
Hybrid programming in high performance scientific computing

by

Jonathan Lee Bentz

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Ricky Kendall, Co-major Professor

Robyn Lutz, Co-major Professor
Mark Gordon

Iowa State University

Ames, Iowa

2006

Copyright © Jonathan Lee Bentz, 2006. All rights reserved.

UMI Number: 1439837

®

UMI
UMI Microform 1439837

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ii

TABLE OF CONTENTS

LIST OF TABLES iv

LIST OF FIGURES vii

CHAPTER 1. Introduction 1

1.1 Scientific computing 1

1.1.1 Memory management and data movement 2

1.1.2 Multi-level parallelism 3

1.2 Computational chemistry in GAMESS 4

1.2.1 Distributed Data Interface 5

1.2.2 Electronic correlation calculations 7

1.2.3 Coupled cluster method 11

1.3 Thesis organization 12

CHAPTER 2. Parallelization of general matrix multiply routines using OpenMP 14

2.1 Introduction 14

2.2 Outline of ODGEMM Algorithm 17

2.3 Results 18

2.3.1 Matrix Multiply Testing 18

2.3.2 GAMESS 21

2.4 Conclusions and Future Work 27

CHAPTER 3. Hybrid memory parallel algorithm 32

3.1 Serial algorithm in GAMESS 32

3.2 Performance goals 36

iii

3.3 Parallel algorithm in GAMESS 38

3.3.1 Hierarchical memory partitioning 38

3.3.2 Process based algorithm 40

3.3.3 Node based algorithm 45

3.3.4 Performance results 48

CHAPTER 4. Conclusions 53

4.1 General discussion 53

4.2 Future research 54

APPENDIX Parallel communication functions 55

REFERENCES 56

ACKNOWLEDGEMENTS 59

iv

LIST OF TABLES

Table 2.1 Acronyms for the libraries used 17

Table 2.2 Matrix multiplication execution times. Results are reported in seconds

of wall-clock time. The numbers in the column headings indicate the

number of threads used. The PT column heading indicates the ex

ecution time upon calling the ATLAS PTDGEMM threaded routine

directly 19

Table 2.3 Matrix multiplication execution times using test cases where the matrix

sizes are equal to the matrix sizes used on the HNO molecule with the cc-

pVTZ basis set. Results are reported in 1CP3 seconds of wall-clock time.

The PT column results were obtained by calling ATLAS PTDGEMM

directly. The numbers in the column headings indicate the number

of threads. Frequency is the number of times DGEMM is called with

matrices of that size in the GAMESS execution. Total number of calls

to DGEMM in the GAMESS execution is % 3060 24

Table 2.4 Matrix multiplication times using test cases where the matrix sizes are

equal to the matrix sizes used on the HNO molecule with the cc-pVQZ

basis set. Results are in 10~2 seconds of wall-clock time. The PT col

umn results were obtained calling ATLAS PTDGEMM directly. The

numbers in the column headings indicate the number of threads. Fre

quency is the number of times matrices of that size are called in the

GAMESS execution. Total number of calls to DGEMM in the GAMESS

execution is % 4860 26

V

Table 3.1 Abbreviations used for array sizes 33

Table 3.2 The classes of integrals used in the CCSD calculation, arranged in size

order from smallest to largest 33

Table 3.3 The classes of amplitudes used in the CCSD calculation, arranged in

size order from smallest to largest 34

Table 3.4 The [00\0V] integral class memory requirements in gigabytes. The

horizontal axis is nv and the vertical axis is na 37

Table 3.5 The \VO\VO] and [VV\OO] integral class memory requirements, as well

as the t2 amplitude memory requirements, in gigabytes. The horizontal

axis is nv and the vertical axis is nQ 37

Table 3.6 The [FF|FO] integral class memory requirements, in gigabytes. The

horizontal axis is nv and the vertical axis is na 38

Table 3.7 The integral class memory requirements, in gigabytes 38

Table 3.8 Array sizes and memory requirements. The coefficients of the values

in the distributed memory column reflect the use of symmetry or the

multiple copies of arrays stored in different orders 40

Table 3.9 Memory requirements for the process and node based algorithms, in

addition to the memory requirements given in Table 3.8 48

Table 3.10 Wall clock execution time, speedup, and efficiency for luciferin run on

the power4 IBM machines at SCL. The basis set has n0 = 46 and

nv = 114. Timing for CCSD is one iteration only. The CCSD"*" entry

shows time spent in a CCSD iteration excluding the routine,

while the CCSD entry shows time spent including the routine.

The numbers in the column headings indicate the number of processors.

The process based algorithms are used in these data 50

vi

Table 3.11 Wall clock execution time, speedup, and efficiency for luciferin run on

the power4 IBM machines at SCL. The basis set has nQ = 46 and

nv = 114. Timing for CCSD is one iteration only. The CCSD"*" entry

shows time spent in a CCSD iteration excluding the routine,

while the CCSD entry shows time spent including the routine.

The numbers in the column headings indicate the number of processors.

The node based algorithms are used in these data 51

Table 3.12 Wall clock execution time, speedup, and efficiency for T-shaped benzophenol-

benzene dimer run on the power4 IBM machines at SCL. The basis set

has nQ = 33 and nv = 313. Timing for CCSD is one iteration only.

The CCSD"*" entry shows time spent in a CCSD iteration excluding the

[yy|yy] routine, while the CCSD entry shows time spent including

the [yy|yy] routine. The numbers in the column headings indicate

the number of processors. The node based algorithm was used and the

performance data were calculated using the 4 process algorithm as the

baseline, not the serial algorithm 52

vii

LIST OF FIGURES

Figure 1.1 Memory hierarchy for the current DDI implementation on a two node,

four processor system 6

Figure 1.2 Memory hierarchy for the new DDI implementation on a two node, four

processor system 8

Figure 2.1 Execution time vs. number of threads for the molecule HNO using the

cc-pVTZ basis set. ATLAS and MKL calculations were performed on

Redwing. ESSL calculations were performed on one node of Seaborg.

The basis set cc-pVTZ uses 85 basis functions for this calculation. The

x-axis scale is logarithmic 21

Figure 2.2 Execution time vs. number of threads for the molecule HNO using the

cc-pVQZ basis set. ATLAS and MKL calculations were performed on

Redwing. ESSL calculations were performed on one node of Seaborg.

The basis set cc-pVQZ uses 175 basis functions for this calculation. The

x-axis scale is logarithmic 22

Figure 2.3 Execution time vs. number of threads for the molecule glycine using

the cc-pVDZ basis set for the hydrogens and the cc-pVTZ basis set for

all other atoms for a total of 200 basis functions. Calculations were

performed on Redwing 22

viii

Figure 3.1 Matrix multiplication using four processes where B is in shared memory,

A is in distributed memory, and C is either in shared or replicated

memory. The number inside the block labels the process that operates

on that portion of the matrix 43

Figure 3.2 Matrix multiplication using four processes where B is in shared memory,

A is in distributed memory, and C is in replicated memory. The number

inside the block labels the process that operates on that portion of the

matrix 44

1

CHAPTER 1. Introduction

1.1 Scientific computing

The advent of the computer has revolutionized the practice of science. The use of high-

performance supercomputers allows scientific calculations to be performed on a previously

unthinkable scale. Supercomputers tackle extremely large computational problems such as

sequencing genomes, modeling sophisticated weather patterns, simulating nuclear explosions,

calculating molecular properties, etc.

One of the most prevalent supercomputer architectures consists of using multiple nodes

of symmetric multi-processor (SMP) machines, where all the processors resident on a node

have direct access to the local memory on that node. Each node is then connected to a high-

performance network. To access memory in an inter-node fashion, the data is transferred via

the network. The popularity of the SMP cluster is due in no small part to its modularity.

Increasing the size of the cluster (as well as increasing the computational power) requires only

adding more nodes and incorporating the additional nodes into the existing network. SMP

clusters come in a variety of sizes, i.e., there is a good deal of variability regarding the number

of nodes in the cluster, as well as the number of processors per node. SMP clusters can be

constructed from commodity hardware components or specially designed for large scientific

computer centers.

2

1.1.1 Memory management and data movement

1.1.1.1 Message Passing Interface

To achieve practical performance on parallel computers one has to have an efficient method

for transferring data between and among nodes. One of the most popular mechanisms for

data movement in parallel computing is the Message Passing Interface (MPI) [1], MPI is

a standard which defines mechanisms for parallel data movement; currently most computer

vendors provide an MPI implementation to facilitate this data movement. MPI is a process

based message passing library. Each process operates independently of all other processes and

has access to its own local memory. When data needs to be transferred from process A to

process B, process A calls a "send" function and process B calls a "receive" function. MPI can

be used to send messages between processes on the same physical node, or between processes

on different nodes. An advantage of MPI is that the user has direct control of memory which

offers the opportunity to highly optimize the communication of data. A disadvantage also

stems from the high level of control in that the user must control all the data movement

explicitly. This can lead to a more difficult programming endeavor.

1.1.1.2 OpenMP

OpenMP [2] is a mechanism for shared memory parallelism, i.e., utilizing multiple proces

sors on an SMP. OpenMP consists of compiler directives which are inserted into existing code

to divide up the computation steps and distribute the work via threads. OpenMP is primarily

a loop-based parallelism scheme. One of its main forms of parallelism is splitting a loop into

equal sized pieces of work and distributing the pieces to all the threads available. While MPI

can be used on any size system (multiple SMP nodes), OpenMP can only be used to distribute

work among one node as it relies on direct access to memory. Because explicit memory man

agement is not required when using OpenMP, the programming effort is normally much less

than when writing MPI code.

3

1.1.2 Multi-level parallelism

The popularity of supercomputers in the form of SMP clusters provides an opportunity for

implementing unique methods of data movement. All the processes on a node have direct access

to the memory of that node and as such a model like OpenMP, which already allows direct

access to memory, is an attractive choice for parallel programming. However, OpenMP cannot

be used to share data among multiple nodes, so an inter-node data movement mechanism is

required, such as MPI.

One would like to write parallel programs which can be executed on large numbers of nodes,

and this requires an efficient message passing library (such as MPI). One would also like to

access the shared memory of an SMP node directly (as in OpenMP) instead of calling functions

to handle data access explicitly. The motivation for writing hybrid code is to optimize both the

inter and intra node communication of data. A number of studies have been done combining

MPI and OpenMP to implement a so-called hybrid or multi-level parallelism [3, 4, 5, 6, 7, 8].

The most common hybrid model is the so-called "master/worker" model. One MPI process is

executed per node (irrespective of the number of physical processors per node) and that process

spawns a master thread and a number of worker threads as well (commonly the number of

threads is set equal to the number of physical processors on the node). The MPI function

calls are only executed by the master thread, and when MPI calls are being executed, the

rest of the threads are sleeping. Once any remote data required for a particular phase of the

algorithm is obtained, the master thread on each node then partitions the work evenly between

the threads. The clear performance penalty paid for this model is that of sleeping threads not

doing anything during inter node communication. Also, if the network is fast enough, during

inter node communication the master thread might not be able to saturate the bandwidth

of the network using only one thread. If multiple threads were communicating across the

network, it could be used more efficiently, but in the master/worker model this is not normally

considered an option.

To alleviate the problem of sleeping threads wasting CPU cycles, one can also augment

the master/worker model by overlapping communication and computation among the threads

4

in a node. This would allow one (or possibly more) threads to be in a communication phase

and the rest of the threads could be executing computations that do not depend on the data

being communicated across the network. This is suggested as being one of the better solutions

to utilize system resources in the most efficient manner and obtain the best performance from

the machine. However, this type of algorithm is notoriously difficult to implement from a

programming standpoint.

The studies cited above showed that the choice of hybrid programming vs. pure MPI pro

gramming is highly dependent on both the machine architecture and the structure of the

algorithm. If the algorithm has multi-level structure inherent in it, it may be a good candidate

for a hybrid parallel algorithm. The network performance impacts the choice of algorithms

as well. This is somewhat problematic as one would like to design one algorithm which will

perform well on a variety of machine architectures. The algorithm we present in this work

necessarily uses shared memory not because of any preconception about network architecture,

but because of the large memory requirements that are associated with it [9]. The only as

sumption made in designing the algorithm is that, for large input sizes, it will be run on a

cluster of SMPs.

