. The Weak Field Matrix Elements

B W N

Electronic interaction
Spin-orbit coupling
Ligand field effect
The complete matrines

C. Strong Field Functions

i.
2.

3.
4.

Single electron symmetry adapted
functions

Symmetry adapted spatial product
functions

Symmetry adapted spin functions

Strong field symmetry adapted functions

D. Strong Field Matrix Elements

VI. COMPUTER TECHNIQUES

A. Over-all Program
B. Calculation of the Matrix Elements
C. Diagonalization cf the Matrices

VII. RESULTS AND DISCUSSION

A. Experimental Results

1.
2.

Absorption spectra
Gaussian analysis of the spectra

B. Qualitative Interpretation
C. Theoretical Calculations

1.
2.

Initial choice of parameter values
Energy levels as a function of
dipole moment

Page

69
69
69
69
77
90
90
91
92
94

94

104
105
112
113
114
131
131
132
134
136
136

136
141

142
146

146

150



VIII.

IX.

X.

Page

3. Effects of changes in the electronic
interaction parameters on the
transition energies 156
4, Final choice of parameters after
inclusion of the experimental

spin-orbit coupling value 158
Discussion 163
ACKNOWLEDGEMENTS 166
BIBLIOGRAPHY 167
APPENDICES 171
Appendix A: Derivation of the Wave
Functions of the Free Ion 171
1. The free ion states 172
2. The Is,Mg,L,M;) functions by means
of step operators 174
3. The |s,L,J,My > functions 177
Appendix B: The Ligand Field Derivations,
Weak Field 181
1. The spherical harmonics - 181
2. Expansion of a product of spherical
harmonics 182
3. Evaluation of the radial integral 185

4, Correlation of the ligand field
matrix elements as given by various

authors 188
Appendix C: Group Theory 197
1. Basis functions 198
2. Dyy group operations 198
3. Matrix representation of a group 200
4. Reducible and irreducible repre-
sentations of the group 207
5. Character or trace of a matrix 210
6. The full 3-dimensiocnal rotation-
reflection group 212

7. The irreducible representations of the
(2£+41) ~fold representation in fields
of lower symmetry 217



Page
8. The direct product 218

D. Appendix D: Ligand Field Derivations,
Strong Field 221
1. Symmetry adapted spin functions 221

2. Construction of the strong field
wave functions 226

3. Phase factors and order of the F5
representation functions 232

4. Electronic interaction terms for
strong field matrix elements 235



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

14.

15.

Vi

LIST OF FIGURES

The spherical polar angles
Boundary contours of the d-orbitals

Energy levels of d-orbitals in various
symmetries

Effects of a weak octahedral ligand field
potential on the d2 energy levels

Effects of the spherical and non-spherical
portions of the octahedral potential on
the energy levels

Comparison of the d2 and a8 configurations
in an octahedral potential field

Comparison of the a6 configuration in weak
and strong octahedral fields

Generalized locations of the ligand point
charge and an electron of the central ion

Absorption spectra of [PtCl4]= in aqueous
solution

The two main peaks of the absorption
spectra of several platinum(II) complexes

Alternative energy level assignments for
square-planar platinum(II) complexes

Relative energy levels, initial choice of
parameters

Transition energies as a function of
dipole moment for the initial choice of
the parameters

Transition energies as a function of dipole
mement for the final choice of the
parameters

Coordinates of a wvector

Page

11

13

17

19

22

25

52

138

140

143

151

le2

202



Table

Table

Table

Table

Table

Table

Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

10.

11.

12.

13.

14za.

i3
1

Page
Matrices for representation Eg of the group
Dan 34
Irreducible representations for group Dy 42
The irreducible representations in Dy of the
states with angular momentum £ 42
Allowed values of m and £ for non-zero single
electron matrix elements 64
Expansion of products of spherical harmonics 64
Radial integrals for point charges and point
dipoles 66
The non-zero single electron matrix elements 68
d2 free ion wave functions 70

Irreducible representations of the J-states in

D4' 79
Coordinate functions which are bases for the

Dgq irreducible representations 80
Normalized spherical harmonics 81

Combination of spherical harmonics which form
basis functions for the irreducible repre-
sentations of Dy 84

Weak field basis function 86

Weak field matrix elements, a8 configuration

in square-planar symmetry, [| matrix 95
Non~-zero values of f& weak field matrix

elements 95
Weak field matrix elements, [, matrix 97

Non-zero values of r2 weak field matrix
elements o7



Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

17b.
18a.

18b.

22.

23a.

23b.

24a.

24Db.

26a.

26Db.

27a.

viii
A

Weak field matrix elements, F3 matrix
Weak field matrix elements, r4 ratrix

Non-zero values of¥r3 weak field matrix
elements

Non-zero values of F4 matrix elements
Weak field matrix elements, FS matrix

The non-zero values of FS weak field
matrix elements

Symmetry adapted single electron flinctions

Direct products of Dgj irreducible repre-
sentation

Strong field basis functions, coordinate
form

Strong field basis functions, [£,mg,s,mg)
form

Strong field matrix elements, as configura-
tion in square-planar symmetry, [; matrix

Non-zero values of Fl strong field matrix
elements

Strong field matrix elements, F2 matrix

Non-zero values of F2 strong field matrix
elements

Strong field matrix elements, r3 matrix

Non-zero values of r3 strong field matrix
elements

Strong field matrix elements, FA matrix

Non-~zero values of F4 strong field matrix
elements

Strong field matrix elements, [; matrix

99
100

101

102

106

106

108

115

120

121

123

123

124

125

126

127

128



Table

Table

Table

Table

Table

Table

Table
Table

Table

Table

Table

Table

Table

27Db.

28,

29.

33.
34.

35.

36.

37.

38.

39.

i_J.
:X:

Non-zero values of [; strong field matrix
elements

Absorption maxima of platinum(II) complexes
Comparison of calculated and experimental
transition energies from initial parameter

choices

Effect of electronic interaction on the
transition energies

Final choice of parameters

Comparison of final theoretical transition
energies with experimental results

Mg and M; values for a2 or a8 configuration
Is,Mg,L,Mp) functions for 3F states

Single electron matrix elements in analogous
forms

Character table for the symmetry group, Dyn

Example of a reducible representation of
the Dy group

Matrix representations in complex and real
space for some of the operations of the Dyp
group

Effect of the rotation operations on the
spin functions

137

155

157

159

lel
173

176

195

200

210



T. TNTRANIYT TAN

A. Nature and Purpose of the Problem

In the past decade, no single aspect of inorganic chemis-
try from an interpretive point of view has received wider
interest than the use of ligand field theory to explain the
physical properties of the transition metal, rare earth, and
actinide complexes. Such characteristics as magnetic sus-
ceptibility, stability, ionic radii, and absorption spectra
have been satisfactorily explained by application of this
theory.

Ligand field theory, or crystal field theory as it is
often called, has the advantage of not only giving excellent
agreement when used in quantitative calculations but in being
easily conceivable frcom a qualitative point of view. Thus it
maintains, within the limits of the assumptions made, its
quantum mechanical validity, while lending itself to pictorial
representations which are readily grasped.

Applications of this theory have been greatest in regard
to the transition metal complexes. These complexes consist
of the metal ion, which possess one or more d-electrons, sur-
rounded by several cther ions or molecules, each called a
ligand group or simply ligand. These ligands are arranged
more or less symmetrically around the central transition

metal. In most applications of the theory, it is only these
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The theory makes the simplifying assumption that the
effect of the symmetric ligands on the energy levels of the
central atom can be explained by considering the ligands as
point charges or point dipoles. The resultant electrostatic
interaction between the point charges (or dipoles) and the
originally degenerate d-electron orbitals causes a splitting
of the levels and hence a partial or complete removal of the
degeneracy. The type of splitting which results is dependent
upon the symmetry arrangement of the ligands. The degree of
splitting is dependent upon the intensity of the electro-
static interaction. An understanding of the absorption
spectra of the complexes can then be obtained by considering
the energy required for electronic transitions to take place
between these levels.

In most of the studies reported in the literature, the
symmetry required was either tetrahedral or octahedral. How-
ever, certain complexes, including those of platinum(II), have
been shown to possess square-planar symmetry. The effect on
the energy levels is, of course, quite different. It is the
opurpose of this thesis to present quantitative calculations of
the energy levels of platinum(II) complexes, and from them ob-
tain an explanation of the absorption spectra observed for

these compounds.
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In organizing a theoretical thesis of this type, a two-
fold purpose must be served., The fundamental principles of
the approach and the results of their application to the
problem must be compactly presented without burdening the
reader with involved derivations which would only distract his
attention. 1In some instances, however, the reader might wish
to apply these techniques to a similar problem of his own. In
such a case, a simple presentation of the end results without
some of the details of their derivation places him at a dis-
tinct disadvantage. To overcome the above difficulties, it
has been decided to include a rather extensive appendix sec~
tion which will contain detailed derivations or calculations

which will be used in the main body of the text.
C. Symbolism

It is convenient to be able to express certain mathemati-
cal terms as concisely as possible. To avoid confusion, the
following is an annotated list of the symbols employed.

1). In, £,m) Single electron spatial wave func-
tions of the atomic orbital type with
principal quantum number, n, orbital
angular momentum, £, and magnetic
quantum number, m.

2). jg,m) Same as 1, but with n = 5 understood.



4) .

5).

6).

7).

8) .

9).

10).

9]
-
r
.
23
ot
~

Is,L,J,M;) =

25+1
L (M)

(m,m")

(m,m')ap

(z2), (x2-y?),
(xy), (x2), (y2)
Bab

Y, (6#)= Y (4m)

Many electron wave function which is
a sum of antisymmetrized product
functions such that it is an eigen-
function of 42, £ 2, I andhf.
Section V and Appendix A.
Many electron wave function which is
a sum of |s,Mg,L,M;) functions such
that it is an eigenfunction of }2,
12’ ,22, and 7”}, but not of 7)7} and
Wy. See Section V and Appendix A.
A two-electron product function of
the type, ll,m)(l) l2',m*) (2) | wien
£ = £' = 2 and the order, electron
one-electron two understood.
The spin z-component dquantum numbers,
a referring to + %, B to - %.
[ll,m)a](l) [1£4,m)g]1(2), tnat is,
a belongs to electron one and B be-
longs to electron two.
The single electron d-wave functions
in real form. See Table 19.
The Kroneker delta. & = 1, when a=b
8 = 0, when a#b
The spherical harmonics.

See Appendix

B-1.

See
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14)0 Q2;Ql,Qo,BZ,-2

16). Dyn

17). K!m

iey. Jim(ﬁamaﬁbmb)

The asscciated Lecendre functions.
See Appendix B-1,

Notation indicating that the function
Is,L,J,M; > has the same symmetry
property as the spherical harmonic
with equivalent nume;ical values.

See Appendix C-6-ii.

The ligand Field pPotential., See Sec-
tion IV-B.

Single-electron matrix elements due

to the ligand field potential. See
Table 4,

Slater-Condon parameters for electron-
ic interaction. See Sections V-B-1,
V-D, and Appendix D-4.

Coefficients in the expansion of the
ligand field potential in terms of
spherical harmonics. See equations
67 and 73 in Section IV-B.
Coefficients in the expansion of the
product of two spherical harmonics in
a sum of spherical harmonics. See
eguation 96, Section IV-C-3-1ii, and
Apvendix B-2,

Y*(iama) Y(Ebmb) Y(ﬁm)dTeﬁ. See



Section IV-C-i.

r
The radial integral = -g N2 '

Ra(r)Rb(r)Rf(r)r2 dr. See Section
Iv-C-3-ii and Appendix B-3.
An integral defined by the relation:

Gy (a,b) = _g_ﬁ__Gz(X). See Section

IVv-C-3-ii and Appendix B-3.

ufz a d
78.75 &X

GI(X); where X = fR, and

R is the effective radial distance;
and © is the effective dipole moment.
See Section IV-C-3-ii and Appendix

B-3.
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. LIGAND FPIELD THEQCRY: FUNDAMENTAL CONCEPTS,

LITERATURE REVIEW, QUALITATIVE APPROACH

A, Model for Electronic Structure

l. General principles

The Pasic principles of ligand field theory were de-
veloped by Bethe (1) in 1929, His classic paper considered
the effects on a "free ion" which wouid result when that ion
was placed in an electric field of a given symmetry. Bethe
originally conceived the theory as being applicable to energy
levels of ions in a crystal and hence applied the term "Crys-
tal Field Theory". This term, while still popular, is being
replaced by that of "Ligand Field Theory", particularly since
many of the applications are concerned, not with crystals, but
with metal complexes in solution. Furthermore, some qualita-
tive discussions include the effect of r-bonding garnered from
molecular orbital theory, in addition to the simple electro-
static picture. Hence, the term "Crystal" seems inappropriate.

In any initial discussion of ligand field theory, it
would do well to consider first a transition metal ion which
contained a single d-electron, for example scandium(II). In
the free ion, this d-electron is considered to be in a
spherically symmetric potential field due to the electrons in
the lower shells of the atom. Without going into detail at

this point, it may be stated that under these conditions, the
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wave functions expressing the moticen of the electron are
similar to those cbtained for a hydrogen atom. That is, the
spatial part of the wave function cénsists of a radial part
and an angular part, the latter being expressible in analytic
form. For the single d-electron under consideration, there
are five possible spatial functions which would give the same
energy value for the state. These orbitals can be expressed

in real form by the equations:

d_p = R(x)-r®. (3 cos?e-1), (1)
2,2y T R(r) -r2- (sin®e-cos2d), (2)
dyy = R(D) -r?. (sin2e-sin2g), (3)
dypy = R(x)-r2-(sine cose cosg), (4)
dy, = R(x) -r2. (sin® cose singd), (5)

[R(r)-rz] represents the radial dependence of the functions; ©
and ¢ are the usual spherical polar angles. See Figure 1. It
is presumed that the appropriate normalization factors for the
functions are included in the R(r) terms. The subscripts on
the d-orbitals come from the expressions which would result
when r? times the angular expressions are changed to Cartesian
ccocordinates.

For simplicity of reproduction, in this thesis the real
d-orbitals are expressed in the forms (22), (xz-yz), (xy),
{xz), and (yz):; the correspondence with the usual forms being:

(22) = d_, (6)

2_,2
(x2-y?) = a3 2 (7)



Figure 1. The spherical polar angles



xv) = dow i8)
(x2) =d_, (9)
(vz) = dvz (10)

Figure 2a shows the conventional boundary contours for
the five orbitals. These contours indicate roughly the region
in space which will contain almost all of the electronic
charge of an electron in such an orbital. The (+) and (-)
signs refer to the algebraic sign of the wave function which

describes the orbital. The (22) orbital can also be con-~

sidered as a sum of two orbitals; (22 - x2) plus (z2 - y2)
whose contours would be analogous to that of (x2 - yz). See
Figure 2b.

In the spherically symmetric potential of the free ion,
the five orbitals are degenerate and the wave function of the
single d-electron will be a linear combination of these
orbitals. Following Bethe's argument, if the free ion is now
considered to be placed in an ionic crystal of a particular
symmetry, the degeneracy of the orbitals will be partially or
completely removed. For example, if the free ion were sur-
rounded by six negative charges, one placed along each posi-
tive and negative axis at equal distances from the origin
(i.e., octahedral symmetry) electronic repulsion would take
rlace between these charges and the electron. Qualitatively,
it is obvious that the interaction of the charges with the

electron in either the (xy), (xz), or (yz) orbitals will be
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Figure 3a. The latter two orbitals would be directed toward
the charges while the other three are directed between the
charges. Furthermore the degree of splitting will certainly
depend upon the magnitude of the charges and upon the dis-
tances between the charges and the central ion.

If the charges along the z-axis are of different magni-
tude and/or different distances from the origin than those
along the x and y axes, a "distorted octahedron" or tetra-
gonal symmetry results. 1In such a case, the degeneracy of
the orbitals is split even further. oOnly the {(xz) and (yz)
orbitals remain degenerate., If the distortion along the z-
axis is slight, the energy levels will be those given in
Figure 3b. |

As the distance to the z-axis ligands is imagined to be-
come greater and greater until finally the ligands can be
considered to be completely removed, the (Xy) and (22) levels
will cross and the energy levels will be those given in
Figure 3c. From a qualitative standpoint, it would be diffi-
cult to decide whether or not the (22) level would also cross
below that of the degenerate set, (xz), (yz). See Figure 34.
This latter situation has been postulated by Chatt et al. ({(2)
as the energy levels in platinum(II) complexes. This possi-

bility is discussed in detail in a later section of the thesis.
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its outer shell, the previous considerations hold regardless
of the strength of the ligand field. However, when there is
more than one d-electron present, it is necessary to distin-
guish between three cases, commonly referred to as the weak
field, strong field, and intermediate field. 1In dqualitative
discussions, the inclusion of spin-orbit coupling of the
electrons is seldom considered. That is, the assumption is
made that the ligand field strength is great enough to over-

come the spin-orbit effect.

2. Weak field

In the weak field case, the ligand field strength is con-
sidered as being small and hence acts as a perturbation on the
various multiplets of the free ion. 1In this situation, the
ground state and excited states of the free ion are first
determined in termes of the total angular momentum states and
the effect on these states as a result of the ligand field is
considered.

For example, for an ion with two d-electrons, such as
vanadium(III), the possible states are: lG, lD, lS, 3P, and
3F. For derivation of these states, see Appendix A. Accord-
ing to Hund's Rule, the ground state is that state with the
greatest multiplicity, and if there are more than one with

that multiolicity, the state with the highest orbital
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the ground state. Other considerations and experimental evi-
dence suggest that lD would be the first excited state, then
3?, lG, s,

Just as the ligand field split the degeneracy of the d-
electron wave functions, so now it removes the degeneracy of
the wave functions associated with these various states. In
the case of single d-electrons, the degeneracy was in the
magnetic quantum number, my, belonging to the orbital angular
momentum, £, In this case, one is dealing with the degen-
erate axial component, M;, of the total orbital angular
momentum, L,

It can be shown, for example, that in an octahedral field
the 7-fold spatially degenerate state, 37 splits into two
3-fold states and one non-degenerate state. Techniques for
obtaining these states are given in the section on Group

Theory. The 5-fold degenerate 1

D state, whose wave functions
have the same angular dependence as the d-electrons them-

selves, follow the identical pattern as given for the d-elec-
tron, i.e., one 3-fold and one 2-fold degenerate state is ob-

tained. The degeneracy of the 3

P state is not removed by the
octahedral field. This is apparent when one considers that
the angular dependence of the wave functions is ihe same as

that of p-electrons., Contour diagrams cf the p-electron func-

tions show that the three functions, pg, Py, P,, have orbitals
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ARivrer+ed along the ¥X—-. V-, 7-. axes respecthtivelv. Hence with

equal charges along all three axes, the electronic interaction
will be the same for all three orbitals. The 9-fold degener-
ate 1G state will result in two states with 3-fold degeneracy,
one state with 2-fold and one non-degenerate state. The lS
state is non-degenerate in any case.

Figure 4 is a qualitative diagram of the effects that the
octahedral ligand field would have on the various states con-
sidered. The left hand column are the states of the free ion.
The right hand column shows the splitting of the states by the
octahedral field. The labeling of the ligand field states by

lA s lEg, etc., corresponds to the group theory representa-

ig
tions of Mulliken (3). The degeneracy of each state is given
in the parentheses following the group symbol. It should be
noted that the degeneracy of each state is given only in terms
of gﬁe spatial degeneracy. The true degeneracy is the spatial
degeneracy times the multiplicity.

The effect of any ligand field on the energy levels of a
cation is expressible as the sum of two terms, one of which is
spherically symmetric (V,) and the other is dependent upon the
symmetry of the ligands. For example, in an octahedral field,
the ligand potential can be expressed as:

V = Ve + Vg (11)
where V, is the electronic potential which has the properties

cf the octahedral group On. The effect of the spherically
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on the d2 energy levels
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same number of d-electrons by a uniform amount., This is
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illustrated y Figure 5. Thus, as a result of V,, the abso-
lute values of the energy levels change, but the separations
of the states relative to each other are unaffected. 1In
Figure 5, the relative separations, A and B, between the
states remains the same. It is the application of the
symmetry dependent potential, V,, which affects the relative
separations of the energy levels. The diagrams in Figure 4
ignore the effect of the V, term since the absorption spectra
depends only on the relative separation of the energy levels,

In Figure 4, the energy of each state, relative to its
initial energy in the free ion, but ignoring the Vy, contri-
bution, is given in terms of a single parameter, Dg. The
energy parameter, Dg, was originally employed by Schlapp and
Penney (4) and is defined in terms of the energy of a single
d-electron in an octahedral field. Ten Dg equals the differ-
ence in energy between the triplet, t2g’ and doublek,veg,
state of a single d-electron in the octahedral field. The
derivation of DQ is discussed more fully in Appendix B-4.

It is noteworthy that the over-all “"center of gravity" of
the weak field levels relative to one another is unchanged by
the symmetry potential, V,, of the ligand field. For example,

1

while the 3-fold degenerate state of "D is lowered by 4Dg

units, the 2~fold degenerate state is raised by § Dg units.
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- 3x(-4Dq) + 2x(6Dg) = O | (12)

The relative positions of the levels in Figure 4 presumes
that the ligands are represented as negétive charges, or as
dipoles whose negative ends are directed toward the cation.
If they were positive charges, the energy levels that would
result can be obtained by mirroring of the levels in Figure 4
through their respective centers of gravity, that is, the
values of Dg change sign.

There is a well-known reciprocity relation in atomic
spectroscopy between electrons and "holes"., (See for example,
Pauling and Wilson (5), Condon and Shortley (6), etc.) The
terms arising from dm electrons, where rggs, are the same as
those arising from a*9~", Thus it is possible to obtain the
terms for 4% by considering it as having two "holes" instead
of the eight electrons. The coulombic interaction between
the holes is the same as between the electrons and hence
the terms are in the same order for both d2 and d8; i.e.,
3F, lD, 3P, lG, ls. However, just as the multiplet structure
within each multiplet is inverted in atomic spectroscopy when
the hole formalism is employed, so a similar inversion takes
place in the ligand field levels. This is quite acceptable
from a gualitative point of view since the holes would be
attracted toward the negative ligands, whereas repulsion

weuld take place in the case of the electrons.
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Figure © illustrates the di
for the 3? ground state in an octahedral field. Moffitt and

I
h

Q

and d* electrons

Iy

ferences for
Ballhausen (7) have listed the octahedral states and their
energies in DG units which result from the ligand field

9

1
acting on the ground states of the free ion having 4 and d

electrons.

3. Strong field

In the strong field case, the interaction between the
individual d-electrons and the ligands is greater than the
interaction between the electrons themselves. Qualitatively
speaking, the character which the wave functions assume is
that of the ligand field. Thus in the case of the d-electrons
in a strong octahedral field, one speaks of (t2g) and (eg)
electrons, depending upon which symmetry orbital the electrons
occupy. The discussion concerning the single d-electron
previously given applies, in the first approximation, to all
the d-electrons of the central atom.

In quantum mechanical terms, the wave functions used as
basis functions for the energy matrices are such that the
matrices are diagonal in the ligand field terms, while the
electronic interaction between the electrons are considered as
perturbaticns on the ligand field. The single electron wave
functions used to obtain the product wave functions are

characterized by the "guantum numbers", (tzd) and (eg), rather
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Principle and Hund's Rule still apply, of course, but in this
case they concern the number of electrons which can occupy a
particular symmetry orbital. For example, a maximum of six
electrons can occupy the (tZg) orbital, and four can occupy
the (eg) orbital.
The syvmmetry of the ground and excited states are

determined most easily by means of the "direct product" of
group theory. Hence, discussion of the derivation of these

symmetries is deferred to the section of this thesis on group

theory.

4. Intermediate fields

The intermediate field, as the name implies, is that
situation between the two extremes given previously. The
ligand field interaction and the electronic interaction be-
tween the electrons are roughly comparable, hence approxima-
tions in either direction are invalid. As a result, the inter-
mediate field does not lend itself as readily to qualitative
discussion but requires actual calculations based upon the
resultant matrix elements in order to obtain correlation with
experimental data.

The 4diff ices between the three cases can be illus-

trated by consideration of the electron distribution for an

ion containing four or more electrons., For example, Griffeth
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cating unpaired d-electrons, whereas Fe (CN) is diamagnetic,
indicating all six d-electrons are paired. Orgel (9), as well
as Griffeth (8), correlate the tendency toward spin pairing in
complexes with the ligand field necessary to overcome the loss
in "exchange energy" which results when electrons are paired.
Orgel (9) has calculated the increase in electron repulsion
which results from pairing electrons in an octahedral field.
For example, in terms of the Slater-Condon parameters (6) for

the electronic interaction between the electrons, the ground

state energies are:

Fe(II) free ion or weak field: —35F2—315F4
Fe(II) strong field: -30F »,-60F4
Increase in electron repulsion: 5F2+255F4

The increase in electron repulsion is termed by Orgel (9) as
"opromotional energy" or "loss in exchange energy". The
techniques for calculating these energies are given in Appen-
dix C. Spectroscopic values for Fe(II), as tabulated by
Orgel (9), for F, and F, are 1540 cm~l and 120 em~1 respec-
tively. Hence the promotional energy is estimated as 38300
cm” L.

The free ion, when placed in a weak octahedral field, has
an over-all lowering of energy equal to 4 Dg, see Figure 7a.

In a strong octahedral field, the lowering is equal to 24 Dg,

that is 20 Dg more than for the weak field. See Figure 7b.
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n order that the ligand f£field be strong enc

spin pairing to take place, DG must be equal to or greater
than approximately 1900 e, 1f Dg is much less than this
value, the field is weak. If it is much greater than 1900
cm'l, the field is strong. If Dg is approximately equal to

1900 cm—l, the field is of intermediate strength.

B. Applications to Experiment

The title of this section is somewhat misleading in the
sense that all applications must be guantitatively sound.
However, certain generalizations and conclusions can be seen

to be valid without recourse to actual calculations.

1. BAbsorption spectra

The first use of ligand field theory to solution chemis-

try, was made by Ilse and Hartmann (10) in interpreting the

absorption spectra of Ti(H20)23. The free ion, Ti+3, has a

single d-electron, hence its ground state is 2D and its first

excited state is 28. Emission spectra indicate that the

energy of this transition in wave numbers is 8 x 104 cmL.

The hexadquo species, however, displays a single absorption
peak at 1.7 x 104 cn™l. From the discussion of the d-electron
energy levels in an octahedral field (Section II-1) the low
energy absorption peak is seen to be a transition from the

ZEO excited state. This simple

-

2T2g ground state to the
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application awakened the interests o hemists o the possi-

3

bilities of the theory in regard to the absorption spectra of
transition metal complexes. Within five years, the theory was
prlied to dozens of complexes, including manganese (II}, (11):
chromium(III), (1l2):; cobalt(III), (13): and nickel(II), (14).
By 1955, the essential principles of the sources of the colors
of transition metal complexes had been developed, including the

explanation of the spectrochemical series.

2. The spectrochemical series

As early as 1923, Fajans (15) noticed that successive
replacement of certain ligands surrounding the cation by
other ligands shifted the maxima of the prominent band systems
to progressively shorter wavelengths. This lead to the con-
struction of the spectrochemical series, an example of which
is: 17< Br=<{ c17< o"  F { Hy0{ NH;{ ethylene diamine
{ €N . The trend seemed to be more or less independent of
the cation, except for certain conspicuous failures. A very
satisfying interpretation of the trend and the reason for

4 a5 ,3%, ana 4a’

the anomalcus behavior of cations having 4
electrons is given by Orgel (9, 16, 17). Each of the ligands
given above results in a successively stronger ligand field,
thus increasing the separation of the ng and the Eg states.
(It is presumed that the discussion concerns octahedral com-

plexes.) 1In those cases, for example dl, where the ground
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state multiplicity in both the weak field and strong field is

the same, the spectrochemical shift follows a smooth trend.

In situations which involve changes in the multiplicity of the
ground state, although the energy levels shift as a continuous
function of Dg, the selection rules for the preferred transi-

tions change. For example, the weak field ground state for d6
257 and hence guintuplet-quintuplet transitions will give
the prominent bands. In the strong field, the ground state is

lA as a result of complete filling of the (tZg) level, and

1lg

singlet-singlet transitions take preference.

3. Magnetic behavior

In the discussion of the three types of ligand fields,
section II-3, the differences in the number of paired elec-
trons which resulted in the strong field, as compared to the
weak field, was illustrated. The changes in paramagnetic be-
havior should therefore coincide with the changes in multi-
plicity associated with increasing field strength as discus-

sed with reference to the spectrochemical series. Thus,

having estimated Dg from absorption spectra, it is possible

for one to predict the magnetic properties of the complex, or
conversely the magnetic properties should help to predict the

qualiitative features of the spectra.
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<, Miscellaneous applications

In addition to the applications already mentioned,
ligand field theory has been successfully applied to explana-
tions of heats of hydration (17, 18), ionic radii (19), and
spectral band widths (20). Early work in the field involved
explanations of the paramagnetic behavior of rare earth
complexes (21,22). Several excellent reviews of the quali-
tative and quantitative aspects of the theory have been
written. Among those to be recommended are the reports by
Moffitt and Ballhausen (7), McClure (23), and Basolo and

Pearson (18).
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III. GROUP THEORY APPLIED TO QUANTUM M=ECHANICS

A. Basis Functions for Group Representations

The following discussion assumes a general familiarity of

the principles of group theory on the part of the reader.
However, for purposes of completeness, a review of the con-
cepts of group theory which are used in this thesis is given
in Appendix C.

Quantum mechanics is concerned with eigenstates of a Ham-~

iltonian operator,ff, which may be defined in a coordinate

system,';. The operator is denoted,'ﬁ“§5, though in general
it is a function of derivatives with respect to the coordi-
nates as well as the coordinates themselves. Schroedinger's
equation expresses the relationship for the energy eigenvalues:
- — —
Hx)Yi(x) = BEg ¥3 (%). (13)
If both sides of the equation are subject to some transforma-
tion, R, one obtains:
-, —, -
R¥(X) vi (X) = RE; ¥; (X). (14)
In those cases, and they are the cases of interest, where the
operator,jg(;), is invariant under the transformation, the
ay = :
operators H(x) and R commute, i.e.,
- —
rRA(x) =#(x) R, (15)
and since Ej 1s a numerical value, R commutes with it. Hence
it is possible to write-
- - -
H (%) (R Vi (X)) = E_-;_( R *J/i(x)). (16)
But this requires that the function (R ¥3j) be a solution of

the Schroedinger equation with the eigenvalue E;.

If B; is k-fold degenerate, the Schroedinger equation is:
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k
C = 2 bm_] ajl . (28)

1
But this is simply the notation for the process for matrix

multiplication:
c = (B) (A). (29)

Thus the collection of all coordinate transformations
which leave the Hamiltonian invariant forms a group and the
matrices obtained from the coefficients in the expansion of
R ¥j, etc., form a representation of the group. It can be
shown that all such matrices which result from rotation oper-
ations are unitary matrices.

