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ABSTRACT 

 

Raw meat-based diets (RMBDs) are typically fed to exotic carnivores managed in 

zoological institutions and are gaining in popularity as dietary options for pet dogs. Current 

research themes of RMBDs for zoo carnivores have centered around utilization in exotic felid 

species with a paucity of data obtained from exotic canids. In addition, current research themes 

of RMBDs for domestic dogs have centered around microbial contamination. Conducting 

nutrition-related research in exotic canids is often limited because animals are group-housed, 

preventing accurate individual feed intake and fecal output collection. Due to functional and 

anatomical similarities between digestive systems of domestic dogs with their wild 

counterparts, dogs may serve as an experimental model for nutrition studies for certain exotic 

canid species.  

 

The overall objectives of this research were to evaluate four commercially 

manufactured RMBDs formulated for zoological carnivores using domestic dogs as a model for 

exotic canids and to evaluate microbial risk to humans and canine health implications beyond 

digestibility. We hypothesize all RMBDs: 1.) evaluated would be highly digestible in domestic 

dogs, 2.) microbial risk to humans would be low, and 3.) there would be no adverse implications 

on canine health as a result of feeding RMBDs. 
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Overall, nutrients in RMBDs were highly digested by domestic dogs and diets did not 

result in clinical signs of gastrointestinal upset/distress. Further, RMBDs did not negatively 

influence general health status in dogs as measured by serum chemistry, electrolytes, complete 

blood count (CBC), and histology of gastrointestinal tract and associated tissues. Ussing 

chamber evaluation of intestinal integrity and barrier function indicated possible benefit of 

feeding RMBDs to dogs.  

 

Our first aim was to evaluate diet composition, apparent total tract macronutrient and 

energy digestibility, feed intake, fecal output, and microbial presence of four commercially-

manufactured RMBDs for zoological carnivores fed to domestic dogs. Diets varied in protein 

source including horse (Horse), pork (Pork) and two beef-based diets (Beef 1 and Beef 2). Our 

results indicated that diets were comparable in nutrient and energy composition and apparent 

total tract digestibility when fed to domestic dogs (n=4). Treatment nutrient concentrations 

ranged for dry matter (DM) (32.2 – 36.2%), organic matter (OM) (91.1 – 94.9%), crude protein 

(CP) (50.3 – 61.7%), fat (25.1 – 38.3%), and gross energy (GE) (5.8 – 6.4 kcal/g). Digestibility of 

nutrients and energy ranged from 83.3 – 92.4%, 88.4 – 95.3%, 93.8 – 97.7%, 94.9 – 98.2%, and 

91.3 – 95.5% for DM, OM, CP, fat, and energy, respectively. Fecal chemical composition, 

specifically fat on a dry matter basis (DMB), differed markedly for dogs consuming one of the 

beef diets (Beef 2). Dogs fed Beef 2 had greater (P<0.05) concentrations of fat in feces (21.5%) 

compared to 2.9, 6.1, and 6.3% for dogs fed Horse, Pork, and Beef 1, respectively. Despite the 

large fecal fat concentration, dogs fed Beef 2 diet had greater (P<0.05) digestibility of DM 

(92.4%), OM (95.3%), CP (97.7%), and GE (95.5%) but lesser (P<0.05) digestibility of fat (94.9%) 
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compared with all other diets evaluated. Additional digestibility differences were few. Feces 

were scored using the following scale: 1 = very hard, dry feces to 7 = watery diarrhea (Nestlé 

Purina). Fecal scores were lower (P<0.05) when dogs were fed Horse (1.2) and Beef 2 (1.9) diets 

compared to Pork (2.7) and Beef 1 (3.1) diets. Detection of Salmonella spp. in diet and saliva 

samples was non-existent and only 5.6% (n=2/36) of fecal samples were Salmonella spp. 

positive. Detection of generic E. coli was determined in 12.5% (n=2/16) and 5.6% (n=2/36) of 

diet and saliva samples, respectively.  

 

Our second aim was to compare gastrointestinal histology, intestinal transepithelial 

electrical resistance (TER), and intestinal macromolecule permeability between domestic dogs 

fed commercial extruded- versus RMBDs. No differences were observed in gastrointestinal 

histology between dietary treatment groups. TER and macromolecule permeability data were 

highly variable and statistical analyses were not performed due to low sample size. Numerical 

increases in apparent permeability coefficient (Papp) were observed in extruded-fed dogs 

indicating increased macromolecule permeability that is suggestive of decreased intestinal 

integrity and barrier function. These results indicate potential improvements in intestinal 

barrier function when dogs were fed RMBDs using a novel technique; however, further 

evaluation should be considered with a larger sample size.  

 

This research demonstrates that RMBDs varying in protein source and ingredients can 

be effectively utilized by domestic dogs and potentially exotic canids. While these experiments 

evaluated four commercial products manufactured for exotic carnivores in domestic dogs, 
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further research should evaluate direct comparisons between digestive efficiencies of domestic 

dogs compared to various exotic canid species. Our research also indicates that human 

exposure to pathogens associated with feeding RMBDs to dogs is possible but risk appears low 

based on presence of measured microbes. Additionally, this research indicates value in the use 

of gastrointestinal histology and Ussing chamber evaluation of intestinal integrity and barrier 

function as novel approaches for determining health effects beyond nutrient digestibility of 

various diets in domestic dogs.  
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CHAPTER 1 

INTRODUCTION 

 

Raw meat-based diets (RMBDs) are typically fed to exotic carnivores maintained in 

zoological institutions either exclusively or in combination with other feed ingredients including 

extruded and canned products. Studies have documented high digestibility of RMBDs to exotic 

and domestic carnivores (Kendall et al., 1982; Hendricks et al., 1999; Vester et al., 2008; Vester 

et al., 2010a, 2010b; Kerr et al., 2012; Kerr et al., 2013; Hamper et al., 2015; Iske et al., 2016). 

However, the majority of recent research relating to exotic carnivores fed RMBDs has been 

conducted with felid species. Similar studies evaluating digestibility differences, fecal 

characteristics, and health status using canid species are few.  

 

Domestic dogs share many functional and anatomical similarities of the gastrointestinal 

tract with exotic canids (Bosch et al., 2015). As a result, nutrition research conducted in 

domestic dogs has potential to provide valuable insight for nutrition management of exotic 

canids. Nutrition research in exotic canids is difficult to conduct and expensive because housing 

of exotic canids is typically in social groups or packs making individual sample collection difficult 

(Vester-Boler et al., 2009). Utilizing domestic dogs as an experimental model for nutrition 

studies can help reduce research costs, allow for more controlled experimental conditions, 

increase number of animals available to use in studies, and provide valuable information to 

animal managers for diet formulation or selection. However, it is important to note that 
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experiments directly comparing digestibility of varying diet types between domestic dogs and 

exotic canids have not yet been performed.  

 

In recent years, feeding RMBDs has increased in popularity with owners of companion 

animals (Michel, 2006). This practice is subject to controversy as undocumented health claims 

and potential human and animal health concerns are common (Freeman et al., 2013). In 

companion animals, published RMBD research, almost exclusively, have focused on microbial 

contamination (Lenz et al., 2009). Although microbial contamination of RMBDs does not 

typically cause clinical illness in healthy pets, associated microbial shedding in feces of pets fed 

raw diets along with the handling of RMBDs have potential human health implications (Carter 

and Quinn, 2000; Lenz et al., 2009). Because companion animals typically share households 

with humans, dogs and cats consuming RMBDs may serve as vectors for microbial pathogens 

(Carter and Quinn, 2000). Additionally, publications regarding RMBDs fed to companion animals 

include case studies of improperly formulated RMBDs that lack nutrients meeting animal 

requirements (Kawaguchi et al., 1993; Niza et al., 2003; Polizopoulou et al., 2005; Taylor et al., 

2009; Zeugswetter et al., 2013).  

 

Data related to health status of companion animals fed properly formulated RMBDs are 

lacking. Further, short-term feeding studies evaluating RMBDs may not be long enough to 

identify changes in health status of animals. As a result, research should objectively evaluate 

health effects associated with varying diet types. Due to ethical considerations, obtaining 

tissues for histological evaluation or other analyses often is not feasible with companion 
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animals. Therefore, most nutrition research relies on changes in serum biochemical values or 

complete blood count as one of few and often sole indicators of health status in animals. 

Additional research methods to evaluate health status need evaluation to determine long-term 

health effects associated with diet type, particularly RMBDs.  

 

Research Objective:  

Our overall research objectives were to evaluate commercially manufactured RMBDs 

formulated for zoological carnivores in domestic dogs as a model for exotic canids and to 

evaluate human and animal health implications of feeding RMBDs to domestic dogs. For 

purposes of this thesis, health is defined as the absence of any disease or impairment.  

 

Specific Aim 1: Evaluate diet composition, apparent total tract macronutrient and energy 

digestibility, feed intake, fecal output, and microbial presence in domestic dogs fed RMBDs 

commercially manufactured for zoological carnivores.  