1.2 Computational chemistry in GAMESS

One of the scientific disciplines in which computational technology has made a tremendous

impact is the realm of chemistry. Computational chemistry has evolved into a discipline of

chemistry in its own right, as an extension of theoretical chemistry. Computational chemistry

is used both as a predictive and a confirmative method. Predictions about molecules can be

made and these can, in some cases, be tested via experiment. Conversely, experimentalists may

achieve some unusual and/or unexpected results in the laboratory and through computational

chemistry calculations, obtain a more complete understanding of the chemical phenomena

taking place. There exist computational chemistry software packages appropriate for a desktop

workstation and packages used on the largest of supercomputers. Computational chemistry

has traditionally been one of the scientific fields in which supercomputers play a large role

5

since many chemistry algorithms are resource intensive, with algorithms that stress the CPU,

memory, disk I/O and network. The ever-increasing computational power and architectural

complexity of supercomputers brings with it the opportunity and challenge of designing and

implementing efficient algorithms to properly utilize the most advanced systems.

This work uses one of the most widely used, free computational chemistry software pack

ages available, The General Atomic and Molecular Electronic Structure System (GAMESS)

[10]. GAMESS is developed and maintained by Mark Gordon's research group at Iowa State

University [11] and runs on almost all current computer architectures. The chemistry code is

written in FORTRAN 77, and the communication and memory management routines are writ

ten in C. At the time of this writing, there are approximately 22,800 registered users/groups of

GAMESS [12]. The number of actual users is most certainly higher as one license for GAMESS

is generally used for an entire research group or organization.

1.2.1 Distributed Data Interface

The parallel implementation of GAMESS is built on a communication library written specif

ically for GAMESS, called the Distributed Data Interface (hereafter abbreviated DDI1) [13, 14].

It is a process based approach, with two levels of memory. Each process has access to a spec

ified amount of local memory (invisible to all other processes), which is termed "replicated

memory." All processes also have indirect access (via function calls) to what is termed "dis

tributed memory" or global memory. Figure 1.1 shows an example of the memory hierarchy

of a small system. The distributed memory is divided evenly among all physical nodes of

the system and the amount of memory required for a particular computation is specified as

an input parameter to the GAMESS program. DDI provides mechanisms for one-sided data

operations such as put, get, and accumulate (see Appendix). Collective operations are also

provided such as broadcast, global sum, and process synchronization. When performing these

operations DDI will use system memory calls if the distributed data accessed by a process

1Both MPI and DDI operate with the same goals, i.e., communicating data between processes. However the
developers of GAMESS have chosen not to use MPI for a variety of reasons, one being that they want GAMESS
to be a stand-alone software package, not dependent on external software.

6

happens to reside on the same node as the process making the request. If the data is not local

to the node, then the appropriate interconnect network is utilized to transfer the data between

nodes. Note that in this scheme there is no support for direct access to shared-memory arrays

(accessible to all processes on a node).

Interconnect

Node 0 Node 1

CPU 1 CPU 2 CPUO CPU 3

Replicated

Distributed

Replicated Replicated

Distributed

Replicated

Figure 1.1 Memory hierarchy for the current DDI implementation on a two
node, four processor system.

DDI provides support for two dimensional arrays. At array creation, the number of rows

and columns are specified, and DDI partitions the array equally among all the processes in

the system. The default partitioning scheme is to assign each process an equal number of

complete columns of the array. The partitioning by columns (as opposed to rows) is used in

part because FORTRAN arrays are stored in column major order. (DDI operates under the

assumption that each process will be assigned at least one column of the array. If there are

more processes than array columns, DDI kills the job and requests the user to specify fewer

DDI processes to run the calculation.) Thus when a put/get operation is performed between

7

distributed memory and a local buffer, the memory pieces can remain contiguous. Access to

DDI distributed arrays is indirect, i.e., to write data to a DDI array, one must have the data

in a local buffer and call the DDI_PUT function to put the data into the DDI array. Similarly,

to read data from a DDI array, one must call the DDLGET function which obtains the data

from distributed memory and places the data into a local buffer.

A key component of the algorithms we present in this work is the availability of three types

of memory; namely the two presented above and SMP shared memory, i.e., memory on a node

which any process resident to that node can access directly without the use of a function call

such as put or get. Because of this limitation in DDI, we have added to DDI the support

for shared memory arrays that can be directly accessed by all processes which are resident

on the node. Figure 1.2 shows the memory hierarchy of this new version of DDI. Note the

addition of shared memory, which is directly accessed by any processes on the node. There

are mechanisms for collective operations such as broadcast and global sum, where the shared

memory arrays are operated on by one process per node to avoid multiple processes attempting

to write to a shared memory location simultaneously. A synchronization mechanism has also

been added which allows all the processes on a node to synchronize with each other while

remaining independent of processes on other nodes. It should be stated here that DDI remains

a process-based communication library. DDI creates shared memory arrays that are accessible

by all the processes on a node. In the parallel algorithm which we present in Chapter 3, when

we refer to any shared memory operations, we are referring to the use of shared memory DDI

arrays, not the use of any thread-based or OpenMP constructs.

1.2.2 Electronic correlation calculations

The coupled cluster method [15] is one of the most accurate ab initio methods available

to computational chemists for calculating quantum mechanical electronic correlation energies

of atoms and molecules. The formal starting point for these calculations is the electronic,

time-independent Schrodinger equation

= E ^ , (1.1)

8

Interconnect

Node 0 Node 1

CPU 1 CPU 2 CPUO CPU 3

Replicated

Distributed

Shared

Replicated Replicated

Distributed

Shared

Replicated

y y

Figure 1.2 Memory hierarchy for the new DDI implementation on a two
node, four processor system.

where H is the Hamiltonian of the system, E is the energy, and \I> is the exact wavefunction

of the system. The single particle Hamiltonian (H) is given by

H = -|V + V, (1.2)

where h is Planck's constant (6.626 x 10_34m2kg/s) divided by 2tt, m is the mass of the

par ticle in question, V is the three dimensional derivative with respect to position, and V is

the potential energy function, which in general depends on both the position and momentum of

the particle in question. Thus, the Schrôdinger equation is a second order differential equation

whose goal is the determination of the wavefunction which is also in general a function

of position and momentum. Once \I> is obtained, the physical observables of the particle in

question can be calculated.

The Schrôdinger equation can be expanded to treat multiple particles and, in fact, is

9

quite often used to treat entire molecules. One can write down the complete, many-particle

Hamiltonian operator as,

N N M _ NN M M _ _

where lower case letters i , j are indices which denote all the electrons in the system and

uppercase letters A, B indicate all the nuclei in the system. Also, in this expression atomic

units have been used (see Ref. [16]) in place of the SI units which appear in Eq. 1.2, resulting in

a much simpler overall expression by factorization of the physical constants. The total number

of electrons in the system is N, the total number of nuclei in the system is M, Za is the atomic

number of nucleus A, Ma is the mass2 of nucleus A, nA is the distance between electron i

and nucleus A, nj is the distance between electron i and electron j, and tab is the distance

between nucleus A and nucleus B.

Because the electrons in the system move much more rapidly compared to the nuclei, an

approximation (called Born-Oppenheimer) is made which says that the nuclei are essentially

"frozen" in space while the Schrôdinger equation is solved for the electrons (which move in

the field of the "frozen" nuclei). This is the approximation we will assume for the remainder

of this thesis as the methods and algorithms outlined below are concerned with solving the

Schrôdinger equation with respect to the electrons only. This approximation allows us to

neglect the second term from Eq. 1.3 and the fifth term can be considered a constant.

At this point it is appropriate to mention that the complete Schrôdinger equation is only

exactly solvable for a system comprised of two particles, e.g., the hydrogen atom (one nuclei

and one electron). Once the system is three particles or larger the classic three-body problem

is encountered, which says that in the general unrestricted case, the positions and momenta

of three interacting particles cannot be determined exactly. Because of this fact, one is then

confronted with the choice of making an approximation to the Hamiltonian expression, or an

approximation to the wavefunction. In the following work, the electronic Hamiltonian is left

exact and an approximation is made to the wavefunction. This approximation is an expansion

2 To be precise it is the ratio of the mass of nuclei A to the mass of the electron.

10

of the wave function in terms of basis functions. It involves specifying a set of basis functions,

so that the wavefunction is a linear combination of these basis functions. Each basis function

is parameterized by an initially unknown coefficient. The task of the computational chemistry

application is to calculate these unknown coefficients. Once these coefficients are calculated,

the wavefunction is known (to the limit of the basis set accuracy) and physical properties of

the system can then be calculated using this wavefunction. As the size of the atomic basis

set is increased, the accuracy of the calculation improves. Thus, to achieve the most accurate

results, one wishes to use the largest basis sets that are computationally feasible. In computer

science algorithm run-time analysis, one specifies how much time the algorithm takes with

respect to the input size. In this case, the input size is commonly taken as the size of the

basis set, although the size (i.e., number of electrons) of the chemical system in question also

practically impacts the time the calculation takes.

The first step in many electronic energy calculations is to calculate the Hartree-Fock Self

Consistent Field energy (for background see Refs. [16] and [17]). This method involves calcu

lating each electron in the field of all the other electrons. It is an iterative calculation in which

the iterations continue until the electrons' positions remain the same as before and after the

iteration. Once the iterations have converged, the calculation is complete. The drawback of

this method is that interactions between any two (or more) particular electrons is not explicitly

calculated, since each electron only "sees" an overall field of the other electrons. Because of

this, methods have been developed which attempt to calculate the so-called correlation energy,

i.e., the energy due to the direct correlation of electrons with each other. These are commonly

called electron correlation methods and the coupled cluster method is one of these methods

used in computational chemistry today. The entire energy calculation is given as,

Ee 1 = EsgF + E c o r r , (1.4)

where Ee\ is the total electronic energy (neglecting the motion of the heavier nuclei, as noted

above in the Born-Oppenheimer approximation). This is the sum of 5scf which is the energy

calculated using the Hartree-Fock method, and Ecorr which is the correlation energy calculated

11

using one of various correlation methods. The coupled cluster method will be the correlation

method described and implemented in this work.

1.2.3 Coupled cluster method

As mentioned above, the starting point for the coupled cluster method is to first solve the

Hartree-Fock equations, obtaining the SCF energy and the Hartree-Fock wavefunction. This

Hartree-Fock wavefunction is then used as the starting point for the coupled cluster wavefunc

tion, and in turn the coupled cluster energy calculation. The coupled cluster approximation

to the wavefunction is the following,

#cc = (1.5)

where fee is the coupled cluster wavefunction, $o is the reference (Hartree-Fock [16]) wave-

function , and T is the cluster operator given by

f = f i + T 2 + . . . + T N . (1 . 6)

T\ is a single particle operator, Tg is a two-particle operator, etc. The number of particles in

the system is N. This leads to the following equation

o = Ee^&o, (1.7)

which is then used to solve the coupled-cluster equations. The computational demand increases

rapidly as the size of the cluster (number of particles in the operator) increases, thus it is

common to truncate T at at some small value of N. When truncating T at the Tg term, the

calculation is referred to as coupled cluster with singles and doubles (CCSD)3. Truncation at

the singles and doubles is quite common, and it is an 0(N6) algorithm. One can do higher

order calculations, e.g., CCSDT, CCSDTQ (where T is triples and Q is quadruples) but their

3The reader is encouraged to examine Ref. [18] for detailed background information on the coupled cluster
method.

12

asymptotic runtime is much more costly. Consider also that the coupled cluster equations are

iterative, that is the runtime analysis applies to one iteration, so not only is the asymptotic

runtime quite costly, it may have to be run many times before convergence is achieved. To

reduce some of this runtime, methods have been developed in which one performs coupled

cluster up to a particular order (in this case, second order) and then augments the result

with a perturbative, non-iterative correction (in this case, the triples correction). Thus, one

performs coupled cluster for single and double excitations (CCSD) and then performs the

non-iterative calculation for the triple excitations (T). This results in the CCSD(T) method,

i.e., coupled cluster with single and double excitations and perturbative triples. This is a

method that affords an excellent amount of accuracy of the calculations, but still completes

in a reasonable amount of time and so it is used quite extensively by researchers in the field.

This work describes implementing a parallel CCSD(T) hybrid algorithm for GAMESS.

The CCSD algorithm [19, 20] solves for the so-called cluster amplitudes (double precision

floating point arrays), t\ and Zg, where t\ amplitudes are single excitation amplitudes and Zg are

double excitation amplitudes. These amplitudes are coefficients that are used to make a better

approximation to the reference wavefunction. The (T) algorithm adds a perturbative correction

to the calculation and is not iterative. The parallelization of the CCSD(T) calculation is

unique in that the CCSD component is iterative and as such, to parallelize it requires quite

a bit of synchronization between processes as the calculation must proceed in "lock-step" on

all processes at the same time. The (T) component on the other hand, is not iterative and

requires very little data sharing and thus it can be distributed over multiple processes in a

simpler manner. The combination of these two quite different algorithms into one program

provides some unique algorithmic challenges.