The set of degenerate eigenfunctions, wil’ Wiz’ s wik
is said to form a basis for the representation of the group,
since the representation is generated by the application of
the group operations, R, S, etc. The dimension of the
representation is equal to the degeneracy of the corresponding
eigenvalue,

Of particular importance are the irreducible representa-
tions of the group. The definition of an irreducible repre-
sentation is given in Appendix C. For each group of interest,
these irreducible representations are known. They are useful
in choosing the approximate wave functions in an efficient
manner, since a set of functions which transform among each
other according to an irreducible representation necessarily

possess the degeneracy of the irreducible representation. Two

sets of functions, each of which transforms in itself accord-



H X1 (XY = ®m. o (= (17
M l‘»': . RSN - - ~ -

Y‘ilJ ‘?’12) S

Vi1, 1s a solution of the Schroedinger equation and hence:

Then any linear combination of the functions

k
R Y., T Z V.. &si; , (18)
i j=1 ij 32
where: k 5 -
5 a . = 1. (19)
j=1 J2

If there is another transformation operation S applicable to

the equation, i.e., S and #(X) also commute, then:

-—p
SH(X) R ¥, (X)  =SE; (R ¥y, (20)

and #(F) (SR v, (F)) = E; (SR vy3) 5 (21)
also: F(X) (5 ¥vy5) = Ei(S 155 (22)

k
Therefore: S yij = 3 wim i (23)

m=1 J

k k k
and hence SR V., = X a,, S .. = 3 S Y. b . a.,. (24)
if j=1 Jj2 ij j=1 m=1 im mj “j¢

The product of the two transformation S and R may be denoted

by
S * R=T. (25)
Then T is also a transformation of the group and:
=S
T vy ) =By (T yy)), (26)
k
hence: T 2., = 3 ¥._ C_ (27)
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ferent eigenvalues.™

Therefore, 1if Fi is an irreducible representation of

-

. 1s the set of de-

dimension X, and if jjl) ’j2’ s, J“
, . - . s = 5 : .th .
generate eigenfunctions which form a basis for the j B oirre-

ducible representation of the group, then the eigenfunctions
transform according to the operations of the group. For
example, two of the d-electron wave functions expressed in

real form can be written:

Y1 = CpeR(T) - (x2)

Yo = Co*R(r) - (yz),
where c, and C, are constants, R(r) is the radial function,

and (xz) and (yz) are the angular parts of the wave func-
tions expressed in terms of Cartesian coordinates. In square-

planar or tetragonal symmetry, these two functions are the
2

g

The matrix table for the Eg representation is given in

basis functions for the representation E

Table 1. By application of these matrices to the row matrix

t

of v, and -,, one obtains, for example:

(v o) = (Y1 Q) (1 o) = (vy ¥p) (30)
0 1

(7 -:2)(0 1)
-1 0

L ~ .
If they havpen to have the same eigenvalue, the degen-
eracy of the two sets is called accidental degeneracy.

Il
i

etc.

2 .
In the same symmetry, the ¢ is whose

, th ther three orbita
angular parts are expressible as (3z2- r2), (x2-y2), and (xy),
belcong to the Groups Rig, Blg: and B,,, respectively.
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The meaning of the group elements is given in Appendix
C.
The validity of these relationships may be checked by con-
sideration of what hapoens to the functions, (xz) and (vz),
under the various operations, For example, under Cypz X 1is
replaced by -y, v 1s replaced by x, and z is replaced by z.

Therefore, (xz) is replaced by (-yz), and (yz) is replaced by
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{xz). The replacement overations mentiocned consider the
transformations which keep the functions fixed in space and
redefines the coordinates in terms of which the functions are
expressed. Thus:

Calvy vp) = (=¥, ¥9), (32)
which is exactly the result given by the corresponding matrix
multiplication. Hence, wl and wz are said to be basis func-.

tions for the Eg representation.

B. The Direct Product

A detailed account of the derivation of the direct prod-
uct of group theory is given in Appendix C-8. One of the most
important applications of the direct product involves the
evaluation of integrals composed of functions which are bases
for representations of the group. If F is any function which
transforms according to an irreducible representation of a
group, then the integral

I = f\F dr,

will be different from zero only if this irreducible repre-

sentation is the totally symmetric representation, Fl = A cf

1g
the group. That is,

R F =F, for all operations, (R), of the group. (33)

Fed

Consider the integral cf the type:

r
¢A ¢B ar.

)

~
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where | 5 X fg is the direct product of the representations of

#, and ﬁB. In general, the direct product is reducible, that
is,

= r 5

integrand f RN (35)

where | ; are irreducible representations cf the group, and ay

. . L. .th | . . . .
is the number of times the i irreducible representation is
contained in the direct product. BAs a consedquence, the inte-

gral can be written as a sum of functions,

Zn 25 = 25 Fy (36)

where F; belongs to the irreducible representation ri. Con-
sequently, the integral will be different from zero only if
the direct product contains the totally symmetric representa-

tion,r.l = Alg' For groups whose characters, i.e., the sum

Fh

of the diagonal elements, are real this requires that f = r .
9 s A

B
Similarly, if an operator, f, is the basis function of an

irreducible representation, in order that integrals of the

tyve:
r\
. ' ’r~
gA -~ QsB art
be different from zero, it is necessary that at least one of
the irreducible components of FA bid 3 e the same irreducible
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Since the Hamilitonian is lnvarliant under ail coperations
of the group, 1t bpelongs to the totallv symmetric revresenta-
tion, [, = A, . Therefore, for the integral

r ;
B, M &y a1,

H

to pe different from zero, it is necessary that one of the

t

irreducible representations of f% b4 FB be F This re-

1
guires that FA = rg.
Thus 1f one constructs functions which are symmetry

adapnted, that is, are basis functions for the irreducible
representations, it is known that there will exist no off-
diagonal matrix elements connecting functions belonging to
different irreducible representations. For example, if there
are thnree irreducible representations for a varticular group,
F 5 r', and F3, then the functions can be arranged in such a
manner so that the matrix of the elements [‘ ¢A1¥ ¢B dt will
U

have the general form:

My r, r

B




In atomic systems, it is possible tc consider many types

cI energv degjeneracies. Fer example, there is the degeneracy

associated with the orrital angular momentum, £, of a single
electron, This degeneracy is (2f£ + l)-fold and the states
associated with it have my values between +£ and -£., Similar-
ly, the degeneracy of the states which are the results of
products of two or more electrons can be characterized as
having a total orbital angular momentum, L, which is the sum
cf the orbital angular momenta of the individual electrons.
The degeneracy of such a state is (2L + 1) and the wave func-
tions associated with the state are characterized by Mp values.
It is also possible to consider states of a varticular J
value, where J 1is the total angular momentum and is equal to

S + L. The degeneracy of a particular J state is (2J + 1) and
the wave functions associated with it are characterized by M5
values.

The discussion that is to follow is equally avplicable to
all such degeneracies, since in each case the wave functions
asscciated with the states form basis functions for a group
representation. That is, in a field of non-svherical symmetry,
the reduction of the states associated with a particular value
of tectal angular momentum, J, will corresoond tc the reduction

of the states associated with the orbital angular momentum,
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unction:

L= NeR(x)- L/ N2 [Y(2,2) + v(2,-2)], (37)

is the basis function for an irreducible reprresentation cof the
non-spherical rotation group under consideration, then a
function which alsoc is a basis function for the same repre-
sentation is given by:

v w1/ N2 [12,2 >+ 12,-2 > ] (38)
where ’J,MJ > indicates the wave function associated with the
state having total angular momentum J and z-component My.

When two groups have such a one to one correspondence they are
said to be isomorphic. The validity of these considerations
is indicated in Appendix C.

An analogcus situation exists for the spin states, s, of
a single electron, and for the product of two or more elec-
trons, S. 2 set of matrices corresponding to the group repre-
sentation can be constructed by the methods outlined in
Appendix C. Such matrices give the corresponding transform-
ations in complex space that are associated with the given
transformations in real space. Hence the arguments for the
reduction of the matrices ccrresponding to a given angular

n, £. also hold for the spin functions.

2

momentu

3

5

Wiith the above statements in mind, it is necessary to

(oS

>

degenerate state.

th

consider the reduction of only one type o



~ - . PR

In the spherical svmmetry of the free ion, the degeneracy
of a state with orbital angular momentum, £, is 22 + 1. 1In
spherical symmetry, the revresentation corresvonding to this
degenerate state 1s irreducible. However, in the field of
lower symmetry which results from the ligands of the complex,
the representation is reducible. 1In order to effect the
reduction, use 1is made of a fundamental theorem of group
theory: each reducible representation of a group can e
separated in only one £fashion into its irreducible parts.
Furthermore, the "character®", that is, the sum of the
diagonal elements of the matrix representation, of each group
element in the reducible representation equals the sum of
the characters which belong to the element in the irreducible
representations. Therefore, knowledge of the character of
the reducible representation for each symmetrv operation of
the ligand field, together with the table of characters of
the irreducible representations, enables the reduction of

As shown 1n Aoppendix C, the character asscciated with the

a chosen axis is Ziven ov:

(=) = 22 + 1 (39)



= ;l,ﬁ‘g;ﬁ when g £ O (40)

For the d-electrens in a sguare planar field, for example, the

svmmetry classes are E, Cz, Co, Css and C,; with £ = 2.
X(E) =22 + 1 =5

sin(5/2)7/2 _ =-sin 7/4

X(Cq) = sin +/4 = "sin #/4 < -1 (42)
, . sin(5/2)7
X{(Cp) = X(Cy) = X(Cy) = "sin 7/2 =1 (43)

Table 2 gives the characters for the irreducible revresenta-
tions for the Group D,. By use of the table, it is apparent
that the irreducikle representations which are the components
of the recducible representation for £ = 2 are: BA; + By + By

o

+ E. Since all states with £ = even are unchanged as a result

O}

of inversion through the origin, the d-electron states in the

Dyp symmetry are A + Bygq + B2cr + Eg.

1g
v similar apolications, the irreducible components of
ny reducible representaticn may be obtained. Table 3 gives

the number ¢f times a varticular irreducible representation is

Q,

contained in the re

A

ucible revnresentation of a given ¢ in

e~y T ~ —— E S - e eN ]
sguare-nlarar or tetragcnal symmetry. For example, for a
state with £ = 3, one uses the fourth column (4% + 3) with » =

F R y . < e BN - 3 a T i)
0, and the irreducille revnresentations are 2. + B, 4+ T



Revresentation = <o 2C; 2Cé 2,
Ay 1 ] 1 1 1
A2 1 L 3 -1 -1
35 i ! -1 1 -1
25 z 1 -1 -1 1
= 2 -2 0 0 0

Table 3. The irreducible representaticons in D, of the states
with angular momentum £

£ = 4 47 + 1 an + 2 4% + 3
Aﬂy FAN + l BN ‘,\ + l )\
B2 k AL A o+ L
21 A k o4 R
52 \ ] N




nergy levels of the central icn

reguires the solution of Schroedinger's eguation:

#. = B (44)

=2 -

#z‘:{__.z%_ ViZ___Z_E_z. _*_g(ri)f.}}_*_ -&.,e,z .;_’\“VLF(*‘ )

i * i /3545
The first four terms in the Hamiltonian,7¥, are the usual
atomic Hamiltonian operator for the free ion:; the last term,
VLF(ri) expresses the effects of the non-spherical potential
field of the surrounding ligands on an electron of the central
ion. Pricr tc consideration of the effects cf this latter
term, some remarks concerning the atomic Hamiltonian for the

free icn are in order.

1. The Free Ion

In all approaches to the solution cf the Schroedinger
equation for a many electron atomic system, it has been neces-
sary to make some avoroximation in order

to solve the problem

tion" in which the interaction cf the elec



=2 2
Ho=o -2 V," + 0] (46)
O s t —_— : T 3 -4
v 5 Zmi 1
and considers the remaining terms of the true Hamiltonian as a
perturbaticn:
2 - - 2
zZe . <
Frms (== —uU(ry) + &8 LA ]+ 2 & (47)
i i i>3 Tij

The zero order wave functions, i.e., the wave functions, wo,
that are solutions of the equation:

#O‘-‘?O = Egvgs (48)
can be expressed as products of single electron wave functions
because ﬁQ)is the sum of one electron operators. The single
electron functions are very similar in form to the wave func-
tions of the hydrogen atom in that they are products of a
radial function and an angular function expressible in terms
of the spherical harmonics. It is beyond the intent of this
thesis to reproduce in detail the solution of the atomic
oroblem particularly since the solution is well surveyed in
such standard texts as those by Condon and Shortley (6),
Pauling and Wilson (5) and Eyring et al. (24). The following
principles of the approach should be mentioned:

(1) The zero crder basis functions are constructed as linear
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IZ is the total orbital angular momentum operator
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s the total spin momentum operator
the z-component operator of the total angular

z?_is
momentum.

itten as |S,5L,J,MT >.
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o
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fu
Hh

functicn, v, may de w

U
2

A particular function, /S,L,J,MJ >, is an appropriate

itinear combination of the functions, IS,MS,L,ML), which are

®

igenfunctions of X2, My, L2, % , that is:
X2 =1nL(L + 1) (50)
£2¢ =1 s(s + 1)F
zg,@‘ = n M
M = h M

[63]

>
b

g
L g

where Z”X a:ﬁf%ga:e the z-component overators of the total

orital angular momentum and the total spin momentum, and & is

[

an fS,MS,L,ML) function. Tnese lS,MS,L,ML) functions are

elves linear ccmoinations of antisvmmetrized wroducts



{intonr—irents) % sinsle glachyar waves Tnmodiorng
A = 3 fas)! o=~ g - hi
(£,m,,8,7g) . Thus for exampdle,
- e 1 r 1 1 . 2
Is,mg,0,0) = [1,1,3,3) = 1/42 [(2,2,5,% (P (2,2,5,% (2

two resovectively.

interest, £ = 2 a

represents mg = +

writes the cne el

electron two, the
written:

{1,1,3,3)

or alternatively:

ll:l:3:3)

and similarly for

The derivati

the |s,n,a,M5> =

phase factors, 1is

(iii) The single

Since it is the d-electrons that are of
nd § = 3, alwavs. Furthermore, if cne

% by 2 and mg = - % by B and one always
ectron functions in the order: electron one,

n the expression for [1,1,3,3) may be

/N2 [(2,2) (1,2) - (1,a)(2,a)] (52)

/N2 [(2,1) - (1,2)] [aa]l (53)
the other ls,MS,L,ML) functions.

on and construction of the IS,M

g2 L, ML) and

unctions, including the consistent choice of
considered in Appendix A.

electron functions are separable into radial

and angular parts. Thus:
$ = R(x) -Y(L,m;) (54)

where VY(g,m;) are the spherical harmonics.

3 . N N - .

The no;atlon,l vy 1s used to dencte a function

§SjL5;,MT>= The notation, | }, is used tc denocte a function

- -~ . . -~
{S,Mg,L,;M;). The notation, ( , ), is used to denote the
oreduct of the single electron svace functions associated with
electron cne and electron two in that order.
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the mixing of the

zerc order pasis functions is fcund bv the diaconalization of

'
-

the matrix correspondincg to the operator:

TR R SR S 4T (55)
i S

and this operator need be avplied only to those electrons
outside closed shells and subshells. This means that the zero
order wave functions which constitute the basis functions are
constructed only from consideration of the electrons outside
of closed shells and subshells. The relative energy levels

are obtained by diagonalization of a matrix of the general

orm:
Hyp B, HUpg DR Y
" H" " o . e H"
21 22 23 °n
T 1K1 Ull rit » & o T
H a1 205 H n3 H nn

where H". = r vy HY v dt

2. Icn in the ligand £field

The basic assumption in ligand field theory is that the
field rotential perturis the alomic levels only in such a way

as to modify the mixing of the zero order functions within a

given configuration. This means that one proceeds exactly as
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ne cwnerater Yoils renlared

- - T_ —_
tlry) jiji + 2 82/1‘- Lo+ o V; (56)
i>3 i

in the framework cf the simplification of the central

}JA
ot
o
'J

I

ield approximaticn and the considerations concerning the

ligand vcotential to be discussed, diagonalization results in

Hh

an exact solution in the sense that all effects are con-
sidered. In many applications it is possible to neglect spin-
orbit courling, which results in an appreciable reduction in
the number of wave functions which need be considered. How-
ever, the spin-orbit coupling effect in vlatinum is appreci-
able and must be included in the calculations.

Twe extreme cases can pe considered in constructing the
zero order basis functions. In the so-called weak field case,
the ligand field effect is much smaller than the electronic
interaction effect. 1In this situation, it is convenient to
use the free atom pbasis functions in terms of the quantum
numpers, S, L, J, and MJ. As is shown later, this choice
results in the matrix elements being diagonal in the elec-
tronic interaction parameters. The ligand field will result
in non-zero values for both diagonal and off-diagonal ele-
ments, but the off-diagonal elements will be small in com-
cariscn te the diagonal elements. Conseduently, only weak

mixing of the free atom states result. 1In a sense, one can
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atomic states in wnhich the electronic interaction has already

“

In the strcong field case, the 1i

o7
tHh

an ield effect is much

«Q

yreater than the electronic interaction. In this situation,

it is convenient to consider that the zero order Hamiltonian,
LF .

ﬁO , be expressed as:

M= 1/O+§:vi (57)

Consequently, the strong field zerc order functions, yo, are
antisymmetric product functions of new one electron functions,
Yj. These one electron functions have the symmetry of the
ligand field. It is assumed that they can be expressed as
linear combinations of the free-ion one-electron functions,
(ﬁ,mﬁ, s,mg). The proper linear combination are those which
diagonalize the one electron matrix-: (ji IVLFl ﬂk). Thus
the basis functions are constructed so that the matrix ele-
ments are diagonal in the ligand field parameters. In this
case, the electronic interaction term contributes to both
diagonal and off-diagonal elements and again, the off-

diagonal elements are small and the mixing of the ligand field

states i1s slight. Hence the electron interaction can be

censidered as a perturpation on the ligand field states.
For the case oI intermediate fields, the off-diagonal

all in either basis and the choice of basis
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functions is arpitrarv. This is true since 1t 1

i

express the weak field basis in terms of the strong field
basis by a unitary transformation. By means of this trans-
formation the expressions fcr the wave functions associated
with the weak field are related to the expressions for the
wave functions for the strong field. The eigenvalues which
result upon diagonalization must be the same regardless of

which basis is used.
B. The Ligand Field Potential in the Hamiltonian

Thus far the exact form of the ligand potential, VLF, has
not been specified. Several expressions are possible (7, 8,
14, 21) all of which are essentially equal. For conceptual
simplicity, none is more satisfying than the point of view
that the effect cof the ligands can be approximated by con-
sidering them as point charges or point dipoles. In this
thesis, the ligands are considered as point dipoles. For
mathematical reasons, it is convenient to initially consider
the case of point charges and to carry out the calculations in
atomic units, namely:

Unit charge: e = the charge of the electron
P _x2 2 _ - ~ -
Unit length: a, =/h“/me® = Bohr radius = 0.529A

Unit energy: e“/a, = twice the ionization potential of

- -~

the hydrogen atom = 27.2 electron volts.
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for a "hole"

= charge c¢f positive ligand in atomic units

= charge of negative ligand in atomic units
gives a simple schematic diagram of the arbitra-
a single ligand charge, dy, and an electron,
espect to the origin, The electron is located
x+- Then the
due to the charge gy at Q. is given by:

Vk (r: e: ¢) = -qk/rpk

where r.; 1is the distance from Q) to P. As shown in Eyring

P

et al. (24), it is possible to expand V, (r,6,¢) in terms of

spherical harmonics, as follows:

Vk(r,e,d) =

where

- z S Y (e #) B r 59
qk i:O Nl ﬁm E,m ( ): ( )
i

< 4T [y, (en8y) ] (60)
N Vi LY e 60
1:1 20+1 L TKTRIS

i
the spherical harmonic at the location of the

electron,

he spherical harmonic at the location of the

ct

ligand,
the larger of the distances r and r,,

the smaller of the distances r and .
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Figure 8. Generalized locations of the ligand point charge
and an electron of the central ion
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IR N 4= (£-1ml) ! 3 i
|53 r) = 1 po)
E,Y( ) - {+ [21+l (Z+1b) ) ¢ i (cos &y)e
7
. . W
wnere 2
P}ﬁt(ﬁos 8,) = an associated Legendre Function,
Cmy w£+]ml N
sin = d .
= -‘~_(cos2 6-1)
4 . £+ m} 7
27 4. d cos 8 + ol
The foregoing fcrmula describes the potential

due to one ligand.

the summation being over the ligands.

optains:

In the square-planar symmetry,

For several ligands:

LF

v = Z (f,e,ﬁ);
4

k
Y(2,m) I ay By (r)

z
k

it

By substitution,

is convenient to

, (61)

£ (62)

at r(r)

. (63

one

(64)

locate the

ligand point charges, (ql,qz,q3,qd), along the + X and 4+ Y

axes,.

Consequently

the following relations hold:
dy T dp T d3 = dy = 9,
ry = r, =1y = 1y
8] = 6y = 85 = g = —~/2, hence cos 8,
gl =0,
g, = 7/2,
gy =,
g, = 3v/2.
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T =2 5 . )Y .
where
(4-m): 47 7 L
- - m . Jmi —-im
Dgrn = (2wt 222z ] - Py (0) Ze ; (67)
*k
and
2 £+1
{ =
Ry (r) r /r> . .
N

A restriction on the possible values of m can be obtained by
consideration of the fact that in square-planar symmetry the.
potential at a point S(r,6,¢) must be the.same as that at a
point'T(r,e,¢+W/2). Then, ’

Y, (8,8) T Yyn(e,8+7/2). (68)

Therefore:

_im¢5=iéim(¢+v/2) _ eimﬁ.eimv/z

e (62)
o 1= eim/2 (70)

But this reguires that
m =0, +4, +8, -+, etc. (71)

~ it - .
Furthermore, values fcr Py (0) can be found in standard
texts: for example, Jahnke and Emde (25). Since Legendre
functions are either even or odd in their arguments, it fol-

m &

lows that Py (0) vanishes Zor £ - m™ = odd. Substituting



the Iormuia for Jcm {3} in the case & - = even 2nd also
e;mﬁk = 1 for all &, one finds:
) £
" m==2 ‘
- . 1
L\ s(e-1ml) L s
Dy :-_("*)2( (647:)2 [ (g=m™ ). (1+m)!j2
24 28+1 [(L(f-m )] [%(6+ m ) ]!
(73)

where £ and m are restricted to:

g = 0,2,4&£,8,---: m=0,4,8,"°".
Furthermore, it is shown in Appendix B-2 that in the exvansion
of Equation 72 only the terms with £ <{ 4 contribute to the
matrix elements which are needed in conjunction with d-elec-
trons. With the previous restrictions on m and the fact that
™ g_i, always, the "effective" ligand potential for square-
planar symmetry becomes

LF _ _ . . : .
v a { Dyg Ry (X) *¥gq (8,8) + Dy Ry (x) Y, o(e.8)

+ Dgo R (X) "Yaq (8F) + Dy 4-Ra(x) Y, 4(eF)
+ Dy _4Rq(r) -Y4,_4(e¢)}. (74)

Evaluating the D's from Equation 73, one obtains:

§ N7t RGY(0,0) - 4T /J5 - RyY(2,0)

+ 7 0 R Y(4,0) + N33R /342 ¢ Ry [Y(4,4) 4 (4,-4) ]}

(75)

, the terms associated with the spherical



narmonic, Y({0,0), is svherically syvmmetric and hence does not
affect the relative separations beiween the energy levels (7).
Ancther wav of expressing this is to say that the Y(0,0) term

contributes equally to each diagonal matrix element and does

nct contribu

relative separations are of

neglected an

—a {

o
GLE

C.

Two elec

te to the off-diagonal elements. Since only the

interest, this term may be

d the effective potential in its final form is:
-4 J7/J5

+ V357 /32 RylY(4,4) + ¥(4,-2)]} (76)

Matrix Elements Due to the Ligand Field

tron integrals as a sum of one electron integrals

For the

field cases,

h

orm

where the v

functions, ¢,

or

ligand field effect in both the weak and strong

the matrix elements tc be evaluated are of the

(77)

functions are

I

(78)

-2 - o - : .
d” coniiguration, the "basic" oroduct function,

is a preoduct of two one-electron functions, that is,

le.) ) e,y () (79)

=

g;



vherae (L) and (2) refer to elestrone onoe and twc. Thus
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The twe electron integral, g, v ﬁk dt, may e simplified
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This total orocess may be illustrated by a simple example.

Consider the matrix element,

Hll = l kv \l dT (81)

where ', 1s a linear combination c¢f a product cof two cne-

electron functions, such as,

[

-~
QO
N

~

H
w3
]
g
O

~ a5 - A 3 = — &
crxtains the matrix element:



Drj

—_ N . L .

= T (v(L) + V()1 dr (s

Mo ) 12, @ 4z, -) Bz, -2y (17w

I
N

v ) [2,2 P 2,2) @) 4 g2,-2) B 2,02 (20
aty 4, (85)

5 112,27 M 12,2 v+ v 12,2 P 2,2) (2]

dt- de

S

+ T2, 20 M) 2,29 (2 ] vy 4v(2) [[2,-2) (D2, -2)(2)]

dTl dTZ

= T2, -2y D) g2, 22y * 2V yyav2) [J2,2) (P 2,2) (2))

drl de

dTl drz
(86)

th

or the first term:

Mz, M 2,2)" @)y vyavi2) [12,2) P 2,2) (2] ar, ar, =

Ml2,2)* Dvyl2,2) Mar, 2,207 P 2,2) Fag,

N2, @vyi2,2) @ar, T2,2)%1) |2,2) (3 dr -
- : (&7)
= 12,20 vz, 2) Par, + |

~

[2,2)" P y(2))2,2) (2 ar



60

where N is the normalization factor, Rp(r) is the rgdial part,
and Y(£,m), the angular part in terms of the spherical har-
monics.

In some applications of ligand field theory (4, 23, 26)
the radial parts of the zero order basis functions remain un-
specified when dealing with both the ligand field and the
electronic interaction effects. It has been decided that in
this thesis, the same procedure will be followed in regard to
the electronic interaction. However, for the ligand field
effect, it is convenient to follow the examples of Ballhausen
(27) and Maki (28, 29) and to express the single electron wave
functions in terms of Slater orbitals (30). These orbitals

can be expressed as:

in,g,m) = N-r (0*-1) o-Z*r/n*ag <Y (£m) {90)
where: N is the normalization constant for the radial por-
tion

Y(£,m) are the spherical harmonics
n" is the effective principal dquantum number
ap 1s the Bohr radius equal to one atomic unit
Z* is the effective nuclear charge.

For the (5d) orbitals of the platinum(II) complexes, n*= 4 and
z*= 7.55. If one defines f = z*/n*, then f = 1.8875. Normal-

ization of the wave function, as shown in Appendix B, yields:

299%
I5,2,m) = ( 8,f ] r3.e~frv(2,m) (91)

Since this thesis deals only with the 54 orbitals, it is



(w1

12,-2)* (D yeny12,-2) () gv. = 12,-2) (D y(2) [2,-2) (&) at,

while for the middle two terms, one cbtains such expressions

12,2)(1)V(l)12,-2)(l) dty f}:,z><2>;z,_2)(2> dt, = 0.
T i

Hence:

Hyp =7 [riznz)*(l)V(l)IZ,Z)(l)drl

v 12,2 @ v2)12,2) @) aq,

+ M2, 22 Wyy2,-2) (D at,

N

v N12,-2)" @y (2)12,-2) () ar,)
(88)

Thus, the initial matrix element is reducted to the sum of

one electron integrals.

2. The single electron functions

The zero order basis functions, ¢i, are products of

single electron wave functions. A single electron function

48]

can be exvressed as a oroduct of a radial part and an angsular

nart. That is, a single electron function has the form:

bn,2,m) = NorR_(x) Y (L,m) (89)

I



|2,m). Furthermore, in the case of a voroduct of two one-
electron functions, |i,m

2

it is convenient to write this product as (m,m') where the

since g = 2 for both,

first wvalue in the parenthesis refers tc electron one and the

second to electron two.

3. One electron integrals

From the discussion in section IV-C-3, it 1s apparent

that a matrix element involving the ligand field resolves into

a sum of one-electron matrix elements of the form:
e m)* vIF Jo,m ydr
1 Tata b

Upon substitution of the functions:
Ilama) = N-Ra(r)-Y(ﬁama)
’lbmb) = N'Rb(r) 'Y(lbmb):
as given by edquation 91, and the potential, VLF, as given by

Equation 66, one obtains,

n * LF -
|£ama) V| 2ymy) dT = ﬁzm Dlm'GE(a’D)'JIm(lamalbmb) (92)
B3 <

where Jgn (£ mye, ) = the angular integral =
Ny Y V(s Y V(s at ed (93
X \Eama/ ‘("-bmbl *'\“m) - = er‘ \J‘))

Gg (a,b) = the radial integral =

r

-quq Ra {r) *Ryp(r) "Ry (r) -dT, (°

4

=

)



2. The angular integral, Jﬂm,(gamaibmb) = Jgm In cr-~

4

e

2r to evaluate the anjular integral, recourse is made to the

£

t

fact that the product of two svherical nharmonics can be ex-

vanded in terms of a sum cof spherical harmonics. Thus:
* 7 (8 — < ey * [
Y (Iama) Y (£mp) = Z Ko 7Y (g+m")
i,m

and the angular integral becomes:

r

Y*(fama)-Y(fbmb).y(im)d,re¢ -

[a)

i

S Ky Y (2'm')-Y(4m)drgy (96)

Because of the orthogonality relations of the spherical
harmonics, the integrals on the right hand side vanish unless
£ = £' and m = m'. Hence the angular integral, Jim(ﬁamalbmb)’
is seen to be identical with the expansion coefficient, Kgp,
of Eduation 95.

&4 vorocedure for determination of these coefficients is

given in Section 4.6 of the text by Edmonds (31) and is dis-

cussed in detail in Appendix B-2. In particular, it is found
that:
+ £, 2
I3 02
Ky = 0, unless Mg + my, = m
f_+ £ 4+ £ = even



Since ¢ = {. = 2 for a-electrons, and since i+ wac »nrev

established that m = 0, + 4, the only terms needed in the

,LF

expansion cf V are those with £ = 0, 2, 4, as in the formula
by 3 3 2>

~

the effective potential c¢iven by Eguation 76, Further-

th

O

[a

more, explicit application of these same restricticns shows
that the single electron integrals given in Tarkle 4 are th
only ones which are different from zero.
Therefore, there are only seven products of spherical
harmonics that need be evaluated py the techniques given in
Appendix B-2. The expansions for these seven are given in
Table 5. Actually, the harmonic, ¥(0,0), and its coeffi-
cient, appearing in this table are not needed for reasons
discussed in section IV-B.