A total of four intact male domestic dogs were fed four different commercial RMBDs 

manufactured for zoological carnivores varying in protein source and ingredients. Feed intake 

and fecal output were recorded and analyzed to determine apparent total tract macronutrient 

and energy digestibilities for each dietary treatment. Fecal scores were recorded daily. Saliva, 

fecal, and dietary samples were obtained and analyzed for presence of Salmonella spp. and 

Escherichia coli. 
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Specific Aim 2: Application of novel technology to compare gastrointestinal histology, 

intestinal transepithelial electrical resistance, and intestinal macromolecule permeability 

between domestic dogs fed commercial extruded- versus RMBDs.  

Two intact female domestic dogs were fed a rotation of two different commercial 

extruded diets (extruded-fed group) and two intact male domestic dogs were fed a rotation of 

four different RMBDs (RMBD-fed group). Following a seven-month feeding period, all four dogs 

were humanely euthanized and tissue samples of the gastrointestinal tract and associated 

tissues were obtained for histological evaluation. Additionally, intestinal tissue samples were 

used for Ussing chamber evaluation of intestinal transepithelial electrical resistance and 

macromolecule permeability as a novel approach to understanding the potential influence of 

RMBDs on intestinal integrity and barrier function for dogs.  

 

Research Implications:  

This study provides valuable and novel insights into possible canine health implications, 

beyond digestibility, of feeding RMBDs to domestic dogs that have previously been unevaluated 

in the scientific literature. Moreover, evaluation of bacterial presence in diets, saliva, and feces 

of dogs fed RMBDs provides further understanding of potential pathogen transfer to humans in 

close contact with animals fed these types of diets. Data obtained from gastrointestinal 

histology and Ussing chamber evaluation of intestinal membrane integrity provides a regional 

specific evaluation of intestinal health effects of differing diet types. Data presented in this 

thesis demonstrate dogs tolerate a wide range of raw meat diets varying in protein and 

ingredient sources. After seven months on RMBDs, dogs maintained body condition, fecal 
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scores and nutrient digestibility. Additionally, data from this research can be directly used by 

managers of exotic canids when making diet purchasing decisions that impact institutional 

budgets and nutrition management as minor differences in nutrient and energy digestibility 

may impact annual budgets.   



6 
 

Literature Cited:  

Bosch, G., E. A. Hagen-Plantinga, and W. H. Hendriks. 2015. Dietary nutrient profiles of wild 

wolves: insights for optimal dog nutrition? Br. J. Nutr. 113:S40-S54. 

doi:10.1017/S0007114514002311 

Carter, M. E., and P. J. Quinn. 2000. Salmonella infections in dogs and cats. In: C. Wray and A. 

Wray, editors. CABI Pub., Wallingford, UK. p. 231-244. 

Freeman, L. M, M. L. Chandler, and B. A. Hamper. 2013. Timely topics in nutrition of raw meat-

based diets for dogs and cats. J. Am. Vet. Med. Assoc. 243:1549-1558. 

doi:10.2460/javma.243.11.1549 

Hamper, B. A., C. A. Kirk, and J. W. Bartges. 2015. Apparent nutrient digestibility of two raw 

diets in domestic kittens. J. Feline Med. Surg. 1-6. doi:10.1177/1098612X15605535 

Hendricks, W. H., M. M. A. Emmens, B. Trass, and J. R. Pluske. 1999. Heat processing changes 

the protein quality of canned cat foods as measured with a rat bioassay. J. Anim. Sci. 

77:669-676. doi:10.2527/1999.773669x 

Iske, C. J., C. L. Morris, and K. L. Kappen. 2016. Influence of pork and pork by-products on 

macronutrient and energy digestibility and palatability in large exotic felids. J. Anim. Sci. 

94:3738-3745. doi:10.2527/jas2016-0414 

Kawaguchi, K., I. Braga, A. Takahashi, K. Ochiaia, and C. Itakura. 1993. Nutritional secondary 

hyperparathyroidism occurring in a strain of German shepherd puppies. Jpn. J. Vet. Res. 

41:89-96.  

Kendall, P. T., D. W. Holme, and P. M. Smith. 1982. Comparative evaluation of net digestive and 

absorptive efficiency in dogs and cats fed a variety of contrasting diet types. J. Small Anim. 

Pract. 23:557-587. doi:10.1111/j.1748-5827.1982.tb02518.x 

Kerr, K. R., A. N. Beloshapka, C. L. Morris, C. M. Parsons, S. L. Burke, P. L. Utterback, and K. S. 

Swanson. 2013. Evaluation of four raw meat diets using domestic cats, captive exotic felids, 

and cecectomized roosters. J. Anim. Sci. 91:225-237. doi:10.2527/jas2011-4835 

Kerr, K. R., B. M. Vester Boler, C. L. Morris, K. J. Liu, and K. S. Swanson. 2012. Apparent total 

tract energy and macronutrient digestibility and fecal fermentative end-product 

concentrations of domestic cats fed extruded, raw beef-based, and cooked beef-based 

diets. J. Anim. Sci. 90:515-522. doi:10.2527/jas.2010-3266 

Lenz, J., D. Joffe, M. Kauffman, Y. Zhang, and J. LeJeune. 2009. Perceptions, practices, and 

consequences associated with foodborne pathogens and the feeding of raw meat to dogs. 

Can. Vet. J. 50:637-643. 



7 
 

Michel, K. E. 2006. Unconventional diets for dogs and cats. Vet. Clin. North Am. Small Anim. 

Pract. 36:1269-1281. doi:10.1016/j.cvsm.2006.08.003 

Niza, M. M. R. E., C. L. Vilela, and L. M. A. Ferreria. 2003. Feline pansteatitis revisited: hazards of 

unbalanced home-made diets. J. Feline Med. Surg. 5:271-277. doi:10.1016/S1098-

612X(03)00051-2 

Polizopoulou, Z., G. Kazakos, M. Patsikas, and N. Roubies. 2005. Hypervitaminosis A in the cat: a 

case report and review of the literature. J. Feline Med Surg. 7:363-368. 

doi:10.1016/j.jfms.2005.05.004  

Taylor, M. B., D. A. Geiger, K. E. Saker, and M. M. Larson. 2009. Diffuse osteopenia and 

myelopathy in a puppy fed a diet composed of an organic premix and raw ground beef. J. 

Am. Vet. Med. Assoc. 234:1041-10-48. doi:10.2460/javma.234.8.1041 

Vester, B. M., A. N. Beloshapka, I. S. Middelbos, S. L. Burke, C. L. Dikeman, L. G. Simmons, and K. 

S. Swanson. 2010a. Evaluation of nutrient digestibility and fecal characteristics of exotic 

felids fed horse- or beef-based diets: use of the domestic cat as a model for exotic felids. 

Zoo Biol. 29:432-448. doi:10.1002/zoo.20275 

Vester, B. M., S. L. Burke, C. L. Dikeman, L. G. Simmons, and K. S. Swanson. 2008. Nutrient 

digestibility and fecal characteristics are different among captive exotic felids fed a beef-

based raw diet. Zoo Biol. 27:126-136. doi:10.1002/zoo.20172 

Vester, B. M., S. L. Burke, K. J. Liu, C. L. Dikeman, L. G. Simmons, and K. S. Swanson. 2010b. 

Influence of feeding raw or extruded feline diets on nutrient digestibility and nitrogen 

metabolism of African wildcats (Felis lybica). Zoo Biol. 29:676-686. doi:10.1002/zoo.20305 

Vester Boler, B. M., K. S. Swanson, and G. C. Fahey Jr. 2009. Nutrition of the exotic felid. 

Feedstuffs. 20:57-59. Available from: 

http://fdsmagissues.feedstuffs.com/fds/Reference_issue_2012/Reference_issue_2010/Refe

rence_issue_2009/10_Nutrition%20of%20the%20Exotic%20Felid.pdf 

Zeugswetter, F. K., K. Vogelsinger, and S. Handl. 2013. Hyperthyroidism in dogs caused by 

consumption of thyroid-containing heat meat. Schweiz. Arch. Tierheikd. 155:149-152. 

doi:10.1024/0036-7281/a000432  

http://fdsmagissues.feedstuffs.com/fds/Reference_issue_2012/Reference_issue_2010/Reference_issue_2009/10_Nutrition%20of%20the%20Exotic%20Felid.pdf
http://fdsmagissues.feedstuffs.com/fds/Reference_issue_2012/Reference_issue_2010/Reference_issue_2009/10_Nutrition%20of%20the%20Exotic%20Felid.pdf


8 
 

CHAPTER 2 

LITERATURE REVIEW 

 

History of Dog Domestication: 

 According to the 2015-2016 APPA (American Pet Products Association) National Pet 

Owners Survey, 54.4 million households in the U.S. own a dog. Dogs have been an important 

part of human society since their domestication began approximately 30,000 years ago (Fan et 

al., 2015). As dogs evolved from wolves to their current form, their roles in society also 

changed. As a result, dog nutritional physiology evolved.  

