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CHAPTER 1. Introduction 

1.1 Scientific computing 

The advent of the computer has revolutionized the practice of science. The use of high-

performance supercomputers allows scientific calculations to be performed on a previously 

unthinkable scale. Supercomputers tackle extremely large computational problems such as 

sequencing genomes, modeling sophisticated weather patterns, simulating nuclear explosions, 

calculating molecular properties, etc. 

One of the most prevalent supercomputer architectures consists of using multiple nodes 

of symmetric multi-processor (SMP) machines, where all the processors resident on a node 

have direct access to the local memory on that node. Each node is then connected to a high-

performance network. To access memory in an inter-node fashion, the data is transferred via 

the network. The popularity of the SMP cluster is due in no small part to its modularity. 

Increasing the size of the cluster (as well as increasing the computational power) requires only 

adding more nodes and incorporating the additional nodes into the existing network. SMP 

clusters come in a variety of sizes, i.e., there is a good deal of variability regarding the number 

of nodes in the cluster, as well as the number of processors per node. SMP clusters can be 

constructed from commodity hardware components or specially designed for large scientific 

computer centers. 
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1.1.1 Memory management and data movement 

1.1.1.1 Message Passing Interface 

To achieve practical performance on parallel computers one has to have an efficient method 

for transferring data between and among nodes. One of the most popular mechanisms for 

data movement in parallel computing is the Message Passing Interface (MPI) [1], MPI is 

a standard which defines mechanisms for parallel data movement; currently most computer 

vendors provide an MPI implementation to facilitate this data movement. MPI is a process 

based message passing library. Each process operates independently of all other processes and 

has access to its own local memory. When data needs to be transferred from process A to 

process B, process A calls a "send" function and process B calls a "receive" function. MPI can 

be used to send messages between processes on the same physical node, or between processes 

on different nodes. An advantage of MPI is that the user has direct control of memory which 

offers the opportunity to highly optimize the communication of data. A disadvantage also 

stems from the high level of control in that the user must control all the data movement 

explicitly. This can lead to a more difficult programming endeavor. 

1.1.1.2 OpenMP 

OpenMP [2] is a mechanism for shared memory parallelism, i.e., utilizing multiple proces

sors on an SMP. OpenMP consists of compiler directives which are inserted into existing code 

to divide up the computation steps and distribute the work via threads. OpenMP is primarily 

a loop-based parallelism scheme. One of its main forms of parallelism is splitting a loop into 

equal sized pieces of work and distributing the pieces to all the threads available. While MPI 

can be used on any size system (multiple SMP nodes), OpenMP can only be used to distribute 

work among one node as it relies on direct access to memory. Because explicit memory man

agement is not required when using OpenMP, the programming effort is normally much less 

than when writing MPI code. 
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1.1.2 Multi-level parallelism 

The popularity of supercomputers in the form of SMP clusters provides an opportunity for 

implementing unique methods of data movement. All the processes on a node have direct access 

to the memory of that node and as such a model like OpenMP, which already allows direct 

access to memory, is an attractive choice for parallel programming. However, OpenMP cannot 

be used to share data among multiple nodes, so an inter-node data movement mechanism is 

required, such as MPI. 

One would like to write parallel programs which can be executed on large numbers of nodes, 

and this requires an efficient message passing library (such as MPI). One would also like to 

access the shared memory of an SMP node directly (as in OpenMP) instead of calling functions 

to handle data access explicitly. The motivation for writing hybrid code is to optimize both the 

inter and intra node communication of data. A number of studies have been done combining 

MPI and OpenMP to implement a so-called hybrid or multi-level parallelism [3, 4, 5, 6, 7, 8]. 

The most common hybrid model is the so-called "master/worker" model. One MPI process is 

executed per node (irrespective of the number of physical processors per node) and that process 

spawns a master thread and a number of worker threads as well (commonly the number of 

threads is set equal to the number of physical processors on the node). The MPI function 

calls are only executed by the master thread, and when MPI calls are being executed, the 

rest of the threads are sleeping. Once any remote data required for a particular phase of the 

algorithm is obtained, the master thread on each node then partitions the work evenly between 

the threads. The clear performance penalty paid for this model is that of sleeping threads not 

doing anything during inter node communication. Also, if the network is fast enough, during 

inter node communication the master thread might not be able to saturate the bandwidth 

of the network using only one thread. If multiple threads were communicating across the 

network, it could be used more efficiently, but in the master/worker model this is not normally 

considered an option. 

To alleviate the problem of sleeping threads wasting CPU cycles, one can also augment 

the master/worker model by overlapping communication and computation among the threads 
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in a node. This would allow one (or possibly more) threads to be in a communication phase 

and the rest of the threads could be executing computations that do not depend on the data 

being communicated across the network. This is suggested as being one of the better solutions 

to utilize system resources in the most efficient manner and obtain the best performance from 

the machine. However, this type of algorithm is notoriously difficult to implement from a 

programming standpoint. 

The studies cited above showed that the choice of hybrid programming vs. pure MPI pro

gramming is highly dependent on both the machine architecture and the structure of the 

algorithm. If the algorithm has multi-level structure inherent in it, it may be a good candidate 

for a hybrid parallel algorithm. The network performance impacts the choice of algorithms 

as well. This is somewhat problematic as one would like to design one algorithm which will 

perform well on a variety of machine architectures. The algorithm we present in this work 

necessarily uses shared memory not because of any preconception about network architecture, 

but because of the large memory requirements that are associated with it [9]. The only as

sumption made in designing the algorithm is that, for large input sizes, it will be run on a 

cluster of SMPs. 

1.2 Computational chemistry in GAMESS 

One of the scientific disciplines in which computational technology has made a tremendous 

impact is the realm of chemistry. Computational chemistry has evolved into a discipline of 

chemistry in its own right, as an extension of theoretical chemistry. Computational chemistry 

is used both as a predictive and a confirmative method. Predictions about molecules can be 

made and these can, in some cases, be tested via experiment. Conversely, experimentalists may 

achieve some unusual and/or unexpected results in the laboratory and through computational 

chemistry calculations, obtain a more complete understanding of the chemical phenomena 

taking place. There exist computational chemistry software packages appropriate for a desktop 

workstation and packages used on the largest of supercomputers. Computational chemistry 

has traditionally been one of the scientific fields in which supercomputers play a large role 
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since many chemistry algorithms are resource intensive, with algorithms that stress the CPU, 

memory, disk I/O and network. The ever-increasing computational power and architectural 

complexity of supercomputers brings with it the opportunity and challenge of designing and 

implementing efficient algorithms to properly utilize the most advanced systems. 

This work uses one of the most widely used, free computational chemistry software pack

ages available, The General Atomic and Molecular Electronic Structure System (GAMESS) 

[10]. GAMESS is developed and maintained by Mark Gordon's research group at Iowa State 

University [11] and runs on almost all current computer architectures. The chemistry code is 

written in FORTRAN 77, and the communication and memory management routines are writ

ten in C. At the time of this writing, there are approximately 22,800 registered users/groups of 

GAMESS [12]. The number of actual users is most certainly higher as one license for GAMESS 

is generally used for an entire research group or organization. 

1.2.1 Distributed Data Interface 

The parallel implementation of GAMESS is built on a communication library written specif

ically for GAMESS, called the Distributed Data Interface (hereafter abbreviated DDI1) [13, 14]. 

It is a process based approach, with two levels of memory. Each process has access to a spec

ified amount of local memory (invisible to all other processes), which is termed "replicated 

memory." All processes also have indirect access (via function calls) to what is termed "dis

tributed memory" or global memory. Figure 1.1 shows an example of the memory hierarchy 

of a small system. The distributed memory is divided evenly among all physical nodes of 

the system and the amount of memory required for a particular computation is specified as 

an input parameter to the GAMESS program. DDI provides mechanisms for one-sided data 

operations such as put, get, and accumulate (see Appendix). Collective operations are also 

provided such as broadcast, global sum, and process synchronization. When performing these 

operations DDI will use system memory calls if the distributed data accessed by a process 

1Both MPI and DDI operate with the same goals, i.e., communicating data between processes. However the 
developers of GAMESS have chosen not to use MPI for a variety of reasons, one being that they want GAMESS 
to be a stand-alone software package, not dependent on external software. 
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happens to reside on the same node as the process making the request. If the data is not local 

to the node, then the appropriate interconnect network is utilized to transfer the data between 

nodes. Note that in this scheme there is no support for direct access to shared-memory arrays 

(accessible to all processes on a node). 

Interconnect 

Node 0 Node 1 

CPU 1 CPU 2 CPUO CPU 3 

Replicated 

Distributed 

Replicated Replicated 

Distributed 

Replicated 

Figure 1.1 Memory hierarchy for the current DDI implementation on a two 
node, four processor system. 

DDI provides support for two dimensional arrays. At array creation, the number of rows 

and columns are specified, and DDI partitions the array equally among all the processes in 

the system. The default partitioning scheme is to assign each process an equal number of 

complete columns of the array. The partitioning by columns (as opposed to rows) is used in 

part because FORTRAN arrays are stored in column major order. (DDI operates under the 

assumption that each process will be assigned at least one column of the array. If there are 

more processes than array columns, DDI kills the job and requests the user to specify fewer 

DDI processes to run the calculation.) Thus when a put/get operation is performed between 
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distributed memory and a local buffer, the memory pieces can remain contiguous. Access to 

DDI distributed arrays is indirect, i.e., to write data to a DDI array, one must have the data 

in a local buffer and call the DDI_PUT function to put the data into the DDI array. Similarly, 

to read data from a DDI array, one must call the DDLGET function which obtains the data 

from distributed memory and places the data into a local buffer. 

A key component of the algorithms we present in this work is the availability of three types 

of memory; namely the two presented above and SMP shared memory, i.e., memory on a node 

which any process resident to that node can access directly without the use of a function call 

such as put or get. Because of this limitation in DDI, we have added to DDI the support 

for shared memory arrays that can be directly accessed by all processes which are resident 

on the node. Figure 1.2 shows the memory hierarchy of this new version of DDI. Note the 

addition of shared memory, which is directly accessed by any processes on the node. There 

are mechanisms for collective operations such as broadcast and global sum, where the shared 

memory arrays are operated on by one process per node to avoid multiple processes attempting 

to write to a shared memory location simultaneously. A synchronization mechanism has also 

been added which allows all the processes on a node to synchronize with each other while 

remaining independent of processes on other nodes. It should be stated here that DDI remains 

a process-based communication library. DDI creates shared memory arrays that are accessible 

by all the processes on a node. In the parallel algorithm which we present in Chapter 3, when 

we refer to any shared memory operations, we are referring to the use of shared memory DDI 

arrays, not the use of any thread-based or OpenMP constructs. 