Evaluation of the non-zero single electron integrals,

given in Table 4, by means of equations 92, 76, and the values

in Table 5, leads to the results:

r *_ LF .

Qo= ' 12,+2) v 12,+2) a7 = — % G, (a,b) + % G4 (2,b). (97)

Q1= pl2 +1) v 2,41) gt = = 2 ] 2 1

21T Pty Pt at = 7 Gy (a,p) — = Gy (a,b). (98)
f . % LF . 4 . 1

Qo= |2,0) v |2,0)ar = = G, (a,b) + 1T Ga(a,b). (92)
2 *_ LF -y - 5 .

By, o= 12,22) VT 1 2,%2)at = Z G4(a,b) . (100)
It is seen that only two radial intecgral

N
Z

G, (a,p) need be evaluated.
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Table £.

LN
%

1

O

~ -

Vi@ el LA Cowlellls

cwed values of m and i Zor ncn-zerc sin

Allowed wvalues

£ values

of m required in Desig-
my My, m expansion Integral nation
0 0 0 O: 2: 4 IZ)O)*VLF|2,O)C3.T QO
+1 +1 0 0, 2, 4 12,+41)*LF|2,+1)ax Cy
+2 +2 0 0, 2, 4 12,+2)*EF|2,+2)ar 0,
+2 2 +4 4 [2,+2)*vF 12,%2)at B, _,
b
Table 5. Expansion of products of spherical harmonics
Product Expansion
* * * N/-S_ *
Y (2,2)Y(2,2)=Y (2,-2)Y(2,-2 Y (4,0)— Y (2,0
(2,2)Y(2,2) (2,-2)Y(2,-2) 14J;(,)7ﬂ_—(,)
1 *
+ 5= Y (0,0)
NG
(2,1)¥v(2,1)= Y (2,-1)¥(2,-1) - Y*(4,0)+ === v*(2,0)
Y(:)Y(:)“Y(:—)Y(:“) 7~[“;_‘[_‘ > +l4-\[? ()
1 *
+ ZN[T—;Y (0,0)
3 rs
* N2
¥¥(2,0)¥(2,0)= 707 ¥ (4,0)+ 2= ¥ (2,0)
1
. L %
5
v¥(2,2)Y(2,-2) 2 v*(4,-4)
V14
% B =
Y (2,-2)Y(2,2) 22 v (4, 4)

N 147




>, The radial intesrals, CG;(2,k) and B;{(z2,2) Exolic-
it Zcorms for the radial integrals, G, (a,b) are cbtained by
substitution of the radial parts, NRz{r) and NRb(r), from
Equaticn 91 into the definition given v Equation 94, Such
substitution vields:
Gf(a,b
9.9 - 2+1
~-4 29.?4 : (r2e™F) (r3e7EF) (ri/r> ) rldr (101)
a8l i <
As 1indicated above, the only values of £ which need be con-
sidered are £ = 2 and £ = 4, These integrals are most easily
evaluated by a change of variable from r to x, where x = fr.
It is thus possible to define two integrals, G,(X) and G4(X),
such that:
. -gqf
Gy (a,b) Tg. 55 "Gy ((X) (102)
cpla,b) = =9 -6, (x) (103)
The techniques for evaluating these integrals are outlined in
Apvendix B-3. The resultant expressions, given in Table 6,
are in terms of ¥ = fR, where R is the "effective radial

distance",
In
divoles

e

a

in atomic units,
this thesis,
and not point charges.
oriented
central ion,

-B,E (a)b)

from the charge g to the electron.

the ligands are considered as voint
If one specifies that the

such that the negative ends are directed

rt

as shown in Appendix B-3, cne must

for Ggz(a,b) in eguations 97-100, where:
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point charge integrals

G, (%)

Gy ()

[1771.875 - e~ 2¥(1.25%% + 6.75%8 + 41.25%’

+ 470.625%° + 153.75%° + 1181.25%% 4+ 2362.5%°3

+ 3543.75¥° + 3543.75X + 1171.875) ]

11

[58471.75 - e~2X(2.25%x** + 15.75x*0 + 82.12

+ 371.25%° + 1485%’ + 5197.5%° + 15592.5%°
+ 38981.25% + 77962.5%3 + 116943.75%2

w

+ 116943.75X + 58471.875) ]

Point dipole integrals

9

5X

X)

B, (%)

-

"5

%JH

] 8

[-5315.625 + (e~ 2%X) (25x%0 4+ 10%x° + 38.75%
7 -

+ 142.5X° + 480%x° + 1421.25%5 4+ 3543.75%%

+ 7087.5%3

12

[~292359.75 + (e”2%) (4.5%%?% + 18xtl 4 85.5%

S

+ 414X° + 1856.25}{8 + 7425%7 + 25987.5X6

+ 77926.5%° + 194906.25%% + 389812.5%3

+ 584718.75%X% + 584718.75% + 292359.75) ]

10

+ 10631.25%2 + 10631.25X + 5315.625) ]
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with X = £R and R 1is the "effective radial distance", and u
is the "effective dipole mcment". The expressions for BZ(X)

and B4(X) are given in Table 6.

Since this thesis concerns the d8 configuration, it is
the potentiél with respect to "electron holes" that are of
interest. Therefore, the sign of the potential changes and
one must now substitute +B£(a,b) for Gf(a,b) in Equations %7-

100, where

£2

Bg(a,b) = 557y

By (X), (105)

with

By (X) = &= Gy(X).

From Equations 97-100, the non-zero single-electron
integrals for the a8 configuration in point dipole sguare-
planar symmetry are given in Table 7. From this table, it is
seen that the integrals are functions of two parameters; the
effective dipole moment, y, and X = fR = 1.8875R, where R is

the effective radial distance.



Tablile 7 The non=—-zero sinyie electron matrix elements
Designation Integral Matrix element
=2
{“ L‘L*’ ;_ v —_— ﬁ > b
Q9 "12,00* vIF12,0)ac 78.75 (7 24 (X) = B, (X) ]
r * 28,0 —25,00)
Q, H12,+1) 12 +l)d1‘78 75 a4 \n~ 5 By ]
r * JLF U.fz 4
Q, 12,+2) v [2,+2)ax 75773_'[14 By (X) + = B, (X) ]
2
uf”™
B, 5 []2,i2) v 12,7 2)dr F8.75 [ 6 Bg (X) ]
-
a

These integrals are for the d8 configuration for point

dipoles whose negative ends are directed toward the central

ion.



FOR SQUARE-DPLANAR SYMMETRY

A. Weak Field Functions

1. wWave functions of the free ion

As has been indicated, in the weak field case the basis
functions are constructed in terms of the gquantum numbers
S,L,J, My from the antisymmetric products of the single elec-
tron functions. Prior to consideration of the ligand field
potential, the derivation of the wave functions follows the
techniques for the wave functions of the free ion. For a

1
a2 or d8 system the possible states are, Gy 3F4, 3F3, 3F2,

lDz, ?Pz, 3Pl, 3?0, and lSO. The methods for deriving these

states and the wave functions associated with them are given
in Appendix A. The wave functions for the states are given in
Table 8. As is seen from the table, the degeneracy of each

J-state is 2J + 1.

2. Wave functions for ion in the ligand field

If the wave functions of the free ion were used directly
as basis functions for the ligand field problem, a single 45
by 45 matrix would result. It has been shown by group theory
that placement of the free ion in the votential of the ligand
field removes the 2J + 1 degeneracy of the states. Further-

more, it was indicated that the irreducible representations
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d< free ion wave Ifunctions
.
J.J)
function Twc-electron product function

H

1 f ] = . ~
Sz V3 (2,00+48 (1, 1)+ '3 (0,2) ] [az-Fa]

1 [(2,-1)+ VB (1,00++8 (0,1)+(-1,2) ] [as-Ea]
n28

7= [(2,-2)44(1,-1)46(0,0) 44 (-1, 1) 4(-2,2) } [a-5a]
== [(1,-2)+ B (0,01)+ B (-1,0)+(-2,1) ] [ap-pa]
7..‘ [ V3 (-2,0)+ 8 (-1,-1)+3 (0,-2)1[ag~-2al

n 28

> [(=2,-1)+(-1,-2) ] [aB-za]

5
.

73 [(-2,-2) 1 [as-2a]

A‘

1
Ax V2 (2,00-V3 (1,1)+ /2 (0,2) ] [as-pa]

l i = )

5 [ Ve (2,-1)-(1,0)-(0,1)+ V& (-1,2)1[aE-Ea]

1 ) S
= [2(2,-2)+(1,-1)=2(0,0)+(~1,1)+2(-2,2)  [ac-23c]
MES [ 5 (-2,1)-(-1,0)-(0,01)+ V5 (1,-2) [ai-2a]

1 -
L J3(=2,0) - J3(=1,-1)+ <2 (0,-2)  [ai-2a]



2%

[ o

o
tion Two—-electron prcduct function

150(0) = P [(2,-2)=(1,=1)+(0,0)~ (-1, 1) 4(~2,2) } [ak~za’

3P (4) =

F, (2,1)-(1,2) ] [aa’

1
75!
3Fa(3) = J3 [(2,0)-(0,2) 1 [aa] +% [(2,1)-(1,2) 1 [aE+Ea]
8
N3

3P, (2) = 2V3 (2,-1-42 (0,142 (1,00~ V3 (-1,2)][eal

+ f——_-— [(2,0)-(0,2) 1 [af+Ba] + —I— [(2,1)=(1,2)] 8]
28 m ) P) rigp

1

3F4(l) = 5 [(2,-2)+2(1,-1)-2(-1,1) - (-2,2) ] [ac]
+ ﬁ— [3(2,-1)++6 (1,0)-6 (0,1)-3(-1 »2) ] [az+ba]
) ,
= [(2,0)-(0,2) 1 [EE]

3?4(0) =.-T'__114o [3(%,-2)+ 3 (0,01)- B (=1,0)-3(~2,1) [axa’

+-

= [(2,-2)42(1,-1)-2(-1,1) = (~2,2) ] [a2+423]

4
4

Fizs 2(2-D+VE (1,002 (0,1)-3(-1,2) 1[5

+



ction Two-electron product functiocon

3?4(—1) = N .2.— [(O,—z)—(—Z’O)}gg

+ Tiio 3(1,-2)+ e (0,01) - NS (-1,0)=-3(-2,1)][ac+za ]
1 Caq
NET [(2,-2)+2(1,-1)-2(-1,1)-(-2,2) ] [:&]

1 .
Fy(-2) = 75p [(-1,-2)-(-2,-1) ] [aa]

J3

T = [(0,-2)-(-2,0) ] [ad+ba]
N 28
+K£§— V3 (1,-2)+ 2 (0,-1)- V2 (-1,0)
- + _ - _ O _
56 [ ? v s s
N3 (-2,1) 1[38)
3 L o el 3
Fal=3) = 7 [(-1,-2)-(-2,-1) I [ep+cal+ 7 [(0,-2)-(~2,0) ] [&2]
> 4) = E= [(-1 2) 2,-1)][p=1
F4(—;) NG [(=1,-2)-(-2,-1) [ (5]
3. .
£‘3-
. L T
F3(3) =\f*§ ‘.(2,0)-(0,2)]{@3] + 4 {(1,2)—(2,.).)}[0‘,#-}-}_,:1\

T2 = aE L3 2,-10+ V2 (1,00-42 (0,1)- V3 (-1,2)] [aa)

- P 1 . N
= 1(0,2)-(2,0) [ {ag+2al+ NES [(1,2)-(2,2)1[22]
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Table ¢, (Continued)
25+
5 (2 5)
function Two-electron product function
P31 = By [(2,-2)+2(1,-1)-2(-1,1)-(-2,2) ] [aa]
1 —
T 7 (N3 (=1,2)++2 (0,1)-~2 (1,0)~-~N3 (2,-1)]
N 240
N5
ac+ea] 0,2 2,0 vl

1 -

3p3(0) = = [ V3 (1,-2)+ V2 (0,01)-+2 (-1,0)-+3 ¢2,1)][ac]

+ 55 [V3(-1,2)+ V20,07 (1,00- V3 (2,-1) ] [£8]

3, (-1) =¥3 [(0,-2)-(-2,0) Jaz

V240 [ V3 (1,-2)+ 2 (0,01)-2(~-1,0)-~3(-2,1)]

1

(aB+a] +J’Z)’ [(~2,2)42(-1,1)-2(1,-1)=(2,-2)1[&8]

F3(-2) = F5 [(-1,-2)-(-2,-1) I [aa] + 5= [0,-2)-(-2,0) ] [aB+Ea]

L [ J3(-2,1)+42(0,01) - V3(1,-2)][55]

1
PPo(2) = vE [V3(2,-1)+V2(1,0)- J2(0,1) - V3(-1,2) ] [aa]



Table & (Continued)
25+1 )
.L-J(MJ) -
function Two-electron product function *
35‘2 (2) {Continued)
+ T8z [(0,2)-(2,0) ] [ef+3a]
NE
PFo(1) = 1 [(2,-2)42(1,-1)=-2(-1,1)=(~-2,2) ] [ac]
70
1 -
+ s (V6 (-1,2)+2(0,1)-2(1,0)- J6(2,-1)][ar+ba]
N5 -
+\[ﬁ- [(2:0)"(0:2)}[95]
Fy(0) = L [ VT (1,-2)+2(0,-1)-2(-1,0) - NE(-2,1) ] [aa]
70
N3
NG [(-2,2)+2(-1,1)-2(1,~-1)-(2,-2) ] [aB+Ba]
NE)
+ Fos [ V3 (2,-1)+2(1,0)-+2(0,1)- N3 (-1,2)][E8]
3, . .. _5 ]
r2\"’-L) J21 [(O,~2)—(—2,0)][CLCLJ

1 g

== 5 (-2,1)42(-1,0)-2(0,-1) - ¥6(1,-2)][ac+5a]

]



Tania

-

u

(Continued)

2s+1
Ly (M)
function Twe-electron product function
3 5 . .
Fo(-2) =~r2_ (-1,-2)-(-2,-1) ] [ac
s T s
+ 210 [,ff;— —2)+ ﬁ(o:_l)—ﬁ(—l:o -’\fq( 2:]—)}[55}
3?2:
3 Pl =, ~ ~ ~ s = -~ 17 9
2, (2) =:___31L_O [ NZ2(2,-1)+~N3{0,1)-~3(1,0)- N2({-1,2)][aal
3, (1) = _1L
2, (1) T [2(2,-2)+(-1,1)-(1,-1)~-2(-2,2) ] [aa]
1
+ [\2(2 ~1)+43(0,1)- ¥3(1,0)- N 2(-1,2) ] [aB+Ba]
3 1
P,(0) = 75l N2(1,-2)+43(-1,0)- ¥3(0,-1)- N 2,1) ] [aa]
332:[2( ,=2)+(-1,1)~(1,-1)-2(-2,2) ]} [ag+al
*Jﬁw‘(z 1)+ N3(1,0)- V2(-1,2) ] [88]
3 _ l i > 1 - oo o =
P2\_--1- _\/T‘.-b_ L .\"2(.1.,—4)-‘-1\,‘_;(-;,0)—-r\/j\o,—l)—kZ( 4)*) [CE+Ea ]

[2(2,-2)+(-1,1)-(1,-1)-2(-2,2) ] [EE]

+
i
(o]



~J

(o))

Table c¢. {Continued)

25+1 L)

function Two-electron product function

=

3?2(-2) = e {\'7(1’—2)1'_“‘,?(—130)‘\G(O;-l)—ﬁ(—Z,l)}[;}@]

‘,\
p

3? : h
3 1 - —L_ - 4
P (1) = 755 [2(2,-2)+(-1,1)-(1,-1)-2(-2,2) ] [aa]

1
+ Tag [ N2(-1,2)+¥3(1,0)- ¥3(0,1) - V2 (2,-1) ] [aB+Ba]

31’1(0) = r-l—o—[J_(l -2)+ J3(-1,0)- 3(0,-1)-N2(-2,1)][ca]

-J3 _ -
\[.2_0_@/‘( -1,2)+~3(1,0)-43(0,1)- ¥2(2,-1) ] [BB]

Ppy(-1) = % (N2(1,-2)+~3(-1,0)-~N3(0,-1)+N2(-2,1) ] [ap+Ba]

L [2(-2,2)+(1,-1)-(-1,1)-2(2,-2 ]
+m[( )+ ( )= ( ) =2 ( )] [Be]

3 1

P, (0) =J3__o[“2(1 -2)+ J3(-1,0)-N3(0,-1)- ~N2(-2,1) ] [aa]

1 . .
+ r’66 L2(—2,2)+(l,-l)-(—l,l) "2(2:_2) ] [Gf>+f>a]

NG

+ == [2(2,-1)+ ¥3(0,1)- ¥3(1,0)- V2 (-1,2) ] [£8]

N
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one considers the svherical harmonics in terms of cartesian
coordinates and takes such linear combinations of them as to
obtain elements which transform according to the irreducible
representations of the group. Then the combinations of the
|S,L,J,MJ> functions which correspond to those spherical
harmonics will be basis functions for the same irreducible
representations.

There are five irreducible representations of the rota-
tion group Dygy. Hence, by suitable choice of the wave func-
tions, the single large matrix can be reduced to five
smaller matrices. The five irreducible representations are:
rl = Ajy; r2=A2; r3 = By: f; = By; and fg = E, where the
notation follows that of Bethe(l) and the A,B,E, notation
follows that of Mulliken (2). The f; or E irreducible
representation is doubly degenerate; the other four are non-
degenerate.

As shown in the section on group theory, the 2J + 1
degenerate representations can be reduced to their irreducible
representations by means of Table 3. The irreducible repre-
sentations for the various J values of interest are given in
Table 9. Thus, for example, linear combinations of the wave
functions associated with the state lDz, with J = 2, can be
made such that one combination is the basis function for Fl,
another combination transforms according to F s another

according to F , and the remaining pair are basis functions
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o veyn = +
t etermined from the

3
o3
®
o)

into which states ar
characters of the reducibkle 2J + L representation. And
finally, if +¥a and vy are basis functions for irreducible
representations, since the ligand potential, V, must belong

to the irreducible representation Aj;, the matrix element
~
‘ 7; v ?B dt = 0 unless FA = FB’ that is, unless vp and yp
;re basis functions for the same irreducible representation.
Thus, it is possible to reduce the size of the matrix which
needs to be diagonalized by taking such linear combinations of
the 2J + 1 functions associated with each J-state so that the
combinations form basis functions for the irreducible repre-
sentations of the group. Such functions are frequently termed

"symmetry adapted" functions. The functions given in Table 8

are, in general, not symmetry adapted.

3. Construction of symmetry adapted functions

There are several ways of obtaining the proper linear
combinations for symmetry adapted functions (32, 33). Appen-
dix C shows that a convenient approach is to consider the
IS,L,J,MJ> functions as having an angular dependence which cor-
responds to a spherical harmonic Y(J,MJ). That is, the appro-
priate linear combination of |S,L,J,M3)> functions required to
form a basis function for an irreducible representation cor-
responds to that combination of spherical harmonics, Y(J,MJ),

which form a basis for the irreducible representation. Hence,



-

9]
(9]
[
)
)
9
{
)

3
o

'.J.
s
e

Irreducible representations

J=-value Bethe notaticn Mulliken notation

J =0 rl Al

Jg =1 r, + T A, + E

J =2 f'l+r3+l'4.l"5 Ay + 3By + By + E

J =3 I+ G+ +Ts+ [, A, +B1+B8y, +E+E

J =4 R+NR+L+T5+Ty A; + Ay + Ay + By + B,
+F5+F5 +E +E

for the doubly degenerate FS.

By application of the techniques outlined in Appendix C
it is a simple matter to show that the transformation proper-
ties of the coordinates x, y, and z, and the products of
coordinates such as xy, Xz, VZz, x2—y2, etc., conform to cer-
tain irreducible representations. For example, in square-
planar symmetry, the coordinate z belongs to the irreducible
revresentation rl. Similarly, the pair x and vy, or the pair
xz and vz, belcong to the reoresentation F5. The product xy

belongs tc F , and the product x2—y2 to f3, and so cn. A

e

sample set cf such functions is civen in Table 10.

It is vpossible to present the spherical harmonics in

terms of cartesian cocrdinates just as easily as in terms of

soherical cocrdinates. Table 11 lists the normalized



nics uo tc J = 4, in terms oI sonerical and
cartesian cocrdinates., Comparison of the reoresentation of
the spherical harmonics with J = 2 with the sample set in
Table 10 shows that Y(2,0) should be the basis function for
rl' Similarly,
1/ NZ [¥(2,2) + Y(2,-2) 1= 15/ NGar [x2-v2]

and hence this combination shculd transform according to F3.
In likxe fashion:

1/i JZ [¥(2,2)- ¥(2,-2)] =15/ V647 [xv], hence [,.
And finally,

1/ 2 [v(2,-1)-v(2,1)] =./15/ J167 [xz]

hence, r5.
i/ N7 [y (2,-1)+Y(2,1)] =J15/ V167 [vz]

Therefcre, the linear combinations of the lS,L,J,MJ> functions
which vield symmetry adapted functions belonging to the appro-

oriate irreducible reoresentations for lD2 are:

Table 10. Coordinate functions which are bases for the D4
irreducible representations

Function Corresvonding irreducible representa-
- tion

[3(z)2-1] r,

[*-v?] ry

[xy] r

o3

([ (xz), (vz) ]




a

Svherical

harmonic

Svherical coordinates

Cartesian coordinates

pet

2 7 2 J7
A 3 [ + l@ - f‘_ I = )
Y(i,+1) it ‘vgé.sin e e *’2%:‘ (x + 1v)
i oY i r
Y(1,0) ~ 3 cos 6 v 3 z
JaT Jarr r
Y(2,+2) N 15 53_'12 e ei i2¢ N 15 (X + iy )2
32T 327 T
- .3 . + i -
Y(2,+1) %—NIQgg sin & cos 8 e— ¢ +N15 (x + iy)z
Br Ve .
r
rs N
Y (2,0) \ﬁ"eF, (3 cos? e-1) JTZ—F [3(%. 2 -1]
- = N . 3¢ -V 35 fx + ivy
Y(3,+3) ¥V 33 3 T + iy
' fear St © € T a3
J 105 2 + i2¢ JI05 (% + iy)?2z
Y(3,+2) sin“@ cos 6 e— Crowe —
~ 327 J327
T I'3
Y(3,+1 T~ _21 sin e(5 cos?e =N 21 (x 4+ 1iv) z 2
(3,%1) J64r ( . 16 t [Bdr = 5(D) -1
—l)e:
f _ J
Y(3,0) tﬁﬁ;r (5 C0838 - 3 cose) lgv [5(%—3 - 3(§J
" i
a

The spherical harmonics employed in Table 11 correspond
to those used by Wigner (30) and Condon and Shortley (6).
There are several wayvs to define the spherical harmonics and

14 Y A
cauvtiin

functions used by varicus authors.

-y

[l o

t be exercised in comparing the symmetry adapted
Detailed comments

covering the spherical harmonics are civen in Appendix B-1.
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Svherical

harmonic Spherical cocrdinates Cartesian coordinates
312 + i4 g
Y (4,+4) ”,?15 sin4 8 e— ¢ N 315 (x i_iy)4
5z Blm \— v
- = 3 +13 - — .
v(4,+3) +~3L15 sin”e cose e ¢ +N315 (x i_lY)3 z
J6dr J64+ - T
as - 2 2 4i20 N 45 [x + iv\?2
Y4, i2)'UT%%F (7 cos“e-1)sin e~ 78+ ;‘ Y
z,2 ]
7(r) -1
-~ 45 3 rip - a5 (x £ 1iv
1 NG _ : g v 45 1Y\ z
Y(4,+1) + Ny (7cos”©-3cos8) sinee + J64W( = ) -

[7 &) 2—3]

3 2

16

4 2

Y (4,0) (35 cos™® - 30 cos
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]
["p,(2)+7 D, (-2) ] = 1/WZ[10,2,2,2> +]0,2,272> ]

w3
]
’_1
~
z.
N

21 ] - — ;
/12 [ p,(2)-"Dy(-2)] = 1/4 J2110,2,2,2> -10,2,2,-2> 1

-1
1/ V7 [Tp,y(-1)="py(1) ]

g
i

l/ Nr-z—{loyz:z:_l> _'012)2:l> ]

i/N21[0,2,2,-1> +]0,2,2,1>

[

(V2]

i/ \{‘2_ [lDZ(‘l)-‘FlDz(l)}

e

-

It is important to notice that all states with J = 2 have

analogous combinations. For example, for the 3F2 state:
3 =

[ =°3r,0) =11,3,2,0>

= 1/42 Pry@+7r,(-2)] = 1/42011,3,2,2> +11,3,2,-2) ]
[, = /147 PFy(2)-2ry(-2)] = /1472 [1,3,2,2) -11,3,2,-2) ]

1/ N7 Pry(-1)-2Fy(1)] = 1/ 42011,3,2,-1> ~11,3,2,1> ]

i/ N2 [1,3,2,-1> +11,3,2,1> ]

i/ N2 [3F,(-1)+3F, (1) ]
A similar set is obtained for the 3P2 states.

Table 12 gives the appropriate combinations of the
spherical harmonics which belong to the irreducible repre-
sentations of the groupm Da. From this table, the correct com-
bination of the states given in Table 7 can be made which
vield the symmetry adapted weak field functions. It is im-
portant that in constructing the elements of the sets belong-
ing to degenerate revoresentations such as F5 that one heed
the precautions given in Avpendix D-3. The weak field basis

iven in Tabkle 13,

functions are

€8]



Taple LZ Ceomzinaticn oI svnerical narwmonics which form hasis
functions for the irreducible revresentations of D,
Reoresent- Corresponding Coordinate
J value ation spherical harmonic function
J =0 . Y (0,0) a constant
P
S o= 1 5 Y (1,0) (i—
5 L[y (1,047 (1,-1)] Z
r’? —
l ~
7= v, -v,-D] ~ =
J =2 1 Y(Z,O) r3( -1]/r2
; J‘z" [¥(2,2)+¥(2,-2)] [x —yz]/r
, S [v(2,2)-¥(2,-2)] sy /2
= i2
5 L o[v(2,-1)-v(2,1)] /x2
> ﬁ s ) Xz/T
—13 [Y(2,-1)+Y(2,1)] vz,/r?
N
- - -, 2
7= 5 ¥(3,0) [5(5° - 3®]
r
1 s 3
3 N (v (3,2)-Y(3,-2)] xyz/r
L [v(3,2)+¥(3,-3)] <2 2y /y3
4 G s s ) z(x4-y“)/x
- ]
1 — [¥(3,3)+¥(3,-3) ] v (¥2-3%2) /x3
> iW2
l ,‘1 (3 3)_'-’ 3 _3)" «r ?V2—3V2 -v-3
s Y Y (3, ; X(3Y“-3X4) /x
IT & [v(3,1)4%(3,-1) ] v[5(82-1]/r
5 N R A Sy T4 L2V —=u/ 1t
= ¥3,10-¥3,-1)] 2[1-5(2)2)/x




Represent- Corresponding Cocrdinate
J wvalue ation spnerical harmcnic function
I 1 .
J =4 1 7 @, -] xtex?rliyt) ed
II 4
N Y (4,0) [35(5)%-30(H %+ 3]
5 z [v(4,4)-Y(4,-4)] XY[XZ—Yz]/r4
iN2
1 e , 2_y2 zy 2 2
= 3 Y - -V 2y "~
3 = (v(4,2)+Y(4,-2)] [x ][7(r) 1]/x
3 A 2 2
4 —— [¥(4,2)-v(4,-2)] [x¥][7(v) -11/r
is2
I 1 2 .29 .4
5 7= (Y(4,-3)-¥(4,3)] (xz] [%x"-3v°]/x
1
5 (Y43 (4,3)] [vz][v®-3x2]/c%
IT L [v(4,-1)-v(4,1)]  [x2][7(®)2-3]/r2
5 = FEs- 1,1 \ = r

[

[Y(4,-1)+v(4,1)]

=
E
N

[vz][7(2)%-3]/c*




Svmmetry adavted free ion functions
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75 L6 (847G, (-4) ]
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1NN
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)
I

G, (0)
T ('p,) = 'p,(0)

lSo(O)

l;
e |

s

—

I

n
(@)

~

1]

3P 3 _ 3 3
[ Cean = A P+, (0]
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Symmetry adapted free ion functions

rﬁ nmatrix
2
17, (*e,) = 7 [, (2)+ 6, (-2) ]
lr 1 7 1 1
D = _~ ["D5(2 D, (-2)]
L ('Dy) A Upa@+%n, (-2
[ Cry = & R @477, 2]
. ey = £ Pry@+75,¢2)]
3
ey =L P47, -2)]
2
3 3 - 1 3 3
[, ey e G NCENEY

T, e = == [ley(2)-1e,(-2)]
Todoy = AUy
Ty Cry) = 13_2_ [*F,(2)=2F, (-2) ]
ToCry = = Pry@- 2]
TCep =i P72, 0)]
3P (3F3) =V—£2— {3F3(2)—LJF3(—2)T
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Symmetrv adapted free ion functions
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B. The Weak Field

t=g

Matrix Elements

As has been indicated, the formation of the symmetry
adapted functions results in five matrices in the case of
square planar symmetry. Fl has nine basis functions, P2
has four, r3 has six, r4 has six, and [; has ten. Because of
the inclusion of spin-orbit coupling, there are off-diagonal
elements connecting the singlet and triplet states. This is
the reason for the large size of the five matrices.

Each matrix element is the sum of three effects; i.e.,

f * - * 2
vi# v dr-fv/(z e?/r )y, ar
A B A -
v i3 3B
+f i, 4 vgar + [ vi v gy ar (110)
1 (o)

1. Electronic interaction

It would be possible to evaluate the matrix elements of
the electronic interaction in terms of the Slater-Condon
parameters by the methods outlined in Appendix D. Or, since
the weak field functions were chosen so that the matrix ele-
ments are diagonal in the electronic interaction terms, the
methods outlined in section 27 of Condon and Shortley (6)
could be used. Even this is not necessary, since the results
for the d2 configuration are listed on page 206 in Condon and

Shortley (6).



action elements are cgiven in terms oOf
two parameters, F, and F4, known as the Slater-Condon param-
eters. These parameters are actually integrals very similar
in form to the integrals G, and G4 which result from the
ligand field. However, the values of Fs and F, are fre-
quently determined from experimental data, particularly from
emission spectra. In this thesis, F, and F, are considered

as parameters to be determined.

2. Spin-orbit coupling

The coupling operator may be written:

—_ = -

Ze(r) L8 = e LA+ () L,04, (111)
1

and, assuming the parameter £(r) is the same for both elec-

trons:

>
T E(r)d 8 =ald (DI_(V) +L (WL (1) +I (200 (2)
1

@8 @] + 2wl + L @d @1 a

where a = £/2
f;_= The "step up" operator for orbital angular momen-
tum

L+ iZ&

X

I’_ = The "“step down" operator for orbital angular

momentun

=d - il

X Y
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,1? = Mheae "a+en ' Armsratrnr for ornin ornoanlov mae st

b+,

.2 = e "step down" operator for spin angular momentum

g, -4

However, the tedious calculations for the weak field functions

are not necessary since the matrix elements for a2 are given

11

in Table 1 of Condon and Shortley (6).