 

 Dogs were the first species domesticated and domestication began when humans were 

almost exclusively nomadic hunter-gatherers (Clutton-Brock, 1999). Wolves (Canis lupus) 

proved valuable in hunting and guarding for nomadic people (Müller, 2002). Currently, it 

remains unclear how dogs originally were domesticated from wolves. A population of less-

fearful wolves likely scavenged kills from nomadic camps (Lindsay, 2000). One thought is that 

wolf pups were captured for use in hunting and guarding (Axelsson et al., 2013). Puppies that 

showed more tameness into adulthood were likely bred to other wolves showing similar 

tameness (Grandin and Dessing, 1998). Another suggestion is that human preferences for 

paedomorphic characteristics may have contributed to selection and subsequent domestication 

of tamer wolves (Waller et al., 2013). Nutrition and feeding of early dogs most likely involved 

assisted foraging. Additional food provided to early dogs likely consisted primarily of scraps, 

bone, and other edible sources that were unwanted by humans (McNamara, 2006). 
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During the Neolithic Revolution, approximately 10,000 years ago, humans began to shift 

from a nomadic hunter-gatherer society to settled plant and animal agriculture (Boessnek, 

1985; Driscoll et al., 2009a). During this time, domestication of several other species began 

including sheep, pigs, cattle, and goats (Driscoll et al., 2009a). These animals, like dogs, followed 

a dominance hierarchy, had a relatively flexible diet, and could live and breed in confinement 

(Clutton-Brock, 1999). Humans exploited these mechanisms to begin domestication primarily 

through artificial selection (Driscoll et al., 2009a). As dogs assumed roles in herding and 

livestock guarding, this time period marked the end of wolf admixture in dog genetics 

(Freedman et al., 2014). With the rise of agriculture in the Fertile Crescent, dogs consumed 

plant and animal refuse, offering a new dietary niche (Bosch et al., 2015), one likely higher in 

starch (Axelsson et al., 2013). 

 

Nutrition of Canids: 

Domestic dogs (Canis lupus familiaris) and the gray wolf (Canis lupus) are both members 

of the family Canidae within the order of Canivora (Wilson and Reeder, 2005). As carnivores, 

dogs possess simple stomachs, short digestive tracts, and canine flesh tearing teeth (Kendall et 

al., 1982; Peterson and Cuicci, 2003; NRC, 2006). Most carnivores consume a predominately 

meat-based diet, although some species’ dietary and feeding habits range from strictly 

carnivorous (e.g., felids, polar bears), to omnivorous (e.g., most canids and ursids), to strictly 

herbivorous (i.e., Panda bears) in nature. Canids are a diverse family consisting of 34-38 

different species characterized as terrestrial, mostly nocturnal, predators and scavengers 
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(Clutton-Brock, 1998). Most canids hunt in packs (e.g., wolves, coyotes, etc.) but others are 

solitary hunters (e.g., foxes) (Clutton-Brock, 1998). However, dogs are the only fully 

domesticated canid (Clutton-Brock, 1998).  

 

Dietary diversity exists between species of exotic canids. African Wild Dogs (Lycaon 

pictus) are exclusively carnivorous in nature (Pribyl and Crissey, 1999) compared with Maned 

Wolves (Chrysocyon brachyrurus) that consume diets consisting of approximately 50% animal 

material and 50% plant material (Phipps and Edwards, 2009). Most canids have broad feeding 

habits consisting of large and small prey, fruits, and other plant matter (NRC, 2006). Intake is 

dictated primarily on availability of feedstuffs and social hierarchy within the pack, with pack 

leaders getting preference to kills and scavenged finds (Zimen, 1976; Mech, 1981; Peterson and 

Ciucci, 2003). Wolves have been the most studied of exotic canids, especially from a nutrition 

and feeding standpoint. Wolves can be considered true carnivores in nature as non-prey, plant 

matter makes up only a very small percentage (0.1 – 3.0%) of their overall diet (Bosch et al., 

2015). Wolves primarily rely on large ungulates as their main source of food but, as 

opportunistic predators, can survive on any prey they are able to catch (Peterson and Ciucci, 

2003). Dietary intake of the gray wolf is highly varied based on geographical location including 

some documentation of animals hunting domestic species or scavenging garbage (Peterson and 

Ciucci, 2003).  

 

Wolves feeding on large prey will preferentially consume internal organs (e.g., heart, 

liver, lungs, spleen, kidneys, etc.) after tearing into the carcass (Peterson and Ciucci, 2003; 
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Stahler et al., 2006). The rumen of ungulates is usually punctured during this process but 

vegetation in the rumen and remaining gastrointestinal tract is largely ignored while the 

stomach and intestinal walls are consumed (Peterson and Ciucci, 2003). Large muscle masses of 

leg are typically consumed next and provide the bulk of the wolves’ diet (Peterson and Ciucci, 

2003). Consumption of bones, blood, hide, fur, brain, and other portions of the carcass is 

necessary for wolves to fully meet their nutritional requirements (e.g., vitamins, minerals, 

essential fatty acids, etc.) and help regulate digesta passage rate (Peterson and Ciucci, 2003). 

Researchers have estimated that approximately 65.0 – 75.0% of large prey carcass weight is 

consumed by a pack of wolves (Peterson, 1977; Jędrzejewski et al., 2002).  

 

Considering nutrient intakes, Bosch et al. (2015) reported average nutrient intake of 

wild wolves consisted of 38.6% dry matter (DM), 67.2% crude protein (CP), 24.9% fat, 6.4% ash, 

1.4% carbohydrates, a Ca:P ratio of 1.1, and an energy density of 5.0 kcal/g DM. Further, in 

thermoneutral environments, wolves can obtain their maintenance water requirements from 

prey and through production of metabolic water alone but they rely on free-water intake for 

cooling purposes in warm climates (Peterson and Ciucci, 2003). Fat stores are used for 

thermogenesis in cold climates as with other species (Kreeger, 2003).  

 

Although exact durations are unknown, both wolves and dogs can adapt to long periods 

of fasting (Peterson and Ciucci, 2003; Bosch et al., 2015), utilizing ketone bodies generated 

from fat stores (de Bruijne and van den Brom, 1986). Additionally, they can quickly recover lost 

weight (Kreeger et al., 1997; Bosch et al., 2015). It is presumed that wolves, like dogs, down-
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regulate enzyme systems associated with protein catabolism to conserve body amino acid 

stores during periods of low dietary protein intake (Meyer and Stadtfeld, 1980; Kreeger, 2003), 

a trait not shared by obligate carnivores (Morris, 2002). This feast vs. famine lifestyle, not 

shared with smaller species of wild felids (Bosch et al., 2015), has led to several additional 

metabolic adaptations that influence differences in nutrient requirements for canids. For 

example, canids can synthesize active forms of niacin, vitamin A, and vitamin D from precursors 

and do not have additional taurine or arachidonic acid requirements as observed in felids. (NRC, 

2006; Bosch et al., 2015).  

 

The basic digestive anatomy and physiology between dogs and exotic canids, 

particularly wolves, is thought to be highly conservative (Peterson and Ciucci, 2003). In a 

literature evaluation by Clauss et al. (2010), apparent CP and fat digestion in exotic carnivores; 

including exotic canids, hyenids, mustelids, pinnipeds, and ursids; showed similar patterns to 

domestic dogs. However, apparent carbohydrate digestion in the exotic carnivores was more 

similar to domestic cats rather than domestic dogs (Clauss et al., 2010). The results of this 

evaluation suggest that carnivores of different species share similar digestive efficiencies 

(Clauss et al., 2010). From a research standpoint, this suggests that domestic dogs and cats may 

serve as valuable models for nutrition studies in exotic carnivores, especially considering 

RMBDs are typically low in carbohydrates and high in fat and protein. Of important note, it is 

assumed that, on average, wolves and other exotic canids are generally leaner than most 

domestic dogs (Peterson and Ciucci, 2003), especially with increasing prevalence of obesity in 

pets (Courcier et al., 2010). Evidence from studies in humans, companion animals, and rodents 
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suggest gene expression and metabolism are altered in obese animals (Koza et al., 2006; Ruiz et 

al., 2011; Soronen et al., 2012; de Godoy and Swanson, 2013). For this reason, obese animals 

may not be the most appropriate models for exotic carnivores regarding nutrition or health 

studies.  

 

Due to a relatively short period of domestication, environmental selection pressures 

faced by wolves, including diet, are observed in the dog’s genome (Bosch et al., 2015). Recent 

evidence has shown three genes involved in starch digestion and glucose uptake (AMY2B, 

MGAM, and SGLT1) have been upregulated in dogs compared to wolves (Axelsson, 2013). 

Specifically, a copy number increase in the AMY2B gene that codes for amylase was observed in 

dogs when compared to their wild predecessors (Axelsson, 2013). Further research has 

revealed that AMY2B copy number is not fixed in all dog breeds and varies significantly 

between breeds (Arendt et al., 2014; Freedman et al., 2014). Ancient breeds originating from 

the Fertile Crescent (e.g., Saluki) show a higher copy number of the AMY2B gene than Arctic or 

Northern breeds (e.g., Siberian Husky) (Freedman et al., 2014). Arendt et al. (2014) found that 

amylase activity increased linearly with increasing copy number of the AMY2B gene suggesting 

that dogs with a higher copy number of AMY2B have a greater starch digestion capacity. For 

these reasons, breed selection may be an important consideration when using dogs as a 

nutrition model for exotic canids and for diet type selection in dogs as RMBDs may be more 

effective for some breeds and not others. For proper nutrition management of exotic canids, 

diet formulation criteria should combine information from published nutrient requirements of 

the closest-related domestic model species, natural history of the species, and ecological 
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studies of food intake and feeding behaviors since published data regarding nutrient 

requirement of species are few or non-existent (AZA Canid TAG, 2012). 

