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A. Nature and Purpose of the Problem 

In the past decade, no single aspect of inorganic chemis­

try from an interpretive point of view has received wider 

interest than the use of ligand field theory to explain the 

physical properties of the transition metal, rare earth, and 

actinide complexes. Such characteristics as magnetic sus­

ceptibility, stability, ionic radii, and absorption spectra 

have been satisfactorily explained by application of this 

theory. 

Ligand field theory, or crystal field theory as it is 

often called, has the advantage of not only giving excellent 

agreement when used in quantitative calculations but in being 

easily conceivable from a qualitative point of view. Thus it 

maintains, within the limits of the assumptions made, its 

quantum mechanical validity, while lending itself to pictorial 

representations which are readily grasped. 

Applications of this theory have been greatest in regard 

to the transition metal complexes„ These complexes consist 

of the metal ion, which possess one or more d-electrons, sur­

rounded by several other ions or molecules, each called a 

ligand group or simply ligand. These ligands are arranged 

more or less symmetrically around the central transition 

metal. In most applications of the theory, it is only these 
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nearest ligands which affect the energy levels cf the central 

atom. 

The theory makes the simplifying assumption that the 

effect of the symmetric ligands on the energy levels of the 

central atom can be explained by considering the ligands as 

point charges or point dipoles. The resultant electrostatic 

interaction between the point charges (or dipoles) and the 

originally degenerate d-electron orbitals causes a splitting 

of the levels and hence a partial or complete removal of the 

degeneracy. The type of splitting which results is dependent 

upon the symmetry arrangement of the ligands. The degree of 

splitting is dependent upon the intensity of the electro­

static interaction. An understanding of the absorption 

spectra of the complexes can then be obtained by considering 

the energy required for electronic transitions to take place 

between these levels. 

In most of the studies reported in the literature, the 

symmetry required was either tetrahedral or octahedral. How­

ever, certain complexes, including those of platinum(II), have 

been shown to possess square-planar symmetry. The effect on 

the energy levels is, of course, quite different. It is the 

purpose of this thesis to present quantitative calculations of 

the energy levels of platinum(II) complexes, and from them ob­

tain an explanation of the absorption spectra observed for 

these compounds. 
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3. Organization of the Thesis 

In organizing a theoretical thesis of this type, a two­

fold purpose must be served. The fundamental principles of 

the approach and the results of their application to the 

problem must be compactly presented without burdening the 

reader with involved derivations which would only distract his 

attention. In some instances, however, the reader might wish 

to apply these techniques to a similar problem of his own. In 

such a case, a simple presentation of the end results without 

some of the details of their derivation places him at a dis­

tinct disadvantage. To overcome the above difficulties, it 

has been decided to include a rather extensive appendix sec­

tion which will contain detailed derivations or calculations 

which will be used in the main body of the text. 

C. Symbolism 

It is convenient to be able to express certain mathemati­

cal terms as concisely as possible. To avoid confusion, the 

following is an annotated list of the symbols employed. 

1). In,i,m) Single electron spatial wave func­

tions of the atomic orbital type with 

principal quantum number, n, orbital 

angular momentum, i, and magnetic 

quantum number, m. 

2) . I i s rn) Same as 1, but with n = 5 understood. 



4). ls,L,J,Mj> -

5) . (m,m" ) 

6) . a,£ 

7) . (m,m' ) agi 

8) . (z2), (x2-y2), 

(xy) , (xz) , (yz) 

9). 6ab 

10). Yim(e0)= Y(im) 

4 

Many electron wave function which is 

a sum of antisymmetrized product 

functions such that it is an eigen-

function of J2, 2, 2% , and . See 

Section V and Appendix A. 

Many electron wave function which is 

a sum of IS,MS,L,ML) functions such 

that it is an eigenfunction of ^ » 

j£2, 2, and ^ , but not of and 

9^. See Section V and Appendix A. 

A two-electron product function of 

the type, |i,m) ̂  f 1',m') ̂ , with 

i = i' =2 and the order, electron 

one-electron two understood. 

The spin z-component quantum numbers, 

a referring to + h, P to - h. 

[li,m)a]^ [li',m')p](2), that is, 

a belongs to electron one and (3 be­

longs to electron two. 

The single electron d-wave functions 

in real form. See Table 19. 

The Kroneker delta. 5=1, when a=b 

5 = 0 ,  w h e n  a ^ b  

The spherical harmonics. See Appendix 

B-l. 



11). p, " (cos e) The associated Legendre functions. 

See Appendix B-l. 

12). Y(J,M7) Notation indicating that the function 

I S, L, J, Mj y has the same symmetry 

property as the spherical harmonic 

with equivalent numerical values. 

See Appendix C-6-ii. 

13). V The ligand Field Potential. See Sec­

tion IV—B. 

14). Q2,Q q,B2j-2 Single-electron matrix elements due 

to the ligand field potential. See 

Table 4. 

15). F2 and F^ Slater-Condon parameters for electron­

ic interaction. See Sections V-B-l, 

V-D, and Appendix D-4. 

16). Coefficients in the expansion of the 

ligand field potential in terms of 

spherical harmonics. See equations 

67 and 73 in Section IV-B. 

17). Coefficients in the expansion of the 

product of two spherical harmonics in 

a sum of spherical harmonics. See 

equation 96, Section lv-C-3-ii, and 

Appendix 3-2. 

18) • Jim (1arnaf-j3rrLD) Y* (iarna) Y(ibmb) Y(im) d-r^. See 
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Section TV-C-i. 

o r 
19) . Gj ( a , b ) The radial integral = -q 

Ra(r)Rb(r)Ri(r)r2 dr. See Section 

IV-C-3-ii and Appendix B-3. 

20). G^(X) An integral defined by the relation: 

G,(a,b) = 9 £ G,(X). See Section 
x 78.75 £ 

rv-C-3-ii and Appendix B-3. 

2 
21) . Bi (a,b) 78 75 dÉ~ Gi ̂  ' where x = fR-> and 

R is the effective radial distance; 

and |_i is the effective dipole moment, 

See Section IV-C-3-ii and Appendix 

B-3. 
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II. LIGAND FIELD THEORY: FUNDAMENTAL CONCEPTS, 

LITERATURE REVIEW, QUALITATIVE APPROACH 

A. Model for Electronic Structure 

1. General principles 

The basic principles of ligand field theory were de­

veloped by Bethe (1) in 1929. His classic paper considered 

the effects on a "free ion" which would result when that ion 

was placed in an electric field of a given symmetry. Bethe 

originally conceived the theory as being applicable to energy 

levels of ions in a crystal and hence applied the term "Crys­

tal Field Theory". This term, while still popular, is being 

replaced by that of "Ligand Field Theory", particularly since 

many of the applications are concerned, not with crystals, but 

with metal complexes in solution. Furthermore, some qualita­

tive discussions include the effect of ?r-bonding garnered from 

molecular orbital theory, in addition to the simple electro­

static picture. Hence, the term "Crystal" seems inappropriate. 

In any initial discussion of ligand field theory, it 

would do well to consider first a transition metal ion which 

contained a single d-electron, for example scandium(II). In 

the free ion, this d-electron is considered to be in a 

spherically symmetric potential field due to the electrons in 

the lower shells of the atom. Without going into detail at 

this point, it may be stated that under these conditions, the 



wave functions expressing the motion of the electron are 

similar to those obtained for a hydrogen atom. That is, the 

spatial part of the wave function consists of a radial part 

and an angular part, the latter being expressible in analytic 

form. For the single d-electron under consideration, there 

are five possible spatial functions which would give the same 

energy value for the state. These orbitals can be expressed 

in real form by the equations : 

d^2 = R(r)•r2•(3 cos2©-l), (1) 

d(x2_v2) = R(r)-r2-(sin2e-cos20), (2) 

dXy • R(r)•r2•(sin2©-sin20), (3) 

dxz = R(r)-r2*(sine cos© cos#), (4) 

d = R(r) -r2* (sin© cos© sin#) , (5) 

[R(r)•r2] represents the radial dependence of the functions; © 

and 0 are the usual spherical polar angles. See Figure 1. It 

is presumed that the appropriate normalization factors for the 

functions are included in the R(r) terms. The subscripts on 

the d-orbitals come from the expressions which would result 

when r2 times the angular expressions are changed to Cartesian 

coordinates. 

For simplicity of reproduction, in this thesis the real 

d-orbitals are expressed in the forms (z2), (x2-y2), (xy), 

(xz), and (yz); the correspondence with the usual forms being: 

(z2) = d^2 (6) 

(x2-y2) = d^2_y2 (?) 
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Z 

figure i. The spherical polar angles 
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(xy) = d_„ (8^ 

(xz) = dxz (9) 

(yz) = dy2 (10) 

Figure 2a shows the conventional boundary contours for 

the five orbitals. These contours indicate roughly the region 

in space which will contain almost all of the electronic 

charge of an electron in such an orbital. The (+) and (-) 

signs refer to the algebraic sign of the wave function which 

describes the orbital. The (z2) orbital can also be con­

sidered as a sum of two orbitals(z2 - x2) plus (z2 - y2) 

whose contours would be analogous to that of (x% - y2). See 

Figure 2b. 

In the spherically symmetric potential of the free ion, 

the five orbitals are degenerate and the wave function of the 

single d-electron will be a linear combination of these 

orbitals. Following Bethe's argument, if the free ion is now 

considered to be placed in an ionic crystal of a particular 

symmetry, the degeneracy of the orbitals will be partially or 

completely removed. For example, if the free ion were sur­

rounded by six negative charges, one placed along each posi­

tive and negative axis at equal distances from the origin 

(i.e., octahedral symmetry) electronic repulsion would take 

place between these charges and the electron. Qualitatively, 

it is obvious that the interaction of the charges with the 

electron in either the (xy), (xz), or (yz) orbitals will be 



xz yz 

+ ;—y 

(a)  

Y F 

dz 2_y 2 

(b) 
Figure 2. Boundary contours of the d-orbitals 
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identical and v.'ill be less than that dus to the interaction 

between the charges and the (x2 - v2) and (z2) orbitals. See 

Figure 3a. The latter two orbitals would be directed toward 

the charges while the other three are directed between the 

charges. Furthermore the degree of splitting will certainly 

depend upon the magnitude of the charges and upon the dis­

tances between the charges and the central ion. 

If the charges along the z-axis are of different magni­

tude and/or different distances from the origin than those 

along the x and y axes, a "distorted octahedron" or tetra­

gonal symmetry results. In such a case, the degeneracy of 

the orbitals is split even further. Only the (xz) and (yz) 

orbitals remain degenerate. If the distortion along the z-

axis is slight, the energy levels will be those given in 

Figure 3b. 

As the distance to the z-axis ligands is imagined to be­

come greater and greater until finally the ligands can be 

considered to be completely removed, the (xy) and (z ) levels 

will cross and the energy levels will be those given in 

Figure 3c. From a qualitative standpoint, it would be diffi­

cult to decide whether or not the (z^) level would also cross 

below that of the degenerate set, (xz), (yz). See Figure 3d. 

This latter situation has been postulated by Chatt et al. (2) 

as the energy levels in platinum(II) complexes. This possi­

bility is discussed in detail in a later section of the thesis. 



„ ,  <X 2 -Y 2 )  (X 2 -Y 2 )  
(X^-Y )  

(Z2)(X2-Y2),^^ 2 

Z —-JLJ S  (XY) (XY) 

/ \ / 
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k JXYI ^ \  2  

\  /
/  \  (Z 2 )  (XZl(YZ) 

X ^ \ = 

X 

a. b. c. d. 

SPHERICAL OCTAHEDRAL TETRAGONAL SQUARE PLANAR SQUARE PLANAR 

Figure 3. Energy levels of d-orbitals in various symmetries 

ê* 
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When the metal ion contains only a single d-electron in 

its outer shell, the previous considerations hold regardless 

of the strength of the ligand field. However, when there is 

more than one d-electron present, it is necessary to distin­

guish between three cases, commonly referred to as the weak 

field, strong field, and intermediate field. In qualitative 

discussions, the inclusion of spin-orbit coupling of the 

electrons is seldom considered. That is, the assumption is 

made that the ligand field strength is great enough to over­

come the spin-orbit effect. 

2. Weak field 

In the weak field case, the ligand field strength is con­

sidered as being small and hence acts as a perturbation on the 

various multiplets of the free ion. In this situation, the 

ground state and excited states of the free ion are first 

determined in terms of the total angular momentum states and 

the effect on these states as a result of the ligand field is 

considered. 

For example, for an ion with two d-electrons, such as 

vanadium (III) , the possible states are: ^G, ^D, ^S, 3P, and 

3F. For derivation of these states, see Appendix A. Accord­

ing to Hand's Rule, the ground state is that state with the 

greatest multiplicity, and if there are more than one with 

that multiplicity, the state with the highest orbital 



the ground state. Other considerations and experimental evi­

dence suggest that would be the first excited state, then 

Just as the ligand field split the degeneracy of the d-

electron wave functions, so now it removes the degeneracy of 

the wave functions associated with these various states. In 

the case of single d-electrons, the degeneracy was in the 

magnetic quantum number, , belonging to the orbital angular 

momentum, I. In this case, one is dealing with the degen­

erate axial component, ML, of the total orbital angular 

momentum, L. 

It can be shown, for example, that in an octahedral field 

the 7-fold spatially degenerate state, 3F splits into two 

3-fold states and one non-degenerate state. Techniques for 

obtaining these states are given in the section on Group 

Theory. The 5-fold degenerate *4) state, whose wave functions 

have the same angular dependence as the d-electrons them­

selves, follow the identical pattern as given for the d-elec-

tron, i.e., one 3-fold and one 2-fold degenerate state is ob­

tained. The degeneracy of the 3p state is not removed by the 

octahedral field. This is apparent when one considers that 

the angular dependence of the wave functions is the same as 

that of p-electrons. Contour diagrams of the p-electron func­

tions show that the three functions, px, py, pz, have orbitals 



lô 

airected a long the x-. y-, axes respectively. Renne with 

equal charges along all three axes, the electronic interaction 

will be the same for all three orbitals. The 9-fold degener­

ate ^-G state will result in two states with 3-fold degeneracy, 

one state with 2-fold and one non-degenerate state. The "*"S 

state is non-degenerate in any case. 

Figure 4 is a qualitative diagram of the effects that the 

octahedral ligand field would have on the various states con­

sidered. The left hand column are the states of the free ion. 

The right hand column shows the splitting of the states by the 

octahedral field. The labeling of the ligand field states by 

^Bg' stc., corresponds to the group theory representa­

tions of Mulliken (3). The degeneracy of each state is given 

in the parentheses following the group symbol. It should be 

noted that the degeneracy of each state is given only in terms 

of the spatial degeneracy. The true degeneracy is the spatial 

degeneracy times the multiplicity. 

The effect of any ligand field on the energy levels of a 

cation is expressible as the sum of two terms, one of which is 

spherically symmetric (Vr) and the other is dependent upon the 

symmetry of the ligands. For example, in an octahedral field, 

the ligand potential can be expressed as : 

V = Vf + Vo (11) 

where VQ is the electronic potential which has the properties 

of the octahedral group 0-n. The effect of the spherically 
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Figure 4. Effects of a weak octahedral ligand field potential 
on the d2 energy levels 



18 

symmetric term, V„, is simply to shift all levels with the 

same number of d-electrons by a uniform amount. This is 

illustrated in Figure 5. Thus, as a result of Vr, the abso­

lute values of the energy levels change, but the separations 

of the states relative to each other are unaffected. In 

Figure 5, the relative separations, A and B, between the 

states remains the same. It is the application of the 

symmetry dependent potential, VQ, which affects the relative 

separations of the energy levels. The diagrams in Figure 4 

ignore the effect of the Vr term since the absorption spectra 

depends only on the relative separation of the energy levels. 

In Figure 4, the energy of each state, relative to its 

initial energy in the free ion, but ignoring the Vr contri­

bution, is given in terms of a single parameter, Dq. The 

energy parameter, Dq, was originally employed by Schlapp and 

Penney (4) and is defined in terms of the energy of a single 

d-electron in an octahedral field. Ten Dq equals the differ­

ence in energy between the triplet, t^^, and doublet, e^, 

state of a single d-electron in the octahedral field. The 

derivation of Dq is discussed more fully in Appendix B-4. 

It is noteworthy that the over-all "center of gravity" of 

the weak field levels relative to one another is unchanged by 

the symmetry potential, VQ, of the ligand field. For example, 

while the 3-fold degenerate state of ^D is lowered by 4Dq 

units, the 2-fold degenerate state is raised by 6 Dq units. 
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ïnus : 

3x(-4Dq) + 2x(6Dq) =0 (12) 

The relative positions of the levels in Figure 4 presumes 

that the ligands are represented as negative charges, or as 

dipoles whose negative ends are directed toward the cation. 

If they were positive charges, the energy levels that would 

result can be obtained by mirroring of the levels in Figure 4 

through their respective centers of gravity, that is, the 

values of Dq change sign. 

There is a well-known reciprocity relation in atomic 

spectroscopy between electrons and "holes". (See for example, 

Pauling and Wilson (5), Condon and Shortley (6), etc.) The 

terms arising from dn electrons, where n <(5, are the same as 

those arising from d10_n. Thus it is possible to obtain the 

Q  
terms for d by considering it as having two "holes" instead 

of the eight electrons. The coulombic interaction between 

the holes is the same as between the electrons and hence 

the terms are in the same order for both d^ and d®; i.e., 

3F, -*-D, ^P, ^G, . However, just as the multiplet structure 

within each multiplet is inverted in atomic spectroscopy when 

the hole formalism is employed, so a similar inversion takes 

place in the ligand field levels. This is quite acceptable 

from a qualitative point of view since the holes would be 

attracted toward the negative ligands, whereas repulsion 

would take place in the case of the electrons. 



Fiaure 6 illustrates the differences for d~ and aw electrons 

for the ground state in an octahedral field. Moffitt and 

Ballhausen (7) have listed the octahedral states and their 

energies in Dq units which result from the ligand field 

1 9 
acting on the ground states of the free ion having d and d 

electrons. 

3. Strong field 

In the strong field case, the interaction between the 

individual d-electrons and the ligands is greater than the 

interaction between the electrons themselves. Qualitatively 

speaking, the character which the wave functions assume is 

that of the ligand field. Thus in the case of the d-electrons 

in a strong octahedral field, one speaks of (tgg) and (eg) 

electrons, depending upon which symmetry orbital the electrons 

occupy. The discussion concerning the single d-electron 

previously given applies, in the first approximation, to all 

the d-electrons of the central atom. 

In quantum mechanical terms, the wave functions used as 

basis functions for the energy matrices are such that the 

matrices are diagonal in the ligand field terms, while the 

electronic interaction between the electrons are considered as 

perturbations on the ligand field. The single electron wave 

functions used to obtain the product wave functions are 

characterized by the "quantum numbers", (t2a) and (eg), rather 
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than the spherical quantum number, (£). Tha Paul! Exclusion 

principle and Hund's Rule still apply, of course, but in this 

case they concern the number of electrons which can occupy a 

particular symmetry orbital. For example, a maximum of six 

electrons can occupy the (t_ ) orbital, and four can occupy 

the (eg) orbital. 

The symmetry of the ground and excited states are 

determined most easily by means of the "direct product" of 

group theory. Hence, discussion of the derivation of these 

symmetries is deferred to the section of this thesis on group 

theory. 

4. Intermediate fields 

The intermediate field, as the name implies, is that 

situation between the two extremes given previously. The 

ligand field interaction and the electronic interaction be­

tween the electrons are roughly comparable, hence approxima­

tions in either direction are invalid. As a result, the inter­

mediate field does not lend itself as readily to qualitative 

discussion but requires actual calculations based upon the 

resultant matrix elements in order to obtain correlation with 

experimental data. 

The differences between the three cases can be illus­

trated by consideration of the electron distribution for an 

ion containing four or more electrons. For example, Griffeth 



24 

(ôj points out tnat r- is strongly paramagnetic, indx-

_ 4  
eating unaaired d-electrons, whereas Fe(CN) * is diamagnetic, 

6 

indicating all six d-electrons are paired. Orgel (9), as well 

as Griffeth (8), correlate the tendency toward spin pairing in 

complexes with the ligand field necessary to overcome the loss 

in "exchange energy" which results when electrons are paired. 

Orgel (9) has calculated the increase in electron repulsion 

which results from pairing electrons in an octahedral field. 

For example, in terms of the Slater-Condon parameters (6) for 

the electronic interaction between the electrons, the ground 

state energies are : 

Fe(II) free ion or weak field: -3>F^-3l5F^ 

Fe(II) strong field: -3OF2-6OF4 

Increase in electron repulsion: 5F2+255F4 

The increase in electron repulsion is termed by Orgel (9) as 

"promotional energy" or "loss in exchange energy". The 

techniques for calculating these energies are given in Appen­

dix C. Spectroscopic values for Fe(II), as tabulated by 

Orgel (9) , for F2 and F4 are 1540 cm"^ and 120 cm--*- respec­

tively. Hence the promotional energy is estimated as 38300 

cm™"1. 

The free ion, when placed in a weak octahedral field, has 

an over-all lowering of energy equal to 4 Dq, see Figure 7a. 

In a strong octahedral field, the lowering is equal to 24 Dq, 

that is 20 Dq more than for the weak field. See Figure 7b. 
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Therefore, in order that the ligand field be strong enough for 

spin pairing to take place, Dq must be equal to or greater 

than approximately 1900 cm-1. If Dq is much less than this 

value, the field is weak. If it is much greater than 1900 

cm~l, the field is strong. If Dq is approximately equal to 

1900 cm-"1", the field is of intermediate strength. 

B. Applications to Experiment 

The title of this section is somewhat misleading in the 

sense that all applications must be quantitatively sound. 

However, certain generalizations and conclusions can be seen 

to be valid without recourse to actual calculations. 

1. Absorption spectra 

The first use of ligand field theory to solution chemis­

try, was made by Use and Hartmann (10) in interpreting the 

-f3 » o 
absorption spectra of Ti(H^O)^ . The free ion, Ti , has a 

single d-electron, hence its ground state is 2D and its first 

2 excited state is S. Emission spectra indicate that the 

energy of this transition in wave numbers is 8 x 10^ cm"1. 

The hexaquo species, however, displays a single absorption 

peak at 1.7 x 10^ cm"1. From the discussion of the d-electron 

energy levels in an octahedral field (Section II-l) the low 

energy absorption peak is seen to be a transition from the 

2 2 
T2g ground state to the Ea excited state. This simple 



27 

application awakened the interests of chemists to the possi­

bilities of the theory in regard to the absorption spectra of 

transition metal complexes. Within five years, the theory was 

applied to dozens of complexes, including manganese(II), (11); 

chromium(III), (12); cobalt(III), (13); and nickel(II), (14). 

By 1955, the essential principles of the sources of the colors 

of transition metal complexes had been developed, including the 

explanation of the spectrochemical series. 

2. The spectrochemical series 

As early as 1923, Fajans (15) noticed that successive 

replacement of certain ligands surrounding the cation by 

other ligands shifted the maxima of the prominent band systems 

to progressively shorter wavelengths. This lead to the con­

struction of the spectrochemical series, an example of which 

is : I- Br- Cl™ x OH F <[ HgO \ NHg \ ethylene diamine 

x CN . The trend seemed to be more or less independent of 

the cation, except for certain conspicuous failures. A very 

satisfying interpretation of the trend and the reason for 

the anomalous behavior of cations having d^, d^ ,d^ , and d^ 

electrons is given by Orgel (9, 16, 17). Each of the ligands 

given above results in a successively stronger ligand field, 

thus increasing the separation of the T^ and the Eg states. 

(It is presumed that the discussion concerns octahedral com­

plexes.) In those cases, for example d1, where the ground 



state multiplicity in both the weak field and strong field is 

the same, the spectrochemical shift follows a smooth trend. 

In situations which involve changes in the multiplicity of the 

ground state, although the energy levels shift as a continuous 

function of Dq, the selection rules for the preferred transi­

tions change. For example, the weak field ground state for d^ 

is ~*T , and hence quintuplet-quintuplet transitions will give 
2g 

the prominent bands. In the strong field, the ground state is 

as a result of complete filling of the (tg^) level, and 

singlet-singlet transitions take preference. 

3. Magnetic behavior 

In the discussion of the three types of ligand fields, 

section II-3, the differences in the number of paired elec­

trons which resulted in the strong field, as compared to the 

weak field, was illustrated. The changes in paramagnetic be­

havior should therefore coincide with the changes in multi­

plicity associated with increasing field strength as discus­

sed with reference to the spectrochemical series. Thus, 

having estimated Dq from absorption spectra, it is possible 

for one to predict the magnetic properties of the complex, or 

conversely the magnetic properties should help to predict the 

qualitative features of the spectra. 



Miscellaneous aoalications 

In addition to the applications already mentioned, 

ligand field theory has been successfully applied to explana­

tions of heats of hydration (17, 18), ionic radii (19), and 

spectral band widths (20). Early work in the field involved 

explanations of the paramagnetic behavior of rare earth 

complexes (21,22). Several excellent reviews of the quali­

tative and quantitative aspects of the theory have been 

written. Among those to be recommended are the reports by 

Moffitt and Ballhausen (7), McClure (23), and Basolo and 

Pearson (18). 



III. GROUP THEORY APPLIED TO QUANTUM MECHANICS 

A. Basis Functions for Group Representations 

The following discussion assumes a general familiarity of 

the principles of group theory on the part of the reader. 

However, for purposes of completeness, a review of the con­

cepts of group theory which are used in this thesis is given 

in Appendix C. 

Quantum mechanics is concerned with eigenstates of a Ham-

iltonian operator, 'H, which may be defined in a coordinate 

system, x. The operator is denoted, ̂ (x), though in general 

it is a function of derivatives with respect to the coordi­

nates as well as the coordinates themselves. Schroedinger's 

equation expresses the relationship for the energy eigenvalues: 

"W(x) f± (x) = Ei (x) . (13) 

If both sides of the equation are subject to some transforma­

tion, R, one obtains : 

R^(x) ̂  (x) = REj_ (x) . (14) 

In those cases, and they are the cases of interest, where the 

operator, "^(x), is invariant under the transformation, the 

operators W(x) and R commute, i.e., 

R#(x) = H (x) R, (15) 

and since Ej_ is a numerical value, R commutes with it. Hence 

it is possible to write: 

# (x) ( R (x)) = Ei( R -j/± (x)) . (16) 

But this requires that the function (R ^j_) be a solution of 

the Schroedinger equation with the eigenvalue E^. 

If Ej_ is k-fold degenerate, the Schroedinger equation is: 
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k 
cmi = 2 bmj aji • (28) 

j=l 

But this is simply the notation for the process for matrix 

multiplication: 

C = (B) (A) . (29) 

Thus the collection of all coordinate transformations 

which leave the Hamiltonian invariant forms a group and the 

matrices obtained from the coefficients in the expansion of 

R tf-L, etc., form a representation of the group. It can be 

shown that all such matrices which result from rotation oper­

ations are unitary matrices. 

The set of degenerate eigenfunctions, "^±2' ' ' * ' ̂ik 

is said to form a basis for the representation of the group, 

since the representation is generated by the application of 

the group operations, R, S, etc. The dimension of the 

representation is equal to the degeneracy of the corresponding 

eigenvalue. 

Of particular importance are the irreducible representa­

tions of the group. The definition of an irreducible repre­

sentation is given in Appendix C. For each group of interest, 

these irreducible representations are known. They are useful 

in choosing the approximate wave functions in an efficient 

manner, since a set of functions which transform among each 

other according to an irreducible representation necessarily 

possess the degeneracy of the irreducible representation. Two 

sets of functions, each of which transforms in itself accord-
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*  (  X  f  X  ̂  f  X  1  f T 7 1  
IK - -L-'^ ' ' 

Then any linear combination of the functions ^ *  ± 2 3  ' ' ' 3  

•;.v, is a solution of the Schroedinger equation and hence : 

R 'if = Vjj =j, , (18) 

where : k 2 
2 a = 1. (19) 

j=l J 

If there is another transformation operation S applicable to 

the equation, i.e., S and #( "x ) also commute, then: 

S# ( X  ) R ^.k(x) = SE± (R yik) , (20) 

and # ("x ) ( SR v'ik (*x ) ) = B± (SR -ç/±k) , (21) 

also: # (x ) (s V'ilc) = E± (S »'ik) • (22) 

k 
Therefore: S = 2 vim b ., (23) 

m=l 

k k k 
and hence SR , = 2 a-. S y. . = 2 2 i'. b . a... (24) 

xl j=l Ji ^ j=l m=l im 

The product of the two transformation S and R may be denoted 

by 

S • R = T. (25) 

Then T is also a transformation of the group and: 

-#(1Î)(T = E± (T V'ii), (26) 

k 
hence r T Oj, = s * c . (27) 

in—l 

"P r- nm f hi ç î +- i cz nh^r i nnc -h*h a -r -
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i* r~''T o pi r~i -î v- v- o 1 rn^rpc: f i r> ^ i -*-» 1 r* i  -F — 

ferent eigenvalues.1 

Therefore, if P- is an irreducible representation of 

dimension k, and if Vj]_, ' j2* ' ' ' > Vjk is the set of de­

generate eigenfunctions which form a basis for the j ̂  irre­

ducible representation of the group, then the eigenfunctions 

transform according to the operations of the group. For 

example, two of the d-electron wave functions expressed in 

real form can be written: 

Vi = C1«R(r)•(xz) 

v''2 = C2 • R (r) • (yz) , 

where and C2 are constants, R(r) is the radial function, 

and (xz) and (yz) are the angular parts of the wave func­

tions expressed in terms of Cartesian coordinates. In square-

planar or tetragonal symmetry, these two functions are the 
p 

basis functions for the representation Sg. 

The matrix table for the E representation is given in 
g 

Table 1. By application of these matrices to the row matrix 

of y^ and - 2} one obtains, for example : 

E(ti - 2) = (VI 2) ̂  Oj = (VX V2) (30) 

C4(Vi :2) =  ( V X  2^° = (-^2 "l) (31) 

etc. 

xIf they happen to have the same eigenvalue, the degen­
eracy of the two sets is called accidental degeneracy. 

2 In the same symmetry, the other three orbitals whose 
angular parts are expressible as (3z2-r2) , (x2-y2), and (xy), 
belong to the Groups A]_g, Bj_g, and B2C, respectively. 
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Matrice: ior represents- -Vil n . . 
-

(o1 ï) 

c
2 (x) 

-1 0 
0 1 

f-0i- o1) 

C2(y) 

f°i -o1) 

c'2 (xy) 

fi -î) f-ï "o1) 

h .1) 
c2 (_xy) 

f°i o1) 

(o1 î) ("o1 -î) (ï -o1) f-ï o1) 

°d <*> °d,y) a" (xy) 
Q  

(-xy) 

(o1 -ï) ("o1 ï) fï o1) f-î "o1) 

a 
The meaning of the group elements is given in Appendix 

C. 

The validity of these relationships may be checked by con­

sideration of what happens to the functions, (xz) and (yz), 

under the various operations. For example, under C^z x is 

replaced by -v, y is replaced by x, and z is replaced by z. 

Therefore, (xz) is replaced by (-yz), and (yz) is replaced by 



(xz). The replacement operations mentioned consider the 

transformations which keep the functions fixed in space and 

redefines the coordinates in terms of which the functions are 

expressed. Thus : 

C4 (-} 1 v'2)  = (—^2 ^]_) , (32) 

which is exactly the result given by the corresponding matrix 

multiplication. Hence, and ̂  are said to be basis func-. 

tions for the Eg representation. 

B. The Direct Product 

A detailed account of the derivation of the direct prod­

uct of group theory is given in Appendix C-8. One of the most 

important applications of the direct product involves the 

evaluation of integrals composed of functions which are bases 

for representations of the group. If F is any function which 

transforms according to an irreducible representation of a 

group, then the integral 

I = f F dx, 

will be different from zero only if this irreducible repre­

sentation is the totally symmetric representation, = A^g of 

the group. That is, 

R F = F, for all operations, (R), of the group. (33) 

Consider the integral of the type: 

0 0 dr. 



rp "i ."̂ s 1- 7A .o "-val -f— f—«. 4- "X ̂  v a v-> v~ o c? ̂  *-> +- ̂  •+- -i r 

r  ~  c a  x  T a  ( 3 4 )  
'integrand A ^ 

where fn :< Fg is the direct product of the representations of 

and 0 . In general, the direct product is reducible, that 

is, 

f .  .  =  Z  a ±  r ±  (35) 
integrand i 

where P- are irreducible representations of the group, and a^ 

is the number of times the i"*"*1 irreducible representation is 

contained in the direct product. As a consequence, the inte­

gral can be written as a sum of functions, 

l*A 2*8 = f ai Fi <36) 

where Fbelongs to the irreducible representation ("^ . Con­

sequently, the integral will be different from zero only if 

the direct product contains the totally symmetric representa­

tion, r^ - Aig* For groups whose characters, i.e., the sum 

of the diagonal elements, are real this requires that . 

Similarly, if an operator, f, is the basis function of an 

irreducible representation, in order that integrals of the 

type : 

be different from zero, it is necessary that at least one of 

>mp 

r„ 

the irreducible components of fA x fB be the same irreducible 

representation as S 



since .nvanar.-c. un ooerations 

of the croup, it belongs to the totally symmetric representa­

tion, Fi = A,_. Therefore„ for the integral 

r 
^ , 

to be different from zero, it is necessary that one of the 

irreducible representations of f, x T be F,. This re-
A 3 1 

quires that = F^. 

Thus if one constructs functions which are symmetry 

adapted, that is, are basis functions for the irreducible 

representations, it is known that there will exist no off-

diagonal matrix elements connecting functions belonging to 

different irreducible representations. For example, if there 

are three irreducible representations for a particular group, 

rx, H), and r3, then the functions can be arranged in such a 

manner so that the matrix of the elements ^ 0^0 dx will 
A 3 

have the general form: 



Rotation Group under D- Svmmetrv 

In atomic systems, it is possible to consider many types 

of energy degeneracies. For example, there is the degeneracy 

associated with the orbital angular momentum, i, of a single 

electron. This degeneracy is (2i + 1)-fold and the states 

associated with it have m_g values between +i and -I. Similar­

ly, the degeneracy of the states which are the results of 

products of two or more electrons can be characterized as 

having a total orbital angular momentum, L, which is the sum 

of the orbital angular momenta of the individual electrons. 

The degeneracy of such a state is (2L + 1) and the wave func­

tions associated with the state are characterized by values. 

It is also possible to consider states of a particular J 

value, where J is the total angular momentum and is equal to 

S + L. The degeneracy of a particular J state is (2J + 1) and 

the wave functions associated with it are characterized by Mj 

values . 