1.3 Thesis organization

This thesis is comprised of one published paper (Chapter 2) and an in-depth description of

the fully distributed algorithm (Chapter 3) that will result in a paper submission as well. The

work in Chapter 2 was performed principally by me. The work described in Chapter 3 was

13

performed jointly by me and Ryan Olson. My contribution included a majority of the CCSD

parallel algorithm and a majority of the (T) parallel algorithm. Ryan Olson contributed the

direct integral algorithm (which appears in the CCSD algorithm) and the additions

to the DDI communication library which were necessary to operate with three levels of memory.

Chapter 2 describes work performed to parallelize the existing coupled cluster algorithm

using only shared memory on one node of an SMP. The primary focus was in parallelizing

the calls to DGEMM via OpenMP. There it is shown that performance improvements are seen

using this scheme. However, to become production code, one must consider more avenues for

parallelization and develop a code which runs on multiple SMP nodes. Chapter 3 describes

the fully distributed, hybrid parallel algorithms developed for solving the CCSD(T) equations

on a cluster of SMP machines. Chapter 4 describes conclusions of the work and possibilities

for future research.

14

CHAPTER 2. Parallelization of general matrix multiply routines using

OpenMP

A paper modified slightly from a publication in Lecture Notes in Computer Science1

Jonathan L. Bentz2, Ricky A. Kendall3

Abstract

An application programmer interface (API) is developed to facilitate, via OpenMP, the par

allelization of the double precision general matrix multiply routine called from within GAMESS

[1] during the execution of the coupled-cluster module for calculating physical properties of

molecules. Results are reported using the ATLAS library and the Intel MKL on an Intel

machine, and using the ESSL and the ATLAS library on an IBM SP.

2.1 Introduction

Matrix multiply has been studied extensively with respect to high performance computing,

including analysis of the complexity of parallel matrix multiply (see Ref. [2] and Refs. therein).

The Basic Linear Algebra Subprograms [3, 4, 5, 6] are subroutines that perform linear algebraic

calculations on vectors and matrices with the aim of being computationally efficient across

all platforms and architectures. The Level 3 Basic Linear Algebra Subprograms [7] (BLAS)

^Proceedings of the 5th International Workshop on OpenMP Applications and Tools, WOMPAT 2004, Hous
ton, TX, May 17-18, 2004, appearing in Lecture Notes in Computer Science 3349 (2005) 1-11, edited by Barbara
Chapman.

2Graduate Student, Scalable Computing Laboratory, Ames Laboratory, U.S. DOE, Department of Computer
Science, Iowa State University, Ames, IA 50011

3Adjunct Professor, Scalable Computing Laboratory, Ames Laboratory, U.S. DOE, Department of Computer
Science, Iowa State University, Ames, IA 50011

15

are subroutines that perform matrix-matrix operations. The double precision general matrix

multiply (DGEMM) routine is a member of the level 3 BLAS and has the general form

C^aAB + /3C, (2.1)

where A, B and C are matrices and a and (3 are scalar constants. In the double precision case

of real numbers, matrices A and B can either be transposed or not transposed upon entry into

DGEMM.

This work uses OpenMP to facilitate the parallelization of the general matrix multiply

routines consistently encountered in high-performance computing. Specifically, we are working

in conjunction with the ab initio quantum chemistry software suite GAMESS (General Atomic

and Molecular Electronic Structure System) [1], developed by Dr. Mark Gordon and his

group at Iowa State University. Many of the modules in GAMESS are implemented to run

in parallel (via an asynchronous one-sided distributed memory model), but the module used

in calculating physical properties via the coupled-cluster (CC) method currently has only a

serial implementation [8]. The CC code [9] has numerous calls to DGEMM and to improve the

performance of this code when run on shared memory systems, we are developing an intelligent

application programmer interface (API) for the DGEMM routine which is called from within

GAMESS during its execution. Our wrapper routine (hereafter referred to as ODGEMM)

uses OpenMP to parallelize the matrix multiplication. Currently, GAMESS comes with a

vanilla source code BLAS (VBLAS) library built in and one can optionally link with any

available BLAS library instead. It is not sufficient to simply link all of GAMESS to a multi

threaded BLAS library because then the modules (other than CC) which have previously

been parallelized will create numerous threads when the parallelization has already been taken

care of at a different level. Because of this difference between the CC module and the rest

of GAMESS, shared memory parallelization of DGEMM within the CC module is facilitated

by ODGEMM (i.e., OpenMP DGEMM) which is written to work specifically within the

CC module. Our API is designed to be directly called by GAMESS, partition the matrices

properly and then call a supplied BLAS routine to perform the individual multiplications of

16

the partitioned patches. We have tested a number of different BLAS libraries in which the

library DGEMM is used as a subroutine in our ODGEMM. The ODGEMM routine also calls

different BLAS libraries based on the system software infrastructures.

We have tested our routine with the Automatically Tuned Linear Algebra Software library

(version 3.6.0) [10] (ATLAS), which is freely available and compiles on many platforms. ATLAS

provides a strictly serial library and a parallel library with the parallelization implemented

using POSIX threads. The number of threads chosen in the parallel libraries of ATLAS is

determined when the library is compiled and is commonly the number of physical processors.

The number of threads cannot be increased dynamically but ATLAS may use less if the problem

size does not warrant using the full number. The multiplication routines in ATLAS are all

written in C, although ATLAS provides a C and FORTRAN interface from which to call

their routines. GAMESS is written in FORTRAN and as such our wrapper routine is a

FORTRAN callable routine. Because our routine is written in C, we can use pointer arithmetic

to manipulate and partition the matrices. This allows us to avoid copying matrix patches before

calling the multiplication routine.

Testing has also been performed with the Intel Math Kernel Library (version 6.1) [11]

(MKL) and the IBM Engineering and Scientific Subroutine Library (version 3.3.0.4) [12]

(ESSL). The MKL is threaded using OpenMP so the threading can be controlled by an envi

ronment variable similarly to ODGEMM. The ESSL number of threads can also be changed

through the use of an environment variable.

The testing with GAMESS has been run with ATLAS ODGEMM, ATLAS PTDGEMM,

MKL ODGEMM, ESSL ODGEMM and ESSLSMP DGEMM (see Table 2.1). MKL does

come with a threaded library but it cannot be called with multiple threads from GAMESS

currently because of thread stacksize problems4. These tests have been performed on a variety

of computational resources and associated compiler infrastructure.

4This is a vendor specific problem unrelated to the present work.

17

Library Platform Description

VBLAS DGEMM Intel Serial Vanilla Bias
ATLAS PTDGEMM Intel Pthread built-in implementation using ATLAS
ATLAS ODGEMM Intel OpenMP implementation using ATLAS
MKL ODGEMM Intel OpenMP implementation using MKL

ESSLSMP DGEMM IBM Vendor threaded implementation of ESSL

ESSL ODGEMM IBM OpenMP implementation using ESSL

IBMATLAS ODGEMM IBM OpenMP implementation using ATLAS

Table 2.1 Acronyms for the libraries used.

2.2 Outline of ODGEMM Algorithm

The ODGEMM algorithm uses course-grained parallelism. Consider, for brevity, that the

A and B matrices are not transposed in the call to the ODGEMM routine. In this case, A is an

M x K matrix, B is a K x N matrix, and the resultant C is an M x N matrix. (In subsequent

tables of data, M, N and K are also defined in this manner.) Upon entry to ODGEMM, A is

partitioned into n blocks, where n is the number of threads. The size of each block is M/n by

K, such that each block is a patch of complete rows of the original A matrix. If n does not

divide M evenly, then some blocks may receive one more row of A than others. Matrix B is

partitioned into blocks of size K by N/n. In a similar fashion each block of Bis a patch of

N/n full columns of B and again if N/n has a remainder, some blocks will receive one more

column of B than others.

After this partitioning occurs, the calls to a library DGEMM (e.g., ATLAS, MKL, etc.)

are made. Each thread works with one block of A and the entire B. If Ai is the ith block of

A and Bj is the jth block of B, then the multiplication of Ai by Bj produces the Cy block.

Furthermore, since the ith thread works with Ai and the entire B, the ith thread is computing

the Ci block of C, a block of M/n complete rows of C. Each thread computes an independent

patch of C and as a result there is no dependence among executing threads on the storage of

C.

18

2.3 Results

2.3.1 Matrix Multiply Testing

We have tested our routine with the libraries mentioned above and provide some results of

our testing in Table 2.2.

Library M K N 1 2 4 16 PT

ATLAS ODGEMM 2000 2000 2000 5.05 2.69 1.64 - 1.41
VBLAS DGEMM 99.29 - - - -

MKL ODGEMM 4.62 2.50 1.58 - -

ATLAS ODGEMM 7000 7000 7000 210.9 108.6 57.98 - 58.5
MKL ODGEMM 196.0 101.8 56.87 - -

ESSLSMP DGEMM 538.6 - - 39.9 -

ESSL ODGEMM 538.6 - - 34.8 -

IBMATLAS ODGEMM 531.3 - - 49.2 51.4

ATLAS ODGEMM 8000 8000 8000 315.9 162.8 85.5 - 85.74
MKL ODGEMM 293.3 150.4 83.06 - -

ESSLSMP DGEMM 966.5 - - 60.69 -

ESSL ODGEMM 966.5 - - 53.11 -

IBMATLAS ODGEMM 795.7 - - 78.69 80.42
ATLAS ODGEMM 10000 10000 1000 63.21 30.88 48.56 - 17.27

MKL ODGEMM 57.42 31.21 16.97 - -

ESSL ODGEMM 163.1 - - 11.85 -

IBMATLAS ODGEMM 214.3 - - 15.78 14.26
ATLAS ODGEMM 1000 10000 10000 61.53 31.66 17.18 - 16.67

MKL ODGEMM 58.32 32.22 20.99 - -

ESSL ODGEMM 153.3 - - 11.18 -

IBMATLAS ODGEMM 156.9 - - 15.12 14.10

Table 2.2 Matrix multiplication execution times. Results are reported in

seconds of wall-clock time. The numbers in the column headings
indicate the number of threads used. The PT column heading
indicates the execution time upon calling the ATLAS PTDGEMM
threaded routine directly.

20

These tests were performed by first generating analytical A, B, and C matrices with

double precision elements, performing the multiplication using DGEMM or ODGEMM, and

comparing the resultant C matrix with the analytical C matrix. All of our preliminary testing

was performed on two machines: an SMP machine (named Redwing) with 4 GB of memory

and 4 Intel Xeon 2.00 GHz processors, and one node of the IBM SP (named Seaborg) provided

by NERSC (see Acknowledgments) which has 16 GB of memory and 16 POWERS 375 MHz

processors.

The data in Table 2.2 exhibits a number of interesting features. The VBLAS DGEMM

time is inserted for comparison to the more sophisticated BLAS libraries used in this work.

On a relatively small matrix size, the time required for VBLAS DGEMM is almost 2 orders

of magnitude larger than either the single-threaded ATLAS ODGEMM or MKL ODGEMM

results. Viewing all results from Redwing, the ATLAS ODGEMM results are comparable to

the MKL ODGEMM results, and in a few cases, the ATLAS PTDGEMM routine actually runs

faster than the MKL ODGEMM routine. Viewing the results from Seaborg, one notices that

the ESSLSMP DGEMM and ESSL ODGEMM threaded routines are consistently faster than

the IBMATLAS ODGEMM. On the other hand, when only one thread is used, IBMATLAS

ODGEMM runs faster for the largest matrix size tested. A rather striking result is that of the

last two sections of the table, where the dimensions of the matrices are not equal. Considering

the Redwing results, when M is 10000 and 4 threads are used, ATLAS ODGEMM is quite

high, but when M is 1000, then ATLAS ODGEMM is quite reasonable. The only difference

between these two test cases is that the dimensions of M and N are swapped. Recall that

the algorithm partitions the rows of A, so as the number of rows of A changes, that should

affect the outcome somewhat. However, MKL ODGEMM does not show a similar difference

between the non-square matrix sizes. These are simply general results so that one can see how

these matrix multiply routines compare with one another.

21

400

G-O ATLAS ODGEMM
MKL ODGEMM

O-e ESSLSMP DGEMM
X—X ESSL ODGEMM
A—A ATLAS PTDGEMM

300

2 250

I
200

150

100

Number of threads

Figure 2.1 Execution time vs. number of threads for the molecule HNO
using the cc-pVTZ basis set. ATLAS and MKL calculations were
performed on Redwing. ESSL calculations were performed on one
node of Seaborg. The basis set cc-pVTZ uses 85 basis functions
for this calculation. The x-axis scale is logarithmic.