3. ILigand field effect

As has been stated, the ligand field matrix elements can
be expressed as sums of four single electron integrals, Q2,
Q1, Qq, and BZ,—Z' The process of obtaining the correct
combinations is somewhat lengthy and there have been methods
evolved which circumvent the actual construction of the wave
functions. One such method, developed by Bleaney and
Stevens (21) is discussed in Appendix B. However, the
method itself is somewhat involved and in the case of the two
electron functions, it was felt that the more direct approach
was just as rapid.

Because of the differences in spin between the singlet
and triplet states, there are no ligand field elements con-
necting these states. For an element that is non-zero, the
off-diagonal element between the 1D2 and lSO basis functions

for the Fl matrix has been chosen to illustrate the calcula-
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tion involved. With the help of Tables 8 and 13.
LF * LF
[y v vy ar = T9" o0 vy 15,0 ar

= [ 2 [2(2,-2)+(1,-2)-2(0,0)+(~1,1
[ A [202,-2+0,-)-200,04(-1,1)

*

+2(-2,2) 1[ap-pa) - VT

1
J10 [(2,-2)-(1,-1)+(0,0)-(-1,1)
+(-2,2)][aB -Ba] 4t . (113)

The spin terms simply double the space results. Hence:

* LF - 2 [“ *
/\ ¥ v y dt = —— [2 | (2,-2) VIE(Z -2)dxr
N a 'VB F—ZSO [ 5 » ’

- [ a,-n* v a,-nar -2 [ 0,00* v*F(0,0)ar

o

M en,n* Ve, nar o+ 2 [ oe2,2)* v (<2, 2)a1]

All other possible combinations result in integrals whose

values are zero. The first integral term can be expanded as:

2 [ (2,-2)* v“F(z,—z)dr =21 [ (2)2 vrl‘F(z)l dx
J ;

!
“w

-+¢f (—2); VgF(—Z)zdr ] = 2[Q2 + Qz] = 40,. (115)

The same result is obtained for the fifth integral term. For

the second and fourth integrals:
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=N

- Fa,an* v, -nar = - 1 (W] vy, ar

“

r * LF
+ . (-1, VvV, (-1)_ dt,] = - [e, +Q,] = =20
) 2 2 2 2 1 1 1 (116)

And the third term yields:

2 [ (0,00 v¥¥(0,07ar = 4q, (117)
Hence:
* 1 LF 1 2
v (D,(0) V ¥ 7TS5(0) dt = === [80, - 40, + 40,]
[ 2 0 J280 2 1o
= 2_[20, - 0; + Q] (118)
70772 1 0

By similar processes, all matrix elements due to the ligand

potential may be evaluated.

4., The complete matrices

The final tabulation of all the weak field matrix ele-

ments are given in Tables 14 through 18.

C. Strong Field Functions

The strong field functions are chosen so that the matrix
elements are diagonal in the ligand field parameters. This
is attained by use of basis functions which are symmetry
adapted with regard to both spin and space. The method for

construction of such functions may be outlined as follows:
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Table l4a. Weak field matrix elementa A8 manfimnrasisn in

- = — T M e
square-planar symmetry. [, matrix2

s, oy o, ts, vy Pr, 3F, Cpy g

(1) (1I1) (1) (1I)
164(I} a)q ajo a3 a1y ays 0 0 0 0
16,(I1)  ap)  apy; ap3 azy 0 ay 0 0 0
lDz aszy asop asg asy 0 0 2y azg 0
ts, 841 g2 243 344 0 o o0 0 349
3F4(I) agy 0 0 0 asg age agy agg agg
3F4(II) 0 ago 0 0 acc age ag7 acg acg
3F2 0] 0 a7zs 0 azs asg a4 asg 249
3p, 0 0 ags 0 ags ag, agy agg agg
3PO 0 0 0 294 agsg agg ag7 2gg agg

3The non-zero ajj matrix elements, where the first index

is the row and the second is the column, are given in Table
14b.

Table 14b. Non-zero values of Fl weak field matrix elements

Matrix
elements Values
aj; = 20, + 4F2 + Fy
ayy = a,, % = 2/'f§§'B2_2
ass = 2/35 {QZ + 1607 + 18Qg] + 4Fy + Fy

= 4/ N/—7 32_2



O
(o))
o]

Tzble 14nh. .{CO?‘\‘:"XH!?Q-’?}

Matrix

elements vValues

ay, = a,q% = 4/75 [05 + 201 - 3Q,]

ass = 2/7 [40, + Q@ + 2Qy] -~ 3F, + 36F,
agy = ap,” = 4/N10 By ,

2y, = ay,* = 4/5J14 {Q2 - 40, + 304 ]

dy5 = Ag,% = 4/4N70 [20, - 01 - Q]

a,, = 2/5 [20p + 207 + Q] + 14F, + 126F,
agy; = alS* = =2a

agy = a26* = -2a

a65 = a56* = “3/ 35 B2_2

age = 1/35 [17Q, + 47Q, + 6Qy) - 3a - 8F, - 9F,
ajy = 337* = 4J3/45 a

as6 = 2, % = 243/35 [0, - 30, + 2Q4]

a = 2/35 [9Q, + 220; + 40,] + 4a - 8F, - 9F,
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Taple 14D. {Continued)

Matrix

elements Values

agy = ag* = -42/N35 a

agg = 358* = -J2/J15 By_o

agg = agg” = 2/5442 [110, - 8Q; - 3Qp]
ag, = ajg* = 4/54J14 [-Q, + 20; - Q4]
agg = 1/5 [6Q) + 3Q; + Q3] - o + 7F, - 84F,
agg = a49* = 2/J6 a

g5 = a59* = -2/ J15 B2_2

g6 = 2gg = 2/5J21 [-0, + 40; - 3Q,]
3g7 = 2 % = 4/547 [20, - ; - Q4]
g5 = 3gg = J2/5 [-20; + 20, + Q]
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Table 15a. weak riera matrix elements, F2 matrix<
o 1 3 3 3
Ga Fq Fi P,
1s b b 0 0
4 11 12
3F b b b b
4 21 22 23 24
3
F3 ° b3) b33 b3y
3
Py 0 042 ba3 P4q

a . . .
The non-zero matrix elements, D are given in Table

15b. +J

Table 15b. Non-zero values of F2 weak field matrix elements

Matrix
elements Value
= *
- i J3
by 1/5 [30, + 5Q3 + 2Q,5] +a~- 8F, - 9F,
Byy = byg* 142/45 By,
baz = bg,* N6/5 [0y - Qo]
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Tahle 163 . Werk field matrix &7 ements . | S matri >
1
"Ca 'p, vy ’Fy ’Fy ’®,
1
3
Fa €31 0 €33 €34 . €35 © -  C3g
3
F3 8] 0 ) C43 C44 C45 C46
3F, 0 C52 Cs53 Cs54 C55 Cse
3P2 0] Cg2 C63 Cea Cg5 C66

o @The non-zero matrix elements, Cjjs are given in Table
17a, on page 99.

Table 16b. Weak field matrix elements, r4 matrix

lg, 1p, 3, 3, 3, 3p,
e, d;; d;, d, 0 0 0
p, dyg d,, 0 0 A, Toa,,
Py d3p d33 d3gr  dyg d3e
3, 0 o dgs dag = dgs dge
3p, 0 dsa, dsy  dsg dss dsg
3p, 0 dg2 “dgs dg, dee dge

AThe non-zerc matrix elements, d are given in Table

.,
17b, on page 100. ]
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Tahles 170 Narnezarn waliiosa nF ' 3 weal FialA modvde e?_en::_,n—:_s
Matrix

'elements value R

c13 1/7[3Q, + 807 + 3Qg + 3By_p] + 4F, + Fy

cy1 = cy,% 23 /7 [@, - 207 + Qo + By_,]

Csy 2/7[2Q2 + 301 + 204 + 2B,_ 5] - 3F2 + 36F4

€31 = ©13* —2a

c43 c34* i/2 7 [-Q2 + 2Ql - Qo + 382_2]

Cg2 c25* 4J3/J5 a

Cs3 = C3g V5[0, + 50; - 4Qg - 3B,_,]

Cgg 1/105[10302 + 80Q; + 27QO - 5582_2] + 4a - 8F2
- 9F,

Cg2 Cog -N4z2/J5 o

C63 C36* l/ 70 [3Q2 - 3QO - B2_2]

c64 C46* l/wlO [—02 + OO B2_2]

Cg6 1/5(20, + 503 + 30p] - a + 7F, - 84Fy




Tahle 17b.

1900

Non~-zern wualnsa nf F mofriv o] amamts

Matrix

elements Values

d;, 1/7030, + 8Q; + 3Qy - 3By_,] + 4F, + Fy

d21 = &3, 243 /7[Q0y - 201 + Qg - By_j]

dsyo 2/7[20, + 30; + 205 - 2B,_,] - 3F, + 36F,

d3; = d;3* -2

g 1/14[110, + 80; + 90, + 9B, ,] - 3a - 8F, - 9F,

dg3 = d3g i/ /28 [0y - 207 + Qg + 3By_5]

dgq 1/6(50Q, + 40, + 3Qg - 132_2] +a - 8F, - 9F,

d5, = d,c*  44J3/J5a

dg3 = djc*  1/7J5 [0, + 5Q) - 40, + 3B,_,]

dgy = d,c*  1/3 W35 [0, - 507 + 60y + 11B;_,]

dc.c 1/105[103Q, + 80Q; + 27Q; + 55B, 5] + 4a - 8F,
-9F,

q, = d26* -Ja42/ 45 a

dgy = djg” 1/ 470 [3Q, - 3Q, + By_5]

dgq = G4c* 1/ 410 [0; - 95 - By_,]

dgs = dgg* 1/5:/14 [205 - 2045 + 5B5_,]

1/5[20, + 5Q; + 3Q3] - a + 7F, - 84F,




Table 18a. Weak field matrix elements, Fs matrixa

e, lg, 'p, 3r, 3r, ’F, 3, 3ry; 3y pg

(1) (I1) (1) (I1) (1) (11)
1G4(I) eyl €]2 ej3 €4 0 0 0 0 0 0
lG4(II) ey €59 €53 0 €rsg 0 0 0 0 0
lp, eq; ey eq3 O 0 e3¢ e37 0 0 0
3F4(I) €41 0 0 €44 €45 €46 €47 €48 €49 Cax
3F4(II) 0 €5y 0 €54 egg egg €g g egq ec.
3F2 0 0 €63 €64 egs5 Ce6 €g7 €8 €cq €ox
op, 0 0 ©73  e74 75 ©76 ®77  ©78 ©79  °x
3FB(I) 0 0 0 egy egs €gg egy egg egq ey
3F3(II) 0 0 0 €g9q €g5 €96 eg97 €98 €99 €9
3pl 0 0 0 €x4 €x5 ©x6 ©x7 €x8  ©x9 Cxx

Phe non-zero matrix elements, e; i, are given in Table 18b. The tenth row

and tenth column are indicated by the ietter, X.

0T
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Table 18b., The non-zere values of r% ezk field matrix
ments

Matrix

elements Value

- *x

ezl - e12 -l/ \[“7 32_2

€55 1/7 [Qy + 79) + 6Qy] + 4F, + Fy

e3l = el3* - J‘.é’ /7 82_2

ey, T e,y5%* J6 /7[Q, - Qg

€33 1/7[6Q2 + 7Ql + Qo] - 3F2 + 36F4

€41 = €14* -0

€ n 1/4[4Q, + Q + 3Qp] - 3¢ - 8F, - 9F,

€5y = e25* -2a

854 = 845* 3/2 ﬁ 32_2
€55 l/28[16Q2 + 3lQl + 9Qo] -3a - 8F2 - 9F4
Nr3-/ J—S- Qa
- *
e64 = ey¢ 3/\170 B2_2

egs = egsg”  1/7J10 [0, - 20, + Qq]

ece 1/105[80Q, + 64Q; + 66Q,] + 4a - BF, - 9F,
- * {

€94 = eyq* l/ﬂf55‘82_2

ess = eg.*  1/2J35 [70, - 40; - 3Q4]

es6 = €¢q~  4/5V14 [-0; + Q4]

e77 1/10[100, + 7Q; + 3Qy] - & + 7F, ~ 84F,
eg, = eyg* iN3/4 [0 - QO]



Tabhle 18h. ((‘nh‘%—inncr;)

N N b e o D N

Matrix
elements Value

885 = 658* i \[—3-/ 2 J_-TBZ—Z

egg = €g8” -11 i/ V210 B,_,

egy = eqg* i3 /245 By_o

egg 1/4[40Q, + 30; + Qg + @ - 8F, - 9F,
egq = €49* -31/2 45 By,

egs = ey 1/4 435 [-4Q, + 1107 - 7Q]

= egg” i/15 14 [-130, + 3407 - 21Q4]
eg7 = eqg* i/10(30, - 40, + Qp]

* e
e98 = 889 1/2 » 5 B2_2

eg 1/60[40Q, + 53Q; + 27Qg] + a - 8F, - 9F,
€y = e4x* -i/2 J5 Bs_»

eys = e * i/2 N35 [Q, - 40Q; + 3Qq]

eve = Cpx 4i/5J14 [20, - Q; - Qq]

e ., = e, 3i/10 [20, - Q; - Qj]

°xg = %gx” " N3/J20 By,

€9 = Cgy* 1/10[5Q5 - 407 - Qg]

sy 1/10[10Q, + 7Q; + 3Qp] + a + 7F, - 84F,4
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1). Construct symmetry adapted single electron space
functions by linear combinations of the single electron
functions | £,mg,s,mg) .

2) . Construct symmetry adapted product functions of
the spatial functions by taking all possible combinations
of the single electron symmetry adapted functions. 1In
the case of dz or d8 systems, these product functions are
two electron functions. For 43 systems they would be
three electron functions, and so on. The symmetry of a
particular product function is obtained by means of the
direct product theorem of group theory.

3) Construct symmetry adapted spin functions by
means of the two by two complex matrices corresponding
to the rotation operations of the group.

4) . Construct the symmetry adapted basis functions
from all possible combinations of the symmetry adapted
spin functions and the symmetry adapted space functions.
Pauli's exclusion principle applies to the possible com-
binations. The symmetry of the final function can again

be determined by the direct product theorem.

Single electron symmetry adapted functions

as:

Since the single electron space functions are expressed

| 2,mg) = N-R( ) ¥(£,my), (119)



n ¢f thc svmmetry adapted single electron func-
tions follows identically the technigue used to construct the
symmetry adapted |dM;> functions in the weak field. Thus, the
single electron functions are obtained by use of Table 11 with
£ = 2 corresponding to J = 2. The functions are listed in
Table 19. It is again noted that the combinations of the
llmi) functions depend upon the definition of the spherical
harmonics and care should be exercised when comparing the ex-
pressions of various authors. To distinguish between the
symmetry of the final basis functions and the symmetry of the
single electron functions, it is convenient to follow the
example of Liehr and Ballhausen (26). They denote the
over-all symmetry of the basis functions by the Bethe (1)
notation: Fl, r2’ etc.; and denote the symmetry of the sin-
gle electron functions using lower case letters of the Mulli-

ken (2) notation: ay, aj, bl’ b and e. Table 18 gives the

2)

symmetry in both notations, but the Mulliken notation is used.

2. Symmetry adapted spatial product functions

By application of the direct product theorem of group
theory, the irreducible representation(s) to which the
products of two symmetry adapited single electron functions
belony can be obtained. Table 20 lists the resultant ir-
reducible product representations for the Dy group. Of course

since none of the five symmetry adapted d-orbitals belongs to



l —d
(&)

(o)1

Table 19. Svmmetrv adapted sincgle electron functions
Usual
designa- Designation
Symmetry dgroup tion of the in this
Bethe Mulliken Function orbital thesis
Fl = a; {2,0) az? (zz)
1
3 = b, 75 [12,2)+12,-2)] ax2-y2 (x2-y2)
_ 1 .
[, =D, e [12,2)-12,-2)] dxy (xy)
N
1 -
75 [12,-1)-12,1)] dxz (xz)
[ =e .
2 i
s [12,-1)+1{2,1)] dyz (vz)
Table 20. Direct products of Dyy, irreducible representation
. Irreducible . Irreducible
pgégigt repre- p?;gigz representa-
sentation(s) tion(s)
ay aj = a; a, X a, = ajp
ajy a;, = a, x ay = a, a, x bl =
bl X a, = b2
ay bl = bl X a; = bl a, X by =
by X a, = bl
aj b2 = b2 X ay = b2 a, x e =ex a, = e
bl bl = aj b2 X by = aj
aj e = e x a; = e b2 X e = e X b2 = e
by + b2
b, e = e X by = e
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the irreducible representation. 2-. thnee Airart nradncts ino
volving this representation are not required for the spatiél
product functions. However, as is seen in the following
section, one of the symmetry adapted spin functions for the
triplet state does form a basis function for the a, repre-
sentation, and hence it is included in Table 20.

The details of constructing the symmetry adapted two
electron product functions for the Dy group are outlined in
Appendix D, The functions which result are not tabulated
since the procedure is dquite straightforward. A final tabula-
tion which includes the symmetry adapted spin functions is
given in Table 21. To quickly illustrate the procedure, one
can consider the products of the two functions (x2—y2) and
(xy). Since (xz—yz) is a basis function for b;, and (xy) is a
basis function for b,, then both product functions, (x2-y2)(l)

(xy)(z) and (xy)(l) . (x2-y2)(2) are basis functions for the
irreducible representation a,, since by X by = a,. Generally,
it is convenient to construct linear combinations of the two

functions, one symmetric and the other antisymmetric. Thus:

#1 = 1/ 2 [(x%-y?) (xy) + (xy) (x2-y2)] (symmetric)

g, = 1/ 42 [(x2-y?) (xy) - (xy) (x?-y®)] (anti-
symmetric)

where (x2-y2)(xy) means that (x2—y2) is the wave function
associated with electron 1, and (xy) is the wave function

associated with electron 2.
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Taple 21. Strona field hagia Frun~timne conrdinsts farm

Symmetry adapted product functions in terms of Cartesian

coordinates

[ matrix:
lay(a12)) = 75 [(22) (22 ] [0f - Ba]
'a; (byby) = j%=[(x2-y2)(x2-y2)][a6 - pa]
La) (b,b2) = 75 [Gv) (xv) 1[op - Ba]
laj(ee) = 3 [(x2) (x2) + (v2) (v2) ][0 - Ba]
3ay(ee) = I [(x2) (v2) - (v2) (x2)][aB + Ba]
3a,(b1by) = 3 [(x%-y2) (xy) - (xy) (x2-y?) 1[af + Ba]
38 (a10) =7 [(x2)(22) - (22) (x2) ][aa + BB]

- [y2) (22) - (2°) (y2)][i][oa - BB]
E (bye) =_f§' [ (xz) (x%-y2) - (x2-y?) (x2) ][aa + BB]

+ [(y2) (x%-y?) - (x2-y?) (v2)][i][ca - BB]
3E(bge) = Fp [(x2) (xy) - (xy) (x2)1[i][oc - BB]

- [(y2) (xy) - (xy) (y2z)][ca + BB]
rz matrix:

laz(1by) = 2 [(x2-y?) (xy) + (xy) (x2-y?)][0p - Ba]

1 -
E (2;0) =75 [(x2)(2%) - (22) (x2)][i][ea - B8]
+ [(y2) (z2) - (vz)(2?)]laa + Bg]



Syvmmetry adapted product functions in terms of Cartesian
coordinates

FZ matrix (continued):

38 (bre) = 7= [(x*-y?) (x2) - (x2) (x?-y?) ][i][ca - BB]

- [(x%-y%) (y2) - (vz) (x2-y2)][aa + BB]

1
’E (bye) =5 [(x2) (xy) - (xv) (x2)][aa + BB]
+ [(vz) (xy) - (xy) (yz)1[i][aa - BB]

F3 matrix:
'By(arp)= L (2% (x2-y?) + (x2-y?) (22) ][aB - Ba]
18, (ee) = i—[(xz)(xz) - (v2) (y2) ] [aB - Ba]
*By(arby)= = [(22) (xy) - (xy) (z2)][eB + Ba]
3 (aye) - = [ (x2) (22) - (22) (xz)][aa + BB]

1 NE)

+ [(yz) (22) - (22) (yz)][i][ca - B8]

1
e (bre) =5 [(x2) (x2-y?) - (x%-y?) (x2) }[aa + BB]

- [(yz) (x2-y2) - (x2-y?) (yz) }[i][aa - BB]

1
3 (bye) =75 [(x2) (xy) - (xy) (xz)][i][ac - BB]

+ [(y2z) (xy) - (xy) (vz)]lca + BB]

matrix:
A

g, (ayby)= & [(2?) (xv) + (xy) (22)][ag - 8a]

1

N N

[ (x2) (y2) + (vz)(xz)1[aB - Ba]

]

B, (ee)



Table 21. {Continued)

Symmetryv adapted product functions in terms of Cartesian
coordinates

F4 matrix (continued):

3B; (agby) =3 [(22) (x2-y?) - (x*-y?) (29 ][ap + sa)
3 _ 1 2 2 .
E (a;e) =7Tg [(x2)(29) - (24)(x2)][i)[aa - B8]
- [y2) (22) - (2%) (y2) ][aa + B8]
1
B (o) =75 [(x2) (x*-y?) - (x%-y?) (x2) 1[i][aa - gp]
+ [(y2) (x2-v%) - (x2-v2) (v2) [aa + BB]
1
3 (bge)  =7F= [(x2)(xy) - (xy)(x2)]laa + pB]
J8
- [(yz) (xy) - (xy) (y2z)][i][aa - BE]
rS matrix:
lE(ale)= (1) = %-[(zz)(XZ) + (x2) (%) ][aB - Bal

(2) =3 [(z2) (v2) + (v2) (z2) ]ap - pal

1l
E(p1e)= (1) = 2 [~(x%-y?) (x2) - (x2) (x2-y?)][ap - Ba]
(2) = %-[(XZ-YZ)(YZ) + (v2) (x2-y%) 1[ap - Bal
'E(pye)= (1) = 2 [(xy) (v2) + (v2) (xv) 1[ap - gal
(2) = % [(xy) (x2) + (x2) (xy)][ag - Ral
3
E(a;e)= (1) =35 [(z22) (y2) - (v2) (z2%) ][ag + Ba]

N = D

(2) = = [-(2%) (x2) + (x2)(22)][aB + Ba]



Symmetry adapted product functions in terms of Cartesian

coordinates

r; matrix continued:

(1)
(2)

E(b,e)

It

3E (bze) (1)

(2)

3Bl(a1b1)= (1)

(2)

FJ (2)

3A2 (blb2)= (1)

(2)

A, (ee) = (1)

2

(2)

B2 (alb2)= (1) -

5 [(x2-y2) (v2) - (v2) (x*-y?)][ap + Bal

L

> [(x%-y?) (x2) = (xz) (x?-y?)][aB + Ba]

[ (xy) (x2) - (x2) (xy)][aB + Bal

N N

[~ (xy) (y2) + (yz)(xy)][aB + Ba]

[(22) (x%-y?) - (x2-v?) (22) ][aa + BB]

[(22) (x%-y2) - (x%-y?) (2%)][i][aa - BB]

N N

[(22) (xy) - (xy) (z2)][i][ac - BB]
[-(2%) (xy) + (xy) (22) ][aa + BB]

N o)

[(x%-v2) (xy) - (xy) (x2-y?) 1[i){aa - pg)

[(x2-v2) (xy) - (xy) (x2-y2) ][aa + BB]

[ (x2) (v2) - (v2) (x2) ][i][aa - 8B]
[(x2) (v2) - (vz) (x2)][aa + BB]

(NI ST ST ST
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3. Svmmetrv adapted spin functions

The spin functions, ¢ and 2, may be considered to be
basis vectors for a two dimensional complex space. Therefore,
in order to construct symmetry adapted spin functions one
makes use of a transformation property inherent in the defini-
tion of the spin components, namely, that for every symmetry
operation matrix in real space there is a corresponding matrix
in complex space having the same group properties. The deri-
vation of such matrices is discussed in Appendix D. The
important conclusions to be considered from the appendix are:

A. Just as the weak field functions may be
characterized by certain irreducible representations
according to their values of total orbital angular
momentum, J, so the spin functions can be characterized

by their values of spin, S. Thus, for the integral

spins, S = 1 and S = 0 in the D, symmetry, one obtains

from Table 3:

S 1l belongs to A, + E

S 0 belongs to Aq.
In the case of half-integral spins, recourse to the
"double groups" is necessary. See the article by Bethe
(1) or McClure (23).

B. The spin basis functions corresponding to the

irreducible representations are:



A, 5, 0= 1/ J2 [z2-2a] ; for singlet states, S = 0.
- - (120)
As: £, = 1/J2 [ap+Bal ; for triplet states, S = 1
(121)
£y = 1/ N2 [aa+88]
B: ; for triplet states, S = 1
.ty i/ N2 [aa-BB] (122)

4. Strong field symmetry adapted functions

Combining the symmetry adapted space and spin functions
to obtain the final form of the basis functions for the strong
field matrices follows the same "direct product approach®.

For example, consider the direct product function:

v =4xE, (123)
where & = /W2 [(x2-y?) (xy) - (xy) (x2-y2)], which belongs to
as,
and £, = 12 [aB + Ba), which belongs to A,.

y 1s the basis function for the irreducible representation
1 = Ay since ap, X Ay = A;.

By similar processes all possible combinations of the
spin and space functions are taken. O0f course, full cogni-
zance of the Pauli Exclusion Principle must be made. Thus,
the combination of &, given above, with the spin function,
1

1 =!f=={aﬁ - 8al is not allowed since both space and spin

parts are antisymmetric and the total function would be

S

symmetric.

The strong field basis functions which result for square-
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planar symmetry are given in Table 21. The states are label-
led 28+lr\.(u,v), where S is the spin of the state, Fi is the
representation to which the spatial product function belongs,
and u,v are the symmetry representations of the single elec-

tron space functions from which the function is composed.

Thus, for example, the function

¥ =2 [(x2-y?) (xy) - (xy) (x2-y?)] [aB + Ba) (124)

3
would be AZ( bibo).
D. Strong Field Matrix Elements

In calculating the matrix elements of the strong field,
it is convenient to convert the (22), (xz), etc., notation
back to the lz,ml,s,ms) notation. Thus:

1/2 [(x2) (yz) - (y2)(x2)][ap + Ba] =

=1/2 i/2[|-1)-ID)][1-1) +|1)]

-1+ -0 -] faB + Bd)

= 1/2i [(1,-1) - (-1,1)][ap + Ba] (125)
Table 22 lists the strong field matrix elements in the
|£,mg,s,mg) form. Then the ligand field matrix elements are
calculated in the same way as for the weak field functions.
Of course, ligand field terms appear only in the diagonal
elements of the matrices.

