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 EMPIRICAL LIKELIHOOD FOR IRREGULARLY LOCATED

 SPATIAL DATA

 Matthew Van Hala, Daniel J. Nordman and Zhengyuan Zhu

 Iowa State University

 Abstract: We develop an empirical likelihood (EL) method for inference over a broad
 class of spatial data exhibiting stochastic spatial patterns with various levels of
 infill sampling. Without stringent assumptions about the sampling design or spatial
 dependence, the EL method (based on estimating functions) produces log-likelihood
 ratio statistics having chi-square limits for calibrating tests and confidence regions
 for spatial parameters. Maximum EL estimators are valid for point estimation
 and formulating tests of spatial structure conditions. The proposed EL approach
 applies additionally to inference in spatial regression models with irregularly located
 sampling sites. The method is illustrated with a data example and investigated
 through simulation for calibrating confidence intervals and goodness-of-fit tests.

 Key words and phrases: Blockwise empirical likelihood, infill sampling, spatial re
 gression, stationarity, stochastic sampling.

 1. Introduction

 Introduced by Owen (1988, 1990), empirical likelihood (EL) is a statisti
 cal methodology for likelihood-type inference without an explicit distributional
 model for the data. For assessing parameter values, EL formulates a nonparamet
 ric likelihood function by probability profiling data and produces ratio statistics
 for inference having some properties analogous to fully parametric likelihood
 (e.g., chi-square limits). Extending EL to dependent data remains a challenge.
 In a pivotal work, Kitamura (1997) showed that EL versions for independent
 and identically distributed (iid) data generally fail for time series in the presence
 of correlation. As a remedy, Kitamura (1997) proposed a blockwise EL (BEL)
 for time series based on data blocking techniques to capture the dependence in
 neighboring observations. This general BEL approach has been shown to be
 valid over several inference problems with time series (cf., Bravo (2005); Chen
 and Wong (2009); Wu and Cao (2011)); see Nordman and Lahiri (2013) for a
 review of EL for time series.

 In contrast to time series, EL for spatial data has received less consideration,
 though some extensions exist. Nordman (2008) developed a BEL version for spa
 tial processes observed on a partial grid in Md, extending Kitamura's (1997) time
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 series results (d = 1). Nordman and Caragea (2008) considered a spatial BEL
 for estimating variogram model parameters, and Kaiser and Nordman (2012) de
 veloped goodness-of-fit tests for spatial Markov models. Recently, Kostov (2013)
 proposed a smoothed EL method for inference in spatial quantile regressions.

 However, all these spatial EL works are limited to spatial lattice data, or
 data collected at regular locations, corresponding to a type of sampling closely
 connected to equi-spaced time series. While lattice data provide an important
 form of spatial data, more diverse structures for spatial data are common in ap
 plications, typically involving irregularly located spatial observations. Our goal
 here is to advance EL methodology for inference about this form of spatial data.
 As a complicating factor with such data, the large-sample distribution of spatial
 estimators generally depends on an complex interaction of factors (cf., Lahiri
 (2003)), including the generating mechanism of sampling sites, the unknown cor
 relation of the spatial process, and the type of spatial asymptotic structure. An
 advantage of EL in this setting is that the method, if appropriately formulated,
 can provide valid inference without restrictive assumptions or explicit knowledge
 about any of these factors. Regarding spatial asymptotic structure, previous spa
 tial versions of EL (Nordman (2008)), like most spatial resampling developments,
 have focused on lattice data at fixed regular distances in a "pure increasing do
 main" (PID) asymptotic framework (cf., Cressie (1993), Sherman (1996)). This
 entails that more spatial observations are collected as a spatial sampling region,
 say Rn C R , expands in size, similarly to asymptotics for equi-spaced time se
 ries, and the region volume vol(i?n) and number n of spatial observations are
 asymptotically proportional. In contrast, here we allow for two natural types of
 spatial asymptotic structures with irregularly located data, where vol(i?n) and
 n could be proportional or where the sample size n may be larger in magnitude
 than vol(i?n), providing a "mixed increasing domain" (MID) framework (cf.,
 Hall and Patil (1994)). The latter design allows for infill sampling of any spatial
 subregion, or many observations sampled in arbitrarily close proximity, as appro
 priate in some geostatistical and environmental applications. A challenge is that
 distributional properties and limiting variances of even simple spatial statistics,
 like sample means, typically change between PID and MID cases (Lahiri (2003));
 Matsuda and Yajima (2009)), which makes direct variance estimation difficult,
 especially because PID/MID frameworks can be hard to distinguish in finite
 sample applications. For data with general stochastic locations, we consider a
 spatial blockwise EL method (SBEL) that shares the common EL property of
 requiring no direct variance estimation steps and thus applies in a uniform man
 ner under PID and MID spatial structures. In contrast, many model-based and
 nonparametric inference approaches to irregularly spaced data (cf., Politis, Pa
 paroditis, and Romano (1998); Politis and Sherman (2001)) often assume such
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 data are generated from a homogenous Poisson process, which only allows a
 uniform distribution for sampling sites with PID structure.

 To investigate the SBEL method, we use a spatial sampling design consid
 ered by Lahiri and Zhu (2006) for a block bootstrap method. This set-up involves
 a stationary spatial process observed under a stochastic sampling design where
 spatial locations are determined by iid random vectors with a potentially non
 uniform density and the number n of observations can grow at a rate, equal to
 or exceeding, the size of a spatial sampling region. SBEL uses general estimating
 functions and a data-blocking device to develop EL-ratio statistics for spatial
 parameters determined by the process marginal distribution. The main distri
 butional result shows that the Wilks phenomenon (Wilks (1938)) remains valid,
 establishing that log-SBEL statistics have chi-square limits under mild condi
 tions, regardless of the concentration of spatial locations or the amount of infill
 sampling. Maximum SBEL estimators are also considered for developing further
 SBEL goodness-of-fit tests of spatial moment conditions, which are useful for
 assessing spatial distributional structures. The SBEL method also applies for
 estimation of spatial regression models with irregular spatial data.

 The rest of the manuscript is organized as follows. Section 2 describes
 the spatial sampling design for defining the locations of spatial observations.
 Section 3 then explains the SBEL method for irregularly located spatial data,
 based on general estimating functions (Section 3.1) and a data blocking tech
 nique (Section 3.2). Section 4 states the main distributional results of the paper,
 describing a Wilks result for SBEL as well as further inference results based on
 maximum EL estimation. Section 5 provides a simulation study, investigating
 the SBEL method for confidence intervals (Section 5.1) and goodness-of-fit tests
 (Section 5.2). A data example in Section 6 illustrates SBEL inference with spatial
 regression, and Section 7 provides some concluding remarks. Proofs of the main
 results appear in an appendix here, as well as a supplementary web-appendix.