 

Pet Food Trends and Effects of Processing on Nutrients: 

 Trends in the pet food industry often follow trends in the human food industry. In 

recent years, foods and products specifically emphasizing health and wellness have become 

popular for both pets and humans (Beaton, 2013). Dog food selection and feeding practices 

have similar cultural and societal influences as selection of food for human family members 

(Michel, 2006). For purposes of this review, alternative diets are defined as dietary choices that 

differ from standard extruded or canned dog food.  

 

 Several alternative dietary choices for domestic dogs have increased in popularity 

including vegetarian/vegan diets, natural/organic diets, and RMBDs (Michel, 2006). These diets 

can either be made at home or purchased commercially but serve to satisfy niche markets in 

the pet food industry. Motivation behind owner selection of these diets varies. For example, 

vegetarian/vegan diets may be selected by owners because they choose to follow a 

vegetarian/vegan lifestyle themselves (Michel, 2006). These vegan/vegetarian diets also may 

have diagnostic application in food elimination trials for animals with animal protein 

sensitivities (Michel, 2006). Selection of natural/organic diets may be due to perceived quality 

and safety of ingredients. Furthermore, selection of a RMBD may result from perceived health 

benefits or desire to feed an ancestral diet or limit the amount of processing the diet is exposed 

to (Michel, 2006; Freeman et al., 2013). Feeding RMBDs, specifically, has caused controversy 



15 
 

because perceived health benefits are not well documented and by nature these diets have 

potential for animal and human health concerns resulting from presence of large populations of 

microbes (Freeman et al., 2013).  

 

In developed nations, processing via extrusion is the primary manufacturing method for 

commercial pet foods (Lankhorst et al., 2007; Crane et al., 2010). During extrusion processing, 

the raw diet mixture is subjected to very high temperatures and pressure for a relatively short 

duration of time; typically 80.0 – 200.0°C for 10 – 270 seconds (Lankhorst et al., 2007). Canning, 

like extrusion, subjects raw feed ingredients to high temperatures and pressure; however, the 

product contains greater moisture, typically 74.0 – 78.0% (Williams et al., 2006) compared with 

10.0 – 12.0% in extruded foods. Extrusion and other processing methods have benefited the 

pet food industry with high production throughput of commercial pet foods, increased 

digestibility of vegetable proteins and starches, destruction of anti-nutrient factors such as 

trypsin inhibitor, and destruction of microorganisms or spores in feedstuffs (Björk and Asp, 

1983; van Rooijen et al., 2013).  

 

Additionally, diet composition of formulated mixtures should be compatible with 

processing methodology. Extrusion requires starch and limits fat concentrations; therefore, 

careful consideration is required during formulation (Hendriks et al., 2015). Starch plays an 

important functional role in extruded foods. Specifically, starch gelatinization followed by rapid 

cooling of the diet mixture provides structure and texture of the extrudate (Camire et al., 1990; 

Moscicki et al., 2013). This functional characteristic makes starch a required ingredient for 



16 
 

extruded pet foods. Typical extruded pet foods contain approximately 40.0% starch but may 

reach greater than 50.0% inclusion (Spears and Fahey, 2004; Crane et al., 2010). Additionally, 

extrusion converts starch into a form that is more available for hydrolysis within the digestive 

tract (Galliard and Bowler, 1987); therefore, complete or partial starch gelatinization typically 

results in increased digestibility and utilization by the animal (Lin et al., 1998; NRC, 2006; Bazolli 

et al., 2015). 

 

Lipids function in lubrication during extrusion processing but may interfere with 

extrudate expansion if included at levels higher than 6.0% of the diet (Ilo et al., 2000; Crane et 

al., 2010). Lipid content of the extrudate is typically reduced compared to the original mixture 

as a result of lipid oxidation, hydrogenation, and isomerization during processing (Björck and 

Asp, 1983; Ilo et al., 2000). Additionally, an increase in temperature during extrusion processing 

results in decreased lipid stability (Rao and Art, 1989). Loss of heat-labile vitamins also may 

occur during extrusion processing (Singh et al., 2007). Specifically, vitamins A, E, C, B12, and folic 

acid are the most susceptible to extrusion processing (Riaz et al., 2009). Studies have 

documented losses up to 29.0% for pyridoxine and up to 100.0% for thiamin, as well (Lombardi-

Boccia et al., 2005; Singh et al., 2007). In order to correct for these nutrients lost during 

extrusion, lipids and deficient vitamins are typically sprayed onto the exterior of the extrudate 

following extrusion (Crane et al., 2010). 

 

Protein quality also is a concern during processing of dog food. Protein quality of a 

feedstuff is dependent on amino acid composition, bioavailability, and protein digestibility 
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(Williams et al., 2006). Data from a study by Cramer et al. (2007) comparing raw versus 

rendered animal meals showed that rendered meals generally had lower protein quality as 

indicated by differences in lysine bioavailability (86.0 – 107.0%, 70.0 – 99.0%), total sulfur-

containing amino acid bioavailability (64.0 – 99.0%, 61.0 – 78.0%), and total amino acid 

digestibility (90.3 – 95.5%, 73.2 – 84.8%), respectively. Dietary and physiological factors 

influence digestibility of protein and other nutrients. Dietary factors that influence protein 

digestibility include concentrations of macro/micronutrients within the diet, source and quality 

of ingredients, presence or absence of dietary fiber and anti-nutrient factors, particle size, and 

processing technique (Johnson et al., 1998; Hamper et al., 2015). Physiological factors that 

influence protein digestibility include species, breed, age, physiological state, illness, and 

alterations in gut microflora (Sá et al., 2014; Hamper et al., 2015). Specifically, heating can have 

several negative effects that decrease protein quality in the finished product and present many 

unique challenges from an animal feeding perspective. For example, extrusion processing can 

lead to destruction of amino acids, formation of protein aggregates, protein crosslinking, 

protein oxidation, and formation of Maillard products (Björck and Asp, 1983; Promeyrat et al., 

2010). 

 

Advantages of RMBDs:  

A major potential benefit of feeding RMBDs to pets is eliminating the subsequent effects 

of intensive processing with extrusion or canning. Several studies have demonstrated RMBDs 

have greater macronutrient digestibility compared to extruded or canned diets (Kendall et al., 

1982; Hendricks et al., 1999; Vester et al., 2008; Vester et al., 2010a, 2010b; Kerr et al., 2012; 
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Kerr et al., 2013; Hamper et al., 2015). Crude protein digestibility was 9.0% greater (P<0.05) in 

African wildcats (n=6) fed a commercial RMBD compared with cats fed a high-protein extruded 

diet although no other differences in digestibility were observed (Vester et al., 2010b). It was 

also observed that cats on the extruded diet consumed, on average, 58% more (P<0.05) 

nitrogen per day and excreted 0.7g more (P<0.05) nitrogen in their feces than cats consuming 

the RMBD indicating improvements in nitrogen balance when fed RMBDs (Vester et al., 2010b). 

Björck et al. (1983) reported that although extrusion decreased digestibility of a biscuit sample 

by up to 11.0%, the decrease was less pronounced with increasing moisture content of mixture 

going into the extruder. When comparing macronutrient digestibility in kittens, Hamper et al. 

(2015) reported greater (P<0.001) DM (90.6%), OM (93.5%), CP (94.7%), and GE (94.8%) 

digestibility values when fed a commercial RMBD compared with a commercial canned diet 

(DM: 83.8%, OM: 88.4%, CP: 88.9%, GE: 90.2%) with comparable nutrient composition and 

moisture level. Similar results were documented in a study contrasting digestibility of various 

diet types using dogs and cats. In this study, a fresh minced (FM) meat diet had greater (P<0.05) 

DM (95.7%), CP (96.9%), and GE (96.2%) digestibility than two canned dog diets (DM: 74.8%, 

CP: 77.7%, GE: 77.1%), two canned cat diets (DM: 80.5%, CP: 84.9%, GE: 84.0%), and an 

extruded cat diet (DM: 73.25%, CP: 79.7%, GE: 79.6%); acid-hydrolyzed ether extract was not 

significantly different between the FM and the processed diets and OM digestibility was not 

determined (Kendall et al., 1982). Although processing of the canned cat food did not result in 

decreased amino acid concentrations, results from a study by Hendriks et al. (1999) 

demonstrated that true ileal amino acid digestibility coefficients were higher in unprocessed 

canned cat food and decreased with increasing heat treatment (P<0.05), with the majority of 
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effects significant at P<0.001. Digestibility differences observed between diets cannot be 

attributed to processing alone because these experimental diets differed in ingredient 

composition and processing methods (Kerr et al., 2012). These studies combined, document 

and support use of RMBDs for improvement of nutrient digestibility compared with typical 

processed extruded or canned diets.  

 

Recent studies also have documented that carnivores consuming RMBDs typically have 

decreased feed intakes and lower fecal outputs compared to those consuming extruded diets 

(Crissey et al., 1997; Vester et al., 2010b; Kerr et al., 2012). This likely results from the 

digestibility improvements of RMBDs as outlined above. Sand cats (Felis margarita) fed a RMBD 

consumed approximately 22.0% less feed on a dry matter basis than cats fed an extruded diet. 