For the LS coupling elements and the electrostatic inter-

action terms there are no convenient tables, as existed for

the weak field functions. Hence, they are calculated from the
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Table 22. Strong field basis functions, |¢,ms,s,mg) form

Symmetry adapted product functions in li,mf,s,ms) form

Fi matrix:
1
*aj(aja;) = 7= [(0,0)][aB - Ba]
1
a (1)) =75 [(2,2)+(2,-2) + (-2,2) + (-2,-2)][ap - 8c]
1
la, (bob2) =F5 [-(2,2) + (2,-2) + (-2,2) - (-2,-2)][0B - Ba]
1 1
Ay (ee) =73 [(1,-1) + (-1,1)][aB - Ba]
3 _ 1 -
A, (ee) =7 [(-2,2) - (2,-2)][ap + Ba]
1
38, (b1by) = 57 [(-2,2) - (2,-2)][aB + pa]
1
’E(aje) =735 [(-1,0) - (0,-1)}[aa] + [(0,1)-(1,0)](pe]
1
*E(bre)  =7F [(2,1) + (-2,1) - (1,2) - (1,-2)][aa]
+ [(-112) + (-15_2) = (2:-1) = (“2;-1)][‘36}
1
E(bye)  =J§ [(2,1) - (-2,1) - (1,2) + (1,-2)][aa]

+ [—("152) + (—11_2) + (2:_1)'(_2:—1)][535]

Fz matrix:

Ia, (01by) = 37 [(2,2) - (-2,-2)][ap - Ba]
38 (aje) = 3¢ [(0,-1) - (-1,0)1{ecl + [(0,1) - (1,0)](g6]
8 (bre) = —= [(2,1)-(-2,1)-(1,2)+(1,-2) ] [aa]

+ [(23_1) "(_2)_1)‘1"("1:2) _(-15”2) } [55]



Symmetry adapted product function in ,ﬁ,mﬁ,s,ms) form

rz matrix

3 =

E (bye)

r3 matrix:

1

B; (ee)
3E (ale)

3E (ble)

3

E (b2e)

r4 matrix:

continued:

L 78 [(2,1) - (-2,1) - (1,2) + (1,-2)][ad]
+ [(2)—1) - (_2)_1) + (-1)2) - ('11-2)][§5]
L.
Jg [(2,0) + (-2,0) + (0,2) + (0,-2)]}[aB + Ba]
1 .
5 [(1,1) + (-1,-1)][aB - Ba]
—=[(0,2) - (0,-2) - (2,0) + (-2,0)][aB + Ba]
= [, - (1,00][aa] + [ (-1,0) - (0,-1)][pg]
1
7 [-1,2) + (-1,-2) - (2,-1) - (-2,-1)][aq]
+ [-(1,2) - (1,-2) + (2,1) + (-2,1)][BB]
1
\;?8: [(—1:2) - (—l,—2) - (21_1) + (—2:'1)]{0'0']
+ [(1,2) - (1,-2) - (2,1) + (-2,1)]1[BB]
1
i\e@ [(OJZ) - (05_2) + (210) - (—210)][0'5 - BO']
J; [(1.1) = (=1.,-1)1TaRr ~ 8al
lz [N 5 ’ \ b J L el ~ J
1 .
75 [(0,2) + (0,-2) - (2,0) - (-2,0)][cp + Ba]

& (1,00 - (0,1)][aa]

+ {(—1,0) - (0;"1))[(36]
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Table 22. (Continued)

Syvmmetry adapted product function in fz,mi,s,ms) form

r; matrix continued:

3 (b1e) = o= [-(-1,2) - (-1,-2) + (2,-1) + (-2,-1)][aa]

+ [—(1)2) - (13—2) + (231) + (-251)][85]

3 1
E (bze) i\[g [(_132) - (—l,—Z) - (2:-1) + (—2:—1)][aa]

+ [—(132) -+ (11—2) + (231) - (-231)][651

r; matrix:
1
£ (aye)= (1) = 75 [{0,-1)-(0,1)+(-1,0)-(1,0) J[ap - Ba]
1
(2) = 7775 [-(0,-1)-(0,1) -(~1,0) = (1,0} ] [ap - pa]
12 (bje)= (1) =4§ [-(2,-1) = (-2,-1)+(2,1)+(-2,1) = (-1, 2)
C —(-1,-2) + (1,2)+(1,-2)][ap - pal
(2) = - [-(2,-1)-(~2,-1)-(2,1) - (-2,1) - (-1, 2)
’(_11-2) - (132) - (l,—Z)J[GB - BQ]
g (bye)= (1) = F [(2,-1)-(-2,-1)+(2,1) ~(-2,1) +(-1,2)
-(_15-2)+(l:2)—(l:—2)][aﬁ - BQ]
(2)= L [(2,-1)-(-2,-1)-(2,1) +(-2,1) +(-1,2)
—(-13_2)'(112)+(1:’2”[a6- BQ]
3 1
‘g (aye)= (1) =T & [-(0,-1)=(0,1)+(-1,0)+(1,0) }J[aB + Ba]

(2) = 75 [-(0,-1)+(0,1)+(~1,0)~(1,0) ] [aB + Ba]

pd



Table 22. {Continued)

Svmmetry adapted product function in li,mﬁ,s,ms) form

rS matrix continued:

e (bre)= ()= 3= [-(2,-1)=(-2,-1)=(2,1) =(~2,1) +(-1,2)
+ (-l,_2)+(1,2)+(l,"'2)]{(16 + Ba]
(2)= f}r [(2:_l)+(’2:-l)'(2)1)-(_2:1)"‘(-1;2)
-(-1,-2)+(1,2)+(1,-2) ][aB + Ba]
'E (bye)= ()= 2= [(2,-1)-(-2,-1)=(2,1)+(-2,1) = (~1,2)

+(-1,-2)+(1,2)-(1,-2) ][ap + Ba]
(2)= 3 [-(2,-1)+(-2,-1)=(2,1) = (-2, 1) +(-1,2)

—(-13—2)+(l: 2)+(l)-2) ] [0.6 + BCL]

*Bilagby)= (1)= = [(0,2)+(0,-2)-(2,0)~(-2,0) }[aa + pg]
(2)= 75 [(0,2)+(0,-2)-(2,0)-(-2,0) }[aa - BB]
1
’B,lagby)= ()= 72 [(0,2)-(0,-2)-(2,0)+(-2,0) }[aa - BB]
1
(2): i \FS_ [—(0,2)+(0,—2)+(2,0)-("2:0)][aa + BB]
Ay(bby)= ()= £ [(-2,2)-(2,-2) J[aa - gg]
(2= & [(-2,2)-(2,-2) ] {aa + gg]
*a, (ee) = ()= L1 [(1,-1)-(-1,1)][aa - B8]

(2)= [(1,-1)-(-1,1)][aa + EB]
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cr the .3 coupling terms:
= 2(f (Ve _(1) + L (1) s (1) + £,(2)e_(2)
+ £ _(2)o.(2) )+ 2a(£3(1){;(1)+£3(2)13(2) )
(126)

the electronic interacticn terms, the general expression

g
O
at

unctions has been given by Condon and

Hh

two electron wave

th
Q
H

Shortlev (6):
(ab'ez/rijlcd) = 5(mg?, mg©) 5 (mgP,mg?) 6(m£a+m1b, m£c+m1d)'
2 1 - d
‘ i c‘(zamla,zcmﬁc)c‘(ﬁdmﬁa,zbmﬁb)Fk(naﬂanbib,ncﬁcn IS
k=gm
(127)
where the F.. are the Slater-Condon Parameters and the ck are

K
coefficients. The methods for evaluating the ck are out-

lined in Appendix D.
Application of the three operators to the functions
listed in Table 22 yields the strong field matrix elements

given in Tables 23 through 27.
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Table 23b. Non-zero values of f} strong field matrix elements

Matrix
elements Value
Vi1 209 + 4F, + 36F,
Va1 T Vio* 4F2 + 15F,
Voy = 2[o, + By 5] + 4F, + 36F,
v3y = VI3t 4F, + 15F,
V3g = v23* 35Fy
Vas 2[o, - B2_2] + 4F, + 36F,
V4l = V% N2 [F, + 30F,]
Vgo = Vou* JE'[3F2 + 20F,4]
Va3 = v34* JE-[3F2 + 20F, ]
Va4 20; + TF, + 56F,
Vgq = v45* -2 ia
Veg 20, - 5F, - 24F,
Ver ~ V26* i ¥8 a
Ve3 T Vie* id8 o
Vgs = v56* 6F, - 30F,
Vo6 2Q, + 4F, - 69F,
Vo T vl7* 243 a
Vg = Vaq* -¥6a .

V75 -V57* —1-[-6_C1



Table 23a. Strong field matrix elements, a8 configuration in square-planar
symmetry, [ matrix3

1 1 1 1 3 3 3 35 3
Ay A Ay Ay A,y A, E E E

1
(agay) (b1bq) (bybsy) (ee) (ee) (blbz) (ale) (ble) (b2e)

lAl(alal) Vi1 Vi Vi3 Vi4 0 0 V)4 0 0
1
Ay (b1b1) Va1 V22 V23 Vag O V26 0 WL 0
1
Al(b2b2) Vil V3, V33 Vag 0 Vie 0 0 Vig
1, B
Ay (ee) Va1 V42 Va3 Vaa Va5 0 Va7 Vas Va9 X
3
Az(ee) 0 Q 0 Vga Vgg V56 Ve Vsg Veg
3
Ay (byDby) 0 V62 V63 0 Vgs V66 0 Veg' Vg9
3E (ae) vyl 0 0 V74 Vs 0 Vaq Vag Vag
3 ¥
E(be) 0 Va2 0 Vg4  Vas Va6 Vg7 Vs  Vgo
3
E(bze) 0 0 Vg3 V94 V95 V96 V97 V98 V99

%The non-zero matrix elements, V'j’ where the first index is the row and
the second is the column, are given in-Table 23b.
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Table 23% {Continued)
Matrix
elements Value
Vg Qy +Qp + Fy - 54F, + &
Vg2 T V28 -2a
vga = V.o J2 a
Vgs = Vgg -iN2 a
Vge = Ves id2 a
vgy = V78 373 [—Fz + 5F4]
vgs Qy + Q1 + By 5 - @ - 5F, - 24F,
V93 T Vig 2a
Voa = Vag -J2 a
Vgs T Vgg iv2 a
Voe = Vg9 -id2 a
Vg7 = Vog 343 [Fp - 5F,4]
vVgg = Vggq 2a - 31«‘2 + 15F4

Q2 +Ql - B2_2 -
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Table 24a. Strong field matrix elements, F; matrix®
3
1a, 3e g E
(byb5) (bye) (boe) (aye)
1
Ao (b1b3) w1l w12 w13 0
3
E(bye) ¥31 w32 ¥33 Y34
3E(ale) 0 W42 W43 Ya4

a . . .
The non-zero matrix elements, wij,are given in Table
24b.

Table 24b. Non-zero values of rz strong field matrix elements

Matrix
elements Values
Wzl = le* = \[.2_ Q
w22 Q2 + Ql + B2_2 -a - 5F2 - 24?4
= * - '—_a
w31 w13 N2
Wa3 Q2 + Ql - B2_2 -a - 5F2 - 24F4
w42 = W24* 3 r«_-’r‘é— [Fz - 5F4}
W43 = W3a® =343 [Fy - 5Fg]

w44 Q1+Q0+Q+F2'—54F4




Table 25a. Strong field matrix elements, F3 matrix?

s, 1131 3 3g 3g 3B,
(a;by) (ee) (ae) (bye) (bye)  (a;by)
1Bl(alb1) X11 X12 X13 X14 0 %16
lBl(ee) X2 Xoo X573 x24 X955 0
3E(ale) X537 X34 x33 x34 X35 X36 .
I
3E(ble) X41 X4 x43 x44 x45 0
3E(b2e) 0] x52 Xgq x54 x55 x56
3B2(alb2) Xe1 0 Xg3 0 Xg5 Xg6

a .
“The non-zero matrix elements, x

ijs

are given in Table 25b.
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Matrix

Values

11
¥21 T *12
X22

*31 T *13
X32 T X33
%33

%41 T *14
%42 T *24
%43 T ¥34
*44

X52 T X25
%53 T X35

g3 = X

X66

2 J§'[F2 - 5F4]
2Ql + F2 + l6P4
-J2 a

J6 a

Ql+QO—Cl+F2-54F4
J6 a

-J2 «
33 [-Fy + 5F,]

J2 a

3 *ﬁ [—F2 + 5F4]

=22 + 3Fy - 15F,

Qs +Qy - B + a - 5F, = 24F,
21 «

-i 2«

-iJ6 a

Qy + Qg - Bp_p - BFy - 9Fy




Table 26a. Strong field matrix elements, F4 matrix?
L 3 3
By(aiby)  'B,(ee)  E(aje)  “E(bje)  E(bye)  “Bj(ajby)
"By {aby) Y11 Y12 Y13 0 Y15 Y16
1, (ee) y y y Y24 v 0
21 22 23 25
3
E(ale) YBJ. Y32 y33 y34 Y35 Y36
3
E(ble) 0 Yao Y43 Yaa y45 Y6
3
E(b,e) Y5y Y59 Yg3 Y54 Y55 0
3

a 1]
The non-zero matrix elements,

ij?

are given in Table 26D,

b

(o)



Takle 26L. MNon-zero values ¢ ¢, strong field matrix elements

Matrix

elements Values
yll Qz =+ QO - 32_2 + 21F4

= * 3 -

Yp1 = Y12 253 [Fy - 5F4]

Yoo 207 + Fyp + 16F4
Y31 = VY13 2a

Y3o = y23* -J6 a
Y33 Q1 + Qo - a + F, - 54F,

*
Ya2 = You -2a
Y43 T Y34 343 [—Fz + 5F4]
Vey = Y1_5* J6 a
Ysp ™ Y57 -2 a
Y53 = Y35* 3 "xr_ [FZ - 5F4]
Veg = y45* -3F, + 15F, + 2«
Veg Q, + Ql - By o, + Q- 5F2 - 24F4
- 3 * -1 \t‘rF a

y63 - 136 i42
Yea = Yae© -i-6a
V&6 Qs + g + B2-2 - 8Fy - 9F4




Table 27a. Strong field matrix elements, Fs matrix?

3 3 3
lg lp Lo 3 3g 3p Bl B, A5 A

(aie) (ble) (boe) (ale) (bye) (b2e) (albl) (ajbg) (byby) (ee)

lE(ale) z11 Z19 zy3 Z14 0 0 Z17 Z1g 0 le

'E(bye) Za1 %22 %23 0 225 %26 %27 0 229 0

lE(bze) Z3) Z39 Z33 0 Z3g Z36 0 Zig 0 Z3y

3E(ale) Z41 0 0 244 245 Z46 Z47 Z48 0 Zax

3E(ble) 0 Zgo Zg3 Zgy Zgg Zgg Zcq 0 Zgg Zoy -
3E(b2e) 0 Z¢s Zg3 Zgg Zgg Zee 0 Zeg 269 Zox e
3Bl(albl) z71 Z9 0 zZ74 Z9c 0 Z+4 Z4g 0 -0

382(alb2) z2g 0 2g3 2gq 0 Zg6 z2g7 2gg 0 0

‘ap(byby) 0 292 0 0 295 Z96 0 0 299 Z9x

’a; (ee) Zx1 %2 %3 %*xa %5 Zxe 0 0 2%9  Zxx

4The non-zero matrix elements, z;,;, are given in Table 27b. The tenth row
and tenth column are indicated by the Roman numeral, X.
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Table 27b. Non-zero values of f; sStrong field matrix elements
Matrix
elements Values
Zy . Qy + Qp + 3F5 + 6F,
z5y = 212* JE.[FZ - S5F,4 ]
Z55 Qo +Q; + By 5 + Fp + 16F,4
Zy, = 2)3% ¥3 [-F, + 5F,])
z235 = 223* 3F, - 15F,
z33 Qs + Q1 - By.p + F5 + 16Fy
Zg1 T Z14” ia
Z44 Q) + Qo + Fy - 54F4
25y = 25" -ia
zZgy = 235* 2ic
Zgy = Zgc* 343 [Fy - 5F,)
Zss5 Qp + Q) + By — S5F, - 24F,
zgy = 226* 2ia
Z63 = Z36™ ~ia
Zga = 246" -3 J—-[FZ - 5F,]
Zgs = zgg™ -3F, + 15F,4
266 Qz + Q1 = By_p - 5F2 - 24F4
z9, = 217* - a
z55 = 227* 3a
274 = 2477 e



Table 27b {Continued)
Matrix
elements Values
Z5 Q2 + Qy + By_p - 8F, - 9F,
Zg1 T 2187 a
zgy = z3g% 3
Zgq = 248* ia
Zgg = zgg™ i3 a
zg7 = 278* -2a
zgg Qy + Qg -~ By_p - 8F, - 9F,
292 = Z39° -
Zg5 = z5g9* i
296 = Zg9~ ~ia
Zgg 20, + 4F, - 69F,
Zg1 T Z1x” J3a
Zx2 T Zx* —a
Zg3 T Z3x” a
Zys = Zsx i3 a
Zys T Zsx” -1
2X6 = Z6X* ia
Zeg = Zgy ~6F, + 30F,

2Ql - SFZ - 24Fy




tg

From the previgus considerations, it is clear that the
determination of the energy levels of the platinum(II) com-
plexes consists in the diagconalization of the five matrices:

Fl, rz, F3, r4, r5. The matrix elements are functions of
five parameters: Fo, Fg, o, . and X, where F, and Fgq are
the electronic interaction (Slater-Condon) parameters, a is
the spin-orbit coupling parameter, u is the "effective
dipole moment” of the ligands, and X = 1.8875 R, where R is
the "effective radial distance" of the ligands.

The over-all method for determination of the "correct®
combination of the parameters was to fix the values of four
of them by reasonable physical considerations and vary the
fifth parameter to obtain a set of curves which describe the
changes in the theoretical energy levels as a function of that
parameter. “hen "near correlation' of the differences in the
thecretical energy levels with the experimental absorption
spectra was obtained, the effects of changes in the other four
parameters on the energy levels were determined. By repeated
adjustment of the parameters the choice of the best set was
made. This repetitive approach, ineed the diagonalization of
five large matrices for even one set of parameters, would have
been essentially impossible without a computer.

211 the calculations made in ccnnection with this thesis



were done py means of the Cvcicone Digital Ceomputer at Iowa
State University cf Science and Technology The "Cvclorne" 1is
a digital ccmputer having a random access electronic memory,
empleving a perforated tape input and a tape or Teletype

Pl

printer output. & detailed description of the nature and

operation of the computer can be found in the programming

manual (34).

At the time the computations were made, the memory of

the Cyclone was limited to 1024 storage positions. For this

reason, it was necessary to separate the calculations of the

energy levels into two parts: 1) the calculation of the

matrix elements, and 2) the diagonalization of the matrices.

As this is being written, a program for the expansion of the

memory of the Cyclone is being considered. Since this will

result in changes in the coding of commands, subroutines,

etc., the detailed programs will not be included in this

thesis. However, a copy of the sequence of commands, as well

as tape copies, of the programs used are on file at the

computer facility.
B. Calculation of the Matrix Elements
For the most part, the calculation cf the matrix elements

ct

al

®

five parameters consisted of

simple multiplication and addition. However, in order to

evaluate the ligand field integrals, B, (X) and By (X) given
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in Table &, without loss of significant figures, it was
necessaryv to employ a "floating decimal routine". This 1is

a subroutine for the computer such that all numbers could be
manipulated in the form A x lOp, where p is either a positive
Oor negative integer.

In general terms, the first computer program was designed
so that upcon entry of the chosen values of the five parameters
in the floating decimal form, the computer would calculate the
ligand field integrals B, (X) and By (X). Their values were
both stored in the memory and printed on the output tape. The

single-electron ligand field matrix elements, Q,, Qy, Q and

O’

B were then calculated from the values of the B,y and By

2,-2°
integrals and the chosen value of p. These values were stored
and printed. The complete matrix elements were then calculat-
ed from the single-electron matrix elements and the chosen
values of the parameters Fs, Fg, and a. These values were
then printed in the sequence required for the diagonalization
program so that the output tape from this first program could
be used as the data input tape of the diagcnalization program.
All output data were printed in the floating decimal format,
the matrix elements for all five matrices, Fl, FZ, etc.,
being pvrinted in turn.

The tremendous advantage achieved bv use of +he computer

to calculate the matrix elements is illustrated by the fact

that a sample computation which took the computer two minutes



C. Diagcnalization of the Matrices

The cocmputer programming reguired for the diagonalization
of the matrices was greatly simplified by the availability of
a subroutine. This subroutine calculated the eigenvalues and
eigenvectors of the matrices by utilizing the Jacobi iteration
technique as outlined in the text by Bodewig (35). This

method redquires that the matrix elements by scaled such that

g

m§<<%, where m is an element of the matrix, and the sum-
1

i
mation is over all the elements of the matrix. This was
another reason why it was convenient to have the calculations
separated into two parts. Inspection of the answers from the
first program allowed the inclusion of appropriate scaling
factors into the second program to be made.

One comment concerning the diagonalization of the
matrices involving complex numbers is in order. Since the
computer handles only real numbers, it is necessary to expand
the matrix. Bodewig (35) points out that if the hermetian

matrix, A, contains complex numbers, that is if

]
i
[z
-+
H
2

(128)

then the complex system cf order n can be replaced by a real

svstem of order 2n by the matrix:
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Upon diagonalization of the matrix B, the eigenvalues of 3
This requires, for example, that the 6 x 6 matrix for the
weak field F3 matrix given in Table 16 be expanded to a 12 x
12 matrix, and the matrix elements in the first program be
calculated accordingly.
Generally, the total computer time required for evalua-
tion of all the energy levels for one set of the five

parameters took approximately twelve minutes.
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A, Experimental Results

1. Absorption spectra

The transitions of the electrons of the central ion from
the ground state to the excited states, as indicated in
section II-B-1, give rise to the absorption spectrum of the
transition metal complex. The absorption maxima correspond
to the energies involved in the transitions.

The absorption spectra of the platinum(II) complexes
studied were obtained by means of a Cary recording spectro-
photometer, model 12, manufactured by Applied Physics Corp.,
Pasadena, California. Some of the spectra were available as a
result of previous investigations carried out at Iowa State
University of Science and Technology (36, 37). The original
spectra obtained in these investigations were available for
study. All such spectra were in essential agreement with the
results obtained by Chatt, et al. (2). The values of the fre-
quencies of the absorption maxima and their extinction coef-
ficients for the complexes considered by Chatt, et al. (2)
appear in Table 28. Some of these assignments should be taken
with reservation, as indicated by the following section on
Gaussian analysis.

Since the absorption spectra with which this thesis is

concerned are those which Chatt et al. (2) studied, and hence
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LY 4 -l b 4 —l
Complex vy X 10%cm Emax v X 107cm €max

Peak 1 Peak 2

[PtCl,yl™ 3.02 64 2.55 59
[pt(NH3)c13}’ 3.33 74 2.89 118
trans—[pt(NH3)2c12] 3.67 75 3.17 60
trans-

[ (CgHy;)NH 2Ptc12] 3.71 97 3.12 67
cis-[Pt(NH3) ,Cl,] 3.72 69 3.31 128
[Pt(NH3)3c1}+ 3.92¢ 117 3.60 40

Peak 3 Peak 4d
[PtC1,]™ 2.10 . 15.0 1.77 2.6
[Pt(NH3)cl3]‘ 2.41 19.8 2.07 2.8
trans—[Pt(NH3)2C12] 2.68 21.4 - -=
trans-

[ (CgHyy)pNH ,PtCl,;]  2.64 21.8 2.26 2.2
cis-[Pt(NH3)2C12] 2.73 23.0 2.40 3.2
[Pt (NH3) jC1]* 3.10 32.5 -- --

qTaken from Chatt et al. (2) and confirmed by repetition
of the curve analysis.

b is the extinction coefficient of Lhe peak maxima in
units o? &m-1 x(Moles of complex ion/liter)-

CThis value, which differs from that given by Chatt et al.
(2), is the result of a recent analysis of the spectra by
Ferruccio Aprile, Department of Chemistry, Iowa State Univer-
sity of Science and Technology. Data from spectra analysis.
Private communication. 1961,

dPeak 4 is the assignment given by Chatt et al. (2).

Its contribution, if included in Peak 3, would be so small
that it would not change the frequency of the maxima of Peak
3.



are alreadyv available, reproduction of 2ll the curves will nct

be included. A typical absorption spectrum, that of an agueous
solution cof [PtCl,]” ion, is given in Figure 9. At first
glance, three absorption maXxima are apparent. In addition,
for each complex, there appears to be an intense peak at a
relatively high frequency, > 4.5 X lO4 cm‘l, whose maximum
extinction coefficient is greater than 2000. This maximum is
beyvend the range cof the detectable frequencies of the spectro-
photometer.

when one, two, or more NH, molecules are substituted for
Cl” ions in the [PtCl4]= complex, appreciable changes take
place in the extinction coefficients of the maxima. However,
as illustrated by Figure 10 and the values in Table 28, the
absorption maxima appear to shift to higher and higher fre-
guencies in a rather uniform fashion. This is in keeping with
the spectrochemical series discussed in section II-B-2. Chatt
et al. (2) consider such a trend as indicative that Jdespite
the decrease in symmetry which results when the NH4 molecules
are IiIntroduced into the complexes the transitions involved in
the absorption spectra remain unchanged. For example, if Peak
2 in the {Ptcl4]= spectra arises from the singlet-to-singlet
transition (xXvV) —» (xz—yz), then the corresponding peak in the

[Pt(NH3)C13} spectra is due to the same transition. In ef-
fect, such an assumption, which is not without precedent in

theoretical ligand field studies (27, 28), simplifies the
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calculations by assigning to the substituted cowplexes a
symmetry, Dyt s which 1s greater than that which they actually
possess. This assumption is also applied in this thesis. As
a consedquence, a single radial distance, R, is used and as-
sumed to be reasonably applicable to all central ion to ligand
distances. As a result an effective ligand dipole moment, u',

which is actually a weighted average of the individual ligand

dipoles, can be assigned to each complex.

2. Gaussian analysis of the spectra

In order to assign suitable frequency values to the ab-
sorption maxima, the absorption curves were analyzed by the
technique outlined by Jorgensen (38). This method assumes
that the absorption peaks follow a Gaussian distribution given
by the equation:

€ = (€o) exp [-a(v - Vo)z]:

where v frequency of the light being absorbed,

m
"

extinction coefficient for the frequency, v,

m
i

o maximum exXtinction coefficient,

Vo T frequency of the maximum €,

a constant
Application of this technique to the absorption spectra of
{PtCl4]= in aqueous solution results in the dotted-line curves

given in Figure 9. The values of ¢4, v,, and a, are those

given by Chatt et al. (2). Notice that as a result of such an



analysis, those authors obtained a fourth absorption maxima at
a fregquency of 1.77 x 104 cm=1l. That is, they contend that
the third maxima is actually the result of two transitions
which are fairly close to each other in energy and hence
appear as one peak.

It is certainly possible that the third absorption maxima
could be the result of two transitions rather than one. How-
ever, to make the rather arbitrary analysis given in Figure 9
and to assign the energies of the two transitions, see Table
28, on the basis of the small residual extinction coefficient

of Peak 4 seems to be somewhat unjustified. This point is

considered again in the following section.
B. Qualitative Interpretation

It is quite well known (39) that complexes of platinum(II)
are diamagnetic and square-planar. This suggests that a
strong field description for the energy levels is reascnable,
since the electrons must be paired. Figure 11 gives the two
possible energy level assignments. Figure lla indicates the
levels as given by Chatt et al. (2). Figure 1l1lb gives the
choice preferred as a result of the calculations reported in
this thesis. The difference between the two lies in the posi-
tions of the (22) and the (xz) (yz) orbkitals.

In either assignment, the ground state requires that the

(x2—y2) orbital be empty. It is reasonable then that the



x2-v2) L x2y?
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Figure 11. Alternative energy level assignments for square-planar
platinum(II) complexes
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excited states consist ¢of configurations in which an electron
has been promoted from one of the lower orbitals to the (x2—
y2) orbital. One could expect then that the absorption peaks
would appear as a result of the transitions:

(Xy) ———»  (x%-y?)

(z2) —— (x%-y?)

(x2) (vz) —= (x2-y?)
A hasty conclusion might be that the three absorption maxima
given in Figure 9 could be assigned to these transitions.
Such a judgement overlooks the fact that Peak 3 in the figure
differs appreciably in its maximum extinction coefficient from
those of Peaks 1 and 2. Furthermore, Chatt et al. (2) have
given strong arguments that Peak 2 must be due to the transi-
tion, (xy) —» (xz—yz), since Peak 2 is not shifted by
changes in solvent. But this transition must be lower in
energy than either of the other two possibilities. The ques-
tion as to the nature of Peak 3 then arises.

The foregoing discussion assumed that the transitions were
from a singlet ground state to a singlet excited state. In-
deed in elements where the spin-orbit coupling is small, such
an assumption is justified since electronic transitions of the
type, singlet-to-triplet, are forbidden. However, platinum has
appreciable spin-orbit coupling (23} and hence mixing of the
singlet and triplet states result. One can view this, in a

sense, as imparting singlet "character" to the triplet state.



}.._I
AN
(€3}

Thus. sincglet-to-triplet transitions mav be possible. 2alt+thongh
one would expect such a transition to be less probable, and
hence its extinction coefficient would be less than that for
singlet-to-singlet transitions. But this is exactly what is
evident in the case of Peak 3 in Figure 9. Therefore, it is
reasonable tc assign to this peak the singlet-to~triplet
transitions corresponding to the singlet-to-singlet transi-
tions given by Peaks 1 and 2, the latter being assigned to
the transition, (xy) — (xz—yz).

Since Peaks 1 and 2 are nearly equivalent in intensity,
it seems reasonable to assume that their singlet-to-triplet
transitions would be the same. This would not be the case if
one accepted the Gaussian analysis of Chatt et al. (2). It
seems more appropriate to assign the frequency of Peak 3 as
an average value of the frequencies of the two singlet-to-
triplet transitions.

Because of the near equality of intensities of Peaks 1 and
2, the former can be designated as a singlet-to-singlet tran-
sition. However, whether this transition is from the (22)
orbital or the (xz) (yz) orbitals depends upon the choice be-
tween the energy level schemes in Figures lla or 1llb.

Note that in either case, one singlet-to-singlet transi-
tion 1is presumed to be absent i; the absorption spectra. This

situation is understandable when one realizes that all the

transitions under discussion are transitions within the d8
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configuration. Such transitions are usuallv forbhidden and ha-
come allowed only as a result of vibrational interactions (7,
26) . Consequently, if one of these transitions involves an
energy requirement which approaches the energy of an allowed
transition, for example, the transition of an electron from

54 to 6p, the absorption peak due to the "“forbidden" transi-
tion will be lost in the absorption peak which appears as a
result of the allowed transition. By reason of its apparently
high extinction coefficient, the unassigned peak with Vo >

3.5 x 10% em™?

which appears in Figure 9, is assumed to be
such a d-to-p transition. The third expected singlet-to-
singlet transition is presumed to be "buried" under this tran-
sition.

In order to assign the transition which results in Peak 1,
it is necessary to turn to quantitative calculations. Such
calculations should require that having set the value of a
ligand £field parameter from the experimental value of the
singlet-to-singlet transitions, (Xy) —s (xz—yz), that 1is,
from Peak 2, one can predict values for the other transitions

which agree with the experimental results for Peaks 1 and 3.

C. Theoretical Calculations

1. Initial choice of parameter wvalues

In essence, the calculations of the theoretical energy
levels depend upon the five parameters, F2 and Fp from the

electronic interaction; a from the spin-orbit coupling; and u
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potential. A reasonable approach

’- 4
a

and R from the ligand fiel
seemed to be to fix as many of these parameters as possible
from independent data and to vary the remaining parameter or
parameters to obtain approximate solutions. Then one could
vary the originally fixed parameters to ascertain whether
small changes in these values would improve the solutions.

It was felt that the electronic interaction parameters,
Fy and Fy4, and the spin-orbit parameter, a, could be estimated
from atomic spectra and atomic theory, while the radial
distance, R, could be obtained from internuclear distances
determined by x-ray diffraction techniques. Thus, the only
really "free" parameter would be the effective dipole moment,
uw.

a. The electronic interaction parameters, F, and Fu

It was initially hoped that the differences in the energy
levels, 3F, 3P, 1D, etc., for the weak field calculations
could be directly obtained from empirical data from atomic
spectroscopy. However, while the energy levels of platinum
and platinum(I) are available (40), work on the platinum(II)
emission spectra has not been initiated.4 However, values for
these parameters can be reasonably estimated from atomic
theory.

It has been fairly well established (6) that the relation

4Sitterly, Charlotte Moore. National Bureau of Standards,
Washington, D. C. Atomic energy levels program. Private
communication. 1960.
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cf this relation and the energy level tables (40) for

platinum (I}, one can estimate that the value of Fg should be
approximately 4.0 x 10~4 atomic units.® The estimate made by
Chatt et al. (2) for F, in the complex was 3.92 x 10~4 atomic
units. This latter value has been chosen as the fixed value
for F4, since a decrease in the electronic interaction param-
eter seems to result on passing from the free ion to the com-

plex (41).

b. The spin-orbit coupling parameter, a McClure (23)

has listed the spin-orbit coupling values, a = 1/2 £, for many
of the elements. From this tabulation, a for platinum has
been fixed at 9.4 x 1073 atomic units. However, it is con-
venient initially to keep the singlet and triplet states
separate so that one can follow the course o©f the "preferred"
transitions, that is, the singlet-to-singlet transitions for
the strong field case. Therefore, in the first approximation
of the appropriate parameter values, the spin-orbit coupling
parameter was Kept at zero. The final values must include
appreciable spin-orbit coupling, however, since appreciable
coupling takes place in platinum and the justification of the

intensity of the singlet-to-triplet transition depends upon it.

SThis estimate was based on the experimental difference
4= 4 4’ = 8 - - 2 - 4 -
between the F9/2 538° (3F)6s level and the P5/2 5a8(3P)6s
level. For the theoretical difference, in terms cof Slater-
Condon parameters see p. 203 of the text by Condon and
Shortley (6).
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sume that the internuclear distances in a complex do not
change appreciably from the solid to the solution, an esti-
mate of the radial distance, R, can be made from x-ray dif-
fraction data. Dickinson (42) has determined the platinum

to chlorine distance in KPtCl, to be 2.33 + .05 i, while the
platinum to ammonia distance, measured in mixed complexes (43,
44), is approximately 2.2 i. These distances give values of X
equal to 8.5 a.u. and 8.0 a.u. respectively. The value of
8.0 a.u. was initially chosen for X since it had been the ex-
perience of certain authors (27, 28) that a distance somewhat
smaller than the internuclear distance resulted in better
agreement between theory and experiment.

d. The use of point dipoles in comparison with point

charges Ballhausen (27) points out that in dealing with
halide complexes one should consider that the perturbation on
the central ion energy levels is due both to the charge of the
halide ion and the induced dipole moment of the latter caused
by the influence of the central ion. Chatt et al. (2) suggest
that in halo-platinum complexes, some dr-dr bonding takes
place. Such interaction would further tend to distort the
charge distribution about the halide ions to make them appear
more like dipoles than spherical charges. Furthermore, the
substituted groups are ammonia molecules and hence should be

considered as dipoles in ligand field terms. Therefore, in
< g 3



decided to use the dipcle expressions for all the ligand
species. This simplification has alsc been employed by Maki

(29) in certain applications.