The discussion that is to follow is equally applicable to 

all such degeneracies, since in each case the wave functions 

associated with the states form basis functions for a group 

representation. That is, in a field of non-spherical symmetry, 

the reduction of the states associated with a particular value 

of total angular momentum, J, will correspond to the reduction 

of the states associated with the orbital angular momentum, 
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function: 

= K-R(r). 1/ \T [Y(2,2) + Y(2,-2)], (37) 

is the basis function for an irreducible representation of the 

non-spherical rotation group under consideration, then a 

function which also is a basis function for the same repre­

sentation is given by: 

^ - 1/ /2 [| 2, 2 >+ 12,-2 > ] (38) 

where IJ,Mj )> indicates the wave function associated with the 

state having total angular momentum J and z-component Mj. 

When two groups have such a one to one correspondence they are 

said to be isomorphic. The validity of these considerations 

is indicated in Appendix C. 

An analogous situation exists for the spin states, s, of 

a single electron, and for the product of two or more elec­

trons, S. A set of matrices corresponding to the group repre­

sentation can be constructed by the methods outlined in 

Appendix C. Such matrices give the corresponding transform­

ations in complex space that are associated with the given 

transformations in real space. Hence the arguments for the 

reduction of the matrices corresponding to a given angular 

momentum, t, also hold for the spin functions. 

With the above statements in mind, it is necessary to 

consider the reduction of only one type of degenerate state. 



It is convenient to follow the example of Bethe (1) and use 

the orbital angular momentum of a single electron. 

In the spherical symmetry of the free ion, the degeneracy 

of a state with orbital angular momentum, 1, is 2i + 1. In 

spherical symmetry, the representation corresponding to this 

degenerate state is irreducible. However, in the field of 

lower symmetry which results from the ligands of the complex, 

the representation is reducible. In order to effect the 

reduction, use is made of a fundamental theorem of group 

theory; each reducible representation of a group can be 

separated in only one fashion into its irreducible parts. 

Furthermore, the "character", that is, the sum of the 

diagonal elements of the matrix representation, of each group 

element in the reducible representation equals the sum of 

the characters which belong to the element in the irreducible 

representations. Therefore, knowledge of the character of 

the reducible representation for each symmetry operation of 

the ligand field, together with the table of characters of 

the irreducible representations, enables the reduction of 

the i-state to be made. 

As shown in Appendix C, the character associated with the 

rotation of the basis functions by a particular angle gf about 

a chosen axis is given by: 

X(5) = 2i r 1 (39) 



M0) ~ "si'n%5 >iC v''hen 0 / G (40) 

For the d-electrons in a square planar field, for example, the 

s y m m e t r y  c l a s s e s  a r e  E ,  C a ,  C ? ,  C p ,  a n d  ;  w i t h  i  = 2 .  

X (E) = 2jg + 1 = 5 

X(c4) - tt/4 = -J-  (42) 

sin(5/2)-
X (C2) = X (C2) - X (C2) - sin 77-/2 ~ 1 (43) 

Table 2 gives the characters for the irreducible representa­

tions for the Group . By use of the table, it is apparent 

that the irreducible representations which are the components 

of the reducible representation for i - 2 are : Aj_ + Bj_ + B2 

+ E. Since all states with I = even are unchanged as a result 

of inversion through the origin, the d-electron states in the 

04% symmetry are + B^ + B%g + Eg. 

By similar applications, the irreducible components of 

any reducible representation may be obtained. Table 3 gives 

the number of times a particular irreducible representation is 

contained in the reducible representation of a given i in 

square-planar or tetragonal symmetry. For example, for a 

state with 1=3, one uses the fourth column (4X + 3) with A = 

0, and the irreducible representations are JU + 3-» + 37 + E 



Operation 

Represents tion 
C2 2C_; 2C^ 2C2 

A1 
1 1 ]_ 

CM < -
1 -1 

3l -
1 1 

3 2 - -1 1 

2 -2 0 0 0 

Table 3. The irreducible representations in of the states 
with angular momentum £ 

4 = 4A 4T\ + 1 4A + 2 4X + 3 

A -, A + 1 A. A + 1 X 

A 2 X A, + 1 A X + 1 

3] X > + 1 X + 1 

3 2 X + 1 X 4- -L 

E 2X 2X + 1 2X + 1 2X + 2 
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A. The Schrcedir.ger Equation and Its Solution 

The determination of the energy levels of the central ion 

requires the solution of Schroedinger1 s equation: 

#: = E-; (44) 

where 

# =2f-ir Vi2 --ff + c<ri)f-3) + fi- + s v»(Ei) 
x - 1J i 

(45) 

The first four terms in the Hamiltonian,/^ , are the usual 

atomic Hamiltonian operator for the free ion ; the last term, 

(r-i ) expresses the effects of the non-spherical potential 

field of the surrounding ligands on an electron of the central 

ion. Prior to consideration of the effects of this latter 

term, some remarks concerning the atomic Hamiltonian for the 

free ion are in order. 

1. The Free Ion 

In all approaches to the solution of the Schroedinger 

equation for a many electron atomic system, it has been neces­

sary to make some approximation in order to solve the problem. 

One of the most common involves the "Central Field Approxima­

tion" in which the interaction of the electrons with the 

nucleus and a large part of the mutual interaction of the 

electrons are combined in a potential, u, which is dependent 



uovn Lhu radial distance only. ihat is. one starts with an 

approximate Hamiltonian, 

#0 = Z I - + u(r )1 (46) 
v i 2ir.i 1 

and considers the remaining terms of the true Hamiltonian as a 

perturbation: 

H ' - 2 [ (- _ u(r ) + t (r ) J  - J  ] + S (47) 
i 'i i> j rij 

The zero order wave functions, i.e., the wave functions, 

that are solutions of the equation: 

/^Q y'O = EqVQ, (48) 

can be expressed as products of single electron wave functions 

because is the sum of one electron operators. The single 

electron functions are very similar in form to the wave func­

tions of the hydrogen atom in that they are products of a 

radial function and an angular function expressible in terms 

of the spherical harmonics. It is beyond the intent of this 

thesis to reproduce in detail the solution of the atomic 

problem particularly since the solution is well surveyed in 

such standard texts as those by Condon and Shortley (6), 

Pauling and Wilson (5) and Eyring et al. (24). The following 

principles of the approach should be mentioned: 

(i) The zero order basis functions are constructed as linear 

combinations of antisymmetrized products of single electron 

functions arising from one configuration. 



I n  -  a  ? :  e  s  where s o i r - o r X i  t  ^ r - j p l i r .  j  i s  important, i t  i s  

r . i c n - c  t h a t  a  zero order function, V ,  be characterized b y  

uanturr numbers, S, L, J, and Mj. That is, is an eigen-

ion cf the operators J2, <sf2, , such that 

^ 2. = ^ s(s + i).. (49) 

™  —  n  J_J ( L  + - ) 

y2 : = h J(J -f i)-;-

- =h :':J • 

wnere: is the total angular momentum operator 

X 2  is the total orbital angular momentum operator 

2 2  is the total spin mor nentum operator 

is the z-component operator of the total angular 
< r  

momentum. 

Such a function, v, may be written as j S, L, J, Mj )>. 
A particular function, / S, L, J, Mj )>, is an appropriate 

linear combination of the functions, jS,MS,L,ML), which are 

eig en function s of jT2, ^ 2 , , that is : 

j?2# = % L(L + 1)0 (50) 

J2 0  = h S (S + 1 ) 0  

f a j  0  =  h  M g  0  

^ — n 0^ 

where fog and ̂  are the z-component operators of the total 

orbital angular momentum and the total spin momentum, and 0 is 

an j S,Mg,L,Ml) function. These / S, Kg, L, ML) functions are 

themselves linear combinations of antisvmmetrized products 



(z,",,s,ns) .3 Thus for example, 

|S,Mg,L,Mj = (1,1,3,3) = 1/sŒ [(2,2,%,%)(!) (2,1,%,%) (2) 

-(2,!,%,%)(-) (2,2,%,%) (2)]. (51) 

where the superscripts (1) and (2) refer to electrons one and 

two respectively. Since it is the d-electrons that are of 

interest, f = 2 and S = %, always. Furthermore, if one 

represents mg = + % by a and ms = - % by 3 and one always 

writes the one electron functions in the order : electron one, 

electron two, then the expression for (1,1,3,3) may be 

written: 

(1,1,3,3) = l/t/T [(2,a)(l,a) - (l,a)(2,a)] (52) 

or alternatively : 

11,1,3,3) = 1/^2 [ (2,1) - (1,2) ] [oca] (53) 

and similarly for the other |S,Mg,L,M^) functions. 

The derivation and construction of the /s,Mg,L,ML) and 

the j S,L,J,Mj y functions, including the consistent choice of 

phase factors, is considered in Appendix A. 

(iii) The single electron functions are separable into radial 

and angular parts. Thus : 

0 = R(r).Y(4,rrij) (54) 

where Y(».) are the spherical harmonics. 

3The notation, j )», is used to denote a function 
{-S, L, J, M j X The notation, j ), is used to denote a function 
| S,Ms,L^Ml) . The notation, ( , ), is used to denote the 

product of the single electron space functions associated with 
electron one and electron two in that order. 



chosen configuration that are of interest, the mixing of the 

zero order basis functions is found by the diagonalization of 

the matrix corresponding to the operator : 

e2/r. = - s (-i) •ij (55) 

and this operator need be applied only to those electrons 

outside closed shells and subshells. This means that the zero 

order wave functions which constitute the basis functions are 

constructed only from consideration of the electrons outside 

of closed shells and subshells. The relative energy levels 

are obtained by diagonalization of a matrix of the general 

where H 
CL" 

H"n H" 12 

H" 21 

r V" = ! 

H" 22 

\ H"nl H"n2 

2. Ion in the ligand field 

H" 

H" 

13 

23 

K' 
n3 

H" 
In 

H" 
2n 

nn 

' 1 ° _L G 

The basic assumption in ligand field theory is that the 

.al perturbs the atomic levels only in such a way 

as to modify the mixing of the zero order functions within a 

given conriguration. This means that one proceeds exactly as 



•/U 1 " .LF (56 
i >  j  x  

Within the framework of the simplification of the central 

field approximation and the considerations concerning the 

ligand potential to be discussed, diagonalization results in 

an exact solution in the sense that all effects are con­

sidered. In many applications it is possible to neglect spin 

orbit coupling, which results in an appreciable reduction in 

the number of wave functions which need be considered. How­

ever, the spin-orbit coupling effect in platinum is appreci­

able and must be included in the calculations. 

Two extreme cases can be considered in constructing the 

zero order basis functions. In the so-called weak field case 

the ligand field effect is much smaller than the electronic 

interaction effect. In this situation, it is convenient to 

use the free atom basis functions in terms of the quantum 

numbers, S, L, J, and M . As is shown later, this choice 

results in the matrix elements being diagonal in the elec­

tronic interaction parameters. The ligand field will result 

in non-zero values for both diagonal and off-diagonal ele­

ments, but the off-diagonal elements will be small in com­

parison to the diagonal elements. Consequently, only weak 

mixing of the free atom states result. In a sense, one can 



atomic states in which the electronic interaction has already 

been taken into account. 

In the strong field case, the ligand field effect is much 

greater than the electronic interaction. In this situation, 

it is convenient to consider that the zero order Hamiltonian, 

#0
L~, be expressed as : 

• H  o* = #0 + f Vi <57> 

Consequently, the strong field zero order functions, y0, are 

antisymmetric product functions of new one electron functions, 

. These one electron functions have the symmetry of the 

ligand field. It is assumed that they can be expressed as 

linear combinations of the free-ion one-electron functions, 

(j[, m^ , s,ms) . The proper linear combination are those which 

diagonalize the one electron matrix: (y^ I J y. ) . Thus 

the basis functions are constructed so that the matrix ele­

ments are diagonal in the ligand field parameters. In this 

case, the electronic interaction term contributes to both 

diagonal and off-diagonal elements and again, the off-

diagonal elements are small and the mixing of the ligand field 

states is slight. Hence the electron interaction can be 

considered as a perturbation on the ligand field states. 

For the case of intermediate fields, the off-diagonal 

elements are not small in either basis and the choice of basis 
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functions is arbitrary. This is true since it is possible to 

express the weak field basis in terms of the strong field 

basis by a unitary transformation. By means of this trans­

formation the expressions for the wave functions associated 

with the weak field are related to the expressions for the 

wave functions for the strong field. The eigenvalues which 

result upon diagonalization must be the same regardless of 

which basis is used. 

B. The Ligand Field Potential in the Hamiltonian 

Thus far the exact form of the ligand potential, V1^, has 

not been specified. Several expressions are possible (7, 8, 

14, 21) all of which are essentially equal. For conceptual 

simplicity, none is more satisfying than the point of view 

that the effect of the ligands can be approximated by con­

sidering them as point charges or point dipoles. In this 

thesis, the ligands are considered as point dipoles. For 

mathematical reasons, it is convenient to initially consider 

the case of point charges and to carry out the calculations in 

atomic units, namely: 

Unit charge: e = the charge of the electron 

Unit length: aQ ='fi^/me2 = Bohr radius = Q.529A 

Unit energy: ez/ac = twice the ionization potential of 

the hydrogen atom = 27.2 electron volts. 



r tnese units, 

e = -1, for an electron 

e = +1, for a "hole" 

q)- 0 = charge of positive ligand in atomic units 

q x 0 = charge of negative ligand in atomic units 

Figure 8 gives a simple schematic diagram of the arbitra­

ry location of a single ligand charge, qk, and an electron, 

e = -1, with respect to the origin. The electron is located 

at P (r,©,0) and the ligand at Q(rk,©^,0^) = 0%. Then the 

potential at P due to the charge q-j, at Q> is given by: 

v%(r,e,0) = -q%/rp% 

where r_^, is the distance from to P. As shown in Eyring 

et al. (24), it is possible to expand V^(r,©,0) in terms of 

spherical harmonics, as follows : 

OO % 

v%(r,e,0) = -q% Z Z Y. (8 0) S. (r), (59) 
1 = 0  m = - i  > m  

where i 
r./ 

Bi^lr) = -hr- utr , (so; 

r >  

= the spherical harmonic at the location of the 

electron, 

Y_£m (&K,0~K) = the spherical harmonic at the location of the 

ligand, 

r% = the larger of the distances r and r>, 

rz = the smaller of the distances r and r^.. 
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Z 

Figure S. Generalized locations of the ligand point charge 
and an electron of the central ion 
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j ^ jf+1 ^24 + 1 (4 + lrl): ] (cos ©i,)e - , (61) 
" > 

wnere < 

?j * (cos ©>) = an associated Legendre Function, 

|m| i + jmi 

= — • • ..(cos2 6-1) . * (62) 

2 l  i  : d cos ei+ |m|' 

The foregoing formula describes the potential at P(r) 

due to one ligand. For several ligands: 
• •V 

= z (r,e,0), . (63) 
k 

the summation being over the ligands. By substitution, one 

obtains : 

= - Z Y(i,m) Z q% B^(r) (64) 
£, m k 

In the square-planar symmetry, it is convenient to locate the 

ligand point charges, (q^,q^,q^,q^)^ along the + X and + Y 

axes. Consequently the following relations hold: 

Qi - 92 = q3 ll .0
 

.h
. II 

T , rl -2 ~3 '4 

©1 = e2 

II <D
 

w
 = ©£ = —/2, hence cos © = 0, 
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ap.c 

V 
u r  

- -q 
£ ,m 

D l m ' R i ( r ) ' ^ i m J  (66) 

where 

Diir 

and 

r (I- rr. ) : 4TT 
L (£+ m ) : 21 + ] 

*5 
, Jml - (0) Z e 

-im^ 
(67) 

k 

£ l + l  
R,(r) = r ; /r + . 

x z 

A restriction on the possible values of m can be obtained by-

consideration of the fact that in square-planar symmetry the. 

potential at a point S(r,6,^) must be the same as that" at a 

point T(r,e,0+^/2). Then, 

: Yjm(e,0+T/2). (68) 

Therefore : . 

im^ im ( 0 + i r / 2 )  i r r \ 0  im~/2 e - = e = e • e 

i = pim// /2 

(69) 

(70) 

But' this requires that 

m = 0, + 4, + 8, •••, etc. (71) 

Furthermore, values for P^m (0) can be found in standard 

texts ; for example, jahnke and Emde (25). Since Legendre 

functions are either even or odd in their arguments, it fol­

lows that Pj*1' (0) vanishes for £ - m = odd. Substituting 



;he lorr.iula for (0) in the case i - ~ = even, and also 

_ 2 for ail one finds : 

1 
= -q Z Z : Dj^.Rf(r).Yjn(e0) (72) 

I ' m=-£ 

p = (-l)'5(i"lni>) I 64- \ ̂  | (j- m ) : (j+ m ) ! 

^ [2£+lJ [h(t~ m )]![%(!+ m )]: 
(73) 

where i and m are restricted tor 

i = 0, 2> 4", 8, • • • r 171 = 0,4,8,*'*. 

Furthermore, it is shown in Appendix B-2 that in the expansion 

of Equation 72 only the terms with i \ 4 contribute to the 

matrix elements which are needed in conjunction with d-elec-

trons. With the previous restrictions on m and the fact that 

m i, always, the "effective" ligand potential for square-

planar symmetry becomes 

VLF . - q f  Doo.Ro(r)-Yoo(e,0) + D20-R2(r) -Y^gte,^) 

+ D4Q-R4(r)*Y4Q(e0) + 

+ D4,-4R4trl-Y4,-4(e0)i- (74) 

Evaluating the D's from Equation 73, one obtains : 

VJ"F = -q f 8 nTTT * Rq Y ( 0,0 ) - 4 «/ttA'T • R2Y(2,0) 

+ /? * R^Y(4,0) +V35-/3\.^2" * R^[Y(4,4)+Y(4,-4)]/ 

(75) 

In this potential, the terms associated with the spherical 



J O  

harmonic, Y (3,0) is spherically symmetric and hence does not 

affect the relative separations between the energy levels (7) . 

Another way of expressing this is to say that the Y(0,0) term 

contributes equally to each diagonal matrix element and does 

not contribute to the off-diagonal elements. Since only the 

relative separations are of interest, this term may be 

neglected and the effective potential in its final form is : 

VLF = -q {-4 sR/45 R2Y(2,0) + VT R4Y(4,0) 

+ /35F/3VT R^[Y(4,4) +Y(4,-4)]| (76) 

C. Matrix Elements Due to the Ligand Field 

1. Two electron integrals as a sum of one electron integrals 

For the ligand field effect in both the weak and strong 

field cases, the matrix elements to be evaluated are of the 

form : 

H = f,.* dT (77) 
jk j 

where the y functions are a linear combination of product 

functions, 0-, that is, 

= Z 0 ; v = Z 0 (78) 
j K k K 

9 P 
For the d" or d^ configuration, the "basic" product function, 

0^, is a product of two one-electron functions, that is, 

0± = |i,m) (1) ji',m-) (2) (79) 



where (1) and (2) refer to el O <-* T v-\ c 

= ^Z 0T Z dT = Z 1 ̂ 0* V^" 0, d% (80) 
j J k j k J 

"he two electron integral, 0* V"" 0^ d*r, may be simplified 

For example, consider 

the integral 

where (1) + VLF (2) . 

Then the above integral may be written as : 

1-1  * rp f 

l^a^a) ^ Hc^c) ̂ 1 (4^)14^) dT^ 

+ ̂ l^b^b)* fi^ma) dT% ^4^ > 

This total process may be illustrated by a simple example. 

Consider the matrix element, 

^ * LP 
H1I - '• i v d-r (81) 

where 1 is a linear combination of a product of two one-

electron functions, such as, 

= 1AT2 [|2,2)(^) /2,2)(2) 

+ |2,-2)(") /2,-2)^h (82) 

one octains tne matrix element: 



(V(l) -T V(2)),l dT 

= % ̂  [|2,2)(^) |2,2)(2) + (2,-2)(-)|2,-2)(2)]*(v(l) 

+ V(2) ) [|2,2)(-)f2,2)(2) + |2,-2)(-)j2,-2)(2)] 

dTl dT2 (85) 

= % ^ [ |2, 2) *(^) (2,2) *(%)] v(i) + v(2)[f2,2)(^)f2,2)(2)] 

dT^ dT^ 

+ P|l2,2)*(1) |2,2)*(2) ] V ( 1 ) +V ( 2 ) [ ( 2 , - 2 )  (1) I  2,-2) (2) ] 

dTl dT2 

+ ̂ [|2,-2)*(l)|2,-2)*(2)] V(l)+V(2) [j2,2)(l)(2,2)(2)] 

dTl dT2 

+ ' [l2,-2)*(1) |2,--2)*(2) ] V ( 1 ) +V ( 2 ) [(2,-2) (1) |2,-2) (2) ] 

d-r1 dx 
(86) 

or the first term : 

r[|2,2)*(-)|2,2)*(2)] v(l)+v(2) [|2,2)^)f2,2)(2)] d?^ dT^ = 

r|2,2)*(-)v(l)|2,2)(-)dTi H2,2)*(2)|2,2)(2)dT^ 

-i- ^|2,2)*(2)v(2)|2,2)(2)d?2 ^j2,2)*(^)|2,2)^) d? 

(87) 
r r 
|2,2)*(-)v(l)(2,2)(-)dTi |2,2)"(2)y(2)|2,2)(^) d? 

2 
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where N is the normalization factor, Rm(r) is the radial part, 

and Y (-E ,m) , the angular part in terms of the spherical har­

monics. 

In some applications of ligand field theory (4, 23, 26) 

the radial parts of the zero order basis functions remain un­

specified when dealing with both the ligand field and the 

electronic interaction effects. It has been decided that in 

this thesis, the same procedure will be followed in regard to 

the electronic interaction. However, for the ligand field 

effect, it is convenient to follow the examples of Ballhausen 

(27) and Maki (28, 29) and to express the single electron wave 

functions in terms of Slater orbitals (30). These orbitals 

can be expressed as: 

|n,i,m) = N-r(n*-1).e-Z*r/n*a0 . Y(im) (90) 

where: N is the normalization constant for the radial por­

tion 

Y(i,m) are the spherical harmonics 

n* is the effective principal quantum number 

aD is the Bohr radius equal to one atomic unit 

Z* is the effective nuclear charge. 

For the (5d) orbitals of the platinum(II) complexes, n** 4 and 

Z*- 7.55. If one defines f • Z*/n*, then f = 1.8875. Normal­

ization of the wave function, as shown in Appendix B, yields: 

l5,2,m) = ("2q , f9] 2 r3-e~fr.Y(2,m) (91) 

Since this thesis deals only with the 5d orbitals, it is 



l2,-2)*(^)v(l)l2,-2)(^) + l2,-2)*(2)v(2)/2,-2)(2) 3^2 

while for the middle two terms, one obtains such expressions 

as : 

02,2)(-)v(l)/2,-2)(^) ^2,2) (2) |2,-2) (2) d?2 = 0. 

I I 

0 

Hence : 

Hii =% [l2,2)*(l)v(l)l2,2)(l)dTi 

+ |2,2) *(2) V(2) f 2,2) (2) dx2 

+ H2,-2*(1) V(l) I 2,-2) C1) drx 

+ ^/2,-2) *(2)V(2) /2,-2) (2) dT2] 

(88) 

Thus, the initial matrix element is reducted to the sum of 

one electron integrals. 

2. The single electron functions 

The zero order basis functions, 0^, are products of 

single electron wave functions. A single electron function 

can be expressed as a product of a radial part and an angular 

part. That is. a single electron function has the form : 

I n, 4,m) = N.R_,(r).Y(i,m) (89) 



li.m). Furthermore, in the case of a product of two one-

electron functions, I i ,m) ( ~^ I i 1 , rn ' ) (, since i = 2 for both, 

it is convenient to write this product as (m,m1) where the 

first value in the parenthesis refers to electron one and the 

second to electron two. 

3. One electron integrals 

From the discussion in section IV-C-3, it is apparent 

that a matrix element involving the ligand field resolves into 

a sum of one-electron matrix elements of the form: 

H i " )  *  V L F  I  i - . r o , )  d r  a a 

Upon substitution of the functions : 

Iiama^ = N-Ra(r)-Y(iama) 

= N.R^(r)'Y(i^), 

as given by equation 91, and the potential, V , as given by 

Equation 66, one obtains, 

r * LF, 
l^a^a) V d? = Z D4m'Gf(a,b).J4m(4ama4bmb) (92) 

i, m 

where (-^Tna^'Hmb) = the angular integral = 

r * 
Y ^(4m) dT egf (93) 

Gj (a,b) = the radial integral = 

2 r 
-qN Ra(r)'Rb(r)'Rjg(r)"dTr (94) 



= lie; and field coefficients, s e e  E q u a t i o n  / 3 . 

a. The angular integral, Jim,(iama= Jim In or­

der to evaluate the angular integral, recourse is made to the 

fact that the product of two spherical harmonics can be ex­

panded in terms of a sum of spherical harmonics. Thus : 

Y(ibmb) = Z Ki , m , • Y* (i • m ' ) 

and the angular integral becomes : 

Z Kg ,mi Y* (i'm ' ) • Y(im) dre0 (96) 
i 1 m1 

Because of the orthogonality relations of the spherical 

harmonics, the integrals on the right hand side vanish unless 

I  =  £ '  a n d  m  =  m ' .  H e n c e  t h e  a n g u l a r  i n t e g r a l ,  J g m ( i a m a f ,  

is seen to be identical with the expansion coefficient, Kjm, 

of Equation 95. 

A procedure for determination of these coefficients is 

given in Section 4.6 of the text by Edmonds (31) and is dis­

cussed in detail in Appendix 8-2. In particular, it is found 

that: 

' a  + 'b > 1 

Kim = unless ma + m>. =• nn 

I + i, -f 1 = even 
a b 



Q  i  n n û  = = 2 for d-electronsJ and since it was previously 

established that m = 0, + 4, the only terms needed in the 

expansion of VLF are those with i = 0, 2, 4, as in the formula 

for the effective potential given by Equation 75. Further­

more, explicit application of these same restrictions shows 

that the single electron integrals given in Table 4 are the 

only ones which are different from zero. 

Therefore, there are only seven products of spherical 

harmonics that need be evaluated by the techniques given in 

Appendix B-2. The expansions for these seven are given in 

Table 5. Actually, the harmonic, Y(0,0), and its coeffi­

cient, appearing in this table are not needed for reasons 

discussed in section IV-B. 

Evaluation of the non-zero single electron integrals, 

given in Table 4, by means of equations 92, 76, and the values 

in Table 5, leads to the results : 

Q0= (2,+2) *VLi? i 2 ,±2 )  dT = - i c-2 (a,b) + y C-4 (a,b) . (97) 

QI= |2,+l)*v̂ |2,+l) d T  = — y G2 (a,b) — y G 4(a,b). (98) 

02= I 2,0) V^F12,0)dr =yG2(a,b) + A- G4 (a,b) . (99) 

B2,_2= ^2,+2)*V^F |2,+2)d? = 2_G4(a,b). (100) 

It is seen that only two radial integrals, G2(a,b) and 

G . (a,b) need be evaluated. 



Table 4. ax x owe a vaxues or nt an a * rur ::ur.-zeru amgic 
I..Û i-I iA ciciueii 'Cb 

Allowed values 3 values 
of m required in Desig-

ma m expansion Integral nation 

Ô 5 5 Ô™ 2l 4 l2TÔT*vLFl2YÔTdr % 

+1 +1 0 0, 2, 4 12,+1)*VLF l2,+l)dx Qx 

+2 +2 0 0, 2, 4 12, +2) *VîjF 12, +2) dx Q2 

±2  +2 +4 4 |2,+2) *VLF |2,+2) dx 6^ 2 

Table 5. Expansion of products of spherical harmonics 

Product Expansion 

Y*(2,2)Y(2,2)= Y*(2,-2)Y(2,-2) 1 Y*(4,0)~ ̂ ~= Y*(2,0) 
14 V 7T 7 N/7T 

+ 177 

Y*(2,1)Y(2,1) = Y*(2,-l) Y(2,-l) - ~~= Y*(4,0)+ — Y*(2,0) 
7 V — 14 V 77 

1 
+ 77? Y*(0'0) 

Y*(2,0)Y(2,0)= 7^r Y*(4,0) + f^= Y*(2,0) 
/ Ni 11 

+ -^= Y* (0,0) 
2 V 77 

Y*(2,2)Y(2,-2) y=E= Y*(4,-4) 
v 14TT 

Y*(2,-2)Y(2,2) Y*(4,4) 
V 14tt 
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fp'n o p 1 -i nfp-*-i-p 1 C r: , f p ^ ̂ ;=> r-> o ^ \ TTvnl i n-

it forms for the radial integrals, Gj(a,b) are obtained by 

substitution of the radial parts, NRa(r) and MR. (r), from 

Equation 91 into the definition given by Equation 94. Such 

substitution yields : 

G^( a, b ) — 

?9-c9 r o _fr , _-r. i i+1 7 
-9 0T (r e ) (r3e-J- )(rx/r. ) r dr (101) 

As indicated above, the only values of 1 which need be con­

sidered are 1 = 2 and i =4. These integrals are most easily 

evaluated by a change of variable from r to x, where x = fr. 

It is thus possible to define two integrals, G^(X) and G^ (X) , 

such that: 

Gjj (a,b) = yg2—_ • G2 (X) (102) 

Gj(a,b) = ^3^. 'G^(X) (103) 

The techniques for evaluating these integrals are outlined in 

Appendix B-3. The resultant expressions, given in Table 6, 

are in terms of X = fR, where R is the "effective radial 

distance", in atomic units, from the charge q to the electron. 

In this thesis, the ligands are considered as point 

dipoles and not point charges. If one specifies that the 

dipoles are oriented such that the negative ends are directed 

toward the central ion, as shown in Appendix 3-3, one must 

substitute -3^ (a,b) for G£ (a,b) in equations 97-100, where: 



Point charge integrals 

G?fx) = [1771.875 - e"2x(1.25X^ + 8.75x8 + 41.25X? 
X-3 

+ 470.625X^ + 153.75X& + 1181.25x4 + 2362.5x3 

+ 3543.75X2 + 3543.75X + 1171.875)] 

G.(X) = i [58471.75 - e-2x(2.25X11 + 15.75X10 + 82.125X9 

X^ 

+ 371.25x^ + 1485X^ + 5197.5X^ + 15592.5X^ 

+ 38981.25X^ + 77962.5x3 + 116943.75X2 

+ 116943.75X + 58471.875)] 

Point dipole integrals 

B_(x) = -A [-5315.625 + (e-2x)(25X10 + 10X9 + 38.75X8 

+ 142.5X7 + 480X6 + 1421.25x5 + 3543.75X4 

+ 7087.5X3 + 10531.25X2 + 10631.25X + 5315.625)] 

Ba(X) = _L [-292359.75 + (e"2x)(4.5X-'-2 + ISX^- + 85.5X^"° 
X° 

+ 414X9 + 1856.25X^ + 7425X? + 25987.5X^ 

+ 77926.5X^ + 194906.25x4 + 389812.5x3 

+ 584718.75X2 + 584718.75X 4- 292359.75)] 
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,-2 ,2 
~~aI u> ~ 73 _ 75 ' — 7g _ 75 ' 75v~ 1-LU4-) 

with X = fR and R is the "effective radial distance", and it 

is the "effective dipole moment". The expressions for B^(X) 

and 3^(X) are given in Table 6. 

Q 
Since this thesis concerns the d configuration, it is 

the potential with respect to "electron holes" that are of 

interest. Therefore, the sign of the potential changes and 

one must now substitute +B^(a,b) for (a,b) in Equations 97-

100, where 

B^(a,b) = ?^5 • Bi(X), (105) 

with 

Bi (x) = ak Gi(x) • 

From Equations 97-100, the non-zero single-electron 

integrals for the d® configuration in point dipole square-

planar symmetry are given in Table 7. From this table, it is 

seen that the integrals are functions of two parameters ; the 

effective dipole moment, \±, and X = fR = 1.8875R, where R is 

the effective radial distance. 
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Designation Integral Matrix element 

Qn 

0] 

a 

P|2,0) * VLF 12,0) d-r 73^75 h 34 7 B2 ̂  

2 

f|2,+l)* V1^ |2,+l)dr 78775 [- f B4 (X) - y B2 (X) ] 

02 ^|2,+2)*vLF|2,+2)dT B^fXi+^BgfX)] 

2 

32 _2 
f|2,+2)*VLFj2,+ 2)dT 78.75 C I B4(X)3 

,8 These integrals are for the d configuration for point 
dipoles whose negative ends are directed toward the central 
ion. 



V. SYMMETRY ADAPTED FUNCTIONS AND THE MATRIX ELEMENTS 

FOR SQUARE-PLAMAR SYMMETRY 

A. Weak Field Functions 

1. Wave functions of the free ion 

As has been indicated, in the weak field case the basis 

functions are constructed in terms of the quantum numbers 

S, L,J, Mj from the antisymmetric products of the single elec­

tron functions. Prior to consideration of the ligand field 

potential, the derivation of the wave functions follows the 

techniques for the wave functions of the free ion. For a 

d2 or d® system the possible states are, ^F^, ^F^, 

"*pl-> an<^ "*~S0 ' The methods for deriving these 

states and the wave functions associated with them are given 

in Appendix A. The wave functions for the states are given in 

Table 8. As is seen from the table, the degeneracy of each 

J—state is 2J + 1. 