2.3.2 GAMESS

The results reported in this section are from execution of the GAMESS CC module per

forming energy calculations.5 Figures 2.1, 2.2 and 2.3 show timing data vs. number of threads

from GAMESS execution runs. In all three figures, the ATLAS PTDGEMM result is simply

a single point since the number of threads when using the ATLAS PTDGEMM threaded rou

tine cannot be changed by the user. The compile time thread number (set to the number of

physical processors) is really a maximum thread number since ATLAS may use fewer threads

if the matrices are sufficiently small.

6The basis sets were obtained from the Environmental Molecular Sciences Laboratory at Pacific Northwest
National Laboratory, http://www.emsl.pnl.gov/forms/basisform.html. For an explanation of the basis sets see
ref. [13].

http://www.emsl.pnl.gov/forms/basisform.html

22

8000

Q-O ATLAS ODGEMM
MKL ODGEMM

O-0 ESSLSMP DGEMM
x—x ESSL ODGEMM
A—A ATLAS PTDGEMM

7500

7000

2 6500

I
600#

5000

Number of threads

Figure 2.2 Execution time vs. number of threads for the molecule HNO
using the cc-pVQZ basis set. ATLAS and MKL calculations were
performed on Redwing. ESSL calculations were performed on one
node of Seaborg. The basis set cc-pVQZ uses 175 basis functions
for this calculation. The x-axis scale is logarithmic.

20000

G-e ATLAS ODGEMM
MKL ODGEMM

A-A ATLAS PTDGEMM
8000'

6000

I
4000

2000

0000

Number of threads

Figure 2.3 Execution time vs. number of threads for the molecule glycine

using the cc-pVDZ basis set for the hydrogens and the cc-pVTZ
basis set for all other atoms for a total of 200 basis functions.
Calculations were performed on Redwing.

23

Figure 2.1 shows execution time vs. number of threads for the HNO molecule using the

cc-pVTZ basis set. The ESSL ODGEMM and ESSLSMP DGEMM results are almost identical

for 1 and 2 threads, but they diverge quickly when 4 or more threads are used. This is probably

due to the fact that in these testing runs, ESSL ODGEMM always uses the specified number of

threads, and with small matrix sizes this can cause an unnecessary amount of overhead. With

ESSL ODGEMM there is no performance improvement after 2 threads but with ESSLSMP

DGEMM the performance continues to increase. The ATLAS ODGEMM and MKL ODGEMM

results are more sporadic. With 1 thread, MKL ODGEMM is faster, with 2 threads, ATLAS

ODGEMM is faster, and then with 3 and 4 threads, MKL ODGEMM is faster. Both curves,

with the exception of ATLAS ODGEMM using 2 threads, show an increase in execution time

with increase in the number of threads. Again this is most likely due to the thread overhead

of partitioning matrices which may not be large enough to require parallelization. The fastest

overall execution time is obtained by calling ATLAS PTDGEMM. As a reference point, on

Redwing, the wall time for this calculation using the VBLAS DGEMM that comes packaged

with GAMESS is 705 seconds.

To investigate this behavior further, some test cases were calculated using matrix sizes

that occur frequently in this GAMESS calculation. The results of these test cases are shown

in Table 2.3. The three test cases shown account for about 75% of the matrix multiplications

found in this GAMESS calculation. The first thing to note when viewing these results is that

the dimensions of the matrices are quite unequal. The results show good agreement with what

was shown in Fig. 2.1. As the ESSLSMP DGEMM thread number increases, the execution

time decreases, while the ESSL ODGEMM execution time is at its lowest using either 2 or 4

threads, then stays flat and even increases in some cases. A similar analysis of the ATLAS

ODGEMM and MKL ODGEMM results shows a good agreement with the timing data of the

actual GAMESS executions and shows that the execution of GAMESS is dependent on the

repeated multiplication of only a few different size matrices.

Library M K N 1 2 4 8 12 16 PT Frequency

ATLAS ODGEMM
MKL ODGEMM

ESSLSMP DGEMM

ESSL ODGEMM

77 77 5929 26.1 20.1 18.4
44.4 35.7 56.3
70.8 39.9 20.4 12.8 11.4 11.9
87.6 52.4 39.6 33.8 35.4 37.2

14.2 420

ATLAS ODGEMM

MKL ODGEMM
ESSLSMP DGEMM

ESSL ODGEMM

5929 6 77 7.67 9.63 8.44
8.13 9.03 7.89
48.4 11.9 8.55 6.23 5.51 5.42
34.9 18.8 17.7 17.3 20.5 27.9

4.84 420

ATLAS ODGEMM
MKL ODGEMM

ESSLSMP DGEMM
ESSL ODGEMM

36 5929 77 28.0 20.5 64.0
26.2 19.6 31.5
43.8 19.3 13.1 13.1 12.1 11.2
39.1 21.1 28.7 32.3 37.2 35.9

31.9 1461

Table 2.3 Matrix multiplication execution times using test cases where the
matrix sizes are equal to the matrix sizes used on the HNO
molecule with the cc-pVTZ basis set. Results are reported in
lO-3 seconds of wall-clock time. The PT column results were ob
tained by calling ATLAS PTDGEMM directly. The numbers in
the column headings indicate the number of threads. Frequency is
the number of times DGEMM is called with matrices of that size
in the GAMESS execution. Total number of calls to DGEMM in
the GAMESS execution is % 3060.

25

Figure 2.2 shows execution time vs. number of threads for the HNO molecule using the

cc-pVQZ basis set with 175 basis functions. The results using ESSL show that the ESSL

ODGEMM is slightly faster than ESSLSMP DGEMM for 1 and 2 threads, but when more

than 2 threads are used the ESSLSMP DGEMM continues to decrease in execution time while

ESSL ODGEMM decreases more slowly and even increases for 12 and 16 threads. The increase

when using ESSL ODGEMM is again probably attributed to the overhead of partitioning and

using more threads than necessary on some matrix sizes. The MKL ODGEMM results in

particular are striking. The execution time decreases slightly from 1 to 2 threads, but using 3

and 4 threads increases the execution time. The ATLAS ODGEMM results are as one would

expect, namely that as the thread number increases, the time decreases, until the fastest time

is obtained when 4 threads are used. Also note that the direct call of the threaded ATLAS

PTDGEMM is essentially the same as that of ATLAS ODGEMM when 4 threads are used.

As a reference, the wall time for this calculation on Redwing when using the default VBLAS

DGEMM in GAMESS is 35907 seconds.

As in the earlier case, Table 2.4 was prepared with three test cases using matrix sizes that

occur frequently in this GAMESS calculation. The results are similar to the earlier case in

that the execution time of GAMESS with respect to the matrix multiplication is dominated

by the multiplication of relatively few different sizes of matrices. The three test cases shown in

Table 2.4 account for about 80% of the matrices multiplied. The matrix dimensions are much

different and it is clear that the execution time with respect to the matrix multiplication is

dominated by the repeated multiplication of only a few different size matrices.

Library M K N 1 2 4 8 12 16 PT Frequency

ATLAS ODGEMM
MKL ODGEMM

ESSLSMP DGEMM

ESSL ODGEMM

167 167 27889 54.7 32.6 23.0
44.6 44.1 57.1
132. 66.0 33.7 33.2 14.2 12.6
139. 77.9 47.9 33.1 28.9 27.6

21.7 420

ATLAS ODGEMM

MKL ODGEMM
ESSLSMP DGEMM

ESSL ODGEMM

27889 6 167 8.01 8.46 7.84
7.89 9.05 8.21
21.8 11.3 5.88 3.09 2.71 2.63
29.0 18.7 13.5 11.6 11.2 11.1

5.45 420

ATLAS ODGEMM
MKL ODGEMM

ESSLSMP DGEMM
ESSL ODGEMM

36 27889 167 28.4 20.5 17.6
22.7 19.1 32.1
28.9 15.5 8.95 6.22 5.29 5.91
28.9 18.9 13.9 15.2 27.4 32.3

17.8 3172

Table 2.4 Matrix multiplication times using test cases where the matrix sizes
are equal to the matrix sizes used on the HNO molecule with the
cc-pVQZ basis set. Results are in 10~2 seconds of wall-clock time.
The PT column results were obtained calling ATLAS PTDGEMM
directly. The numbers in the column headings indicate the number
of threads. Frequency is the number of times matrices of that size
are called in the GAMESS execution. Total number of calls to
DGEMM in the GAMESS execution is % 4860.

27

Figure 2.3 shows execution time as a function of the number of threads for GAMESS

using glycine as the input molecule. An interesting feature of this graph is that the ATLAS

ODGEMM timings decrease monotonically and there is a difference of over 500 seconds between

one thread and four threads of execution. The MKL ODGEMM does much better than ATLAS

ODGEMM when using one thread, and is slightly faster using two threads. But then the

total time increases for three and four threads using MKL ODGEMM. ATLAS DGEMM

shows consistent decrease in time of execution upon the addition of processors, but MKL

ODGEMM actually increases its execution time for three and four threads. Note that the

ATLAS PTDGEMM result is almost exactly the same as the ATLAS ODGEMM result using

4 threads.

2.4 Conclusions and Future Work

One conclusion of this work is that if one wants to improve the performance of the CC

module of GAMESS, an external BLAS library should be used. With unsophisticated testing

on Redwing it was shown that almost two orders of magnitude improvement can be gained by

linking with ATLAS or MKL.

With respect to results calculated on Redwing, when using 1 thread, the MKL ODGEMM

is faster than ATLAS ODGEMM. When 2 threads are used, the results are mixed with MKL

ODGEMM running faster in some cases and ATLAS ODGEMM running faster in other cases.

When 3 and 4 threads are used, especially in the GAMESS executions, ATLAS ODGEMM

is consistently faster than MKL ODGEMM. When one looks at GAMESS execution time

irrespective of the number of threads used, ATLAS PTDGEMM is almost always the fastest,

and in Fig. 2.2 and Fig. 2.3 the ATLAS ODGEMM times are comparable. An unexpected

result is that of the MKL ODGEMM when multiple threads are used. When more than 2

threads are used in the GAMESS execution using MKL ODGEMM, the times actually increase.

The results obtained using Seaborg are worthy of note as well. When considering the

results of the generic matrix multiplication of Section 2.3.1, the ESSL ODGEMM actually

runs faster than the built in ESSLSMP DGEMM library. When compared to ATLAS, the

28

threaded versions of ESSL are faster than the threaded ATLAS versions. The results from

the GAMESS tests show that for thread numbers less than 4, ESSL ODGEMM and the

ESSLSMP DGEMM give similar results. When adding more threads to the calculation, the

ESSLSMP DGEMM consistently yields faster results than the ESSL ODGEMM, especially at

high numbers of threads. This seems to suggest that the ESSLSMP DGEMM library has some

built in mechanisms to determine better partitioning of the matrices.

After testing on two different architectures, it is clear that calling ODGEMM with the

number of threads equal to the number of processors does not always yield the fastest execution

times. Depending on whether the system is an Intel system or IBM, our results show that the

fastest execution time varies significantly based on the number of threads chosen and the

BLAS library used. This information will be incorporated into the ODGEMM routine. The

ODGEMM library will then be able to choose the appropriate call mechanism to the library

DGEMM with properly partitioned matrices and an appropriate number of threads.

For future work we wish to incorporate some matrix metrics into ODGEMM to make

decisions about parallelization. For example, considering GAMESS executions, it is quite

probable that some calls to DGEMM will run faster in parallel while some calls may be fastest

running on one thread only, or with the number of threads less than the number of processors.

These decisions will depend on factors such as matrix size, dimensional layout, and processor

speed. Especially when using the vanilla BLAS which has no parallel implementation, the

opportunity for performance enhancement is available via ODGEMM properly parallelizing

the matrix multiplication. We are also going to perform testing and hence provide portability

to more architectures, as GAMESS is currently available for a wide range of architectures and

systems. The use of parallel DGEMM in GAMESS is a beginning for exploiting the advantages

of SMP machines in GAMESS calculations. We will investigate the utilization of OpenMP at

other levels within the chemistry software as well.

29

Acknowledgements

This work was performed under auspices of the U. S. Department of Energy under contract

W-7405-Eng-82 at Ames Laboratory operated by the Iowa State University of Science and

Technology. Funding was provided by the Mathematical, Information and Computational Sci

ence division of the Office of Advanced Scientific Computing Research. This material is based

on work supported by the National Science Foundation under Grant No. CHE-0309517. This

research used resources of the National Energy Research Scientific Computing Center, which

is supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC03-76SF00098. Basis sets were obtained from the Extensible Computational Chem

istry Environment Basis Set Database, Version 12/03/03, as developed and distributed by

the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory

which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352,

USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is

a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department

of Energy under contract DW-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt

for further information. The authors wish to thank Ryan Olson for his helpful comments with

respect to implementation details of GAMESS.