 2. Spatial Data and Sampling Design

 We briefly recall the general spatial sampling design of Lahiri and Zhu
 (2006). Consider an Rm-valued continuously indexed, stationary spatial process
 {Z(s) : s £ } observed at n irregularly-spaced sites s\,... ,sn E Rn within a
 spatial sampling region Rn C Rd\ here d > 1 represents the dimension of spatial
 locations and each spatial observation Z(s) € Rm is a random vector of length
 m. To describe the sampling region Rn. let Rq denote a connected subset of
 (—1/2, l/2]rf containing the origin to serve as a "template" shape and let {An}
 be a positive real sequence such that \n —>• oo as n oo. Then, we assume that
 the sampling region Rn = \hRq is obtain by inflating region Rq by scaling factor
 An, providing a common "expanding domain" framework in asymptotic studies
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 of spatial statistics (cf., Cressie (1993); Politis and Sherman (2001); Nordman
 (2008)). To avoid pathological sampling region shapes, for any positive sequence
 an —» 0 as n —» oo, we assume that the number of cubes on the scaled lattice
 anZd which intersect both Ro and is 0(an^d ^) as n —> oo, which holds for
 most sampling region shapes of practical interest (cf., Lahiri and Zhu (2006)).

 For defining the locations si,..., sn of spatial observations in Rn, suppose
 {Xn: i > 1} C Ro denotes a sequence of iid M.d-valued random vectors, with a
 common density function f(x) on Ro, that is independent of {Z(s) : s G Rd}.
 Then, the sampling sites si,...,sn in Rn are taken as S{ = A nXi, i = 1,,n,
 based on a realization of the random vectors Xi,..., Xn in Rq. The density
 function f{x) controls the concentration of spatial observations over different
 parts of Rq and consequently the sampling region Rn. As f(x) may be general,
 the pattern of sampling locations can be complex and non-uniform over Rn, and
 no knowledge of f(x) is required in the spatial EL method. The sample size n
 is assumed to grow at a rate equal to, or possibly faster, than volume vol(i?n) =
 A^vol(iio) of the spatial sampling region, namely linij^oo A^/n = c € [0, oo). The
 cases c > 0 or c = 0 correspond to PID or MID asymptotic structures, respec
 tively, where heavy infill sampling c = 0 induces strong dependence associated
 with many samples filling a subregion of Rn.

 3. Spatial Blockwise Empirical Likelihood (SBEL)

 3.1. General estimating functions

 Suppose Z(-) G Mm is a spatial process observed at irregularly-spaced sites
 Siy ..., sn G Rn C Md, with the spatial sampling design in Section 2. We focus
 on the case of a stationary process {Z{s) : s G Rd} for describing parameter in
 ference and estimating functions: extensions to general spatial regression models
 are also described (see Example 1 below). Suppose we are interested in inference
 about a spatial parameter 6 G 0 C that can be linked to the spatial data
 through a system of estimating functions. To this end, let g(z; 9) : Rm xlp->ir
 be a vector of r > p estimating functions satisfying an expectation condition

 E{g(Z(sy,eo)} = 0r (3.1)

 at the true parameter value 9q G W, where 0r denotes the Rr-zero vector. When
 r > p, the estimating functions are said to be over-identifying for 9 G Kp. Esti
 mating functions with EL have been considered by various authors (cf., Qin and
 Lawless (1994) for iid data; Kitamura (1997) and Bravo (2005) for time series;
 Nordman (2008) for gridded spatial data), and such functions define spatial EL
 ratio statistics in Section 3.2. Examples of estimating functions are provided in
 the numerical studies of Section 6, with a further example given next.
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 Example 1. For spatial EL inference about a non-stationary spatial process due
 to trend, consider a spatial regression model

 Z(s) = w(s)'(3 + s(s), s G Rd, (3.2)

 where w(s) : —>■ R9 is a non-random weight function (here w(s) could be a
 function of available spatial covariates xi(s),..., Xj(s) in addition to the spatial
 location s G M.d), ,6 G R9 is a vector of regression parameters, and {e(s) : s G
 M''} is a mean-zero, real-valued stationary process. For EL inference about the
 regression parameter /? G R9, one may use q estimating functions g(Z(s);/3) =
 w(s)[Z{s) — w(s)'/3] G R9, similarly to Owen (1991), satisfying E {g(Z(s); (3o)} =
 0q at the true regression parameter /?o 6 R9. As the variables e(s) = Z(s) —
 w(s)'f3 are stationary, one may also develop additional f estimating functions
 g(e(s)-,6) G Rr for inference about parameters 6 G W associated with the error
 distribution (f > p) and consider a set of r = q + r estimating functions

 g(Z(s)-,e) =
 w(s)[Z(s) — w(s)'(3\
 g(Z(s) -w(s)'/3;d)

 satisfying (3.1) for inference about 6 — (/3',6)' G p — q + p (i.e., both
 the regression parameters (3 and additional parameters 0). While we focus on
 presenting results for the stationary spatial case in the following, the same EL
 method also remains valid for the spatial regression model above; see Remark 2,
 Section 4.3, and the data example of Section 6.

 3.2. Data blocking and SBEL ratio

 The blockwise EL of Kitamura (1997) for time series creates an EL function
 from data blocks to preserve the dependence in neighboring observations, and
 the same blocking principle applies to spatial lattice data (Nordman (2008)).
 However, for irregularly spaced spatial data, caution is required in data blocking.
 Lahiri and Zhu (2006) have shown that some data blocking schemes, defined by
 the positions of sampling sites (cf., Politis and Sherman (2001)), are generally
 invalid for spatial resampling approaches unless sampling locations are uniform.
 Following Lahiri and Zhu (2006), we adopt a blocking scheme which superimposes
 an integer grid to subsequently define data blocks from observations in Rn C
 W1. Let bn = b denote a sequence of positive integers such that b oc as n —> oc
 with b/Xn -> 0; the latter condition ensures that data blocks are smaller than the
 spatial sampling region Rn. For Bn(i) = i + b(0, l]d, i G Zd, define a collection of
 rectangular data blocks as {Bn(i) : i G Zn}, where Xn = {j G Zd : Bn(j) C Rn}
 denotes the index set of all integer-translated blocks lying completely within the
 region R.n; see Figure 1 for an illustration.
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 Figure 1. An example of the blocking scheme, showing irregularly located
 spatial data in a 12 x 12 sampling region in R2, along with a superimposed
 integer grid and overlapping rectangular data blocks (6 = 3).