2. Wave functions for ion in the ligand field 

If the wave functions of the free ion were used directly 

as basis functions for the ligand field problem, a single 45 

by 45 matrix would result. It has been shown by group theory 

that placement of the free ion in the potential of the ligand 

field removes the 2J -f 1 degeneracy of the states. Further­

more, it was indicated that the irreducible representations 
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Table S. d- free ion wave functioz 

2S+1 , , 
Lj(Mj) 

function Two-electron oroduct function 

1G A  : 

~G4 

1g4 

1g4 

1g4 

1g4 

1q4 

"G4 

^2 

XD2 

1d2 

1d2 

"D2 

"d2 

1 
4) = J? [(2,2)][ap-; 

1 
2 

3) = -y [(l,2)+(2,l)][ap-pa] 

2) = 7= (2,0)+ \f8 (1,1)+ V"3 (0,2)1 [op-pa] 
x 2d 

1) = _1_ [(2,-l)+./6 (1,0)+ VT (0,l)+(-l,2)][ap-pa] 
* [ 2 8  

0) = YT25 [ (2,-2)+4 (1,-1)+6 (0,0)+4 (-1,1)+ (-2, 2) 1 [a.B-

-1) = J== [ (1,-2)+ J6~ (0,01 J+N^e (-1, 0) + (-2,1) ] [af3-(3a] 

-2) = f•» [ \T3~ (-2,0)+ -/ËT (-1,-1) + *J~3 (0,-2) 1 [ap—pa] 
2a 

-3) = y [(-2,-1)+(-1,-2)][ap-pa] 

1 
~4) - Kf2" [ (-2,-2) ! [ap-pa] 

2) = JT4 [ \^2 (2,0)- VT (1,1)+(0,2)] [ap-pa] 

1) = (2,-1)-(1,0)-(0,1)+ /6 (-1,2)1 [ap-pa] 

0) = ~ — [2 (2,-2)+ (1,-1)-2 (0,0)+ (-1,1)+2 (-2, 2); [ap-pa 
- r 2 Q  

-1) = ?=== [ (_2,1)_ (-1,0)-(0,01)+ Js (l,-2)][ap-5a] 
•v 2d 

-2) = 7==== [ s f 2 ( - 2 } 0 ) ~  +  v 2 (0,-2) ; [ap-pa ; 
\ 14 



(Continued) 

2s"%<-v 
runction Two-electron oroduct function 

"Sp: 

~Sg (0) = [(2,-2)-(l,-l)+(0,0)-(-l,l)+(-2,2) j [a(5-pa 

-111 

^4(4) = JT [(2,l)-(l,2)l[aa] 

3F4(3) [(2,0)-(0,2)][aa] + ̂  [(2,1)-(1,2)1[ap+pa1 
8 

3F4 (2) = sfJ (2,-1)- nT ( 0 , 1 )  + ( 1 , 0 ) -  S T  ( - 1 , 2 )  1  [ a a  1  
56 

+  [  ( 2 , 0 )  " ( 0 , 2 )  ]  [ a p + p a ]  +  ^  j _ _  [  ( 2 , 1 )  -  ( 1 ,  2 )  1  [ P 3 ]  

3F4(1) = [ (2,-2)+2 (1,-1)-2 (-1,1)-(-2, 2) ] [aa] 

+ j== [3(2,-1)+ /6 (1,0)-^ (0,1)-3(-1,2)][ap+pa] 

S T  
+ , [(2,0)-(0,2)1[ppl 

^^4(0) = J=== [3 (1,-2)+ \f6 (0,01)-^ (-l,0)-3(-2,l)][aa] 

+ [(2,-2)+2(1,-1)-2(-1,1)-(-2,2)][ap+pa] 

*| 

1  -  ]  
r 140 [3 (2,-1)+ ̂ 6 (1,0)- \^6 (0,1)-3 (-1,2)] 



function Two-electron product function 

(-1 ) - s -J— [(0,-2) - ( -2 , 0) j era 
3  O  

P (1,-2)4-(0,01)- /g" (-l,0)-3(-2,l)][ap4-pa] 

^ [(2,-2)+2(l,-l)-2(-l,l)-(-2,2) ][pg] 
J28 

(-2) = ^rg*g- [(-1,-2)- (-2,-1) ] [aa j 

4- [(0,-2)-(-2,0) j [ap-f-La ] 
S~28 

S 3  
+ —: [ JT (1,-2)4- xfT (0,-1) - v/T (-1,0) -

s' 55 

VT (-2,i)][pp] 

3F4(-3) =4 [(_i^_2)-(-2,-l)l[ap-^a]4-J= [(0,-2)-(-2,0)][p^] 

3F,(-4) = 1= [(-l,-2)-(-2,-l)][p^] 

3p3 

^^3(3) = T= [ (2,0)-(0,2) ] [aa] + [(1,2)-(2,1) ] [ap4-pa: 

°f3 (2) - 
s f 2 Z  [ * f ~ 3  (2,-1)4- vT (1,0)- 4 ~ 2  (0,1) - JT (-1,2) j [aa ] 

+ r-r—• L (0,2)-(2,0) J iap 4-pa j 4- -f== [ (i,2)-(2,l) ] f^p j 
v i. 2 V o 



Table b. (Continued) 

2S+1 , , 

function Two-electron product function 

3F3(1) = J== [(2,-2)+2(l,-l)-2(-l,l)-(-2,2)][aa] 

+ 7== [NfJ (-1,2)+ JY (0,1)- S2 (1,0)- */T (2,-1) ] 
v 24U 

[ ap+pa] + ̂ 1= [(0,2)-(2,0)][pp] 
v 24 

3p^(0) =-^==[^/T (i^_2)+/2 (0,01)- JT (-1,0)- C2,l)][aa] 
3 v  20 

+ jèjfî [ J3(-1,2)+ J2(0,l)-J2 (1,0) - s f 3  (2,-1) ][pp] 

3F3 (-1) = -0L[(0,-2)-(-2,0) ]aa 
• J 2 4  

+ f~24Q ^ N,r̂ " (1,-2) + \< 2 (0,01) - »/~2"(-1,0) - n/"3~(-2,1) ] 

1 
[ap+pa] + J== [(-2,2)+2(-l,l)-2(l,-l)-(2,-2)][pg] 

[(-l,-2)-(-2,-l)][aa] + j==[(0,-2)-(-2,0)] [ap+pa] 

[ ̂ (-2,1) + ̂ (0,01)- ̂ (1,-2) ] [pp] 
s TIa 

J J  i  
3F](-3) = [(-1,-2)-(-2,-1)][ap+pa] + J= [(-2,0)-(0,-2)][^p] 

3_ 
A  '  

3Fz(2) = J^= [\O"(2,-l)+\/2"(l,0)-^(0,l)-j3"(-l,2)][aa] 



T' 3.0 i. 0 o « (Continued) 

2S+1, , , 

4? ' : 
function Two-electron product function 

3F2(2) (Continued) 

• J T  
+ J# [(0,2)-(2,0)] [ap+pa] 

+ J== [(2,l)-(l,2)][pp] 

3F?(1) = _J_ [(2,-2)+2(1,-1)-2 (-1,1)-(-2, 2) ] [aa] 
Vlô 

+ j=== [-J6 (-1,2)+2(0,1)-2(1,0)- ./6(2,-l) ] [ap+ga] 

[(2,0)-(0,2)][pP] 

3F2(0) — ; ̂  [ <J~6 (1,-2) +2 (0,-1) —2 ( — 1,0) — *f~6 ( — 2,1) ] [aa] 

NfÏ4ô" [ (~2, 2)+2 (-1,1) -2 (1,-1) - (2,-2) ] [aS+Sa] 

J J  
+ [ VT (2,-1)+ J 2 ( l , 0 ) ~  \T2(0,1)- nTT (-1, 2)][pp ] 

F2 (-1 ) - [ (0,-2) - (-2,0) ] [aa ] 



^ I n  / f r, n r i >-i n o r-i \ 

2S+1 
] 

function Two-electron oroduct function 

'J <Mj> 

f 

?2(-2) = [(_i,_2)_(_2,-l)][aa] 

3P 2  = 

7  

Vl4 

+ -CL [(-2,0)-(0,-2)][ap+ga] 

+  7= [  J J ( ± , - 2 ) +  s/T(0,-1) - n/T(-1,0) - vT(-2,l) ] [pp] 
N 2 10 

3p (2) = -4= [ S^(2, -1) + s'TiO, 1) - s'T( 1, 0) - ̂ T(-l, 2) ] [aa] 
z V10 

P 2  ̂  T^== [2  (2 , -2 )+  ( -1 ,1 )  -  (1 , -1 ) -2  ( -2 ,  2 )  ]  [ a a ]  

+  [ J 2 ( 2 , - 1 ) +  ̂ 3(0,1)- ̂ 3(1,0)- n/T(-1,2) ] [ap+^a] 

3 P 2 ( ° )  =  [  S 2 ( l , - 2 )  +  S 3  ( - 1 , 0 ) -  J J { 0 , - 1 ) -  S T ,  1)  ]  [ aa ]  

+ 7= [2(2,-2) + (-l,l)-(l,-l)-2(-2,2)][ap+pa] 
N 30 

+  J =  [  S T ( 2 , - 1 )  +  S T { 1 , 0 ) -  S T  ( - 1 , 2 )  ] [Bp] 

' ?2(-l) = Y== [ V 2 (1,-2)+V 3 (-1,0)-V3 (0,-1)2 (-2,1)] [ap+pa J 
v 40 

+ 
kj~2Q* [2(2,-2) + (-l,l)-(l,-l)-2(-2,2) J [pp j 



/ o 

Table 8. (Continued) 

function Two-electron product function 

3  ?  - ,  (  -  2  )  =  .  ~  •  t  \ '  2 ( 1 , - 2 )  +  n '  3 ( - l , 0 )  -  \TT ( 0 , - 1 ) -  >J~2 (  —  2 , 1 )  j  
 ̂ 10 

3Pi= » 

3 P l ( l )  =  J =  [ 2  ( 2 , - 2 ) +  ( - 1 , 1 ) - ( 1 , - 1 ) - 2  ( - 2 ,  2 )  ]  [ a a ]  

+ J== [ *ï~2 (-1,2)+ \l~3 (1,0) - ̂ (0,1)- ̂ 2(2,-1) ] [ap+Pa] 

3P ^ (0) = j ~ [ *J~2 (1,-2)+ \l~3 (-1,0) - <sT3"(0,-1)- *J~2 (—2,1) j  [aa]  
N A u  

+ [ >J~2 (-1,2)+ »/3~ (1,0) - n/T(0, 1) - 4 ~ 2 { 2 ,  -1) ]  [PP] 

3?l(_1) = J%^[\T2(l,-2)+ s/T(-l,0)- */T(0,-l) + • J ~ 2 ( - 2 , 1 )  ]  [ap+pa] 

+ -L= [2 (-2, 2)+ (1,-1)-(-1,1)-2 (2,-2) ] [pp] 
V2O 

^0 = 

3Pq (0) = J== [ >J~2 (1,-2)+ ,/T(-l,0)- JT(0,-1)- »/~2~(-2,1) ] [aa] 

+ 1== [2(-2,2)+(l,-l)-(-l,l)-2(2,-2)][aP+Pa] 
V oO 

+ [ /2(2,-l)+ ̂ T(0,1)- /3"(1,0)- <J~2 (-1,2) ] [pp] 
4 3 0  
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one considers the spherical harmonics in terms of cartesian 

coordinates and takes such linear combinations of them as to 

obtain elements which transform according to the irreducible 

representations of the group. Then the combinations of the 

I S,L,J,Mj)> functions which correspond to those spherical 

harmonics will be basis functions for the same irreducible 

representations. 

There are five irreducible representations of the rota­

tion group D4. Hence, by suitable choice of the wave func­

tions, the single large matrix can be reduced to five 

smaller matrices. The five irreducible representations are: 

• Alz- f2=a2* Hb ~ Bl* ^4 = b2" and ^5 = E, where the 

notation follows that of Bethe(1) and the A,B,E, notation 

follows that of Mulliken (2). The f- or E irreducible 

representation is doubly degenerate; the other four are non-

degenerate . 

As shown in the section on group theory, the 2J + 1 

degenerate representations can be reduced to their irreducible 

representations by means of Table 3. The irreducible repre­

sentations for the various J values of interest are given in 

Table 9. Thus, for example, linear combinations of the wave 

functions associated with the state with J = 2, can be 

made such that one combination is the basis function for 

another combination transforms according to fg, another 

according to f^, and the remaining pair are basis functions 
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into which the states are reduced can be determined from the 

characters of the reducible 2J + 1 representation. And 

finally, if and are basis functions for irreducible 

representations, since the ligand potential, V, must belong 

to the irreducible representation A%, the matrix element 

7* V -J'B dr = 0 unless l"A • fB, that is, unless and ^B 

are basis functions for the same irreducible representation. 

Thus, it is possible to reduce the size of the matrix which 

needs to be diagonalized by taking such linear combinations of 

the 2J + 1 functions associated with each J-state so that the 

combinations form basis functions for the irreducible repre­

sentations of the group. Such functions are frequently termed 

"symmetry adapted" functions. The functions given in Table 8 

are, in general, not symmetry adapted. 

3. Construction of symmetry adapted functions 

There are several ways of obtaining the proper linear 

combinations for symmetry adapted functions (32, 33). Appen­

dix C shows that a convenient approach is to consider the 

I S,L,J,Mj)> functions as having an angular dependence which cor­

responds to a spherical harmonic Y(J,Mj). That is, the appro­

priate linear combination of I S,L,J,Mj)> functions required to 

form a basis function for an irreducible representation cor­

responds to that combination of spherical harmonics, Y(J,Mj), 

which form a basis for the irreducible representation. Hence, 



Irreducible representations 

j-value Bethe notation Mulliken notation 

J = 0 H Ai 
]_ r2 + r5 a2 + S 

J = 2 r. + r3 + r4 -r r5 A1 + 3I + B2 + S 

J = 3 r2 + r3 + r4 + r5 + r5 A2 + Bi + 32 + 
E + E 

J = 4 Ti * fx + l~2 + r3 + r4 
a l  

+ A1 +  a2  + ̂ 1 + 

+ r5 + I <5 + E + E 

for the doubly degenerate I g. 

By application of the techniques outlined in Appendix C 

it is a simple matter to show that the transformation proper­

ties of the coordinates x, y, and z, and the products of 

coordinates such as xy, xz, vz, x2-y2, etc., conform to cer­

tain irreducible representations. For example, in square-

planar symmetry, the coordinate z belongs to the irreducible 

representation f^. Similarly, the pair x and y, or the pair 

xz and yz, belong to the representation f5. The product xy 

belongs to f\, and the product x2-y2 to , and so on. A 

sample set of such functions is given in Table 10. 

It is possible to present the spherical harmonics In 

terms of cartesian coordinates just as easily as in terms of 

spherical coordinates. Table 11 lists the normalized 
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schcricai harmonics up to j = 4, in terms of spherical and 

cartesian coordinates. Comparison of the representation of 

the spherical harmonics with J = 2 with the sample set in 

Table 10 shows that Y(2,0) should be the basis function for 

r. Similarly, 

1/ ̂ 2 [Y(2,2) + Y(2,-2)]= Vl 5/ V 64- [x2-y2] 

and hence this combination should transform according to Pg. 

In like fashion: 

p 
1/Î./2 [Y(2,2)- Y(2,-2)] = V15/V64 TT [xv], hence 14. 

And finally, 

1/ *ff [Y(2,-l) — Y (2,1) ] = >fÏ5/ •Slëï 
i/ NT [ Y ( 2 , -1 ) + Y (2,1) ] = «/HT/ -/TÔTT 

[xz] n 
hence, / _. 

[yz] 

Therefore, the linear combinations of the |s,L,j,Mj)> functions 

which yield symmetry adapted functions belonging to the appro-

priate irreducible representations for 1D2 are: 

Table 10. Coordinate functions which 
irreducible representations 

are bases for the 

Function Corresponding irreducible representa­
tion 

[ 3 ( Z ) 2 _ L L  ri 
[x2-y2! r3 
[xy] FII 

[(xz) , (yz) J r5 
[xyz] r3 
[5z3-3z] r2 



Tao^e vl. .wrinanzeu sonencai narronics "i n ^ 

Spherical 
harmonic Spherical coordinates Car tesian coordinates 

Y (00) 
1 

Y (00) 
2 ̂  2 nTtt 

Y(l,+1) rr~ + i<t> 
+ sr-^- sin © e 

J&TT \ 8— 
(x + iy) 

r 

Y(1,0) 3 cos G 
V4tt 

s/ 3 
V57 

z _  
r 

+ i 2<J> 
e~ ( X  ± i y  2  

r ' 
Y(2,+2) V 15 sin2 e 

V3 2tt 

+ i 2<J> 
e~ ^ 15 

V3 2TT 

( X  ± i y  2  

r ' 

Y(2,+l) + N' sin © 
V 8-

+ id> 
cos © e— + NH3-

VsF 

(x + iy) z 

r2 

Y(2,0) /Ï&F (3 = ' 6-1) 
V 5 
yi6ir 

r 

[3(F ,2 -1] 

Y(3'±3) T vZ s"3 e e±i3* ? "SI 
Y(3,±2> sln2 e cos e e± "• # 

r" 

Y (3 J +1) + n/. 21 sin 8(5 cos2© 7 ̂  21 (x ± iy) L , z  2  1 
7547 + /647 - l5(F) -1] 

-i)e- v 

Y ( 3 '0 )  "S ( 5  C O s 3 e  -  3  C O S 6 )  f5 ( f )3  -  3(f) ]  

The spherical harmonics employed in Table 11 correspond 
to those used by vvigner (30) and Condon and Shortley (6) . 
There are several ways to define the spherical harmonics and 
caution must be exercised in comparing the symmetry adapted 
functions used by various authors. Detailed comments 
covering the spherical harmonics are given in Appendix B-l. 



Spherical 
harmonic Spherical coordinates Cartesian coordinates 

Y (4,+4) 315 sin4 © e— V 315 / x + iy 
J 5 1 2 i r  / 5 Ï 2 ¥ [ — r  1  

Y (4,4-3) + V 3 15 sinJ6 cos© e— ^ 4- nTSTT /x + xy Y3 2 
V64TT 764TT \ P I  r  

Y(4' ±2) S3ÎF (7 ccs2e-i)sin2ee:!::L2<t' (X 7 iy) 

[7(|)2-l] 

Y (4,4-1) + (7cos3©-3cos©) sin©e—( X  —  ̂  ^  —  
— Vb4îr /64T \ r / r 

[7 <f> 2-3] 

Y (4,0) jg- (35 cos4© - 30 COS 2©4-1) ~ ̂35 (£.)4 -30 (5.) 2-t-l] 



^ = 'D2(0) = 0,2,2,U^ 

= 1/./2 [^2 (2)4-^2 (-2)] = 1/\T2[|0,2,2,2> +|0,2,2-2) ] 

1% = l/isŒ ["D2(2)-'D2(-2)] " 1/i JT[|0,2,2,2>-|0,2,2,-2> ] 

^ _ l/JT L^D2(-1)-^D2(1)] = 1/%T2[| 0,2, 2,-1) -|0,2,2,1> ] 

^ i/jT [^D2(-1)+^D2(1)] = i/JT [0,2,2,-1) + |0,2,2,l) ] 

It is important to notice that all states with J = 2 have 

analogous combinations. For example, for the 3F2 state : 

^ = 3F2(0) = * 1,3,2,0) 

= 1/J2" [3F2(2)+3F2(-2)] = l/./2[|l,3,2,2) +|l,3,2,-2) ] 

% = 1/iVT [3F2(2)-3F2(-2)] = 1/i VT [1,3,2,2) 1,3,2,-2) ] 

_ 1/42 [3F2 (-1) -3F2 (1) ] = 1/.T2 [(1,3,2,-1) -|1,3,2,1) ] 

^ i/,/2 [3F2(-1)+3F2(1)] = i/JT [1,3,2,-1) +11,3,2,1) ] 

A similar set is obtained for the ^p2 states. 

Table 12 gives the appropriate combinations of the 

spherical harmonics which belong to the irreducible repre­

sentations of the group D4. From this table, the correct com­

bination of the states given in Table 7 can be made which 

yield the symmetry adapted weak field functions. It is im­

portant that in constructing the elements of the sets belong­

ing to degenerate representations such as P- that one heed 
D 

the precautions given in Appendix D-3. The weak field basis 

functions are given in Table 13. 



:inaticn or soheri! ; T-tti f~\ c; t.th t n n o ~>'~r 

motions for the irreducible representations of D, 
=3 R 1 R 

4. 

value 
Represent­
ation 

Corresponding 
spherical harmonic 

Coordinate 
function 

J = 0 Y(0,0) a constant 

J = 2 

J = 3 

XI 

Y(1,0) 

A_ [Y(l,l)+Y(l,-1) ] 
4 2  

[Y(l,l)-Y(l,-1) ] 

Y(2,0) 

1 
4 2  

1 
i »/2 

[Y(2,2)+Y(2,-2) ] 

[Y(2,2)-Y(2,-2) ] 

4 2  
[Y(2,-1)-Y(2,l) ] 

== [Y(2,-1)+Y(2,l) ] 
\ z 

Y(3,0) 

1 

i 2 
[Y(3,2)-Y(3,-2)] 

[Y(3,2)+Y(3,-3)] 
4 2  

[Y(3,3)+Y(3,-3)] 
i V 2 

J 2 

i 

[Y(3,3)-Y(3,-3)j 

[Y(3,l)+Y(3,-1) J 

7= [Y (3, 1) -Y (3,-1) ] 
v 2 

i T )  

y 

X 

(p-) -1 ]/I 

[x2-y2]/r2 

xy/i 

x z/r2 

yz/r' 

[sè 3 - 3 A] r 

xyz/r3 

z(x2-y2)/r3 

Y(Y^-3x2)/r3 

X(3Y^-3X2)/r3 

Y[5(^)2-l]/r 

X[l-5 A2]/r 



O f Pr vif "i 1 

Represent- Corresponding Coordinate 
value ation saherical harmonie function 

J = 4 1 -L. [Y (4,4)+Y (4,-4) ] [X4-6X2Y2+Y4]/r4 

Y(4,0) [35( = )4_30(&)2+ 3] i 

2 —— [Y(4,4)-Y(4,-4) ] XY[X2-Y2]/r4 

i n/ 2 

T [Y(4,2)+Y(4,-2)J  [x 2-Y2][7(5.)^-l]/r2 
3 4 2  r 

4 

I 

i •/T 

z 2 
[Y(4,2)-Y(4,-2)] [XY][7(?) -l]/r 

5 -1= [Y(4,-3)-Y(4,3)] [XZ][X^-3Y2]/r4 

1
r_ [Y(4,-3)+Y(4,3)] [YZ][Y2-3X2]/r4 

i  n  2  

[Y(4,-1)-Y(4,l)] [XZ][7(§)2-3]/r2 Xi J 
5 JY " 'r 

1 

i V 2 
[Y(4,-1)+Y(4,l)] [YZ][7(^-)2-3]/r2 

' r 



Symmetry adapted free ion functions 

f* matrix 

= 6^(0) 

^ r 1 ( ± n 2 )  =  xd2(O) 

l r i i 
^ll(-Sg) = -SQ(0) 

3f1(3F4I) = jL [3F4(4)+3F4(-4) ] 

3f1(3F4II) = 3F4(0) 

3Ti(3F2) = 3Fz(0) 

3Ti(^o)  = 

2 matrix 

T2( G4) = ~/y ̂ G4 ~1g4 (-4) 1 

3r2(3F4> = -7= i3F4(4)-3F4(-4)] 

3^2(3Fj) = 3F](0) 



adaoted free ion functions 

P, matrix 

ir3(H' 

3<1d2> 
xr. 1 

3r3(3p4) 

3r3(3F2> 

3f,3(3?2> 

3r3(S, 

matrix 

ir4(iG4) 

1[,
4

(1d2» 

3r4(3F4> 

3r4<3F2) 

3r, (jp„> 

3r4(3F3, 

V 2 

,7T 

i 

VT 

l 
»/T 

1 
42 

G4(2)+ (-2) j 

1D2 (2)+1D2 (-2) ] 

% ( 2 ) + % ( - 2 )  ]  

3p2(2)+3F2(-2)] 

3P^(2)+3?.(-2)] 

_i_ [3F (2)-3F (-2) ] 
± 42 3 3 

[ GA(2)-1Gd(-2)] 

[4> (2)--*-D2(-2) ] 

i 42 

1 

i 

1 

i /2 

1 

i >/2" 

1 

[^F, (2)-"F, (-2) ] 

[%(2)--%(-2) ] 

[3P2(2)-^P2(-2)] 
-L v z 

-f= (2)+3F (-2)1 
V 2. J J 



Symmetrv adapted free ion functions 

f1 matrix 

%(%!) ^2 1- ^4 (-3) -""G4 (3) ] 

1 1 1 
— J =  [ - G 4 ( - 3 ) +  G 4  ( 3 )  ]  

i r - ( i G 4 I I )  ^  [ 1 G 4 ( - l ) - i G 4 ( l ) ]  
D - 42 

1  [ X G A  ( - 1 ) + 1 G A  ( 1 )  ]  

D 

1 J~2 L ^4 

r 5 ( h > 2 )  ~ k =  t  D 2 ( ~ i ) ( i )  ]  
N 2 

7? [S(-1,+1d2(1)] 

3fW> J? [3F.(-3)-3F,(3) ] 5l 4 J~2 1 4 * ' r4 

~j= [3F4(-3)+3f4(3) ] 
r 3 „  ,  _  . 3  

3 j \  ( 3 F 4 I I )  _ 4  [ 3 F 4 ( - 1 ) - 3 F 4 ( 1 )  ]  
42 

~rf T F
4 (~I )+ 3F 4 ( I )  ]  

3r5(3F2) j= [3F2(-1)-3F2(D] 

i r3v . ^ 
i JT 

[ F^(-l)+-"F2(l) ] 



:1c 12 . (Continued) 

Svmmetrv adapted free ion functions 

3r5<3 p2) i3p2(-D-3p2(i)] 

[3P2(-D+3P2(1) 1 

3r5(3F3I) _A_ [3F (3)+3f (_3) ] 
i N/ 2 3 

h [3f3<3»-3f3<-3H 

r5(3F3II) ~I7f [3F3(1)+3F3(-D] 

Tf [3F3(1)-3F3(-1)] 

^ [3P1(1)+3P1(-1)1 

3= [3P1(D-3P1(-D ] 
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B. The Weak Field Matrix Elements 

As has been indicated, the formation of the symmetry 

adapted functions results in five matrices in the case of 

square planar symmetry. F^ has nine basis functions, F 2 
has four, has six, P^ has six, and F^ has ten. Because of 

the inclusion of spin-orbit coupling, there are off-diagonal 

elements connecting the singlet and triplet states. This is 

the reason for the large size of the five matrices. 

Each matrix element is the sum of three effects; i.e., 

^B dT = f *A (.2 e2/riV^B dT 

+  f  Z X  ± - $ ±  d% +  f  i f *  V3^ t ! / b  dr (110) 
V j_ v ** 

1. Electronic interaction 

It would be possible to evaluate the matrix elements of 

the electronic interaction in terms of the Slater-Condon 

parameters by the methods outlined in Appendix D. Or, since 

the weak field functions were chosen so that the matrix ele­

ments are diagonal in the electronic interaction terms, the 

methods outlined in section 27 of Condon and Shortley (6) 

could be used. Even this is not necessary, since the results 

2 
for the d configuration are listed on page 206 in Condon and 

Shortley (6). 
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The electronic interaction elements are given in terms of 

two parameters, F2 and F4, known as the Slater-Condon param­

eters . These parameters are actually integrals very similar 

in form to the integrals and G4 which result from the 

ligand field. However, the values of F2 and F4 are fre­

quently determined from experimental data, particularly from 

emission spectra. In this thesis, F2 and F^ are considered 

as parameters to be determined. 

2. Spin-orbit coupling 

The coupling operator may be written: 

2  i  ( r ± )  X i *i i  = £  ( r ± )  X 1 *J 1  + £  ( r 2 )  ^  2 ' ^ 2  (HI)  

and, assuming the parameter £(r) is the same for both elec­

trons : 

2 Ç(r±)ZiIi = a[jr+(l)ijl) +/_(l)i+(l) + X + ( 2 ) J _ ( 2 )  

+  / _ ( 2 )i+(2) ] + 2a[JJ (1) i^(l) + ̂  (2) JL (2) ] (112) 

where a = £/2 

^ = The "step up" operator for orbital angular momen­

tum 

= + iZy 

X_ = The "step down" operator for orbital angular 

momentum 

= - ij"y 
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4 ~ *vy> O M c; 4- /O 7-) } 1 >~V r->y>£S y ̂ *h o r- •£ r\r cni n anrtii 1 5>* 

= Sx + i<Py 

= The "step down" operator for spin angular momentum 

= $x -

However, the tedious calculations for the weak field functions 

2 are not necessary since the matrix elements for d are given 

in Table 1^ of Condon and Shortley (6) . 

3. Ligand field effect 

As has been stated, the ligand field matrix elements can 

be expressed as sums of four single electron integrals, Q2, 

Ql, QQ, and B2 _2• The process of obtaining the correct 

combinations is somewhat lengthy and there have been methods 

evolved which circumvent the actual construction of the wave 

functions. One such method, developed by Bleaney and 

Stevens (21) is discussed in Appendix B. However, the 

method itself is somewhat involved and in the case of the two 

electron functions, it was felt that the more direct approach 

was just as rapid. 

Because of the differences in spin between the singlet 

and triplet states, there are no ligand field elements con­

necting these states. For an element that is non-zero, the 

off-diagonal element between the ^D2 and "^Sq basis functions 

for the f\ matrix has been chosen to illustrate the calcula-



tion involved. With the help of Tables 8 and 13. 

f i f *  VLF dT = r / 1D2(0) lsg(0) dT 

= f ~= [2 (2,-2)+ (1,-1)-2 (0,0)+ (-1,1) 
V nT2F 

* 

+2 (-2,2)][a^-pa] ' V 

JYq I (2» -2) - (1, -1) + (0, 0) - (-1, 1) 

+ (-2,2) ] [a(3 -pa] dr . (113) 

The spin terms simply double the space results. Hence : 

f  i f *  ^  i f  dT - - j â =  [ 2  r  (2,-2)* VLF(2,-2)dT 
J A B V 280 

- T (1,-1)* vLF(l,-l)dr -2 r (0,0)* V^"(0,0)dT 
\w v 

- f (-1,1)* VLF(-l,l)dT + 2 f (-2,2)* VLF(-2,2)dx] 
(114) 

All other possible combinations result in integrals whose 

values are zero. The first integral term can be expanded as : 

P * LP „ r * LF 
2 / (2,-2) * V (2,-2) dT = 2[ / (2) V, (2) dT 

J x x x 

+ f (-2)* V^F(-2)2dT 1 = 2[Q2 + Q2] = 4Q2. (115) 

The same result is obtained for the fifth integral term. For 

the second and fourth integrals : 



- f (1,-1)* VLF(l,-l)dT = - [r (1)* V^F (1) ! dT 
V 1 J-

P * T.F 
+ (-D? v2 (-l)o dT,] = - [Q-, + Qi] = -2Q, 

2 2 ^ -1 x (116) 

And the third term yields r 

2 f (0,0)* VLF(0,0)dT = 4Q0 (117) 

Hence : 

(V (^D?(0) VLF^ ^Sn(O) dT = —à= [80, - 4Q-, + 4Qn ] 
J z  u  V280  ^  u  

= j==[2Q2 - Q! + Q0) (118) 

By similar processes, all matrix elements due to the ligand 

potential may be evaluated. 

4. The complete matrices 

The final tabulation of all the weak field matrix ele­

ments are given in Tables 14 through 18. 

C. Strong Field Functions 

The strong field functions are chosen so that the matrix 

elements are diagonal in the ligand field parameters. This 

is attained by use of basis functions which are symmetry 

adapted with regard to both spin and space. The method for 

construction of such functions may be outlined as follows : 
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Table 14a. Weak field matrix e1 empnfs/ .^S configuration 
square-planar symmetry. C-, matrix3 

lG4 

(I) 

1q4 

(II) 

1q2 lso 3'"4 

(I) 

3p4 

(II) 

3f2 
3P2 3po 

%(!) all a12 a13 a14 a15 0 0 0 0 

1G4(II) a21 a22 a23 a24 0 a26 0 0 0 

1d2 a31 a32 a33 a34 
0 0 a3 7 a38 

0 

lso a41 a42 a43 a44 0 0 0 0 a49 

%(I) a51 0 0 0 a55 a56 a57 a58 a59 

3F4(II) 0 a62 0 0 a65 a66 a67 a68 a69 

3f2 0 0 a?3 0 a75 a76 a77 a78 a79 

^2 0 0 a83 0 a85 a86 a87 a88 a89 

3po 0 0 0 a94 a95 a96 a97 a98 a99 

aThe non-zero a^j matrix elements, where the first index 

is the row and the second is the column, are given in Table 
14b. 

Table 14b. Non-zero values of weak field matrix elements 

Matrix 
elements Values 

all = 2q2 + 4f2 + F4 

a2i = a12* = 2/ <J~3~5 B2_2 

a22 — 2/35 [Q2 + 16Q^ t  18Qq] + 4F 2 + F4 

a31 = a13* = 4/ B2_2 
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Table 14b . f Con-hi r>n#»d> 

Matrix 
elements Values 

a^2 = a23* = 4//7 [ ® 2  + 2!̂ 1 ~ 30g] 

a33 = 2/7 [4Q2 + 0i + 2Q()] - 3F2 + 36F4 

a41 = a14* = 4/./TÔ B%_2 

a42 - a24* = 4/5 [Q2 - 4Q1 + 3Q0 J 

a
43 = a34* = 4/ SJÔ [2Q2 - Ql - QQ ] 

a44 = 2/5 [2Q2 + 2Qi + Q0] + 14F2 + 126F4 

a51 = ai5* = ~2a 

a^_ = [Q 2  + Qj_ ] - 3a - ÔF 2  - 9F 4  

a62 = a26: aoc* = -2a 

a65 ~ a56* " "3/ ̂  B2-2 

a66 
= 1/35 [17Q2 + 47Ql + 6Q0] - 3a - 8F2 - 9F, 

a73 = a37* =4 vT/ nT a 

a75 - a57* ~ -2 3 /v 35 B2_2 

a76 ~ a67* ~ 2 v 3/35 [Q2 - 30^ + 2QQ ] 

a 77 = 2/35 [9Q2 + 220^ + 40g] + 4a - 8F2 - 9F, 



Matrix 
elements Values 

ag3 ~ a38* ~ —42/ v 5 ci 

a85 = a58 = ~ B2_2 

agg = agg = 2/5 N/ 42 [11Q2 ~ ~ 3QQ ] 

*87 = *78* = 4/5 /Ï4 [-02 + 20^ - 0^] 

agg = 1/5 [6Q2 + 3Q^ + Qq] — a + 7F 2 — 84F ̂ 

a94 = a4g* = 2/ nTô a 

a95 = a59* = -2/ ̂ 15" B2_2 

a96 = a69* = 2/5 xf^T [-Q2 + 4QX - 3QQ ] 

*97 = *79* = 4/5 V7 [202 - 0^ - Qg] 

*98 = *89 = 5 t-2Q2 + 20^ + QQ ] 

agg = 2/5 [ 2Q2 + 2Q^ + Qq ] + 2a, + 7F2 — 84F^ 
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JL CXU JLU weak fieia matrix elements, Y2 matrixa 

^G4 3F4 % 
1C4 bll b12 0 0 

^F4 b21 b22 b23 b24 

S 0 b32 b33 b34 

3pi 
0 b42 b43 b44 

aThe non-zero matrix elements, ^, are given in Table 
15b. J 

Table 15b. Non-zero values of f\ weak field matrix elements 

Matrix 
elements Value 

bll %2 + 4F2 + p4 

b21 - b12* -2a 

bgg Q 2 + Q j _ — 3ct — 8F 2 — 9F4 

b32 " b23* 1 ^ B2-2 

b33 1/5 [3Q2 + 5QX + 2Qq] + a - 8F2 - 9F4 

b42 = b24* i ̂ 2/ ̂  B2_2 

b43 = d34* V^"/5 [Q2 ~ Q0 J 

b44 1/5 [2Q2 + 5Q1 + 3Q0] + a + 7F2 - 84F^ 
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T .•=)>! 1 e 1 AA . Weak f i el d matrix • elements. 
p 
! -, mstr? xa 

1g4 1d2 
3F4 3f3 

3F2 S ' 

1<54 C11 c12 C13 0 0 0 

l°2 C21 c22 0 0 c25 c26 

3f4 C31 0 c33 c34 °35 ^36 

3f3 0 0 °43 c44 c45 C46 

3F2 0 C52 c53 C54 c55 c56 

3^2 0 «=62 =63 c64 c65 c66 

aThe non-zero matrix elements, cijj are given in Table 
17a, on page 99. 