30

References

[1] M. W. Schmidt et al.: General Atomic and Molecular Electronic Structure Sys

tem. J. Comput. Chem. 14 (1993) 1347-1363.

[2] E. E. Santos: Parallel Complexity of Matrix Multiplication. J. Supercomp. 25

(2003) 155-175.

[3] C .L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh: Basic Linear

Algebra Subprograms for Fortran Usage. ACM Trans. Math. Soft. 5 (1979) 308-

323.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh: ALGORITHM

539, Basic Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math.

Soft. 5 (1979) 324-245.

[5] J. J. Dongarra, J. Du Croz, S. Hammarling and R. J. Hanson: An Extended Set

of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14

(1988) 1-17.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling and R. J. Hanson: ALGORITHM

656, An Extended Set of Basic Linear Algebra Subprograms: Model Implemen

tation and Test Programs. ACM Trans. Math. Soft. 14 (1988) 18-32.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling and I. Duff: A Set of Level 3 Basic

Linear Algebra Subprograms. ACM Trans. Math. Soft. 16 (1990) 1-17.

[8] GAMESS User's Guide, accessed March 1, 2004,

(http://www.msg.ameslab.gov/GAMESS/GAMESS.html).

http://www.msg.ameslab.gov/GAMESS/GAMESS.html

31

[9] P. Piecuch, S. A. Kucharski, K. Kowalski and M. Musial: Efficient computer im

plementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-

CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput. Phys. Com-

mim. 149 (2002) 71-96.

[10] R. C. Whaley, A. Petitet and J. J. Dongarra: Automated Empirical Optimiza

tion of Software and the ATLAS project. Parallel Computing. 27 (2001) 3-35.

Also available as University of Tennessee LAPACK Working Note #147, UT-

CS-00-448, 2000 (http://www.netlib.org/lapack/lawns/lawnl47.ps).

[11] Intel Corporation. Intel Math Kernel Library Ver

sion 6.1, Reference Manual, accessed March 1, 2004.

(http://www.intel.com/software/products/mkl/docs/mklman61.htm).

[12] IBM Corporation. Engineering and Scientific Subroutine Library for AIX

Version 3 Release 3: Guide and Reference, accessed March 1, 2004.

(http://publib.boulder.ibm.com/doc_link/en_US/a_doc_lib/sp34/essl/essl. html).

[13] T. H. Dunning Jr.: Gaussian basis sets for use in correlated molecular calcula

tions. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (1989)

1007-1023.

http://www.netlib.org/lapack/lawns/lawnl47.ps
http://www.intel.com/software/products/mkl/docs/mklman61.htm
http://publib.boulder.ibm.com/doc_link/en_US/a_doc_lib/sp34/essl/essl

32

CHAPTER 3. Hybrid memory parallel algorithm

3.1 Serial algorithm in GAMESS

The current implementation of coupled cluster in GAMESS was contributed by Piecuch

and coworkers [21]. They did extensive work to determine an optimal ordering of computation

steps and factoring the requisite arrays to call DGEMM as much as possible. This was done

with the goal of using highly optimized mathematical libraries, supplied by most computer

vendors (including DGEMM), which are often hand-tuned for maximum performance. Their

contribution is strictly a serial algorithm, in contrast to most of the other major functionalities

of GAMESS, which have parallel implementations. This work focuses on the parallel imple

mentation of the CCSD(T) algorithm, coupled cluster with single and double excitations, and

the inclusion of perturbative triple excitations.

The input to a GAMESS calculation consists of the user choosing various computation and

chemistry parameters, and also specifying a molecule. One input parameter which determines

how accurate the calculation will be is the choice of a basis set. There are a number of

shorthand variables that will be used, and Table 3.1 outlines three of them. The number of

basis functions is completely specified by the choice of basis set and the size of the molecule1.

The value nQ is the number of occupied orbitals2, and nv is the number of virtual orbitals

(also called unoccupied orbitals). In the case of the GAMESS CCSD(T) algorithm, the value

of nQ denotes only the valence electrons. That is, when considering all the electrons of an

atom/molecule, there are a number of electrons that are not used in the CCSD(T) computation

lrThe basis set specifies a fixed number of basis functions for each type of atom. To determine the total
number of basis functions in the calculation, one looks at each atom present in the molecule of interest and the
basis set will indicate what type and how many basis functions will be used.

2 An orbital is a mathematical function which specifies a region of space where the electron is likely to be
found. Each electron is placed in one orbital.

33

Abbreviation Numerical value

Mo Number of occupied orbitals

nv Number of virtual (unoccupied)
Number of basis functions

Table 3.1 Abbreviations used for array sizes.

Class size

[OOIOO] ni

Table 3.2 The classes of integrals used in the CCSD calculation, arranged
in size order from smallest to largest.

because their contribution is negligible due to their location. Thus, nQ is always less than or

equal to the number of electrons. The number of virtual orbitals, nv is bounded by the size

of the basis set, ribf. Because n0 < ribf and nv < ribf, the runtime analysis of computational

chemistry programs is commonly given in terms of ribf, i .e. when CCSD is ci ted as an 0(N6)

algorithm, N = ribf.

The first step in the overall coupled cluster algorithm is to calculate the Hartree-Fock

wavefunction and energy. This is an iterative calculation and is used as a starting point for

many different algorithms in GAMESS. The next step is to perform an integral transformation,

which prepares most of the numeric data necessary for the CCSD(T) calculation. The resultant

integrals are stored on disk as double precision floating point numbers. Each class of integrals

is stored as a four index array. These integral values constitute the majority of the memory

requirements for the CCSD(T) algorithm, as they are typically calculated before the CCSD(T)

calculation begins and are stored for future retrieval. Table 3.2 shows the different integral

classes3 and their space requirements with respect to occupied and virtual orbitals.

throughout this work we will use a bracket notation to indicate the different integral classes, e.g., the
[W|VO] integral class is a four index array with the first three indices having size nv and the last index size
n0. Thus, when discussing the [W|VO] integrals, we are referring to a four index, double precision array with
the four dimensions given as ([nv,nv,nv,n0) and subsequently the total size of the array is equal to n®n0.

34

Class size

t\

01
t2

02

Table 3.3 The classes of amplitudes used in the CCSD calculation, arranged

in size order from smallest to largest.

The next step is to solve for the CCSD amplitudes. All of the integrals except for the

[yy|yy] integrals are read into memory and kept there for the entire time. Solving for the

amplitudes (the final t\ and Zg arrays) is an iterative procedure. The working copies of the

amplitudes are labeled t\ and Zg, and the previous iterations' copies are labeled o\ and 02. When

the difference between the amplitudes of successive iterations is sufficiently small, convergence

has been achieved and the iterations terminate. The sizes of the amplitudes are given in Table

3.3.

A CCSD iteration consists of using the o\ and 02 amplitudes, along with all the integral

classes shown in Table 3.2 to calculate new values for the t\ and Zg amplitudes. Throughout an

entire iteration, neither the integral classes nor the o\ or 02 amplitudes change values; only the

t\ and t2 amplitudes are updated. The details of the CCSD iterations are quite complicated.

The general form of an iteration involves taking two arrays (integral classes or one of the o\ or

02 amplitudes), performing various permutations4 on them, and then finally multiplying them

together (using matrix multiplication) and accumulating the resultant matrix into either the t\

or t2 array. This happens no less than 30 times for one CCSD iteration. Run time analysis of

an iteration involves calculating the cost of the matrix multiplications since they are the most

expensive (in terms of floating point operations) step. The largest matrix multiplication which

occurs in the CCSD iterations is the multiplication of 02 (as a n2 x n2 matrix) by [yy|yy] (as

a n2 x n2 matrix). This matrix multiplication has an asymptotic runtime of 0(n2n4). Since

4There are many permutations performed on the arrays in CCSD(T). Some are simple matrix transposes,
some involve permuting two of the four indices, e.g., exchanging index 1 and 3. In some cases, a permutation
and a multiplication is performed on the array. The exact permutations performed are not instructive but suffice
it to say that these permutations are in general very cache inefficient as memory is read and written in many
different parts of the array.

35

nQ < ribf and nv < ribf, this is more generally analyzed as an algorithm. The following

pieces of code are presented to illustrate a few sample pieces of the serial CCSD code including

its more expensive (in terms of runtime) operations.

DO 123 1=1,NU

I0FF=N02U*(I-1)+1

CALL RDVPP(I,N0,NU,TI)

CALL DGEMM('N','N',N02,NU,NU2,ONE,02,N02,TI,NU2,ONE,

& T2(I0FF),N02)

123 CONTINUE

CALL TRMD(02,TI,NU,N0,20)

CALL TRMD(VR,TI,NU,NO,21)

CALL VECMUL(02,N02U2,HALF)

CALL ADT12(1,N0,NU,01,02,4)

CALL DGEMM('N','N',N0U,N0U,N0U,0NEM,VR,N0U,02,N0U,ONE,VL,NOU)

CALL ADT12(2,NO,NU,01,02,4)

CALL VECMUL(02,N02U2,TWO)

CALL TRMD(02,TI,NU,N0,27)

CALL TRMD(T2,TI,NU,N0,28)

CALL DGEMM('N','N',NOU,NOU,NOU,ONEM,02,NOU,VL,NOU,ONE,T2,NOU)

CALL TRANMD(02,N0,NU,NU,N0,23)

CALL TRANMD(T2,NO,NU,NU,NO,23)

CALL DGEMM('N','N',NOU,NOU,NOU,ONEM,02,NOU,VL,NOU,ONE,T2,NOU)

The first section of code illustrates the most expensive term, namely the DGEMM call

using the term. It is so large that it is actually performed in nv loops with a runtime

of O(rignl) in each loop iteration. The DGEMM is broken up in this fashion because storing

the entire array in memory is only feasible for small system sizes. Instead, a nl

36

piece of the array is read from disk and used. The second and third sections of code show

slightly smaller DGEMMs with a runtime of 0{n3
0nI) each. Notice how the function calls to

DGEMM are surrounded by other function calls. In these illustrative pieces of code, all the

other subroutines surrounding the DGEMMs are calls to some sort of permutation routine

(except for the RDVPP routine which reads in a portion of the [UU|UU] array).

Once the CCSD iterations have converged, the (T) calculation is performed. Overall the

(T) has three nested DO loops of size na. In each of these loops there are multiple DGEMM

calls, the largest of which is n\. Therefore, the asymptotic runtime of the (T) step is 0(n3n4),

or more generally 0{viJbf). Asymptotically, the (T) calculation dominates the runtime of the

CCSD(T) algorithm, although practically this domination shows up more prevalently when

large sized inputs are used.

The example code serves to illustrate the computationally intensive coupled cluster code

currently in GAMESS. Coupled cluster is a CPU intensive method due to the many matrix

multiplication calls. It is memory intensive due to the large integral and amplitude arrays

which have to be in memory. And it is I/O intensive because it stores all the integrals on disk

with the [UU|yy], the largest integral class, being read from disk during each iteration.

3.2 Performance goals

When designing the parallel algorithm there were some goals in mind which we wanted

our algorithm to strive for, while remaining within the bounds of the current status of high

performance computing architecture. We wanted to be able to run a computation with n0

approaching 100, and with nv approaching 800. The accuracy of the calculation increases with

increasing nv and so that value should be chosen as high as computationally possible. We also

wanted to minimize the disk I/O and hopefully achieve this by eliminating the storage of the

integrals on disk. The storage space of disk is quite inexpensive (financially speaking) and so

from this perspective storing integrals on disk is attractive. However, depending on the I/O

and network capabilities of the machine, the performance penalty can be very high due to the

high amount of I/O associated with reading and writing large amounts of data to disk. So our

37

100 200 300 400 500 600 700 800
10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
20 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05
40 0.05 0.10 0.14 0.19 0.24 0.29 0.33 0.38
60 0.16 0.32 0.48 0.64 0.80 0.97 1.13 1.29
80 0.38 0.76 1.14 1.53 1.91 2.29 2.67 3.05

100 0.75 1.49 2.24 2.98 3.73 4.47 5.22 5.96

Table 3.4 The [00\0v] integral class memory requirements in gigabytes.
The horizontal axis is nv and the vertical axis is n0.