2. Energy levels as a function of dipole moment

To summarize the foregoing discussions, the initial

choices c¢f parameters were:

Fyp = 3.92 x 104 atomic units (a.u.)
F, = 14 Fy = 5.488 x 10-3 a.u.

a = 0

X = £R = 8.0 a.u.

o= variable

The values of y ranged from 0O to 3.5 a.u. A plot of the re-
sultant energy levels is given in Figure 12. To avoid con-
fusion, only those levels which might be relevant are drawn
in detail. While the group notations, lAl, lAz, etc., are no
longer completely valid because of the mixing of the states,
the eigenfunctions indicate that the states are essentially
those given and it 1is convenient to retain them in order to
discuss the transitions qualitatively,.

The figure clearly illustrates the difference between the

h

weak and strong field cases. When u is less than 1.0 a.u.,

the ground state is seen to be a triplet state resulting
3

from the “F state, and the "allowed" transitions within the 4
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configuraticon weuld be triplet-to-triplet transitions, par-
ticularly within the 3F states split by the ligand field.
When 1 is greater than 1.0 a.u., the ground state is a singlet

lD state. The electrons

state whose original source is the
in such a case are all paired and the complex would be diamag-
netic. The preferred transitions in the strong field case are
singlet~to-singlet transitions. The most likely transitions
are between the lAl ground state and the states given at the
right hand of Figure 12. For convenience, the unoccupied
orbitals are listed in parentheses following the group theory
notation. The following observations concerning the levels
are noteworthy:

1. In accordance with the qualitative discussion, the

lowest energy singlet-to-singlet transition in the strong

field case, for example u, 2.0 a.u. is to the lAz state,

that is, the electron transition is from the (xy) orbital

to the (x2—y2) orbital.

2. The next lowest singlet-to-singlet transition is from

1

la, to B , that is the electron transition is from the
1 1

(22) to the (xz—yz) orbital, while the transition from
the doublet, (xz) (yz) orbital to the (xz-yz) orbital re-

guires greater energy. If energies are involved in the

1 1

transitions from the "A; to A, and lB which give agree-

1

ment with the experimental absorption spectra, it would

appear that the (22) orbital is above the (xz) (yz) doublet,
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that i1s., Figure 11b 1s preferahle +o +that+ an~oociad hor
Chatt et al. (2), Figure 1lla.

3. The three lowest triplet levels which originate from
the S3F state follow a pattern favorable to the interpre-
tation given in the qualitative discussion. At dipole
moments greater than 2.0 a.u., the highest of the three
is "lost" in the preferred singlet-to-singlet transition.
The two lower levels have energy values which are nearly
equal and hence transitions to them would appear as one
absorption peak.

If one plots the differences in energy between the 1

ground state and the excited states, lAZ, lBl, lE, and the

Ay

two lowest triplet states given in Figure 12, as a function of
dipole moment, one obtains the curves given in Figure 13. For
convenience, the energies in the figure are given in terms of
wave numbers so that direct comparison of the theoretical tran-
sition energies with the results given in Table 28 may be made.
From the previous discussion, it has been indicated that
absorption Peak 2 of Table 28 is a result of the transition,
singlet-~-to-singlet (xy) — (x2-y2), or in group theory nota-
tion, lAl-——+ lAz. By using the values of this peak as a
standard, one can fix the corresponding effective dipole
moments for the complexes and predict the theoretical values

for Peaks 1 and 3. By this procedure, the results given in

Table 29 have been obtained. While agreement between experi-
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Table 29. Comparison of calculated and experimental transition energies from
initial parameter choices?

std. ’{heory Theory
Peak 2 Exp. A, to Exp 1 1
and  Peak 1 1 peak 3 AL te TA) to  Av.
1a, to Bl 3 3
1 A B
Compound Ia, 2 1
[Ptcly )™ 2.55 3.02 2.90 2.10 1.90 1.60 1.75
[Pt (NH3) C1,4] 2.89 3.33 3.31 2,41 2,22 2.11 2.17
trans-Pt (NH3) ,Cl, 3.17 3.67 3.67 2.68 2.47 2.40 2.44
’-.J
trans- &
[ f(CgHyq) pNH},PECL,] 3,12 3.71 3.61 2.64 2.52 2.47 2.50
cis-[Pt (NH3) ,Cl,] 3.31 3.72 3.84 2.73 2.66 2.64 2.65
[Pt (NH,)yC1) 7" 3.60  3.92 4.20 3.10 2.96 3.00 2.98

°X = 8.0 a.u., F, = 5.488 x 107 a.u., F, = 3.92 x 10-5 a.u., a = 0.
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mental and theoretical singlet-to-singlet values are nct bkagd,
it should be remembered that these results have been obtained
with the spin-orbit coupling parameter equal to zero whereas
in platinum it is appreciable. However, the results do tend
to indicate that with introduction of the spin-orbit coupling,
agreement between theory and experiment should be possible

with but minor adjustments in the parameters.

3. Effects of changes in the electronic interaction param-

eters on the transition energies

Prior to the inclusion of the spin-orbit coupling param-
eter, it was deemed adviseable to investigate the effect of
changes in the electronic interaction parameters, Fy and Fys
on the transition energies, since the parameters had to be ob-

tained somewhat indirectly. For this study,® the parameters

were:
L =2.0 a.u.
X = 8.0 a.u.
a =0
Fy = 14 Fy
F, = variable

The energy levels were obtained for four values of Fy:

1) Fa = 3.92 x 107% a.u.,

3.60 x 1072 a.u.,

2) Fa

3) 3.40 x 1074 a.u.,

&)
(oY
1
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For these wvalues the transiticn energies between the vagious
states were cbtained. Rather than present all of them, only
those transitions which would lead to absorption peaks of
interest are given in Table 30. As is seen from the table,
the transition energies are only slightly affected by rather
large changes in the electronic interaction values. This
indicates that the energy levels are primarily a function of
the ligand field; that is, the ligands impart a, strong field

Table 30. Effect of electronic interaction on the transition
energiesd

Transition energyP® for a given F4q value®©

F4 = F4 = F4 = F4 =
Transition 3.0 3.4 3.6 3.92
1 1
A, —— A 2.58 2.56 2.56 2.56
la, —— s, 3.00 2.95 2.93" 2.91
1 3
a, — “a, 2.10 2.01 1.97 1.90
la, —— By 2.08 1.90 1.84 1.71
a _ _ -4 -5
X = 8.0 a.u., F, = 5.488 x 10 a.u., Fp = 3,92 x 10
a.u., a = 0.

S7ransition energies given in wave numbers X lO4 cm_l.

£ s _4
€A1} values of F, are F, x 10 a.u.
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ment of the thecretical snergy levels to give better agreement
with experiment should be accomplished by means of the ligand
field parameters, R and u. Finally, it was felt that on the
basis of the results obtained, the original choice for the

parameters F, and F, should be retained.

4, Final choice of parameters after inclusion of the exper-

imental spin-crbit coupling value

Upon inclusion of the spin-orbit coupling value given by
McClure (23), it was found that except for the theoretical
results involving the cis-Pt(NH3),Cl, and Pt(NH3)3Cl+ com-
plexes, somewhat poorer agreement with experimental values was
obtained. Trial calculations with various values of the
radial distance parameter X = fR, indicated that reasonable

agreement was achieved for these other complexes if one used

the experimental Pt-Cl distance from PtCl4:: that is, X
8.5 a.u. Thus, the final choices of parameters for these com-
plexes are given in Group I of Table 31. It is interesting

to note that the effective dipoles are reasonably self-
consistent. For example, the effective dipole for [NH3PtCl3]—

should be:

A - r A s = l 4 hi - -
W 13/4 / Unr (131)

3
PtCl, ], upy = 2.89, and



st

Fq = 3.92 x 10 a.u., and a = 9.42 x

}
wn
89}

Tapie 31. Pinal cnoice 0Of parameters

Compound Effective dipole moment?
Group Ib

[PtCl, ]~ 2.89 a.u.

[Pt(NH;3)C13]” 3.14 a.u.

1

trans—[Pt(NH3)2CIZJ 3.38 a.u.

trans-[ (CgHy,),NH ,PtCl,] 3.34 a.u.

cis—[Pt(NHB)ZClz] 3.51 a.u.

[Pt(H,0)Cl3] 2.96 a.u

Pt(HzokFlz 3.07 a.u

[Pt(OH)c13]= 3.02 a.u.

[Pt(OH)2C12]= 3.16 a.u
Group IIC

cis-[Pt(NH;) ,C1,] 2.74 a.u.

[Pt(NH3)3Cl]+ 2.92

aDipole moment fixed on the basis that absorption Peak 2

corresponds to the lAl-—_+ lA2 transition.

bFixed parameters: X = 8.5 a.u., F
1

§-3

“Fixed parameters: X = 8.0 a.u., Fp =
Fy = 3.92 x 1074 a.u., and o = 9.42 x 1073

5

a.

.488 x 10-3a.u.,
u.

.488 x 1073 a.u.,
LU,



]
~
L
N
64
[X¢)
1
jmt
N
AN
o

|
[l
-
(WS}
[\

Bv use of these values, one can estimate the dipole for
Pt (NH3) 5Cly:

u = [1/2 Koyt 1/2 Uygy 1= 3.38 a.u. (133)

which is exactly that for the trans-complex. By similar
processes the average dipole for the di-aquo and di-hydroxy
species can be predicted. The results are 3.00 a.u. and
3.12 a.u. respectively, which compare fairly well with the
values listed in Table 31.

The resultant transition energies vs. effective dipole
moment, with ¥ = 8.5 a.u., are given in Figure 14. Compari-
son between the experimental and theoretical transition
energies are given in Group I in Table 32, This group also
includes preliminary results from a study of the absorption
peaks of aguo-substituted and hydroxy-substituted chlorocom-~
plexes. These results are incomplete since the singlet-to-
triplet peaks have not been experimentally determined as vyet.

The singlet-to-singlet transitions agree rather well,

i

Estimates of the transition energies in the {Pt(NH3

~—r

3C1]
complex based upon the energy levels given in Figure 14 re-
sult in poor agreement with the experimental values. However,
it was vossible that in this case, the platinum to nitrogen

distance for the complex would better represent the central



Table 32. Comparison of final theoretical transition energies with experimental

results®
std Theory
Peak 2 Theory
1a, 1ay 1a, Lay
b to EXp. to % Exp. to to %
cop.”  las Peak 1 1B;  Error Peak 3 3a, 3B, Ave. Error
Group I
A 2.55 3.02 2.92 3.3% 2.10 2.20 2.16 2.18 3.8%
B 2.89 3.33 3.28 1.5% 2,41 2.48 2.50 2.49 3.3%
C 3.17 3.67 3.53 3.3% 2.08 2.74 2.83 2.79 4.,6%
D 3.12 3.71 3.61 2.7% 2.64 2.70 2.76 2.73 3.4%
E 3.33 3.72 3.81 2.4% 2.73 2.88 3.00 2.94 7.7%
F 2.64 3.14 3.02 3.8% - 2.28 2,26 2.27 -
G 2.78 3.22 3.18 1.2% - 2.41 2.41 2.41 -
H 2.72 3.18 3.11 2.2% - 2.34 2.34 2.34 -
I 2.90 3.33 3.31 0.6% - 2.51 2.53 2.52 -
Group IIX
J 3.31 3.72 3.68 1.1% 2,73 2.90 2.80 2.85 4.4%
K 3.060 3.92 3.99 1.8% 3.10 3.10 3.16 3.13 1.0%

a
All results are in wave numbers X lO4 cm‘l.

Prhe complexes are as follows: A = [PtCl4]=; B = [Pt(NH3)Cl3]™; C = trans-
[Pt (NH;) 5Cl,]: D = trans-[ {(CsHyj) pNH},PtCl,); E = cis-[Pt(NH3) pCly); F =
[Pt (H20)CLl3]7; G = [Pt(Hp0),Cly);: H = (Pt(oH)Cl3]; I = [Pt(OH),C1ly)%: J = cis-

[Pt (NH3) 2Clp]: and K = [Pt(NH3)3cl]t.

q
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Figure 14. Transition energies as a function of dipole

moment for the f£inal choice of the parameters
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ion to ligand distance than the platinum toe chioride Aaistance.
Therefore, a value of X equal to 8.0 a.u. was employed which,

when used with an appropriate value of u' given in Group II of
Table 31, resulted in good agreement between experimental and

theoretical energy levels. The results are given in Group II

of Table 32, along with a second evaluation of cis-

[Pt (NH;)-,Cl-] made by use of the same radial distance.
3/72~+2
D. Discussion

The calculations and results presented in this thesis
support an alternative assignment of energy levels to that
given by Chatt et al. (2). Some discussion about the reasons
for the two assignments seems to be in order.

The main difference between the two assignments is in
the relative positions of the (22) and the (xz), (yz) orbitals.
All the features of the spectra, save one, which are noted by
Chatt et al. (2) tc be consistent with the assignment of Peak
1 to the transition from the degenerate (xz), (yz) state to
the (xz—yz) state, are equally consistent with the alternative
assignment of the transition from the (22) state. Without
going into detail, this single feature concerns the absorption
spectra of the solid complexes, and the presumption is made
that the energy levels in the solid are the same as those of
the complexes in solution. However, in order to be sure of

this, one would expect that the absorption peaks in the two



situations would pe idsntical. as thev were in certzin Ni{II}
complexes investigated by Maki (29). This is not the case
with the platinum complexes under discussicn. For example,
the three peaks of the solution spectra of K,PtCl, are at

331 myu, 392 mu, and 476 my, while the spectra of the solid,
the peaks are at 340 mu, 375 myu, and 500 mu. While these are
somewhat close, it should be noted that the shifts are not all
in the same direction. Furthermore, Dickinson (42) has shown
that in the solid K,PtCl, the platinum atoms appear in chains
above one another, whereas it is to be expected that in
aqueous solution, the water molecules would be oriented such
that the negative end of the dipole would be directed toward
the platinum ion. In view cof the fact that in crystals the
complex ions of platinum frequently form metal-metal bonds,
(44), it is possible that the solution and solid spectra are
not analogous. 1In ligand field terms, positive charges on the
z—-axes due to the platinum ions could alter the positions of
the energy levels.

Furthermore, if Peak 1 were due to the transition from
the (xz), (vz) orbitals, one would expect a splitting of this
peak in the spectra of the lower symmetry complexes, for ex-
ample, in trans-[Pt(NH3)2C12]. Chatt et al. (2) explain the

fact that no apparent splitting takes place as due to the fact

2

that the (x —y2) orbital 1is much more sensitive to the nature

bt

of the ligands than those cf the (xz) and (vz) crbitals.



the energy
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riowever, in terms o vel assignment of this
thesis, no splitting would be expected since the transition
is from the single (22) orbital in all the complexes.

The energy level assignment supported by the present
work is in accord with the assignment applied to Ni(II)
complexes (14). The effects of configuration interaction
and spin-orbit coupling, which were not exploited in the
previous treatment of platinum(II), have been included. How-
ever, it should be noted that in view of present theories of
bonding in complexes, ligand field calculations which employ
a point charge or point dipole model are perhaps over-
simplifications and will accordingly remain suspect. Never-
theless, within the framework of the dipole model, the com-
plete ligand field calculations in this thesis result in an

unampiguous assignment of the levels which gives reasonable

agreement with experimental values.
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~.  Appendix A: Derivation c¢f the iave Functions

cf the Free Ion

In order to construct the wave functions associated with
the enerqgy levels cof the free platinum(II) ion, one must be
careful in the choice of phase factors. For example, if
PFa(3) = J3/V8 [(2,0)-(0,2) Jac
(134)

W
2
:— J

+ 1/4 [(2,1)-(1,2) 1 [ag +

then either

r

3F3(3): l/ \[—8- [(2:0)-(052) }C}.CI + N 3;4 {—(2,1)4—(1,2)][@.&‘}-{5@],

(135)
or
3F3(3) = 1/ 78 [-(2,0)+(0,2) Jaa
+.3/4 [(2,1)-(1,2)][af + fa]l, (136)
will be orthogonal to 3F4(3). The choice of phase factors,
both within a particular J value and between different J
values, must be consistent. To assure this, it has been de-

cided to employ the systematic approach given by Condon and
Shortley (6) in which the wave functions IS,MS,L,ML) are
derived first and then the [S,L,J,M;) wave functions are ob-
tained from appropriate combinations of the ]S,MS,L,ML) func-
ticns. However, in the derivation of the fS,L,J,MJ> functions,
the prccedure that will be followed is the one given b

Rotenberg et al. (45).



To obtain the states of the free ion, the method out-
lined in section 17 of Condon and Shortley's text (6) is
particularly advantageous, not only because of its simplicity,
but also because of the useful information derivable from the
table that is constructed in the process of deriving the
states. To obtain the states which result from two equivalent
d-electrons, one considers all possible combinations of ML and
Mg which can be obtained with the restriction of the Pauli ex-

where m, and

clusion principle. Now My, =z,m£ and Mg = 2 mg,

mg are the magnetic and spin gquantum numbers for the d-elec-

trons. sSince my =+ 2, + 1, 0, and mg = + 1/2 for each elec-

tron, the possible ML and Mg values are:
M =+ 4, +3, + 2, + 1, O,
Mg = 1, O.

One then proceeds to construct a table of all possible combi-
nations of the m, and ms value which will give a particular My
and Mg . Such a listing for the d2 case 1is given in Table 33.

Since there is a state with Mp = 4, Mg = 0, there must

exist a state with L = 4, S = 0, that is, lG. Now lG will

have ML values from 4 to -4, with Mo = 0. Similarly, since

S
there is a state with My = 3, Mg = 1, there must exist a 3F

state, that is a state with L = 3, S = 1. Now in the cell,
My, = 2, Mg = 0, one of the terms is accounted for by the ¥e

state and another by the 3? state. Since there is a third



Table 33. M. and M. valnes Fnr A2 or 3% cemfiguration”
MS
1 0 -1
My,
4 -- (2%27) -
3 (zt1h) (2+1-) (2-17) (2717)
2 (270 (2707) (270™) (1F1-) (2707)

1 (2+-1h (1To) (2t-17) (27-1h) (1to-) (170t (27-17) (1700)

o (2t-2%) (1t1h (27-27) (27-2T) (at-10)

(17-1%) (0+0-) (27-27) (17-17)
-1 (-2%1) (-2+17) (-271h) (-1F07)
(-170%) (-170%) (-2-1%) (-1-07)
-2 (-2toh) (-2107) (-2-0F) (-1T-17) (-2707)
-3 (-2+-17) (=2F-17) (-2=-1+) (-2--17)
-4 - (-2+-27) --

2In this table, (A™B~) is a representation such that A
and B are the my values of the two electrons and the super-
scripts, (+) and (-), represent the mg values, with (+) = a
=% and (-) = B = -%. The entire expression represents the
antisymmetric product function. Thus, (2+1+) = 1/.J2 [(2,1)
- (1,2) laa.

term in the cell, there must exist a state with L = 2, S = 0,

that 1is lD. Similarly from the cell M; = 1, Mg = 1, one ob-

lS state is

1

tains the 3P state; and from M, = 0, Mg = 0, the

derived. Hence the states associated with d2 or d8 are -G

1p, 1s, 3r, ana 3p.

s
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2. The {S,Me,L, M,)} functions by means of step operators

If the function for a particular state is represented by
%n,m> whare n is the angular momentum quantum number and m is
the z-component quantum number, then one can define as opera-
tor, A _, such that:

A |n,m> =% [(n m)(n—m+l)]% |n,m-1> . (137)
A_ is called the "step down" operator. If, for example, n is
the orbital angular momentum operator, {, and m is my, then,

A_ =4t = £, - iﬁy. (138)
An introduction to the concept of "step down" and "“step up"
operators is given in Chapter VI of the text by Mandl (46).
Suffice it to say that the step operators are not limited to
the orbital angular momentum, £, but that analogous defini-
tions apply for the total angular momentum, j, the spin, s,
etc.

Since,

+ (139)

1 )

and

4 My 2

where the (1) and (2) refer to electrons one and two, one can

(140)

define-

L

] =42 (1) +6(2). (142)

£ (1) + 2_¢(2), (141)

Therefore, if one could obtain a function IS,MS,L,ML) which
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wae eawvnrasaaed in Formae ~F +Fho osomranses

prcduct functions, one could find, for example, IS,MS,L,ML—l),
|s,Mg,L,Mp~2), etc., or [S,Mg-1,L,M;), |S,Mg-2,L,Mp), etc., by
repeated applications of the appropriate operators. For ex-

ample, from Table 33, 1t is obvious that the wave function for

the state |S,Ms,L,M;) = {1,1,3,3) is given by

]1,1,3,3) = 1/2 [(2,1)-(1,2) Jac. : (143)
Then,
L 11,1,3,3) ={e_) + 42} 1/4Z [(2,1)-(1,2) Jaa.
(144)
Hence,
'ﬁ[(3+3)(3-3+1)];i ]1,1,3,2) =
4/ 2 [(2+1)(2-J,+1)]1’2 [(2,0)-(0,2) ]aa. (145)
Therefore,
[1,1,3,2) = 1/.2 [(2,0)-(0,2) ]aa. (146)

By a similar process:

.3_!1,1,3,3) ={A_(1) + 4 (23} 1/77 [(2,1)-(1,2) Jaa. (147)
42 1,0,3,3) = 4/ 72 [(2,1)-(1,2) ] [aB + Ba]. (148)
[1,0,3,3) = 1/2 [(2,1)-(1,2)][af + Ba]. (149)

By such a step down procedure, the IS,M L,M;,) functions for

SJ
all Mg and My, values associated with S = 1 and L = 3 may be

obtained. This technique assures that the proper relative

phases for all states are obtained. The 'S,MS,L,ML) func-

3

tions required for the “F states are given in Table 34.
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'S’MS’L’ML)

Two-electron product functions

f1,1,3,3)
| 1,0,3,3)
| 1,-1,3,3)
i1,1,3,2)
}1,0,3,2)
] 1,-1,3,2)

| 1,1,3,1)
| 1,0,3,1)
| 1,-1,3,1)

}1,1,3,0)

| 1,0,3,0)

| 1,-1,3,0)

|1,1,3,-1)

| 1,0,3,-1)

|1,-1,3,-1)

11,1,3,-2)

|1,0,3,-2)

1/ J20(2,1)-(1,2) ) [ca)

172 [(2,1)=(1,2)[ap+ Ba]

1/ 72 [(2,1)-(1,2)][8B]
1/ 42 [(2,0)-(0,2)][ca]

1/2[(2,0)-(0,2) J[ap + Ba]

1/ 2 [(2,0)-(0,2)](88]

1/ 10 [ <2 (1,0)-+2 (0,1) +:/3 (2,-1)
-3 (-1,2) ] [aal

1/ 720 [ <2 (1,0) -+2 (0,1) +3 (2,-1)
-J3 (-1,2) ] {aB + Ba]

1/ .10

VT;

1/ J10 [(2,-2) -

1/ .20 [(2,-2)

Ba ]

I

1/.10 [(2,-2) -

[ J2 (1,0) -2 (0,1) +43 (2,-1)
(2:—1) -

3 (-1,2) (e8]
(-2,2) + 2(1,-1)-2(-1,1) }[aa]

(‘2:2) + 2(13-1)"2("131)][a6 +

(-2: 2) + 2(1,'—1) "2(—'1:1) } [BB]

17410 [ V2 (0,-.)-V2 (-1,0) ++J3 (1,-2)
-3 (-2,1) ] [aa]

1/ 0520 [ 2 (0,-1) -2 (-1,0) ++3 (1,-2)

—

-— x’f' 2

P

1/ .71

3 (-2,1) 1[a8 + Ba]

[ 2 (0,-1) -2 (-1,0) +~3 (1,-2)

-3 (-2,1)]1I88]

172 [(0,02) - (-2,0)][aa]

1/2 [(0,-2)-(-2,0)][a5 + Ba]
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+1) 102 2 5p.my,dp,my) . (150)
ml m2 ~m

In the case of the wave functions being considered, jl = S;
j2 =L; J =J; m] = Mg; my = ML: and m = My. The equation
would be difficult to handle were it not for the fact that a
complete set of values for the 3-j symbol,

SERS PR

my m, -m
have been determined and tabulated by Rotenberg et al. (45).
The text is self explanatory and quite easy to follow. A
more detailed discussion of the 3-j symbol, its properties and
uses, is given by Edmonds (31).

An illustration of the use of the foregoing equation

might prove helpful. In constructing the wave function for
the state Is,L,M,M35> = |1,3,4,3), by means of the |S,Mg,L,My)

functions, one obtains the expression:

3-1-3
1,3,4,3> = (-1) b 8 + 1271 3 4 1,my,3,m,)

my .My R
m m -
1 2 (151)

Now since j;, = S =1, thenm =mg = + 1,0. It can be shown
(31) that the 3-j symbol is zero unless mj + my = m. There-
fore when:

my; = 1, m, must equal 2,
m; = 0, my; must equal 3,



Tahle 34. (Coantirnad)

| S,Mg,L,M) Two-electron product functions
11,-1,3,-2) 1/ V2 [(0,-2)-(-2,0) ] [BB]

11,1,3,-3) /N2 [(-1,-2)-(-2,-1) j[aa]

ll:O)3:°3) l/z [(—11—2)”(_2,-1)}[&'{3 + ,’EO’.]
|l9-l:3y-3) l/ "\.F—Z‘ [(—l,“Z) - (—21—1)] [56}

3. The |S,L,J,M;> functions

In section 58, Condon and Shortley (6) point out that the
states of different terms have no particular phase relation.
That is, the highest M; value for any one of the states, 1G4,
lDz, lso, 3F4, and 3P2, can be constructed simply on the basis

of their orthogonality relationships. However, the phase

3

relation does become important between the °“F states; i.e.,

between 3F4, 3F3, and 3F2, and between the three 3P states:

3Pl, and 3PO.

In order to construct the |S,L,J,M;> functions from the

i.e., between 3P2,

|S,MS,L,M functions, while guaranteeing the consistency of

L)

the phase relations, one can make use of the relationship be-
tween the functions in terms of the 3-j symbol. The general

relation is given by:
o —m
12701 z (25 + (Continued next

jl:j21j1m> = (-1)
ml’mz page)
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But in the latter case my would exceed Jo = 3, and since it is
required that m, i jo, this last combination is not allowed.
Thus the wave function becomes:

0 3 -3 (152)

11,3,4,3> = =3 f1 3 4)[1,1,3,2) -3 /1 3 4\]1,0,3,3)
1 2 =3

From Rotenberg, et al. (45), one obtains:

a4
1 3 4)= ST (1 3 ) et
102 -3 23 0 3 -3 6

J3/2 §1,1,3,2) +1/211,0,3,3),

J3/2 1/-2 [(2,0)-(0,2) laa

Hence:

|1,3,4,3>

+ 1/2 1/2{(2,1)-(1,2)][eB + Ba]

+.73 /8 [(2,0)-(0,2)1[aa]

+ 1/4[(2,1)~-(1,2) ][aB + Ba) (153)
Such techniques are required to insure the consistency

3F states as well as between the 3? states. It is

between the
not necessary to employ the above method in order to determine
all the | S,L,J,M;> wave functions. For example, the wave func-
tions for lG4(4) and 3F4(4) may be written directly from con-
sideration of the antisymmetryv reguirements and the values

given in Table 33, since there is only one possible |S,Mg,L,Mp )

function belonging to each of them. Thus:

1

1/.72 1(2,2)1[a3 - gol.
(154)

Gy(4) = 10,0,4,4> = ]0,0,4,4)



One nctes that all the sincletr functions will he antigvmmetric

Tho L

in their spin parts and hence must be symmetric in their space

parts. Similarly, all triplet states will be svmmetric with
respect to spin and antisvmmetric with respect to space. Thus:
3F4(4) = 11,3,4,4> = 1,1,3,3) = 142 [(2,1)-(1,2)Jaa  (155)

To obtain the other wave functions belonging to lG4 and
3F4, that is, the wave functions with different MJ values, one
can use the step down operators:

}_ fs,L,3,M3> =44 [(J + M) (J-M 1)]L2 {s,L,J,MJ-1> , (156)
for the left hand side; and

y_ =4 o= (1) v () + 2 (1) + 12 (2), (157)
for the right hand side. The procedure is then analogous to
that given for the step operators of the IS,MS,L,ML) func-
tions.

Furthermore, since the phase factor for different L
terms is unimportant, one can derive the first term of the
singlets, 1D2(2) and lSO(O), from orthogonality considerations,
examples of which are given in the text by Mandl (46).

Regardless of whether the 3-j symbol technique is employ-
ed throughout, or only used in those cases where the phase
factor is important, one can construct the wave functions in a
straightforward, though tedious, manner. The free ion wave

. - -2 -2 . . . .
functions for the d? or df configuration are given in Table 8.



ADpendix B:

s

weak Field

"J

The spherical harmonics

Because of their importance in this thesis and the fact
that the choice of the prhase factor is often a source of con-
fusion, some discussion of the spherical harmonics is in
order. The spherical harmonics, as employed in this thesis,

follow the definition given by Condon and Shortley (6):

Yf’m(e,ﬁ) = (-1)™ [(212+l) Ef ;§£ i ]%rfh.P; (cos ©) eim¢
b (158)

Yy m(0,8) =+ [(222“) gfﬁ;' .[= i (cos 8) e~im® (150
where:

tmi (l—x2 m/2 14m

P (x) = d 2_qyM (160)

! 5F Trim 7D

IE ax

Frequently, in this report, a spherical harmonic has been ex-
pressed as Y(£,m) for simplicity of reproduction. In such
cases, the dependence of the function on 6 and g is meant to
be understood.

It is particularly important to note the phase factor,

(-1

, when comparison with similar expressions of the spheri-
cal harmonics is made. The inclusion of this factor by some
authors and its omission by others has led to slightly dif-

ferent expressions for the d-electron orbitals.