Table 16b. Weak field matrix elements, matrix3 

^ log 3?3 3?2 3?2 

1g4 dll d12 d13 
0 0 0 

V d21 d22 0 0 
. d25- d26 

3f4 d31 0 
r  » d33 d34" d35 d36 

3p3 0 0 d43 d44 •** d45 d46 

3F2 0 d52 d53 d54 d55 d56 

^^2 0 d62 d63 d64 d65 d66 

aThe non-zero matrix elements, d^ •, are given in Table 
17b, on page 100. 
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r T'p.'W 1 çi 1 7n Mrin-.?PTri 1 n ̂ 3 r> -F f -x r -i o 1 rî -r^^4- >- -î t.- ^ T_•3Tri0^ 

Matrix 
elements Value 

1/7[3Q2 + 80^ + 3QQ + 3B2—2] + 4F 2 + F4 

c22 - C X 2 *  2 ^^3" /7 [Q2 - 20^ + QQ +  B2_2 ]  

c22 2/7[2Q2 + 3QX + 2QQ + 2B2_2] - 3F^ + 36F^ 

C31 = c13* "2a 

C33 1/14[11Q2 + 80^ + 9Qq - 9B2_2] - 3a -8F2~9F4 

c43 = c34* i/2 [-02 + 20^ - Q0 + 3B2_2] 

c 44 1/6[502 + 4Q2 + 3Qq + B2_2] + a - 8F 2  -  9F4 

c52 " c25* 4 -/T/ \fÊf a 

c 53 =  c 35*  V7- / *5* [ -Q 2  + 50^ - 4QQ -  3B2_2] 

C54 = c45* i/3 -J 35 [02 + 50^ - 60Q + 11B2_2 ] 

c55 1/105[103Q2 + 800^ + 27Qq - 55B2_2] + 4a - 8F2 

- 9F4 

c62 " =26* — \! 42/ «i 5 a 

c63 = =36* 1/ *f~7Ô [302 - 3Q0 " B2-2 ̂ 

c64 " =46* i/  ̂ 10 [~02 + Oo - ^2-2] 

c65 = c56* 2/5 v"Ï4 [Q2 - Q0 ~ 5B2-2 ̂  

c66 1/5[2Q2 + 5Qi + 3Qq] — a + 7F 2 — 84F^ 
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Table 17b. Mon-7pro vsi^5: ! • r.etrix elcr.cnte 

Matrix 
elements Values 

dll 1/7[3Q2 + 802 + 3Q0 - 3B2_2] + 4F 2 + F4 

d21 d12* 2 -VT /7[Q2 - 2Qi + QQ - B2-2^ 

d22 2/7[2Q2 + 3QX + 2Q0 - 2B2-2^ " 3F2 + 36F4 

d31 e d13* -2a 

d33 1/14[1102 + 80i + 9Q0 + 9B2_2] - 3a - 8F2 - 9F4 

d43 
= 

d34* i/ */ 28 [02 — 201 + Q0 + 3B2_2] 

d44 1/6[502 + 40^ + 3Q0 - B2-2 ̂ + a - 8F2 - 9F4 

d52 d25* 4 vT/ nT a 

d53 
= 

d35* 
1/7 JJ [~Q2 + 5Q1 ~ 4Q0 + 3B2-2 ] 

d54 
= 

d45* 
i/3 S35 [~Q2 — 50^ + 60q + 11B2 -2 ̂ 

d55 

d62 
— 

* 
d26 

1/105[103Q2 + 

-9F4 

- V42/ \TS a 

800-l + 27Qq + 55B 2_2] + 4a - 8F2 

d63 
= 

d36* 1/ > f ï Ô  [3Q2 - 30o + B 2-2 j 

d64 
= 

d46* 
i/ nHEÔ [o2 - < 20 " B2-21 

d65 

d66 

= d56* 1/5 * f l Â  [2Q 2 

1/5[2Q2 + 50% 

- 2Q0 + 

+ 30o] 

5B2-23 

— a + 7F 2 - 84F4 



Table 18a. Weak field matrix elements, Fg matrix3 

xg4  

( I )  

1q4 
( I I )  

S 3f4 
(1) 

3p4 
( I I )  

^2 3p2 3p3 
(1) 

3f3 
( I I )  

3 pi 

1G4(I) ell e12 e13 e14 0 0 0 0 0 0 

1 g 4 ( i i )  e21 e22 e23 0 e25 0 0 0 0 0  

1d2 e31 ^32 e33 0 0 ^36 e37 0 0 0 

%(!) e41 0 0 e44 e45 e46 e47 e48 e49 e4x 

3 f 4 ( i i )  0  
i 

e52 0 e54 e55 e56 e57 e58 e59 C5x 

3f2 
0  0 e63 e64 e65 ^66 e67 e68 e69 e6x 

3p2 0  0 e73 e74 e75 ^76 e77 e78 e79 e7x 

3 F 3 ( I )  0  0  0 e84 e85 e86 e87 e88 e89 e8x 

3 f 3 ( i i )  0  0  0  e94 e95 e96 e97 e98 e99 e9x 

3P1 0  0  0  ex4 ex5 ^x6 ex7 ex8 ex9 6  XX 

aThe non-zero matrix elements, j, are given in Table 18b. The tenth row 
and tenth column are indicated by the letter, x. 
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Table 18b, The non-zero values of fs weak field matrix 
merits 

Matrix 
elements Value 

ell °2 + Q1 + 4F2 + F4 

e21 = e12* ~1/ ̂  B2-2 

©22 1/7 [Q2 + 7Q^ + 6QQ ]  +  4 F 2  + F4 

e31 = e13 ~ /7 b2-2 

e32 = e23* /7[Q2 - QQ ] 

€33 1/7 [ 6Q2 + 7Q^ 4- Qq ] — 3F2 + 36F4 

e41 = e14* ~2a 

e44 1/4[40g + Qi + 30g] - 3a - 8F2 - 9F4 

e52 = e25* -2a 

e54 = e45* 3/2 JV B2-2 

e^^ 1/28[16Q2 + 31Q^ + 9Qq] —3a — 8F 2 — 9F4 

e63 = e36* 4 xT/ XT a 

e64 = e46* 3/ b2-2 

Sgg = e56* 1/7 «/ 10 [02 - 201 + QQ ] 

e66 1/105[80Q2 + 640x + 66QQ] + 4a - 8F2 - 9F4 

e?3 — 63 y * — «J 42/ nTs" a 

e-^4 = e47* 1/ J 20 B2 2 

e?5 = e5?* 1/2 ./Tïf [7Q2 - 40^ - 3QQ ] 

e76 = e67* 4/5 V14 [-0^ + QQ] 

67-7 l/10 [ 1002 + 7Q^ + 3QQ  ] — a + 7F2 — 84F4 

e84 = e48* 1 ̂ 3"/4 [Q1 ~ qq] 
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Table 18b. (Continued) 

Matrix 
elements Value 

e85 =58* i JT/ 2 n TT B2 _ 2  

e86 e68* -11 i/ v210 B2 _ 2  

e87 
s  

e78* i n/ 3 / 2 5 B 2  _ 2 

m 00
 

00
 1/4 [402  + 30^ + QQ  ] + ci — 8F^ ~ 9F4 

e94 
= 

e49* —3i/2 «/IT B2_2 

=95 
= 

e59 
i/4 JTS [-4Q 2 + HOj - 7Q0] 

e96 
* 

e69 i/15 \fÏ4 [-1302 + 34Q1 - 210g] 

e97 
= 

e79* i/10[3Q2 - 4Qi + Qq ] 

e98 - e89* 1/2 .[15 B2_2 

e99 1/60[40Q2 + 53QX + 27Qq] + a - 8F2 - 9F4 

ex4 e4x* -i/2 B2_2 

ex5 
= 
^5x* 

i/2 * f 3 5  [Q2 - 401  + 3Qq  ] 

ex6 
= 

e6x" 4i/5 *TÏ4 [2Q2 - Qx - QQ] 

ex7 
= 

e7x* 3i/10 [2Q2 - Q-L  - 00] 

ex8 
•= 

e8x* - -/T/ J2Ô" B2_2 

=x9 
= 

e9x" 
1/10[5Q2 - 40i  - Q0] 

exx 1/10[1002 + 7QX + 3Q0] + a + 7F2 - 84F4 
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1). Construct symmetry adapted single electron space 

functions by linear combinations of the single electron 

functions | ! ,nrg, s,ms) . 

2). Construct symmetry adapted product functions of 

the spatial functions by taking all possible combinations 

of the single electron symmetry adapted functions. In 

0 8 
the case of d or d systems, these product functions are 

two electron functions. For d^ systems they would be 

three electron functions, and so on. The symmetry of a 

particular product function is obtained by means of the 

direct product theorem of group theory. 

3) Construct symmetry adapted spin functions by 

means of the two by two complex matrices corresponding 

to the rotation operations of the group. 

4). Construct the symmetry adapted basis functions 

from all possible combinations of the symmetry adapted 

spin functions and the symmetry adapted space functions. 

Pauli's exclusion principle applies to the possible com­

binations. The symmetry of the final function can again 

be determined by the direct product theorem. 

1. Single electron symmetry adapted functions 

Since the single electron space functions are expressed 

as: 

|i,m£) = N-R( )-Y(i,m£), (119) 
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the construction of the symmetry adapted single electron func­

tions follows identically the technique used to construct the 

symmetry adapted functions in the weak field. Thus, the 

single electron functions are obtained by use of Table 11 with 

i = 2 corresponding to J = 2. The functions are listed in 

Table 19. It is again noted that the combinations of the 

jim^) functions depend upon the definition of the spherical 

harmonics and care should be exercised when comparing the ex­

pressions of various authors. To distinguish between the 

symmetry of the final basis functions and the symmetry of the 

single electron functions, it is convenient to follow the 

example of Liehr and Ballhausen (26). They denote the 

over-all symmetry of the basis functions by the Bethe (1) 

notation: F2j etc.; and denote the symmetry of the sin­

gle electron functions using lower case letters of the Mulli-

ken (2) notation: a^, a2, b^, b2, and e. Table 18 gives the 

symmetry in both notations, but the Mulliken notation is used. 

2. Symmetry adapted spatial product functions 

By application of the direct product theorem of group 

theory, the irreducible representation(s) to which the 

products of two symmetry adapted single electron functions 

belong can be obtained. Table 20 lists the resultant ir­

reducible product representations for the D4 group. Of course 

since none of the five symmetry adapted d-orbitals belongs to 



Table 19. Symmetry adapted single electron functions 

Symmetry group 
Bethe Mulliken Function 

Usual 
designa­

tion of the 
orbital 

Designation 
in this 
thesis 

- al 1 2 j 0 ) dz2 (Z2) 

r3 - bl t U, 2) +1 2, -2) J dx2-y2 (x2-y2) 

r4 = b2 -^7= [|2,2)-l2, 
l 42 

-2)] dxy (xy) 

P 
J= [ |2,-1)-(2, D 1 dxz (xz) 

' 5 - e 
[ |2,-l) + i2, D ]  dyz ( y z )  

Table 20. Direct products of irreducible representation 

Direct 
product 

Irreducible 
repre­
sentation (s) 

Direct 
product 

Irreducible 
representa­

tion (s) 

al x al 
= a-, a2 x a2 

= a-

a l  x  a 2  =  a
2  

x  a i  a2 x bi = 

x = b. 

al x bi = bi x a = b- a2 x b2 = 

b2 x a% = b-

al x D2 = b2 x al 

b^ x b^ 

a^ x e = e x a^ 

= b 
2 

al 

e 

a2 x e = e x a2 = e 

b2 x b2 = a-

"r>2 x e = e x b2 = e 

b]_ x b2 = b2 x b. x e — a^ + a2 + 

bi x e = e x b7 = e 

^ + b2 
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the irreducible representation. a->. t.hns#» rH product5 in­

volving this representation are not required for the spatial 

product functions. However, as is seen in the following 

section, one of the symmetry adapted spin functions for the 

triplet state does form a basis function for the a2 repre­

sentation, and hence it is included in Table 20. 

The details of constructing the symmetry adapted two 

electron product functions for the group are outlined in 

Appendix D. The functions which result are not tabulated 

since the procedure is quite straightforward. A final tabula­

tion which includes the symmetry adapted spin functions is 

given in Table 21. To quickly illustrate the procedure, one 

can consider the products of the two functions (x2-y2) and 

(xy). Since (x2-y2) is a basis function for b^, and (xy) is a 

basis function for b2, then both product functions, (x2-y2)(1) 

• (xy)(2) and (xy)(1) • (x2-y2)(2) are basis functions for the 

irreducible representation a2, since b^ x b2 • a2. Generally, 

it is convenient to construct linear combinations of the two 

functions, one symmetric and the other antisymmetric. Thus : 

01 - 1/«/T [ (x2-y2) (Xy) + (xy) (x2-y2) ] (symmetric) 

02 = 1/ JT [(x2-y2)(xy) - (xy)(x2-y2)] (anti­
symmetric) 

where (x2-y2)(xy) means that (x2-y2) is the wave function 

associated with electron 1, and (xy) is the wave function 

associated with electron 2. 
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Table 21. Strona field basis ^"retiens. 4 a 4- a ~ s^i 

Symmetry adapted product functions in terms of Cartesian 
coordinates 

^ matrix: 

1A1 (ajaj^) = [ (z2) (z2) ] [ap - 6a] 

1A1(b1b1) = j== [(x2-y2)(x2-v2) ] [ap - pa] 

1A1(b2b2) = ̂  [(xy)(xy)][ap - pa] 

^•A-l (ee) = J [ (xz) (xz) + (yz) (yz) ] [ap - Pa] 

3A2(ee) = Y [(xz)(yz) - (yz)(xz)][ap + pa] 

3A2(bib2) = •§" [ (x2-y2) (xy) - (xy) (x2-y2) ] [ap + Pa] 

3E (axe) = J== [(xz) (z2) - (z2)(xz)][aa + pp] 

- [(yz)(z2) - (z2)(yz)][i][aa - pp] 

3E (b%e) ~ Jq [ (xz) (x2-y2) - (x2-y2) (xz) ] [aa + PP ] 

+ [(yz)(x2-y2) - (x2-y2)(yz)][i][aa - pp1 

3E (b2e) = [ (xz) (xy) - (xy) (xz) ] [i] [aa - pp] 

- [ (yz) (xy) - (xy) (yz) ] [aa + pp] 

H2 matrix: 

lA2-(blb2) = 4 [ (x2-y2) (xy) + (xy) (x2-y2) ] [ap - pa] 

3E (a^e) - [(xz) (z2) - (z2) (xz) ] [i] [aa - PP] 

+ [ (yz) (z2) - (yz) (z2) ] [aa + pp] 
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Table 21. (Continued) 

Symmetry adapted product functions in terms of Cartesian 
coordinates 

P2 matrix (continued): 

3E (b-j^e) = [ (x2-y2) (xz) - (xz) (x2-y2) ] [i] [aa - pp] 
Si 8 

- [(x2-y2)(yz) - (yz)(x2-y2)][aa + pp] 

3 1 
E (b2e) = j-q [ (xz) (xy) - (xy) (xz) ] [aa + PP] 

rn + [ (yz) (xy) - (xy) (yz) ] [i] [aa - pp] 
1 3 matrix: 

1B1(a1b1)= L [ (z2) (x2-y2) + (x2-y2) (z2) ] [ap - pa] 

1B1 (ee) = — [ (xz) (xz) - (yz) (yz) ] [ap - pa] 
L 2 

3B2(a1b2)= j [ (z2) (xy) - (xy) (z2) ] [ap + Pa] 

3E (axe) = [(xz) (z2) - (z2) (xz) ] [aa + pp] 

+ [(yz)(z2) - (z2)(yz)][i][aa - pp] 

3E (bxe) ~ [ (xz) (x2-y2) - (x2-y2) (xz) ] [aa + pp] 

- [(yz)(x2-y2) - (x2-y2)(yz)][i][aa - pp] 

, 1 
E (b2e) = j-q [ (xz) (xy) - (xy) (xz) ] [i] [aa - Pp] 

+ [ (yz) (xy) - (xy) (yz) ] [aa + pp] 

f4 matrix: 

1B2 (a1b2) = j [ (z2) (xy) + (xy) (z2) ] [ap - pa] 

1B2 (ee) = y [ (xz) (yz) + (yz) (xz) ] [aP - Pa] 
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Table 21. (Continued) 

Symmetry adapted product functions in terms of Cartesian 
coordinates 

P4 matrix (continued): 

3B1 (a1b1) = ~ [ (z2) (x2-y2) - (x2-y2)(z2)][ap + Pa] 

3E (a^e) = Jq [ ( X Z ) ( Z 2 )  -  (z2)(xz)][i][aa - pp] 

- [ (yz) (z2) - (z2) (yz) ] [aa + pp] 

3E (bxe) =^8 [ (xz) (x2-y2) - (x2-y2) (xz) ] [i] [aa - pp] 

+ [(yz)(x2-y2) - (x2-y2)(yz)][aa + pp] 

3E (b2e) = [ (xz) (xy) - (xy) (xz) ] [aa + pp] 

- [ (yz) (xy) - (xy) (yz) ] [i] [aa - pp] 

r5 matrix: 

^E(a^e) = (1) = — [ (z2) (xz) + (xz) (z2) ] [ap - pa] 

(2) = j [ (z2) (yz) + (yz) (z2) ] [ap - pa] 

1E(b1e)= (1) = y [-(x2-y2) (xz) - (xz) (x2-y2) ] [ap - pa] 

(2) = J [(x2-y2)(yz) + (yz)(x2-y2)][ap - Pa] 

1E(b2e)= (1) = 1 [ (xy) (yz) + (yz) (xy) ] [ap - pa] 

(2) = 1 [ (xy) (xz) + (xz) (xy) ] [ap - pa] 

E(aLe)= (1) = j [ (z2) (yz) - (yz) (z2) ] [ap + pa] 

(2) = j [- (z2) (xz) -f (xz) (z2) ] [ap + pa] 
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Table 21. (Continued) 

Symmetry adapted product functions in terms of Cartesian 
coordinates 

^ matrix continued: 

E (b^e) = 

E (b2e) = 

B1 (al^l) 

B2(3jb2)— 

> 

(b1b2) = 

A0 (ee) = 

(1) = J 

(2) = 1 

(1) 

( 2 )  

(1) 

( 2 )  

(1) 

( 2 )  

(1) 

( 2 )  

(1) 

( 2 )  

1_ 
2 
1 
2 

1 
2 
_1 
2 

1_ 
2 
1_ 
2 

JL 
2 
1_ 
2 

1_ 
2 
3^ 
2 

(x2-y2)(yZ) 

(x2-y2)(xz) 

- (yz)(x2-y2)][ap + pa] 

(xz) (x2-y2) ] [ap + Pa] 

(xy) (xz) - (xz) (xy) ] [ap + Pa] 

-(xy)(yz) + (yz)(xy)][ap + pa] 

(z2)(x2-y2) - (x2-y2)(z2)][aa + pp] 

(z2)(x2-y2) - (x2-y2)(z2)][i][aa - pp] 

(z2) (xy) - (xy) (z2) ] [i] [aa - pp] 

-(z2) (xy) + (xy) (z2) ] [aa + pp] 

(x2-y2)(xy) - (xy)(x2-y2)][i][aa - pg] 

(x2—y2)(xy) - (xy)(x2-y2)][aa + pp] 

(xz) (yz) - (yz) (xz) ] [i] [aa - pp] 

(xz) (yz) - (yz) (xz) ] [aa + PP] 
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3. Symmetry adapted spin functions 

The spin functions, a and £3, may be considered to be 

basis vectors for a two dimensional complex space. Therefore, 

in order to construct symmetry adapted spin functions one 

makes use of a transformation property inherent in the defini­

tion of the spin components, namely, that for every symmetry 

operation matrix in real space there is a corresponding matrix 

in complex space having the same group properties. The deri­

vation of such matrices is discussed in Appendix D. The 

important conclusions to be considered from the appendix are: 

A. Just as the weak field functions may be 

characterized by certain irreducible representations 

according to their values of total orbital angular 

momentum, J, so the spin functions can be characterized 

by their values of spin, S. Thus, for the integral 

spins, S = 1 and S = 0 in the symmetry, one obtains 

from Table 3 : 

S = 1 belongs to Aj + E 

S = 0 belongs to A. 

In the case of half-integral spins, recourse to the 

"double groups" is necessary. See the article by Bethe 

(1) or McClure (23). 

B. The spin basis functions corresponding to the 

irreducible representations are: 
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a 1 * -3 i = 1/ vf2~ [a;3-pa] ; for singlet s tates, 2 = 0 
(120) 

A2 : Ç 2 = [a^-rpxx] ; for triolet states, S = 1 
(121) 

= 1/./2 [aa+&p] 
S : ; for triplet states, S = 1 

£4 i/ 41 [aa-P3] (122) 

4. Strong field symmetry adapted functions 

Combining the symmetry adapted space and spin functions 

to obtain the final form of the basis functions for the strong 

field matrices follows the same "direct product approach". 

For example, consider the direct product function: 

if = 0 x i2 (123) 

where 0 = l/4~2 [  ( x 2 - y 2 )  (xy) - (xy) (x2-y2) ], which belongs to 

a2> 

and 12 = VNT^T [af3 + pa], which belongs to A g. 

if is the basis function for the irreducible representation 

f*l = Ai since a2 x A2 = A^ 

By similar processes all possible combinations of the 

spin and space functions are taken. Of course, full cogni­

zance of the Pauli Exclusion Principle must be made. Thus, 

the combination of 0, given above, with the spin function, 

£ 1 - [a£3 - Sa] is not allowed since both space and spin 

parts are antisymmetric and the total function would be 

symmetric. 

The strong field basis functions which result for square-
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planar symmetry are given in Table 21. The states are label­

led 2s~r'i-|"\ (u> v) , where S is the spin of the state, P^ is the 

representation to which the spatial product function belongs, 

and u,v are the symmetry representations of the single elec­

tron space functions from which the function is composed. 

Thus, for example, the function 

ii = j [ (x2-y2) (xy) - (xy) (x2-y2) ] [ap + pa] (124) 

would be 3A2( bjbg). 

D. Strong Field Matrix Elements 

In calculating the matrix elements of the strong field, 

it is convenient to convert the (z2), (xz), etc., notation 

back to the |i,^,s,ms) notation. Thus: 

1/2 [(xz)(yz) - (yz)(xz)][ap + Pa] = 

= i/2 i/2[i-i)-Id ][|-D + ID ] 

-[ I-1)+11) ] [ I-1)-f 1) ] f ap + pa) 

= l/2i [ (1,-1) - (-1,1) ] [ap + pa] (125) 

Table 22 lists the strong field matrix elements in the 

)i,mJ£,s,ms) form. Then the ligand field matrix elements are 

calculated in the same way as for the weak field functions. 

Of course, ligand field terms appear only in the diagonal 

elements of the matrices. 

For the LS coupling elements and the electrostatic inter­

action terms there are no convenient tables, as existed for 

the weak field functions. Hence, they are calculated from the 
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Table 22. Strong field basis functions, j i ,rn», s,ms) form 

Symmetry adapted product functions in |i ,rng, s,ms) form 

J"*! matrix: 

1A1(a1a1) = 7= [(0,0)][ap - pa] 

1A1(b^b^) 

1a1(b2b2) 

- J~q [ (2, 2) + (2, -2) + (-2,2) + (-2,-2) ] [ap - Pa] 

1 
-  if~Q [ - ( 2 ,2 )  +  (2 , -2 )  +  ( -2 ,2 )  -  ( -2 , -2 )  ]  [ ap  -  pa]  

Aj_ (ee) -  2 [ (1 j -1) + (-1 j  1) ] [&P - P&] 

A (ee) & [ 
ifl2(b1b2) = JJ- I 

E(a^e) 

E(bxe) 

E(b2e) 

7 [ 

l 
>J~q 

+ 

i 
sTs 

+ 

Fg matrix: 

1A2 (b1b2) = f 

E (a^e) 

3E (bLe) 

TT r 
i 

i \f8 

-2,2) - (2,-2) ] [ap + Pa] 

-2,2) - (2,-2)][ap + Pa] 

-1,0) - (0,-1) ][aa] + [ (0,1) -(1,0) ] [pp] 

(2,1) + (-2,1) - (1,2) - (1,-2) ] [aa] 

(-1,2) + (-1,-2) - (2,-1) - (-2,-1) ] [pp] 

(2,1) - (-2,1) - (1,2) + (1,-2) ] [aa] 

-(-1,2) + (-1,-2) + (2,-1)-(-2,-1)][pp] 

2,2) - (-2,-2)][ap - pa] 

0,-1) - (-l,0)][aa] + [(0,1) - (l,0)][pp] 

[(2,1)-(-2,1)-(1,2)+(1,-2)][aa] 

[(2,-l)-( —2,-l) + (-l,2)-(-l,-2) ] [PP] 
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Table 22. (Continued) 

Symmetry adapted product function in I .£ ,m^ , s,mg) form 

H2 matrix continued: 

1 
( b ^ e )  =  — [ ( 2 , 1 )  -  (- 2 , 1 )  -  (1 , 2 )  +  (1 , - 2 ) ] [ a a ]  

+ [(2,-1) - (-2,-1) + (-1,2) - (-1,-2)][ pp] 

r3 matrix: 

, 1 
Bi (aibi) = j-q [ (2,0) + (-2,0) + (0,2) + (0,-2) ] [ap + pa] 

**"B^ (ee) = ~2 [ (1,1) + (-1,-1) ] [ap - pa] 

3B,(a,bp)= -±7= [(0,2) - (0,-2) - (2,0) + (-2,0)][ap + Pa] 
^ l «.,/ 8 

3E (axe) = 1 [ (0,1) - (1,0) ] [aa] + [ (-1,0) - (0,-1) ] [pp] 

(b^e) = 7= [(-1,2) + (-1,-2) - (2,-1) - (-2,-1)][aa] 

+ [-(1,2) - (1,-2) + (2,1) + (-2,1) ] [pp] 

(b^e) = j-q [ (-1,2) - (-1,-2) - (2,-1) + (-2,-1) ] [aa] 

+ [(1,2) - (1,-2) - (2,1) + (-2,1) ] [pp] 

matrix: 

i 1 
®2 ̂ a1^2^ = i y[~Q [ (0,2) - (0,-2) + (2,0) - (-2,0) ] [ap - pa] 

^2 (ee) = YÏ [(1,U - (-1,-1) ][ap - pa] 

^ B ^ ( a T _ b [ ( 0 , 2 )  +  ( 0 , - 2 )  -  ( 2 , 0 )  -  ( - 2 , 0 )  ]  [ a p  +  p a ]  

^3 (a^e) = J? [(1,0) - (0,l)][aa] + [(-1,0) - (0,-1)][pp] 



Table 22. (Continued) 

117 

Symmetry adapted product function in {i,rn^,s,ms) form 

^ matrix continued: 

(b]_e) = -^~== [-(-1,2) - (-1,-2) + (2,-1) 4- (-2,-1) ] [aa] 

+ [-(1,2) - (1,-2) + (2,1) + (-2,1) ] [pp ] 

^E (b2e) = ~[ (-1,2) - (-1,-2) - (2,-1) + (-2, -1) ] [aa] 

+ [-(1,2) + (1,-2) + (2,1) - (-2,1) ] [PP ] 

r5 matrix: 

1 
1E (aLe)= (1) = [(0,-1)-(0,1)+(-1,0)-(1,0)][ap - Pa] 

(2) - j~7W [~(0,-l)-(0,l)-(-l,0)-(l,0)][ap - pa] 

^E (b^e) = (1) = A. [-(2,-1) —(-2,-1)+ (2,1)+ (-2,1)—(-1,2) 

-(-1,-2) + (1, 2) + (1,-2) ] [ap - pa] 

(2) - Yg- [-(2,-1)-(-2,-1)-(2,1)-(-2,1)-(-1,2) 

-(-1,-2) - (1,2) - (1,-2) ] [aP - Pa] 

^E (B2
E )  =  (1)  =  4" [ (2 , -1)- ( -2, -1)+ (2,1)- ( -2,1)+ ( -1,2)  

- (-1,-2) + ( 1, 2) - ( 1,-2) ] [ap - Pa] 

(2)= _L. [(2,-1)-(-2,-1)-(2,1)+ (-2,1)+(-1,2) 

— (-1, — 2) — ( 1, 2) + ( 1, -2)][ap— pa] 

1 E (a^e) — (1) — ^ ̂ r~Q [-(0,-1)-(0,1)+(-1,0)+ (1,0) ] [aP + Pa 1 

(2) = [-(0,-1)+(0,1)+(-1,0)-(1,0)][aB + Pa] 
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Table 22. (Continued) 

Symmetry adapted product function in } i ,m *, s ,mg ) form 

rc matrix continued: 5 

"*"E (bj_e) - (1)- 2n~ [~ (2,-1)-(-2,-1) - (2,1)-(-2,1)+(-1, 2) 
4i 

+ (-l,-2) + (l,2) + (l,-2)][ap + pa] 

= 1 

-(-l,-2) + (l,2) + (l,-2) ][ap + Pa] 

(2)— — [(2,-1)+ (-2,-1)-(2,1)-(-2,1)-(-1,2) 

"*"E (b2e) - (1)- -^£ [(2,-1)-(-2,-1)-(2,1)+(-2,1)-(-1,2) 

+ (-1,-2) + (1, 2) - (1,-2) ] [ap + Pa] 

(2)= | [-(2,-1)+(-2,-1)-(2,1)-(-2,1)+(-1,2) 

-(-1,-2)+(1,2)+(1,-2)][ap + Pa] 

^Bi(aibi)= (1)= [(0,2)+(0,-2)-(2,0)-(-2,0)][aa + pp] 

(2)= J= [(0,2)+(0,-2)-(2,0)-(-2,0)][aa - pp] 

(a^b2) = ( 1) = ^[~q [ (0, 2) - (0,-2) - (2, 0) + (—2, 0) ] [aa - pp] 

(2) = [~ (0, 2) + (0,-2) + (2, 0) - (-2, 0) ] [aa + PP ] 

(b^b2) = (1)= i [ (-2, 2) - (2,-2) ] [aa ~ pp ] 

(2) = [ (-2,2) - (2,-2) ] [aa + Pp] 

^A2 (ee) = (1)= -i- [ (1,-1) - (-1,1) ] [aa - PP] 

(2) = ~£2 [ (1, ~1) ~ (~1,1) ] [aa + pp] 



^ = a(^(l)^_(l) + i_(l)^_.(l) + 4 + (2L*_(2) 

+ ^ (2)^(2) )+2a(j.(l)^(l)+i_(2)x),(2) ) 
~ à 2 3 J 

(126)  

For the electronic interaction termsthe general expression 

for two electron wave functions has been given by Condon and 

Shortlev (6): 

(abl e2/rij | cd) = 5 (msa, mgc) 5(msbJImsd) 5(m£a+mib, mic+mid) * 

Z ck(iamia,.£Cm£c)clc(idmid,ibm£b)Fk(naianbib, ncicndid) 
k-£m 

(127) 

where the are the Slater-Condon Parameters and the c^ are 

coefficients. The methods for evaluating the c^ are out­

lined in Appendix D. 

Application of the three operators to the functions 

listed in Table 22 yields the strong field matrix elements 

given in Tables 23 through 27. 
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Table 23b. Non-zero values of strong field matrix elements 

Matrix 
elements Value 

V11 2Q0 + 4P2 + 36F4 

V21 
= 

v12* 4F2 + 15F4 

v22 - 2[Q2 + B2_ 2] + 4F2 + 

V31 vr3* 
4F2 + 15F4 

v32 
> 

V23* 
35F4 

V33 
2 [Q2 " B2_ 2] + 4F2 + 

V41 
s 

V14* 
[P2 + 30F4] 

v42 ^24* 
V2" [3F2 + 20F4] 

V43 V34* 
-/2 [3F2 + 20F4] 

v44 2Q1 + 7F 2 + 56F4 

v54 v45* -2 i a 

v55 2Q1 ~ 5F 2 - 24F4 

v62 
-

V26* i JIT a 

v63 "36* i xTF a 

v65 
= 

V56* 
6F2 - 30F4 

^66 202 + 4F2 - 69F4 

V71 
= 

v17* 2 v/T a 

v74 
= 

V47* 
— »/"6^ ct 

v75 
= 

v57* - i \f6 a 



Table 23a. Strong field matrix elements, d® configuration in square-planar 
symmetry, f1^ matrix3 

1 
A1 

(a.lal) 

1 
A1 

(bibi) 
\ 

(b2b2^ (ee) 

3 
^2 
(ee) 

3a2 
(bib2) 

3E 

(a^e) 

3E 

(b^e) 

3E 

(b2e) 

lAl(a^I) V11 V12 v13 V14 
0 0 v17 0 0 

lA1 (bib!) ^21 ^22 V23 V24 0 
^26 0 ^28 0 

%(b2b2) V31 ^32 v33 v34 0 
^36 0 0 V39 

^  ( e e )  V41 v42 v43 v44 V45 0  V47 ^48 ^49 

3 A 2 ( e e )  0  0  0  ^54 v55 ^56 v57 ^58 V59 

3A2(b]b2) 0  ^62 v63 0  v65 ^66 
0  ^68' ^69 

3E (a; e )  V71 0  0  v74 V75 0  
V77 ^78 V79 

3E(bxe) 0  ^82 
0  v84 v85 "86 ^87 ^88 ^89 

3E(b2e) 0  0  v93 v94 v95 ^96 ^97 ^98 VGG 

aThe non-zero matrix elements, v. •, where the first index is the row and 
the second is the column, are given in Table 23b. 