1.2.2 Electronic correlation calculations 

The coupled cluster method [15] is one of the most accurate ab initio methods available 

to computational chemists for calculating quantum mechanical electronic correlation energies 

of atoms and molecules. The formal starting point for these calculations is the electronic, 

time-independent Schrodinger equation 

=  E ^ ,  (1.1) 
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Interconnect 

Node 0 Node 1 

CPU 1 CPU 2 CPUO CPU 3 

Replicated 

Distributed 

Shared 

Replicated Replicated 

Distributed 

Shared 

Replicated 

y y 

Figure 1.2 Memory hierarchy for the new DDI implementation on a two 
node, four processor system. 

where H is the Hamiltonian of the system, E is the energy, and \I> is the exact wavefunction 

of the system. The single particle Hamiltonian (H) is given by 

H = -|V + V, (1.2) 

where h is Planck's constant (6.626 x 10_34m2kg/s) divided by 2tt, m is the mass of the 

par ticle in question, V is the three dimensional derivative with respect to position, and V is 

the potential energy function, which in general depends on both the position and momentum of 

the particle in question. Thus, the Schrôdinger equation is a second order differential equation 

whose goal is the determination of the wavefunction which is also in general a function 

of position and momentum. Once \I> is obtained, the physical observables of the particle in 

question can be calculated. 

The Schrôdinger equation can be expanded to treat multiple particles and, in fact, is 
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quite often used to treat entire molecules. One can write down the complete, many-particle 

Hamiltonian operator as, 

N N M _ NN M M _ _ 

where lower case letters i , j  are indices which denote all the electrons in the system and 

uppercase letters A, B indicate all the nuclei in the system. Also, in this expression atomic 

units have been used (see Ref. [16]) in place of the SI units which appear in Eq. 1.2, resulting in 

a much simpler overall expression by factorization of the physical constants. The total number 

of electrons in the system is N, the total number of nuclei in the system is M, Za is the atomic 

number of nucleus A, Ma is the mass2 of nucleus A, nA is the distance between electron i 

and nucleus A, nj is the distance between electron i and electron j, and tab is the distance 

between nucleus A and nucleus B. 

Because the electrons in the system move much more rapidly compared to the nuclei, an 

approximation (called Born-Oppenheimer) is made which says that the nuclei are essentially 

"frozen" in space while the Schrôdinger equation is solved for the electrons (which move in 

the field of the "frozen" nuclei). This is the approximation we will assume for the remainder 

of this thesis as the methods and algorithms outlined below are concerned with solving the 

Schrôdinger equation with respect to the electrons only. This approximation allows us to 

neglect the second term from Eq. 1.3 and the fifth term can be considered a constant. 

At this point it is appropriate to mention that the complete Schrôdinger equation is only 

exactly solvable for a system comprised of two particles, e.g., the hydrogen atom (one nuclei 

and one electron). Once the system is three particles or larger the classic three-body problem 

is encountered, which says that in the general unrestricted case, the positions and momenta 

of three interacting particles cannot be determined exactly. Because of this fact, one is then 

confronted with the choice of making an approximation to the Hamiltonian expression, or an 

approximation to the wavefunction. In the following work, the electronic Hamiltonian is left 

exact and an approximation is made to the wavefunction. This approximation is an expansion 

2 To be precise it is the ratio of the mass of nuclei A to the mass of the electron. 
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of the wave function in terms of basis functions. It involves specifying a set of basis functions, 

so that the wavefunction is a linear combination of these basis functions. Each basis function 

is parameterized by an initially unknown coefficient. The task of the computational chemistry 

application is to calculate these unknown coefficients. Once these coefficients are calculated, 

the wavefunction is known (to the limit of the basis set accuracy) and physical properties of 

the system can then be calculated using this wavefunction. As the size of the atomic basis 

set is increased, the accuracy of the calculation improves. Thus, to achieve the most accurate 

results, one wishes to use the largest basis sets that are computationally feasible. In computer 

science algorithm run-time analysis, one specifies how much time the algorithm takes with 

respect to the input size. In this case, the input size is commonly taken as the size of the 

basis set, although the size (i.e., number of electrons) of the chemical system in question also 

practically impacts the time the calculation takes. 

The first step in many electronic energy calculations is to calculate the Hartree-Fock Self 

Consistent Field energy (for background see Refs. [16] and [17]). This method involves calcu

lating each electron in the field of all the other electrons. It is an iterative calculation in which 

the iterations continue until the electrons' positions remain the same as before and after the 

iteration. Once the iterations have converged, the calculation is complete. The drawback of 

this method is that interactions between any two (or more) particular electrons is not explicitly 

calculated, since each electron only "sees" an overall field of the other electrons. Because of 

this, methods have been developed which attempt to calculate the so-called correlation energy, 

i.e., the energy due to the direct correlation of electrons with each other. These are commonly 

called electron correlation methods and the coupled cluster method is one of these methods 

used in computational chemistry today. The entire energy calculation is given as, 

Ee 1 = EsgF + E c o r r ,  (1.4) 

where Ee\ is the total electronic energy (neglecting the motion of the heavier nuclei, as noted 

above in the Born-Oppenheimer approximation). This is the sum of 5scf which is the energy 

calculated using the Hartree-Fock method, and Ecorr which is the correlation energy calculated 
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using one of various correlation methods. The coupled cluster method will be the correlation 

method described and implemented in this work. 

1.2.3 Coupled cluster method 

As mentioned above, the starting point for the coupled cluster method is to first solve the 

Hartree-Fock equations, obtaining the SCF energy and the Hartree-Fock wavefunction. This 

Hartree-Fock wavefunction is then used as the starting point for the coupled cluster wavefunc

tion, and in turn the coupled cluster energy calculation. The coupled cluster approximation 

to the wavefunction is the following, 

#cc = (1.5) 

where fee is the coupled cluster wavefunction, $o is the reference (Hartree-Fock [16]) wave-

function , and T is the cluster operator given by 

f  =  f i + T 2  +  . . . + T N .  ( 1 . 6 )  

T\ is a single particle operator, Tg is a two-particle operator, etc. The number of particles in 

the system is N. This leads to the following equation 

o = Ee^&o, (1.7) 

which is then used to solve the coupled-cluster equations. The computational demand increases 

rapidly as the size of the cluster (number of particles in the operator) increases, thus it is 

common to truncate T at at some small value of N. When truncating T at the Tg term, the 

calculation is referred to as coupled cluster with singles and doubles (CCSD)3. Truncation at 

the singles and doubles is quite common, and it is an 0(N6) algorithm. One can do higher 

order calculations, e.g., CCSDT, CCSDTQ (where T is triples and Q is quadruples) but their 

3The reader is encouraged to examine Ref. [18] for detailed background information on the coupled cluster 
method. 
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asymptotic runtime is much more costly. Consider also that the coupled cluster equations are 

iterative, that is the runtime analysis applies to one iteration, so not only is the asymptotic 

runtime quite costly, it may have to be run many times before convergence is achieved. To 

reduce some of this runtime, methods have been developed in which one performs coupled 

cluster up to a particular order (in this case, second order) and then augments the result 

with a perturbative, non-iterative correction (in this case, the triples correction). Thus, one 

performs coupled cluster for single and double excitations (CCSD) and then performs the 

non-iterative calculation for the triple excitations (T). This results in the CCSD(T) method, 

i.e., coupled cluster with single and double excitations and perturbative triples. This is a 

method that affords an excellent amount of accuracy of the calculations, but still completes 

in a reasonable amount of time and so it is used quite extensively by researchers in the field. 

This work describes implementing a parallel CCSD(T) hybrid algorithm for GAMESS. 

The CCSD algorithm [19, 20] solves for the so-called cluster amplitudes (double precision 

floating point arrays), t\ and Zg, where t\ amplitudes are single excitation amplitudes and Zg are 

double excitation amplitudes. These amplitudes are coefficients that are used to make a better 

approximation to the reference wavefunction. The (T) algorithm adds a perturbative correction 

to the calculation and is not iterative. The parallelization of the CCSD(T) calculation is 

unique in that the CCSD component is iterative and as such, to parallelize it requires quite 

a bit of synchronization between processes as the calculation must proceed in "lock-step" on 

all processes at the same time. The (T) component on the other hand, is not iterative and 

requires very little data sharing and thus it can be distributed over multiple processes in a 

simpler manner. The combination of these two quite different algorithms into one program 

provides some unique algorithmic challenges. 

1.3 Thesis organization 

This thesis is comprised of one published paper (Chapter 2) and an in-depth description of 

the fully distributed algorithm (Chapter 3) that will result in a paper submission as well. The 

work in Chapter 2 was performed principally by me. The work described in Chapter 3 was 
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performed jointly by me and Ryan Olson. My contribution included a majority of the CCSD 

parallel algorithm and a majority of the (T) parallel algorithm. Ryan Olson contributed the 

direct integral algorithm (which appears in the CCSD algorithm) and the additions 

to the DDI communication library which were necessary to operate with three levels of memory. 

Chapter 2 describes work performed to parallelize the existing coupled cluster algorithm 

using only shared memory on one node of an SMP. The primary focus was in parallelizing 

the calls to DGEMM via OpenMP. There it is shown that performance improvements are seen 

using this scheme. However, to become production code, one must consider more avenues for 

parallelization and develop a code which runs on multiple SMP nodes. Chapter 3 describes 

the fully distributed, hybrid parallel algorithms developed for solving the CCSD(T) equations 

on a cluster of SMP machines. Chapter 4 describes conclusions of the work and possibilities 

for future research. 
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CHAPTER 2. Parallelization of general matrix multiply routines using 

OpenMP 

A paper modified slightly from a publication in Lecture Notes in Computer Science1 

Jonathan L. Bentz2, Ricky A. Kendall3 

Abstract 

An application programmer interface (API) is developed to facilitate, via OpenMP, the par

allelization of the double precision general matrix multiply routine called from within GAMESS 

[1] during the execution of the coupled-cluster module for calculating physical properties of 

molecules. Results are reported using the ATLAS library and the Intel MKL on an Intel 

machine, and using the ESSL and the ATLAS library on an IBM SP. 

2.1 Introduction 

Matrix multiply has been studied extensively with respect to high performance computing, 

including analysis of the complexity of parallel matrix multiply (see Ref. [2] and Refs. therein). 

The Basic Linear Algebra Subprograms [3, 4, 5, 6] are subroutines that perform linear algebraic 

calculations on vectors and matrices with the aim of being computationally efficient across 

all platforms and architectures. The Level 3 Basic Linear Algebra Subprograms [7] (BLAS) 

^Proceedings of the 5th International Workshop on OpenMP Applications and Tools, WOMPAT 2004, Hous
ton, TX, May 17-18, 2004, appearing in Lecture Notes in Computer Science 3349 (2005) 1-11, edited by Barbara 
Chapman. 