 For inference on the spatial parameter 9 defined by estimating functions
 applied to the n available spatial observations {g{Z(sj)\9) 6 Kr : j = 1,..., n},
 we compute a weighted sum Sn(i;9) = b~d ]Cj=i @)Ksj £ Bn(i)) of
 observations for each data block i Eln where !(•) denotes the indicator function.
 For convenience, if there are N = \In\ data blocks, we re-label the block sums
 {Sn(i] 9) : i G 2n} as Snj(9), j = 1,..., N. For a given parameter value 9, we
 probability profile block sums to create a SBEL function as

 /- N N N x

 Ln(9) = sup i Pi,... ,Pn > 0, ^Pj = 1, YlpiSnj(0) = 0r I (3.3)
 j=i j=l j=i

 and SBEL ratio as Rn(9) — Ln(9)/N~N. The function Ln{9) quantifies the
 plausibility of a value 9 by maximizing a multinomial likelihood from probabilities

 {Pj}jLi assigned to the block sums Snj(9) under an expectation constraint which
 mimics the moment condition (3.1). Without this expectation constraint in (3.3),
 the multinomial product is maximized when each pj — 1/N, leading to the
 ratio Rn(9) £ [0,1]. When 0r is in the interior convex hull of {S'nj(0)}^=1, then

 Ln{9) = HjLiPj,e > 0 holds for probabilitiespjj = N~1[l+t'ndSnj(6)]~1 £ (0,1),
 j = 1,... ,N, expressed in terms of a Lagrange multiplier trho £ Rr satisfying
 0r = Snj(0)/[N(1 + t'n gSnj(9)\; see Owen (1990) and Qin and Lawless
 (1994) for computational details with EL.
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 4. Main Results

 4.1. Conditions

 We require some spatial dependence conditions on the process {Z{s) : s G
 prescribed in terms of its strong mixing coefficient. For x = (x\,.... x,j)' £ Rd,
 write norms ||a;|| = (X)f=i x1)1^2 and IMIi = ]Cf=i Ixi\ an<^> f°r a subset T C
 let Tz{T) = cr(Z(s) : s £ T) denote the cr-algebra generated by {Z(s) : s £ T}.
 For subsets T\, T2 C Rd, define d(T\, T%) — inf{||cci — a?2II1 : Xi £ Ti,i = 1, 2} and
 a(Ti,T2) = sup{P(Ai n A2) - P(Ai)P(A2) : A G Tz^i),i = 1,2}. Then, the
 strong mixing coefficient of (Z(s) : s £ Md} is defined as

 a(a,b) = sup{a(Ti,T2) : d(Ti,T2) > a, T\,T2 £ TZ(b)}, a,b> 0,

 where 7Z(b) is the collection of all finite disjoint unions of cubes in Wl with a total
 volume not exceeding b; the definition of a(a,b) involves subsets T\,T2 C Rd of
 bounded volume to avoiding more restrictive forms of mixing (cf., Lahiri (2003);
 Lahiri and Zhu (2006)). We also assume that

 a(a,b) < Ca~TlbT2 (4-1)

 for some constants C, t\ >0 and t2 > 0, where t2 = 0 for d = 1 (bounding the
 usual mixing coefficient a(a, 00) for time series d = 1). From (4.1), the mixing
 coefficient decays with the distance a between sets while the strength of spatial
 dependence is allowed to increase with the volumes of sets T\,T2. Doukhan
 (1994) provides examples of spatial processes satisfying such conditions (e.g.,
 Gibbs, linear, or Markovian fields). We next prescribe assumptions for the SBEL
 method. Assumption (Al), involving T\, t2 in (4.1), is a function of an integer k
 to be specified in theorems to follow. Let G<90(s) = g(Z(s); 9o), s £ M.d.

 Assumptions:

 (Al) For some 5 > 0 and integer k > 1, E {HG^s)!!2^15} < 00 and

 (2k — l)(2k + 6) 7~i — d
 Ti > Jj L, 72 (ford >2).

 (A2) £0 = / cr(x)dx is positive definite, a(x) — Cov [Gg0(0), Gq0(x)\ , x € Md.

 (A3) The density /(•) of X\ is positive and continuous on the closure Rq.

 (A4) lim^oo ne/\n = 0 for some e > 0 and lim^oo A^/n = c G [0, 00).

 These assumptions essentially match a subset of those of Lahiri and Zhu (2006)
 for establishing a block bootstrap with similar spatial data, where Assumption
 (Al) prescribes mild conditions on the strength of the spatial dependence. As
 sumption (A3) allows the density /(•) for spatial locations to be quite general
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 and non-uniform. Assumption (A4) permits various possibilities for the amount
 of infill sampling, as described in Sections 1—2, depending on the number n of
 spatial observations relative to the volume vol(i?n) = A^vol(i?o) of the sampling
 region. Finally, Assumption (A2) regards the limiting variance of a scaled sample
 mean of {Ge0(si)}"=1, having a form ccr(O) + £o that changes in PID/MID cases;
 see also Lemma 2(a) in the Appendix.

 4.2. Basic wilks result for the spatial EL method

 We give a fundamental Wilks result for the SBEL method, showing the log
 EL ratio at the true parameter 9q has a chi-square limit. As a function of the
 spatial data {Z(si)}™_1 (sl = AnXi), the log-EL ratio technically has a con
 ditional distribution given a realization of the sampling design random vectors
 Xi,X2,.... Let P.ix(') denote conditional probability with respect to the a
 algebra cr({Xi : i > 1}) generated by {X,; : i > 1} (cf., Lahiri and Zhu (2006))
 and let Px denote the joint distribution of the random vectors X\. X-2,.... The
 orem 1 states that the limiting (conditional) distribution of the log-EL ratio
 is chi-square no matter what the spatial locations may be as determined by
 Xi, X2, ■ ■ ■ under the sampling design.

 Theorem 1. Suppose Assumptions (Al) —(A4) hold with k = 3 in (Al), and
 that b 00 with b2/Xn = 0(1) as n —> 00. Then, as n —► 00,

 sup
 ye M

 P. 1  (-2b-d\ogRn(d0) <yj -P(xl <y)  0.

 Equivalently, — 2b~d log Rn(0o) —> Xr- f°r any given Xi, X2, ■ ■ ■ with prob
 ability 1 {Px)- Regardless of the concentration of sampling sites or the size of
 an infill component, the SBEL method has a chi-square limit for calibrating con
 fidence regions and tests. Here b~d denotes a scalar correction to the EL ratio,
 which is needed to adjust for overlapping spatial blocks of data. Similar block
 adjustments exist for block-based EL statistics for time series (Kitamura (1997))
 or gridded spatial data (Nordman (2008)).