1  9 9  

T 1 a 0 VN  /  '  

Vo "7 — V 

VGG 

Matrix 
elements Value 

v-j-j Qj_ + QQ + F 2 — 54F 4 + a 

v 8 2  ~  v 2 8 *  ~ 2 a  

Vqa = v * 4~2 a 

* 

84 "48 

v85 ~ v58* ~i x|f2" a 

'86 = v68' vnc = v^o* i */2~ a 

87 ~ v78 ^ JY [-F2 + 5F4] 

v88 ^2 + Q1 + B2-2 ~ a ~ 5F2 ~ 24F4 

^93 = ^39* 2a 

v94 = v49* - JT a 

v95 = Vgg* i >J~2 a 

^96 = -i VT a 

v97 = v79* 3 ̂  [F2 ~ 5F4l 

^98 = Vgg* 2a - 3Fg + 15F4 

Q2 + Qj. ~ ®2 —2 — ^ ~ 5F2 — 24F^ 
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Table 24a, Strong field matrix elements, T0 matrix3 

1A2 
3E 3E 3E 

(bib2) (b^e) (b2e) (axe) 

1A2 (bi_b2) vu WIG *13 0 

3E (b]_e) W21 

CM (M > W23 W24 

3E(b2e) W31 W3 2 ^33 W34 
3E(aie) 0 *42 ^43 W44 

24b. 
The non-zero matrix elements, are given in Table 

Table 24b. Non-zero values of T2 strong field matrix elements 

Matrix 
elements Values 

W11 

W21 
= w 

12 

w 22 

w 

w 

31 

32 

- w 
13 

= w. 

20 n + 4Fn + F , 

- JY a 

02 + Q] B 2 - 2  ™  a  ~  5 F 2  - 24F, 

- \f2C 

-2a - 3F~ + 15F, 

w 33 

W42 

^43 

*44 

= w 
24 

= w 
34 

02 + Qi - B2_2 - a - 5F2 

3 */T [F2 - 5F4] 

-3 vT [F? - 5Fd] 

- 24F. 

Ql + Q0 + a 54FA 



Table 2 5a. Strong field matrix elements, I 3 matrix3 

S 

(a^bi) (ee) 

3E 

(axe) 

3E 

(blG) 

3E 

(b^e) 

3q2 

(AIB
2) 

1B1 (a^b^) X11 xi2 x13 X14 0 x16 

(ee) X21 ^22 x23 X24 x25 0 

3E(aLe) X31 X3 2 X33 X34 X35 X36 

3E(bxe) X41 x42 X43 X44 X45 
0 

3E(bg6) 0 
X52 X53 X54 X55 

X 
56 

3B2 (axb2) X61 
0 X63 

0 x65 ^66 

aThe non-zero matrix elements, x^j, are given in Table 25b. 
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n 
Table 25b. Non-zero values of I , strong field matrix elements 

Matrix 
elements Values 

X11 Q2 + Qo + B2-2 + 21F4 

X21 
— y * 

12 2 ̂ 7 [F% - 5F4] 

X22 2Q1 + F2 + 16f4 

X31 
= 

X13* - 4 2 a .  

x3 2 
= X * 

23 
x/e" a 

x33 Q]_ + QQ — ct + F 2 " 54F4 

X41 
= 

*14* 
•J~6 a 

x42 x24* - *12 a 

x43 
= 

X34* 3 JT [ ~F 2 + 5F4] 

X44 °2 + Q1 + B2-2 + a - 5F 2 - 24F4 

x52 
= * 

x25 a 

x53 
= 

x35* 3 >JT [-F2 + 5F4] 

x54 
= 

x45* -2a + 3F2 - 15F4 

X55 

X61 
= 

x16* 

Q 2  +  Q x  -  B 2 _ 2  +  

2i a 

a — 5 F 2 — 24F4 

x63 X36* 
—i »v 2 a 

^65 

^66 

*56* 
-i a 

^2 + Qû ~ 32-2 ~ 8F2 - 9F4 



Table 26a. Strong field matrix elements, I ^ matrix3 

®2(alb2^ 
1B2(ee) 3E(aLe) 3E(bLe) 3E(b2e) 3B^(a^b^) 

%(a].b2) V l l  y12 y13 0 y15 y16 

1B2 (ee) y2i y22 y23 y24 y25 0 

3E (a-^e) 
y31 ^32 y33 Y34 y3 5 y3 6 

3E(b^e) 0 y42 y43 y44 y45 y46 

3E(b^e) 
Y51 y52 y53 y54 y55 

0 

3B (alb1) y61 
0 y63 y64 

0 y66 

BThe non-zero matrix elements, j, are given in Table 26b. 
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Non-zero values of strong field matrix elements 

Matrix 
elements Values 

y l l  Q
2 + Q0 - B2-2 + 21F4 

y21 y12 
2 SJ [F2 - 5F4] 

y22 
2Q1 + F2 + 16F4 

Y31 
= yi3* 2a 

y32 
= 

%23* 
- V 6 Cl 

y33 Ql + QQ - a. + F2 - 54F4 

y42 
= * 

y24 
-2d 

Y43 Y34* 3 JT [ ~ F 2  + 5F4] 

Y44 Q2 + qi + B2_2 + a — 5 F 2 — 24F4 

y51 
= 

y15* 
=/6~ a 

y52 y25* 
— k 2 ex 

y53 
= 

y35* 3 »f3 [F2 - 5F4] 

y54 
= 

y45* 
-3F 2 + 15F4 + 2a 

y55 
02 + 0^ - B2_2 + a — 5F0 — 24F4 

y61 - yl6* 
-2 i a 

y63 
= 

y36* -i *J~2 a 

y64 y46* 
-i v 6 a 

Y66 Û2 + QQ B2-2 - 8F2 - 9F4 



Table 27a. Strong field matrix elements, matrix3 

LE 
(a±e) 

1E 
(b!e) 

lE 
(b2e) 

3E 
(a^e) 

3E 
(b^e) 

3E 
(b2e) 

3B 
1 

(aibi) 

3B2 
(axb2) 

3A2 

(bib2) 

3 
A2 

(ee) 

1E(a1e) Z11 z12 z13 Z14 
0 0 z17 Z18 0 z 

IX 
1E(b^e) Z21 z22 z23 0 z25 z26 z27 0 z29 0 

1E(b2e) Z31 z32 z33 0 z35 ^36 0 
^38 

0 Z3X 
3E(aLe) Z41 0 0 Z44 Z45 Z46 z47 z48 0 Z4X 
3E(ble) 0 z52 Z53 z54 z55 z56 Z57 0 z59 Z5X 
3E (b2e) 0 Z62 ^63 z64 z65 Z66 

0 Z68 z69 ^6X 
3RI(AIBI) Z71 z72 0 z74 z75 0 z77 z78 0 0 

B 2 ( a j_b2 ) Z81 0 z83 z84 0 Z86 z87 z88 0 0 

3A2(bjb2) 0 z92 0 0 z95 z96 0 0 z99 Z9X 

3A2(ee) ZX1 ZX2 ZX3 ZX4 ZX5 ZX6 
0 0 ^X9 ZXX 

aThe non-zero matrix elements, j, are given in Table 27b. The tenth row 
and tenth column are indicated by the Roman numeral, X. 
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r. stron. Table 2 7b. Non-zero values of I _ strong field matrix elements 

Matrix 
elements Values 

211 , Ql + QQ + 3F 2 + 6F4 

Z21 
= = 12* V/T [F2 - 5F4J 

Z22 @2 ^ Q1 + B2-2 + F2 + 16F4 

Z31 
= 

Z13* «/T [--EG + 5F4] 

Z3 2 
_ * 

23 3F2 * - 15F4 

Z33 Q 2 "T Q1 ~ B2-2 + F2 + 16F4 

Z41 
= 

Z14* ia 

=44 Q1 + QQ + ^2 - 54F4 

Z52 Z25* -ia 

Z53 Z35* 2ia 

Z54 =45* 3 JT [F2 - 5F4] 

Z55 Q2 + Q1 + B2-2 ~ 5F2 ' " 24F4 

Z62 
= 

Z26* 2ia 

Z63 - Z36* -ia 

Z64 
= Z46* -3 V'T [F2 " 5F4] 

Z65 
= 

Z56* -3F2 + 15F4 

Z66 Q2 + Q1 ~ B2-2 - 5F2 ' - 24F4 

Z71 
= = 17* - a 

Z72 
= 

Z27* v 3a 

Z74 
= 

Z47* -ia 

Z75 
= 

* 
Z57 i a 
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Table 2 7b.  (Cont inued)  

Matr ix  

e lements Values 

Z77 Q2  + Q0  + B2_2 -  8F2  -  9F4  

Z81 = z18* a 

=83 = =38* ^  % 

=84 =  =48* i a  

=86 = =68* i a 

z87 = z7 8*  -2a 

z88 Q2 +  Q0 ~ b2-2 "  8F2  -  9F4  

= 2 1 

92 29 
z„  -a 

z95 z59* 

=96 = =69* " ia  

Zgg 2Q2  + 4F2  -  69F4  

=X1 =  =1X* ^  a  

=X2 = =2X* "O 

=X3 Z3X* a  

=X4 "  =4X* ^  ^  a 

=X5 = =5X* 

=X6 = =6X* ^  

=X9 = =9X* -G?2  + 30^4 

2XX 2 01 ~ 5 f2 -  2 4 f4 



VI. COMPUTER TECHNIQUES 

A. Over-all Program 

From the previous considerations, it is clear that the 

determination of the energy levels of the platinum(II) com­

plexes consists in the diagonalization of the five matrices : 

2> r3, r 5.  The matr ix  elements  are  funct ions of  

f ive parameters  :  F 2 ,  F4,  a . ,  p . .  and X,  where F 2  and F 4 are  

the e lectronic  interact ion (Slater-Condon)  parameters ,  a  i s  

the spin-orbi t  coupl ing parameter ,  | j .  i s  the "effect ive 

dipole  moment"  of  the  l igands,  and X = 1 .8875 R,  where R i s  

the "effect ive radial  dis tance" of  the l igands.  

The over-all method for determination of the "correct" 

combination of the parameters was to fix the values of four 

of them by reasonable physical considerations and vary the 

fifth parameter to obtain a set of curves which describe the 

changes in the theoretical energy levels as a function of that 

parameter. When "near correlation" of the differences in the 

theoretical energy levels with the experimental absorption 

spectra was obtained, the effects of changes in the other four 

parameters on the energy levels were determined. By repeated 

adjustment of the parameters the choice of the best set was 

made. This repetitive approach, ineed the diagonalization of 

five large matrices for even one set of parameters, would have 

been essentially impossible without a computer. 

All the calculations made in connection with this thesis 



were done by means of the  Cyclone Digital  Computer  a t  Iowa 

State  Universi ty  of Science and Technology.  The "Cyclone" i s  

a  digi ta l  computer  having a  random access  e lectronic  memory,  

employing a  perforated tape input  and a  tape or  Teletype 

pr inter  output .  A detai led descr ipt ion of  the nature  and 

operat ion of  the computer  can be found in  the programming 

manual  (34) .  

At  the t ime the computat ions were made,  the  memory of  

the Cyclone was l imited to  1024 s torage posi t ions.  For  th is  

reason,  i t  was necessary to  separate  the calculat ions of  the 

energy levels  into two par ts  :  1) the calculat ion of  the 

matr ix  elements ,  and 2)  the  diagonal izat ion of  the matr ices .  

As th is  is  being wri t ten,  a  program for  the expansion of  the 

memory of  the  Cyclone i s  being considered.  Since this  wil l  

resul t  in  changes in  the coding of  commands,  subrout ines ,  

e tc . ,  the detai led programs wil l  not  be included in  this  

thesis .  However ,  a  copy of  the sequence of  commands,  as  wel l  

as  tape copies ,  of  the programs used are  on f i le  a t  the 

computer  faci l i ty .  

B.  Calculat ion of  the Matr ix  Elements  

For  the most  par t ,  the calculat ion of  the matr ix  elements  

for  a  par t icular  set  of  the f ive parameters  consis ted of  

s imple mult ipl icat ion and addi t ion.  However ,  in  order  to  

evaluate  the l igand f ie ld  integrals ,  B 2  (X) and B4(X) given 
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in Table 6, without loss of significant f igures ,  it was 

necessary to  employ a  "f loat ing decimal  rout ine".  This  i s  

a  subrout ine for  the computer  such that  a l l  numbers  could be 

manipulated in  the form A x  10^,  where p  i s  e i ther  a  posi t ive 

or  negat ive integer .  

In  general  terms,  the f i rs t  computer  program was designed 

so that  upon entry of  the chosen values  of  the f ive parameters  

in  the f loat ing decimal  form,  the computer  would calculate  the 

l igand f ie ld  integrals  B 2 (X) and B4(X).  Their  values  were 

both s tored in  the memory and pr inted on the output  tape.  The 

s ingle-electron l igand f ie ld  matr ix  elements ,  Q 2 ,  Q^,  QQ ,  and 

B^ _ 2 ,  were then calculated from the values  of  the  B 2  and B4 

in tegrals  and the chosen value of  \±.  These values  were s tored 

and pr inted.  The complete  matr ix  elements  were then calculat­

ed from the s ingle-electron matr ix  elements  and the chosen 

values  of  the parameters  F 2 ,  F4,  and a .  These values  were 

then pr inted in  the sequence required for  the diagonal izat ion 

program so that  the output  tape from this  f i rs t  program could 

be used as  the data  input  tape of  the diagonal izat ion program. 

All  output  data  were pr inted in  the f loat ing decimal  format ,  

the  matr ix  elements  for  a l l  f ive matr ices ,  FP 2 ,  etc . ,  

being pr inted in  turn.  

The t remendous advantage achieved by use of  the  computer  

to  calculate  the matr ix  elements  i s  i l lustrated by the fact  

that  a  sample computat ion which took the computer  two minutes  



made by means of a desk calculator. 

C. Diagonalization of the Matrices 

The computer  programming required for  the diagonal izat ion 

of  the matr ices  was great ly  s implif ied by the avai labi l i ty  of  

a  subrout ine.  This  subrout ine calculated the eigenvalues  and 

e igenvectors  of  the matr ices  by ut i l iz ing the Jacobi  i terat ion 

technique as  out l ined in  the text  by Bodewig (35) .  This  

method requires  that  the matr ix  elements  by scaled such that  

Z m 2  \  where m i s  an element  of  the matr ix ,  and the sum-
1 = 1 1 

mation i s  over  a l l  the elements  of  the matr ix .  This  was 

another  reason why i t  was convenient  to  have the calculat ions 

separated into two par ts .  Inspect ion of  the answers  from the 

f i rs t  program al lowed the inclusion of  appropriate  scal ing 

factors  into the second program to  be made.  

One comment  concerning the diagonal izat ion of  the 

matr ices  involving complex numbers  i s  in  order .  Since the 

computer  handles  only real  numbers ,  i t  is  necessary to  expand 

the matr ix .  Bodewig (35)  points  out  that  i f  the hermetian 

matr ix ,  A,  contains  complex numbers ,  that  i s  i f  

A = M + iN (128)  

then the complex system of  order  n can be replaced by a  real  

system of  order  2n by the matr ix:  



Upon diagonal izat ion of  the matr ix  B_,  the  eigenvalues  of  A 

wi l l  appear  twice.  

This  requires ,  for  example,  that  the 6 x  6_ matr ix  for  the 

weak f ie ld  P^ matr ix  given in  Table  16 be expanded to  a  12 x 

12 matr ix ,  and the matr ix  elements  in  the f i rs t  program be 

calculated accordingly.  

General ly ,  the  total  computer  t ime required for  evalua­

t ion of  a l l  the energy levels  for  one set  of  the f ive 

parameters  took approximately twelve minutes .  
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VII.  RESULTS AND DISCUSSION 

A.  Experimental  Resul ts  

1 .  Absorpt ion spectra  

The t ransi t ions of  the electrons of  the central  ion from 

the ground s ta te  to  the exci ted s ta tes ,  as  indicated in  

sect ion II-B-1,  give r ise  to  the absorpt ion spectrum of  the 

t ransi t ion metal  complex.  The absorpt ion maxima correspond 

to  the energies  involved in  the t ransi t ions.  

The absorpt ion spectra  of  the plat inum(II)  complexes 

s tudied were obtained by means of  a  Cary recording spectro­

photometer ,  model  12,  manufactured by Applied Physics  Corp. ,  

Pasadena,  Cal i fornia .  Some of  the spectra  were avai lable  as  a  

resul t  of  previous invest igat ions carr ied out  a t  Iowa State  

Universi ty  of  Science and Technology (36,  37) .  The or iginal  

spectra  obtained in  these invest igat ions were avai lable  for  

s tudy.  All  such spectra  were in  essent ia l  agreement  with the 

resul ts  obtained by Chat t ,  e t  a l .  (2) .  The values  of  the f re­

quencies  of  the absorpt ion maxima and their  ext inct ion coef­

f ic ients  for  the complexes considered by Chat t ,  e t  a l .  (2)  

appear  in  Table  28.  Some of  these assignments  should be taken 

with reservat ion,  as  indicated by the fol lowing sect ion on 

Gaussian analysis .  

Since the absorpt ion spectra  with which this  thesis  i s  

concerned are  those which Chat t  e t  a l .  (2)  s tudied,  and hence 
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Table 28. Absorption r Myims r> 1 Z) 4- 4 m •« m T T  ̂ /-« 1 <"-> v r 

Complex v x  10 4cm - 1  € b 
max v x  10 4cm~l e 

max 

Peak 1  Peak 2 

[PtCl 4 ]=  3.02 64 2.  55 59 

[Pt(NH 3 )Cl 3 ]~ 3.33 74 2 .89 118 

t rans-[Pt(NH 3 ) 2Cl 2 ]  3 .67 75 3 .17 60 

t rans-
[ (c5h11)2nh 2Ptci2 ]  3.71 97 3 .12 67 

cis-[pt(nh3)2c12] 3.72 69 3 .31 128 

[Pt(NH 3 ) 3Cl]+ 3.92 c  117 3.60 40 

Peak 3 Peak 4 d  

[ptci4 ]= 2.10 .  15.0 1 .77 2.6 

[Pt(NH 3 )Cl 3 ]"  2 .41 19.8 2.07 2 .8  

t rans-[Pt(NH 3 ) 2C1 2 ]  2 .68 21.4 

t rans-
[  ( C5H11) 2*® 2ptcl2] 2.64 21.8 2.  26 2 .2  

cis-[Pt(NH 3 ) 2C1 2 ]  2 .73 23.0 2.40 3 .2  

[Pt(NH 3 ) 3C1]+  3.10 32.5 — — — 

aTaken from Chat t  e t  a l .  (2)  and confirmed by repet i t ion 
of  the curve analysis .  

^> €max i s  the ext inct ion coeff ic ient  of  the peak maxima in  
uni ts  or  cm~l x(Moles  of  complex ion/ l i ter) -1.  

cThis  value,  which differs  from that  given by Chat t  e t  a l .  
(2) ,  i s  the resul t  of  a  recent  analysis  of  the spectra  by 
Ferruccio Apri le ,  Department  of  Chemistry,  Iowa State  Univer­
s i ty  of  Science and Technology.  Data  from spectra  analysis .  
Pr ivate  communicat ion.  1961.  

dPeak 4 i s  the assignment  given by Chat t  e t  a l .  (2)  .  
I ts  contr ibut ion,  i f  included in  Peak 3 ,  would be so small  
that  i t  would not  change the frequency of  the maxima of  Peak 
3  .  
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are already available, reproduct ion of all the curves will net  

be included.  A typical  absorpt ion spectrum, that  of  an aqueous 

solut ion of  [PtCl 4 ] -  ion,  i s  given in  Figure 9 .  At  f i rs t  

glance,  three absorpt ion maxima are  apparent .  In  addi t ion,  

for  each complex,  there  appears  to  be an intense peak a t  a  

re la t ively high frequency,  )  4.5 x 10 4  cm - - ,  whose maximum 

ext inct ion coeff ic ient  i s  greater  than 2000.  This  maximum i s  

beyond the range of  the detectable  frequencies  of  the spectro­

photometer  .  

When one,  two,  or  more NH^ molecules  are  subst i tuted for  

CI"  ions in  the [PtCl^]=  complex,  appreciable  changes take 

place in  the ext inct ion coeff ic ients  of  the  maxima.  However ,  

as  i l lustrated by Figure 10 and the values  in  Table  28,  the  

absorpt ion maxima appear  to  shif t  to  higher  and higher  f re­

quencies  in  a  ra ther  uniform fashion.  This  i s  in  keeping with 

the spectrochernical  ser ies  discussed in  sect ion II-B-2.  Chat t  

e t  a l .  (2)  consider  such a  t rend as  indicat ive that  despi te  

the decrease in  symmetry which resul ts  when the NHg molecules  

are  introduced into the complexes the t ransi t ions involved in  

the absorpt ion spectra  remain unchanged.  For  example,  i f  Peak 

2 in  the [PtCl^]~ spectra  ar ises  from the s inglet- to-s inglet  

t ransi t ion (xv)  —» (x 2 -y 2 ) ,  then the corresponding peak in  the 

[Pt(NHg)C13 j ~  spectra  i s  due to  the same t ransi t ion.  In  ef­

fect ,  such an assumption,  which i s  not  without  precedent  in  

theoret ical  l igand f ie ld  s tudies  (27,  28) ,  s implif ies  the 



139 

1.7 2.0 2.5 3.0 3.5 3.8 

WAVE NUMBERS X I04 CM™' 

Figure 9 .  Absorpt ion spectra  of  [PtCl^j  in  aqueous solut ion 
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Figure 10.  The two main peaks of  the absorpt ion spectra  of  several  

plat inum(II)  complexes 
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calculat ions by assigning to  the subst i tuted complexes a  

symmetry,  which i s  greater  than that  which they actual ly  

possess .  This  assumption i s  also appl ied in  this  thesis .  As 

a  consequence,  a  s ingle  radial  dis tance,  R,  i s  used and as­

sumed to  be reasonably appl icable  to  a l l  central  ion to  l igand 

dis tances .  As a  resul t  an effect ive l igand dipole  moment ,  y.  ' ,  

which i s  actual ly  a  weighted average of  the individual  l igand 

dipoles ,  can be assigned to  each complex.  

2 .  Gaussian analysis  of  the spectra  

In  order  to  assign sui table  frequency values  to  the ab­

sorpt ion maxima,  the  absorpt ion curves were analyzed by the 

technique out l ined by Jorgensen (38) .  This  method assumes 

that  the absorpt ion peaks fol low a  Gaussian dis t r ibut ion given 

by the equat ion:  

e  = (e 0 )  exp [ -a(v -  vQ ) 2J ,  

where v = f requency of  the l ight  being absorbed,  

g = ext inct ion coeff ic ient  for  the frequency,  v ,  

€ 0  = maximum ext inct ion coeff ic ient ,  

v = f requency of  the maximum e 0  

a = constant  

Applicat ion of  th is  technique to  the absorpt ion spectra  of  

[PtCl^] -  in  aqueous solut ion resul ts  in  the dot ted- l ine curves 

given in  Figure 9 .  The values  of  eQ ,  vQ ,  and a ,  are  those 

given by Chat t  e t  a l .  (2) .  Notice that  as  a  resul t  of  such an 
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analysis ,  those authors  obtained a  fourth absorpt ion maxima a t  

a  frequency of  1 .77 x 10 4  cm - - .  That  i s ,  they contend that  

the third maxima i s  actual ly  the resul t  of  two t ransi t ions 

which are  fa i r ly  close to  each other  in  energy and hence 

appear  as  one peak.  

I t  is  cer ta inly possible  that  the third absorpt ion maxima 

could be the resul t  of  two t ransi t ions rather  than one.  How­

ever ,  to  make the ra ther  arbi t rary analysis  given in  Figure 9 

and to  assign the energies  of  the two t ransi t ions,  see Table  

28,  on the basis  of  the  small  res idual  ext inct ion coeff ic ient  

of  Peak 4  seems to  be somewhat  unjust i f ied.  This  point  i s  

considered again in  the fol lowing sect ion.  

B.  Qual i ta t ive Interpretat ion 

I t  is  qui te  wel l  known (39)  that  complexes of  plat inum(II)  

are  diamagnet ic  and square-planar .  This  suggests  that  a  

s t rong f ie ld  descr ipt ion for  the energy levels  i s  reasonable ,  

s ince the electrons must  be  paired.  Figure 11 gives  the two 

possible  energy level  assignments .  Figure 11a indicates  the 

levels  as  given by Chat t  e t  a l .  (2) .  Figure l ib  gives  the 

choice preferred as  a  resul t  of  the calculat ions reported in  

this  thesis .  The difference between the two l ies  in  the posi­

t ions of  the (z 2 )  and the (xz)(yz)  orbi ta ls .  

In  e i ther  assignment ,  the  ground s ta te  requires  that  the 

2 o 
(x  -y  ) orbi ta l  be empty.  I t  is  reasonable  then that  the 
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Figure 11.  Alternat ive energy level  assignments  for  square-planar  
plat inum(II)  complexes 



excited states consist of configurations in which an electron 

has been promoted from one of  the lower orbi ta ls  to  the (x 2 -

y 2 )  orbi ta l .  One could expect  then that  the absorpt ion peaks 

would appear  as  a  resul t  of  the t ransi t ions:  

(xy)  »-  (x 2 -y 2 )  

(z 2 )  *-  (x 2 -y 2 )  

(xz)  (yz)  (x 2 -y 2 )  

A hasty conclusion might  be that  the three absorpt ion maxima 

given in  Figure 9 could be assigned to  these t ransi t ions.  

Such a  judgement  overlooks the fact  that  Peak 3  in  the f igure 

differs  appreciably in  i ts  maximum ext inct ion coeff ic ient  from 

those of  Peaks 1  and 2.  Furthermore,  Chat t  e t  a l .  (2)  have 

given s t rong arguments  that  Peak 2 must  be due to  the t ransi­

t ion,  (xy)  —*- (x 2 -y 2 )  ,  s ince Peak 2 i s  not  shif ted by 

changes in  solvent .  But  th is  t ransi t ion must  be lower in  

energy than e i ther  of  the other  two possibi l i t ies .  The ques­

t ion as  to  the nature  of  Peak 3  then ar ises .  

The foregoing discussion assumed that  the t ransi t ions were 

from a  s inglet  ground s ta te  to  a  s inglet  exci ted s ta te .  In­

deed in  elements  where the spin-orbi t  coupl ing i s  small ,  such 

an assumption i s  just i f ied s ince electronic  t ransi t ions of  the 

type,  s inglet- to- t r iplet ,  are  forbidden.  However ,  p la t inum has 

appreciable  spin-orbi t  coupl ing (23)  and hence mixing of  the 

s inglet  and t r iplet  s ta tes  resul t .  One can view this ,  in  a  

sense,  as  impart ing s inglet  "character"  to  the t r iplet  s ta te .  
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Thus, sinalet:- to-triDiet transitions may be possible, sii-hnnah 

one would expect  such a  t ransi t ion to  be less  probable ,  and 

hence i t s  ext inct ion coeff ic ient  would be less  than that  for  

s inglet- to-s inglet  t ransi t ions.  But  th is  is  exact ly  what  i s  

evident  in  the case of  Peak 3 in  Figure 9 .  Therefore ,  i t  is  

reasonable  to  assign to  this  peak the s inglet- to- t r iplet  

t ransi t ions corresponding to  the s inglet- to-s inglet  t ransi­

t ions given by Peaks 1  and 2,  the  la t ter  being assigned to  

the t ransi t ion,  (xy)  —>- (x 2 -y 2 )  .  

Since Peaks 1  and 2 are  near ly  equivalent  in  intensi ty ,  

i t  seems reasonable  to  assume that  their  s inglet- to- t r iplet  

t ransi t ions would be the same.  This  would not  be the case i f  

one accepted the Gaussian analysis  of  Chat t  e t  a l .  (2)  .  I t  

seems more appropriate  to  assign the frequency of  Peak 3 as  

an average value of  the frequencies  of  the  two s inglet- to-

t r iplet  t ransi t ions.  

Because of  the near  equal i ty  of  in tensi t ies  of  Peaks 1  and 

2,  the  former can be designated as  a  s inglet- to-s inglet  t ran­

s i t ion.  However ,  whether  th is  t ransi t ion is  from the (z 2 )  

orbi ta l  or  the (xz)(yz)  orbi ta ls  depends upon the choice be­

tween the energy level  schemes in  Figures  11a or  l ib .  

Note that  in  e i ther  case,  one s inglet- to-s inglet  t ransi-

t ion is  presumed to  be absent  in  the absorpt ion spectra .  This  

s i tuat ion is  understandable  when one real izes  that  a l l  the 

t ransi t ions under  discussion are  t ransi t ions within the d^ 
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configurat ion.  Such t ransi t ions are  usual ly  forb. i  dden and be­

come al lowed only as  a  resul t  of  vibrat ional  interact ions (7,  

26) .  Consequent ly ,  i f  one of  these t ransi t ions involves  an 

energy requirement  which approaches the energy of  an al lowed 

t ransi t ion,  for  example,  the  t ransi t ion of  an e lectron from 

5d to  6p,  the  absorpt ion peak due to  the "forbidden" t ransi­

t ion wil l  be lost  in  the absorpt ion peak which appears  as  a  

resul t  of  the al lowed t ransi t ion.  By reason of  i t s  apparent ly  

high ext inct ion coeff ic ient ,  the unassigned peak with vQ  ]> 

3 .5  x  10 4  cm - 1  which appears  in  Figure 9,  i s  assumed to  be 

such a  d- to-p t ransi t ion.  The third expected s inglet- to-

s inglet  t ransi t ion is  presumed to  be "buried" under  th is  t ran­

s i t ion.  

In  order  to  assign the t ransi t ion which resul ts  in  Peak 1 ,  

i t  is  necessary to  turn to  quant i ta t ive calculat ions.  Such 

calculat ions should require  that  having set  the value of  a  

l igand f ie ld  parameter  from the experimental  value of  the 

s inglet- to-s inglet  t ransi t ions,  (xy)  —>. (x 2 -y 2 ) }  that  i s ,  

from Peak 2,  one can predict  values  for  the other  t ransi t ions 

which agree with the experimental  resul ts  for  Peaks 1  and 3.  

C.  Theoret ical  Calculat ions 

1 .  Ini t ia l  choice of  parameter  values  

In  essence,  the calculat ions of  the theoret ical  energy 

levels  depend upon the f ive parameters ,  F^ and F4 from the 

electronic  interact ion;  a f rom the spin-orbi t  coupl ing;  and u.  
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and R from the ligand field potential. A reasonable accroach 

seemed to  be to  f ix  as  many of  these parameters  as  possible  

from independent  data  and to  vary the remaining parameter  or  

parameters  to  obtain approximate solut ions.  Then one could 

vary the or iginal ly  f ixed parameters  to  ascer ta in  whether  

small  changes in  these values  would improve the solut ions.  

I t  was fe l t  that  the e lectronic  interact ion parameters ,  

F2 and F4,  and the spin-orbi t  parameter ,  a ,  could be es t imated 

from atomic spectra  and atomic theory,  while  the radial  

dis tance,  R,  could be obtained from internuclear  dis tances  

determined by x-ray diffract ion techniques.  Thus,  the  only 

real ly  "free"  parameter  would be the effect ive dipole  moment ,  

M- •  

a .  The e lectronic  interact ion parameters ,  F^ and F4 

I t  was in i t ia l ly  hoped that  the differences in  the energy 

levels ,  ^F,  ^P,  l j^  e tc . ,  for  the weak f ie ld  calculat ions 

could be direct ly  obtained from empir ical  data  from atomic 

spectroscopy.  However ,  whi le  the energy levels  of  plat inum 

and plat inum(I)  are  avai lable  (40) ,  work on the plat inum(II)  

emission spectra  has  not  been ini t ia ted. 4  However ,  values  for  

these parameters  can be reasonably est imated from atomic 

theory.  

I t  has  been fa i r ly  wel l  es tabl ished (6)  that  the re la t ion 

^Si t ter ly ,  Charlot te  Moore.  Nat ional  Bureau of  Standards,  
Washington,  D.  C.  Atomic energy levels  program. Pr ivate  
communicat ion.  1960.  



of  th is  re la t ion and the energy level  tables  (40)  for  

plat inum(I) ,  one can est imate  that  the value of  F4 should be 

approximately 4.0 x 10~4 atomic units.-3 The estimate made by 

Chatt  e t  a l .  (2)  for  F4 in  the complex was 3 .92 x 10 - 4  atomic 

uni ts .  This  la t ter  value has  been chosen as  the f ixed value 

for  F4,  s ince a  decrease in  the electronic  interact ion param­

eter  seems to  resul t  on passing from the f ree  ion to  the com­

plex (41)  .  

b .  The spin-orbi t  coupl ing parameter ,  a  McClure (23)  

has  l is ted the spin-orbi t  coupl ing values ,  a  -  1/2 £,  for  many 

of  the elements .  From this  tabulat ion,  a  for  plat inum has 

been f ixed a t  9.4 x 10"" 3 atomic uni ts .  However ,  i t  is  con­

venient  in i t ia l ly  to  keep the s inglet  and t r iplet  s ta tes  

separate  so that  one can fol low the course of  the "preferred" 

t ransi t ions,  that  i s ,  the s inglet- to-s inglet  t ransi t ions for  

the s t rong f ie ld  case.  Therefore ,  in  the f i rs t  approximation 

of  the appropriate  parameter  values ,  the spin-orbi t  coupl ing 

parameter  was kept  a t  zero.  The f inal  values  must  include 

appreciable  spin-orbi t  coupl ing,  however ,  s ince appreciable  

coupl ing takes  place in  plat inum and the just i f icat ion of  the 

intensi ty  of  the s inglet- to- t r iplet  t ransi t ion depends upon i t .  