Explicit expressions for the normalized spherical
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harmonics are given inm Tahlsa 11 Thoxr ars mracsontad hath oo
functions of the angles, 6 and g, and as functions of the
coordinates, x,v,z, and the radial distance, r. Correspon-

dence between the two sets is indicated by the relationships:

X = r - sin & cos g, (161)
vy =r .- sin 6 cos &, (162)
zZ =r - cos O, (163)
exp(img) = cos(mg) + i - sin(mg). (164)

Three properties of the spherical harmonics should be kept in
mind:
1. Y(£,m) =0, if {m} > ¢, (165)

(-1)™ v(2,-m), where (*) indicates (166)

2. Y*(i,m)
the complex conjugate.

3. T‘ Y*(l,m) Y(g',m')dr = 6(£,2') + &(m,m"), (167)

ﬁhat is, the integral ecuals one if ¢ equals £' and

m equals m', and is equal to zero if £ does not equal

£' or m does not edual m',.
Proocfs of these relations, as well as an excellent review of
the properties of the spherical harmonics and the different
phase conventions used by various authors can be found in sec-

tion 2.5 of the text by Edmonds (31).

2. Expansion of a product of spherical harmonics

In the course of determining the matrix elements due to

the ligand field, cne finds it necessary to evaluate integrals
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Tvoe:

' * A
Y (4 ,mg) Y(£,mp) Y(L,m) dr.

Section 4.6 of the text by Edmonds (31) contains a procedure
for the expansion of the product of two spherical harmonics in
terms of a sum of spherical harmonics,

Y*(£5,mz) Y(2y,my) = 2 K, ¥¥(£,m). (168)
£,m

By use of the expansion and the orthogonality relationship of
the spherical harmonics, the above integral can be evaluated.
According to Edmonds (31), the general expression for the

expansion 1is given by:

24 _+1) (224,+1) (2£+1) £
Y(la’ma) .Y(lb’mb) = o [( a b ] la lb
£,m 4T my, m, m
£ £ £
a b *
0 0 0

Thus, the coefficient, Kﬁ,m: corresponds to the terms pre-
ceding the spherical harmonic, Y*(I,m), on the right hand side
of Eguation 162. The terms in the large parentheses are the
same 3~j symbols introduced in Appendix A.

Certain properties of the 3-j symbol limit the number of
terms which need to considered in the expansion. Rotenberg
et al. (45) indicate that the 3-j symbol is equal to zero un-

less:

£ £_ + ib

a

17N

-m = mgyg + mp



Purthermore, the particular 3-3 s;mool,{iz Ly, £ \
\O 0 0 /
equals zero if Ia + Eb + £ = odd number. Hence, the expansion

must have either all odd or all even spherical harmanics for
given values of ia and fb, and the highest order harmonic has
L= 4+ 1.

Rather than employ the fundamental definition for the 3-j
symbol, as given by Edmonds (31), it can be evaluated by use
of the tables compiled by Rotenberg et al. (45). An actual

example might clarify the calculations. Consider the product,

*
v*(2,1) ¥(2,1). Since Y (£,m) = (-1)™ y(£,-m), then:

¥¥(2,1) Y(2,1) = (-1) ¥(2,-1) ¥(2,1) (170)
- ; ((5) (5) (2441) (%[ 2 2 ¢ 2 2 1\
§=0 4T Y*(2,0) (171)
-1 1 0 0 0 O
1
* =-712572 12 2 0 2 2 0
Y2, 1) ¥z, 1) L&) ( ) ( )-Y*(o,o)
-1 1 0 0 0 O
_p L2 502 2 2 2 2 2\
47 -¥*(2,0)
-1 1 o0 0 0 ©
225 %/ 2 2 4 2 2 4
- L ( ) ).Y*(4,0).
-1 1 o0 0 0 0

(172)

Evaluation of the 3-j symbols from the tables given by Roten-
berg et al. (45) leads toc the result:

¥ (2,1) v(2,1)= —2— v*(0,0)+ —2= ¥¥(2,0)- —2

*
== Y (4,0).
2 J7 7 77 (4,0)

T

(173)



3. Svailuatcion of the radalial intearal

a. Normalization of the Slater orbital The d-elec-

tron wave functicn for platinum(II), approximated by means of

a Slater crbital (30), has the form:
g = (8 r3 e %) v(2,m, (174)
where: N = normalization constant,

£ =2%m" = 7.55/4 = 1.89,

Z" = the effective nuclear charge,

n = the effective principal guantum number,
It is required that:

rox
g° $ dr = 1. (175)

Therefore, since the spherical harmonics are already norma-
lized,

r

N2 (r3 e"fr)(r3 e—fr) r? dr = 1. (176)

From standard tables of integrals (47), one finds that:

n @© - ) 1

T e ax = T, (177)
0

where r(m) = (m-1)!

In the case of the integral under consideration, m = 9, a =

2£. Therefore,
N i ;2
N2 | p8 g-2fr gr =-—J175 (8!) = 1. (178)
. (2f)
Hence: 9 1

7595 17 (179)
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evaluation of the one-electron matrix elements, the angular

integral, G, (a,b), was obtained, where:
@
-

Gg(a,b) = -a N> ' R,(r) Ry(r) Rg(r) r2 dr (180)
0
with N2 = £2/78.75,
Ra(r) = Rb(r) = r3 e_fr
£ £+1
R, (r) = r, /r>
AN

In order to evaluate this integral, it is convenient to
make a change of variable such that x = fr and X = fR, and
then to consider the integral as the sum of two integrals, the
first from zero to X and the second from X to infinity. Thus,

rX f oo

. { X 8 -
Gyp(a,b) = — -9f 1 / 8 _-2x L o | xBe-2x 1
¢ (a,b) T [ o) x° e X dx + 7 e dx ]
X 0 X% < F
(181)
= _ _4af
78.75 G2 (X) (182)

where Gy (X) are the terms in the bracketts in Equation 181,

The only integrals of interest in a square-planar potential

field are those with £ = 2 and 4. Therefore:
-1 "X _10 _-2x 2 [P 5 -—2x
GZ(X) =3 X e ax + X° X2 e dx (183)
X . N
0 X
1 pX _ ‘nGD _
Ga(X) = 5 x12 72X gy 4+ x% | k3 e72x g« (184)
- A
0 X

In standard tables of integrals (47) one finds:



+ p(p-1) (ax) P2

- " (-1)Pp!] (185)
where p 1s an integer. By use of this relation, one can
evaluate the integrals in Equations 183 and 184 in terms of
the variable X. The resultant expressions are given in Table
6 in section IV-D-3.

The Gﬁ(a,b) integrals result from the fact that the
ligands are considered to be point charges. In order to de-~
termine the expression for point dipoles, one considers the
potential due to a negative charge, -g, at a distance R from

the central ion and a positive charge, +4, at a distance R +

AR. The radial expression then becomes:

~Bg (a,b) = + =% G, (x) — il Gy (x + ) (186)

Since AX = fAR, and the point dipole is defined as

W = lim gAR (187)
AR— 0
then:
2
- = _uf®  1im Gy (X+8X) - Gy (X)
= _ _uf?_ B, (X) (189)
~ 78.75 £ ’
where
a
By(X) = ¢ Gy (X). {(190)

The Gy (a,b) and By (a,b) integrals in the foregoing

discussion were for the interaction of the ligand field with
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the "electron hole" formalism, the signs of all the integrals
change. 7Thus, the appropriate radial integrals for the inter-

action of the point dipoles with the "“electron holes" of the

d8 configuration are:
B, (a,b) = uf? g (%) (191)
213,20 = 95755 "2
. _ uf2
Bala,b) = 55795 B4 (X) (192)
where:
B.(X) = = G, (X) (193)
2 ax “2
B, (X) = & ¢, (X) (194)
4 ax 4

The expressions for B, (X) and B4 (X) are given in Table 6 in

section IV-D-3.

4. Correlation of the ligand field matrix elements as given

by wvarious authors

To the tvro in ligand field, one of the most confusing
aspects is the array of equations and symbols used by vari-
ous authors to express the ligand potential and the re-
sultant matrix elements. The confusion is compounded when one
deals with sguare-planar symmetry which is a special case of
the more general tetragonal symmetry group, Dagp-.

2. The ligand potential To exemplifv the possible

methods of representing the ligand potential, the forms given

by four authors will be compared with the eguation used in
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n

(1) Ballhausen The potential for sguare-planar

symmetry used in this thesis is identical with that given by

Ballhausen (27):

vIF = g [ -4 v7/ VT ry ¥(2,0) +VT R, ¥(4,0)
+Jd357 /347 R, [Y(4,4) + Y(4,-4)]] (195)
where
R e
Rﬁ - r// r> . (196)
AN

This expression, which is derived in section IV, is for the
interaction of point charges, 4, with electrons of the central
ion.

(2) Maki The pctential emplo&ed by Maki (28,
29, 48) for square-planar symmetry is very similar to the one

used in this thesis:

VEF = —q [ 847 Ro ¥(0,0) - 47 R, ¥(2,0) +7 R, ¥(4,0)

- V357 /342 Ry [Y(4,4) + Y(4,-4)]] (197)
where Ry is defined by Equation 196. The initial term,

8 N7 RO Y(0,0), is relatively unimportant since it simply re-
sults in the addition of the same value to each diagonal
element in the matrices and hence does not affect the rela-
tive separations between the energy levels. 1Indeed, Maki (28)
discards this term in her calculations. The important dif-
ference in the two expressions is in the sign of the cceffi-

cient which precedes the Y(4,4) and Y(4,-4) spherical
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of locations cof the ligand with respect to the coordinate
axes. Maki (28) chose to locate the ligands along the + xy
axes while in this thesis they are considered to be along the
+ X and + y axes. Maki's choice not only changes the sign of
the appropriate matrix element but also results in an inter-
change in the interpretation of the symmetry representations,

Bl and Bs.

(3) Liehr Liehr (49), following the methods

outlined by Moffitt and Ballhausen (7), arrives at an ex-

pression for tetragonal symmetry through consideration of the

tetragonal field as a sum of an octahedral field and an axial
field. The axial field, which may be due to different li-
gands or a different ligand distance, is considered to be
along the + z-axes. The potential expression is:

Vp = Vg + Va (198)

where Ve tetragonal potential

octahedral potential6

<
i

{v(4,0) + 5/ V14 [¥(4,4) + Y(v,-4) ]} Dy(xr) (199)

Vap = axial potential

Y(2,0) Dy(r') + ¥(4,0) Dy(r') (200)

The methods of this thesis, when applied to the same two

6Actually, Liehr (49) uses Ry (r) rather than Dy (r), but
this could lead to confusion when comparison with the form of
this thesis is made.



potentials, VA ana Va. result in the following avnraczsione in

terms of point charges and electrons:

v, = -q {747 /3 Y(4,0) Ry(x) + 357 /32 Ry(r) [Y(4,4)
+ ¥(4,-4) 1} (201)
= —q 77 /3 Ra(r) { ¥(4,0) + 5/ V14 [¥(4,4)+¥(4,-4) ]}
(202)
Va = -q' { 4 JT/ V5 Ro(r') ¥(2,0) + 447 3 Ry(c') Y(4,0)3
(203)
where g and r do not necessarily equal g' and r'. Comparison

of Equations 199 and 200 with Equations 202 and 203 lead to

the relationships:

D, (r) = -q 7N7/3 Ry(x) (204)
D,(r*)= -a' 4 J7/ 5 Ry(c") (205)
Da(r')= -g' 4 J7/3 Ry(r"') (206)

In order to obtain the expression for square-planar
symmetry, from the Vp = Vg + Vp approach, one considers the
axial potential, Vp a@s being due to charges which are equal
in magnitude but opposite in sign to those due to the octa-
hedral field, and located such that the radial distances in-

volved in VO and V, are the same. That is, for Equations 202

and 203:
g' = -qg (207)

Ry(r') = R,(r) (208)

Ry(r') = Rgl(x) (209)

The resultant expression for the sguare-planar potential,

Vgg, 1s then identical with that given in Ecguation 195.
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rresvonding application to Liehr's expression (455,

» ~r~
A

given in Equations 199 and 200, cannot be made directly since
D4(r) and D4(r') contain certain coefficients within them
which are not the same, as can be seen from Edquations 204 and
206. Actually, in the square-planar case:

Dg(r) = 7/4 Dg(xr') , (210)
and hence the sguare-planar potential in Liehr's notation is:

Vgg = - Y(2,0) Dy(r) + 3/7 ¥(4,0) Dy(r)

+ 5/ 14 [¥(4,4) + Y(4,-4)] Dy (x) (211)

Eguation 211 presumes that, Vosg = Vo ~ Vas in order to make

q
the same cancellation of potential accomplished by Equation
207.

(4) Bleaney and Stevens Bleaney and Stevens

(21) present three possible expressions for the ligand
potential in tetragonal symmetry. The first form is simply

the expansion of the potential with unspecified coefficients,

that is:
v=3 am r Y (£,m) (212)
£
= o =2 o =4 4-4
vV=aYr ¥(2,0) + A4Y r” Y(4,0) + Ay r Y(4,4)
+ 2,7 v4,-9), (213)

. . £
where A44 = A4‘4. In Equation 213, the radial term, r , and

m
the coefficients, A, , roughly correspond to the radial term,

R; {r) and the numerical coefficients respectively, in Eguation

195.

The second expression given by Bleaney and Stevens (21)



simnly presents the f£irst expressicn in termS of cartesian co-
ordinates instead of spherical harmonics. Thus:
v =3 22322 - £2) 4 5,0(3522 - 30r222 4+ 3c%) T4
+ BA4(x4 - 6x2y2 + y4) 54 (214)

=

m m e .
where the Af and B, ccefficients are related by:

0 = 3 f’," 0
BZ 5/4 N AZ

= — a 0
B4O 3/16\11 A4
4
544 = 3.J35/8 J2r A,

The third form of the potential, to be given in Equation
215, is actually the most useful., The potential is expressed
as a function of angular momentum operators. Stevens (50) has
shown that the matrix elements expressed as a function of x,
Y, and z are proportional to the matrix elements of a similar
operator in which X, y, and z are everywhere replaced by the
total angular momentum operators, }x, gfy, and }z, respective-
ly. The only precaution in the substitution is that whereas
X, ¥, and z commute, }x’ &y’ and }z do not. Therefore, a
term such as xz would be replaced by 1/2 (}x}z + yzsx). Thus,
from the expression given by Edquation 214, one obtains:

v o= 320a52(3322 - }2) + 340 ) 74 (35}2:2 - 30}2 }zz

+25),2 — 6§ + 3(9N% + 5,8 Fh2lp * vy 4,

(215)
where a and 2 are the proportiocnality constants to be con-

sidered and determined. The details of this approach are

carefully and exhaustively covered by Stevens (50) and need



not be reproauced nere. The advantage of the methnd e +hat
it is not necessary to obtain the specific forms for all the
wave functions for the weak field in terms of products of
single electron functions. However, the method is complex
enough, because of the necessity of obtaining the appropri-
ate proportionality factors, a and 8, for each } and £ value,
that it is just as convenient, in the two electron case, to
obtain the wave functions. In situations which involve more
than two electrons, however, the technique would be very
helpful.

b. The single electron matrix elements Two main

systems for presentation of the ligand field parameters are
found in the literature. One involves the use of the vari-
able, "effective dipole moment",u, and "effective radial
distance", R; the other employs parameters denoted by Dgq, Ds,
and Dt. The former approach is used in this thesis, as well
as by Maki (28) and Ballhausen (14, 27). The Dg, etc.,
symbolism is used by Liehr (49) and others (7, 23, 26).

The single electron matrix elements, Q,, Q3, Qp, and
By_», for square-planar symmetry, have been derived in detail
in this thesis in terms of u and the "B" integrals, which are
functions of R. Their values are repeated in Table 35. Table
35 also contains expressions for the matrix elements in tetra-
gonal and square-planar potentials in terms of Dg, Ds, and Dt.

The historic definition (4) of Dg is given in terms of a
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Taple 25. Single electryron matriv o)omonis In SNGLIOGOUWS foswd
Matrix  Function of y and R Function of Dg, Ds, and Dt®
element square—planarb tetragonal Square~-planar

o 1/14 B4 + 4/7 By Dg + 2Ds - Dt 3/7 bq - 2Ds

0y =-2/7 B4 - 2/7 By -4Dg - Ds + 4Dt -12/7 Dq + Ds

Qo 3/7 Ba - 4/7 B, 6Dg - 2Ds - 6Dt  18/7 Dg + 2Ds

B2_2 5/6 B,y 5 Dg 5 Dqgq

a
The parameters Dd, Ds, and Dt are defined by Equations

216, 218, and 220 respectively. They are related to the "B"

integrals in column two by Equations 227, 228, and 229.

Prhe B integrals in this column represent the By (a,b)
integrals defined by Equation 105 and expressed as functions
of X = fR in Table 6. Maki's results (28) differ in the sign
preceding the By_p matrix element because of her choice of
ligand locations.

matrix element for an octahedral field, namely:

n

pa = [ |2, +2)% vy |2, +2)ar, (216)
where Vn is the octéﬁedral ligand field potential as given by
Egquations 199 and 202.

Use of Equation 199 and the appropriate expansion of the
spherical harmonics associated with the single electron wave
functions leads to the result:

Dg = 1/14 N7 {Dy(x) > (217)

where {Dg(r) > is the radial integral,‘fR(a) R(b) Dg(r) r?ar,

In an analogous fashion, Moffitt and Ballhausen (7) and



Liehr (49) define Ds by the relation:

*

Ds = - [}2, + 1) VA(Z) |2, + 1) dr, (218)

where V2 (2) = py(r') ¥(2,0), that is, v,(?) is the first term
in the axial potential given by Equation 200. Therefore:
Ds = - 5/14 V7 {Dy(r") >, (219)
where {D,(r') > is the corresponding radial integral.
Similarly, Dt is defined by the relation:

Dt = - flz, +2) vp(4) J2, +2) ar, (220)

A

(4)

where Vp = D4(r') Y(4,0), that is, it is the second term in
the axial potential given by Equation 200. Therefore:
Dt = -1/14 J7 {Dy(r") D. (221)
In terms of the approach used by Liehr (49), the single
electron matrix element, Q,, in a tetragonal field is given by:

r *
0, = ' 12, +2)7 vpl2, +2) dr, (222)

where Vg is defined by Equation 198, 199, and 200. Then:
0, = 1/14 J7{Dy(r) > - 5/7J7<{Dp(r") >+ 1/14 J7 {Dy(r") >,
(223)
which, from the definitions of Dg, Ds, and Dt, can be ex-
pressed as:

0, = Dg + 2Ds - Dt. (224)

In an analogous fashion, the other single electron inte-
grals for the tetragonal field can be evaluated. Similarly,
the expressions for square-planar symmetry can be obtained by

application of Eduation 211 and the definitions of Dg and Ds.



To obtain correspondence between the various sets given
in the table, it is necessaryv to evaluate Dg, Ds, and Dt in
terms of the approach used 1n this thesis, given by Edquations
202 and 203. Thus, for point charges and electrons in tetra-
gonal symmetry:

r *
Dg = 12,+2) VO |2,+2)ar (225)
- r
= 1/6 G4(a,b) = 1/6 [-g R (r) R (r) Ry(r) r? dr], (226)

where G, (a,b) is the radial integral defined by Equation 94.

For point dipoles and "electron holes", the expression for Dg

is:
Dg = 1/6 [u£2/78.75 B4(X)] = 1/6 By(a,b). (227)
Analogously:
Ds = -2/7 [uf2/78.75 By(X')] = -2/7 B,(a,b), (228)
Dt = -2/21 [u£2/78.75 B4(X')] = -2/21 By(a,b). (229)

C. Appendix C: Group Theory

The following is ncot meant to be an all inclusive trea-
tise on the theory of groups. It i1s assumed that the reader
is familiar with the general concepts as outlined in texts
such as that by Eyring, et al. (24). Proofs of the validity
of various relationships and applications are generally
omitted since they are available in such standard texts as
that by Wigner (51). Certain concepts are worth special con-
sideration because of their applicability to the ligand field

theorv calculations.



1. Basis functions

A set of functions, Vj;, VY3 *°° ¥, 1s said to form a
basis for a representation of a group if the application of
the group operations on the functions genérate the group
representation. That is, the set of functions, under the

operation of some element of the group, go into linear com-

binations of one another. Mathematically:

k
- = Iy
Ry, = 2 [wy; vy, (230)
j=1
where R is a group operation,

ri(R)ji is an element of the matrix representation corres-

ponding to the group coperation.

2. D4h group operations

Square-planar complexes of platinum(II), such as [PtC14],
belong to the rotation group Dyjp. This symbol is most easily
defined after examination of the group elements. They are:

1) E = the identityoperator
2a) C4 = counterclockwise rotation by 27/4 about the z-
axis, which is the principal axis
2Db) C43 = counterclockwise rotation by 3(27/4) or clock-
wise by 27/4 about the z-axis

3) C, = rotation about the z-axis by 27/2

4a) Co(x) rotaticn about the x-axis by 27/2
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{v) = rotation about the v-axis by 27/2

It
]

5a) Ci(xy) = rotation about the (xy)-axis by 27 /2

5b) C%(-xy)- rotation about the (-xv)-axis by 27/2

6) i = inversion through the origin
7) cp = reflection in the xy-plane
8a) S4 = counterclockwise rotation about the z-axis by

27/4 followed by reflection in the (xy) plane
8Db) S43 = clockwise rotation about the z-axis by 2w/4

followed by reflection in the (xy) plane

9a) og (%) reflection in the (xz) plane
9b) og (y) = reflection in the (yz) plane
10a) oé(xy) = reflection in the plane defined by the (xy)-
axis and the (z)-axis
10b) oé(-xy)= reflection in the plane defined by the (-xy)-
axis and the (z)-axis
Those operations which belong to the same class, that is,
whose matrix representations are connected by similarity
transformations are grouped together. For example, C4 and C43
belong to the same class.

In the symbol, Dgy, the (4) indicates that the principle
axis is a 4-fold axis. Dy means that there are four 2-fold
axes perpendicular to the principle 4-fold axis. The sub-~
script, (h), indicates that the symmetry operations oy and ¥
are elements of the representation. The operations for the

Dgpn group, together with their "characters", which will be



discussed in Appendix C, are given in Table 36.

3. Matrix reoresentation of a group

Matrices are able to form representationé of groups since
it is possible to obtain matrices which have a one-to-one
correspondence to the group elements and which have the same
multiplication table. Obviously, the matrices which describe
rotation operators fall into this category.

In constructing the matrices corresponding to the group
elements, one must use a consistent approach, since it is

possible to use one of two techniques. This is most easily

Table 36. Character table for the symmetry group, Danh

Group operation

ég;:a E Cy 2C4 2C, 2C, i oy 284 20, 20,
Alg 1 1 1 1 1 1 1 1 1 1
- 1 1 1 1 1 -1 -1 -1 -1 -1
Ayg 1 1 1 -1 -1 1 1 1 -1 -1
Aoy 1 1 1 -1 -1 -1 -1 -1 1 1
Blg 1 1 -1 1 -1 1 1 -1 1 -1
Biy 1 1 -1 1 -1 -1 -1 1 -1 1
Bag 1 1 -1 -1 1 1 1 -1 -1 1
Boy 1 1 -1 -1 1 -1 -1 1 1 -1
Eq 2 -2 0o 0 0 2 -2 0 0 0
Eqy 2 -2 0 0 0 -2 -2 0 0 0

@Irr. Rep. stands for irreducible representation.
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seen by consideration of a vector,

- -— - —
r X

= xli + Vi3 F 2y} (231)

-

where xj, Y1, and z; are the coordinates of the vector and
—> -_— . .
i, j, k, are the orthogonal unit vectors, which define the
3-dimensional space. See Figure 15. The components of a
vector can be expressed in terms of the Euler angles, 6 and ¢,
and the length of the vector, r. Thus:

Xy = r - sine cosg@

Y1 = r - sin® sing

z = r - COs®©

a. Rotation of the vector If one considers the situ-~

ation in which the group operations act upon the vector, then
it is possible to describe the new vector which results in
terms of the original coordinate system,

- - L -

r' = lel + YZJ' + sz' (232)
For example, consider a counterclockwise rotation about the
z-axis by an angle a operating on the original vector. Then

© is unaffected, but @ changes to § + a. Then the coordinates

-
of the new vector, r', are given by:

x2' = r sin® cos(g+a) = r - siné [cosa cosf -~ sina sing]
(233)
Yo' = r sine sin(g+a) = r - siné [sina cosg + cosa sing]
(234)
z2p = r cose (235)
Hence:

X5 = (cosa)x; - (sina)y; (236)
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Figure 15. Coordinates of a vector



Vo (sina)xy + (cosq)yl (237)

zy = 2z (238)

Expressing the same relations in matrix form, one obtains:

X2 cosa ~-sinQ 0 X3y
Yo = sinc cosa 0 Y1 (239)
22 0 0 1 Zl

If a = 90°, as in the case of C4 of the Dy} group:

X5 0 -1 O X3
Y5 = 1 0 O Yi (240)
z5 0 0O 1 zq

b. Rotation of the coordinate system of the vector

If one considers that the group operations act, not on the
vector, but on the coordinate system, then it is possible to
define the vector in terms of the new coordinate system.
Thus, the vector,';, in the new coordinate system is given by:
- - -— -—p
r = x'1i' +y'j' + z'k! (241)
Consider the same rotation operation, counterclockwise rota-
tion about the z-axis by an angle a, this time acting on the
coordinate system. That is, the group operations act on the
— e -— ey P

basis vectors, i, j, kX, to give new basis vectors, i', j', k'.
The relation between the old basis vectors and the new basis
vectors is obtained by the methods given in the previous sec-
tion.

The vector, r, in the new basis, has new coordinates, x',

yv', 2'. It is easily shown that:
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wt o= (COSQ)XI 3 (Sina) ¥ {(242)
y' = (-sina)x; + (cosa)y; (243)
z' = zy (244)

In matrix notation, this is

x! cosa sina 0 X1
y' = -sina cosa 0 Y1 (245)
z' 0] 0 1 2z

It is seen that the matrix corresponding to the operation is
the inverse of that given for the rotation of the vector. It
is important to note, however, that the coordinates of the
vector in the original basis are related to the coordinates in

the new basis by:

X1 cosa -sina 0] x!
Y1 = sina cosa 0 y' (246)
zy - 0 0 1 z'

which is identical to the matrix for the rotation of the vec-

tor.

c. Effect of change of coordinates on the basis func-

tions Symmetry groups are of interest in this thesis, not
because of their effect on vectors but because of their use-

fulness in choosing appropriate basis functions. Hence, the

effects of the group elements on functions are of importance.
Here again, one has the choice of "rotating the function®" or

of "rotating the coordinate system in which the function is

defined". The latter methcd is chosen in order +to be
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consistent with the use of the spin transformation matrices
given by Goldstein (52).

In order to illustrate the effects on the functions which
result when the rotation operators act on the coordinate sys-
tem, consider the function,

F = £(x,v,2).
If a change of basis is made by rotation, then the relation

between the ©0ld and new coordinates is given by

x! X
y' = A v (247)
z' z

where (A) is the matrix obtained by the considerations given
in the previous section. One can then define R to be that
operator which changes £ in such a way that,

g(x',y',2") = RE(x',y"',2"),
evaluated for (x',y',z') has the same value as f evaluated for
(x,¥,2). Hence:

RE(x',y',2') = £(x,v,2z) = £fla~l(x',y',2")] (248)
It is typical for an operation that if Fp(k 1,2,°-")
form a basis for a representation of a group to which R belongs
then the algebraic form of each RFy is such that it can be ex-

pressed in a linear combination of all Fy> that is,
RFk(x,y,z) = Fk[A‘l(x,y,z)] = Fj(X’Y:z)Rjk (249)
where R., 1is the matrix typical for R, independent of (x,vy,z).

jk

For example, consider the two functions:
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7, = £, {x,y,2) {(xz) (250)
Fy = £5(x,v,2) =1 - (vz) (251)
If the coordinate bases are rotated by 90° counterclockwise

about the z-axis, it can be shown that:

X 0 -1 0 x' -y
Y = 1 0 0 yv' = x* (252)
z G 0 1 z' z'!
Then, F; and Fy in the new basis have the forms:
F1 = Rfj(x',y',2') = - (-y'z") (253)
Fp, = Rfy(x',y',2') = r-(x'z") (254)

From this, it is possible to define the matrix corresponding
to the operator, R. Dropping the prime notation as super-

fluous, one can write:

R(£f; f2) = (r(xz) r(yz)) 0 l)= (r(—yz) r(xz))
(255)
-1 0
The simplest way to construct the appropriate matrices corres-
pronding to the group operations as given above is to consider
the operations as "replacement" operations. For example, in
the foregoing case of C, rotation about the z-axis, the co-
ordinate (x) was replaced by (-y), (y) was replaced by (x),
and (z) was replaced by (z). Hence, these replacements are

carried out in the functions and:

. = r.{xz) becomes r-{(-yz) = -

] z

th

5 (256)
£, = r-(yz) becomes r-(xz) = £y (257)

It is understood, of course, that the function remains the



f

men s iy de e s E oy
DAt P il LA W

0]
h

the function changes.

j
Fh
i

To show that the resultant matrix is not the same as in
the case in which the function is rotated, consider the
operator, R', where R' is the same C4 rotation but acting on
the functions, f, and £,, themselves. If one exprasses the

new functions in the same basis, (x,y,z), it is clear that

R' (r(xz) r(yz)) = (r(yz) r(—xz)) (258)
Hence, in matrix notation:
(r(xz) r(vz))fo -1\ ={r(vz) r(-xz)) (259)
1 0

Comparison of the rotation matrices in the two cases shows

that one is the inverse of the other.

4. Reducible and irreducible representations of the group

If three matrices, A, A' and B, are related by the equa-

tion:

a' = saB™!
then A' 1is called the transform of A by B. B is called the
transformation matrix, and the process of constructing A' from
A and B is called a similarity transformation. These trans-

formations imply that it is possible to choose a new co-

ordinate svstem in which one operation is replaced by the

-1 _

- —~ : . . . . * S
cther. If the matrix B is unitary, i.e., if B 3", wnere

* . . .
B 1is the hermetian conjugate matrix of B, then the transform-

ation is called a unitary transformation.
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oresentation, r(R), cf a group, where (R is
an element of the groupr, is called reducible if all the

matrices of the group can, by one similarity transformation

be put in the form, M (r) given by

1 (R)

2 (R)
F'@®) =s*T (@RS = S (® (260)

®

where rl(R), rz(R): etc., are irreducible representations of
the group. By irreducible representations is meant, of course,
that other similarity transformations cannot be found which
further decrease the size of the matrix blocks. This implies
that the basis functions can be grouped into several sets,

each of which, by itself, generates one of the irreducible
representations, ri(R).

The diagram makes no attempt to estimate the number of
elements in each irreducible representation, and the zeroes
indicate that all other elements outside the blocks are zero.
Since the total size of the matrix is unchanged, the number of
rows and columns in the irreducible matrices equals the number
of rows and columns of the original reducible matrix. Fur-
thermore, rl(R) need not necessarily be different from rz(R),
etc.