 4.3. Maximum spatial EL estimation and hypothesis testing

 Analogously to parametric likelihood, the SBEL ratio Rn{9) from (3.3) can be
 maximized over the parameter space 0 to produce a point estimator for 9 £ W
 characterized by the estimating functions g(-',9) £ Rr; we denote the result as
 the maximum empirical likelihood estimator (MELE) as 6n G Mp and the La
 grange multiplier associated with the MELE as tn g € Mr. We next establish
 that the MELE has a normal limit under the stochastic spatial sampling design
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 and, more importantly, that log-ratio statistics have chi-square limits. For in
 dependent, time series, and gridded spatial data, respectively, Qin and Lawless
 (1994), Kitamura (1997), and Nordman (2008) showed similar EL results.

 Let Sqo = ca(0) + So for So and cr(-) defined in Assumption (A2) and
 c = limn_>.00 A^/n € [0, oo) defined in Assumption (A4).

 Theorem 2. With Assumptions (Al)—(A4), suppose that, in a neighborhood
 of do € MP, first partial derivatives dg(-;9)/d9 exist and satisfy a Lipschitz
 condition of order 7 > 0; assume, for (5(0) = dg(Z(0); 9q)/89 G Rrxp, that
 E{|[G(0)||2+<5} < 00 for 5 > 0 in (Al) and that Dg0 = E{G(0)} has full column
 rank p. Then, for any given X\, X2, ■ ■ ■ with probability 1 (Px)■' as n 00,

 (i) for V(6o) = [DidoYZooDieo)}-1, U(90) = S"1 - E^D(90)V(90)D(90)'E-1 00 f

 A dJ2
 (fin - Qq)

 b~d\~dnt
 n,6n

 N  op A f v(6q) opxr A
 Or J ' V 0rxp U(00) J

 (ii) under H0 : 0 = 0O, -2b dlog[Rn(0o)/Rn(6n)] —> x,
 (iii) under Hq : the moment condition (3.1) holds for some 9q e 0,

 .2.
 pi

 -2b-d\ogRn(9n) X2r  -pi

 (iv) the spatial EL test statistics in (ii) and (iii) are asymptotically independent.

 Remark 1. Under these regularity conditions, the proof of Theorem 2 shows
 that, in P.\X--probability, a sequence of maximizers 9n of Rn(9) is guaranteed

 to exist on {9 € 0 : ||0 — #o|| < And^2logn} for any given Xi,X2,... with
 probability 1 (Px)- The normal limit in Theorem 2(i) is difficult to use directly,
 because the limiting variance is complicated and changes depending on PID/MID
 cases. However, this result establishes that the MELE 9n is consistent for the
 true do at a rate An c'/2. Consequently, in the PID case c > 0, 0n is consistent at
 a rate n-1/2 in terms of the spatial sample size n, n oc A^, but exhibits a slower
 rate, n-1/2 <C Anrf^2, in the MID case c — 0 associated with stronger dependence
 among sampled spatial observations.

 Under the stochastic sampling design, Theorem 2(ii) — (iii) entails that log
 ratio EL tests based on the MELE are valid for evaluating parameter hypotheses,
 as well as assessing whether spatial moment conditions (3.1) hold. The latter
 can be useful for assessing spatial structures, as illustrated in Section 5.2. Again,
 the limits and forms of these test statistics, based on a block correction factor
 b~d, resemble those for time series and spatial lattice data (Kitamura (1997);
 Nordman (2008)) though the asymptotic sampling structure differs here. The
 distributional results in Theorem 2 also imply that the SBEL method is valid for
 testing subsets of the parameter vector 9 (by probability profiling Rn(9) as with
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 regular likelihood) as well as testing under parameter constraints; see Nordman
 (2008) for similar tests with spatial lattice data.

 Remark 2. The SBEL method applies for inference about spatial regression
 models (3.2). SBEL log-ratio statistics — 2b~d log Rn{0) follow from the estimat
 ing functions in Example 1 and the construction of Section 3.2. In this general
 spatial regression setting, chi-square limits for log-ratio statistics in Theorem 1
 and Theorem 2(ii) — (iii) remain valid under some additional regularity conditions
 on the regressor weights «;(•) in (3.2) (e.g., conditions CI, C2, C6 in Lahiri and
 Zhu (2006)). Section 6 provides a numerical illustration.

 5. Simulation Results

 We present simulation studies of the SBEL method for confidence interval
 (CI) estimation in Section 5.1 and goodness-of-fit (or moment) testing in Sec
 tion 5.2.

 5.1. Confidence intervals

 We considered the performance of SBEL for constructing CIs for the mean
 E{Z(s)} = /i of a real-valued stationary process {Z(s) : s G R2} based on com
 binations of the following factors: sampling region size, sample size, stochastic
 sampling design, spatial dependence strength, and block size. Mean-zero Gaus
 sian random fields on R2 were generated with an exponential covariance structure
 Cov (Zs, Zs+h) = exp (—||h||/r) with dependence/range parameter r > 0. We
 considered sampling regions as Rn = [—An/2, An/2]2 for \n = 12, 24, 36,48, sam
 ple sizes of n = 100 or 900, with uniformly or non-uniformly distributed spatial
 locations on Rn. Non-uniform sites Si = AnX{, i = 1,... ,n were generated as
 in Lahiri and Zhu (2006) by iid draws Xi ~ 0.5-BiVi + O.5BN2 from a bivariate
 normal mixture (truncated to [—1, l]2), where BNi represents a bivariate normal
 with mean 1 — (0.5i_1, 0.5i_1) and identity covariance Io. Figure 2 shows an
 example of uniform and non-uniform locations.

 For comparison against SBEL for estimating the process mean, we computed
 normal approximation CIs based on the sample mean Zn = ( Z(sj)/n (cf.,
 Lahiri (2003)) as well as intervals based on a spatial block bootstrap method. For
 a given block size b, M = 500 spatial bootstrap data sets Z*,..., Z*M were gener
 ated from a given simulated data set Z = {Z(si) : i = 1,..., n} using the boot
 strap method of Lahiri and Zhu (2006), producing block bootstrap sample means,
 say Z£,..., Z*M, based on resulting bootstrap sample sizes, say, n\,..., n*M. Let
 ting V denote the sample variance of {Z* }jLi as a bootstrap estimate of the vari
 ance of Zn, a 100(1 — a)% normal approximation CI for /i is , using
 a lower a/2 standard normal quantile zaj2. By approximating the distribution of
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 Figure 2. Example of uniform (left) and non-uniform (right) locations on a
 24 x 24 grid with n = 900 points.