In spite of this overall reduction in dry matter intake, Sand cats eating the RMBD consumed, on 

average, 31.7% more digestible protein and 3.9% more digestible energy than cats eating an 

extruded diet (Crissey et al., 1997). In a study published by Kerr et al. (2012), domestic cats fed 

a high-protein extruded diet (57.0% CP) had 14.3 and 34.4% greater (P<0.05) feed intake (g of 

DM/d) than domestic cats fed a raw or cooked beef-based diet, respectively. Domestic cats fed 

the extruded diet also had approximately 50.0 and 20.0% greater fecal output (P<0.05) and 

softer stools (P<0.05) compared to cats fed a raw or cooked beef-based diet, although stools for 

all diets were close to ideal, indicated with fecal score of 3 out of 5 (Kerr et al., 2012). Similar 

trends were observed in a study using African wildcats (Felis sylvestris) by Vester et al., (2010b). 

In this study, cats fed a high-protein (55.0% CP) extruded diet consumed 41% more dry matter 

intake (P<0.05) than cats consuming the raw beef-based diet; however, caloric intake between 
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the two dietary treatments was not significantly different (P>0.05) due to differences in water 

content between diets. Fecal output on a dry matter basis was 92.5% greater (P<0.05) for cats 

fed the high-protein extruded diet but no significant differences (P>0.05) were observed when 

the increase in feed intake was accounted for in fecal output (Vester et al., 2010b). These 

differences in feed intake and fecal output between diets are important management 

considerations for both domestic and managed exotic carnivores alike and are considered 

major benefits to feeding RMBDs.  

 

In contrast to extruded or canned diets, research has shown conflicting results for 

digestibility differences between RMBDs and cooked diets (minimal processing). As previously 

stated, in the study by Kerr et al. (2012), macronutrient digestibility did not differ significantly 

when domestic cats were fed either a raw beef-based diet or the same diet lightly cooked to an 

internal temperature of at least 71.0°C. All cooked digestibility coefficients were numerically 

lower than raw counterparts but differences were minor, did not reach statistical difference, 

and were less than 10% different for all measures. Cooking caused a significant decrease 

(P<0.05) in in vitro digestibility of pork meat treated with both pepsin and trypsin when cooking 

temperatures reached 100.0°C although temperatures of 60.0°C, 65.0°C, and 70.0°C did not 

have a significant effect (P>0.05) (Wen et al., 2015). Data from these studies suggest that 

cooking RMBDs at more moderate temperatures (approximately 70.0°C) likely does not result 

in significant decreases in macronutrient digestibility and may be a viable option when 

pathogen exposure from raw meat is a concern.  

 



21 
 

Disadvantages of RMBDs: 

Several government and veterinary agencies have released statements regarding the 

feeding of RMBDs to pets. The statement from the Food and Drug Administration (FDA) 

indicates feeding pets raw foods is not in agreement with their goal of protecting the public 

from significant health risks (FDA Consumer Health Information, 2014). Additionally, the FDA 

has a zero-tolerance policy for presence of Salmonella spp. in pet foods (FDA, 2015) and 

adulterated pet foods are subject to regulatory action from the FDA due to human health risk 

perceived by the likelihood of direct human contact with pet food (FDA, 2013). Similarly, the 

Centers for Disease Control (CDC), American Veterinary Medical Association (AVMA), and 

American Animal Hospital Association (AAHA) discourage feeding raw foods to dogs and cats 

because of salmonellosis risk and other infections to both pets and owners (CDC, 2007). The 

American College of Veterinary Nutrition (ACVN) also released a statement cautioning about 

the health risks associated with RMBDs and recommended clients work with their veterinarian 

to determine if feeding a RMBD is the most appropriate choice (ACVN, 2016). These statements 

primarily focus on human and animal health risks associated with feeding RMBDs. These risks 

include the potential for infection from pathogenic microbes or parasites, nutritional 

inadequacies, and other contaminants that can cause harmful physiological changes (Freeman 

et al., 2013).  

 

Microbial contamination, by either bacteria or viruses, is the most frequently 

documented disadvantage of feeding RMBDs. Specifically, Salmonella spp. have received the 

most attention; however, other harmful bacterial contaminants may include Escherichia coli, 
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Listeria, Clostridium, and Campylobacter spp. These bacteria are sometimes commonly 

associated with various species of domestic livestock (Jenkins et al., 2016). Control measures, 

such as carcass trimming and washing, are often implemented by packing plants to reduce 

bacterial contamination on meat products but these practices are unable to completely 

eliminate all potential contaminants in raw meats (LeJeune and Hancock, 2001). Also, in the 

absence of gross changes in pathology, contamination of meat by bacteria, viruses, or even 

parasites can go unnoticed during inspection (LeJeune and Hancock, 2001).  

 

Dogs, as carnivores, possess many physiological adaptations (e.g., short gastrointestinal 

tract, low stomach pH, commensal bacteria, etc.) that allow them to tolerate relatively high 

levels of microorganisms in their diet. As a result, dogs do not frequently exhibit clinical illness 

when colonized by potentially pathogenic bacteria (NRC, 2006; Lenz et al., 2009). As these 

microorganisms are shed in dog feces, they present potential human health concerns as many 

of these microorganisms also cause varying degrees of illness in humans (Lenz et al., 2009). 

Prevalence of Salmonella spp. in feces of clinically normal dogs, independent of diet, is 

estimated between 1.0 and 18.0% but actual prevalence of infection is suspected to be much 

higher because dogs can be sporadic shedders of Salmonella spp. (Sanchez et al., 2002).  

 

Bacterial species found in RMBDs have the capacity to cause illness in dogs. Like in 

humans, dogs that are immuno-naïve, immunocompromised, or geriatric are at greatest risk for 

infection from microorganisms present in RMBDs (Freeman et al., 2013). Alterations of gut 

microenvironment, initiated by a physiological stressor, antibiotics, or other cause, may result 
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in an increased risk of illness from food-borne pathogenic contaminants (LeJeune and Hancock, 

2001). Although not common, clinical salmonellosis can occur in dogs and most often manifests 

as acute diarrhea with septicemia resulting only in rare instances (Gruenberg, 2015). Clinical 

cases of salmonellosis in companion animals, caused either directly or indirectly by feeding of a 

RMBD, have been documented in scientific literature (Striver et al., 2003; Morley et al., 2006). 

Additionally, asymptomatic carriers of pathogens can develop clinical disease if their immune 

systems become compromised or overwhelmed (Gruenberg, 2015). Moreover, fecal shedding 

of pathogens, including but not limited to Salmonella spp., is increased in dogs and other 

animals during times of illness and or hospitalization (Cummings et al., 2010; AVMA, 2012).  

 

Feeding RMBDs to dogs may increase fecal shedding of Salmonella and other bacterial 

pathogens. The results of one small-scale study (n=10 dogs per group) showed that 30.0% of 

dogs fed RMBDs had positive fecal cultures for Salmonella spp. (P=0.105) and RMBDs were 

more likely (P<0.001) to contain Salmonella spp. than an extruded diet (8 of 10 RMBDs positive 

for Salmonella spp.) (Joffe and Schlesinger, 2002). Results were similar in a larger study (n=80 

dogs per group) indicating dogs consuming raw meat diets tested positive for Salmonella spp. 

[odds ratio (OR) 22.7; 95% confidence interval (CI) 3.1-58.8; P<0.001] and extended-spectrum 

cephalosporinase Escherichia coli (OR 17.2; CI 9.4-32.3; P<0.001) at least once during the past 

year compared with dogs not consuming raw meat; however, wide confidence interval ranges 

suggest high degree of variability in the results (Lefebvre et al., 2008). Diets evaluated in the 

study varied and differences in protein type (e.g., muscle meat, organ meat, etc.), overall diet 

formulation, species of meat used, handling and preparation of diets, and other factors could 
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potentially explain the large observed variability in presented data. Interestingly, this study did 

not find any differences between dietary groups for Clostridium difficile, Methicillin-resistant 

Staphylococcus aureus, or Vancomycin-resistant Enterococci. Furthermore, a 2015 study 

documented that dogs fed either a control (extruded diet) or raw meat diet shed 

Campylobacter spp. in their feces, with no significant differences in Campylobacter shedding 

detected between groups (Olkkola et al., 2015). These previous data demonstrate high 

variability in pathogen shedding in dogs fed RMBDs and that incidence of shedding is likely 

lower than frequency of Salmonella spp. exposure through diet. Further, these studies evaluate 

associations between diet types and pathogen shedding in client-owned dogs; however, a 

multitude of factors separate from diet may contribute to pathogen shedding in feces (e.g., 

livestock exposure). Future studies need to evaluate causal relationship between dietary 

pathogen exposure and subsequent shedding in the feces of dogs by controlling for potential 

confounding environmental factors.  

 

To date, no documented cases of human illness associated with feeding of RMBDs to 

companion animals have been documented (Finley et al., 2006; AVMA, 2012). However, 

individual cases of dog to human transmission of Salmonella spp. have been documented in 

scientific literature indicating a potential for transmission (Morse et al., 1976; Sato et al., 2000). 