2Graduate Student, Scalable Computing Laboratory, Ames Laboratory, U.S. DOE, Department of Computer 
Science, Iowa State University, Ames, IA 50011 

3Adjunct Professor, Scalable Computing Laboratory, Ames Laboratory, U.S. DOE, Department of Computer 
Science, Iowa State University, Ames, IA 50011 
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are subroutines that perform matrix-matrix operations. The double precision general matrix 

multiply (DGEMM) routine is a member of the level 3 BLAS and has the general form 

C^aAB + /3C, (2.1) 

where A, B and C are matrices and a and (3 are scalar constants. In the double precision case 

of real numbers, matrices A and B can either be transposed or not transposed upon entry into 

DGEMM. 

This work uses OpenMP to facilitate the parallelization of the general matrix multiply 

routines consistently encountered in high-performance computing. Specifically, we are working 

in conjunction with the ab initio quantum chemistry software suite GAMESS (General Atomic 

and Molecular Electronic Structure System) [1], developed by Dr. Mark Gordon and his 

group at Iowa State University. Many of the modules in GAMESS are implemented to run 

in parallel (via an asynchronous one-sided distributed memory model), but the module used 

in calculating physical properties via the coupled-cluster (CC) method currently has only a 

serial implementation [8]. The CC code [9] has numerous calls to DGEMM and to improve the 

performance of this code when run on shared memory systems, we are developing an intelligent 

application programmer interface (API) for the DGEMM routine which is called from within 

GAMESS during its execution. Our wrapper routine (hereafter referred to as ODGEMM) 

uses OpenMP to parallelize the matrix multiplication. Currently, GAMESS comes with a 

vanilla source code BLAS (VBLAS) library built in and one can optionally link with any 

available BLAS library instead. It is not sufficient to simply link all of GAMESS to a multi

threaded BLAS library because then the modules (other than CC) which have previously 

been parallelized will create numerous threads when the parallelization has already been taken 

care of at a different level. Because of this difference between the CC module and the rest 

of GAMESS, shared memory parallelization of DGEMM within the CC module is facilitated 

by ODGEMM (i.e., OpenMP DGEMM) which is written to work specifically within the 

CC module. Our API is designed to be directly called by GAMESS, partition the matrices 

properly and then call a supplied BLAS routine to perform the individual multiplications of 
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the partitioned patches. We have tested a number of different BLAS libraries in which the 

library DGEMM is used as a subroutine in our ODGEMM. The ODGEMM routine also calls 

different BLAS libraries based on the system software infrastructures. 

We have tested our routine with the Automatically Tuned Linear Algebra Software library 

(version 3.6.0) [10] (ATLAS), which is freely available and compiles on many platforms. ATLAS 

provides a strictly serial library and a parallel library with the parallelization implemented 

using POSIX threads. The number of threads chosen in the parallel libraries of ATLAS is 

determined when the library is compiled and is commonly the number of physical processors. 

The number of threads cannot be increased dynamically but ATLAS may use less if the problem 

size does not warrant using the full number. The multiplication routines in ATLAS are all 

written in C, although ATLAS provides a C and FORTRAN interface from which to call 

their routines. GAMESS is written in FORTRAN and as such our wrapper routine is a 

FORTRAN callable routine. Because our routine is written in C, we can use pointer arithmetic 

to manipulate and partition the matrices. This allows us to avoid copying matrix patches before 

calling the multiplication routine. 

Testing has also been performed with the Intel Math Kernel Library (version 6.1) [11] 

(MKL) and the IBM Engineering and Scientific Subroutine Library (version 3.3.0.4) [12] 

(ESSL). The MKL is threaded using OpenMP so the threading can be controlled by an envi

ronment variable similarly to ODGEMM. The ESSL number of threads can also be changed 

through the use of an environment variable. 

The testing with GAMESS has been run with ATLAS ODGEMM, ATLAS PTDGEMM, 

MKL ODGEMM, ESSL ODGEMM and ESSLSMP DGEMM (see Table 2.1). MKL does 

come with a threaded library but it cannot be called with multiple threads from GAMESS 

currently because of thread stacksize problems4. These tests have been performed on a variety 

of computational resources and associated compiler infrastructure. 

4This is a vendor specific problem unrelated to the present work. 
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Library Platform Description 

VBLAS DGEMM Intel Serial Vanilla Bias 
ATLAS PTDGEMM Intel Pthread built-in implementation using ATLAS 
ATLAS ODGEMM Intel OpenMP implementation using ATLAS 
MKL ODGEMM Intel OpenMP implementation using MKL 

ESSLSMP DGEMM IBM Vendor threaded implementation of ESSL 

ESSL ODGEMM IBM OpenMP implementation using ESSL 

IBMATLAS ODGEMM IBM OpenMP implementation using ATLAS 

Table 2.1 Acronyms for the libraries used. 

2.2 Outline of ODGEMM Algorithm 

The ODGEMM algorithm uses course-grained parallelism. Consider, for brevity, that the 

A and B matrices are not transposed in the call to the ODGEMM routine. In this case, A is an 

M x K matrix, B is a K x N matrix, and the resultant C is an M x N matrix. (In subsequent 

tables of data, M, N and K are also defined in this manner.) Upon entry to ODGEMM, A is 

partitioned into n blocks, where n is the number of threads. The size of each block is M/n by 

K, such that each block is a patch of complete rows of the original A matrix. If n does not 

divide M evenly, then some blocks may receive one more row of A than others. Matrix B is 

partitioned into blocks of size K by N/n. In a similar fashion each block of Bis a patch of 

N/n full columns of B and again if N/n has a remainder, some blocks will receive one more 

column of B than others. 

After this partitioning occurs, the calls to a library DGEMM (e.g., ATLAS, MKL, etc.) 

are made. Each thread works with one block of A and the entire B. If Ai is the ith block of 

A and Bj is the jth block of B, then the multiplication of Ai by Bj produces the Cy block. 

Furthermore, since the ith thread works with Ai and the entire B, the ith thread is computing 

the Ci block of C, a block of M/n complete rows of C. Each thread computes an independent 

patch of C and as a result there is no dependence among executing threads on the storage of 

C. 
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2.3 Results 

2.3.1 Matrix Multiply Testing 

We have tested our routine with the libraries mentioned above and provide some results of 

our testing in Table 2.2. 



Library M K N 1 2 4 16 PT 

ATLAS ODGEMM 2000 2000 2000 5.05 2.69 1.64 - 1.41 
VBLAS DGEMM 99.29 - - - -

MKL ODGEMM 4.62 2.50 1.58 - -

ATLAS ODGEMM 7000 7000 7000 210.9 108.6 57.98 - 58.5 
MKL ODGEMM 196.0 101.8 56.87 - -

ESSLSMP DGEMM 538.6 - - 39.9 -

ESSL ODGEMM 538.6 - - 34.8 -

IBMATLAS ODGEMM 531.3 - - 49.2 51.4 

ATLAS ODGEMM 8000 8000 8000 315.9 162.8 85.5 - 85.74 
MKL ODGEMM 293.3 150.4 83.06 - -

ESSLSMP DGEMM 966.5 - - 60.69 -

ESSL ODGEMM 966.5 - - 53.11 -

IBMATLAS ODGEMM 795.7 - - 78.69 80.42 
ATLAS ODGEMM 10000 10000 1000 63.21 30.88 48.56 - 17.27 

MKL ODGEMM 57.42 31.21 16.97 - -

ESSL ODGEMM 163.1 - - 11.85 -

IBMATLAS ODGEMM 214.3 - - 15.78 14.26 
ATLAS ODGEMM 1000 10000 10000 61.53 31.66 17.18 - 16.67 

MKL ODGEMM 58.32 32.22 20.99 - -

ESSL ODGEMM 153.3 - - 11.18 -

IBMATLAS ODGEMM 156.9 - - 15.12 14.10 

Table 2.2 Matrix multiplication execution times. Results are reported in 

seconds of wall-clock time. The numbers in the column headings 
indicate the number of threads used. The PT column heading 
indicates the execution time upon calling the ATLAS PTDGEMM 
threaded routine directly. 
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These tests were performed by first generating analytical A, B, and C matrices with 

double precision elements, performing the multiplication using DGEMM or ODGEMM, and 

comparing the resultant C matrix with the analytical C matrix. All of our preliminary testing 

was performed on two machines: an SMP machine (named Redwing) with 4 GB of memory 

and 4 Intel Xeon 2.00 GHz processors, and one node of the IBM SP (named Seaborg) provided 

by NERSC (see Acknowledgments) which has 16 GB of memory and 16 POWERS 375 MHz 

processors. 

The data in Table 2.2 exhibits a number of interesting features. The VBLAS DGEMM 

time is inserted for comparison to the more sophisticated BLAS libraries used in this work. 

On a relatively small matrix size, the time required for VBLAS DGEMM is almost 2 orders 

of magnitude larger than either the single-threaded ATLAS ODGEMM or MKL ODGEMM 

results. Viewing all results from Redwing, the ATLAS ODGEMM results are comparable to 

the MKL ODGEMM results, and in a few cases, the ATLAS PTDGEMM routine actually runs 

faster than the MKL ODGEMM routine. Viewing the results from Seaborg, one notices that 

the ESSLSMP DGEMM and ESSL ODGEMM threaded routines are consistently faster than 

the IBMATLAS ODGEMM. On the other hand, when only one thread is used, IBMATLAS 

ODGEMM runs faster for the largest matrix size tested. A rather striking result is that of the 

last two sections of the table, where the dimensions of the matrices are not equal. Considering 

the Redwing results, when M is 10000 and 4 threads are used, ATLAS ODGEMM is quite 

high, but when M is 1000, then ATLAS ODGEMM is quite reasonable. The only difference 

between these two test cases is that the dimensions of M and N are swapped. Recall that 

the algorithm partitions the rows of A, so as the number of rows of A changes, that should 

affect the outcome somewhat. However, MKL ODGEMM does not show a similar difference 

between the non-square matrix sizes. These are simply general results so that one can see how 

these matrix multiply routines compare with one another. 
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Figure 2.1 Execution time vs. number of threads for the molecule HNO 
using the cc-pVTZ basis set. ATLAS and MKL calculations were 
performed on Redwing. ESSL calculations were performed on one 
node of Seaborg. The basis set cc-pVTZ uses 85 basis functions 
for this calculation. The x-axis scale is logarithmic. 

2.3.2 GAMESS 

The results reported in this section are from execution of the GAMESS CC module per

forming energy calculations.5 Figures 2.1, 2.2 and 2.3 show timing data vs. number of threads 

from GAMESS execution runs. In all three figures, the ATLAS PTDGEMM result is simply 

a single point since the number of threads when using the ATLAS PTDGEMM threaded rou

tine cannot be changed by the user. The compile time thread number (set to the number of 

physical processors) is really a maximum thread number since ATLAS may use fewer threads 

if the matrices are sufficiently small. 