Since the original reducible matrix was unitary, the
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transformation was a unitarv transformation and the irreduci-
ble matrices are unitary. Any such reduction of reducible
matrices is unique, that is, the reducible representation 1is
composed of one particular set of irreducible representations.
For the group of interest, D4j, there exist five irre-
ducible representations which are not equivalent. By
eqguivalence is meant that two representations are simply the
same operations with respect to different coordinate systems.
The matrices in Table 37 are good examples of a re-
ducible representation of the D4y group. These matrices were
obtained from the relationships between o0ld and new coordi-
nates as a result of the group operations on the coordinates,

that is,

Y = R y' s (261)

0 e
as outlined in the previous section. The dotted lines indi-
cate the division of the matrices into two irredicible repre-
sentations. Fortunately, the matrices are already in reduced
form and a similarity transformation is not required. As is
indicated later, the upper 2 X 2 set belongs to the irreduci-
ble representation, Eyj, the lower belongs to the representa-

3 A~
tion, Rsy,.

If the reducible representation of Table 37 is
called,[q, then one writes symbollically:

=8, + a5y (262)
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trace (a)



The traces of matrices representing a group are denoted by
X(R) and are called the characters of the representation,
i.e.,

X(R) = 2 '"(R);4 (264)
i

The trace of a matrix has the property that its value is un-

changed if the matrix undergoes a similarity transformation.

Thus:
trace (A') = £ A';; = trace (s~las) (265)
ijk 13
= 3 [ss'l]ijJ.k
jK
= > Ak = A..
trace (A') = trace (A) (266)

A class of elements in a group is defined as all members
of the group which are connected by those similarity trans-
formations in which the trégéfbrming matrix is one of the
group elements. All class members have the same character.
Table 36 is the character table for the irreducible repre-
sentations of the Dgy group. It combines the operations into
classes.

There are several useful properties of the characters:

a. A necessary and sufficient condition for a repre-
sentation to be irreducible is % IX(R)I2 = g, where

R

g is the order of the group, i.e., the number of
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Jroup operations.

A necessary and sufficient condition for the
equivalence of two irreducible representations is
the equality of their character systems.

If a reducible representation, F , is decomposed
into its irreducible representations, that is,

[=sc; [y (267)
1

then for each group element, (R), the character,
X (R) in the representation F is related to its
characters, Xj(R), in the representations Fi by
X(R) = 2 c3 Xj(R). (268)
The number of times an irreducible representation,
ri(R), or a representation edquivalent to it,
appears in a reducible representation, P(R), is
given by:

c=1/9 = [X(R)IIX; (R (269)
R

The full 3-dimensional rotation-reflection group -

Nature of the full rotation-reflection group The

crthogonal
reflection

Basis

continuous group which is formed from the set of all real
orthogonal 3-dimensional matrices is called the full 3-dimen-

sional rotation group. The pure rotation group includes only

matrices with determinant +1, while the rotation-
group also includes those with determinant -1.

functions for irreducible representations of the
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Tuidi rOtatlon-£EILECtlon group are the spnericali narmenics,
Y? {6,4). This can be understood by consideration of an ap-
plication of the full rotation group to a physical situation,
namely, an electron in a spherically symmetric potential as
encountered in consideration of single electron hydrogen-
like atoms. It will be recalled that the wave functions, with
principle quantum number n, associated with hydrogen-like
atoms can be grouped into degenerate sets according to the
orbital guantum number, £. The degeneracy of each set is

22 + 1. The angular dependence of the wave functions in a
set is given in terﬁs of the spherical hafmonlcs, Y(£,m),
ranging from Y(£,m) to Y{(£,-m) in integers of m. Wave func-
tions associated with states which are degenerate, other than
those states which are accidently degenerate, are basis func-
tions for irreducible representations of the group. Hence
the spherical harmonics, Y(£,m) are basis functions for the
irreducible representations of the full rotation-reflection
group.

From consideration of the group operations acting on the
basis functions, the general expression for the characters of
the group can be cobtained. In the full rotation group, all
rotations by an angle, a, about any axis are members of the
same class. Since members of the same class have the same
character, it is convenient to find the character, X(a), by

consideration cof a rotation about the z-axis.
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monics are given by:

£ .
Y(£,£) P, (Cose) ciigd (270)

i(2-1)8

Pﬁ—l(cose) e

£-1
Y(£,£-1) 4

Y(£,-£) = P, (cose) 1o

Rotaticn about the z-axis does not affect 6, but changes ¢

to #§ + . Hence:
if (B+a)

£
Y'(g,2) = Py (cose) e (271)
-1 -1t (g+a)
Y'(2,-2) = PE (cose) e
Thus the rotation can be represented by the matrices:
< if
(v, ) v(£,2-1) --- v(g,-0))[e™*C
i{s-)o
e A [t
e—ifa
=(Y'(£,£8) Y'(£,2-1) --- Y'(2,-2) (272)

Hence the representation for the Y(£,m) in the full rotation

group 1is: ]
ifa
e
ei(i-l)a

() = . (273)

e—iza

The character of this representation is, therefore:
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n=0

This is a geometrical series, the summation of which is given

by:
sin(£+1/2)a _
x(a) sinl/2a (276)
b. Isomorphism of the 'J,MJ> and |2,m;) representations
in the full rotation group It has been indicated above

that the srherical harmonics, Y(£,m), are basis functions for
irreducible representations of the full rotation group. It is
possible to show that the functions ,J,MJ>'also form basis

for the full rotation group.

If there are two representations of a group such that
there exists a unique one-to-one correspondence between group
elements so that their multiplication table is the same, then
the two representations are essentially identical and are
called isomorphic. It is desirable to indicate that the
|J,MJ> and li,mﬁ) functions form basis functions for fepre—
sentations which are isomorphic, if the numerical values of
J and My are identical with those of £ and m, respectively.

|J,MJ> functions have three properties:
1. They are eigenfunctions of angular momentum
operators.

2. They are basis functions for irreducible repre-
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b

sentaticns of the full rotation refiection group.

3. They can be constructed with the help of the step-
up and step-down operators, which are made up from
angular momentum operators.

These properties are intrinsically related to each other be-
cause angular momentum operators are the infinitesimal
operators of the rotation group.

Such lJ,MJ> functions exist in the one-electron as well
as the many-electron case. The above mentioned properties are
basic consequences of the representation and are valid in all
cases.

Let lJ,MJ>p, a set of n-electron functions, be the basis
functions for a representation, and let IJ,MJ>9 be a set of
m-electron functions which form a basis for the same repre-
sentation. Hence, the 'J,MJ>n and lJ,MJ)>m have the same
transformation properties under any rotation. As a conse-
dquence, any linear combination of the fJ,MJ>p functions has
the same transformation properties as the analogous linear
combination of the |J,MJ>m functions, that is, the appro-
priate combinations are independent of the values of m and n.

Furthermore, it should be noted that the isomorphism of
the representations corresponding to the ’J,MJ>}’1 and 'J,MJ>>m
functions holds in rotation groups of lower symmetry than that
of the full rotation group, since such groups are sub-groups

of the full rotation group.
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onstruct those linear combinations

0

is easiest to

&)

i
which form the basis for irreducible representations from one-
electron functions, that is, m = 1. Analogous linear com-
binations of n-electron functions will then form bases for the
same irreducible representations.

Since the angular dependence of one-electron functions,
|1,m1> , and hence their symmetry properties, are given in
terms of the spherical harmonics, Y{({,m), it is convenient to
fashion the symmetry properties of the ‘J,MJ> functions after

those of the "spherical harmonics", Y(J,M7).

7. The irreducible representations of the (2f+1l)-fold repre-

sentation in fields of lower symmetry

It has been shown that the spherical harmonics are the
basis functions for the (2£+1l)-fold irreducible representa-
tions of the full rotation group. This group has spherical
symmetry. In fields of lower symmetry, as in Dghp for example,
the representations are no longer irreducible but reducible.
This means that each matrix can be block partitioned into
matrices of lower dimension which furnish the irreducible
representations. The reduction of the 2£+1 representation can
be carried out by recollection of two facts:

1. The character of the now reducible representation
is unchanged bv the lower symmetry. This means

that the character for a given element of the
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eguation given for the irreducible representation
cf the full rotation group, namely:

' 1/2
X(a) = Slgi(ffl/éa)a (277)

where a is the angle of rotation for the element.
Note that this means that all rotations by 180° for
example, have the same character since they belong
to the same class in the full rotation group even
though they may belong to different classes in the
lower symmetry group.

2. Once having determined the characters of the re-
ducible representation, use is made of the property
of the characters,

X(R) = = C; Xj(R) (278)
that is, for each element, (R}, the character of
the reducible representation equals the sum of the
characters of all irreducible representations con-~
tained in the reducible representation.

An example of the reduction of the representation for

£ = 2 is given in the main body of this thesis.

8. The direct product

From two representations of the group, [ *(R) and ["" (R},

it is possible to construct a new representation of the group.

This new representation, called the Kronecker or Direct
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Product reoresentation. is writtern =2s-
FrR) = " (R) X " (R). (279)
Although it is usually unnecessary to calculate the matrix
elements, they can be cobtained by taking all possible products
of the matrix elements of "' (R) and ['" (R) according to the

formula:

FR) 15y gy = MRk T (R) 1 (280)

r(R)(ij)(kl) is the element in the (ij)th row and the (kl)th
column of r(R). The index (ij) is taken in the dictionary
sense so that (ij) precedes (i‘'j') when i<{i', or if i = i
when j<j'. If "(R) is of dimension m-and " (R) is of dimen-

sion n, then r(R) is of dimension mn. For example, if r'(R)

is/Aa Bland[™"(R) = fa b c
((3 D) d e £
g h 1

then:

Aa Ab Ac Ba Bb Bc
ad Ae Af BA Be Bf
M) = Ag Ah Ai Bg Bh Bi
Ca Cb Cc Da Db Dc
Cd Ce Ccf DA De Df
Cg Ch Ci Dg Dh Di

(281)

The characters of the direct product are given by the products

of the characters entering into the direct product, that is:
X{R) = X'(R) X"(R) (282)

Generally speaking the direct product will be a reducible rep-

resentation. This reduction can be made by use of the
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Characters of the irreducible representations and the proper-
ties cf the characters of the reducible representation given

in section 5 of this appendix. Frequently the reduction can

be made by inspection. For more complicated cases, if ra(R)

and FS(R) are the irreducible representations whose direct

product is desired then

() =T «xLmy = =2 6 T ® (283)
- A=l aBA
where ¢a6k is the number of times the A irreducible represen-

tation occurs in the product of the r; and ré representations.

¢a5x is calculated from the relation:

g =

‘ *
aBA gxa(R) Xg (R) [X3 (R)] (284)

Q {

As an example, consider the direct product of the E, repre-
sentation in D4h symmetry with itself. From the characters

in Table 36 and the relation X{(R) = XEu(R) XEu(R), one ob-

tains:.
X(E) = X(EB) - X(E) =2 - 2 =4 (285)
X(Cp) = X(Cp) X(Cp) = (-2}-(-2) = 4 (286)
X(2C,) = X(2C ) X(2C4) =0:0 =0 (287)

etc.
Inspection of the character table and the property
X(R) = Z ci X3 (R)
shows that

X(R) = Xz, (R) + Xp, (R) + Xp, (R) + X, (R). (288)
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(R) = r;

Fr) = rEu(R) X rEu Alg

+ rAZg -+ FBlg +.rB2g
(289)

Or more simply:

Ey X Ey = Ajg + Ay

g

D. BAppendix D: Ligand Field Derivations,

Strong Field

1. Symmetry adapted spin functions

In construction of the strong field matrix elements, it
is possible to obtain wave functions such that the ligand
field terms appear only in the diagonal elements of the
matrices. However, when spin-orbit coupling is included, it
is necessary that the wave functions be symmetry adapted with
respect to both spin and space functions.

In order to construct the symmetry adapted spin functions,
one makes use of a transformation property inherent in the
definition of the spin components, namely, that for every
symmetry operation matrix in real space there is a corres-
ronding matrix in the complex space having the same group
vroperties. In chapter 4, section 5, of the text by Goldstein
(52), the construction of such a set of 2 x 2 complex unitary
matrices is described. For reasons of space limitations, only

the final result will be given.

The complex matrix for the rotations in square-planar
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(cosg + i-sin8 ) cos8 (1-cosg + 51n% )sin&
(i-cosB - sin-‘zi ) sin% (cosg.- i sing.)cosg

Although there are actually fifteen group operations in
the D4y group, it is often sufficient to use just five of them
to obtain the group representation of a particular set of
functions. The five are:

1) the identity operation, E,

2) rotation about the z-axis by 180°, C,,

3) counterclockwise rotation about the z-axis by 90°,
C4>

4) rotation about the x-axis by 180°, C5(x),

5) rotation about the xy-axis by 180°, C35(xy).

In order to obtain correspondence between the complex
matrices, Q, and the rotations, it is necessary to consider
the real space operations as replacement operations. For ex-

ample, in the rotation about the z-axis by 90°, & = 0°, and

g

]

90°, then:

1 1+i 0 \
3

o(c,) = == (292)
4t V2 0 1-i |

while the corresponding C, operaticn in real space is such
that a function of x, y, and z is replaced by a function of

-y, ¥, and z. These replacement operations are discussed in

detail in Appendix C.
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first row of matrices are the Q matrices corresponding to the

five group operations. The second row lists the five 2 x 2

real matrices which are isomorphic, that is, have the same

group relationships, as the complex matrices. Application of

this latter group will be illustrated later in Appendix D.3.
The effect of the various group operations on the

spinor matrices, a and B are, of course,

1 0
a = , and B = . (293)
0 1
Thus, for example:
N2 0 1-i 0 2\ o V2
141 0 0
1 = 1 o 1. X .
C.B = = = = 7= [p-iB]. (295)
SERE I UNCRRE SR | ISR BNV FP B
Therefore:
Cqlaa) = %[a+ia][a+ia] = iaa (296)
C4(BB) = %[B-iB][p-iB] = -ipg (297)
Cy(aB) = %3[a+ial[B-iB] = ap (298)
Cy(Ba) = %[B-ip)[a+ic] = Ba (299)

By similar means, the effects of the symmetry operations
cn the spin parts of the two electron functions can be ob-
tained. The results are tabulated in Table 39.

The two possible spin states which result from the two
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TaRla 20 Matrivy renresentations in complex and real space
for some of the operations of the D,y group
Operation@

Matrix E Cq " €2 C2 C2
complex f1 o\ 1 [f1+i O i 0 o i\ 1/ o0 i+l
matrix o 2

0 1 \ 0 1-3 0 -i i 0 i-1 0
Real 1 0 0 1 -1 0 1 0 0 1
matrix

o 1 -1 0 o -1 o -1 1 0

AThe operations used are explained in the text immedi-
ately following Equation 291.

Table 39. Effect of the rotation operations on the spin

functions
Operation®
Initial 1 "
function E Cq C2 C2 02
(aa) (aa) i(aa) -{aa) -(E£6) -1 (Bg)
(£83) (88) -1i(8ge) - (BE) - (aa) i(aa)
(af) (aB) (af) (aB) -(Ba) -(Ba)
(E2) (8a) (8a) (Ba) -(aB) -(ag)

a, . . - , 5
The rotation operations of this table are the same as
those of Table 38.
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on product functions are the singlet and triplet stataa)
with S = 0, and S = 1, respectively. Just as the space func-
tions may be characterized by certain irreducible group repre-
sentations according to their values of total orbital angular
momentum, J, in the weak field case, so the spin functions can
e characterized by their values of S. Thus, for example,
the singlet spin function belongs to the representation Ay
since all the group operations leave the wave function invari-
ant., From Table 3, it is seen that the irreducible repre-
sentations for S = 1 are A + E. This means that the three
triplet functions, aa, BB, and 1/ 2 [aB + Ba], can be
combined in some linear fashion such that one of the functions
belongs to the representation A, and the other two functions
belong to the representation E. Intuition alone predicts that
1/ 2 [ap + Ba] would belong to the representation A,, and
this is confirmed by application of the group operations to
the function.

Because certain of the group operations change aa into
pg and others involve the complex number, i, the appropriate
linear combinations for the doublet, E, is seen to be:

1/ 2 [aa + B8]
i/ N2 [aa - BB]

The group operations on the above matrix give the same results
as those obtained by application of the real 2 x 2 matrices

given in the second row of Table 38. Therefore, the symmetry
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Singlet £, = 1/ 42 [ap - ba] belongs to A
Triplet £, = 1/ 32 [a3 + Ba) belongs to A,
Triplet £, = 1/ J2 [aa + 88)
belong to E
Triplet £4 = i/ 2 [aa - BB] (300)

Knowledge of the representations to which the spin func-
tions belong, that is, for which they are basis functions, is
valuable since the complete symmetry adapted functions can be
quickly assembled once the symmetry adapted space functions
are known. The complete functions are constructed, and the
representations to which they belong obtained, by means of the
direct product of group theory. Specific examples of the

construction are presented in the next section of this thesis.

2. Construction of the strong field wave functions

A linear combination of the d-electron wave functions in
their complex form may be taken such that five real functions
may be written. Furthermore, the five real functions are
symmetry adapted, that is, they are basis functions for the
symmetry group operations. Thus:

(22) belongs to the representation aj,

(xz—yz) belongs to the representation by,

(xy) belongs to the representation b2,
(%z), (vz) belong to e.

wWhen the product functions of two single electron wave
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belong are given directly by the direct product of the

1

symmetry representations. For example, the product functions:
21
)

belong to the symmetry representation, a,, since group theory

(x2 - v2) (xy) | (301)

(xy) (x2 - y2), (302)

shows that by X by = a. Actually, it is possible to con-
struct a symmetric and antisymmetric function by linear com-
binations of @; and ¢2. ThusS:

Xy = l/f§T¢l+¢2]
Xy, = 1/IEI¢1—¢2]

IAZ [(x2-y%) (xy) + (xy) (x2-y2) ], (303)

IAZ [(x2-v2) (xy) - (xy) (x2-y2)]. (304)

Both Xy and X, belong to the group a;. The validity of the
direct product conclusion can be readily checked by determina-
tion of the effects of the rotations on the functions.

The inclusion of spin follows the same simple scheme.
All that need be remembered is that the singlet function re-
quires that the space part be a symmetric function and that
the triplet state has an antisymmetric space part. Thus, from
appropriate combinations of Equations 303 and 304 with the
spin functions given by Equation 300:

Singlet state: ¥, = X; x ¢ 17 belongs to ay X Ay = A2

1
=r2

v 3 - N = & - =
Triplet state: ¥y Xo X € 57 belongs to a, X Aq Al

=T

4
[\

1
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it ~2 ot =3
k belong to a; X E = E = l-
s = Y & 2
V4 2 X Sa
{(305)
It is convenient to use the representation of Bethe (1)

to denote the final irreducible representation to which the
complete function, space and spin, belongs, and to use the
notation of Liehr and Ballhausen (26) for identification of
the space part of the functions. Thus, ¥y = X, x £, above,
belongs to Fl and the basis function is denoted by 3A2(blb2).
The superscript on the capital letter symmetry group symbol
represents the fact that the function is a triplet. The A,
part indicates the symmetry representation of the direct
product of the space functions. The representations in
parenthesis are the individual space representations of the
two electron functions which make up the direct product.

Thus, the space functions that are required are con-
structed from all possible combinations of the four states,
ay, by, by, and e. 1Inclusion of the spin follows the same
pattern. Some complexity arises in connection with the func-
tions which result from e x e, since:

e X e = ay + a; + by + bjp. (3086)

There are two cases to be considered; 1) when both e repre-
sentations are space functions, and 2) when one is a space
function and the other a spin function.

In -the first case, the two space functions which belong
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two electron product that are possible:

Xy = 1/ J2 [(x2z)(x2) + (vz)(vz)]

Xy = 1/ 2 [ (xz) (x2z)

X3 = 1/ 2 [(x2) (yz) + (vz) (x2)]

1/ 2 [(xz) (vz)

>
RN
n

(vz) (vz) ]

(vz) (x2) ]

(307)
(308)
(309)

(310)

It is apparent that the first three functions are symmetric

and the last is antisymmetric

in singlet states and X4 belongs to triplet states.

. Thus Xj, Xj, X3 will result

Further-

more, application of the group operations to the four func-

tions shows that:
X1 belo

X2 belo

ngs to Al,

ngs to By,

X3 belongs to B,,

X4 belongs to A,y.

Appropriate combinations of the X functions with the spin

to the results:

functions given in Ecuation 300 lead

Yg = X3 + €7 T Ay X az, belongs to rl

¥g = Xo X &l = By X ay, belongs to F3

¥7 = X3 x €1 = By x aj, belongs to [y

Yg T X4 X €1 T Ay X ap, belongs to rl

Y9 T Xq X 53 r
.17 Ay X &, belongs to g -

Y10 T X4 X =44

(311)
(312)
(313)

(314)

(315)

In situations of other symmetries, or when mcre than two

electrons need be ccnsidered,

it becomes more difficult to



determineé wnich states that result from the direct product
will be symmetric and which will be antisymmetric. In such
cases, recourse may be made to the methods outlined by Tisza
(53) for obtaining the symmetric portion of the direct product.
An example of its application to a specific problem has been
given by Finkelstein and Van Vleck (54).

The second case in which two E representations result is
that in which one is due to the space part and the other due
to the spin part of the wave function. For example, consider
the two electron combination of the (22) orbital with the

(xz), (yz) doublet. Then:

g1 = L2 [(22) (xz) + (x2)(2z2)], symmetric, (316)
g, = INZ [(2?) (x2) - (xz) (z%) ], antisymmetric, (317)
gy = LAN2 [(22) (y2) + (yz)(2?)], symmetric, (318)
g, = LAZ [(2°) (vz) - (v2) (22)], antisymmetric. (319)

The two symmetric functions belong to the E symmetry
representation, and upon combination with the antisymmetric
spin function, £; = 1A/ 2[af-Ba], which belongs to a,, result
in a degenerate pair:

Vip = Sy x &y

1

v = g x ¢ , which belong to fs.
12 3 -1

The state would be denoted as lrs (lE(ale)
Similarly, the 3E(ale) functions can be readilv formed

by combination of the two antisymmetric space functions with

the symmetric spin function, &, = 1A/2 [aB +Bal. Thus:
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and are designated 3r5 E(ale)

But the combination of the antisymmetric space functions,
#> and ¢, with the symmetric spin functions, €3 and €4, re-
sult in triplet functions which belong, not to r5, but to
F, rz, r3, and r4, since E x e = F1+F2+ F3+ r4.

There are four simple combinations of ¢, and ¢2 with 53 and

P
1) &y x 53
2) dz > 5_4
3) &g x £3

Obviously, they will not be symmetry adapted in themselves,

but linear combinations of them will be. Thus:

Y1y TWNZ [(By63 - B4t4a], belongs to [, (320)
Y15 =WN2Z [(B,84 + #at3], belongs to [, (321)
Y16 TINZ [(Bat3 + B4¢4], belongs to [ (322)
Uy =1/N2 [(By64 - B4€3], belongs to [,. (323)

That these functions are appropriately symmetry adapted can be
checked by application of the group operations on both the
spin and space parts of the functions.

There is one further precaution that must be exercised in

the construction of the wave functions and that is in regard
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tions associated with the FS representation. These factors

are discussed in the next section of this appendix.

3. Phase factors and order of the Fg representaticn functions

The following discussion applies egually to the strong
field and weak field functions, but because of the "tangibil-
ity" of the strong field functions when dealing with basis
function rotations they will be used to illustrate the situ-
ation.

Consider the two sets of strong field functions which

belong to the F5 representation:

; ¥y = 1/2 [(22) (y2) - (vz) (z2)][oB + Ba]
E(aje) (324)
Yy = 1/2 [-(2%) (x2) + (x2) (22)][ep + pa]

3 gy = 1/2 [(xy) (x2) - (x2z)(xy)]l[ap + Bao]
E(bye) (325)
g = 1/2 [-(xy) (yz) + (yz)(xy)][aB + Ba]

By the techniques discussed in Appendix D.4, it is possible to

show that the matrix element: —

r *
'."'l Q ¢l at =3 k.r-3‘ [Fz - 5F4]) (326)

where Q is the electronic interaction operator, and Fq and Fy
are the Slater-Condon parameters for the electronic inter-

action.

Similarly, the matrix element:



v, @ %y ar = - 343 [F, - 57,4]. (327)
But if one uses the other possible combinations as the non-
diagonal matrix element, the incorrect value of zero is ob-

tained. That is:

r * r *
vy Q ¢2 dt = Vo Q "‘51 dr =0 (328)

In order to avoid the pitfall o£ choosing the wrong pair
with which to calculate the matrix element, it is necessary to
carefully order the members of each set of degenerate func-
tions and to calculate the matrix element from corresponding
members of the set. The way to do this is to arbitrarily
choose one particular ordered set as a standard, study the
effect of the rotation operations on the standard set, and
order the remaining sets such that their wave functions follow
the same pattern.

For example, in this thesis, the set arbitrarily chosen
as standard was:

1/2 [(2%) (x2) + (xz) (z2)][af - Ba]

lE(aje) = (329)
¥y = 1/2 [(22) (vz) + (vz) (22)][aB - Ba]

<
o)
il

By use of the replacement operators and the corresponding spin

operators it can be shown that:

E (¥ ¥2) = (¥1 ¥5) (330)
Cq (hy ¥2) = (=3 1) (331)
Co (¥y W) = (=¥ -¥3p) (332)
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Ch (¥y - ¥) = (=¥ -vy), (334)

where E and the C operators are the same as those given in
Table 38 and the corresponding matrices are those given by the
second row of the same table. Thus:

Cq (V1 ¥2) = (Y1 ¥2) ( 0 :1) (=¥, Y1) (335)

-1 0 )
A "possible" choice for another set belonging to the g

representation might be:

3 Xy = 1/2[(xy) (yz) - (yz) (x2)][aB + Ba]
X5 = 1/2[(xy) (x2z) - (x2) (xy)][aB + pa]

On application of the replacement operators and the corres-

ponding spin operators, one obtains:

E (Xy Xp) Xy  Xp) (337)
Cqa (Xq X5) (=X Xy) (338)
Cy Xy  Xy) (X1 =X5) (339)
c, Xy Xp) Xy =X5) (340)
Cy (X7 XP) (X2 %) (341)

Note that the spin changes from Table 39 influence the signs
preceding the functions. With the choice of functions given

by Eduation 336, differences appear in regard to the Cé and C"
2

rotations, that is Equations 340 and 341 do not correspond to
Equations 333 and 334 as they should. However, if the func-

tions:
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are used, the group operations have the same results as those
of the standard set. This is the situation with all the
functions constructed by the methods outlined in Appendix D.2.
That is, they will either be proper choices or will become the
proper choices by a simple re-order and/or change of sign.
Consistancy of the signs preceding the matrix elements can

be obtained by calculation of the matrix element from the

first function of the ordered pair.

4. Electronic interaction terms for strong field matrix

elements

In the case of the weak field matrix elements, the elec-
tronic interaction between electrons outside of closed shells
resulted in non-zero values only for the diagonal matrix
elements. This was the result of construction of the sym-
metry adapted functions for the weak field from wave func-
tions of the type lS,L,J,MJ) which are already diagonalized
with respect to the electronic interaction. The expressions
for the diagonal terms were obtained from tabulations avail-~-
able in the text by Condon and Shortley (6).

in the strong field case, however, the matrix elements
are diagonal with respect to the ligand field parameters and

will have non-zero electronic interaction values for both
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diagonal and off-diaconal elements. The ceneral form for the
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calculation of electronic interaction terms has been given in

6

section 8- of Condon and Shortley (€). The problem is quite

similar tc that involving the interaction of the ligand point
charge with the electrons of the central atom in that the
matrix element of interest is of the form:

(ablolc d) =

r u;(l) up (2) (e2/r13) u. (1) uy(2) ar , (343)

where u; are the single electron wave functions, with (1) and

(2) referring to electron one and electron two respectively;

e is the charge of the electron, r;, is the distance between
the electrons. By expressing the single electron functions in
terms of radial and angular parts and expanding the potential,
Q, in terms of the spherical harmonics, one can show that the
matrix element becomes:

(ablQ)c a = 5(m.2, mg ) E(msb, msd) E(mza + mlb, my <

s
+md) x = cX(23m;a, £°myC) X (£9myd, £Pm,b) Fis
k= m
(344)
where the Fy are radial functions usually left as parameters

k

to be evaluated and the ¢ coefficients are obtained from the

expressions:
Ck(fm‘é, £ ‘mg ")

= - T ¢ P . .
=2 v2k+1 [‘ e(k,mg-my; ') ©(L,m) 6(£°,mg’) sine de (345)

o

where the 6 functions are the associated Legendre functions.
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and Shortley (6) and can be found in Table 16 of their text.
In the use of this table, it is important to note the de-
pendence of the cK coefficients, namely, ck(gjc) and ck(g,g),

and to know that:
x mg-mg+
ct(fdmg, f'mf.) = (-1) c‘(g'mﬁl, gmy) . (346)
For example, to evaluate the d-electron interaction element:
(1T o~ Jg] 2t -17),
where a, b, ¢, and d are given in terms of the my value and
the superscripts (+) and (-) refer to the spin values. One
notes that the Kronecker delta redquirements are fulfilled,
particularly the one which deals with the m; values. There-
fore:
(tfo o2t -17)
= c2(1,2) c?(-1,0) Fy + c%(1,2) c4(-1,0) Fy (347)
= -c?(2,1) c2(-1,0) Fp - c*(2,1) c*(-1,0)F, (348)
The form in Equation 348 is due to the relation given by

Equation 346. From Table 1® of Condon and Shortley (6):

c?(2,1) = +J6
c?(-1,0) = +1
c4(2,1) = -J35
c?(-1,0) = +J30
Hence:
(1t o7 Jof2" -17) = V6 F, - 546 Fy (349)

To evaluate the matrix elements of the strong field
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interactions. For example, for the matrix element:
(alaelB),
where:
A = 1/2 [(xz) (yz) - (vyz)(xz)][cp + Ba]
= 1/2i [(1,-1) - (-1,1)][cp + Ba] (350)

1/2 [(x2-y2) (xy) - (xy) (x%-y2)][aB + Ba]

w
U

1/21 [(—2)2) - (2,—2)][@& + BG}, (351)

U

one can ignore the spin Kronecker deltas since they are satis-
fied, and multiply the space results by two to account for

the two spin states, ¢ and Ba. Therefore:

(atalB) =2/4((1,-1) - (-1,1) o | (-2,2) - (2,-2)) , (352)

1/2 [(1,-110l -2,2) - (1,-110]2,-2)

- (-1,11Q} -2,2) + (-1,1 ]9l 2,-2)] (353)
From the same techniques illustrated by Equations 347, 348,
and 349, the matrix element can be shown to be:

(A1Q1B)= 1/2[(-35 Fy) - (-6Fy - 5F4) - (6F, - 5F,)
+ (-35F,) ], (354)
= 6F, - 30F4. (355)
Similar procedures result in the evaluation of all the
diagonal and off-diagonal elements due to the electronic

interaction.