5This  es t imate  was based on the experimental  di f ference 

between the ^Fg/2 5d 8  (3p)6s level  and the ^£5/2 5d&(3p)6s 

level .  For  the theoret ical  difference,  in  terms of  Slater-
Condon parameters  see p.  203 of  the text  by Condon and 
Short ley (6) .  
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sume that  the internuclear  dis tances  in  a  complex do not  

change appreciably from the sol id  to  the solut ion,  an es t i ­

mate of  the radial  dis tance,  R,  can be made from x-ray dif­

fract ion data .  Dickinson (42)  has  determined the plat inum 

to  chlor ine dis tance in  I^PtCl^ to  be 2.33 + .05 A,  while  the 

plat inum to  ammonia d is tance,  measured in  mixed complexes (43,  

44) ,  i s  approximately 2 .2  A.  These dis tances  give values  of  X 

equal  to  8.5 a .u .  and 8 .0  a .u .  respect ively.  The value of  

8 .0  a .u .  was in i t ia l ly  chosen for  X s ince i t  had been the ex­

perience of  cer ta in  authors  (27,  28)  that  a  dis tance somewhat  

smal ler  than the internuclear  dis tance resul ted in  bet ter  

agreement  between theory and experiment .  

d .  The use of  point  dipoles  in  comparison with point  

charges  Bal lhausen (27)  points  out  that  in  deal ing with 

hal ide complexes one should consider  that  the per turbat ion on 

the central  ion energy levels  i s  due both to  the charge of  the 

hal ide ion and the induced dipole  moment  of  the  la t ter  caused 

by the inf luence of  the central  ion.  Chat t  e t  a l .  (2)  suggest  

that  in  halo-plat inum complexes,  some dw-dv bonding takes  

place.  Such interact ion would fur ther  tend to  dis tor t  the 

charge dis t r ibut ion about  the hal ide ions to  make them appear  

more l ike  dipoles  than spherical  charges .  Furthermore,  the  

subst i tuted groups are  ammonia molecules  and hence should be 

considered as  dipoles  in  l igand f ie ld  terms.  Therefore ,  in  



decided to  use the dipole  expressions for  a l l  the l igand 

species .  This  s implif icat ion has  a lso been employed by Maki  

(29)  in  cer ta in  appl icat ions.  

2 .  Energy levels  as  a  funct ion of  dipole  moment  

To summarize the foregoing discussions,  the ini t ia l  

choices  of  parameters  were :  

F 4 = 3 .92 x  10 - 4  atomic uni ts  (a .u . )  

F2 = 14 F4 = 5 .488 x  10-3 a .u .  

a  = 0  

X = f R  =  8 . 0  a . u .  

p .  =  var iable  

The values  of  jo.  ranged from 0 to  3.5 a .u .  A p lot  of  the re­

sul tant  energy levels  i s  given in  Figure 12.  To avoid con­

fusion,  only those levels  which might  be re levant  are  drawn 

in  detai l .  While  the group notat ions,  ^A^,  ^A^,  e tc . ,  are  no 

longer  completely val id  because of  the mixing of  the s ta tes ,  

the eigenfunct ions indicate  that  the s ta tes  are  essent ia l ly  

those given and i t  is  convenient  to  re ta in  them in  order  to  

discuss  the t ransi t ions qual i ta t ively.  

The f igure c lear ly  i l lustrates  the difference between the 

weak and s t rong f ie ld  cases .  When u i s  less  than 1.0 a .u . ,  

the ground s ta te  is  seen to  be a  t r iplet  s ta te  resul t ing 

from the 3F s ta te ,  and the "al lowed" t ransi t ions within the d 2  
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configurat ion would be t r iplet- to- t r iplet  t ransi t ions,  par­

t icular ly  within the 3F s ta tes  spl i t  by the l igand f ie ld .  

When u i s  greater  than 1.0 a .u . ,  the ground s ta te  is  a  s inglet  

s ta te  whose or iginal  source i s  the s ta te .  The e lectrons 

in  such a  case are  a l l  paired and the complex would be diamag-

net ic .  The preferred t ransi t ions in  the s t rong f ie ld  case are  

s inglet- to-s inglet  t ransi t ions.  The most  l ikely t ransi t ions 

are  between the ^A^ ground s ta te  and the s ta tes  given a t  the 

r ight  hand of  Figure 12.  For  convenience,  the  unoccupied 

orbi ta ls  are  l is ted in  parentheses  fol lowing the group theory 

notat ion.  The fol lowing observat ions concerning the levels  

are  noteworthy:  

1 .  In  accordance with the qual i ta t ive discussion,  the 

lowest  energy s inglet- to-s inglet  t ransi t ion in  the s t rong 

f ie ld  case,  for  example p.)> 2 .0  a .u .  i s  to  the ^A 2  state ,  

that  i s ,  the electron t ransi t ion is  from the (xy)  orbi ta l  

to  the (x 2 -y 2 )  orbi ta l .  

2 .  The next  lowest  s inglet- to-s inglet  t ransi t ion is  from 

^A^ to  that  i s  the electron t ransi t ion is  from the 

(z 2 )  to  the (x 2 -y 2 )  orbi ta l ,  while  the t ransi t ion from 

the doublet ,  (xz)(yz)  orbi ta l  to  the (x 2 -y 2 )  orbi ta l  re­

quires  greater  energy.  I f  energies  are  involved in  the 

t ransi t ions from the ^Aj_ to  ^A^ and ^B^ which give agree­

ment  with the experimental  absorpt ion spectra ,  i t  would 

appear  that  the (z 2 )  orbi ta l  i s  above the (xz)(yz)  doublet ,  
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that is .  Piqûre lib is  Dreferab.1 <= i-n cv.^ested by 

Chatt  e t  a l .  (2) ,  Figure l ia .  

3 .  The three lowest  t r iplet  levels  which or iginate  from 

the ^F s ta te  fol low a  pat tern favorable  to  the interpre­

ta t ion given in  the qual i ta t ive discussion.  At  dipole  

moments  greater  than 2.0 a .u . ,  the highest  of  the  three 

i s  " lost"  in  the preferred s inglet- to-s inglet  t ransi t ion.  

The two lower levels  have energy values  which are  near ly  

equal  and hence t ransi t ions to  them would appear  as  one 

absorpt ion peak.  

I f  one plots  the differences in  energy between the ^A^ 

ground s ta te  and the exci ted s ta tes ,  1A 2 ,  1B 1 ,  ^E,  and the 

two lowest  t r iplet  s ta tes  given in  Figure 12,  as  a  funct ion of  

dipole  moment ,  one obtains  the curves given in  Figure 13.  For  

convenience,  the energies  in  the f igure are  given in  terms of  

wave numbers  so that  direct  comparison of  the theoret ical  t ran­

s i t ion energies  with the resul ts  given in  Table  28 may be made.  

From the previous discussion,  i t  has  been indicated that  

absorpt ion Peak 2 of  Table  28 i s  a  resul t  of  the t ransi t ion,  

s inglet- to-s inglet  (xy)  *• (x  -y  ) ,  or  in  group theory nota­

t ion,  ^A^ •  "^2.  By using the values  of  th is  peak as  a  

s tandard,  one can f ix  the corresponding effect ive dipole  

moments  for  the complexes and predict  the theoret ical  values  

for  Peaks 1  and 3 .  By th is  procedure,  the  resul ts  given in  

Table  29 have been obtained.  While  agreement  between experi-
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Table 29.  Comparison of  calculated and experimental  t ransi t ion energies  from 
ini t ia l  parameter  choices 3  

Std.  Theory Theory 
Peak 2 

and 
Exp,  

Peak 1  
1aI to 

i 

Exp 
Peak 3 

1A 1  to  -^A^ to  Av.  

IA-l to  B1 3Ao 3
B l  

Compound % 2 1  

[ptci4r 2.55 3.02 2.90 2.10 1.90 1.60 1.  75 

[Pt(NH 3 )Cl 3 ]  2.89 3.33 3.31 2.41 2.22 2.  11 2.  17 

t rans-Pt(nh3)2Ç1 2  3 .17 3.67 3.67 2.68 2.47 2.40 2.44 

t rans-
[  | (C 5H 1 1 ) 2NHÎ 2PtCl 2  ]  3 .12 3.71 3.61 2.64 2.52 2.47 2.50 

cis-[pt(nh3 ) 2C121 3.31 3.72 3.84 2.  73 2 .66 2.64 2.65 

[Pt(NH 3 ) 3Cl]+  3.60 3.92 4.20 3.10 2.96 3.00 2.98 

= 8 .0  a .u . ,  F 2 = 5 .488 x 10~ 4  a.u. ,  F 2  •  3.92 x 10"^ a .u . ,  a  -  0.  
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mental  and theoret ical  s inglet- to-s inglet  values  are  not  bad,  

i t  should be remembered that  these resul ts  have been obtained 

with the spin-orbi t  coupl ing parameter  equal  to  zero whereas  

in  plat inum i t  is  appreciable .  However ,  the  resul ts  do tend 

to  indicate  that  with introduct ion of  the spin-orbi t  coupl ing,  

agreement  between theory and experiment  should be possible  

with but  minor  adjustments  In  the parameters .  

3 .  Effects  of  changes in  the electronic  interact ion param­

eters  on the t ransi t ion energies  

Pr ior  to  the inclusion of  the spin-orbi t  coupl ing param­

eter ,  i t  was deemed adviseable  to  invest igate  the effect  of  

changes in  the electronic  interact ion parameters ,  F 2  and F4,  

on the t ransi t ion energies ,  s ince the parameters  had to  be ob­

ta ined somewhat  indirect ly .  For  th is  s tudy, 1  the  parameters  

were:  

H. — 2 .0  a .u .  

X = 8 .0  a .u .  

a  = 0  

F 2  = 14 F 4  

F4 = var iable  

The energy levels  were obtained for  four  values  of  F4:  

1)  F4 = 3 .92 x 10™ 4  a.u. ,  

2)  F4 = 3 .60 x  10a.u. ,  

3)  F 4  = 3 .40 x  ID" 4  a.u. ,  
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For these values  the t ransi t ion energies  between the var ious 

s ta tes  were obtained.  Rather  than present  a l l  of  them, only 

those t ransi t ions which would lead to  absorpt ion peaks of  

in terest  are  given in  Table  30.  As i s  seen from the table ,  

the t ransi t ion energies  are  only s l ight ly  affected by ra ther  

large changes in  the electronic  interact ion values .  This  

indicates  that  the energy levels  are  pr imari ly  a  funct ion of  

the l igand f ie ld;  that  i s ,  the l igands impart  a ,  s t rong f ie ld  

Table  30.  Effect  of  e lectronic  interact ion on the t ransi t ion 
energies 3  

Transi t ion energy* 3  for  a  given F4 value 0  

II hd
 II II <d* fa II 

T ransi t ion 3.0 3.4 3.6 3.92 

S ^2 2.58 2.56 2.56 2.56 

1 a I  1 b I  3.00 2.95 2.93" 2.91 

S 3a2 2.10 2.01 1.97 1.90 

s 3BI 2.08 1.90 1.84 1.71 

a  
x — 8 . 0  a .  u .  ,  F2 = 5 .438 x 10 -a „ 

"  a . u . ,  F  2  =  3 . 9 2  x  1 0 - 5  
a . u .  ,  a  = 0 .  

^Transi t ion energi  .es  given in  wave numbers  x  10 4  cm - -® - .  

ca11 values  of  F 4  are  F4 x  10" 4 a . u .  



ment of the theoretical energy levels to give better agreement 

with experiment should be accomplished by means of the ligand 

field parameters, R and u.. Finally, it was felt that on the 

basis of the results obtained, the original choice for the 

parameters F^ and F4 should be retained. 

4. Final choice of parameters after inclusion of the exper­

imental spin-orbit coupling value 

Upon inclusion of the spin-orbit coupling value given by 

McClure (23) ,_ it was found that except for the theoretical 

results involving the cis-Pt(NHg) 2c3-2 an<^ Pt (NHg) gCl"*" com­

plexes, somewhat poorer agreement with experimental values was 

obtained. Trial calculations with various values of the 

radial distance parameter X = fR, indicated that reasonable 

agreement was achieved for these other complexes if one used 

the experimental Pt-Cl distance from PtCl4 • that is, X = 

8.5 a.u. Thus, the final choices of parameters for these com­

plexes are given in Group I of Table 31. It is interesting 

to note that the effective dipoles are reasonably self-

consistent. For example, the effective dipole for [NH^PtClg]~ 

should be: 

kl' = [3/4 ̂  + 1/4 u 1 (131) 

Then, from [PtCl4 j=, ucl = 2.89. and 



Table 31. Final choice of parameters 

Compound Effective dipole moment3 

Group 

[PtCl4]= 2.89 a.u. 

[Pt(NH3)Cl3]- 3.14 a.u. 

trans-[Pt(NH3)2C12] 3.38 a.u. 

trans-[ 2NH 2Ptcx2] 3.34 a.u. 

cis-[Pt(NH3)2C12] 3.51 a.u. 

[Pt(H2G)Cl3] 2.96 a.u. 

Pt(H2Q)2Cl2 3.07 a.u. 

[Pt(OH)Cl3]= 3.02 a.u. 

[Pt(OH)2C12T= 3.16 a.u. 

Group IIe 

cis-[Pt(NH3)2C12] 2.74 a.u. 

[Pt(NH3)3C1]+ 2.92 

^Dipole moment fixed on the basis that absorption Peak 2 
corresponds to the 1A1 • A2 transition. 

bFixad parameters: X = 8.5 a.u., F2 = 5.488 x 10~3a.u., 
F4 = 3.92 x 10-4 a.u., and a = 9.42 x 10-3 a.u. 

CFixed parameters: X = 8.0 a.u., F2 = 5.488 x 10~3 
a.u., 

F4 = 3.92 x 10~4 a.u., and a = 9.42 x 10-3 a.u. 



By use of these values, one can estimate the dipole for 

Pt(NH3)2c12: 

u" = [1/2 \icl+ 1/2 u ]= 3.38 a.u. (133) 

which is exactly that for the trans-complex. By similar 

processes the average dipole for the di-aquo and di-hydroxy 

species can be predicted. The results are 3.00 a.u. and 

3.12 a.u. respectively, which compare fairly well with the 

values listed in Table 31. 

The resultant transition energies vs. effective dipole 

moment, with X • 8.5 a.u., are given in Figure 14. Compari­

son between the experimental and theoretical transition 

energies are given in Group I in Table 32. This group also 

includes preliminary results from a study of the absorption 

peaks of aquo-substituted and hydroxy-substituted chlorocom-

plexes. These results are incomplete since the singlet-to-

triplet peaks have not been experimentally determined as yet. 

The singlet-to-singlet transitions agree rather well. 

Estimates of the transition energies in the [Pt(NH^)3CI]' 

complex based upon the energy levels given in Figure 14 re­

sult in poor agreement with the experimental values. However, 

it was possible that in this case, the platinum to nitrogen 

distance for the complex would better represent the central 



Table 32. Comparison of final theoretical transition energies with experimental 
results3 

Std. Theory 
Peak 2 Theory 

N % ^1 
-U to Exp. to % Exp. to to % 

Crop. 1h2 Peak 1 % Error Peak 3 3A2 3bI Ave. Error 

Group I 

A 2.55 3.02 2.92 3.3% 2.10 2.20 2.16 2.18 3.8% 
B 2.89 3.33 3.28 1.5% 2.41 2.48 2.50 2.49 3.3% 
C 3 .17 3.67 3 . 53 3.3% 2.68 2.74 2.83 2 . 79 4.6% 
D 3.12 3.71 3.61 2.7% 2.64 2.70 2.76 2.73 3.4% 
E 3.33 3.72 3.81 2.4% 2.73 2.88 3.00 2.94 7.7% 
F 2.64 3.14 3.02 3.8% - 2.28 2.26 2.27 -

G 2.78 3.22 3 .18 1.2% - 2.41 2.41 2.41 — 

II 2.72 3 .18 3.11 2.2% - 2.34 2.34 2.34 -

I 2.90 3.33 3.31 0.6% - 2.51 2.53 2.52 -

Group II 

J 3.31 3.72 3.68 1.1% 2.73 2.90 2.80 2.85 4.4% 
K 3.60 3.92 3.99 1.8% 3 .10 3.10 3.16 3 .13 1.0% 

aAll results are in wave numbers x 104 cm ^. 

bThe complexes are as follows : A = [PtCl^]""; B = [Pt(NH3)Cl3] ; C = trans­

it (NH3 ) 2C12 ] ; D = trans-[ { (C5Hi;L)2NhJ2
Ptcl21 ? E_ = cis-[Pt(NH3)2C12]; F -

[Pt (H20)C13 J~; G = [Pt(H20) 2C12] ; H = [Pt(OH)Cl3f; I = [ Pt (OH) 2C12 ]= ; J = cis-

[Pt(NH3)2C12]; and K = [Pt(NH3)3CI]+. 
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7 CPf (HgOlgClg]  

8 .  CPt(OH)CI 2 3 = 

9  C Pt(OH)-CI ? 3 = 

3.TRANSrPf(NH3;2C!23 
4.  TRANS r{(C 5 H,,  ) 2 NH} 2  Pt CI 2 J 

5  CIS [  PftNH^gClg]  

5.0 

4.5 

o 4.0 

UJ 

| 3.0 
X= 8.5 a. u. 
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f^=.005488 a.u. 

E,=.000392 a.u. 

2.5 

/ / 
2.0 

2.5 3.0 3.5 4.0 
M IN ATOMIC UNITS 

Figure 14. Transition energies as a function of dipole 
moment for the final choice of the parameters 
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ion to ligand distance than the platinum to chloride distance. 

Therefore, a value of X equal to 8.0 a.u. was employed which, 

when used with an appropriate value of LL 1 given in Group II of 

Table 31, resulted in good agreement between experimental and 

theoretical energy levels. The results are given in Group II 

of Table 32, along with a second evaluation of cis-

[Pt (NH-j ) 2c12 1 ma,3e by use of the same radial distance. 

D. Discussion 

The calculations and results presented in this thesis 

support an alternative assignment of energy levels to that 

given by Chatt et al. (2). Some discussion about the reasons 

for the two assignments seems to be in order. 

The main difference between the two assignments is in 

the relative positions of the (z2) and the (xz), (yz) orbitals. 

All the features of the spectra, save one, which are noted by 

Chatt et al. (2) to be consistent with the assignment of Peak 

1 to the transition from the degenerate (xz), (yz) state to 

the (x2-y2) state, are equally consistent with the alternative 

2 assignment of the transition from the (z ) state. Without 

going into detail, this single feature concerns the absorption 

spectra of the solid complexes, and the presumption is made 

that the energy levels in the solid are the same as those of 

the complexes in solution. However, in order to be sure of 

this, one would expect that the absorption peaks in the two 



situations would be identical, as thev we r e zn certain Ni f11) 

complexes investigated by Maki (29). This is not the case 

with the platinum complexes under discussion. For example, 

the three peaks of the solution spectra of K^PtCl^. are at 

331 mil, 392 mu., and 476 mu, while the spectra of the solid, 

the peaks are at 340 mu, 375 mp., and 500 mp.. Ifhile these are 

somewhat close, it should be noted that the shifts are not all 

in the same direction. Furthermore, Dickinson (42) has shown 

that in the solid I^PtCl^ the platinum atoms appear in chains 

above one another, whereas it is to be expected that in 

aqueous solution, the water molecules would be oriented such 

that the negative end of the dipole would be directed toward 

the platinum ion. In view of the fact that in crystals the 

complex ions of platinum frequently form metal-metal bonds, 

(44)j it is possible that the solution and solid spectra are 

not analogous. In ligand field terms, positive charges on the 

z-axes due to the platinum ions could alter the positions of 

the energy levels. 

Furthermore, if Peak 1 were due to the transition from 

the (xz), (yz) orbitals, one would expect a splitting of this 

peak in the spectra of the lower symmetry complexes, for ex­

ample, in trans-[Pt(NH^)2CI21• Chatt et al. (2) explain the 

fact that no apparent splitting takes place as due to the fact 

p 2 
that the. (x -y ) orbital is much more sensitive to the nature 

of the ligands than those of the (xz) and (yz) orbitals. 



However, in terms of the energy level assignment of this 

thesis, no splitting would be expected since the transition 

•J 
is from the single (z~) orbital in all the complexes. 

The energy level assignment supported by the present 

work is in accord with the assignment applied to Ni(II) 

complexes (14). The effects of configuration interaction 

and spin-orbit coupling, which were not exploited in the 

previous treatment of platinum(II), have been included. How­

ever, it should be noted that in view of present theories of 

bonding in complexes, ligand field calculations which employ 

a point charge or point dipole model are perhaps over­

simplifications and will accordingly remain suspect. Never­

theless, within the framework of the dipole model, the com­

plete ligand field calculations in this thesis result in an 

unambiguous assignment of the levels which gives reasonable 

agreement with experimental values. 
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A. Appendix A: Derivation of the Wave Functions 

of the Free Ion 

In order to construct the wave functions associated with 

the energy levels of the free platinum(II) ion, one must be 

careful in the choice of phase factors. For example, if 

= ^3/'/8 [(2,0)-(0,2)]aa 

+ 1/4 [(2,1)-(1,2)1 [a# + (134) 

then either 

3P](3)= 1/ /8 [(2,0)-(0,2)]aa + V3/4 [-(2,l)+(l,2)][a&+pa], 

(135) 

or 

3F](3) = 1/ [-(2,0)+(0,2)]aa 

+ /374 [(2,l)-(l,2)][a& + pa], (136) 

will be orthogonal to ^F^(3). The choice of phase factors, 

both within a particular J value and between different J 

values, must be consistent. To assure this, it has been de­

cided to employ the systematic approach given by Condon and 

S'nortley (6) in which the wave functions IS,Mg,L,ML) are 

derived first and then the f S, L,-J, Mj)> wave functions are ob­

tained from appropriate combinations of the 1S,Mg,L,ML) func­

tions . However, in the derivation of the I S,L, functions, 

the procedure that will be followed is the one given by 

Rotenberg et al. (45). 



I. The free ion states 

To obtain the states of the free ion, the method out­

lined in section 1^ of Condon and Shortley1 s text (6) is 

particularly advantageous, not only because of its simplicity, 

but also because of the useful information derivable from the 

table that is constructed in the process of deriving the 

states. To obtain the states which result from two equivalent 

d-electrons, one considers all possible combinations of and 

Mg which can be obtained with the restriction of the Pauli ex­

clusion principle. Now M%, =Zm^ and Mg = Z mg, where and 

mg are the magnetic and spin quantum numbers for the d-elec­

trons. Since m_£ = + 2, + 1, 0, and mg = + 1/2 for each elec­

tron, the possible M^ and Mg values are: 

m
l 

= ±4j ±3, ± 2, +1, 0, 

Mg = + 1, 0. 

One then proceeds to construct a table of all possible combi­

nations of the m^ and mg value which will give a particular M^ 

2 and Mg. Such a listing for the d case is given in Table 33. 

Since there is a state with M& = 4, Mg = 0, there must 

exist a state with L = 4, S = 0, that is, 1G. Now 1G will 

have M^ values from 4 to -4, with Mg = 0. Similarly, since 

there is a state with ML =3, Ms = 1, there must exist a ^F 

state, that is a state with L = 3, S = 1. Now in the cell, 

Ml =2, Ms = 0, one of the terms is accounted for by the ^G 

state and another by the ^F state. Since there is a third 



"s 1 0 -1 

4 (2+2") 

3 (2+1+) (2+1-) (2-1+) C 2 ~1 ) 

2 (2+0+) (2+0-) (2~0+) (1+1-) (2-Q-) 

1 (2+-1+)(1+0+) (2+-l_)(2--l+)(1+0")(1~0+) (2--1-) (I'D-) 

0 ( 2+-2+) (1+-14) (2+-2~) (2"-2+) (1+-1") 

(1--1+) (0+0-) (2--2~) (1--1-) 

-1 (-2+1+) (-2+1-)(-2'1+)(-1+0-) 

(-1+0+) (-1"0+) (-2-1+) (-1-0-) 

-2 (-2+0+) (-2+0-) (-2-0+) (-1+-1-) ( -2~0-) 

-3 (-2+-1+) (-2+-1-)(-2--1+) (-2--Î-) 

-4 ( -2+-2~) 

ain this table, (A+B~) is a representation such that A 
and B are the mj values of the two electrons and the super­
scripts, (+) and (-), represent the mg values, with (+) - a 
= h and (-) =&=-%. The entire expression represents the 
a n t i s y m m e t r i c  p r o d u c t  f u n c t i o n .  T h u s ,  ( 2 + 1 + )  =  1 / [ ( 2 , 1 )  
-  (1 ,2) ]aa.  

term in the cell, there must exist a state with L=2, S=0, 

that is "*"D. Similarly from the cell ML = 1, Mg = 1, one ob­

tains the 3P state; and from ML = 0, Mg = 0, the state is 

derived. Hence the states associated with d^ or d® are ^G, 

1D, 1S, 3F, and 3P. 
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2. Tne |5,HC,L, HT) runctions ov means or step operators 

If the function for a particular state is represented by 

I n, m )> where n is the angular momentum quantum number and m is 

the z-component quantum number, then one can define as opera­

tor, A_, such that: 

A_ | n,m)> = fi [ (n m) (n-m+1) ] ̂ J n, m-1 )> . (137) 

A_ is called the "step down" operator. If, for example, n is 

the orbital angular momentum operator, i, and m is m^, then, 

A _  =  i _  -  i x  -  i i y .  ( 1 3 8 )  

An introduction to the concept of "step down" and "step up" 

operators is given in Chapter VI of the text by Mandl (46). 

Suffice it to say that the step operators are not limited to 

the orbital angular momentum, £, but that analogous defini­

tions apply for the total angular momentum, j, the spin, s, 

etc. 

Since, 

*  =  V )  +  f ( 2 ) '  < 1 3 9 >  
and 

% "(1) + ^(2)' (MO) 

where the (1) and (2) refer to electrons one and two, one can 

define: 

t. _ = -*_(!) + *_(2) , (141) 

% = A_(l) + (2) . (142) 

Therefore, if one could obtain a function / S,Mg,L,ML) which 



product functions, one could find, for example, !S,Mg,L,ML~l), 

| S,Ms,L,ML-2), etc., or |S,MS-1,L,ML), ) S,Ms-2,L,ML), etc., by 

repeated applications of the appropriate operators. For ex­

ample, from Table 33, it is obvious that the wave function for 

the state )s,Ms,L,ML) - jl,1,3,3) is given by 

11,1,3,3) -  1 / * 1 2  [ (2,1) -(1,2) ]aa. (143) 

Then, 

X_ 11,1,3,3) = fi_(l) + i_(2)| l/JT [ (2,1)-(1,2) ]aa. 

(144) 

Hence, 

[ (3+3) (3-3+1) ]% J1,1, 3, 2) = 

fi/v,rT [ (2+1) (2-1+1) [ (2,0) -(0,2) ]aa. (145) 

Therefore, 

|l, 1, 3 , 2) = 1/ vHf [ (2,0) -(0,2) ]aa. (146) 

By a similar process: 

1,1,3,3) = f^_(l) + 2)} 1/ VT [ (2,1)-(1,2) ]aa. (147) 

il ./T 1,0,3,3) = ^/ -/7 [ (2,1)-(1,2) ] [cc£ + ôa] . (148) 

|l,0,3,3) = 1/2 [ (2,1)-(1,2) ] [cxe + 0a] . (149) 

By such a step down procedure, the I S,MS,L,ML) functions for 

all Ms and ML values associated with S = 1 and L = 3 may be 

obtained. This technique assures that the proper relative 

phases for all states are obtained. The IS,Mg,L,ML) func­

tions required for the 3F states are given in Table 34. 



|S ,Ms,L ,M L )  Two-electron product functions 

1,1 ,3 ,3 )  1 /  \T2 [ (2 , l ) - ( l ,2 ) ] [aa ]  

1 ,0 ,3 ,3 )  1 /2  [ (2 , l ) - ( l ,2 ) ] [ap+pa]  

1 , -1 ,3 ,3 )  1 / - /T  [ (2 , l ) - ( l ,2 ) ] [pp ]  

1 ,1 ,3 ,2 )  1 /  sT  [  (2 ,0 )  - (0 ,2 )  ]  [aa ]  

1 ,0 ,3 ,2 )  l /2 [ (2 ,0 ) - (0 ,2 ) ] [ap+pa]  

1 , -1 ,3 ,2 )  1 /vT  [ (2 ,0 ) - (0 ,2 ) ] [pp ]  

1 ,1 ,3 ,1 )  1 /  - /TÔ [  vT  (1 ,0 ) -  JT  (0 ,1 )  +  - /T  (2 , -1 )  

- *•'' 3 (-1,2) ] [aa] 

1 ,0 ,3 ,1 )  l /  *f~2Ô [  vT  (1 ,0 )  -  (0 ,1 )  +  JJ (2 , -1 )  

-  vT  ( -1 ,2 )  ]  [ap  +  pa ]  

1 , -1 ,3 ,1 )  1 /  . .TÔ [  -T  (1 ,0 )  -  <T (0 ,1 )  +  nT  (2 , -1 )  

-  vT  (2 , -1 )  -  nT ( -1 ,2 )  ]  [pp ]  

1 ,1 ,3 ,0 )  1 /  . /1Ô [  (2 , -2 )  -  ( -2 ,2 )  +  2(1 , -1 )  -2 ( - l , l )  ]  [aa ]  

1 ,0 ,3 ,0 )  1 / < 2 0  [  (2 , -2 )  -  ( -2 ,2 )  +  2 (1 , -1 ) -2 ( -1 ,1 ) ] [ap  • 

pa ]  

1 , -1 ,3 ,0 )  1 /  .  " T o  [ ( 2 , - 2 )  -  ( - 2 , 2 )  +  2 ( l , - l ) - 2 ( - l , l )  ] [BP]  

1 ,1 ,3 , -1 )  1 /  v/TÔ [ v'T (0,- .) - NT  ( -1 ,0 )  +  =/ ! "  (1 , -2 )  

-  ̂ 'T  ( -2 ,1 )  ]  [aa ]  

1 ,0 ,3 , -1 )  1 /  /2Cf  [  */T (0 , -1 )  -  * f2  ( -1 ,0 )  +  v 'T (1 , -2 )  

-.,T ( -2 , l) ] [ap  +  pa]  

1, -1 ,3 , -1 )  1 /  .'TÔ [  (0 , -1 )  -  T ( -1 ,0 )  +-;T (1 , -2 )  

- -T  ( -2 , l ) ] [pp]  

1,1 ,3 , -2 )  1 / . /T  [ (0 ,02)  -  ( -2 ,0 ) ] [aa ]  

1 ,0 ,3 , -2 )  1 /2  [ (0 , -2 ) - ( -2 ,0 ) ] [aS +  pa ]  
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i /•? 
+1} ~ 

/ s. A 
Ij1'ml> ̂  2'm2^ ' (150) 

101 m2 -m 

In the case of the wave functions being considered, = S; 

j2 = L; j = J; mi = Ms; m2 = and m = Mj. The equation 

would be difficult to handle were it not for the fact that a 

complete set of values for the 3-j symbol, 

have been determined and tabulated by Rotenberg et al. (45). 

The text is self explanatory and quite easy to follow. A 

more detailed discussion of the 3-j symbol, its properties and 

uses, is given by Edmonds (31). 

An illustration of the use of the foregoing equation 

might prove helpful. In constructing the wave function for 

the state |s,L,M,Mj> • 11, 3,4, 3 )>, by means of the |S,Mg,L,ML) 

functions, one obtains the expression: 

Now since j ̂ = S = 1, then m-^ = mg = + 1,0. It can be shown 

(31) that the 3-j symbol is zero unless m^ + m2 = m. There­

fore when: 

(151) 

m^ = 1, m2 must equal 2, 

m^ = 0, m2 must equal 3, 
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I S,Mg,L,ML) Two-electron product functions 

,1,-1,3,-2) 1/ vT [(0,-2)-(-2,0)][pp] 

1 1 , 1 , 3 , - 3 )  1/ [ ( - 1 , - 2 ) - ( - 2 , - 1 ) j [ a a ]  

( 1 , 0 , 3 , - 3 )  1/2 [( - 1 , - 2 ) - ( — 2 , — 1 )  j [ a p  +  p a  j  

(1,-1,3,-3) 1/ ;^2 [(-1, ~ 2 )  -  ( - 2 , - 1 ) ]  [ 3 p J  

3. The (S, L, J,Mj)> functions 

In section 5®, Condon and Shortley (6) point out that the 

states of different terms have no particular phase relation. 

That is, the highest ML value for any one of the states, 1G^, 

1D2j 1S0, and can be constructed simply on the basis 

of their orthogonality relationships. However, the phase 

relation does become important between the 3F states ; i.e., 

between 3Fg, and 3F^, and between the three 3P states r 

i.e., between 3P2, 3Pj_, and 3Pq . 

In order to construct the |S,L,J,Mj)> functions from the 

|S,MS,L,ML) functions, while guaranteeing the consistency of 

the phase relations, one can make use of the relationship be­

tween the functions in terms of the 3-j symbol. The general 

relation is given by: 

| j -, , j2, j ,TO> = (-1) J2~31 m Z (2j + (Continued next 
1 m1,m2 page) 
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(152) 

But in the latter case m2 would exceed j 2 = 3, and since it is 

required that m2 ( j 2, this last combination is not allowed. 

Thus the wave function becomes : 

|l,3,4,3> = -3 /l 3 4\ |1 ,1 ,3 ,2 )  -3 / 1 3 

1 2 - 3 /  \  0  3  - 3  

From Rotenberg, et al. (45), one obtains : 

13 4 \ / 1 3 4\ 

.  1  2  - 3 / =  :  a n d  ( 0  3  _ 3 j  =  T -  •  

Hence : 

I 1,3,4,3 > = -J 3/2 j 1,1, 3, 2) + 1/2 | 1,0,3,3), 

= x'rJ/2 1/-f2 [ (2,0)-(0,2) ]aa 

+ 1/2 l/2[(2,l)-(l,2)][a0 + pa] 

+ -TT / f8 [(2,0)-(0,2)][aa] 

+  l /4 [ (2 , l ) - ( l ,2 ) ] [a0  +  pa ]  (153)  

Such techniques are required to insure the consistency 

-3 *3 
between the F states as well as between the P states. It is 

not necessary to employ the above method in order to determine 

all the I S,L,J,Mj)> wave functions. For example, the wave func­

tions for (4) and (4) may be written directly from con­

sideration of the antisymmetry requirements and the values 

given in Table 33, since there is only one possible j S,Mg,L,ML) 

function belonging to each of them. Thus : 

^ (4 )  = I  0 ,0 ,4 ,4 )=  I  0,0 ,4 ,4 )  =  1 / /T  f (2 ,2 ) ] [a0  -  0a ] .  
(154) 
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One notes that all the sincrlet functions wil 1 be snt j symme-t-rî r 

in their spin parts and hence must be symmetric in their space 

parts. Similarly, all triplet states will be symmetric with 

respect to spin and antisymmetric with respect to space. Thus: 

3F4(4) = |l,3,4,4> = |l,l,3,3) - 1//T [ (2,1) -(1, 2) ]aa (155) 

To obtain the other wave functions belonging to l<3^ and 

that is, the wave functions with different Mj values, one 

can use the step down operators : 

£ _ I S,L, J,Mj> - 4) [ (J + M) (J-M 1) )% ( S,L, J,Mj-l> , (156) 

for the left hand side ; and 

= i _  +  / _  =  A _ ( D  + > 1 ( 2 )  +  i _ ( l )  +  £ _ (  2 ) ,  ( 1 5 7 )  

for the right hand side. The procedure is then analogous to 

that given for the step operators of the / S,MS,L,ML) func­

tions . 