6The basis sets were obtained from the Environmental Molecular Sciences Laboratory at Pacific Northwest 
National Laboratory, http://www.emsl.pnl.gov/forms/basisform.html. For an explanation of the basis sets see 
ref. [13]. 

http://www.emsl.pnl.gov/forms/basisform.html
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Figure 2.2 Execution time vs. number of threads for the molecule HNO 
using the cc-pVQZ basis set. ATLAS and MKL calculations were 
performed on Redwing. ESSL calculations were performed on one 
node of Seaborg. The basis set cc-pVQZ uses 175 basis functions 
for this calculation. The x-axis scale is logarithmic. 
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Figure 2.3 Execution time vs. number of threads for the molecule glycine 

using the cc-pVDZ basis set for the hydrogens and the cc-pVTZ 
basis set for all other atoms for a total of 200 basis functions. 
Calculations were performed on Redwing. 
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Figure 2.1 shows execution time vs. number of threads for the HNO molecule using the 

cc-pVTZ basis set. The ESSL ODGEMM and ESSLSMP DGEMM results are almost identical 

for 1 and 2 threads, but they diverge quickly when 4 or more threads are used. This is probably 

due to the fact that in these testing runs, ESSL ODGEMM always uses the specified number of 

threads, and with small matrix sizes this can cause an unnecessary amount of overhead. With 

ESSL ODGEMM there is no performance improvement after 2 threads but with ESSLSMP 

DGEMM the performance continues to increase. The ATLAS ODGEMM and MKL ODGEMM 

results are more sporadic. With 1 thread, MKL ODGEMM is faster, with 2 threads, ATLAS 

ODGEMM is faster, and then with 3 and 4 threads, MKL ODGEMM is faster. Both curves, 

with the exception of ATLAS ODGEMM using 2 threads, show an increase in execution time 

with increase in the number of threads. Again this is most likely due to the thread overhead 

of partitioning matrices which may not be large enough to require parallelization. The fastest 

overall execution time is obtained by calling ATLAS PTDGEMM. As a reference point, on 

Redwing, the wall time for this calculation using the VBLAS DGEMM that comes packaged 

with GAMESS is 705 seconds. 

To investigate this behavior further, some test cases were calculated using matrix sizes 

that occur frequently in this GAMESS calculation. The results of these test cases are shown 

in Table 2.3. The three test cases shown account for about 75% of the matrix multiplications 

found in this GAMESS calculation. The first thing to note when viewing these results is that 

the dimensions of the matrices are quite unequal. The results show good agreement with what 

was shown in Fig. 2.1. As the ESSLSMP DGEMM thread number increases, the execution 

time decreases, while the ESSL ODGEMM execution time is at its lowest using either 2 or 4 

threads, then stays flat and even increases in some cases. A similar analysis of the ATLAS 

ODGEMM and MKL ODGEMM results shows a good agreement with the timing data of the 

actual GAMESS executions and shows that the execution of GAMESS is dependent on the 

repeated multiplication of only a few different size matrices. 



Library M K N 1 2 4 8 12 16 PT Frequency 

ATLAS ODGEMM 
MKL ODGEMM 

ESSLSMP DGEMM 

ESSL ODGEMM 

77 77 5929 26.1 20.1 18.4 
44.4 35.7 56.3 
70.8 39.9 20.4 12.8 11.4 11.9 
87.6 52.4 39.6 33.8 35.4 37.2 

14.2 420 

ATLAS ODGEMM 

MKL ODGEMM 
ESSLSMP DGEMM 

ESSL ODGEMM 

5929 6 77 7.67 9.63 8.44 
8.13 9.03 7.89 
48.4 11.9 8.55 6.23 5.51 5.42 
34.9 18.8 17.7 17.3 20.5 27.9 

4.84 420 

ATLAS ODGEMM 
MKL ODGEMM 

ESSLSMP DGEMM 
ESSL ODGEMM 

36 5929 77 28.0 20.5 64.0 
26.2 19.6 31.5 
43.8 19.3 13.1 13.1 12.1 11.2 
39.1 21.1 28.7 32.3 37.2 35.9 

31.9 1461 

Table 2.3 Matrix multiplication execution times using test cases where the 
matrix sizes are equal to the matrix sizes used on the HNO 
molecule with the cc-pVTZ basis set. Results are reported in 
lO-3 seconds of wall-clock time. The PT column results were ob
tained by calling ATLAS PTDGEMM directly. The numbers in 
the column headings indicate the number of threads. Frequency is 
the number of times DGEMM is called with matrices of that size 
in the GAMESS execution. Total number of calls to DGEMM in 
the GAMESS execution is % 3060. 
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Figure 2.2 shows execution time vs. number of threads for the HNO molecule using the 

cc-pVQZ basis set with 175 basis functions. The results using ESSL show that the ESSL 

ODGEMM is slightly faster than ESSLSMP DGEMM for 1 and 2 threads, but when more 

than 2 threads are used the ESSLSMP DGEMM continues to decrease in execution time while 

ESSL ODGEMM decreases more slowly and even increases for 12 and 16 threads. The increase 

when using ESSL ODGEMM is again probably attributed to the overhead of partitioning and 

using more threads than necessary on some matrix sizes. The MKL ODGEMM results in 

particular are striking. The execution time decreases slightly from 1 to 2 threads, but using 3 

and 4 threads increases the execution time. The ATLAS ODGEMM results are as one would 

expect, namely that as the thread number increases, the time decreases, until the fastest time 

is obtained when 4 threads are used. Also note that the direct call of the threaded ATLAS 

PTDGEMM is essentially the same as that of ATLAS ODGEMM when 4 threads are used. 

As a reference, the wall time for this calculation on Redwing when using the default VBLAS 

DGEMM in GAMESS is 35907 seconds. 

As in the earlier case, Table 2.4 was prepared with three test cases using matrix sizes that 

occur frequently in this GAMESS calculation. The results are similar to the earlier case in 

that the execution time of GAMESS with respect to the matrix multiplication is dominated 

by the multiplication of relatively few different sizes of matrices. The three test cases shown in 

Table 2.4 account for about 80% of the matrices multiplied. The matrix dimensions are much 

different and it is clear that the execution time with respect to the matrix multiplication is 

dominated by the repeated multiplication of only a few different size matrices. 



Library M K N 1 2 4 8 12 16 PT Frequency 

ATLAS ODGEMM 
MKL ODGEMM 

ESSLSMP DGEMM 

ESSL ODGEMM 

167 167 27889 54.7 32.6 23.0 
44.6 44.1 57.1 
132. 66.0 33.7 33.2 14.2 12.6 
139. 77.9 47.9 33.1 28.9 27.6 

21.7 420 

ATLAS ODGEMM 

MKL ODGEMM 
ESSLSMP DGEMM 

ESSL ODGEMM 

27889 6 167 8.01 8.46 7.84 
7.89 9.05 8.21 
21.8 11.3 5.88 3.09 2.71 2.63 
29.0 18.7 13.5 11.6 11.2 11.1 

5.45 420 

ATLAS ODGEMM 
MKL ODGEMM 

ESSLSMP DGEMM 
ESSL ODGEMM 

36 27889 167 28.4 20.5 17.6 
22.7 19.1 32.1 
28.9 15.5 8.95 6.22 5.29 5.91 
28.9 18.9 13.9 15.2 27.4 32.3 

17.8 3172 

Table 2.4 Matrix multiplication times using test cases where the matrix sizes 
are equal to the matrix sizes used on the HNO molecule with the 
cc-pVQZ basis set. Results are in 10~2 seconds of wall-clock time. 
The PT column results were obtained calling ATLAS PTDGEMM 
directly. The numbers in the column headings indicate the number 
of threads. Frequency is the number of times matrices of that size 
are called in the GAMESS execution. Total number of calls to 
DGEMM in the GAMESS execution is % 4860. 
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Figure 2.3 shows execution time as a function of the number of threads for GAMESS 

using glycine as the input molecule. An interesting feature of this graph is that the ATLAS 

ODGEMM timings decrease monotonically and there is a difference of over 500 seconds between 

one thread and four threads of execution. The MKL ODGEMM does much better than ATLAS 

ODGEMM when using one thread, and is slightly faster using two threads. But then the 

total time increases for three and four threads using MKL ODGEMM. ATLAS DGEMM 

shows consistent decrease in time of execution upon the addition of processors, but MKL 

ODGEMM actually increases its execution time for three and four threads. Note that the 

ATLAS PTDGEMM result is almost exactly the same as the ATLAS ODGEMM result using 

4 threads. 

2.4 Conclusions and Future Work 

One conclusion of this work is that if one wants to improve the performance of the CC 

module of GAMESS, an external BLAS library should be used. With unsophisticated testing 

on Redwing it was shown that almost two orders of magnitude improvement can be gained by 

linking with ATLAS or MKL. 

With respect to results calculated on Redwing, when using 1 thread, the MKL ODGEMM 

is faster than ATLAS ODGEMM. When 2 threads are used, the results are mixed with MKL 

ODGEMM running faster in some cases and ATLAS ODGEMM running faster in other cases. 

When 3 and 4 threads are used, especially in the GAMESS executions, ATLAS ODGEMM 

is consistently faster than MKL ODGEMM. When one looks at GAMESS execution time 

irrespective of the number of threads used, ATLAS PTDGEMM is almost always the fastest, 

and in Fig. 2.2 and Fig. 2.3 the ATLAS ODGEMM times are comparable. An unexpected 

result is that of the MKL ODGEMM when multiple threads are used. When more than 2 

threads are used in the GAMESS execution using MKL ODGEMM, the times actually increase. 

The results obtained using Seaborg are worthy of note as well. When considering the 

results of the generic matrix multiplication of Section 2.3.1, the ESSL ODGEMM actually 

runs faster than the built in ESSLSMP DGEMM library. When compared to ATLAS, the 
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threaded versions of ESSL are faster than the threaded ATLAS versions. The results from 

the GAMESS tests show that for thread numbers less than 4, ESSL ODGEMM and the 

ESSLSMP DGEMM give similar results. When adding more threads to the calculation, the 

ESSLSMP DGEMM consistently yields faster results than the ESSL ODGEMM, especially at 

high numbers of threads. This seems to suggest that the ESSLSMP DGEMM library has some 

built in mechanisms to determine better partitioning of the matrices. 

After testing on two different architectures, it is clear that calling ODGEMM with the 

number of threads equal to the number of processors does not always yield the fastest execution 

times. Depending on whether the system is an Intel system or IBM, our results show that the 

fastest execution time varies significantly based on the number of threads chosen and the 

BLAS library used. This information will be incorporated into the ODGEMM routine. The 

ODGEMM library will then be able to choose the appropriate call mechanism to the library 

DGEMM with properly partitioned matrices and an appropriate number of threads. 

For future work we wish to incorporate some matrix metrics into ODGEMM to make 

decisions about parallelization. For example, considering GAMESS executions, it is quite 

probable that some calls to DGEMM will run faster in parallel while some calls may be fastest 

running on one thread only, or with the number of threads less than the number of processors. 