100 200 300 400 500 600 700 800
10 0.01 0.03 0.07 0.12 0.19 0.27 0.37 0.48
20 0.03 0.12 0.27 0.48 0.75 1.07 1.46 1.91
40 0.12 0.48 1.07 1.91 2.98 4.29 5.84 7.63
60 0.27 1.07 2.41 4.29 6.71 9.66 13.14 17.17

80 0.48 1.91 4.29 7.63 11.92 17.17 23.37 30.52
100 0.75 2.98 6.71 11.92 18.63 26.82 36.51 47.68

Table 3.5 The \vo\vo] and [vv\oo] integral class memory requirements,
as well as the Zg amplitude memory requirements, in gigabytes.
The horizontal axis is nv and the vertical axis is n0.

goal is to use main memory as the primary vehicle for the data storage.

To examine the memory requirements of the various array sizes, consider Tables 3.4-3.7.

Here the memory requirements (in gigabytes) are shown for the different integral classes. Recall

that DDI was originally formulated as a process based communication model. To access data,

it either needs to be stored as replicated data (meaning each process on a node would have its

own copy, resulting in lots of duplicated data per node) or a library function has to be called

to get the data from distributed memory and put it into a local buffer. One sees from the

memory requirements tables that as the nQ and nv are increased, the possibility of replicating

these integrals per process becomes less feasible and even a smaller integral class [00\0v]

(Table 3.4) requires almost 6 GB of memory per process for the largest case.

This memory concern led to the augmentation of the current DDI communication library

with support for shared memory arrays which can be accessed by all the processes resident on

the node. This is especially relevant for data such as the integrals as they are calculated once

38

100 200 300 400 500 600 700 800
10 0.07 0.60 2.01 4.77 9.31 16.09 25.56 38.15
20 0.15 1.19 4.02 9.54 18.63 32.19 51.11 76.29
40 0.30 2.38 8.05 19.07 37.25 64.37 102.22 152.59
60 0.45 3.58 12.07 28.61 55.88 96.56 153.33 228.88
80 0.60 4.77 16.09 38.15 74.51 128.75 204.44 305.18

100 0.75 5.96 20.12 47.68 93.13 160.93 255.55 381.47

Table 3.6 The [FF|FO] integral class memory requirements, in gigabytes.
The horizontal axis is nv and the vertical axis is n0.

nv 100 200 300 400 500 600 700 800
1 12 60 191 466 966 1789 3052

Table 3.7 The integral class memory requirements, in gigabytes.

at the beginning of the code and after that they are only read. The only arrays of significance

which are written are the amplitudes.

3.3 Parallel algorithm in GAMESS

3.3.1 Hierarchical memory partitioning

One of the first steps in designing the parallel algorithm is to determine an efficient par

titioning of the system memory. Our target architecture for this algorithm, considering the

large memory requirements, is a cluster of S MP nodes. The types of systems we have in mind

are e.g., S MP nodes with 8 or 16 processors per node, with a minimum of 16 (and up to 64)

GB of memory per node.

The choice of how to properly store the integrals depends a great deal on the system one

is using. However, when one examines the memory requirements for the integrals

given in Table 3.7, it is apparent that an alternate strategy is required for them, since even a

relatively modest calculation (~ 400 basis functions) requires almost 200 GB of memory for this

integral class alone. As stated above in the current serial implementation, all of the integrals

are calculated before the CCSD iterations begin, stored on disk, and read into memory as

needed. To alleviate the tremendous storage requirements of the integrals, we have

39

implemented a direct integral transformation routine for computing these integrals. Instead of

computing the entire set of [UU|UU] integrals at the beginning and storing them, we instead

recalculate them "on the fly" as needed during each CCSD iteration. This greatly reduces

the memory requirement. There is obviously a tradeoff between memory and CPU time, since

the same computation is performed each iteration instead of one time at the beginning of the

algorithm. However, it is often a trade that computational scientists are willing to make since

storing the [UU|UU] integrals would likely have to be done on disk, and accessing the disk

might take as long or longer than recomputing the integrals, and might exhaust disk space as

well. Also, even with the extra computations performed due to recomputing the integrals, the

overall size of the problem which can be computed on a particular system is increased due to

the smaller memory requirements of the integral computation. Memory is often the bottleneck

in scientific computations and conserving memory at the expense of CPU time is frequently

an advantageous tradeoff. This concept of direct computation of integrals in coupled cluster

calculations has also been implemented in another computational chemistry package NWChem

[22], where they not only recompute the [UU|UU] integrals, but the [UU|UO] integrals as well

[23].

The [UU|UO] integrals are stored in distributed memory (i.e., one copy distributed across

all the nodes) and due to symmetry of the data, they are stored in about half5 the space of the

actual size of the array. When a section of the array is needed in a computation, it is expanded

to its full form at that time. This requires the array to be expanded multiple times in the

course of the CCSD iterations, but that expansion time is small compared to the memory

savings gained.

The [vv\oo] and \vo\vo] integrals are also stored in distributed memory. Because these

two classes of integrals are used so frequently and are permuted in complicated ways, they are

actually stored multiple times in distributed memory, in different permuted orders which are

used in the CCSD iterations. The rest of the arrays, including temporary arrays are stored

in shared or replicated memory. Table 3.8 summarizes the relevant arrays, where they are

^The exact size is + l)/2 x

40

Array Distributed memory Shared memory Replicated memory

%7^/2 0 0
0 0
0 0

0 0
[OOIOO] 0 < 0

h 0 0

02 0 0
temp 0 0

h 0 0

01 0 0

Table 3.8 Array sizes and memory requirements. The coefficients of the val
ues in the distributed memory column reflect the use of symmetry
or the multiple copies of arrays stored in different orders.

located, and how much memory they require.

3.3.2 Process based algorithm

Depending on the memory of the system and the size of the calculation, the CCSD(T)

parallel algorithm is designed to operate on either a process based or node based footing.

The process based algorithm has a larger memory requirement due to the necessity of more

replicated temporary memory. There are multiple sections of the algorithm where more than

one process is calculating contributions to the same section of a shared memory array. When

multiple processes attempt to write to the same memory location, that memory location will

likely be corrupted. In the process based algorithm, each process writes the results of these

types of calculations into a temporary, replicated memory buffer, and at the conclusion of that

particular part of the calculation, each process performs a global sum of the temporary data,

which is then accumulated into the shared data.

The overall algorithm begins by using existing portions of GAMESS to get the data set up

properly. There already exists a parallel version of Hartree-Fock and of the integral transfor

mation, so these modules were used with no modification. Once the integral transformation is

completed the integrals are placed into distributed or shared memory (according to the scheme

showed in Table 3.8) by the master process. Recall from §1.2.1 that the DDI arrays are two

41

index arrays. The distributed integral arrays are four index arrays, so an intelligent parti

tioning of the integrals needs to be performed. From an algorithmic standpoint, the simplest

distribution of the integrals would be on the fourth index, e.g., for the [vo\vo] integrals,

set the number of rows equal to nvn0nv and the number of columns equal to nQ- This is the

easiest because there are multiple phases of the algorithm where a permutation is performed

on either the first and third or second and third indices of the array. If the array is distributed

on the fourth index, then one can do a DDLGET on some number of columns of the array,

and the data that is obtained can be easily permuted on the third index of the array. However,

from a memory standpoint distributing the integrals on the fourth index results in non-uniform

memory distribution. A close examination of Table 3.8 shows that all three integral classes

which are stored in distributed memory have nQ as their last index. Because nQ depends on

the molecule and not the basis set, one is limited (by DDI, see §1.2.1) to setting the number

of processes to be less than or equal to n0. Considering that the value of nQ is less than 100,

and in some cases much less, this restriction severely limits how large a machine one can use

to run the calculation. One would prefer to be able to distribute the array on an index of

size nv, because nv can be increased (in principle) arbitrarily and is not directly dependent

on the molecule of interest. To alleviate the memory distribution problem, the DDI arrays

are distributed on the third index. With this partitioning scheme the number of columns of

the distributed arrays is either n0nv or n2, both of which allow the number of processes to be

increased to a significantly large value6. This completes the setup phase of the algorithm.

3.3.2.1 CCSD

At this point the CCSD iterations begin. The first part of the CCSD iteration is the

calculation of the direct contribution. As mentioned above, this requires very little

memory because the integrals are calculated during each iteration as needed and are not

stored. Then the iterations proceed in essentially the same order as the serial algorithm,

6This necessary partitioning of the DDI arrays on the third index leads to the duplication of the [VV\OO]
and [VO\VO] arrays. Since one cannot perform permutations on the third index if only the first two indices
are present, the duplicated arrays are the result of permutations involving the third index. This duplication
simplifies the algorithm as the data is already in the proper order.

42

with the work of the DGEMM calls being broken up and given to each process. If the data

required by a process happens to reside in distributed memory, then that process executes a

DDLGET function call to retrieve the requisite data. In a majority of the DDLGET calls,

the process only gets the distributed data that is associated with itself. Recall from Chapter 1

that DDI assigns equal amounts of data in a DDI array to each process. If a particular process

only requests the data that it was already assigned (when the DDI array was created), then

obtaining that data does not involve any network communication; a system memory call is all

that is required. This mechanism allows DDLGET calls to execute quickly because there is

no network communication required to obtain the data.

Since this is an iterative calculation, all the processes must move in a lock-step fashion.

There simply is no way for processes to work completely independently because they all con

tribute iteration dependent data necessary for the amplitudes. Because of this, there is a fair

amount of process synchronization. Every time a portion of the algorithm requires access to a

shared memory array, a SMP_SYNC7 is required.

As an example of how one type of matrix multiplication is partitioned in our process based

algorithm, consider Figure 3.1 and the following description. Assume the shared memory array

B (with matrix dimensions of m x k) is going to be multiplied times a block of a distributed

array A (where the total array A has matrix dimensions of k x n) to produce the matrix C.

1. Call DDLDISTRIB8

2. Call DDLGET, obtain the block of the array (consisting of complete columns) which is

local to this process and place it in buffer A. Treat A as a k x n' matrix.

3. Each process performs B times A, as a m x k times k x n' matrix multiply, resulting in

a m x matrix.

7There are two types of synchronization calls in DDI. One is DDLSYNC, which is a global barrier. All
processes must get to the same point in the program before continuing execution. A SMP_SYNC is a barrier
such that all processes on a node must be at the same point in the program before continuing and processes
on other nodes are ignored. Since the shared memory is only accessed by the processes resident on the node, a
SMP-SYNC is sufficient to guarantee that data in the shared memory array will be accessed correctly

8DDI_DISTRIB is a function that takes the process rank and the array identifier and returns the number of
columns and rows of the distributed array which are associated with that process, and therefore stored on the
local memory.

43

Note that since each process is generating a unique portion of matrix C (a block of complete

columns), there is no contention for C because each process is writing to a different block

of C. If C is in replicated memory, at the end of the computation a global sum operation

can be performed on the entire C matrix to obtain the full aggregated result of the matrix

multiplication.

B A c

k n' n' n' n' n' n' n' n'

X =

m k 0 1 2 3 m 0 1 2 3

Figure 3.1 Matrix multiplication using four processes where B is in shared
memory, A is in distributed memory, and C is either in shared
or replicated memory. The number inside the block labels the
process that operates on that portion of the matrix.

Another type of matrix multiplication occurs when A and B are multiplied in the opposite

order. In this case the matrix multiplication proceeds as follows (see Figure 3.2):

1. Call DDLDISTRIB

2. Call DDLGET, obtain the block of the array (consisting of complete columns) which is

local to this process and place it in buffer A. Treat A as a m x k' matrix.

3. Partition B into blocks of complete rows, based on the number of columns of A that each

process receives. Treat the portion of B as a k! x n matrix.

4. Each process performs A times B, as a m, x k' times k' x n matrix multiply, resulting in

a m x M matrix.

Note that each process produces a m, x n matrix, which then has to be summed together

(element by element) to form the final C matrix. This is accomplished by doing a global sum

operation on the entire C matrix.

44

The detailed replicated memory requirement for the CCSD iterations has a leading term

of MAX(^ + 2m^ + 2mo7^). Asymptotically this reduces to MAX(0(^), O(M^)).

The nl memory requirement is due to portions of the algorithm in which a permutation of

indices one and three is performed on the [FF|FO] integrals; thus, an entire nl portion of the

array must be in memory at the same time. The n^nl memory requirement comes from the

DGEMMs as shown in Figure 3.2, where the entire resultant matrix must be replicated per

process to avoid overwriting shared memory data.

A B c

k' k' k' k' n n

k'

X
k'

0

0 1 2 3

k'

X
k' 1

0 1 2 3

k' 2

k' 3

Figure 3.2 Matrix multiplication using four processes where B is in shared
memory, A is in distributed memory, and C is in replicated mem
ory. The number inside the block labels the process that operates
on that portion of the matrix.