In both of the aforementioned cases, Salmonella spp. were transmitted between dogs and 

children. Further, a study published by MacDonald et al. (2015) indicated that risk of 

Campylobacter infection was significantly increased in children that had contact with dogs 

and/or dog feces (interaction OR 2.4; 95% CI 1.1-5.3). This increased risk of infection in children 
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is likely due to several factors. Children’s immune systems are relatively naïve compared with 

adults and they also have less stability in gut microflora (Jaspan et al., 2006; Vangay et al., 

2015). Additionally, children generally have poorer personal hygiene habits and understanding 

of potential harm from coming into contact with dog or animal feces (Siegal, 1988). It is 

important to note that all dogs, regardless of diet, pose a risk for transmission of zoonotic 

diseases. As previously mentioned, dogs consuming extruded diets can still shed bacteria in 

their feces that may cause illness in humans. Many parks, schools, and playgrounds have 

adopted rules that prohibit dogs from walking on the grounds due to risk of zoonoses 

transmission of tapeworms, roundworms, giardia, and other parasites that dogs can harbor 

(Traversa et al., 2014). 

 

Risk of parasitic infection is another documented disadvantage of RMBDs. Feeding 

RMBDs to dogs may result in parasitic infections of protozoans, nematodes, cestodes, or 

trematodes. Examples of parasites associated with RMBDs include, but are not limited to: 

Toxoplasma gondii, Trichinella, Sarcocystis, Neospora, Echinococcus, Cryptosporidium, and 

many others (AVMA, 2012; CDC, 2012). Although these parasites have been documented to 

cause clinical illness in dogs (Rice et al., 1990; Moré, 2013; Jenkins et al., 2014; Hamel et al., 

2016), to date no confirmed cases have been linked with the practice of feeding RMBDs. 

Specifically, freezing any raw meat portion of the diet at -4.0°C for approximately a week or       

-20.0°C for a minimum of 1 day is often an effective measure to reduce or eliminate potential 

parasite concerns (Sotelo et al., 1986; Tenter, 2009; FDA, 2011; Moré, 2013; Wilson et al., 

2015).  
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Concerns about nutritional inadequacies of homemade or commercially-available 

RMBDs have been a major critique of RMBDs in scientific literature. A study from 2010 

evaluated owner responses to a dietary questionnaire regarding feeding practices of RMBDs. 

Based on self-reported data from owners, authors estimated nutrient content for each ration. 

Based on these estimates, greater than 60.0% of RMBDs had marked nutrient imbalances such 

as an imbalanced Ca:P ratio (0.6:1). Approximately 10.0% of diets provided less than 25.0% of 

recommended allowance of calcium and about 50.0% of diets were inadequate in vitamin D. 

Additional nutrient imbalances also were found for vitamin A and iodine (Dillitzer et al., 2011). 

Although owners did not report any adverse health effects associated with the nutritional 

imbalances, it is possible that symptoms may have gone unnoticed by owners or that nutrient 

deficiencies were subclinical at the time of investigation. A similar study estimated nutrient 

content of home-prepared diets for dogs and cats with chronic kidney disease (CKD) based on 

recipes published in books or available via internet. Even though the majority of recipes 

published were created by veterinarians, most were determined inappropriate for managing an 

animal with CKD based on established nutrient recommendations for dietary intervention. 

However, additional inquiry to determine efficacy of these diets was not performed. The 

authors emphasized that ambiguity in published recipes likely resulted in prepared diets highly 

variable in nutrient content (Larsen et al., 2012).  

 

Individual published case studies also have shown varying degrees of clinical illness 

associated with improperly formulated RMBDs. For example, two domestic cats developed 
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subclinical pansteatitis due to consuming a diet consisting primarily of pig brain (approximately 

39.5 – 42.5% fat, DMB) (Niza et al., 2003). Another case reported that a domestic cat presented 

to a veterinary hospital for lameness and sudden-onset paralysis. The cat was consuming a 

homemade diet consisting primarily of raw pork liver and diagnosed with hypervitaminosis A, as 

serum levels were three times the upper limit. After correcting the inadequacy by switching to a 

commercial canned diet, the cat made an almost complete, functional recovery (Polizopoulou 

et al., 2005). Nutritional imbalances resulting in clinical disease also have been observed in 

dogs. One case reported diffuse osteopenia and myelopathy in a Shetland sheepdog puppy 

resulting from hypocalcemia and hypophosphatemia caused by an improperly formulated 

RMBD (Taylor et al., 2009). The calcium to phosphorus ratio of the diet fed was 1.0:5.5 

[minimum allowance for growth (MAFG) 1.0 – 2.0:1.0] and absolute concentrations of both 

calcium (0.08%) and phosphorus (0.44%) were below MAFG, 1.0 – 2.5% and 0.8 – 1.6%, 

respectively (Taylor et al., 2009). Similarly, a RMBD containing excessive levels of phosphorus 

fed to German shepherd puppies induced a nutritional secondary hyperparathyroidism that 

resulted in moderate to severe fibrous osteodystrophy (Kawaguchi et al., 1993).  

 

Separate from nutritional imbalances, RMBDs can cause other potential adverse health 

effects related to source of meat and bioactivity of ingredients in the diet. For example, two 

dogs were diagnosed with dietary hyperthyroidism caused by feeding ground beef head meat 

that contained thyroid gland tissue after presenting with polyuria, polydipsia, excessive panting, 

restlessness, and bloodwork indicating elevated serum thyroxine (Zeugswetter et al., 2013). 

Diet samples were analyzed and revealed elevated iodine concentrations (mean +/- standard 
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deviation) of 9.4 +/- 2.4 mg/kg (average range for iodine in muscle 0.02 – 0.15 mg/kg). Removal 

of visible thyroid tissue during trimming reduced iodine levels in ground samples to below 

0.08mg/kg. An additional five dogs consuming head meat from the same supplier also showed 

elevated serum thyroxine (193.0 nmol/L). Following dietary elimination or reduction of head 

meat from this supplier, serum thyroxine levels in all dogs normalized (Zeugswetter et al., 

2013). In two separate but related cases, similar clinical symptoms were observed in dogs 

consuming RMBDs. Although the authors did not analyze the diet for elevated iodine levels, 

clinical symptoms subsided following a dietary change to a commercial diet and serum 

thyroxine levels returned to normal levels (17.0 – 58.0 nmol/L) (Köhler et al., 2012; Cornelissen 

et al., 2014; IDEXX, 2015).  

 

The consequences of nutritional imbalances and inappropriate ingredient selection can 

cause potentially life-threatening clinical issues in companion animals. Nonetheless, these 

examples illustrate the impact and importance that nutrition can have on health and wellbeing 

of an animal. However, it is important to note that these examples are not necessarily 

disadvantages reflective of feeding RMBDs but, instead, indicate an improper diet formulation 

or inappropriate ingredient selection or handling. Consulting with a companion animal 

nutritionist and licensed veterinarian, to formulate an appropriate diet that addresses both 

nutritional needs and health status of the patient, can circumvent many aforementioned issues. 
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Assessing Nutritional Implications on Canine Health: 

 Health effects of diet are poorly described in scientific literature for companion and 

exotic carnivores. For purposes of this review, health is defined as the absence of any disease or 

impairment. Most feeding and digestibility studies are short in duration (less than 3 months) 

and do not provide insight into long-term health effects associated with diet type. Further, 

general health status is often assessed using serum biochemistry, electrolyte, and complete 

blood count (CBC) values. These values are limited in ability to assess canine health as these 

values are often laboratory specific and typically established with a sample population of dogs 

(eClinpath, 2016). Differences in hematology and serum biochemistry values have been 

documented between extruded diets with either animal-based or plant-based protein sources 

(Swanson et al., 2004). Further, elevations in serum metabolites such as blood urea nitrogen 

(BUN), total cholesterol, and serum alanine aminotransferase (ALT), have been documented in 

both companion animals and exotic felids consuming RMBDs (Vester et al., 2010b; Beloshapka 

et al., 2011; Kerr et al., 2012; Kerr et al., 2013). For these aforementioned reasons, variations 

outside of established reference intervals may not necessarily indicate a health impairment but 

rather a dietary change.  

 

 Additional measures of nutritional influences on health status need evaluated in 

companion and exotic animals. Ethical considerations limit and often prevent use of invasive 

techniques of assessment. Gastrointestinal histological samples can be obtained through biopsy 

in diseased patients already undergoing procedures or may be obtained following euthanasia 

(Allenspach, 2015; Cassmann et al., 2016). Alternatives, such as ultrasonographic imaging of 
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intestines, have shown some correlation with histological layering (Le Roux et al., 2016); 

however, immune cell infiltration of gastrointestinal tissues cannot be determined using the 

technique. 

  

 Measures of intestinal integrity and barrier function, as assessed by intestinal 

transepithelial electrical resistance (TER) and macromolecule permeability, using Ussing 

chambers are common in livestock and rodent studies (Ueno et al., 2011; Pearce et al., 2013; 

Pearce et al., 2014; Müller et al., 2016) but are limited in canines (Neirinckx et al., 2011; Hill and 

Bliklager, 2012). Intestinal TER measures ion flux across a membrane. Decreased ion flux, 

resulting in an increased TER, is indicative of increased intestinal integrity and barrier function 

(He et al., 2013). Decreased macromolecule permeability, as determined by relative 

fluorescence, is another indicator of increased intestinal integrity and barrier function (He et al., 

2013). TER and macromolecule permeability values are typically inversely correlated. 