These decisions will depend on factors such as matrix size, dimensional layout, and processor 

speed. Especially when using the vanilla BLAS which has no parallel implementation, the 

opportunity for performance enhancement is available via ODGEMM properly parallelizing 

the matrix multiplication. We are also going to perform testing and hence provide portability 

to more architectures, as GAMESS is currently available for a wide range of architectures and 

systems. The use of parallel DGEMM in GAMESS is a beginning for exploiting the advantages 

of SMP machines in GAMESS calculations. We will investigate the utilization of OpenMP at 

other levels within the chemistry software as well. 
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CHAPTER 3. Hybrid memory parallel algorithm 

3.1 Serial algorithm in GAMESS 

The current implementation of coupled cluster in GAMESS was contributed by Piecuch 

and coworkers [21]. They did extensive work to determine an optimal ordering of computation 

steps and factoring the requisite arrays to call DGEMM as much as possible. This was done 

with the goal of using highly optimized mathematical libraries, supplied by most computer 

vendors (including DGEMM), which are often hand-tuned for maximum performance. Their 

contribution is strictly a serial algorithm, in contrast to most of the other major functionalities 

of GAMESS, which have parallel implementations. This work focuses on the parallel imple

mentation of the CCSD(T) algorithm, coupled cluster with single and double excitations, and 

the inclusion of perturbative triple excitations. 

The input to a GAMESS calculation consists of the user choosing various computation and 

chemistry parameters, and also specifying a molecule. One input parameter which determines 

how accurate the calculation will be is the choice of a basis set. There are a number of 

shorthand variables that will be used, and Table 3.1 outlines three of them. The number of 

basis functions is completely specified by the choice of basis set and the size of the molecule1. 

The value nQ is the number of occupied orbitals2, and nv is the number of virtual orbitals 

(also called unoccupied orbitals). In the case of the GAMESS CCSD(T) algorithm, the value 

of nQ denotes only the valence electrons. That is, when considering all the electrons of an 

atom/molecule, there are a number of electrons that are not used in the CCSD(T) computation 

lrThe basis set specifies a fixed number of basis functions for each type of atom. To determine the total 
number of basis functions in the calculation, one looks at each atom present in the molecule of interest and the 
basis set will indicate what type and how many basis functions will be used. 

2 An orbital is a mathematical function which specifies a region of space where the electron is likely to be 
found. Each electron is placed in one orbital. 
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Abbreviation Numerical value 

Mo Number of occupied orbitals 

nv Number of virtual (unoccupied) 
Number of basis functions 

Table 3.1 Abbreviations used for array sizes. 

Class size 

[OOIOO] ni 

Table 3.2 The classes of integrals used in the CCSD calculation, arranged 
in size order from smallest to largest. 

because their contribution is negligible due to their location. Thus, nQ  is always less than or 

equal to the number of electrons. The number of virtual orbitals, nv is bounded by the size 

of the basis set, ribf. Because n0 < ribf and nv < ribf, the runtime analysis of computational 

chemistry programs is commonly given in terms of ribf,  i .e.  when CCSD is ci ted as an 0(N6) 

algorithm, N = ribf.  

The first step in the overall coupled cluster algorithm is to calculate the Hartree-Fock 

wavefunction and energy. This is an iterative calculation and is used as a starting point for 

many different algorithms in GAMESS. The next step is to perform an integral transformation, 

which prepares most of the numeric data necessary for the CCSD(T) calculation. The resultant 

integrals are stored on disk as double precision floating point numbers. Each class of integrals 

is stored as a four index array. These integral values constitute the majority of the memory 

requirements for the CCSD(T) algorithm, as they are typically calculated before the CCSD(T) 

calculation begins and are stored for future retrieval. Table 3.2 shows the different integral 

classes3 and their space requirements with respect to occupied and virtual orbitals. 

throughout this work we will use a bracket notation to indicate the different integral classes, e.g., the 
[W|VO] integral class is a four index array with the first three indices having size nv and the last index size 
n0. Thus, when discussing the [W|VO] integrals, we are referring to a four index, double precision array with 
the four dimensions given as ([nv,nv,nv,n0) and subsequently the total size of the array is equal to n®n0. 
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Class size 

t\ 

01 
t2 

02 

Table 3.3 The classes of amplitudes used in the CCSD calculation, arranged 

in size order from smallest to largest. 

The next step is to solve for the CCSD amplitudes. All of the integrals except for the 

[yy|yy] integrals are read into memory and kept there for the entire time. Solving for the 

amplitudes (the final t\ and Zg arrays) is an iterative procedure. The working copies of the 

amplitudes are labeled t\ and Zg, and the previous iterations' copies are labeled o\ and 02. When 

the difference between the amplitudes of successive iterations is sufficiently small, convergence 

has been achieved and the iterations terminate. The sizes of the amplitudes are given in Table 

3.3. 

A CCSD iteration consists of using the o\ and 02 amplitudes, along with all the integral 

classes shown in Table 3.2 to calculate new values for the t\ and Zg amplitudes. Throughout an 

entire iteration, neither the integral classes nor the o\ or 02 amplitudes change values; only the 

t\ and t2 amplitudes are updated. The details of the CCSD iterations are quite complicated. 

The general form of an iteration involves taking two arrays (integral classes or one of the o\ or 

02 amplitudes), performing various permutations4 on them, and then finally multiplying them 

together (using matrix multiplication) and accumulating the resultant matrix into either the t\ 

or t2 array. This happens no less than 30 times for one CCSD iteration. Run time analysis of 

an iteration involves calculating the cost of the matrix multiplications since they are the most 

expensive (in terms of floating point operations) step. The largest matrix multiplication which 

occurs in the CCSD iterations is the multiplication of 02 (as a n2 x n2 matrix) by [yy|yy] (as 

a n2 x n2 matrix). This matrix multiplication has an asymptotic runtime of 0(n2n4). Since 

4There are many permutations performed on the arrays in CCSD(T). Some are simple matrix transposes, 
some involve permuting two of the four indices, e.g., exchanging index 1 and 3. In some cases, a permutation 
and a multiplication is performed on the array. The exact permutations performed are not instructive but suffice 
it to say that these permutations are in general very cache inefficient as memory is read and written in many 
different parts of the array. 
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nQ  < ribf and nv  < ribf,  this is more generally analyzed as an algorithm. The following 

pieces of code are presented to illustrate a few sample pieces of the serial CCSD code including 

its more expensive (in terms of runtime) operations. 

DO 123 1=1,NU 

I0FF=N02U*(I-1)+1 

CALL RDVPP(I,N0,NU,TI) 

CALL DGEMM('N','N',N02,NU,NU2,ONE,02,N02,TI,NU2,ONE, 

& T2(I0FF),N02) 

123 CONTINUE 

CALL TRMD(02,TI,NU,N0,20) 

CALL TRMD(VR,TI,NU,NO,21) 

CALL VECMUL(02,N02U2,HALF) 

CALL ADT12(1,N0,NU,01,02,4) 

CALL DGEMM('N','N',N0U,N0U,N0U,0NEM,VR,N0U,02,N0U,ONE,VL,NOU) 

CALL ADT12(2,NO,NU,01,02,4) 

CALL VECMUL(02,N02U2,TWO) 

CALL TRMD(02,TI,NU,N0,27) 

CALL TRMD(T2,TI,NU,N0,28) 

CALL DGEMM('N','N',NOU,NOU,NOU,ONEM,02,NOU,VL,NOU,ONE,T2,NOU) 

CALL TRANMD(02,N0,NU,NU,N0,23) 

CALL TRANMD(T2,NO,NU,NU,NO,23) 

CALL DGEMM('N','N',NOU,NOU,NOU,ONEM,02,NOU,VL,NOU,ONE,T2,NOU) 

The first section of code illustrates the most expensive term, namely the DGEMM call 

using the term. It is so large that it is actually performed in nv loops with a runtime 

of O(rignl) in each loop iteration. The DGEMM is broken up in this fashion because storing 

the entire array in memory is only feasible for small system sizes. Instead, a nl 
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piece of the array is read from disk and used. The second and third sections of code show 

slightly smaller DGEMMs with a runtime of 0{n3
0nI) each. Notice how the function calls to 

DGEMM are surrounded by other function calls. In these illustrative pieces of code, all the 

other subroutines surrounding the DGEMMs are calls to some sort of permutation routine 

(except for the RDVPP routine which reads in a portion of the [UU|UU] array). 

Once the CCSD iterations have converged, the (T) calculation is performed. Overall the 

(T) has three nested DO loops of size na. In each of these loops there are multiple DGEMM 

calls, the largest of which is n\. Therefore, the asymptotic runtime of the (T) step is 0(n3n4), 

or more generally 0{viJbf). Asymptotically, the (T) calculation dominates the runtime of the 

CCSD(T) algorithm, although practically this domination shows up more prevalently when 

large sized inputs are used. 

The example code serves to illustrate the computationally intensive coupled cluster code 

currently in GAMESS. Coupled cluster is a CPU intensive method due to the many matrix 

multiplication calls. It is memory intensive due to the large integral and amplitude arrays 

which have to be in memory. And it is I/O intensive because it stores all the integrals on disk 

with the [UU|yy], the largest integral class, being read from disk during each iteration. 

3.2 Performance goals 

When designing the parallel algorithm there were some goals in mind which we wanted 

our algorithm to strive for, while remaining within the bounds of the current status of high 

performance computing architecture. We wanted to be able to run a computation with n0 

approaching 100, and with nv approaching 800. The accuracy of the calculation increases with 

increasing nv and so that value should be chosen as high as computationally possible. We also 

wanted to minimize the disk I/O and hopefully achieve this by eliminating the storage of the 

integrals on disk. The storage space of disk is quite inexpensive (financially speaking) and so 

from this perspective storing integrals on disk is attractive. However, depending on the I/O 

and network capabilities of the machine, the performance penalty can be very high due to the 

high amount of I/O associated with reading and writing large amounts of data to disk. So our 
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100 200 300 400 500 600 700 800 
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
20 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 
40 0.05 0.10 0.14 0.19 0.24 0.29 0.33 0.38 
60 0.16 0.32 0.48 0.64 0.80 0.97 1.13 1.29 
80 0.38 0.76 1.14 1.53 1.91 2.29 2.67 3.05 

100 0.75 1.49 2.24 2.98 3.73 4.47 5.22 5.96 

Table 3.4 The [00\0v] integral class memory requirements in gigabytes. 
The horizontal axis is nv and the vertical axis is n0. 

100 200 300 400 500 600 700 800 
10 0.01 0.03 0.07 0.12 0.19 0.27 0.37 0.48 
20 0.03 0.12 0.27 0.48 0.75 1.07 1.46 1.91 
40 0.12 0.48 1.07 1.91 2.98 4.29 5.84 7.63 
60 0.27 1.07 2.41 4.29 6.71 9.66 13.14 17.17 

80 0.48 1.91 4.29 7.63 11.92 17.17 23.37 30.52 
100 0.75 2.98 6.71 11.92 18.63 26.82 36.51 47.68 

Table 3.5 The \vo\vo] and [vv\oo] integral class memory requirements, 
as well as the Zg amplitude memory requirements, in gigabytes. 
The horizontal axis is nv and the vertical axis is n0. 

goal is to use main memory as the primary vehicle for the data storage. 

