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A method, involving the expansion in localized functions (ELF) 
of the crack-opening-displacement in a boundary integral representa
tion of the elastic displacement in a flawed half-space, is applied 
to the calculation of elastic wave scattering from surface cracks in 
a two-dimensional geometry. The positions of the localized functions 
can be controlled in order to simulate cracks with various numbers 
of islands of closure. The Rayleigh backscattering from a surface
breaking crack changes dramatically at some frequencies as the crack 
is partially closed from the tip, consistent with recent observations. 
For the open surface-breaking crack, the calculations reproduce the 
positions of the known peaks in the reflection coefficient at kL = 
1, n, 3n. The amplitude of the kL = 1 peak is sensitive to certain 
parameters of the model. The potential usefulness of this method 
lies in its flexibility and in the fact that it can be straight
forwardly applied in 3d. 

INTRODUCTION 

It is important in NDE to be able to detect and characterize 
cracks in elastic materials, particularly surface cracks. In support 
of ultrasonic scattering measurements it would be desirable to have 
a reliable theoretical method to compute the effects of cracks on 
bulk and surface waves. Many calculations of surface crack scattering 
have been performed in recent years, but all of them (including the 
present one) have considered simplified geometries (2d) and are 
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therefore not directly relevant to interpretation of data from real 
fatigue cracks. What distinguishes the theory which we describe 
here from others is that our method may be straightforwardly extended 
to 3d surface cracks, and that cracks which are not simply connected 
(e.g., have islands of closure) can be modeled. 

Some experimtiys have been performed recently by Tittmann, 
Ahlberg and Buck, which underline the importance of understanding 
the scattering from partially-closed surface cracks. They allow a 
Rayleigh surface wave to impinge on a surface-breaking fatigue crack 
and measure its reflection and conversion into bulk waves as func
tions of applied stress on the sample, which is supposed to open and 
close the crack. A surprising feature of their results is that 
Rayleigh backscatter (reflection coefficient) is much enhanced when 
the crack is not quite fully open over its val~~)for an open crack 
or a more-closed crack. It has been suggested that this enhance-
ment could constitute a flag indicating the presence of cracks in a 
sample undergoing cycled applied stress. But a theoretical under
standing of the mechanism is essential; the effects of partial 
closure of a given crack may be expected to depend strongly on the 
incident wave length relative to the size of the crack. 

In this paper we will sketch the method and illustrate it by 
application to a 2d surface-breaking crack (normal to the surface) 
which is partially closed from the tip in successive stages by a 
sequence of islands of closure. 

METHOD OF CALCULATION 

The detailed equations of the theory have(3) or will(4) appear 
elsewhere; her~ we will only sketch the basic ideas of the method. 
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Fig. 1 Surface-breaking crack geometry. A Rayleigh wave with wave

number ~ is incident from the left; it is reflected, trans
mitted, and converted into bulk waves k. The origin of the 
x-z coordinates is the crack mouth, C i~ the right-hand crack 
surface, and So is the z = 0 plane. Overall crack length is L. 
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Figure 1 illustrates the geometry of the system we consider. 
The basic equation is the boundary-integral-representation (BIR) for 
the elastic displacement u or the stress tensor a, which we 
schematically write as 

f dS' ~(r,r') uscatt(r') + f dS' ~(r,r') ~u(r') 
So C 

= 
to(r) : oCr) z < 0 

z > o. 

(1) 

(2) 

Here uscatt = u - uO, ~u is the crack-opening displac6ment, 0° is 
the stress tensor associated with the incident wave u which satis
fies stress-free boundary conditions on S , and ~(r,r') is a Green's 
stre~~ dyadic. Equation (2) is now used ~o analytically solve for 
usca (r) with r on SQ' the result is substituted into (2), which is 
then contracted with n, the normal to C. This yields, on account of 
the boundary condition on the surface traction on C, 

f dS' [R(r,r') - Q(r,r')] ~u(r') = 
C 

t(r) - to(r) z < ° (3) 

o 
-t (r) r on C (4) 

where t = n a is the surface traction'vect~£, Q = n ~, and R is 
obtained from the solution of (2) for usca . It describes the 
field at r reflected in So of the COD at r'. Equation (4) may now 
be solved for ~u and the result may be substituted into (3) to get 
t(r) for all r with z < O. In particular, if one lets Irl ~ ~, then 
the asymptotic form of (3) will give us the scattered amplitudes and 
the cross-sections. 