Furthermore, since the phase factor for different L 

terms is unimportant, one can derive the first term of the 

singlets, (2) and ^Sq (0), from orthogonality considerations, 

examples of which are given in the text by Mandl (46). 

Regardless of whether the 3-j symbol technique is employ­

ed throughout, or only used in those cases where the phase 

factor is important, one can construct the wave functions in a 

straightforward, though tedious, manner. The free ion wave 

0 p 

functions for the d~ or d configuration are given in Table 8. 



B. Appendix n: The uiuand Field Derivations. 

Weak Field 

The soherical harmonics 

Because of their importance in this thesis and the fact 

that the choice of the phase factor is often a source of con­

fusion, some discussion of the spherical harmonics is in 

order. The spherical harmonics, as employed in this thesis, 

follow the definition given by Condon and Shortley (6): 

Yi;m(o,0) - (-1,™ <(f£t (cos e, 

(158) 

= + [(2Ji2+1) uStl/è (cos e) <159) 

where: 

Pj'ml <x> - a~;2> ̂  d (x2-l)m (160) 
n i i +1 m J 

I • dx 

Frequently, in this report, a spherical harmonic has been ex­

pressed as Y(i,m) for simplicity of reproduction. In such 

cases, the dependence of the function on © and 0 is meant to 

be understood. 

It is particularly important to note the phase factor, 

(-1)m, when comparison with similar expressions of the spheri­

cal harmonics is made. The inclusion of this factor by some 

authors and its omission by others has led to slightly dif­

ferent expressions for the d-electron orbitals. 

Explicit expressions for the normalized spherical 
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functions of the angles, © and 0, and as functions of the 

coordinates, x,v,z, and the radial distance, r. Correspon­

dence between the two sets is indicated by the relationships : 

x = r • sin © cos 0, (161) 

y = r • sin 0 cos 0, (162) 

z = r • cos ©, (163) 

exp(im0) = cos(m0) + i • sin(m0). (164) 

Three properties of the spherical harmonics should be kept in 

mind: 

1. Y(i,m) = 0, if Iml >i, (165) 

2. Y* (£ ,m) = (-1)m Y( i,-m), where (*) indicates (166) 

the complex conjugate. 

3. 0 Y*(i m) Y(i ' ,m')dT = 6 (£,£') • 6(m,m') , (167) 

that is, the integral equals one if i equals I' and 

m equals m1, and is equal to zero if i  does not equal 

i1 or m does not equal m'. 

Proofs of these relations, as well as an excellent review of 

the properties of the spherical harmonics and the different 

phase conventions used by various authors can be found in sec­

tion 2.5 of the text by Edmonds (31). 

2. Expansion of a product of spherical harmonics 

In the course of determining the matrix elements due to 

the ligand field, one finds it necessary to evaluate integrals 
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or me tvpe: 

Y (ia,ma) Y(ib,mb) Y (I ,'m) dr. 

Section 4.6 of the text by Edmonds (31) contains a procedure 

for the expansion of the product of two spherical harmonics in 

terms of a sum of spherical harmonics, 

Y*(4a,ma) = Z Y*(i,m). (168) 
I, m 

By use of the expansion and the orthogonality relationship of 

the spherical harmonics, the above integral can be evaluated. 

According to Edmonds (31) , the general expression for the 

expansion is given by: 

- s [ <",+!> (»+!>, /l. i 

I, m 4tt 
ma rnb m 

Y*(i,m) (169) 

Thus, the coefficient, m, corresponds to the terms pre­

ceding the spherical harmonic, Y*(i,m), on the right hand side 

of Equation 169. The terms in the large parentheses are the 

same 3-j symbols introduced in Appendix A. 

Certain properties of the 3-j symbol limit the number of 

terms which need to considered in the expansion. Rotenberg 

et al. (45) indicate that the 3-j symbol is equal to zero un­

less: 
i < 'a + ""b 

—m = ma + rn^j 
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> -L . ! -t -X -Ï \ 

lo" 0 0 I 
equals zero if i + i, + i = odd number. Hence, the expansion 

must have either all odd or all even spherical harmonics for 

given values of i and and the highest order harmonic has 

1 = ia + 'b' 

Rather than employ the fundamental definition for the 3-j 

symbol, as given by Edmonds (31), it can be evaluated by use 

of the tables compiled by Rotenberg et al. (45). An actual 

example might clarify the calculations. Consider the product, 

Y* (2,1) Y(2,l). Since Y*(i,m) = (-1)m Y (1, -m) , then: 

Y* (2,1) Y(2,l) = (-1) Y(2, -1) Y(2,1) (170) 

4 (5) (5) (21+1) 1 H 
^ 4r ^ Y*(f,0) (171) 

Y* (2,1) Y(2,l) = 
• Y* (0,0) 

Y (2,0) 

Y (4,0) . 

172) 

Evaluation of the 3-j symbols from the tables given by Roten­

berg et al. (45) leads to the result: 

Y* (2,1) Y(2,l)= -1= Y* (0,0)+ Y* (2,0) - -~j= Y* (4,0) . 
2 \'tt 7 n'TT 7 V rr 

(173) 



j. revaluation or tne raaiar intégra± 

a. Normalization of the Slater orbital The d-elec-

tron wave function for platinum( II) , approximated by means of 

a Slater orbital (30), has the form: 

0  = (N r3 e"rr) Y(2,m), (174) 

where : N = normalization constant, 

f 

Z* = the effective nuclear charge, 

n* = the effective principal quantum number. 

It is required that: 

P  0 *  0  d T  = 1 .  ( 1 7 5 )  

Therefore, since the spherical harmonics are already norma­

lized, 

= Z*/n* = 7.55/4 = 1.89, 

t2 r 
N^ (r3 e ^r) (r3 e fr) r2 dr = 1. (176) 

From standard tables of integrals (47), one finds that: 

p OD 1 
m  — 1  — a  v  - i -

m  ,  ( m ) ,  ( 1 7 7 )  
0 

x
m 1 e ax dx = — f (r 

where f(m) = (m-1)! 

In the case of the integral under consideration, m = 9, a = 

2f. Therefore, 

N2 P r8 e~2fr dr = —(8: ) = 1. (178) 
(2 f )% 

Hence: 
r- - r f i '2 

^78.75 1 (179) 
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evaluation of the one-electron matrix elements, the angular 

integral, (a/o), was obtained, where: 
3 ^ oo 

Gi (a,b) = -q N ' Ra(r) Rb(r) Ri (r) r2 dr (180) 

0 

with N2 = f9/78.75, 

Ra (r) = Rb(r) = r3 e~fr 

R^(r) = / / r 
\ / 

In order to evaluate this integral, it is convenient to 

make a change of variable such that x • fr and X = fR, and 

then to consider the integral as the sum of two integrals, the 

first from zero to X and the second from X to infinity. Thus, 

G1 (a,b) = - 7^£75 [ F x8 e-2x x* dx + P x8e"2x dx ] 
X 0 X x'+l 

(181) 

= ~ 78775" gi(x) (182) 

where Gj(X) are the terms in the bracketts in Equation 181. 

The only integrals of interest in a square-planar potential 

field are those with 1=2 and 4. Therefore: 
oo 

G-, (X) = -Tj- X x^ e 2x dx + X2 ^ x^ e 2x dx ( 183) 

r X , „ -, a  r  ° o  
G4(X) = x12 e~2x dx + X4 ' X3 e 2x dx (184) 

a 
o X 

In standard tables of integrals (47) one finds : 



x- ec dx -
a^ 

[(ax)^ - p(ax)-P-X 

+ p(p-l) (ax) d-2  
- •••(-i)pp:] (185) 

where p is an integer. By use of this relation, one can 

evaluate the integrals in Equations 183 and 184 in terms of 

the variable X. The resultant expressions are given in Table 

6 in section IV-D-3. 

The (a,b) integrals result from the fact that the 

ligands are considered to be point charges. In order to de­

termine the expression for point dipoles, one considers the 

potential due to a negative charge, -q, at a distance R from 

the central ion and a positive charge, +q, at a distance R + 

AR. The radial expression then becomes: 

3 L  -B_£ (a,b) = + 78^75 G£ (X) - 78^5 GL (X + AX) 

Since AX = fAR, and the point dipole is defined as 

M. ™ lim qAR 
AR—• 0 

(186) 

(187) 

then: 

-B« (a,b) = 
78 . 75 AX—» 0 

lim fGj(X+AX) - Gi(X) 

AX 

= yjl2 
78.75 

(X) , 

(188) 

(189) 

where 

Bi (X) = ~Êx Gl (x) • (190) 

The G_£ (a,b) and B^ (a,b) integrals in the foregoing 

discussion were for the interaction of the ligand field with 
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the "electron hole" formalism, the signs of all the integrals 

change. Thus, the appropriate radial integrals for the inter­

action of the point dipoles with the "electron holes" of the 

d8 configuration are: 

Bz(a,b) = B2(X) (191) 

84(3,%) = 78^75 (X) (192) 

wnere: 

B2 (X) = 357 G2(X) (193) 

B4 (X) = A G4 (X) (194) 

The expressions for B2(X) and B4(X) are given in Table 6 in 

section IV-D-3. 

4. Correlation of the ligand field matrix elements as given 

by various authors 

To the tyro in ligand field, one of the most confusing 

aspects is the array of equations and symbols used by vari­

ous authors to express the ligand potential and the re­

sultant matrix elements. The confusion is compounded when one 

deals with square-planar symmetry which is a special case of 

the more general tetragonal symmetry group, D4^. 

a. The ligand potential To exemplify the possible 

methods of representing the ligand potential, the forms given 

by four authors will be compared with the equation used in 



(1) Ballhausen The potential for square-planar 

symmetry used in this thesis is identical with that given by 

Ballhausen (27): 

V1^ = -q [ -4 w/ R2 y (2,0) + vt R4 y (4,0) 

+ -J 35tt / 3 s/T R4 [Y (4,4) +Y(4,-4)]j (195) 

where 

1 
z 1+1 

Ri - r,/ . (196) 

This expression, which is derived in section IV, is for the 

interaction of point charges, q, with electrons of the central 

ion. 

(2) Maki The potential employed by Maki (28, 

29, 48) for square-planar symmetry is very similar to the one 

used in this thesis : 

= _q f 8 J? R0 Y (0,0) - 4 >JT R2 Y(2,0) + 47 R^ Y(4,0) 

- ST5¥ / 3 J2 R4 [Y (4, 4) +Y(4,-4)]J (197) 

where Rjg is defined by Equation 196. The initial term, 

8 Jlr Rq Y(0,0), is relatively unimportant since it simply re­

sults in the addition of the same value to each diagonal 

element in the matrices and hence does not affect the rela­

tive separations between the energy levels. Indeed, Maki (28) 

discards this term in her calculations. The important dif­

ference in the two expressions is in the sign of the coeffi­

cient which precedes the Y(4,4) and Y(4,-4) spherical 
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harmonics. This differpnro »r-i c»e ?_= = result cf the chcicc 

of locations of the ligand with respect to the coordinate 

axes. Maki (28) chose to locate the ligands along the + xy 

axes while in this thesis they are considered to be along the 

+ x and + y axes. Maki1 s choice not only changes the sign of 

the appropriate matrix element but also results in an inter­

change in the interpretation of the symmetry representations, 

Bj and B^. 

(3) Liehr Liehr (49), following the methods 

outlined by Moffitt and Ballhausen (7), arrives at an ex­

pression for tetragonal symmetry through consideration of the 

tetragonal field as a sum of an octahedral field and an axial 

field. The axial field, which may be due to different li­

gands or a different ligand distance, is considered to be 

along the + z-axes. The potential expression is : 

VT = V0 + VA (198) 

where VT = tetragonal potential 

VQ = octahedral potential^ 

= {Y(4,0) + JJ/ xfÏ4 [Y (4, 4) + Y (y, -4) ] j D4(r) (199) 

VA = axial potential 

- Y (2, 0) D2(r') + Y (4, 0) D^(r') (200) 

The methods of this thesis, when applied to the same two 

^Actually, Liehr (49) uses R^(r) rather than D4(r), but 
this could lead to confusion when comparison with the form of 
this thesis is made. 



terms of point charges and electrons : 

Vg = -q{  7 J7/3 Y(4,0) R4(r) 4- J357/3./T R^(r)[Y(4,4) 

+ Y(4,-4) ]j (201) 

= -q 7 / 3 R4 (r) { Y(4,0) + 5/ [Y(4,4)+Y(4,-4) ]{ 
(202) 

VA = -q' f 4 J?/ J J  R2 (r 1 ) Y(2,0) + 4 J V  3 R4(r') Y(4,0)j 
(203) 

where q and r do not necessarily equal q1 and r'. Comparison 

of Equations 199 and 200 with Equations 202 and 203 lead to 

the relationships : 

D4(r) = -q 7 v/7/3 R4 (r) (204) 

D2(r')= -q' 4 J1F/ JT R2 (r ' ) (205) 

D4(r') = -q' 4 Vtt/3 R4 (r ' ) (206) 

In order to obtain the expression for square-planar 

symmetry, from the VT = VQ + VA approach, one considers the 

axial potential, VA as being due to charges which are equal 

in magnitude but opposite in sign to those due to the octa­

hedral field, and located such that the radial distances in­

volved in Vq and VA are the same. That is, for Equations 202 

and 20 3: 

q' = -q (207) 

R2(r') = R2 (r) (208) 

R4(r') = R4(r) (209) 

The resultant expression for the square-planar potential, 

Vga, is then identical with that given in Equation 195. 
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A corresponding application to Liehr's expression (49), 

given in Equations 199 and 200, cannot be made directly since 

D4 (r ) and D4(r') contain certain coefficients within them 

which are not the same, as can be seen from Equations 204 and 

206. Actually, in the square-planar case: 

D4(r) = 7/4 D4 (r1 ) , (210) 

and hence the square-planar potential in Liehr1 s notation is : 

Vsq = - Y (2,0) D2 (r) + 3/7 Y(4,0) D4 (r) 

+ 5/./Ï4 [Y(4,4) + Y(4,-4)] D4(r) (211) 

Equation 211 presumes that, VSg = VQ - VA, in order to make 

the same cancellation of potential accomplished by Equation 

207. 

(4) Bleaney and Stevens Bleanev and Stevens 

(21) present three possible expressions for the ligand 

potential in tetragonal symmetry. The first form is simply 

the expansion of the potential with unspecified coefficients, 

that is : 
— £  

V = Z A™ r Y(i ,m) (212) 

o —4 4—4 
V = A20 r Y(2,0) + A40 r Y(4,0) + A4 r Y(4,4) 

+ A4"4r4 Y(4,-4), (213) 

where A44 = A^~^. In Equation 213, the radial term, r^, and 
m 

the coefficients, , roughly correspond to the radial term, 

Rjg (r) and the numerical coefficients respectively, in Equation 

195 . 

The second expression given by Bleaney and Stevens (21) 
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sir.ply presents the first expression in terms of cartesian co­

ordinates instead of spherical harmonics. Thus : 

V = r (3z^ - r^) + B^1-1 (35z^ - 30r^z^ + 3r^) r4 

+ b^4(%4 _ 6%2y2 ^ ̂ 4) g4 ^14) 

where the A^ and B^ coefficients are related by: 

B^O = 5/4 A 0 

b40 - 3/16 a40 

b44 = 3 4t5/q vif a44 

The third form of the potential, to be given in Equation 

215, is actually the most useful. The potential is expressed 

as a function of angular momentum operators. Stevens (50) has 

shown that the matrix elements expressed as a function of x, 

y, and z are proportional to the matrix elements of a similar 

operator in which x, y, and z are everywhere replaced by the 

total angular momentum operators, p. y, and respective­

ly. The only precaution in the substitution is that whereas 

x, y, and z commute, x, y, and ̂  2 do not. Therefore, a 

term such as xz would be replaced by 1/2 (^x^z + ̂  z^x) • Thus, 

from the expression given by Equation 214, one obtains: 

V = B2°a?2(3?z2 - }2) + B4° 6 ?4 (35^2 _ 30J2 ̂ z
2 

+ 25Jz2 " 6>2 + 3(}2)2 + B443 ?4/2[>+4 +y_4], 

(215) 

where a and S are the proportionality constants to be con­

sidered and determined. The details of this approach are 

carefully and exhaustively covered by Stevens (50) and need 
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it is not necessary to obtain the specific forms for all the 

wave functions for the weak field in terms of products of 

single electron functions. However, the method is complex 

enough, because of the necessity of obtaining the appropri­

ate proportionality factors, a and (3, for each g. and jC value, 

that it is just as convenient, in the two electron case, to 

obtain the wave functions. In situations which involve more 

than two electrons, however, the technique would be very 

helpful. 

b. The single electron matrix elements Two main 

Systems for presentation of the ligand field parameters are 

found in the literature. One involves the use of the vari­

able, "effective dipole moment",p., and "effective radial 

distance", R; the other employs parameters denoted by Dq, Ds, 

and Dt. The former approach is used in this thesis, as well 

as by Maki (28) and Ballhausen (14, 27). The Dq, etc., 

symbolism is used by Liehr (49) and others (7, 23, 26) . 

The single electron matrix elements, Q2, Qj_, Og, and 

B2_2, for square-planar symmetry, have been derived in detail 

in this thesis in terms of u. and the "B" integrals, which are 

functions of R. Their values are repeated in Table 35. Table 

3 5 also contains expressions for the matrix elements in tetra­

gonal and square-planar potentials in terms of Dq, Ds, and Dt. 

The historic definition (4) of Dq is given in terms of a 
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Table 3b. Sinai s p r t m n  r  ri 4- -r- 4 v n"! AWA»*-. z  z., a.J 

Matrix Function of u and R Function of Dq, Ds, and Dta 
element square-planar^ tetragonal Square-planar 

02 1/14 B4 + 4/7 B2 Dq -f 2Ds - Dt 3/7 Dq - 2Ds 

Q1 -2/7 B4 - 2/7 B2 -4Dq - Ds + 4Dt —12/7 Dq + Ds 

Q0 3/7 B4 - 4/7 B2 6Dq - 2Ds -- 6Dt 18/7 Dq 4- 2Ds 

B2-2 5/6 B4 5 Dq 5 Dq 

The parameters Dq, Ds, and Dt are defined by Equations 
216, 218, and 220 respectively. They are related to the "B" 
integrals in column two by Equations 227, 228, and 229. 

^The B integrals in this column represent the B^(a,b) 
integrals defined by Equation 105 and expressed as functions 
of X = fR in Table 6. Maki1 s results (28) differ in the sign 
preceding the B2_2 matrix element because of her choice of 
ligand locations. 

matrix element for an octahedral field, namely: 

Dq = M 2, + 2)* v0 | 2, +2)d<r, (216) 

where VQ  is the octahedral ligand field potential as given by 

Equations 199 and 202. 

Use of Equation 199 and the appropriate expansion of the 

spherical harmonics associated with the single electron wave 

functions leads to the result: 

Dq = 1/14 J? <D4(r)> (217) 

where\D4(r) )> is the radial integral, / R(a) R(b) D^(r) r^dr. 

In an analogous fashion, Moffitt and Ballhausen (7) and 
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Liehr (49) define Ds by the relation : 

Ds = - f \ 2 ,  ± D *  Va
(2) I 2, +1) dx, (218) 

where VA^) = d2(r 1 ) Y (2,0) , that is, V^(^) j_s the first term 

in the axial potential given by Equation 200. Therefore: 

Ds = - 5/14 v7<D2(r') > , (219) 

where (D2(r') ) is the corresponding radial integral. 

Similarly, Dt is defined by the relation: 

Dt = - f  |2, ± 2 )  Va(4) J 2, +2) dT, (220) 

(4) 
where VA = D^(r') Y(4,0), that is, it is the second term in 

the axial potential given by Equation 200. Therefore: 

Dt = -l/14^<D4(r')>. (221) 

In terms of the approach used by Liehr (49), the single 

electron matrix element, Q2, in a tetragonal field is given by: 

Q2 = P | 2, + 2)* VT | 2, +2) dr, (222) 

where VT is defined by Equation 198, 199, and 200. Then: 

02 = 1/14 J?<D4(r)> - 5/7 JT<D2(r')> + 1/14 ̂ (D^fr')) , 

(223) 

which, from the definitions of Dq, Ds, and Dt, can be ex­

pressed as : 

Q2 = Dq 4- 2Ds - Dt. (224) 

In an analogous fashion, the other single electron inte­

grals for the tetragonal field can be evaluated. Similarly, 

the expressions for square-planar symmetry can be obtained by 

application of Equation 211 and the definitions of Dq and Ds. 
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Both sets are given in Table 35. 

To obtain correspondence between the various sets given 

in the table, it is necessary to evaluate Dq, Ds, and Dt in 

terms of the approach used in this thesis, given by Equations 

202 and 203. Thus, for point charges and electrons in tetra­

gonal symmetry: 

Dq - P I 2,+2)* VQ | 2,±2)dx (225) 

= 1/6 G4(a,b) = 1/6 [-q ° Ra(r) R^(r) R4(r) r2 dr], (226) 

where G4(a,b) is the radial integral defined by Equation 94. 

For point dipoles and "electron holes", the expression for Dq 

is : 

Dq = 1/6 [uf2/78.75 B4(X)] = 1/6 B4(a,b). (227) 

Analogously: 

Ds = -2/7 [[if 2/78. 75 B2(X')] = -2/7 B2(a,b), (228) 

Dt = -2/21 [p.f 2/78. 75 B4(X')] = -2/21 B4(a,b). (229) 

C. Appendix C: Group Theory 

The following is not meant to be an all inclusive trea­

tise on the theory of groups. It is assumed that the reader 

is familiar with the general concepts as outlined in texts 

such as that by Eyring, et al. (24). Proofs of the validity 

of various relationships and applications are generally 

omitted since they are available in such standard texts as 

that by Wigner (51). Certain concepts are worth special con­

sideration because of their applicability to the ligand field 

theory calculations. 
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1. Basis functions 

A set of functions, ^j_, -lr2 ' ' ' ~l\, is said to form a 

basis for a representation of a group if the application of 

the group operations on the functions generate the group 

representation. That is, the set of functions, under the 

operation of some element of the group, go into linear com­

binations of one another. Mathematically: 

k 
R tK = Z f (R) . . i'i , (230) 

1 j-1 J1 J 

where R is a group operation, 

F(R)s i is an element of the matrix representation corres-
J 1 

ponding to the group operation. 

2. D4h group operations 

Square-planar complexes of platinum(II), such as [PtCl4]"% 

belong to the rotation group . This symbol is most easily 

defined after examination of the group elements. They are: 

1) E = the identityoperator 

2a) C4 = counterclockwise rotation by 2-/4 about the z-

axis, which is the principal axis 

2b) C43 = counterclockwise rotation by 3(2tt/4) or clock­

wise by 2-/4 about the z-axis 

3) C2 = notation about the z-axis by 2rr/2 
i 

4a) C2(x) = rotation about the x-axis by 2v/2 
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4b) Cp (y) = rotation about the y-axis by 2tt/2 

5a) C" (xy) = rotation about the (xv) -axis by 2TT/2 

5b) C'2 (-xy) - rotation about the (-xy) -axis by 2tt/2 

6) i = inversion through the origin 

7) Cft - reflection in the xy-plane 

8a) S4 = counterclockwise rotation about the z-axis by 

2tt/4 followed by reflection in the (xy) plane 

8b) 5^3 = clockwise rotation about the z-axis by 2tt/4 

followed by reflection in the (xy) plane 

9a) (x) = reflection in the (xz) plane 

9b) ça (y) = reflection in the (yz) plane 

10a) cr^ (xy) = reflection in the plane defined by the (xy) -

axis and the (z)-axis 

10b) a(j(-xy)= reflection in the plane defined by the (-xy) -

axis and the (z)-axis 

Those operations which belong to the same class, that is, 

whose matrix representations are connected by similarity 

transformations are grouped together. For example, C4 and 

belong to the same class. 

In the symbol, D^, the (4) indicates that the principle 

axis is a 4-fold axis. D4 means that there are four 2-fold 

axes perpendicular to the principle 4-fold axis. The sub­

script, (h), indicates that the symmetry operations and 

are elements of the representation. The operations for the 

D4h group, together with their "characters", which will be 
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discussed in Appendix C, are given in Table 36. 

3. Matrix representation of a group 

Matrices are able to form representations of groups since 

it is possible to obtain matrices which have a one-to-one 

correspondence to the group elements and which have the same 

multiplication table. Obviously, the matrices which describe 

rotation operators fall into this category. 

In constructing the matrices corresponding to the group 

elements, one must use a consistent approach, since it is 

possible to use one of two techniques. This is most easily 

Table 36. Character table for the symmetry group, 

Irr. 
Rep.a 

E c2 2C4 2C2 

Group 

2c2 i 

operation 

ah 2S4 2Cy" 

Aig 1 1 1 1 1 1 1 1 1 1 

Alu 1 1 1 1 1 -1 -1 -1 -1 -1 

A2g 1 1 1 -1 -1 1 1 1 -1 -1 

a2U 1 1 1 -1 -1 -1 -1 -1 1 1 

Big 1 1 -1 1 -1 1 1 -1 1 -1 

Blu 1 1 -1 1 -1 -1 -1 1 -1 1 

B2g 1 1 -1 -1 1 1 1 -1 -1 1 

B2u 1 1 -1 -1 1 -1 -1 1 1 -1 

EG 2 -2 0 0 0 2 -2 0 0 0 

Eu 2 -2 0 0 0 -2 -2 0 0 0 

aIrr. Rep. stands for irreducible representation. 
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seen by consideration of a vector, 

r = x^i + y-j_j -f z^k (231) 

where x]_, vj_, and zj_ are the coordinates of the vector and 

i, j, k, are the orthogonal unit vectors, which define the 

3-dimensional space. See Figure 15. The components of a 

vector can be expressed in terms of the Euler angles, 0 and 0, 

and the length of the vector, r. Thus : 

x1 = r • sine cos0 

yj_ = r • sin© siri0 

zj_ = r • cos© 

a. Rotation of the vector If one considers the situ­

ation in which the group operations act upon the vector, then 

it is possible to describe the new vector which results in 

terms of the original coordinate system, 

"r' = x2i ' + y2j ' + z2k' (232) 

For example, consider a counterclockwise rotation about the 

z-axis by an angle a operating on the original vector. Then 

© is unaffected, but 0 changes to 0  + a. Then the coordinates 
—» 

of the new vector, r', are given by: 

x2' = r sin© cos(0+cc)  = r • sin© [cosa cos0 - sina sin#] 
(233) 

y2 ' = r sin© sin (0-Hx)  = r • sin© [sina cos0 + cosa sin#] 
(234) 

z2 = r cos© (235) 

Hence: 

x2 = (cosa) x-l - (sina) y1 (236) 
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Z  

Figure 15. Coordinates of a vector 
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y2 = (sina)xi + (cosa)y^ (237) 

z2 = zi (238) 

Expressing the same relations in matrix form, one obtains : 

/ x2 \ / cosa -sina 0 \ / X1 

?2 

Z2 / 

s ma 

0 

cosa 

0 

0 

1 / 
(239) 

If a = 90°, as in the case of C4 of the group: 

x2 /0 -1 0 \ / 

y  2  = 1 1  0  0  

;2/ 0 

(240) 

b. Rotation of the coordinate system of the vector 

If one considers that the group operations act, not on the 

vector, but on the coordinate system, then it is possible to 

define the vector in terms of the new coordinate system. 

Thus, the vector, r, in the new coordinate system is given by: 

~r = x'i' + y1 j 1 + z'k' (241) 

Consider the same rotation operation, counterclockwise rota­

tion about the z-axis by an angle a, this time acting on the 

coordinate system. That is, the group operations act on the 

basis vectors, i, j, k, to give new basis vectors, i1, j1, k'. 

The relation between the old basis vectors and the new basis 

vectors is obtained by the methods given in the previous sec­

tion . 

The vector, r, in the new basis, has new coordinates, x1, 

y', z'. It is easily shown that: 
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:1 = (cosa) x-, -r (sina) y-. 

y' = (-sina)x^ + (cosa)y1 

2 ' = Z]_ 

(242) 

(243) 

(244) 

In matrix notation, this is 

cosa sina 

y' = -sina cosa 0 

z '  0 0 1 

0 \ / x1 

vi 

\ z1 

(245) 

It is seen that the matrix corresponding to the operation is 

the inverse of that given for the rotation of the vector. It 

is important to note, however, that the coordinates of the 

vector in the original basis are related to the coordinates in 

the new basis by: 

Yl 

z1 / 

cosa 

sina 

0 

-sina 

cosa 

0 

f x '  

y* (246) 

/ 
which is identical to the matrix for the rotation of the vec­

tor . 

c. Effect of change of coordinates on the basis func­

tions Symmetry groups are of interest in this thesis, not 

because of their effect on vectors but because of their use­

fulness in choosing appropriate basis functions. Hence, the 

effects of the group elements on functions are of importance. 

Here again, one has the choice of "rotating the function" or 

of "rotating the coordinate system in which the function is 

defined". The latter method is chosen in order to be 
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consistent with the use of the spin transformation matrices 

given by Goldstein (52). 

In order to illustrate the effects on the functions which 

result when the rotation operators act on the coordinate sys­

tem, consider the function, 

F = f (x, y, z) . 

If a change of basis is made by rotation, then the relation 

between the old and new coordinates is given by 

X' \ / \ / 

A y' 

z' / / 
y 

z / 

(247) 

where (A) is the matrix obtained by the considerations given 

in the previous section. One can then define R to be that 

operator which changes f in such a way that, 

g(x1,y1,z') = Rf(x',y',z'), 

evaluated for (x',y',z') has the same value as f evaluated for 

(x,y,z). Hence: 

Rf(x1,y1,z1) = f(x,y,z) = f[A-1(x',y',z1)] (248) 

It is typical for an operation that if F%(k 1,2,'--) 

form a basis for a representation of a group to which R belongs 

then the algebraic form of each RF^ is such that it can be ex­

pressed in a linear combination of all F^, that is, 

RF^(x,y,z) = Fk[A 1 (x,y, z) ] = F , (x, y, z) R n 
Jk 

(249) 

where R is the matrix typical for R, independent of (x,y,z). 
J K 

For example, consider the two functions: 
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F-, = f i (x, y, z) = r • (xz) (250) 

F 2 = f2(x,y,z) = r • (yz) (251) 

If the coordinate bases are rotated by 90° counterclockwise 

about the z-axis, it can be shown that: 

x. t 

y' 

\ z' / 

I -y' 1 

x 

z' / 

(252) 

/ 0 -1 0 

10 0 

0 0 1 / 

Then, F-j_ and F2 in the new basis have the forms : 

Fj_ = Rf 1 (x ', y1, z 1 ) = r-(-y'z') 

F2 = Rf2(x1 , y ', z1) = r-(x'z') 

From this, it is possible to define the matrix corresponding 

to the operator, R. Dropping the prime notation as super­

fluous, one can write: 

R ( f 2. f 2) = (r (xz) r (yz)) / 0 

(253) 

(254) 

1 ̂ « (r (-yz) r (xz)) 
(255) 

-1 0 / 

The simplest way to construct the appropriate matrices corres­

ponding to the group operations as given above is to consider 

the operations as "replacement" operations. For example, in 

the foregoing case of C4 rotation about the z-axis, the co­

ordinate (x) was replaced by (-y), (y) was replaced by (x), 

and (z) was replaced by (z). Hence, these replacements are 

carried out in the functions and: 

fj = r•(xz) becomes r (-yz) - -f2 (256) 

f 2 = r • (yz) becomes r • (xz) = f-, (257) 

It is understood, of course, that the function remains the 
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To show that the resultant matrix is not the same as in 

the case in which the function is rotated, consider the 

operator, R1, where R1 is the same C4 rotation but acting on 

the functions, f-j_ and f themselves. If one expresses the 

new functions in the same basis, (x,y,z), it is clear that 

R ' ( r (xz) r (yz)) = ( r (yz) r (-xz) ) (258) 

Hence, in matrix notation: 

(r (xz) r (vz))^ 0 -1 ̂  = (r (yz) r (-xz)) (259) 

Comparison of the rotation matrices in the two cases shows 

that one is the inverse of the other. 

4. Reducible and irreducible representations of the group 

If three matrices, A, A1 and B, are related by the equa­

tion: 

A' = BAB 1 

then A1 is called the transform of A by B. B is called the 

transformation matrix, and the process of constructing A' from 

A and B is called a similarity transformation. These trans­

formations imply that it is possible to choose a new co­

ordinate system in which one operation is replaced by the 

other. If the matrix 3 is unitary, i.e., if B-1 = 3*, where 

3* is the hermetian conjugate matrix of B, then the transform­

ation is called a unitary transformation. 



representation , P (R) of a group, where (R) is 

an element of the group, is called reducible if all the 

matrices of the group can, by one similarity transformation 

be put in the form, P1(R) given by 

P *  (R) = S 1 P  (R) S = 

L ( R )  

2 ( R )  

3  ( R )  

\ 

\ I 
i(R) / 

(260) 

where P^(R), P 2 (R), etc., are irreducible representations of 
the group. By irreducible representations is meant, of course, 

that other similarity transformations cannot be found which 

further decrease the size of the matrix blocks. This implies 

that the basis functions can be grouped into several sets, 

each of which, by itself, generates one of the irreducible 

representations, P^(R) . 

The diagram makes no attempt to estimate the number of 

elements in each irreducible representation, and the zeroes 

indicate that all other elements outside the blocks are zero. 

Since the total size of the matrix is unchanged, the number of 

rows and columns in the irreducible matrices equals the number 

of rows and columns of the original reducible matrix. Fur­

thermore, P j (R) need not necessarily be different from P2(R), 

etc. 

Since the original reducible matrix was unitary, the 
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transformation was a unitary transformation and the irreduci­

ble matrices are unitary. Any such reduction of reducible 

matrices is unique, that is, the reducible representation is 

composed of one particular set of irreducible representations. 

For the group of interest, D4h, there exist five irre­

ducible representations which are not equivalent. By 

equivalence is meant that two representations are simply the 

same operations with respect to different coordinate systems. 