To examine the memory requirements of the various array sizes, consider Tables 3.4-3.7. 

Here the memory requirements (in gigabytes) are shown for the different integral classes. Recall 

that DDI was originally formulated as a process based communication model. To access data, 

it either needs to be stored as replicated data (meaning each process on a node would have its 

own copy, resulting in lots of duplicated data per node) or a library function has to be called 

to get the data from distributed memory and put it into a local buffer. One sees from the 

memory requirements tables that as the nQ and nv are increased, the possibility of replicating 

these integrals  per  process becomes less feasible and even a  smaller  integral  class [00\0v] 

(Table 3.4) requires almost 6 GB of memory per process for the largest case. 

This memory concern led to the augmentation of the current DDI communication library 

with support for shared memory arrays which can be accessed by all the processes resident on 

the node. This is especially relevant for data such as the integrals as they are calculated once 
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100 200 300 400 500 600 700 800 
10 0.07 0.60 2.01 4.77 9.31 16.09 25.56 38.15 
20 0.15 1.19 4.02 9.54 18.63 32.19 51.11 76.29 
40 0.30 2.38 8.05 19.07 37.25 64.37 102.22 152.59 
60 0.45 3.58 12.07 28.61 55.88 96.56 153.33 228.88 
80 0.60 4.77 16.09 38.15 74.51 128.75 204.44 305.18 

100 0.75 5.96 20.12 47.68 93.13 160.93 255.55 381.47 

Table 3.6 The [FF|FO] integral class memory requirements, in gigabytes. 
The horizontal axis is nv and the vertical axis is n0. 

nv 100 200 300 400 500 600 700 800 
1 12 60 191 466 966 1789 3052 

Table 3.7 The integral class memory requirements, in gigabytes. 

at the beginning of the code and after that they are only read. The only arrays of significance 

which are written are the amplitudes. 

3.3 Parallel algorithm in GAMESS 

3.3.1 Hierarchical memory partitioning 

One of the first steps in designing the parallel algorithm is to determine an efficient par

titioning of the system memory. Our target architecture for this algorithm, considering the 

large memory requirements, is a cluster of S MP nodes. The types of systems we have in mind 

are e.g., S MP nodes with 8 or 16 processors per node, with a minimum of 16 (and up to 64) 

GB of memory per node. 

The choice of how to properly store the integrals depends a great deal on the system one 

is using. However, when one examines the memory requirements for the integrals 

given in Table 3.7, it is apparent that an alternate strategy is required for them, since even a 

relatively modest calculation (~ 400 basis functions) requires almost 200 GB of memory for this 

integral class alone. As stated above in the current serial implementation, all of the integrals 

are calculated before the CCSD iterations begin, stored on disk, and read into memory as 

needed. To alleviate the tremendous storage requirements of the integrals, we have 



39 

implemented a direct integral transformation routine for computing these integrals. Instead of 

computing the entire set of [UU|UU] integrals at the beginning and storing them, we instead 

recalculate them "on the fly" as needed during each CCSD iteration. This greatly reduces 

the memory requirement. There is obviously a tradeoff between memory and CPU time, since 

the same computation is performed each iteration instead of one time at the beginning of the 

algorithm. However, it is often a trade that computational scientists are willing to make since 

storing the [UU|UU] integrals would likely have to be done on disk, and accessing the disk 

might take as long or longer than recomputing the integrals, and might exhaust disk space as 

well. Also, even with the extra computations performed due to recomputing the integrals, the 

overall size of the problem which can be computed on a particular system is increased due to 

the smaller memory requirements of the integral computation. Memory is often the bottleneck 

in scientific computations and conserving memory at the expense of CPU time is frequently 

an advantageous tradeoff. This concept of direct computation of integrals in coupled cluster 

calculations has also been implemented in another computational chemistry package NWChem 

[22], where they not only recompute the [UU|UU] integrals, but the [UU|UO] integrals as well 

[23]. 

The [UU|UO] integrals are stored in distributed memory (i.e., one copy distributed across 

all the nodes) and due to symmetry of the data, they are stored in about half5 the space of the 

actual size of the array. When a section of the array is needed in a computation, it is expanded 

to its full form at that time. This requires the array to be expanded multiple times in the 

course of the CCSD iterations, but that expansion time is small compared to the memory 

savings gained. 

The [vv\oo] and \vo\vo] integrals are also stored in distributed memory. Because these 

two classes of integrals are used so frequently and are permuted in complicated ways, they are 

actually stored multiple times in distributed memory, in different permuted orders which are 

used in the CCSD iterations. The rest of the arrays, including temporary arrays are stored 

in shared or replicated memory. Table 3.8 summarizes the relevant arrays, where they are 

^The exact size is + l)/2 x 
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Array Distributed memory Shared memory Replicated memory 

%7^/2 0 0 
0 0 
0 0 

0 0 
[OOIOO] 0 < 0 

h 0 0 

02 0 0 
temp 0 0 

h 0 0 

01 0 0 

Table 3.8 Array sizes and memory requirements. The coefficients of the val
ues in the distributed memory column reflect the use of symmetry 
or the multiple copies of arrays stored in different orders. 

located, and how much memory they require. 

3.3.2 Process based algorithm 

Depending on the memory of the system and the size of the calculation, the CCSD(T) 

parallel algorithm is designed to operate on either a process based or node based footing. 

The process based algorithm has a larger memory requirement due to the necessity of more 

replicated temporary memory. There are multiple sections of the algorithm where more than 

one process is calculating contributions to the same section of a shared memory array. When 

multiple processes attempt to write to the same memory location, that memory location will 

likely be corrupted. In the process based algorithm, each process writes the results of these 

types of calculations into a temporary, replicated memory buffer, and at the conclusion of that 

particular part of the calculation, each process performs a global sum of the temporary data, 

which is then accumulated into the shared data. 

The overall algorithm begins by using existing portions of GAMESS to get the data set up 

properly. There already exists a parallel version of Hartree-Fock and of the integral transfor

mation, so these modules were used with no modification. Once the integral transformation is 

completed the integrals are placed into distributed or shared memory (according to the scheme 

showed in Table 3.8) by the master process. Recall from §1.2.1 that the DDI arrays are two 
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index arrays. The distributed integral arrays are four index arrays, so an intelligent parti

tioning of the integrals needs to be performed. From an algorithmic standpoint, the simplest 

distribution of the integrals would be on the fourth index, e.g., for the [vo\vo] integrals, 

set the number of rows equal to nvn0nv and the number of columns equal to nQ- This is the 

easiest because there are multiple phases of the algorithm where a permutation is performed 

on either the first and third or second and third indices of the array. If the array is distributed 

on the fourth index, then one can do a DDLGET on some number of columns of the array, 

and the data that is obtained can be easily permuted on the third index of the array. However, 

from a memory standpoint distributing the integrals on the fourth index results in non-uniform 

memory distribution. A close examination of Table 3.8 shows that all three integral classes 

which are stored in distributed memory have nQ as their last index. Because nQ depends on 

the molecule and not the basis set, one is limited (by DDI, see §1.2.1) to setting the number 

of processes to be less than or equal to n0. Considering that the value of nQ is less than 100, 

and in some cases much less, this restriction severely limits how large a machine one can use 

to run the calculation. One would prefer to be able to distribute the array on an index of 

size nv, because nv can be increased (in principle) arbitrarily and is not directly dependent 

on the molecule of interest. To alleviate the memory distribution problem, the DDI arrays 

are distributed on the third index. With this partitioning scheme the number of columns of 

the distributed arrays is either n0nv or n2, both of which allow the number of processes to be 

increased to a significantly large value6. This completes the setup phase of the algorithm. 

3.3.2.1 CCSD 

At this point the CCSD iterations begin. The first part of the CCSD iteration is the 

calculation of the direct contribution. As mentioned above, this requires very little 

memory because the integrals are calculated during each iteration as needed and are not 

stored. Then the iterations proceed in essentially the same order as the serial algorithm, 

6This necessary partitioning of the DDI arrays on the third index leads to the duplication of the [VV\OO] 
and [VO\VO] arrays. Since one cannot perform permutations on the third index if only the first two indices 
are present, the duplicated arrays are the result of permutations involving the third index. This duplication 
simplifies the algorithm as the data is already in the proper order. 
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with the work of the DGEMM calls being broken up and given to each process. If the data 

required by a process happens to reside in distributed memory, then that process executes a 

DDLGET function call to retrieve the requisite data. In a majority of the DDLGET calls, 

the process only gets the distributed data that is associated with itself. Recall from Chapter 1 

that DDI assigns equal amounts of data in a DDI array to each process. If a particular process 

only requests the data that it was already assigned (when the DDI array was created), then 

obtaining that data does not involve any network communication; a system memory call is all 

that is required. This mechanism allows DDLGET calls to execute quickly because there is 

no network communication required to obtain the data. 

Since this is an iterative calculation, all the processes must move in a lock-step fashion. 

There simply is no way for processes to work completely independently because they all con

tribute iteration dependent data necessary for the amplitudes. Because of this, there is a fair 

amount of process synchronization. Every time a portion of the algorithm requires access to a 

shared memory array, a SMP_SYNC7 is required. 

As an example of how one type of matrix multiplication is partitioned in our process based 

algorithm, consider Figure 3.1 and the following description. Assume the shared memory array 

B (with matrix dimensions of m x k) is going to be multiplied times a block of a distributed 

array A (where the total array A has matrix dimensions of k x n) to produce the matrix C. 

1. Call DDLDISTRIB8 

2. Call DDLGET, obtain the block of the array (consisting of complete columns) which is 

local to this process and place it in buffer A. Treat A as a k x n' matrix. 

3. Each process performs B times A, as a m x k times k x n' matrix multiply, resulting in 

a m x matrix. 

7There are two types of synchronization calls in DDI. One is DDLSYNC, which is a global barrier. All 
processes must get to the same point in the program before continuing execution. A SMP_SYNC is a barrier 
such that all processes on a node must be at the same point in the program before continuing and processes 
on other nodes are ignored. Since the shared memory is only accessed by the processes resident on the node, a 
SMP-SYNC is sufficient to guarantee that data in the shared memory array will be accessed correctly 

8DDI_DISTRIB is a function that takes the process rank and the array identifier and returns the number of 
columns and rows of the distributed array which are associated with that process, and therefore stored on the 
local memory. 
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Note that since each process is generating a unique portion of matrix C (a block of complete 

columns), there is no contention for C because each process is writing to a different block 

of C. If C is in replicated memory, at the end of the computation a global sum operation 

can be performed on the entire C matrix to obtain the full aggregated result of the matrix 

multiplication. 