The actual strategy for solving (4) for ~u remains to be speci
fied. The idea of our ELF (expansion in localized functions) method 
is as follows. Take a convenient set of localized functions v (r), 

n r on C, and write 

N 
~u(r) = I 

n=l 
C v (r). 

n n 
(5) 

The v 's could be step functions, triangle functions, or any of many 
othernchoices. Most convenient for our purposes, especially from 
the 3d perspective, is the gaussian function, because it allows the 
calculation in 3d to be pushed further analytically before a numerical 
procedure must be resorted to. Thus we choose, for the 2d case, 
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(6) 

If (4) is now multiplied by v (r) and integrated on s, then it 
becomes m 

where 

N 
1: 

n=1 

R mn 

(R - Q )C = _to 
mn mn n m 

(7) 

= f dS f dS' v (r) R(r,r') v (r') 
C C m n 

(8) 

etc. In practice, in order to reap the benefits of our choice (6) 
of gaussian functions, it is necessary to replace in (8) 

00 

f dS ~ f dz (9) 
C -00 

an approximation which, because of the rapid falloff of v (z), 
should not be expected to induce much error. Another sou~ce of 
error is caused by the finiteness of N in (5), which is necessary in 
order to solve (7) on a computer. Eq. (7) is a linear system that 
may be straightforwardly solved for C , which, in turn, substituted 
into (3), will give scattered amplituHes and cross-sections. 

Fig. 2 
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The localized functions v (r) in which the COD is expanded 
are gaussions of width 20ncentered at z = zl' z2' ... , ~N' 
The z's are equally spaced (z - z -I = d); the value ox"zl 
determines how deeply, if at gIl, ~e crack is buried. 
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PARAMETERS 

The replacement (9), as conjectured above, causes no problems 
in the evaluation of Q . But in R it does, because our procedure 
involves using a compl~ Fourier re~esentation for R(r,r'), and in 
R (not in Q ) the extension of the z integral causes the contour 
iRfegral in t~ Fourier representation to diverge. At the cost of a 
manyfold increase (in the 3d case) in numerical labor one could 
obviate this difficulty by renouncing (9) and probably choosing a 
different form for (6). Instead we choose to replace (6), as far as 
R is concerned, with nm 

v (r) = o(z-z ) 
n n 

(10) 

and smearing the resultant too-sharp position dependence of R(r,r') 
for z and z' near2the surface by putting an ad-hoc convergence 
factor exp[-(qo') ] parametrized by a length 0' into the Fourier 
integral on q im R . This is a labor-saving substitute for a very 
difficult correct ~ treatment, which introduces an additional 
parameter 0' to be determined by comparison with experiment or other 
theories. 

The other parameters of the theory are 0 and zl' As discussed 
in (4) (and for a in (3)), a may be fixed by requir1ng the exactly
known low-frequency scattering from an isolated crack (we call this 
condition I) to be reproduced, and the value of zl corresponding to 
a surface-breaking crack may be determined by requiring that the 
exactly-known SH scattering from a normal surface-breaking crack 
(condition II) compute. The former condition gives a lower limit on 
o and the latter gives a very precise value for zl' for any given 0' 

and N. 

One more exactly-known experimental feature is still needed to 
fix 0' for a 2d surface-breaking crack. This feature is provided by 
the forward Rayleigh scattering amplitude at short wavelength, for a 
Rayleigh wave incident. It can easily be seen that t~tS amplitude 
must, after averaging over a wavenumber range 6k »L ,be equal to 
the negative of the incident amplitude (condition III) in order 
that the transmitted intensity should, in this limit, be frequency
independent. Thus, the determination of 0, zl' 0' involves a search 
for numerical self-consistency, in which we have only taken the 
first step. What we have done up to now is to take 0' = 0 and 
satisfy conditions I and II by appropriately choosing zl and 0, then 
varying 0' to satisfy III. The next step will be to use this 0' and 
again vary a and z to satisfy I and II, and so on for hopefully only 
a few iterations, until I, II, and III are simultaneously fulfilled. 
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Fig. 3 

RESULTS 
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Crack signatures (defined by I v (r) for a sequence of cracks 
n=1 n 

which are increasingly (back to front) partially closed from 
the tip (at the right). 