 (Zn — fj.) with the bootstrap counterpart (Z* — ft) for fl = ni^i / TldLi ni > a
 100(1 — a)% block bootstrap CI for /i is given by (Zn — qM<i_a/2, Zn — qM,01/2)1
 where qM,7 denotes the 7 quantile of the bootstrap values {Z* — We used
 block sizes b = 2,4, 6 for the 12 x 12 region, 6 = 4,6, 8 for the 24 x 24 region,
 6 = 6,9,12 for the 36 x 36 region, and 6 = 6,12,16 for the 48 x 48 region; these
 sizes roughly correspond to choices Cvol(/?,„)1/74 for C = 0.5,1,1.5, having opti
 mal order known for some instances of block resampling (Nordman and Lahiri
 (2004)).

 We implemented the SBEL method for constructing CIs for yu based a esti
 mating function g(Z(s);n) = Z(s) — /i and two different distributional calibra
 tions. We used the standard chi-square calibration for the SBEL log-ratio statistic

 (Theorem 1), producing a 100(1—a)% CI for fi as {// : —2b~2 log Rn(n) <Xii-Q}
 with the same block sizes b used for the block bootstrap with each sampling re
 gion. As a second approach, we used the block boostrap to calibrate SBEL CIs.
 With the same bootstrap data sets described above, let r* denote
 the SBEL ratio from zth bootstrap sample evaluated at Zn, i — 1,..., M, which
 serves to approximate Rn{fM)) at the true mean. Then, a 100(1 — a)% SBEL inter
 val with bootstrap calibration is {/i : ~2b~2 log i?,n(/i) < where tjw.i-a
 is the 1 — a sample quantile of {—2b~2 logr*}^.

 Based on 1,000 simulations, Table 1 shows empirical coverages for 90% CIs
 for SBEL, normal approximation, and block bootstrap methods with processes
 having dependence parameter r = 1. We make the following observations:

 1. For any region size, block size, or sample size, coverage is better with uniform
 sites than for non-uniform sites. With non-uniform sites, there are concen
 trated pockets of sampling sites, which induces stronger dependence between
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 spatial observations, inducing lower coverage rates. This effect is most pro
 nounced for smaller sampling regions (e.g., 12 x 12) with the larger sample
 size (n = 900), which corresponds to infill sampling and compounds the de
 pendence between observations. With uniformly distributed sampling sites,
 the SBEL method exhibits coverages quite close to nominal coverage except
 for the smallest sampling region 12 x 12.

 2. Coverage improves as grid size increases for all sample designs and sizes.

 3. The coverage performance is markedly better for the SBEL method than the
 normal approximation or block bootstrap methods across all combinations of

 region size, block size, sample size, and stochastic sampling design.

 4. For small sampling regions, the SBEL method with bootstrap calibration per
 forms better than the chi-squared calibration; as the sampling regions increase,

 the two SBEL calibrations perform similarly.

 A supplementary web-appendix provides empirical coverages for 90% CIs with
 values of the dependence parameter r = 1/3 or 3 for 12 x 12 and 24 x 24 sampling
 regions. As expected compared to the r = 1 case, coverage is generally better
 with weaker dependence (r = 1/3) and worse with stronger dependence (r = 3).
 In fact, non-uniform sites and a larger range r = 3 lead to "hot spots" of strongly

 correlated spatial observations (due to their close proximities), where all meth
 ods consequently exhibit severe under-coverage for the region sizes considered;
 larger sampling regions 36 x 36 and 48 x 48 are needed for better coverage in
 this situation. However, in all cases, the SBEL method again has better cover
 age accuracy than normal approximation and block bootstrap methods, and the
 bootstrap-based calibration for SBEL often performs better than the chi-square
 calibration with small sampling regions.

 5.2. Goodness-of-fit tests

 We also conducted a simulation study to examine the performance of the SBEL
 method for assessing goodness-of-fit of a specified marginal distribution for the

 data. We generated realizations of real-valued spatial processes {Z(s) : s £
 R2} having different marginal distributions (described below), and applied the
 SBEL method to assess if the data were marginally normally distributed. As a
 marginal normal distribution would be characterized by two unknown parameters

 0 — (0i,02)' (mean and variance), we considered estimating functions g having
 more than two estimating functions for prescribing 6 and satisfying the moment

 condition (3.1) when the data are indeed normally distributed. For comparison.

This content downloaded from 129.186.176.219 on Tue, 20 Mar 2018 22:26:29 UTC
All use subject to http://about.jstor.org/terms



 SPATIAL EMPIRICAL LIKELIHOOD 1411

 Table 1. Empirical coverage of 90% intervals for the mean for various meth
 ods: SBEL with chi-square calibration (ELC), SBEL with bootstrap-based
 calibration (ELB), normal approximation (Nor), and block bootstrap (Boot).

 Uniform Sites  Non-Uniform Sites

 Method  Method

 Points  Grid Size  b  ELC  ELB  Nor  Boot  ELC  ELB  Nor  Boot

 2  74.3  77.4  69.6  68.9  60.0  67.2  56.7  58.6

 12 x 12  4  82.0  87.1  74.3  68.8  61.6  67.3  53.3  50.4

 6  82.7  89.4  67.7  64.5  53.2  64.2  38.1  35.9

 4  86.1  86.5  81.0  82.8  76.2  80.0  71.4  68.0

 24 x 24  6  88.6  90.5  82.6  80.3  74.8  86.8  68.9  65.7

 n = 100
 8  89.1  90.2  83.0  80.0  75.2  75.9  60.9  58.0

 6  89.4  91.3  87.3  87.5  82.0  83.5  77.4  78.0

 36 x 36  9  90.8  89.9  85.3  87.7  82.6  81.6  71.6  72.3

 12  92.7  91.6  83.1  82.9  82.5  78.7  63.3  65.3

 6  88.6  91.6  88.3  87.1  85.2  85.3  80.8  83.1
 48 x 48  12  90.9  91.3  87.8  85.2  85.2  84.6  77.3  72.7

 16  95.0  91.8  83.0  82.4  85.4  79.5  70.7  67.9
 2  65.3  69.7  62.7  60.7  53.6  62.5  53.7  50.9

 12 x 12  4  90.5  86.8  70.8  72.6  56.9  64.0  52.4  47.2
 6  81.1  90.0  67.2  67.0  50.6  63.9  32.4  35.3