Application of Ussing chamber technology may offer a novel approach to evaluating diet type 

on intestinal integrity and barrier function in canines. Studies using these methodologies should 

be limited to opportunistic tissue sample collection from animals already scheduled for 

euthanasia or careful consideration of experimental design and objectives as euthanized dogs 

or exotic animals for research are typically not positively perceived by public. Alternative 

methods such as measurement of urinary excretion of lactulose mannitol or similar compound 

following oral administration can also be used to assess intestinal permeability in vivo (Wijtten 

et al., 2011; Sequeira et al., 2014); however, ex vivo studies utilizing Ussing chambers allows for 

regional specific evaluation of intestinal integrity (Westerhout et al., 2015). 
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Meat Sourcing for Carnivore Management: 

Livestock species including poultry, beef, lamb, and pork have all been utilized in the pet 

food industry (Taylor, 2014). Dressing percentages, the amount of carcass weight used for 

human-consumption, for most livestock species average between 45.0-73.0% (Rentfrow, 2010). 

The remaining carcass portions are typically sent to rendering for production of animal fats and 

animal-meals for use in animal feeds or for other purposes (e.g., hides, tanning, etc.) (Meeker, 

2009). The rendering process is an important part of the pet food and animal feed industry; 

however, rendering can result in destruction of important nutrients (Singh et al., 2007).  

 

Although not the only factor considered, diet cost for zoo-managed carnivores must be 

considered being that feed costs impact successful operations. With rising costs of meat 

products, zoos must consider meat source for carnivore diets. Due to cost and historical 

accessibility, beef and horse-based RMBDs have dominated the zoo industry. With the loss of 

inspected horse meat processing facilities in the United States in 2007 and rising beef prices, 

feed costs have become an even larger concern. Some commercially manufactured zoological 

formulations have utilized more economical meats in order to meet a demand for lower cost 

products. This raises concerns due to use of 3D/4D meats or plant proteins to formulate some 

products. Although these meats are more economical, they raise concerns because meats 

labeled as 3D (diseased, dying, or downed) or 4D (dead on arrival) are unfit for human 

consumption and are denatured with charcoal to minimize potential risks of feeding (USDA, 

2006). These products may be higher in bacterial contamination although research is needed to 

determine differences between human grade and 3D/4D meats. Zoos may feed a mixture of 
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these lower quality meat sources with higher quality products to offset costs while attempting 

to maintain diet quality.  

 

Animal by-products have been an important ingredient source for the pet food industry 

over the years. However, recent humanization in the pet food industry has led to negative 

marketing of animal by-products, equating by-products to low-quality, unhealthy ingredients 

(Phillips-Donaldson, 2014). Animal by-products can have high nutritional value to both domestic 

and exotic carnivores. Moreover, wolves preferentially select viscera (e.g., lungs, heart, liver, 

brain, etc.) that are classified as “animal by-products” when consuming a fresh kill (Peterson 

and Ciucci, 2003; Stahler et al., 2006). This nutritional value is further retained if these products 

are used in RMBDs instead of going to rendering for production of by-product meals (Singh et 

al., 2007). Additionally, utilization of animal by-products in RMBD formulation increases the 

sustainability of associated livestock industries as a greater proportion of the carcass is used 

and less is sent to rendering facilities.  

 

Safety of horsemeat-based RMBDs has been questioned due to regulation concerns. 

Specifically, since horses are predominately raised for racing, working, and companionship, 

record keeping for drug administration varies and drug withdrawal periods have not been 

established for horse slaughter as with other livestock species (JAVMA news, 2015). Increasing 

concerns over the safety of horsemeat arose following the deaths of two carnivores at a wildlife 

sanctuary in Colorado after consumption of horsemeat contaminated with barbiturates, likely 

from a commonly used euthanasia solution (Corona, 2015). Horsemeat listed as “human grade” 
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still poses safety concerns due to poor regulation in slaughter facilities located outside the 

United States. Because horse slaughter is illegal in the United States, horsemeat for dietary 

management of exotic carnivores must be imported from either Canada or Mexico. Currently; 

due to safety, traceability, and public relations concerns; horsemeat is no longer used in pet 

food in the United States.  

 

Diets formulated with novel protein sources are only recently emerging into the 

zoological market with a pork-based RMBD formulated for managed exotic carnivores 

(Carnivore Essentials, 2014). Increasing the variety of protein sources available to managed 

exotic carnivores is an important form of nutritional enrichment and variety may prevent 

neophobic behaviors in managed animals (AZA Canid TAG, 2012). Additional options may also 

help manage feed costs.  

 

Unfortunately, when novel products are manufactured, lack of research and objective 

evaluation often limit use of new products until information is available. Further, protein source 

selection should take into consideration environmental sustainability as marked differences 

exist between livestock species regarding feed conversion ratios (FCR), the amount of feed 

required for one pound of gain (Wilkinson, 2011). Grain-fed beef have a FCR of approximately 

8.8 while pork and poultry have estimated FCRs of 4.0 and 2.4, respectively (Wilkinson, 2011).  

 

Meat source is an important factor for both pet and zoo industries. Human-grade meats 

may provide increased safety but result in higher feeding costs. Cost of diet is less of a factor in 
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the pet food industry, as premium and super-premium foods dominate the market (Sprinkle, 

2013). Ultimately, a balance needs to be achieved between cost-effectiveness and nutritional 

quality to ensure health and safety of managed carnivores. 

 

Conclusions:  

Diet selection for both domestic and managed exotic carnivores is a decision based on 

multiple factors including processing effects on diet, animal and human health implications of 

diet, natural history and known nutrient requirements of the animal, product availability, 

dietary variety, and cost effectiveness. Collectively, veterinarians and nutritionists alike need to 

objectively evaluate risks and benefits of feeding RMBDs to domestic dogs and exotic canids. 

This includes proper risk assessment, cost analysis, food safety, feces management practices, 

and education. Future research goals should aim to expand on these factors especially in 

reference to animal and human health implications, animal performance, and product 

comparisons.   



35 
 

Literature Cited:  

ACVN. 2016. Are raw pet foods better than canned or kibble foods? American College of 
Veterinary Nutrition. Available from: http://www.acvn.org/frequently-asked-questions/  

Allenspach, K. 2015. Diagnosis of small intestinal disorders in dogs and cats. Clin. Lab. Med. 
35:521-534. doi:10.1016/j.cll.2015.05.003 

Arendt, M., T. Fall, K. Lindblad-toh, and E. Axelsson. 2014. Amylase activity is associated with 

AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Anim. 

Genet. 45:716–722. doi:10.1111/age.12179 

AVMA. 2012. Frequently asked questions about raw pet foods and the AVMA’s policy. American 

Veterinary Medical Association. Available from: 

https://www.avma.org/KB/Resources/FAQs/Pages/Raw-Pet-Foods-and-the-AVMA-Policy-

FAQ.aspx 

Axelsson, E. A. Ratnakumar, M.-L. Arendt, K. Maqbool, M. T. Webster, M. Perloski, O. Liberg, J. 

M. Arnemo, Å. Hedhammar, and K. Lindblad-Toh. 2013. The genomic signature of dog 

domestication reveals adaptation to a starch-rich diet. Nature. 495: 360-365.  

AZA Canid TAG. 2012. Large Canid (Canidae) Care Manual. Association of Zoos and Aquariums, 

Silver Spring, MD, USA. 

Bazolli, R. S., R. S. Vasconcellos, L. D. de-Oliveira, F. C. Sá, G. T. Pereira, and A. C. Carciofi. 2015. 

Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch 

gelatinization, digestibility, and the fecal concentration of fermentation products. J. Anim. 

Sci. 93:2956-2966. doi:10.2527/jas.2014-8409 

Beaton, L. 2013. Human food trends and the petfood industry. Petfood Ind. Available from: 

http://www.petfoodindustry.com/articles/3921-human-food-trends-and-the-petfood-

industry?v=preview 

Beloshapka, A. N. 2011. Effects of inulin or yeast cell wall extract on nutrient digestibility and 

fecal fermentative end-product concentrations of healthy adult dogs fed raw diets. MS 

Thesis. Univ. of Illinois, Urbana, IL. Available from: 

https://www.ideals.illinois.edu/bitstream/handle/2142/24486/Beloshapka_Alison.pdf?sequ

ence=1  

Björck, I., A. Noguchi, N.-G. Asp, J.-C. Cheftel, and A. Dahlqvist. 1983. Protein nutritional value of 

a biscuit processed by extrusion cooking: effects on available lysine. J. Agric. Food Chem. 