B A c 

k n' n' n' n' n' n' n' n' 

X = 

m k 0 1 2 3 m 0 1 2 3 

Figure 3.1 Matrix multiplication using four processes where B is in shared 
memory, A is in distributed memory, and C is either in shared 
or replicated memory. The number inside the block labels the 
process that operates on that portion of the matrix. 

Another type of matrix multiplication occurs when A and B are multiplied in the opposite 

order. In this case the matrix multiplication proceeds as follows (see Figure 3.2): 

1. Call DDLDISTRIB 

2. Call DDLGET, obtain the block of the array (consisting of complete columns) which is 

local to this process and place it in buffer A. Treat A as a m x k' matrix. 

3. Partition B into blocks of complete rows, based on the number of columns of A that each 

process receives. Treat the portion of B as a k! x n matrix. 

4. Each process performs A times B, as a m, x k' times k' x n matrix multiply, resulting in 

a m x M matrix. 

Note that each process produces a m, x n matrix, which then has to be summed together 

(element by element) to form the final C matrix. This is accomplished by doing a global sum 

operation on the entire C matrix. 
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The detailed replicated memory requirement for the CCSD iterations has a leading term 

of MAX(^ + 2m^ + 2mo7^). Asymptotically this reduces to MAX(0(^), O(M^)). 

The nl memory requirement is due to portions of the algorithm in which a permutation of 

indices one and three is performed on the [FF|FO] integrals; thus, an entire nl portion of the 

array must be in memory at the same time. The n^nl memory requirement comes from the 

DGEMMs as shown in Figure 3.2, where the entire resultant matrix must be replicated per 

process to avoid overwriting shared memory data. 

A B c 

k' k' k' k' n n 

k' 

X 
k' 

0 

0 1 2 3 

k' 

X 
k' 1 

0 1 2 3 

k' 2 

k' 3 

Figure 3.2 Matrix multiplication using four processes where B is in shared 
memory, A is in distributed memory, and C is in replicated mem
ory. The number inside the block labels the process that operates 
on that portion of the matrix. 

3.3.2.2 (T) 

The (T) portion of the algorithm is more straightforward to parallelize than the CCSD 

component. It consists of three nested loops, each of size nQ. Within each loop, a number of 

DGEMM calls is made, the largest of which is 0{n^). The nice feature of the (T) calculation is 

that each loop iteration can be performed independently of all other loop iterations. The only 

data obtained from the (T) calculation are two double precision values. These are additive 

values in the sense that each loop iteration contributes a portion of both values, and all the 

portions are summed together to form the overall result. This allows a partitioning based on 

processes; i.e., each process executes a chunk of the overall loop iterations. The leading term 

of the replicated memory requirement for the (T) code is 2nl This requirement comes 
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from the necessity of storing two temporary work arrays of size nl and storing the [vo\vo] 

integral class during each loop iteration. 

3.3.3 Node based algorithm 

The process based algorithm is successful in parallelizing the work and the load balancing 

is fairly even. There are portions of the algorithm in which the master process on each node is 

working (while the other processes are sleeping) to manipulate the shared memory arrays, but 

that amount of execution time is not significant in the overall runtime. The main downfall of the 

process based approach is the replicated memory requirement. When one has to replicate (per 

process) arrays of size nl or n^nl, the memory cost9 is simply too high to perform calculations 

with large input sizes. 

Due to the memory cost of the process based algorithm, a complementary node based 

algorithm has also been designed. The majority of the changes between the process based 

and node based algorithm are implemented with the goal of conserving memory. The node 

based CCSD(T) computation begins in the same way as the process based code (see §3.3.2). 

That is, the Hartree-Fock energy and wavefunction are computed and the parallel integral 

transformation is performed to setup the various integral arrays for the CCSD(T) calculation, 

including putting the requisite arrays into distributed or shared memory. 

3.3.3.1 CCSD 

The CCSD iterations begin in the same fashion by executing the direct algorithm to cal

culate the contribution of the integrals to the amplitudes. The overall order of 

operations for each iteration does not change between the process and node based algorithm. 

But, whenever there is a DGEMM in the process based code which requires either a nl or n2
0n\ 

replicated array, this portion of the code is adapted to execute in a node based fashion. Gen

erally, this involves partitioning the DGEMM evenly by the number of nodes. Each node gets 

one portion of the DGEMM to work on. Then each node divides the DGEMM into equal sized 

^Especially when one considers that larger SMP machines can commonly have from 8 to 16 processors per 
node 
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work portions for each process to work on. There are two levels of division, and the rationale 

is that the large temporary arrays which previously resided in replicated memory now reside in 

shared memory, one time per node, instead of one time per process. With this being the case, 

there must be more synchronization of processes in a single node to avoid data corruption due 

to multiple processes writing to a shared memory array location concurrently. The following is 

a description of one DGEMM found in the process based algorithm. For reference, the current 

serial algorithm multiplies the [FF|FO] array (as ati^x n0nv matrix) times the o\ amplitudes 

(as a n0nv x 1 matrix) and generates an^xl matrix. For comparison, the process and node 

based algorithms will be presented. The process based algorithm runs as follows: 

1. Divide nQ by the number of processes so as to assign each process an equal amount of 

work. 

2. Each process obtains a complete nl portion of the [FF|FO] integrals based on the index 

calculated in the previous step, resulting in a 4-index array with dimensions (nv,nv,nv, 1). 

This array is stored in replicated memory. 

3. Each process performs a permutation of the first and third index. 

4. Each process executes a local DGEMM (as an2
vxnv matrix times anvxl matrix resulting 

in a ni x 1 matrix). The second and the resultant matrix are stored in replicated memory. 

5. If nQ is greater than the number of processes, then some (possibly all) processes will 

execute steps 2-4 again with a different portion of the [FF|FO] array until the entire, 

overall matrix multiplication is performed. 

6. After all processes complete their respective work, a global sum is called on the resultant 

matrix. 

The replicated memory requirement for this DGEMM is nl, which is much too large to be 

stored once per process. The following description outlines the adaptations that are made to 

convert the process based algorithm to a node based one. 

1. Divide nQ by the number of nodes so as to assign each node an equal amount of work. 
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2. Each node obtains a complete nl portion of the [FF|FO] integrals based on the index 

c alculated in the previous step, resulting in a 4-index array with dimensions (nv,nv,nv, 1). 

This array is stored in shared memory. 

3. Each node performs the permutation of the first and third index, using a routine which al

lows all the processors on the node to do the permutation in parallel, without overwriting 

shared memory data. 

4. Each node executes a DGEMM (as a nl x nv matrix times an, xl matrix resulting in 

an^xl matrix). This DGEMM is further split among the processes on the node, by 

dividing nl (the row dimension of the first matrix) by the number of processors. The 

actual DGEMM executed by each process consists of a portion of the first matrix, times 

the entire second matrix to yield the entire resultant matrix. In this way, each process 

works on a different portion of the array. The second and the resultant matrix are stored 

in replicated memory. 

5. If nQ is greater than the number of nodes, then some (possibly all) nodes will execute 

steps 2-4 again with a different portion of the [FF|FO] array until the entire, overall 

matrix multiplication is performed. 

6. After all nodes complete their respective work, a global sum is called on the resultant 

matrix. 

This node based algorithm eliminates the memory requirement of nl per process and instead 

stores it once per node. In the case of a node with many processors, e.g., greater than 8, this 

is a substantial savings. The overall replicated memory for the node based CCSD algorithm 

has a leading term of nl + n0nl- Because na is typically much less than nv, this replicated 

requirement is small enough to allow large sized calculations to be performed. The extra shared 

memory requirement (in addition to the values given in Table 3.8) is MAX(n^ + 2nQnl, nanl + 

n^nl). The shared memory requirement is equal to or less than the process based replicated 

memory requirement, illustrating the significant memory savings when moving to a node based 

algorithm. 
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Algorithm Routine Shared memory Replicated memory 

Process based CCSD 0 MAX(^, 2n^) + 2%M^ 
(T) 0 2^ + 

Node based CCSD MAX(^ + 2%M^, ) 7^ + 
(T) n2

v 

Table 3.9 Memory requirements for the process and node based algorithms, 
in addition to the memory requirements given in Table 3.8. 

3.3.3.2 (T) 

The node based (T) algorithm continues along much the same lines as the node based CCSD 

component. Recall that the (T) algorithm is three nested loops of size nQ each, and each loop 

iteration can be executed independently of all the other iterations since no data needs to be 

communicated between loop iterations. However, the algorithm must avoid the high storage 

requirements of the process based algorithm. To achieve this goal, the large nl temporary 

arrays are stored one time per node in shared memory. Then the loop iterations are divided 

evenly among the nodes. When a computationally intensive routine (such as a permutation 

or DGEMM) is encountered, the work is partitioned equally among the processors of the 

node, with strict control maintained to avoid overwriting shared memory array locations by 

multiple processors. The extra shared memory requirement is 2nl- But the replicated memory 

requirement has a leading term of which represents a significant memory savings over the 

process based algorithm. Table 3.9 outlines the overall memory requirements for both the 

process and node based algorithms. 

3.3.4 Performance results 

To assess the performance of our algorithm, some sample calculations have been performed, 

using different numbers of processors and different numbers of nodes. The primary machine 

used is an IBM SMP cluster provided by the Scalable Computing Laboratory, Ames Labora

tory. This machine has three SMP nodes, each of which has eight power4 processors (1.7 GHz) 

and 32 GB of main memory. The two molecules of interest in these tests are luciferin and a 

T-shaped benzophenol-benzene dimer. 
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Execution time is the main metric in evaluating the performance of a parallel algorithm. 

However, simply viewing the execution times rarely allows one to obtain the complete picture 

of algorithm performance. Two common performance evaluation functions used in parallel 

computing are speedup and efficiency. Speedup is defined as 

s<"> = Wir (3'1) 

where n  is the input size, T ( n ,  1) is the execution time of the fastest known serial algorithm, 

and T(n,p) is the execution time of the parallel algorithm using p processors. Perfect speedup 

corresponds to S(p) = p, i.e., using p processors makes the algorithm run p times faster. In 

practice this is rarely achieved. Efficiency is defined as 

M 

When p  is fixed, speedup and efficiency are equivalent measures, differing only by the constant 

factor p. 

Tables 3.10 and 3.11 illustrate execution statistics taken from the process and node based 

algorithms respectively. The molecule in question is luciferin (CnNgOgSgHg). The perfor

mance (paying particular attention to the efficiency values) for the process based algorithm 

(Table 3.10) is quite good, especially the subroutine. In fact, it actually exhibits 

superlinear speedup at 2 processors, which is likely due to cache effects. Once multiple nodes 

are used, the performance drops quite drastically for the CCSD^ (The notation CCSD^ indi

cates one entire CCSD iteration minus the term). This is due to in part to the high 

degree of synchronization required for the CCSD iterations and also possibly due to network 

performance. This calculation is relatively small (in terms of basis functions). Thus, when 

attempting to partition the work in a fashion that is too fine grained, the overhead due to 

work partitioning and communication begins to overtake the computation cost. 