The results which we show here are for a crack normal to the 
free surface, described by a COD which is expanded into N = 20 
localized functions. Partial closure of the crack is simulated by 
simply omitting every other v , starting with n = 19 (next to the 
crack tip), then n = 19, 17, ehen n = 19, 17, 15, continuing until 
all the odd n's are omitted. The signature of this sequence of 
cracks is illustrated in Fig. 3, where the crack tip is at the right 
and the crack closure (quantified by the number of "welds", i.e. 
omitted v's) decreases toward the back of the plot. 

n 

For values of a = .5d, zi = -.59d, and a' = .50 as determined 
by the procedure explained above, results for the backscattered 
Rayleigh intensity are shown in Fig. 4. Zero wavenumber is at the 
right; the plotting variable in k L, where k is the shear wavenumber. 
For Poisson's ratio = 1/3, which ~s the valu~ we always use, the 
Rayleigh wavenumber is ko = I.072k. One can see that, for a value 
of ~L = 10 (approximately that us~d in Ref. (1)) the Rayleigh 
backscatter does, in fact, increase as the crack tip opens, in 
agreement with experiment. 
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Fig. 4 Backscattered Rayleigh intensity (Rayleigh incidence) for 
the crack illustrated in Fig. 3. Closure increases front to 
back. Frequency increases from right (k L = 0) to left 
(k L = 10). s 

s 

Fig. 5 Forward Rayleigh intensity for partly closing crack. The 
crack which is completely partially closed (10 welds) becomes 
nearly transparent to Rayleigh waves. 
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Fig. 6 Real and imaginary parts of the forward (squares) and backward 
(circles) Rayleigh amplitudes as functions of frequency (ver
tical coordinate) expressed as k L. The limits of the x, y 
axis are ± (incident amplitude);Sthus condition III is nearly 
satisfied for the transmitted amplitude. 

Fig. 7 SV intensity downward from partially closing crack, for 
incident Rayleigh wave. P scattering in this direction is 
negligible. 
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The forward Rayleigh intensity is shown in Fig. 5, and the 
forward and backward Rayleigh scattered amplitudes for this 2d crack 
are shown in Fig. 6. Finally, the converted SV radiation intensity 
is shown in Fig. 7 for e = 1800 (directly down). Here, too, depending 
on the frequency, the intensity may be dramatically enhanced or 
attenuated as the crack closes. 

DISCUSSION 

(19ur results are consistent with the experiments of Tittmann et 
al. ,which nurtures the hope that NDE involving ultrasonic Rayleigh 
waves concurrent with cycled applied stress may be a sensitive tool 
for crack detection and characterization. The shape of the scattered 
intensities as exemplified in Figs. 4, 5, and 7 are determined, of 
course, by the crack closure signature shown on Fig. 3. To determine 
the latter from the former (especially for a real 3d crack) adds 
another complication to the already very difficult inverse problem, 
and is unlikely to be accomplished soon. But we have at least 
established the qualitative result that, depending on the frequency, 
scattering can be increased or decreased by partial closure of the 
crack tip. Other scenarios for crack closure have also been computed 
(partial or complete closure from the center or from the root); they 
yield scattering characteristics which are different from those 
illustrated here. 

The curve of Fig. 4 - Rayleigh backscatter - should, for the 
open crack (no "welds") agree Wt5~ the Rayleigh backscatter results 
which appear in the literature. They do agree reasonably well. 
Both have peaks at ~L ~ 1, kgL ~ n, and ~L ~ 3n; the height of the 
peaks at nand 3n are about r1ght, but the ~L = 1 peak is too high 
by a factor of 2. Its height is sensitive to the z , and 0' param
eters in our theory; hopefully this discrepancy will disappear if 
the parameters are determined iteratively as we discussed above. 

As we have implied by labelling them in units of n, the nand 
3n resonances can be understood in terms of standing Rayleigh waves 
on the crack. But the ~L = 1 peak must be interpreted differently, 
perhaps as follows. 