The matrices in Table 37 are good examples of a re­

ducible representation of the group. These matrices were 

obtained from the relationships between old and new coordi­

nates as a result of the group operations on the coordinates, 

that is, 

as outlined in the previous section. The dotted lines indi­

cate the division of the matrices into two irredicible repre­

sentations. Fortunately, the matrices are already in reduced 

form and a similarity transformation is not required. As is 

indicated later, the upper 2X2 set belongs to the irreduci­

ble representation, Eu, the lower belongs to the representa­

tion, A2u. If the reducible representation of Table 37 is 

called, F , then one writes svmbollically: 

(261) 

r - Eu + A2u ( 2 6 2 )  
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"able 37. Example of a reducible representation of the D^-
group 

Operation 

1 Oj 0 
i 

0 l| 0 

0 oi 1 

Ei_Lx) 

1 0 

0 -1 

0 

0 

0 0 1 -1 

i_ 

-i o ! o 
i 

o -i ! o 

0  o i - l /  

cy(x) 

1 0 

0 -1 

0 

0 

0 

/o -1 

1 0 

0 0 

0 

0 

1 

C2 (y) 

I  -1 0 

0 1 

\ 0 0 ' -1 / 

0 

0 

tfh 

/ 1 0 

o i ; o 

0 0 

0 

-1 / 

<(y) 

/. 1 0 ! 0 

0 1 ! 0 
1 

0 i 1 / \ 0 0 i 1 / 

Ca-

/ 0 1 ! 0 \ 

0 -1 0 

0 0 / 

c2 (xy) 

0 1 0 

1 0 0 

0 0 -1 

s4 

0 -1 0 

1 0 0 
_ j 

0 0 -1 

(*y) 

0 0 1 

i o ; o 

0 0 1 1 / 

-1 

0 

£2 

0 i 0 
i 

-1 } 0 

i 0  o i l /  

C2(-xy) 

0 -1 j 0 

-1 

1 1 
0
 1 
0
 

0 

0 

1 1 
0
 1 
0
 

-1 

S43 

0 1 i 0 

-1 0 i 0 

0 0 1 -1 

Cy(-xy) 

0 -1 

-1 0 

0 ( 

0 

0 

1 /  

5. Character or trace of a matrix 

The trace of 2 matrix is defined as the sum of the di­

agonal elements of a matrix, i.e., for the matrix A: 

trace (A) = ? A^j_ (263) 



The traces of matrices representing a group are denoted by 

X(R) and are called the characters of the representation, 

i.e., 

X (R) =2 r(R) i ±  (264) 
i 

The trace of a matrix has the property that its value is un­

changed if the matrix undergoes a similarity transformation. 

Thus : 

trace (A1) = 2 A'^ = trace (S-1AS) (265) 

= 2 s-\jaj%ski 
ijk 

= 2 [ss-l]%jaj% 
J K 

= .2 = ajj 

trace (A') = trace (A) (266) 

A class of elements in a group is defined as all members 

of the group which are connected by those similarity trans­

formations in which the transforming matrix is one of the 

group elements. All class members have the same character. 

Table 36 is the character table for the irreducible repre­

sentations of the group. It combines the operations into 

classes. 

There are several useful properties of the characters: 

a. A necessary and sufficient condition for a repre­

sentation to be irreducible is 2 j X(R) / 2 = g, where 
r 

g is the order of the group, i.e., the number of 



212 

crrouD operations. 

b. A necessary and sufficient condition for the 

equivalence of two irreducible representations is 

the equality of their character systems. 

c. If a reducible representation, T , is decomposed 

into its irreducible representations, that is, 

r- 2 C± r ±  (267) 
i 

then for each group element, (R), the character, 

X(R) in the representation F is related to its 
characters, X±(R) , in the representations F^ by 

X (R) =2 c ±  X ±(R) . (268) 

d. The number of times an irreducible representation, 

(R), or a representation equivalent to it, 

appears in a reducible representation, F(R), is 

given by: 

c = 1/g 2 [X (R) ] [X± (R) ] * (269) 
R 

6. The full 3-dimensional rotation-reflection group 

a. Nature of the full rotation-reflection group The 

continuous group which is formed from the set of all real 

orthogonal 3-dimensional matrices is called the full 3-dimen­

sional rotation group. The pure rotation group includes only 

orthogonal matrices with determinant 4-1, while the rotation-

reflection group also includes those with determinant -1. 

Basis functions for irreducible representations of the 



213 

luii rotation-reriection group are tne spnerxcax narmonics, 

Y^1 (©,0). This can be understood by consideration of an ap­

plication of the full rotation group to a physical situation, 

namely, an electron in a spherically symmetric potential as 

encountered in consideration of single electron hydrogen­

like atoms. It will be recalled that the wave functions, with 

principle quantum number n, associated with hydrogen-like 

atoms can be grouped into degenerate sets according to the 

orbital quantum number, i. The degeneracy of each set is 

21 + 1. The angular dependence of the wave functions in a 

set is given in terms of the spherical harmonics, Y(i,m), 

ranging from Y(l,m) to Y{I,-m) in integers of m. Wave func­

tions associated with states which are degenerate, other than 

those states which are accidently degenerate, are basis func­

tions for irreducible representations of the group. Hence 

the spherical harmonics, Y(i,m) are basis functions for the 

irreducible representations of the full rotation-reflection 

group. 

From consideration of the group operations acting on the 

basis functions, the general expression for the characters of 

the group can be obtained. In the full rotation group, all 

rotations by an angle, a, about any axis are members of the 

same class. Since members of the same class have the same 

character, it is convenient to find the character, X(a), by 

consideration of a rotation about the z-axis. 
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v . o y u c j - i C a i .  i l d J L  '  

monies are given by: 

Y(j,f) (Cos©) e l£0 (270) 

1 (cos©) gi(-2-l)0 

Y  ( £ , - £ )  = P j *  (cos©) e'11^ 

Rotation about the z-axis does not affect ©, but changes 0 

to 0 + a. Hence : 

ii (fti+a) 
¥'(£,£) = Pf (cos©) e" (271) 

Y' (£,-£) = p/(cos©) e Xi (^+a) 

Thus the rotation can be represented by the matrices: 

((Y(f,i) Y(i,i-1) ••• Y(£,-£))f elia 

i 

,-iia 

\ 

/ 
= (Y'(£,i) Y , ( £ J £ - l )  ••• Y1 ( £ , - £ )  (272) 

Hence the representation for the Y(i,m) in the full rotation 

group is: 
xiia 

.i (i-l)a 

(a)  = (273) 

The character of this representation is, therefore: 
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v . _i(i-I)u . --lia 
. V y —- / *— I >—• ! ^ ^ ̂  / "* y 

= elia 2 [e"ia]n (275) 
n=0 

This is a geometrical series, the summation of which is given 

by: 

sin (£+1/2) a 
X<=> " sinl/2a <276> 

b. Isomorphism of the 1J,Mj)> and | i , m^ ) representations 

in the full rotation group It has been indicated above 

that the spherical harmonics, Y(f ,m), are basis functions for 

irreducible representations of the full rotation group. It is 

possible to show that the functions 1also form basis 

for the full rotation group. 

If there are two representations of a group such that 

there exists a unique one-to-one correspondence between group 

elements so that their multiplication table is the same, then 

the two representations are essentially identical and are 

called isomorphic. It is desirable to indicate that the 

IJ,Mj> and li,mf) functions form basis functions for repre­

sentations which are isomorphic, if the numerical values of 

J and Mj are identical with those of i and m, respectively. 

I J, functions have three properties : 

1. They are eigenfunctions of angular momentum 

operators. 

2. They are basis functions for irreducible repre­
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sentations of the full rotation reflection group. 

3. They can be constructed with the help of the step-

up and step-down operators, which are made up from 

angular momentum operators. 

These properties are intrinsically related to each other be­

cause angular momentum operators are the infinitesimal 

operators of the rotation group. 

Such Ifunctions exist in the one-electron as well 

as the many-electron case. The above mentioned properties are 

basic consequences of the representation and are valid in all 

cases. 

Let I J,Mj)>n, a set of n-electron functions, be the basis 

functions for a representation, and let I J, M_)>m be a set of 
u 

m-electron functions which form a basis for the same repre­

sentation. Hence, the I J,Mj)>n and | have the same 

transformation properties under any rotation. As a conse­

quence, any linear combination of the j J,Mj)>n functions has 

the same transformation properties as the analogous linear 

combination of the IJ,Mj)^ functions, that is, the appro­

priate combinations are independent of the-"values of m and n. 

Furthermore, it should be noted that the isomorphism of 

the representations corresponding to the f J, Mj)>n and I J, M j )>m 

functions holds in rotation groups of lower symmetry than that 

of the full rotation group, since such groups are sub-groups 

of the full rotation group. 
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It is easiest to construct those linear combinations 

which form the basis for irreducible representations from one-

electron functions, that is, m = 1. Analogous linear com­

binations of n-electron functions will then form bases for the 

same irreducible representations. 

Since the angular dependence of one-electron functions, 

Iiy > and hence their symmetry properties, are given in 

terms of the spherical harmonics, Y(£,m), it is convenient to 

fashion the symmetry properties of the I J, Mj)> functions after 

those of the "spherical harmonics", Y(J,Mj). 

7. The irreducible representations of the (21+1)-fold repre­

sentation in fields of lower symmetry 

It has been shown that the spherical harmonics are the 

basis functions for the (21+1)-fold irreducible representa­

tions of the full rotation group. This group has spherical 

symmetry. In fields of lower symmetry, as in D4h for example, 

the representations are no longer irreducible but reducible. 

This means that each matrix can be block partitioned into 

matrices of lower dimension which furnish the irreducible 

representations. The reduction of the 21+1 representation can 

be carried out by recollection of two facts : 

1. The character of the now reducible representation 

is unchanged by the lower symmetry. This means 

that the character for a given element of the 
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>-(adHC i >>1 e •>~F> 'D'rac;piv-,-f-- ,  i  c  nht-ai  npr? "hv- f>ia ca-rra 

equation given for the irreducible representation 

of the full rotation group, namely: 

X(=> = SisiflXa ° 1277) 

where a is the angle of rotation for the element. 

Note that this means that all rotations by 180° for 

example, have the same character since they belong 

to the same class in the full rotation group even 

though they may belong to different classes in the 

lower symmetry group. 

2. Once having determined the characters of the re­

ducible representation, use is made of the property 

of the characters, 

X(R) = 2 C± X±(R) (278) 

that is, for each element, (R), the character of 

the reducible representation equals the sum of the 

characters of all irreducible representations con­

tained in the reducible representation. 

An example of the reduction of the representation for 

1 - 2 is given in the main body of this thesis. 

8. The direct product 

From two representations of the group, f1(R) and T"(R), 

it is possible to construct a new representation of the group. 

This new representation, called the Kronecker or Direct 
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Product representation, is written 

r (R) = r* (R) X P" (R) . (279) 

Although it is usually unnecessary to calculate the matrix 

elements, they can be obtained by taking all possible products 

of the matrix elements of P'(R) and P"(R) according to the 

formula: 

f(R) (ij) (kl) - T' (R)ik P"(R) j!- (280) 

f (R) (ij) (xi) is the element in the (ij)"*"*1 row and the (kl) 

column of T(R). The index (ij) is taken in the dictionary 

sense so that (ij) precedes (i ' j 1 ) when i <( i 1, or if i = i ' 

when j \ J'• If P' (R) is of dimension m~and P"(R) is of dimen­

sion n, then P(R) is of dimension mn. For example, if P'(R) 

is / A and P"(R) = /a b cX 

\ C D / j d e f 

g h i I 

then: 

(Aa Ab Ac Ba Bb Bc\ 
Ad Ae Af Bd Be Bf 
Ag Ah Ai Bg Bh Bi 
Ca Cb Cc Da Db Dc 
Cd Ce Cf Dd De Of 
Cg Ch Ci Dg Dh Di) 

(281) 

The characters of the direct product are given by the products 

of the characters entering into the direct product, that is : 

X(R) = X* (R) X" (R) (282) 

Generally speaking the direct product will be a reducible rep­

resentation. This reduction can be made by use of the 
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characters or the irreducible representations and the proper­

ties of the characters of the reducible representation given 

in section 5 of this appendix. Frequently the reduction can 

be made by inspection. For more complicated cases, if fa(R) 

and rs(R) are the irreducible representations whose direct 

product is desired then 

r(R) = r (r) x r„(R) = z 0 o r (r> (283) 
^ %-l 

where is the number of times the A irreducible represen­

tation occurs in the product of the and Fp representations. 

is calculated from the relation: 

^agA =g Z xa<R) VR) (R) ] * (284) 

As an example, consider the direct product of the Eu repre­

sentation in D4h symmetry with itself. From the characters 

in Table 36 and the relation X(R) = XE (R) Xeu(R), one ob­

tains : , 

X(E) = X (E) • X (E) =2 • 2 = 4 (285) 

X(C2) = X(C2) X(C2) = (-2) • (-2) = 4 (286) 

X(2C4) - X(2C4) X(2C4) =0-0=0 (287) 

etc. 

Inspection of the character table and the property 

X (R) - 2 c± X±(R) 

shows that 

X(R) = X^, (R) + X_ (R) 4- X*, (R) + X_^ (R). (288) 
Ig H2g nlg ti2g 
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Therefore: 

T(r) = reu(r) x reu(r) = rAlg + rA2g + rBlg + rB2g 

(289) 

Or more simply: 

Eu x  Eu = A lg +  A2g +  B lg +  B2g (290) 

D. Appendix D: Ligand Field Derivations, 

Strong Field 

1. Symmetry adapted spin functions 

In construction of the strong field matrix elements, it 

is possible to obtain wave functions such that the ligand 

field terms appear only in the diagonal elements of the 

matrices. However, when spin-orbit coupling is included, it 

is necessary that the wave functions be symmetry adapted with 

respect to both spin and space functions. 

In order to construct the symmetry adapted spin funct ions, 

one makes use of a transformation property inherent in the 

def ini t ion of the spin components, namely, that for every 

symmetry operat ion matr ix in real space there is a corres­

ponding matr ix in the complex space having the same group 

propert ies. In chapter 4, sect ion 5, of the text by Goldstein 

(52), the construct ion of such a set of 2 x 2 complex unitary 

matr ices is described. For reasons of space l imitat ions, only 

the f inal result  wi l l  be given. 

The complex matrix for the rotations in square-planar 



(cos^ + i-sin^. ) cos— (i-cos^ + siniË ) sin§-
2 2 2 2 2 2 

(i-cos^. - sin^- ) sinlj- (cos^ - i-sin^ ) cosÊ. 
2 2 2 2 2 2 

Although there are actually fifteen group operations in 

the group, it is often sufficient to use just five of them 

to obtain the group representation of a particular set of 

functions. The five are : 

1) the identity operation, E, 

2) rotation about the z-axis by 180°, C2, 

3) counterclockwise rotation about the z-axis by 90°, 

c 4  j  

4) rotation about the x-axis by 180°, (x), 

5) rotation about the xy-axis by 180°, C2 (xy). 

In order to obtain correspondence between the complex 

matrices, Q, and the rotations, it is necessary to consider 

the real space operations as replacement operations. For ex­

ample, in the rotation about the z-axis by 90°, 0-0°, and 

0 = 90°, then: 

1+i 0 

I °<v -A 1 „ )• "•=' 

while the corresponding C4 operation in real space is such 

that a function of x, y, and z is replaced by a function of 

-y, x, and z. These replacement operations are discussed in 

detail in Appendix C. 
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fp^Viîp p. 1 "Î Q •*- Q "f- "K n rûcv 1 fc r> •£ ~ v, y 

first row of matrices are the Q matrices corresponding to the 

f i v e  g r o u p  o p e r a t i o n s .  T h e  s e c o n d  r o w  l i s t s  t h e  f i v e  2 x 2  

real matrices which are isomorphic, that is, have the same 

group relationships, as the complex matrices. Application of 

this latter group will be illustrated later in Appendix D.3. 

The effect of the various group operations on the 

spinor matrices, a and p are, of course, 

a = 
0 

, and p = 
0 

Thus, for example: 

>12 
[a+ia ]. 

(293) 

(294) 

1+i 
c,e = 

4 1  

0 

1-i 

0 
l =è(i!j =A tp-ip 

Therefore: 

C4(aa) = h[a+ia][a+ia] = iaa 

c4(pb) = %[p-ie][p-i6] = -ipb 

C4(a6) = ^fa+ia][0-iB] = ap 

C4 (Pa) = ^[£-ig][a+ia] - pa 

(295) 

(296) 

(297) 

(298) 

(299) 

By similar means, the effects of the symmetry operations 

on the spin parts of the two electron functions can be ob­

tained. The results are tabulated in Table 39. 

The two possible spin states which result from the two 



z z4 

Matrîv representations in comolex and real sDace 
for some of the operations of the group 

Matrix 

ODerationa 

Complex 
matrix 

Real 
matrix 

o\ 1 /1+i 0 \ 

ljx'2 \ 0 1-i/ 

1 

0 

aThe operations used are explained in the text immedi­
ately following Equation 291. 

Table 39. Effect of the rotation operations on the spin 
functions 

Operation3 

Initial ; ~ 
function E c4 ^*2 (~2 C2 

(aa) (aa) i (aa) -(eta) -(PP) -i(PP) 

(PP) (PP) -i(PP) -(PP) - (aa) i (aa) 

(aP) (ap) (ap) (c%P) - (pa) - (Pa) 

(pet) (pa) (ga) (pa) -(aP) -(aP) 

3The rotation operations of this table are the same as 
those of Table 38. 



225 

electron product functions are the sinalet and tripot 

with S = 0, and S = 1, respectively. Just as the space func­

tions may be characterized by certain irreducible group repre­

sentations according to their values of total orbital angular 

momentum, J, in the weak field case, so the spin functions can 

be characterized by their values of S. Thus, for example, 

the singlet spin function belongs to the representation 

since all the group operations leave the wave function invari­

ant. From Table 3, it is seen that the irreducible repre­

sentations for S = 1 are A2 + E. This means that the three 

triplet functions, aa, (3(3, and 1/ 4~2 [ap + pa], can be 

combined in some linear fashion such that one of the functions 

belongs to the representation A2 and the other two functions 

belong to the representation E. Intuition alone predicts that 

l/ >/2* [ap + Pa] would belong to the representation A2, and 

this is confirmed by application of the group operations to 

the function. 

Because certain of the group operations change aa into 

PP and others involve the complex number, i, the appropriate 

linear combinations for the doublet, E, is seen to be: 

I/J2" [aa + pp] 

i/ [aa  -  Bp] 

The group operations on the above matrix give the same results 

as those obtained by application of the real 2x2 matrices 

given in the second row of Table 38. Therefore, the symmetry 
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belong to E 
(300)  

a r*t p> -r)f p ft ry i r-, •PîTrir'f i nr>c m ŝrr "Kr* f 3"Kn1 sf sa d c -

Singlet = 1/  v 2 [ap -  pa]  belongs to At_ 

Triplet |2 ™ 1/ vt [ap + pa] belongs to A 2  

Triplet ^3=l/ J~2 [aa  + pp]  

Triplet ^4 = i/ x^2 [aa  -  PP] 

Knowledge of the representations to which the spin func­

tions belong, that is, for which they are basis functions, is 

valuable since the complete symmetry adapted functions can be 

quickly assembled once the symmetry adapted space functions 

are known. The complete functions are constructed, and the 

representations to which they belong obtained, by means of the 

direct product of group theory. Specific examples of the 

construction are presented in the next section of this thesis. 

2. Construction of the strong field wave functions 

A linear combination of the d-electron wave functions in 

their complex form may be taken such that five real functions 

may be written. Furthermore, the five real functions are 

symmetry adapted, that is, they are basis functions for the 

symmetry group operations. Thus: 

p 
(z ) belongs to the representation a^, 

(x2-y2) belongs to the representation bj_, 

(xy) belongs to the representation b^, 

(xz),(yz) belong to e. 

When the product functions of two single electron wave 
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-x. <a j. w o Yiiuiic UJ. j uuy w wx i _L v, 11 tiicv 

belong are given directly by the direct product of the 

symmetry representations. For example, the product functions : 

01 = (x2 - v2) (xy) (301) 

02 = (xy) (x2 - y2), (302) 

belong to the symmetry representation, a2, since group theory 

shows that b^ x b2 = a2. Actually, it is possible to con­

struct a symmetric and antisymmetric function by linear com­

binations of 0i and 02. Thus: 

=  l / f 2 [ 0 1 + 0 2 l  " l//*2 [ (x2-y2) (xy) + (xy) (x2-y2) ], (303) 

X2 = l/jr2[01-02] = 1//2* [ (x2-y2) (xy) - (xy) (x2-y2) ] . (304) 

Both and X2 belong to the group a2. The validity of the 

direct product conclusion can be readily checked by determina­

tion of the effects of the rotations on the functions. 

The inclusion of spin follows the same simple scheme. 

All that need be remembered is that the singlet function re­

quires that the space part be a symmetric function and that 

the triplet state has an antisymmetric space part. Thus, from 

appropriate combinations of Equations 303 and 304 with the 

spin functions given by Equation 300: 

Singlet state: ^ x £ belongs to a2 x A^ = A^ 

Triplet state: ^ = X2 x: 2; belongs to a2 x A^ = A^ 
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belong to a2 x E : E = T-

(305) 

It is convenient to use the representation of Bethe (1) 

to denote the final irreducible representation to which the 

complete function, space and spin, belongs, and to use the 

notation of Liehr and Ballhausen (26) for identification of 

the space part of the functions. Thus, -£2 = x ̂  above, 

belongs to and the basis function is denoted by ^A2 (b^b2) . 

The superscript on the capital letter symmetry group symbol 

represents the fact that the function is a triplet. The A2 

part indicates the symmetry representation of the direct 

product of the space functions. The representations in 

parenthesis are the individual space representations of the 

two electron functions which make up the direct product. 

Thus, the space functions that are required are con­

structed from all possible combinations of the four states, 

al-> bi> b2, and e. Inclusion of the spin follows the same 

pattern. Some complexity arises in connection with the func­

tions which result from e x e, since: 

There are two cases to be considered; 1) when both e repre­

sentations are space functions. and 2) when one is a space 

function and the other a spin function. 

In the first case, the two space functions which belong 

e x e ai + a2 + bi + b2. (306) 



to e are (xz) and fvz) . There a --e r-nriM na-f-i c ,-^f -the 

two electron product that are possible: 

X]_ = 1/ -IH [ (xz) (xz) + (yz) (yz) 1 (307) 

X2 = 1/ -fl [ (xz) (xz) - (yz) (yz) J (308) 

X3 = 1/ *p2 [ (xz) (yz) + (yz) (xz) ] (309) 

X4 = 1/ -I~2 [ (xz) (yz) - (yz) (xz) j (310) 

It is apparent that the first three functions are symmetric 

and the last is antisymmetric, Thus X]_, X^ Xg will result 

in singlet states and X4 belongs to triplet states. Further­

more, application of the group operations to the four func­

tions shows that: 

X]_ belongs to A^, 

X2 belongs to 

X3 belongs to B^, 

X4 belongs to A^. 

Appropriate combinations of the X functions with the spin 

functions given in Equation 300 lead to the results : 

= *1 + £1 
• 

Ai X al, belongs to (311) 

^6 = 
X2 X É1 Bi X al, belongs to r3 (312) 

= X3 X Cl - B2 X al> belongs to r4 (313) 

^8 
= x4 X = A2 X a 2 >  belongs to r 1  (314) 

= x4 X 
• = 

A2 X e, belongs to 1 (315) 
«11 ,  X/ -ij* W 
•v 10 'x4 x 4J 

xn situations of other symmetries, or when more than two 

electrons need be considered, it becomes more difficult to 



230 

determine v/nich states that result from the direct product 

will be symmetric and which will be antisymmetric. In such 

cases, recourse may be made to the methods outlined by Tisza 

(53) for obtaining the symmetric portion of the direct product. 

An example of its application to a specific problem has been 

given by Finkelstein and Van Vleck (54). 

The second case in which two E representations result is 

that in which one is due to the space part and the other due 

to the spin part of the wave function. For example, consider 

the two electron combination of the (z2) orbital with the 

(xz), (yz) doublet. Then: 

0\ ~ 1/J~2 [ (z2) (xz) + (xz) (z2) ], symmetric, (316) 

02 ~ 1//2" [ (z2) (xz) - (xz)(z2)], antisymmetric, (317) 

02 = 1/J2 [ (z2) (yz) + (yz) (z2) ], symmetric, (318) 

0^ = 1/J~2 [ (z2) (yz) - (yz)(z2)], antisymmetric. (319) 

The two symmetric functions belong to the E symmetry 

representation, and upon combination with the antisymmetric 

s pi-n function, £ j. = l/V~2"[ctp-Ba ], which belongs to a2, result 

in a degenerate pair : 

^11 = ^1 x ^ 1 

^12 ^3 x ^1j 
, which belong to f5. 

The state would be denoted as (^E (a-^e) . 

Similarly, the ^E(a-^e) functions can be readily formed 

by combination of the two antisymmetric space functions with 

the symmetric spin function, "s V>/~2~ [aB +(3a]. Thus : 
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- '• — & „ T.' 5 
12 '  ̂ ^ 

*13 = «*4 x ?2 

belong to I =, 

and are designated E (a-^e) . 

But the combination of the antisymmetric space functions, 

02 and 0^ with the symmetric spin functions, £3 and £4, re­

sult in triplet functions which belong, not to but to 

f1, f2> 1*3' and f4, since E x e = + f2 + T3+ f4. 

There are four simple combinations of 02 and 0^ with £3 and 

£4: 

1) 0"2 x |3 

2) dg * %4 

3) 04 x '3 

4) x i4 . 

Obviously, they will not be symmetry adapted in themselves, 

but linear combinations of them will be. Thus : 

"^14 [(^2s3 - 04^4], belongs to (320) 

'y 15 =1AT [ (02^4 + 04?3 1 > belongs to f 2  (321) 

1̂6 =1A/T [(02*3 + 04^4], belongs to f3 (322) 

^17 =V\f2 l(02^4 - ̂ 463 ] > belongs to f4. (323) 

That these functions are appropriately symmetry adapted can be 

checked by application of the group operations on both the 

spin and space parts of the functions. 

There is one further precaution that must be exercised in 

the construction of the wave functions and that is in regard 
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tions associated with the fg representation. These factors 

are discussed in the next section of this appendix. 

3. Phase factors and order of the f g representation functions 

The following discussion applies equally to the strong 

field and weak field functions, but because of the "tangibil­

ity" of the strong field functions when dealing with basis 

function rotations they will be used to illustrate the situ­

ation. 

Consider the two sets of strong field functions which 

belong to the f5 representation: 

f if± = 1/2 [(z2)(yz) - (yz)(z2)][ap + pa] 
JE(aie) \ (324) 

I if2 = 1/2 [ — ( z ) (xz) + (xz) (z2) ] [ap + Pa] 

( 0, = 1/2 [ (xy) (xz) - (xz) (xy) ] [ap + pa] 
E (bxe) j (325) 

t 02 = I/2 f-(xy) (yz) + (yz) (xy) ] [ap + pa] 

By the techniques discussed in Appendix D.4, it is possible to 

show that the matrix element: — 

r * 
Q 0± dr =3 -/T [F2 - 5F4] , (326) 

where Q is the electronic interaction operator, and F2  and F4  

are the Slater-Condon parameters for the electronic inter­

action. 

Similarly, the matrix element: 
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-y2* Q 02 d-c = - 3 JT [F2 - 5F4] . (327) 

But if one uses the other possible combinations as the non-

diagonal matrix element, the incorrect value of zero is ob­

tained. That is : 

Q 02 dT = r ->'2* Q 0± dx = 0 (328) 

In order  to avoid the pitfall of choosing the wrong pair 

with which to calculate the matrix element, it is necessary to 

carefully order the members of each set of degenerate func­

tions and to calculate the matrix element from corresponding 

members of the set. The way to do this is to arbitrarily 

choose one particular ordered set as a standard, study the 

effect of the rotation operations on the standard set, and 

order the remaining sets such that their wave functions follow 

the same pattern. 

For example, in this thesis, the set arbitrarily chosen 

as standard was: 

V/ x  = 1/2 [ (z2) (xz) + (xz) (z2) ] [ap -  pa]  
E(a^e)= (329) 

if2 = 1/2 [ (z2) (yz) + (yz) (z2) ] [ap - Pa] 

By use of the replacement operators and the corresponding spin 

operators it can be shown that: 

E ^2) = (^1 ^2) (330) 

C4 ("//i if?) ~ ( ifi) (331)  ̂ -4- — -

C2 (*ii\ if2) = (~"^i ~'^2) (332) 



C"2 W']_ - 2) = (~"^2 > (334) 

where E and the C operators are the same as those given in 

Table 38 and the corresponding matrices are those given by the 

second row of the same table. Thus: 

C4 (tfx i'2) = (tfx f 0 1 A (-^2 ^l) • (335) if2) f 0 l\ 

(-1 oJ = 
A "possible" choice for another set belonging to the 5 

representation might be: 

X-, = 1/2 [ (xy) (yz) - (yz) (xz) ] [ap + Pa] 
JE(b1e)= (336) 

X2 = 1/2[(xy)(xz) - (xz)(xy)][ap + pa] 

On application of the replacement operators and the corres­

ponding spin operators, one obtains: 

E ( X x  X2) ( X x  X2) (337) 

C4 (Xx X2) (-X2 Xx) (338) 

C2 (XL X2) (-XL -X2) (339) 

(Xx X2) (X1 -X2) (340) 

C2 (Xx X2) (X2 X1) (341) 

Note that the spin changes from Table 39 influence the signs 

preceding the functions. With the choice of functions given 

by Equation 336, differences appear in regard to the C1 and C" 
2 2 

rotations, that is Equations 340 and 341 do not correspond to 

Equations 333 and 334 as they should. However, if the func­

tions: 
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•i, — v . 

3E(b.e) = , (342) 
02 = "xi 

are used, the group operations have the same results as those 

of the standard set. This is the situation with all the 

functions constructed by the methods outlined in Appendix D.2. 

That is, they will either be proper choices or will become the 

proper choices by a simple re-order and/or change of sign. 

Consistancy of the signs preceding the matrix elements can 

be obtained by calculation of the matrix element from the 

first function of the ordered pair. 

4. Electronic interaction terms for strong field matrix 

elements 

In the case of the weak field matrix elements, the elec­

tronic interaction between electrons outside of closed shells 

resulted in non-zero values only for the diagonal matrix 

elements. This was the result of construction of the sym­

metry adapted functions for the weak field from wave func­

tions of the type | S,L,J,Mj) which are already diagonalized 

with respect to the electronic interaction. The expressions 

for the diagonal terms were obtained from tabulations avail­

able in the text by Condon and Shortley (6). 

In the strong field case, however, the matrix elements 

are diagonal with respect to the ligand field parameters and 

will have non-zero electronic interaction values for both 



diacrona1 and off-diagonal elements. The general form for the 

calculation of electronic interaction terms has been given in 

section 8^ of Condon and Shortley (6). The problem is quite 

similar to that involving the interaction of the ligand point 

charge with the electrons of the central atom in that the 

matrix element of interest is of the form: 

(a b { Q | c d) = 

f u*(1) u* (2)(e2/r12) uc(1) ud(2) dr , (343) 

where u^ are the single electron wave functions, with (1) and 

(2) referring to electron one and electron two respectively; 

e is the charge of the electron, r^2 is the distance between 

the electrons. By expressing the single electron functions in 

terms of radial and angular parts and expanding the potential, 

Q, in terms of the spherical harmonics, one can show that the 

matrix element becomes : 

(a b | Q | c d) = 5 (msa, msc) 6 (msb, mgd) 5(m^a + m^, 

+ m_£d) x 2 ck (l3!^ a, icm^c) ck d^ lkm^b) 
k= m 

(344) 

where the F% are radial functions usually left as parameters 

v 
to be evaluated and the c' coefficients are obtained from the 

expression: 

c K ( i  ,  i 1 m f 1 )  

, , ptt 
= v 2 v 2k+l j © (k, ) e (i , m) 9 (i ! , nrg ' ) sine d© (345) 

"o 

where the © functions are the associated Legendre functions. 
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Values of the c" coefficients have been tabu Isted hv rnndnn 

and Shortley (6) and can be found in Table 1& of their text. 

In the use of this table, it is important to note the de­

pendence of the ck coefficients, namely, c^-(a^c) and c% (d,b) , 

and to know that: 

v mi ~mi ' , 
c (imi, = (-1) cx(£ 'mf , , im^) . (346) 

For example, to evaluate the d-electron interaction element: 

(1+ 0~ i q i 2+ -1") , 

where a, b, c, and d are given in terms of the ing value and 

the superscripts (+) and (-) refer to the spin values. One 

notes that the Kronecker delta requirements are fulfilled, 

particularly the one which deals with the m_g values. There­

fore: 

(1+ 0~ | Q 1 2+ -I") 

= c2(1,2) c2(-1,0) F 2 + C4(1,2) c4(-l,0) F4 (347) 

= -c2 ( 2,1) c2 (-1, 0) F 2 - c4 (2, 1) c4(-l,0)F4 (348) 

The form in Equation 348 is due to the relation given by 

Equation 346. From Table 1& of Condon and Shortley (6): 

c2 (2,1) = + v/6" 

C 2 ( — 1 , 0 ) = 4-1 

c4 (2,1) = - sf5 

c4(-1,0) = + J30 

Hence : 

(1 0 j Q J 2 —1 ) = \Ts F2 ~ 5 F4 (349) 

To evaluate the matrix elements of the strong field 
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runctions. it is necessary tn cnm all possible tv.T: 

interactions. For example, for the matrix element: 

(A |  Q |  B) ,  

where: 

A = 1/2 [ (xz) (yz) - (yz) (xz) ] [ap + pa]  

= 1/2i [ (1,-1) - (-1,1) ] [ap + pa]  (350) 

B = 1/2 [(x2-y2)(xy) - (xy)(x2-y2)][ap + pa]  

= l/2i [ (-2,2) - (2,-2) ] [ap + Pa] ,  (351) 

one can ignore the spin Kronecker deltas since they are satis­

fied, and multiply the space results by two to account for 

the two spin states, ap and pa. Therefore: 

( A l O l B )  =  2 / 4  ( ( 1 , - 1 )  -  ( - 1 , 1 )  |  Q  |  (-2 , 2 )  -  ( 2 , - 2 ) )  ,  ( 3 5 2 )  

= 1/2 [(1,-1 I Q I -2,2) - (1,-1 I Q j 2,-2) 

- (-1,1 I Q j -2,2) + (-1,1 j Q I 2,-2)] (353) 

From the same techniques illustrated by Equations 347, 348, 

and 349, the matrix element can be shown to be: 

(A | Q | B)= 1/2[(-35 F4) - (-6F2 - 5F4) - (6F2 - 5F4) 

+ (-3 5F4)], (354) 

= 6F2 - 30F4. (355) 

Similar procedures result in the evaluation of all the 

diagonal and off-diagonal elements due to the electronic 

interaction. 