 4  80.9  85.0  77.2  77.1  68.1  76.0  65.5  63.1
 24 x 24  6  85.9  89.7  77.7  76.3  67.5  71.5  62.8  59.2

 n = 900
 8  88.0  90.3  78.8  78.2  70.7  69.8  58.2  52.0

 6  84.0  91.0  82.8  80.1  72.9  79.8  71.2  69.5

 36 x 36  9  89.8  91.0  82.5  81.7  74.4  77.1  66.2  66.7

 12  91.8  90.9  80.3  78.8  77.4  72.4  61.6  57.8

 6  87.5  89.4  84.0  84.8  79.8  85.2  78.0  73.0
 48 x 48  12  89.2  91.8  84.8  84.3  77.0  76.1  71.9  67.2

 16  92.8  92.1  83.8  82.2  79.5  73.0  63.8  64.6

 we considered three different sets of estimating functions g(Z(s)-,9) as

 Set 1:

 Set 2:

 Set 3:

 Z(s) - 9U (Z(s) - 9O2 - 02, (Z(s) - 00s

 Z(S) - 0!, (Z(s) - 0i)2 - 02, (Z(s) - 0i)3, (Z(s) - 0i)4 - 3el

 z(s)-eu (z(s)-e$  zjs)-e i

 ^/2
 0.5

 where $(•) denotes the standard normal cumulative distribution function (cdf).
 To assess normality based on a given set of functions g(-',9), we tested the
 hypothesis that the moment condition holds (3.1) using the log-ratio statistic
 —26~2logRn(9n) which has a chi-square limit under Theorem 2(iii) (with 1 df
 for function sets 1 and 3, and 2 df for function set 2).
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 To generate data, we simulated dependent (marginally standard normal)
 normal observations Z{s\),..., Z(sn) as in Section 5.1, using 12 x 12 and 24 x 24
 sampling regions, uniform and non-uniform locations for n = 100 sampling sites,
 and dependence parameter r = 1. Spatial realizations were then given by Z{si) —
 F[$_1[Z(si)]], i = 1 ,...,n based on a probability integral transform using a
 proposal cdf F(-) to determine the marginal distribution structure. Choices of the
 cdf F(-) were taken as standard normal (corresponding to the null hypothesis),
 log-normal with a = 0.5, chi-square with 1 or 20 df, or t-distribution with 2 or
 20 df. For each sampling region, stochastic design, set of estimating functions,
 and marginal cdf F(-), 1,000 data sets were simulated for producing an empirical
 power function for the SBEL goodness-of-fit-tests, as shown in Figure 3 for 12x12

 regions: a qualitatively similar figure is presented in the supplementary web
 appendix for 24 x 24 regions. From these figures, one observes:

 1. At most combinations of region size and stochastic sampling design, empirical
 sizes are close to nominal sizes for estimating functions sets 1 and 3 (as judged
 by results for normal data following the null hypothesis); the results are fairly
 insensitive to the block choices. Empirical size can be higher than nominal
 for estimating function set 2 and more sensitive to the block b, especially on
 the 12 x 12 region, so that a greater number of estimating functions need to
 be more cautiously applied on smaller sampling regions.

 2. Power functions are best for estimating functions sets 1 and 2 based on over
 identifying estimating functions involving higher distributional moments, and
 lowest for set 3 involving over-identification of parameters with a probability
 transform condition.

 3. These sets of estimating functions perform very well in rejecting non-normal
 data that are clearly skewed or heavy-tailed (e.g. log-normal, Xi> £2) with
 small sample sizes n = 100, but then exhibit more difficulty in distinguishing
 those cases which are more closely normal (e.g., X20' ^20)

 Simulations indicate that, even with small sample sizes, the SBEL method can
 provide an effective tool for goodness-of-fit assessments of spatial distributions.

 6. Data Illustration

 We illustrate the SBEL method applied to spatial regression (cf., Remark 2,
 Section 4.2) using a temperature data set from the National Oceanic and At
 mospheric Administration's National Climatic Data Center. The data consist of
 the average January temperature between 1981 and 2010 (degrees Fahrenheit),
 latitude, longitude, and elevation (hundreds of feet above sea level) at 557 loca
 tions across the Midwest. The locations have latitude between 37 and 45 degrees
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 Figure 3. Empirical power functions for SBEL goodness-of-fit tests of nor
 mality using three sets of estimating functions and block sizes b — 2, 4, and
 6 on a 12 x 12 region, sample size n = 100, and uniform and non-uniform
 locations; data are marginally normal, log-normal, ^2, ^20; Xi> and x'^o

 north and longitude between 89 and 97 degrees west, and Figure 4 maps the
 region shaded by average January temperature.

 We applied the SBEL method to fit a regression model (3.2) with latitude,
 longitude, and elevation as explanatory variables for temperature. We imposed
 an 80 x 80 grid, as the sampling region is 8 degrees longitude by 8 degrees
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 Figure 4. Region for average January temperature data.

 latitude with locations measured in tenths of a degree. To choose a block size b,
 we used the "minimal volatility" technique of Politis, Romano, and Wolf (1999,
 Sec. 9.3.2), which suggested b = 27; see the supplementary web-appendix for
 details. Table 2 shows subsequent 90% CIs for the regression parameters from
 the SBEL method as well as intervals based on standard multiple regression
 with an independence assumption and maximum likelihood estimation using a
 parametric Gaussian random field model with an exponential covariogram (e.g.,
 based on "likfit" in the geoR package); point estimates from the three methods
 are also provided. The longitude and intercept estimates for the SBEL method
 are between those from the multiple regression and Gaussian models, but the
 SBEL method suggests latitude and elevation have a larger effect on temperature
 than the other methods. SBEL involves no explicit distributional assumptions
 about the form of the spatial dependence, and is thereby less sensitive to model
 misspecification. Consequently, the SBEL method tends to produce the widest
 CIs, but these are in closer agreement to the parametric model-based intervals
 than those from the independence assumption (which are comparatively narrow).
 For instance, the SBEL and Gaussian methods plausibly suggest longitude is not
 important as a predictor of average temperature. Unlike the other methods,
 SBEL CIs are not symmetric and, for example, suggest more uncertainty in
 the lower limit of the elevation parameter. Adding another estimating function
 based on a third moment condition, a SBEL test for normality of residuals yields
 a p-value of 0.15.
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 Table 2. Point estimates and 90% intervals for spatial regression parame
 ters [Longitude (Long), Latitude (Lat), Elevation (Elev), Intercept (Inter)]
 based on multiple regression (independence assumption), parametric Gaus
 sian maximum likelihood, and SBEL.