In a Rayleig~6,ave, the material near the surface moves in 
elliptical paths, counterclockwise if the wave propagates to the 
right. The major axis of the ellipses is vertical. As one goes 
deeper into the material the ellipses become more and more eccentric. 
At a depth given by k Izl = 1.016 (for Poisson's ratio = 1/3) the 
motion degenerates into vertical linear motion, and at greater 
depths it becomes elliptical again, but with a phase reversal (i.e. 
the material moves clockwise). This suggests that a crack with 
length k L ~ 1.016 (or ~L ~ 1.1) should couple to Rayleigh waves 
most eff~ctively, and provides a qualitative understanding for the 
presence of a peak near the corresponding frequency in Fig. 4. 
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OUTLOOK 

Although there are easier and more accurate methods for calcula
ting the effects of simple 2d surface cracks on elastic waves, the 
ELF method with gaussians seems to be unique in its flexibility and 
generalizability to 3d. It can, without essential modification, be 
used to compute, for example, scattering from partly-closed halfpenny 
cracks. The algebra involved in deducing the R matrix becomes quite 
tedious in 3d, and will be aided with a computerized symbol 
manipulation program. This work is underway. 

REFERENCES 

1. "Crack Closure Effects in Ultrasonic NDE for Real Part-Through 
Fatigue Cracks in AI-Alloy", B. R. Tittmann, L. A. Ahlberg, 
and o. Buck. Review of Progress in QNDE, Vol. 1, Ed. D. O. 
Thompson and D. E. Chimenti (Plenum 1982) 551-555. 

2. James H. Rose (private communication). 

3. "Theory of Scattering of Elastic Waves from Flat Cracks of 
Arbitrary Shape", William M. Visscher, Wave Motion 5 (1983) 
15-32. 

4. "Elastic Wave Scattering by a Surface-Breaking or Subsurface 
Planar Crack", William M. Visscher, Los Alamos Report, 
LA-UR-83-750, (to be published). 

5. See, for example, "Scattering of Elastic Waves by a Surface
Breaking Crack", D. A. Mendelsohn, J. D. Achenbach, and L. M. 
Keer, Wave Motion ~ (1980) 277-292. 

6. "Rayleigh and Lamb Waves",!. A. Viktorov, (Plenum 1967), p.5. 

DISCUSSION 

J.H. Rose (Ames Laboratory): I'll start the questions. One would 
think that one would put such a thing in the boundary conditions 
rather than the variational wave function, or am I confusing 
what you did? It seemed to me that you have a set of variational 
wave functions some of which you arbitrarily set equal to zero. 
One would think that you would have very general wave functions 
but you would change the boundary conditions. 

W.M. Visscher: Yes. Well, the frequency that I used on this 
fixes the Rayleigh wave function, the signal, I call it, 
I never changed that again. It describes one of the elements 
of the crack surface, so I then have the freedom in solving 
this linear system. I find the amplitude of that wavelength, 
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that is the normal Gaussian, which simulates a step function. 
If I did this with step functions. you would have problems with 
it. Well, this Gaussian is just what I substituted as a step 
function because it is much more convenient numerically. 

B. Cox (Rockwell International Science Center): At the moment, I 
suppose you invert the matrix directly, do you? 

W.M. Visscher: Oh, yes. 

B. Cox: Would you be able to continue to do that when you go to 
fully three-dimensional problems? 

W.M. Visscher: You mean because it would be a bigger matrix? 

B. Cox: Yes. 

W.M. Visscher: There might be some problems there. So far, I have 
only gone up to a 20-by-20 matrix, but in three dimensions, in 
order to do complicated shapes, you have to go to much bigger 
matrices, and I might need to use sophisticated techniques 
which I haven't really thought about yet. 

J.H. Rose: In regards to that, I've always wondered why people have 
not tried non-linear variations with using~ priori information 
to get what the wave function is and then having many fewer 
variational parameters. 

W.M. Visscher: Say that again. 

J.H. Rose: Well, you use a linear method there. 

W.M. Visscher: Right. 

J.H. Rose: Now, it would be quite possible in quantum mechanics to 
choose a basis set which is non-linear and much more complicated 
but where you can build in what you expect the wave function to 
look like. In such cases, you reduce the number of variational 
parameters tremendously at the cost of having to do a search for 
the minimum of the energy, and I was wondering if you considered 
such a method and why they haven't done it here? 

W.M. Visscher: No, I haven't considered such a method. In fact, I 
think this nuclear method is the simplest that I can imagine. 
There is some advantage to keeping it simple. 