Table 3.11 shows results on luciferin when executing the node based algorithm. Again 

one notices that on 1,2 and 4 processors (i.e., one node) the performance is excellent, with 



50 

Routine 1 2 4 8 16 24 

Wall time 653 319 165 99 52 36 
CCSDt 643 349 208 135 139 156 
CCSD 1297 668 373 234 191 193 

(T) 37619 19890 11313 8460 4455 3070 
Speedup 1.0 2.05 3.96 6.61 12.55 18.01 

CCSDt 1.0 1.84 3.08 4.76 4.64 4.09 
CCSD 1.0 1.94 3.47 5.54 6.80 6.71 

(T) 1.0 1.89 3.33 4.45 8.44 12.25 
Efficiency 1.0 1.02 0.99 0.83 0.78 0.75 

CCSDt 1.0 0.92 0.77 0.60 0.29 0.17 

CCSD 1.0 0.97 0.87 0.69 0.43 0.28 
(T) 1.0 0.95 0.83 0.56 0.53 0.51 

Table 3.10 Wall clock execution time, speedup, and efficiency for luciferin 
run on the power4 IBM machines at SCL. The basis set has 
nQ = 46 and nv = 114. Timing for CCSD is one iteration only. 

The CCSD"*" entry shows time spent in a CCSD iteration ex
cluding the [yy|yy] routine, while the CCSD entry shows time 

spent including the routine. The numbers in the col
umn headings indicate the number of processors. The process 
based algorithms are used in these data. 

all the subroutines executing at greater than 80% efficiency. The routine shows 

excellent speedup, including superlinear speedup at low processor numbers. Going to 8 or 

more processors sees a significant drop in performance. Again, since this is an input size on 

the smaller side of the spectrum, the expected performance gain by using more processors is 

not achieved when using too many processors. 

A test of a larger input size running the node based algorithm is shown in Table 3.12. 

The efficiency of the routine is quite good, with a value of 91% at 24 processors. 

This stands to reason as it does not require much synchronization and is dynamically load 

balanced. The (T) routine efficiency is also quite good, with a value of 72% at 24 processors. 

The CCSD"*" efficiency is less than optimal at 24 processors. In fact, its execution time at 16 

and 24 processors is almost identical. The big bottlenecks in the node based CCSD"*" routine 

are the frequent synchronization steps. This sample calculation is somewhat of a medium sized 

problem, so one is encouraged by the performance of the and (T) routines. As nv 
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Routine 1 2 4 8 16 24 

Wall time 654 319 161 98 53 36 
CCSDt 690 372 215 147 139 148 
CCSD 1344 691 376 245 191 185 

(T) 21204 11414 6536 3944 2925 2385 
Speedup 1.0 2.05 4.07 6.67 12.46 17.94 

CCSDt 1.0 1.85 3.21 4.69 4.98 4.62 
CCSD 1.0 1.94 3.58 5.48 7.03 7.26 

(T) 1.0 1.86 3.24 5.37 7.25 8.89 
Efficiency 1.0 1.03 1.02 0.83 0.77 0.74 

CCSDt 1.0 0.92 0.80 0.59 0.31 0.19 
CCSD 1.0 0.97 0.89 0.67 0.44 0.30 

(T) 1.0 0.92 0.81 0.67 0.45 0.37 

Table 3.11 Wall clock execution time, speedup, and efficiency for luciferin 
run on the power4 IBM machines at SCL. The basis set has 
nQ = 46 and nv = 114. Timing for CCSD is one iteration only. 

The CCSD"*" entry shows time spent in a CCSD iteration ex
cluding the [yy|yy] routine, while the CCSD entry shows time 

spent including the [UU|UU] routine. The numbers in the col
umn headings indicate the number of processors. The node based 
algorithms are used in these data. 

continues to grow, those two routines will dominate the runtime of the entire algorithm. The 

CCSD"*" speedup is less than ideal, but as the problem sizes get larger, it becomes less and less 

important as it does not asymptotically affect the runtime10. 

When considering the performance of a parallel algorithm, speedup and efficiency are the 

most common metrics. That is, the quality of a parallel algorithm is based almost entirely 

on efficient use of CPU. One always hopes to decrease the runtime linearly when adding more 

processors to the same problem. While this is a valid performance metric, it can be argued 

that in the case of CCSD(T) (and many other algorithms of scientific interest), only viewing 

CPU efficiency does not give a complete picture. The system resource which is scarce in this 

algorithm is memory, i.e., the size of the problem that can be calculated is bounded by the 

amount of system memory available. The utmost effort has been made to conserve memory 

at all costs, e.g., the [UU|UU] routine recalculates the same integrals every iteration with the 

10Recall that the asymptotic runtime complexity of CCSD is 0(N6), due to the [W|W] term and the 
asymptotic runtime of (T) is 0(N7). 
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Routine 4 8 16 24 

Wall time 5083 2796 1399 936 
CCSDt 1278 808 650 648 
CCSD 6362 3604 2048 1585 

(T) 163403 108202 56280 37770 
CCSD(T) 297154 184151 102131 75861 

Speedup 1.0 1.82 3.63 5.43 
CCSDt 1.0 1.58 1.97 1.97 

CCSD 1.0 1.77 3.11 4.01 
(T) 1.0 1.51 2.90 4.33 

CCSD(T) 1.0 1.61 2.91 3.92 
Efficiency 1.0 0.91 0.91 0.91 

CCSDt 1.0 0.79 0.49 0.33 
CCSD 1.0 0.88 0.78 0.67 

(T) 1.0 0.76 0.73 0.72 
CCSD(T) 1.0 0.81 0.73 0.65 

Table 3.12 Wall clock execution time, speedup, and efficiency for T-shaped 
benzophenol-benzene dimer run on the power4 IBM machines 
at SCL. The basis set has nQ = 33 and nv = 313. Timing for 

CCSD is one iteration only. The CCSD"*" entry shows time spent 
in a CCSD iteration excluding the [UU|UU] routine, while the 
CCSD entry shows time spent including the [UU|UU] routine. 
The numbers in the column headings indicate the number of 
processors. The node based algorithm was used and the perfor
mance data were calculated using the 4 process algorithm as the 
baseline, not the serial algorithm. 

sole goal of conserving memory. The use of shared memory (instead of replicated memory) 

introduces a much smaller algorithmic memory requirement, but also introduces much more 

process and node synchronization. This necessarily induces a CPU utilization penalty, as 

processes are sleeping while waiting for synchronization to occur. Less than ideal efficiency of 

CPU with the benefit of efficient utilization of memory means, in the case of this CCSD(T) 

algorithm, that larger input sizes can be run. 
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CHAPTER 4. Conclusions 

4.1 General discussion 

In this work, a model for the use of hybrid memory programming in scientific computing 

has been developed and implemented in the CCSD(T) algorithm programmed in GAMESS. 

Chapter 2 showed the results of using shared memory programming and OpenMP to parallelize 

the main computation routines of CCSD(T), i.e., the DGEMM routines. This work showed 

that parallelizing the DGEMMs yielded some speedup, but there are other significant portions 

of the CCSD(T) algorithm which still executed serially. To achieve a truly parallel code, the 

work had to be extended from one SMP machine to a cluster of SMP machines. 

To facilitate this more extensive parallelization, additions were made to the Distributed 

Data Interface communication library of GAMESS. Support for shared memory arrays (in

cluding direct read and write access) and collective operations such as broadcast and global 

sum were implemented. This allowed the use of three layers of memory, namely distributed, 

shared and replicated memory. 

Aided with the new memory hierarchy, a fully parallel algorithm was developed for the 

CCSD(T) equations. The hierarchical algorithm was designed with a primary goal of utilizing 

the system memory as efficiently as possible. Both process and node based algorithms were 

developed. The intention is that for the really large calculations, the node based algorithm is 

the one of choice because the process based algorithm has a replicated memory requirement 

which is fairly high. This is due in no small part to the fact that when certain partitionings 

of DGEMM are performed, the entire resultant matrix must be stored on each process. These 

large replicated memory requirements are eliminated in the node based algorithm by storing 

the large arrays in shared rather than replicated memory space. This results in more SMP 
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synchronizations but also resulted in a much smaller replicated memory requirement. 

Both the process and node based algorithms were described in detail, and performance 

results were given to indicate relevant execution time improvement over the serial algorithm. 

For a relatively small input size (Tables 3.10 and 3.11), the parallel efficiencies were quite good 

on one node. Adding multiple nodes did not show a proportionate increase in efficiency. For 

a medium sized input (Table 3.12) the efficiencies were better than for the small input size, 

especially as the number of processors was increased. 

Overall, the node based algorithm was found to have good efficiency for the [UU|UU] 

and (T) subroutines, while the CCSD^ efficiency was not as good. However, this does not 

pose a major concern in the large input size limit, as the CCSD(T) algorithm complexity is 

dominated by the [UU|UU] and (T) subroutines. It was also shown that in this particular 

parallel code, with memory being the greatest bottleneck, to conserve memory at the expense 

of CPU is sometimes the only way, in the context of this algorithm, to run the largest input 

sizes possible. 

4.2 Future research 

As has been mentioned a number of times in this thesis, the greatest barrier to really large 

CCSD(T) calculations is the high memory requirements. With that restriction in mind, one 

is always looking for methods to reduce the memory requirements. To this end, one could 

add a direct, "on the fly" calculation which calculates the [UU|UO] each iteration, instead 

of calculating the integral values once and storing them in distributed memory. This would 

eliminate the largest distributed array that is currently stored. Once could also implement a 

fully distributed model, where each of the large arrays which are currently stored in shared 

memory, would then be stored once in distributed memory. This would eliminate the advan

tages of shared memory, but would reduce the overall memory requirement for the algorithm. 

This would also require much more communication and synchronization, as the DDI arrays 

would be read and written, while the current algorithm only reads from the DDI arrays and 

does not write them. 



55 

APPENDIX Parallel communication functions 

put 

Function that takes a local memory buffer and places the contents of that memory into 

distributed memory. 

get 

Function that obtains a portion of distributed memory and places it into a local memory 

buffer 

accumulate 

Function that operates similar to put but instead of writing the local buffer to distributed 

memory, it first performs a binary operation (such as add or multiply) between the local 

memory and the pre-existing distributed memory, element by element. The result of the 

binary operation is then stored in distributed memory. 

broadcast 

Function that takes a local memory buffer and sends it to all other processes. 

global sum 

Function that takes a memory buffer from each process, adds them all together and 

writes the result in the original memory buffer. 

synchronize 

Function that places a barrier on process execution. Processes wait at the barrier until 

all the processes are at the same execution point in the program before proceeding. 
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