 Multiple Regression Gaussian Likelihood  SBEL

 Long.  -0.011 (-0.016, -0.007)  -0.016 (-0.032, 0.001)  -0.014 (-0.036,  0.011)
 Lat.  -0.255 (-0.259, -0.252) -0.241 (-0.257, -0.225) -0.270 (-0.284,  -0.249)
 Elev.  -0.902 (-1.042, -0.763) -0.943 (-1.100, -0.7850) -1.038 (-1.790,  -0.543)
 Inter.  25.59 (25.18 , 26.00 )  26.02 (25.27 , 26.76 )  25.68 (24.40 , 27.58 )

 7. Conclusions

 We introduced a spatial blockwise empirical likelihood (SBEL) for irregularly
 located spatial data. Data blocks serve to locally capture the underlying spatial
 dependence, without explicit assumptions about the data distribution or the
 general distribution of sampling sites. As a theoretical challenge compared to
 previous EL for lattice data (Nordman (2008)), the sampling designs considered
 allow for two fundamental types of spatial asymptotics, determined by the growth
 rate of the spatial sample size relative to the volume of a sampling region. SBEL
 applies for both structures with no direct steps of variance estimation, which is
 an advantage in that large-sample distributional properties of spatial statistics
 typically change with each asymptotic framework (Lahiri (2003)). Log SBEL
 ratios were shown to have chi-square limits for tests and confidence regions of
 spatial parameters, thus extending block-based EL methods for time series or
 gridded spatial data (Kitamura (1997); Nordman (2008)). We illustrated SBEL
 for spatial regression and goodness-of-fit testing, and simulations indicated that
 SBEL can outperform other resampling procedures. Further research possibilities
 include extending SBEL for irregularly located spatial data into inference about
 the correlation structure of a spatial process, which may require local kernel
 smoothing steps. Such extensions would allow EL tests of spatial isotropy or
 separability, variogram estimation, and assessments of spatial Markov structures.
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 Al. Proofs

 We establish Theorem 1 (spatial EL Wilks theorem) which is a critical com
 ponent for Theorem 2; remaining proofs are provided in the supplementary web
 appendix. We require some additional notation. Let Ex denote expectation
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 with respect to the joint distribution Px of X2,... on the probability space
 P), where both {X, : i > 1} and {Z(s) : s G Rd} are defined and in

 dependent. Let P.\x and E.|x denote conditional probability and conditional
 expectation given {Xi : i > 1}. For subset A C R , let |A| denote the cardi
 nality of A if A is countable and, otherwise, let \A\ = vol(A) denote the volume
 (Lebesgue measure) of A. In the following, C and C(-) denote generic constants
 not depending on re, b, or a given realization X\, Xo,.... For d G 0 C Mp, recall
 the EL function (3.3) involves sums Sn(i; 9) over data blocks Bn(i) = i + b(0, l]d,
 i G ln = {j G Zd : Bn(j) C Rn}, and define

 n

 An(i; 0) = AdJ2n~lSn{i] Q) = Ad/2n"1b~d ^ g(Z{sj); 0)I(sj G Bn(i)) (A.l)
 j=1

 for i £ ln as well as sums of these An(0) = #)•
 We require some preliminary results established in Lemmas A.l—A.2 below.

 Lemma A.l provides moment bounds on sums of random variables over sampling
 locations Sj,..., sn G Rn■ Let mn = max{logn, A~dn}, noting that mn = logn
 eventually if A„/n —> c G (0, 00) and mn = A~dn eventually if c = 0 under
 Assumption (A4).

 Lemma A.l. Suppose b~l + b/\]^e = o(l) for some e G (0,1). Let h : IRm —» M
 be a Borel-measurable function such that E{/i(Z(0))} = 0 and that, for some
 5 > 0 and integer k > 1, it holds that E{|/i(Z(0))|2fc+ } < 00 with Ti,T2 as in
 Assumption (Al). Let {win : 1 < i < n} be cr(Xi : i > I)-measurable variables
 with Wn = maxi<j<n\win\ < 00. Then, with probability 1 (w.p.l) (Px), as
 n —> 00,

 n 2k

 « U El^i e Bn[i)) (• = 0(Xdnbdk[Wnmn}2k). ieXn ^ j=1 J

 (ii) For any Dn C Rn and defining JDn = {j eZd : Dn(1 (j + [0, l)d) ^ 0},

 f I U 2k^\
 E.,x ^WnjhiZisjMsj G Dn) [ = 0(\JDn\k[Wnmn]2k).
 3=1 '

 Proof of Lemma A.l. This follows by modifying Lemma 2 of Lahiri and Zhu
 (2006) (setting lCn = {0} and noting Xn C tn for "/Cn and £nv in their notation).

 The next lemma establishes the behavior of weighed-block sums An(i; #0) G

 Er, i G Tn, from (A.l) at the true parameter do G where E.jx{A„(r, #o)} = Or
 Let Z ~ N(0r, Sqo) denote a normal variable in Rr for Eqo = ccr(0) + Eo, with So
 and a(-) defined in Assumption (A2) and Ad/n —> c G [0, 00) under Assumption
 (A4).
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 Lemma A.2. Let An(0o) = ^ieInAn(i; do), t,n(0o) = bd <?o)An(i\do)',
 and Zn(9o) = max{||^4n(i;0q)|| : * £ ^n}- Under the assumptions of Theo

 rem 1, the following hold w.p.l (Px)'- (&) An(0o) -4 Z in P.\x-probability; (b)
 (:[Ogn)bdzn(e0)->o in P.\X-probability; (c)||En(#o) — Sqo|j —>-0 in P.\x-probability;
 (d) P.\x(Rn(@o) > 0) —» 1. (e) Additionally, \Tn\/\Rn\ —> 1 where |i?n| = A^|i?o|

 Proof of Lemma A.2. We begin with part (e) involving a non-stochastic
 sequence. Let U = (0, l)d and define an(y) = \{i G yLd : (i + yU) Pi Rq ^
 0, (i + yli) fli?Q ^ 0}| for y > 0. Using the Rq boundary condition, \Xn\ < \Rn\ +
 a-niK1) = \Rn\ + 0(\'^1). Additionally, \ln\ > \Rn\ - |{« G Zd : (i + bU) C)Rn ^
 0, (i + bU)HRcn^ 0}| > |i?n| - bdan(b/Xn) = |Pn| - 0(b\d~l). As 6/An -> 0, we
 have \ln\/\Rn\ -> 1.