3.3.2.2 (T)

The (T) portion of the algorithm is more straightforward to parallelize than the CCSD

component. It consists of three nested loops, each of size nQ. Within each loop, a number of

DGEMM calls is made, the largest of which is 0{n^). The nice feature of the (T) calculation is

that each loop iteration can be performed independently of all other loop iterations. The only

data obtained from the (T) calculation are two double precision values. These are additive

values in the sense that each loop iteration contributes a portion of both values, and all the

portions are summed together to form the overall result. This allows a partitioning based on

processes; i.e., each process executes a chunk of the overall loop iterations. The leading term

of the replicated memory requirement for the (T) code is 2nl This requirement comes

45

from the necessity of storing two temporary work arrays of size nl and storing the [vo\vo]

integral class during each loop iteration.

3.3.3 Node based algorithm

The process based algorithm is successful in parallelizing the work and the load balancing

is fairly even. There are portions of the algorithm in which the master process on each node is

working (while the other processes are sleeping) to manipulate the shared memory arrays, but

that amount of execution time is not significant in the overall runtime. The main downfall of the

process based approach is the replicated memory requirement. When one has to replicate (per

process) arrays of size nl or n^nl, the memory cost9 is simply too high to perform calculations

with large input sizes.

Due to the memory cost of the process based algorithm, a complementary node based

algorithm has also been designed. The majority of the changes between the process based

and node based algorithm are implemented with the goal of conserving memory. The node

based CCSD(T) computation begins in the same way as the process based code (see §3.3.2).

That is, the Hartree-Fock energy and wavefunction are computed and the parallel integral

transformation is performed to setup the various integral arrays for the CCSD(T) calculation,

including putting the requisite arrays into distributed or shared memory.

3.3.3.1 CCSD

The CCSD iterations begin in the same fashion by executing the direct algorithm to cal

culate the contribution of the integrals to the amplitudes. The overall order of

operations for each iteration does not change between the process and node based algorithm.

But, whenever there is a DGEMM in the process based code which requires either a nl or n2
0n\

replicated array, this portion of the code is adapted to execute in a node based fashion. Gen

erally, this involves partitioning the DGEMM evenly by the number of nodes. Each node gets

one portion of the DGEMM to work on. Then each node divides the DGEMM into equal sized

^Especially when one considers that larger SMP machines can commonly have from 8 to 16 processors per
node

46

work portions for each process to work on. There are two levels of division, and the rationale

is that the large temporary arrays which previously resided in replicated memory now reside in

shared memory, one time per node, instead of one time per process. With this being the case,

there must be more synchronization of processes in a single node to avoid data corruption due

to multiple processes writing to a shared memory array location concurrently. The following is

a description of one DGEMM found in the process based algorithm. For reference, the current

serial algorithm multiplies the [FF|FO] array (as ati^x n0nv matrix) times the o\ amplitudes

(as a n0nv x 1 matrix) and generates an^xl matrix. For comparison, the process and node

based algorithms will be presented. The process based algorithm runs as follows:

1. Divide nQ by the number of processes so as to assign each process an equal amount of

work.

2. Each process obtains a complete nl portion of the [FF|FO] integrals based on the index

calculated in the previous step, resulting in a 4-index array with dimensions (nv,nv,nv, 1).

This array is stored in replicated memory.

3. Each process performs a permutation of the first and third index.

4. Each process executes a local DGEMM (as an2
vxnv matrix times anvxl matrix resulting

in a ni x 1 matrix). The second and the resultant matrix are stored in replicated memory.

5. If nQ is greater than the number of processes, then some (possibly all) processes will

execute steps 2-4 again with a different portion of the [FF|FO] array until the entire,

overall matrix multiplication is performed.

6. After all processes complete their respective work, a global sum is called on the resultant

matrix.

The replicated memory requirement for this DGEMM is nl, which is much too large to be

stored once per process. The following description outlines the adaptations that are made to

convert the process based algorithm to a node based one.

1. Divide nQ by the number of nodes so as to assign each node an equal amount of work.

47

2. Each node obtains a complete nl portion of the [FF|FO] integrals based on the index

c alculated in the previous step, resulting in a 4-index array with dimensions (nv,nv,nv, 1).

This array is stored in shared memory.

3. Each node performs the permutation of the first and third index, using a routine which al

lows all the processors on the node to do the permutation in parallel, without overwriting

shared memory data.

4. Each node executes a DGEMM (as a nl x nv matrix times an, xl matrix resulting in

an^xl matrix). This DGEMM is further split among the processes on the node, by

dividing nl (the row dimension of the first matrix) by the number of processors. The

actual DGEMM executed by each process consists of a portion of the first matrix, times

the entire second matrix to yield the entire resultant matrix. In this way, each process

works on a different portion of the array. The second and the resultant matrix are stored

in replicated memory.

5. If nQ is greater than the number of nodes, then some (possibly all) nodes will execute

steps 2-4 again with a different portion of the [FF|FO] array until the entire, overall

matrix multiplication is performed.

6. After all nodes complete their respective work, a global sum is called on the resultant

matrix.

This node based algorithm eliminates the memory requirement of nl per process and instead

stores it once per node. In the case of a node with many processors, e.g., greater than 8, this

is a substantial savings. The overall replicated memory for the node based CCSD algorithm

has a leading term of nl + n0nl- Because na is typically much less than nv, this replicated

requirement is small enough to allow large sized calculations to be performed. The extra shared

memory requirement (in addition to the values given in Table 3.8) is MAX(n^ + 2nQnl, nanl +

n^nl). The shared memory requirement is equal to or less than the process based replicated

memory requirement, illustrating the significant memory savings when moving to a node based

algorithm.

48

Algorithm Routine Shared memory Replicated memory

Process based CCSD 0 MAX(^, 2n^) + 2%M^
(T) 0 2^ +

Node based CCSD MAX(^ + 2%M^,) 7^ +
(T) n2

v

Table 3.9 Memory requirements for the process and node based algorithms,
in addition to the memory requirements given in Table 3.8.

3.3.3.2 (T)

The node based (T) algorithm continues along much the same lines as the node based CCSD

component. Recall that the (T) algorithm is three nested loops of size nQ each, and each loop

iteration can be executed independently of all the other iterations since no data needs to be

communicated between loop iterations. However, the algorithm must avoid the high storage

requirements of the process based algorithm. To achieve this goal, the large nl temporary

arrays are stored one time per node in shared memory. Then the loop iterations are divided

evenly among the nodes. When a computationally intensive routine (such as a permutation

or DGEMM) is encountered, the work is partitioned equally among the processors of the

node, with strict control maintained to avoid overwriting shared memory array locations by

multiple processors. The extra shared memory requirement is 2nl- But the replicated memory

requirement has a leading term of which represents a significant memory savings over the

process based algorithm. Table 3.9 outlines the overall memory requirements for both the

process and node based algorithms.

3.3.4 Performance results

To assess the performance of our algorithm, some sample calculations have been performed,

using different numbers of processors and different numbers of nodes. The primary machine

used is an IBM SMP cluster provided by the Scalable Computing Laboratory, Ames Labora

tory. This machine has three SMP nodes, each of which has eight power4 processors (1.7 GHz)

and 32 GB of main memory. The two molecules of interest in these tests are luciferin and a

T-shaped benzophenol-benzene dimer.

49

Execution time is the main metric in evaluating the performance of a parallel algorithm.

However, simply viewing the execution times rarely allows one to obtain the complete picture

of algorithm performance. Two common performance evaluation functions used in parallel

computing are speedup and efficiency. Speedup is defined as

s<"> = Wir (3'1)

where n is the input size, T (n , 1) is the execution time of the fastest known serial algorithm,

and T(n,p) is the execution time of the parallel algorithm using p processors. Perfect speedup

corresponds to S(p) = p, i.e., using p processors makes the algorithm run p times faster. In

practice this is rarely achieved. Efficiency is defined as

M

When p is fixed, speedup and efficiency are equivalent measures, differing only by the constant

factor p.

Tables 3.10 and 3.11 illustrate execution statistics taken from the process and node based

algorithms respectively. The molecule in question is luciferin (CnNgOgSgHg). The perfor

mance (paying particular attention to the efficiency values) for the process based algorithm

(Table 3.10) is quite good, especially the subroutine. In fact, it actually exhibits

superlinear speedup at 2 processors, which is likely due to cache effects. Once multiple nodes

are used, the performance drops quite drastically for the CCSD^ (The notation CCSD^ indi

cates one entire CCSD iteration minus the term). This is due to in part to the high

degree of synchronization required for the CCSD iterations and also possibly due to network

performance. This calculation is relatively small (in terms of basis functions). Thus, when

attempting to partition the work in a fashion that is too fine grained, the overhead due to

work partitioning and communication begins to overtake the computation cost.

Table 3.11 shows results on luciferin when executing the node based algorithm. Again

one notices that on 1,2 and 4 processors (i.e., one node) the performance is excellent, with

50

Routine 1 2 4 8 16 24

Wall time 653 319 165 99 52 36
CCSDt 643 349 208 135 139 156
CCSD 1297 668 373 234 191 193

(T) 37619 19890 11313 8460 4455 3070
Speedup 1.0 2.05 3.96 6.61 12.55 18.01

CCSDt 1.0 1.84 3.08 4.76 4.64 4.09
CCSD 1.0 1.94 3.47 5.54 6.80 6.71

(T) 1.0 1.89 3.33 4.45 8.44 12.25
Efficiency 1.0 1.02 0.99 0.83 0.78 0.75

CCSDt 1.0 0.92 0.77 0.60 0.29 0.17

CCSD 1.0 0.97 0.87 0.69 0.43 0.28
(T) 1.0 0.95 0.83 0.56 0.53 0.51

Table 3.10 Wall clock execution time, speedup, and efficiency for luciferin
run on the power4 IBM machines at SCL. The basis set has
nQ = 46 and nv = 114. Timing for CCSD is one iteration only.

The CCSD"*" entry shows time spent in a CCSD iteration ex
cluding the [yy|yy] routine, while the CCSD entry shows time

spent including the routine. The numbers in the col
umn headings indicate the number of processors. The process
based algorithms are used in these data.

all the subroutines executing at greater than 80% efficiency. The routine shows

excellent speedup, including superlinear speedup at low processor numbers. Going to 8 or

more processors sees a significant drop in performance. Again, since this is an input size on

the smaller side of the spectrum, the expected performance gain by using more processors is

not achieved when using too many processors.

A test of a larger input size running the node based algorithm is shown in Table 3.12.

The efficiency of the routine is quite good, with a value of 91% at 24 processors.

This stands to reason as it does not require much synchronization and is dynamically load

balanced. The (T) routine efficiency is also quite good, with a value of 72% at 24 processors.

The CCSD"*" efficiency is less than optimal at 24 processors. In fact, its execution time at 16

and 24 processors is almost identical. The big bottlenecks in the node based CCSD"*" routine

are the frequent synchronization steps. This sample calculation is somewhat of a medium sized

problem, so one is encouraged by the performance of the and (T) routines. As nv

51

Routine 1 2 4 8 16 24

Wall time 654 319 161 98 53 36
CCSDt 690 372 215 147 139 148
CCSD 1344 691 376 245 191 185

(T) 21204 11414 6536 3944 2925 2385
Speedup 1.0 2.05 4.07 6.67 12.46 17.94

CCSDt 1.0 1.85 3.21 4.69 4.98 4.62
CCSD 1.0 1.94 3.58 5.48 7.03 7.26

(T) 1.0 1.86 3.24 5.37 7.25 8.89
Efficiency 1.0 1.03 1.02 0.83 0.77 0.74

CCSDt 1.0 0.92 0.80 0.59 0.31 0.19
CCSD 1.0 0.97 0.89 0.67 0.44 0.30

(T) 1.0 0.92 0.81 0.67 0.45 0.37

Table 3.11 Wall clock execution time, speedup, and efficiency for luciferin
run on the power4 IBM machines at SCL. The basis set has
nQ = 46 and nv = 114. Timing for CCSD is one iteration only.

The CCSD"*" entry shows time spent in a CCSD iteration ex
cluding the [yy|yy] routine, while the CCSD entry shows time

spent including the [UU|UU] routine. The numbers in the col
umn headings indicate the number of processors. The node based
algorithms are used in these data.

continues to grow, those two routines will dominate the runtime of the entire algorithm. The

CCSD"*" speedup is less than ideal, but as the problem sizes get larger, it becomes less and less

important as it does not asymptotically affect the runtime10.