 To establish part (a), under the mixing/moment Assumptions (Al) —(A4),

 it follows that Gn(0o) = Xn^n-1 Y^i=i d(Z(si)\0o) Z w.p.l (Px) by Theo
 rem 3.2 of Lahiri (2003). Then, Gn(0o) -An(0o) = A^Pn-1 Y%=i wjn9(Z(sj)\0O)
 where Wjn = 1 — b~dJ2i^in Ksj e Bn(i)) G [0,1] for 1 < j < n. Let Dn =
 G Rn : (x + b[— 1, l)d) fl 7^ 0}. If Sj £ Rn\ Dn for some 1 < j < n, then
 Wjn = 0. Hence, by Lemma A.l(ii) (with Jd„ defined there with respect to Dn).

 E.|x{||Gn(0o) - An(0o)\|2} = 0(\dn~2ml\JDn\) = o(l) w.p.l (Px)

 using \JDn\ = 0(bdan(3b/Xn)) = 0(6Ad-1). Hence, Gn(0o) - An(0Q) 0 in
 P.|X"Probability and so An(0o) —> Z w.p.l (Px) by Slutsky's theorem.

 For part (b), by Jensen's inequality and Lemma A.l(i) with k = 3, we have

 (logn)b%x{Zn(9o)} < (logn)6d( £ E.|x{pn(i;0O)||6})^
 ieln

 = (\ogn)bd(b~d\dt2n~1) ^A^66d,/2mn^ = o(l)

 w.p.l (Px) using \In\ — O(X^) and the growth assumption b2/Xn = 0( 1).
 Part (c) of Lemma A.2 follows by modifying the proof of Lahiri and Zhu

 (2006, Lemma 3). For En(6>0) = E.|X{En(6>0)},

 E.|X{||Sn(0o)-Sn(0o)||2} < 0(b2d(b-4d\2ndn-4)\dbd(mn)4b2d) = o(l) w.p.l (Px)

 using Lemma A.2(i) with k = 2 and the re-grouping argument in Lahiri and
 Zhu (2006, p. 1810). Then, Ex{En(#o)} —» Soo by a similar argument in Lahiri
 and Zhu (2006, p. 1810); namely, Ex{En(#o)} here is equivalent to the quantity
 frd|£in|_1|^ra|Ex{Ein} in the notation "|/Cira|, |£n|,ExSi,n" of their proof, where
 bd\K,in\~l\in\ 1 holds and they show Ex{Ein} —> Eoq. It then follows that
 En(#o) ~ Ex{En(^o)} 0 w.p.l (Px) by writing the difference as a U-statistic
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 of order 2 in Xi,..., Xn as using arguments as in Lahiri (2003, Lemma 5.2).
 Consequently, £n(#o) —> £oo in P.|x-Pr°bability w.p.l (Px), establishing part
 (c).

 To show part (d), note that Rn{9o) > 0 holds if 0r is interior to the convex
 hull of {An(i',9o) : i G Tn}. Hence, it suffices to show that the P.[x-probability
 of this latter event converges to 1 (w.p.l Px)- The argument uses the support
 ing/separating hyperplane theorem but is rather involved under the stochastic
 sampling design. We defer details to the web-appendix.

 Proof of Theorem 1. On the common probability space (SI, T, P), there exists
 A € J7 with P(A) = 1 such that all events in Lemma A.2(a)—(d) hold simul
 taneously conditioned on X\ = Xi(w),X2 = X2(w),... for any ui G A. For
 simplicity, we fix u G A and show distributional convergence of the log-EL ra

 tio, in P.jx-probability, conditioned on a pointwise sequence (Xj(w)}; then P.\x
 is the only probability measure needed in the proof and we let op(-) and Op(-)
 denote probabilistic orders in P\x-probability.

 When Rn{6o) > 0, which holds with arbitrarily large P.\x-probability for
 large n by Lemma A.2(d), we may write Rn(9o) = J"]ielrS^ with
 7i,eQ = t'n60An(i; do) > 0, i G Tn, and a Lagrange multiplier tn,eQ G fulfilling

 ^ = y An(i;0o) = _ y An(i;do)An(i;0oytnt(fo
 ife 1 + i^n 1 + 7i'0°

 for An(90) = *Ei€XnAn{i-,8o) ; tn^0 is related to tng0 mentioned in (3.3) by tn^0 =

 \nd^2ntn.o0. Writing tn g0 = \\tn^0\\vn for some vn € W, |jt;n|| = 1 and multiplying

 (A.2) by -vn, we have \\An(9o)\\>[l+\\b~dtnteo\\bdZn(0o)]~1\\b~dtnteo\\v'ntn(0o)vn
 for £n(0o) = bdJ2iein An(i-,9o)An(i;0o)' and Zn(90) = max{||An(i; 0O)|| : i 6
 Xn). By Lemma A.2(a) —(c) and letting a^ > 0 denote the smallest eigenvalue
 of Sqo, we then have that ||An((9o)|| > \\b~dtnt$0 ][ [c^,+Op(l)] holds with arbitrarily
 large P.\x-probability as n —> oo, or that b~dtnfiQ = Op{ 1). By Lemma A.2(b),
 we then have that maxjGxn |7i,6»01 — Zn(9o)\\tn,o01| = op( 1). With probability
 approaching 1 as n —> oo, we may expand (A.2) using Lemma A.2(c) to obtain

 b~dtnA = tn{e0y1[An{90) + pn(9o)}, (A.3)

 for (3n{9o) = Y,i&xn 7i,eoj4«(i;0o)/(l +7i,0o) and bound

 |A>((b)| £ ^wiiui»*-w^.(«b)] = 0p(1). -1 \\tn,6o\\Zn\9o)

 When maxj6jn |7i,e0 < Zn(9o)\\tnfi0\\ < 1, Taylor expansion produces log(l +
 lifio) = H,e0 ~ lie0/2 + 7li,o0 with |?7i,e0| < ||t„;0j3Zn(6i())||.4n(i; 6>0)||2/[1 -
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 \\tn,e0\\zn(Oo)]3, i € In- Note that

 | | , ||i^oll3^(0o)6 dtrace[Sn($o)] ,hd\
 4l,iAl £ —[i-ifc,»j[z„(«—=°'{b >•

 Using this with (A.3) and /3n(9o) = op( 1), we may expand —26_dlogi?n(0o)
 = -2b~d ^i€ln log(l + 7i,e0) as

 AM'tnieo^AniOo) - PniOoYtniOor^M + b~d2 ^
 ie In

 = ^4n(^o)/^n(^o) 1^-n(^o) + °p(l)

 Lemma A.2(a) and (c) with Slutsky's theorem complete the proof.
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