When considering the performance of a parallel algorithm, speedup and efficiency are the

most common metrics. That is, the quality of a parallel algorithm is based almost entirely

on efficient use of CPU. One always hopes to decrease the runtime linearly when adding more

processors to the same problem. While this is a valid performance metric, it can be argued

that in the case of CCSD(T) (and many other algorithms of scientific interest), only viewing

CPU efficiency does not give a complete picture. The system resource which is scarce in this

algorithm is memory, i.e., the size of the problem that can be calculated is bounded by the

amount of system memory available. The utmost effort has been made to conserve memory

at all costs, e.g., the [UU|UU] routine recalculates the same integrals every iteration with the

10Recall that the asymptotic runtime complexity of CCSD is 0(N6), due to the [W|W] term and the
asymptotic runtime of (T) is 0(N7).

52

Routine 4 8 16 24

Wall time 5083 2796 1399 936
CCSDt 1278 808 650 648
CCSD 6362 3604 2048 1585

(T) 163403 108202 56280 37770
CCSD(T) 297154 184151 102131 75861

Speedup 1.0 1.82 3.63 5.43
CCSDt 1.0 1.58 1.97 1.97

CCSD 1.0 1.77 3.11 4.01
(T) 1.0 1.51 2.90 4.33

CCSD(T) 1.0 1.61 2.91 3.92
Efficiency 1.0 0.91 0.91 0.91

CCSDt 1.0 0.79 0.49 0.33
CCSD 1.0 0.88 0.78 0.67

(T) 1.0 0.76 0.73 0.72
CCSD(T) 1.0 0.81 0.73 0.65

Table 3.12 Wall clock execution time, speedup, and efficiency for T-shaped
benzophenol-benzene dimer run on the power4 IBM machines
at SCL. The basis set has nQ = 33 and nv = 313. Timing for

CCSD is one iteration only. The CCSD"*" entry shows time spent
in a CCSD iteration excluding the [UU|UU] routine, while the
CCSD entry shows time spent including the [UU|UU] routine.
The numbers in the column headings indicate the number of
processors. The node based algorithm was used and the perfor
mance data were calculated using the 4 process algorithm as the
baseline, not the serial algorithm.

sole goal of conserving memory. The use of shared memory (instead of replicated memory)

introduces a much smaller algorithmic memory requirement, but also introduces much more

process and node synchronization. This necessarily induces a CPU utilization penalty, as

processes are sleeping while waiting for synchronization to occur. Less than ideal efficiency of

CPU with the benefit of efficient utilization of memory means, in the case of this CCSD(T)

algorithm, that larger input sizes can be run.

53

CHAPTER 4. Conclusions

4.1 General discussion

In this work, a model for the use of hybrid memory programming in scientific computing

has been developed and implemented in the CCSD(T) algorithm programmed in GAMESS.

Chapter 2 showed the results of using shared memory programming and OpenMP to parallelize

the main computation routines of CCSD(T), i.e., the DGEMM routines. This work showed

that parallelizing the DGEMMs yielded some speedup, but there are other significant portions

of the CCSD(T) algorithm which still executed serially. To achieve a truly parallel code, the

work had to be extended from one SMP machine to a cluster of SMP machines.

To facilitate this more extensive parallelization, additions were made to the Distributed

Data Interface communication library of GAMESS. Support for shared memory arrays (in

cluding direct read and write access) and collective operations such as broadcast and global

sum were implemented. This allowed the use of three layers of memory, namely distributed,

shared and replicated memory.

Aided with the new memory hierarchy, a fully parallel algorithm was developed for the

CCSD(T) equations. The hierarchical algorithm was designed with a primary goal of utilizing

the system memory as efficiently as possible. Both process and node based algorithms were

developed. The intention is that for the really large calculations, the node based algorithm is

the one of choice because the process based algorithm has a replicated memory requirement

which is fairly high. This is due in no small part to the fact that when certain partitionings

of DGEMM are performed, the entire resultant matrix must be stored on each process. These

large replicated memory requirements are eliminated in the node based algorithm by storing

the large arrays in shared rather than replicated memory space. This results in more SMP

54

synchronizations but also resulted in a much smaller replicated memory requirement.

Both the process and node based algorithms were described in detail, and performance

results were given to indicate relevant execution time improvement over the serial algorithm.

For a relatively small input size (Tables 3.10 and 3.11), the parallel efficiencies were quite good

on one node. Adding multiple nodes did not show a proportionate increase in efficiency. For

a medium sized input (Table 3.12) the efficiencies were better than for the small input size,

especially as the number of processors was increased.

Overall, the node based algorithm was found to have good efficiency for the [UU|UU]

and (T) subroutines, while the CCSD^ efficiency was not as good. However, this does not

pose a major concern in the large input size limit, as the CCSD(T) algorithm complexity is

dominated by the [UU|UU] and (T) subroutines. It was also shown that in this particular

parallel code, with memory being the greatest bottleneck, to conserve memory at the expense

of CPU is sometimes the only way, in the context of this algorithm, to run the largest input

sizes possible.

4.2 Future research

As has been mentioned a number of times in this thesis, the greatest barrier to really large

CCSD(T) calculations is the high memory requirements. With that restriction in mind, one

is always looking for methods to reduce the memory requirements. To this end, one could

add a direct, "on the fly" calculation which calculates the [UU|UO] each iteration, instead

of calculating the integral values once and storing them in distributed memory. This would

eliminate the largest distributed array that is currently stored. Once could also implement a

fully distributed model, where each of the large arrays which are currently stored in shared

memory, would then be stored once in distributed memory. This would eliminate the advan

tages of shared memory, but would reduce the overall memory requirement for the algorithm.

This would also require much more communication and synchronization, as the DDI arrays

would be read and written, while the current algorithm only reads from the DDI arrays and

does not write them.

55

APPENDIX Parallel communication functions

put

Function that takes a local memory buffer and places the contents of that memory into

distributed memory.

get

Function that obtains a portion of distributed memory and places it into a local memory

buffer

accumulate

Function that operates similar to put but instead of writing the local buffer to distributed

memory, it first performs a binary operation (such as add or multiply) between the local

memory and the pre-existing distributed memory, element by element. The result of the

binary operation is then stored in distributed memory.

broadcast

Function that takes a local memory buffer and sends it to all other processes.

global sum

Function that takes a memory buffer from each process, adds them all together and

writes the result in the original memory buffer.

synchronize

Function that places a barrier on process execution. Processes wait at the barrier until

all the processes are at the same execution point in the program before proceeding.

56

REFERENCES

[1] The MPI Forum, MPI-1.1, A Message-Passing Interface Standard, accessed Oc

tober 16, 2006. (http://www.mpi-forum.org/docs/docs.html).

[2] OpenMP Application Program Interface, Version 2.5, accessed October 16, 2006.

(http://www.openmp.org/drupal/node/view/8).

[3] G. Jost, H. Jin, D. an Mey, F. F. Hatay, "Comparing the OpenMP, MPI, and

Hybrid Programming Paradigms on an SMP Cluster," Proceedings of the Fifth

European Workshop on OpenMP, EWOMP 03, Aachen, Germany, Sept. 22-26,

2003.

[4] R. Rabenseifner, "Hybrid Parallel Programming on HPC Platforms," Proceed

ings of the Fifth European Workshop on OpenMP, EWOMP 03, Aachen, Ger

many, Sept. 22-26, 2003.

[5] R. Rabenseifner, G. Wellein, "Comparison of Parallel Programming Models on

Clusters of SMP Nodes," Proceeding o/ Z/te T»Zer?m#07W Co»fere»ce o»

Performance Scientific Computing, Hanoi, Vietnam, Mar. 10-14, 2003.

[6] R. Rabenseifner, "Hybrid Parallel Programming: Performance Problems and

Chances," Proceeding o/ Z/te Cm;/ C/gerg Group Co»fere»ce, Columbus,

Ohio, USA, May 12-16, 2003.

[7] E. Chow, D. Hysom, "Assessing Performance of Hybrid MPI/OpenMP Programs

on SMP Clusters", .Lawrence i/iuermore _/Va#o;W i,a6oraZor;/ Tkc/tmcaZ AeporZ

May 2001.

http://www.mpi-forum.org/docs/docs.html
http://www.openmp.org/drupal/node/view/8

57

[8] M. Krishnan, Y. Alexeev, T. L. Windus, J. Nieplocha, "Multilevel Parallelism in

Computational Chemistry using Common Component Architecture and Global

Arrays", Proceed*»*^ 0/ Z/te Co»fere»ce, Seattle,

Washington, USA, Nov. 12-18, 2005.

[9] L. Smith, M. Bull, "Development of mixed mode MPI/OpenMP applications,"

vol. 9, pp. 83-98, 2001.

[10] M. W. Schmidt et al., "General Atomic and Molecular Elecronic Structure Sys

tem," J. Comput. Chem., vol. 14, pp. 1347-1363, 1993.

[11] GAMESS User's Guide, accessed August 1, 2006.

(http://www.msg.ameslab.gov/GAMESS/GAMESS.html).

[12] B. M. Bode, Associate Scientist, Ames Laboratory, U.S.DOE, Ames, IA 50011.

Personal Communication, August 2006.

[13] G. D. Fletcher, M. W. Schmidt, B. M. Bode, M. S. Gordon, "The Distributed

Data Interface in GAMESS", Comp. Phys. Comm., vol. 128, pp. 190-200, 2000.

[14] R. M. Olson, M. W. Schmidt, M. S. Gordon, A. P. Rendell, "Enabling the

Efficient Use of SMP Clusters: The GAMESS/DDI Model", Proceedings of the

ACM/IEEE Supercomputing Conference, Phoenix, Arizona, USA, Nov. 15-21,

2003.

[15] J. Cizek, "On the Correlation Problem in Atomic and Molecular Systems. Calcu

lation of Wavefunction Components in Ursell-Type Expansion Using Quantum-

Field Theoretical Methods", J. Chem. Phys., vol. 45, pp. 4256-4266, 1966.

[16] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, Dover Publications, Reading, MA, 1986.

[17] I. N. Levine, Quantum Chemistry, 5th edition, Prentice-Hall, Inc., Upper Saddle

River, New Jersey, 2000.

http://www.msg.ameslab.gov/GAMESS/GAMESS.html

58

[18] T. D. Crawford, H. F. Schaefer, "An Introduction to Coupled Cluster Theory

for Computational Chemists", in Reviews in Computational Chemistry, K. B.

Lipkowitz and D. B. Boyd, Eds. VCH Publishers, New York, NY, USA, vol. 14,

pp. 33-136, 2000.

[19] G. D. Purvis, R. J. Bartlett, "A full coupled-cluster singles and doubles model:

The inclusion of disconnected triples", J. Chem. Phys., vol. 76, pp. 1910-1918,

1982.

[20] G. E. Scuseria, C. L. Janssen, H. F. Schaefer III, "An efficient reformulation of

the closed-shell coupled cluster single and double (CCSD) equations", J. Chem.

vol. 89, pp. 7382-7387, 1988.

[21] P. Piecuch, S. A. Kucharski, K. Kowalski and M. Musial, "Efficient computer im

plementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-

CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches," Comput. Com-

mun. vol. 149, pp. 71-96, 2002.

[22] NWChem program package, developed at Pacific Northwest Laboratory, PO Box

999, Mail Stop Kl-96, Richland, WA 99352.

[23] R. Kobayashi, A. P. Rendell, "A direct coupled cluster algorithm for massively

parallel computers", Chem. Phys. Lett., vol. 265, pp. 1-11, 1997.

59

ACKNOWLEDGEMENTS

This work was performed under the auspices of the Department of Energy under contract

W-7405-ENG-82 at Ames Laboratory operated by the Iowa State University of Science and

Technology. Funding was provided by the Mathematical, Information and Computational

Science division of the Office of Advanced Scientific Computing Research. This material is

based on work supported by the National Science Foundation under Grant No. CHE-0309517.

This research was performed in part using computational resources in the Scalable Computing

Laboratory which were partially donated from IBM Corporation under the Shared University

Research grant program. This research also used resources of the National Energy Research

Scientific Computing Center, which is supported by the Office of Science of the U. S. Depart

ment of Energy under Contract No. DE-AC03-76SF00098 with the University of California.

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Ricky Kendall for his guidance, patience, and support throughout this research and the writing

of this thesis. I thank Dr. Mark Gordon for his helpful comments and suggestions with respect

to GAMESS. Thanks also to Dr. Robyn Lutz for her support during my graduate career.

Thanks are also in order to Ryan Olson, my principal graduate student collaborator, for

his helpful suggestions and discussions.

I would like to thank the Department of Computer Science office staff for helping me with

all the administrative tasks and meet all the deadlines.

Lastly, I thank my family for their support, and a special thanks to my wife Jennifer and

daughter Hannah, who have supported me throughout my graduate education and because of

their unselfishness, have allowed me to pursue my academic and personal goals vigorously.