31:488-492. doi:10.1021/jf00117a006 

Björck, I., and N.-G. Asp. 1983. The effects of extrusion cooking on nutritional value – a 

literature review. J. Food Eng. 2:291-308. doi:10.1016/0260-8774(83)90016-X 

http://www.acvn.org/frequently-asked-questions/
https://www.avma.org/KB/Resources/FAQs/Pages/Raw-Pet-Foods-and-the-AVMA-Policy-FAQ.aspx
https://www.avma.org/KB/Resources/FAQs/Pages/Raw-Pet-Foods-and-the-AVMA-Policy-FAQ.aspx
http://www.petfoodindustry.com/articles/3921-human-food-trends-and-the-petfood-industry?v=preview
http://www.petfoodindustry.com/articles/3921-human-food-trends-and-the-petfood-industry?v=preview
https://www.ideals.illinois.edu/bitstream/handle/2142/24486/Beloshapka_Alison.pdf?sequence=1
https://www.ideals.illinois.edu/bitstream/handle/2142/24486/Beloshapka_Alison.pdf?sequence=1


36 
 

Boessneck, J. 1985. Domestication and its sequelae. Tierarztl Prax. 13:479-497.  

Bosch, G., E. A. Hagen-Plantinga, and W. H. Hendriks. 2015. Dietary nutrient profiles of wild 

wolves: insights for optimal dog nutrition? Br. J. Nutr. 113:S40-S54. 

doi:10.1017/S0007114514002311 

Camire, M. E., A. Camire, and K. Krumhar. 1990. Chemical and nutritional changes in foods 

during extrusion. Crit. Rev. Food Sci. Nutr. 29:35-57. doi:10.1080/10408399009527513 

Cassmann, E., R. White, T. Atherly, C. Wang, Y. Sun, S. Khoda, C. Mosher, M. Ackermann, A. 

Jergens. 2016. Alterations of the ileal and colonic mucosal microbiota in canine chronic 

enteropathies. PLoS ONE. 11:e0147321. doi:10.1371/journal.pone.0147321 

Carnivore Essentials. 2014. Products. Sustainable Swine Resources, LLC. Available from: 
http://www.carnivoreessentials.com/products  

CDC. 2007. Salmonella questions and answers. Centers for Disease Control and Prevention. 
Available from: http://www.cdc.gov/salmonella/schwarzengrund_faq.html  

CDC. 2012. Trichinellosis – epidemiology and risk factors. Centers for Disease Control and 
Prevention. Available from: http://www.cdc.gov/parasites/trichinellosis/epi.html  

Clauss, M., H. Kleffner, and E. Kienzle. 2010. Carnivorous mammals: nutrient digestibility and 

energy evaluation. Zoo Biol. 29:687-704. doi:10.1002/zoo.20302 

Clutton-Brock, J. 1998. Origins of the dog: domestication and early history. In: J. Serpell, editor. 

The domestic dog: its evolution, behaviour and interactions with people. Cambridge 

University Press, Cambridge, UK. p. 7-20. 

Clutton-Brock, J. 1999. The process of domestication. In: J. Clutton-Brock, editor. A natural 

history of domesticated mammals. Cambridge University Press, Cambridge, UK. p. 29-48. 

Cornelissen, S., K. De Roover, D. Paepe, M. Hesta, E. Van Der Meulen, and S. Daminet. 2014. 
Dietary hyperthyroidism in a Rottweiler. Vlaams Diergeneeskd. Tijdschr. 83:306-311. 

Corona, M. 2015. Contaminated meat blamed for animal sanctuary deaths. Reno Gazette-
Journal. Available from: http://www.rgj.com/story/news/2015/03/12/animal-ark-
toxicology-results-shows-barbiturates-in-meat/70194788/  

Courcier, E. A., R. M. Thomson, D. J. Mellor, and P. S. Yam. 2010. An epidemiological study of 

environmental factors associated with canine obesity. J. Small Anim. Pract. 51:362-367. 

doi:10.1111/j.1748-5827.2010.00933.x 

Cramer, K. R., M. W. Greenwood, J. S. Moritz, R. S. Beyer, and C. M. Parsons. 2007. Protein 

quality of various raw and rendered by-product meals commonly incorporated into 

companion animal diets. J. Anim. Sci. 85:3285-3293. doi:10.2527/jas.2006-225 

http://www.carnivoreessentials.com/products
http://www.cdc.gov/salmonella/schwarzengrund_faq.html
http://www.cdc.gov/parasites/trichinellosis/epi.html
http://www.rgj.com/story/news/2015/03/12/animal-ark-toxicology-results-shows-barbiturates-in-meat/70194788/
http://www.rgj.com/story/news/2015/03/12/animal-ark-toxicology-results-shows-barbiturates-in-meat/70194788/


37 
 

Crane, S. W., C. S. Cowell, N. P. Stout, E. A. Moser, P. Romano, S. E. Crane, and J. Millican. 2010. 

Pet Foods. In: M. S. Hand, C. D. Thatcher, R. L. Remillard, P. Roudebush, and B. J. Novotny, 

editors. Small Animal Clinical Nutrition. 5th ed. Mark Morris Institute, Topeka, KS, USA. p. 

157–190. 

Crissey, S. D., J. A. Swanson, B. A. Lintzenich, B. A. Brewer, and K. A. Slifka. 1997. Use of a raw 

meat-based diet or a dry kibble diet for sand cats (Felis margarita). J. Anim. Sci. 75:2154-

2160. 

Cummings, K. J., L. D. Warnick, M. Elton, Y. T. Gröhn, P. L. McDonough, and J. D. Siler. 2010. The 
effect of clinical outbreaks of salmonellosis on the prevalence of fecal Salmonella shedding 
among dairy cattle in New York. Foodborne Pathog. Dis. 7:815-823. 
doi:10.1089/fpd.2009.0481 

de Bruijne, J. J., and W. E. van den Brom. 1986. The effect of long-term fasting on ketone body 

metabolism in the dog. Comp. Biochem. Physiol. B. 83:391-395. 

de Godoy, M. R. C., and K. S. Swanson. 2013. Nutrigenomics: using gene expression and 

molecular biology data to understand pet obesity. J. Anim. Sci. 91:2949-2964. 

doi:10.2527/jas2012-5860 

Dillitzer, N., N. Becker, and E. Kienzle. 2011. Intake of minerals, trace elements and vitamins in 
bone and raw food rations in adult dogs. Br. J. Nutr. 106(Suppl. 1):S53-56. 
doi:10.1017/S0007114511002765 

Driscoll, C. A., D. W. Macdonald, and S. J. O’Brien. 2009a. From wild animals to domestic pets, 

an evolutionary view of domestication. Proc. Natl. Acad. Sci. U.S.A. 106(Suppl. 1): 9971-

9978. doi:10.1073/pnas.0901586106 

Driscoll, C.A., J. Clutton-Brock, A. C. Kitchener, and S. J. O’Brien. 2009b. The taming of the cat. 

Sci. Am. 300:68-75. doi:10.1038/scientificamerican0609-68 

eClinpath. 2016. Reference intervals. Cornell University College of Veterinary Medicine. 
Available from: http://www.eclinpath.com/test-basics/reference-intervals/  

Fan, Z., P. Silva, I. Gronau, S. Wang, A. S. Armero, M. Schweizer, O. Ramirez, J. Polinger, M. 

Galaverni, and D. Ortega Del-Vecchyo, L. Du, W. Zhang, Z. Zhang, J. Xing, C. Vilá, T. Marques-

Bonet, R. Godinho, B. Yue, and R. K. Wayne. 2015. Worldwide patterns of genomic variation 

and admixture in gray wolves. Genome Res. 26:1-11. doi:10.1101/gr.197517.115FDA. 2011.  

FDA. 2011. Fish and Fishery Products Hazards and Controls Guidance. U.S. Food and Drug 

Administration. p. 91-98. Available from: 

http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM251970.pdf  

FDA. 2013. Compliance policy guide Sec. 690.800 Salmonella in food for animals. U.S. Food and 
Drug Administration. Available from: 

http://www.eclinpath.com/test-basics/reference-intervals/
http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM251970.pdf


38 
 

http://www.fda.gov/downloads/ICECI/ComplianceManuals/CompliancePolicyGuidanceMan
ual/UCM361105.pdf  

FDA. 2015. Get the facts! Raw pet food diets can be dangerous to you and your pet. U.S. Food 
and Drug Administration. Available from: 
http://www.fda.gov/AnimalVeterinary/ResourcesforYou/AnimalHealthLiteracy/ucm373757.
htm  

FDA Consumer Health Information. 2014. FDA’s advice: know the risks of feeding raw foods to 

your pets. U. S. Food and Drug Administration. Available from: 

http://www.fda.gov/downloads/ForConsumers/ConsumerUpdates/UCM403398.pdf  

Finley, R., R. Reid-Smith, and J. S. Weese. 2006. Human health implications of Salmonella-

contaminated natural pet treats and raw pet food. Clin. Infect. Dis. 42:686-691. 

doi:10.1086/500211 

Freedman, A. H., I. Gronau, R. M. Schweizer, D. O. Vecchyo, E. Han, P. M. Silva, M. Galaverni, Z. 

Fan, P. Marx, B. Lorente-galdos, H. Beale, J. Kusak, A. R. Boyko, H. G. Parker, C. Lee, V. 

Tadigotla, A. Siepel, C. D. Bustamante, T. T. Harkins, S. F. Nelson, E. A. Ostrander, T. 

Marques-Bonet, R. K. Wayne, and J. Novembre. 2014. Genome sequencing highlights the 

dynamic early history of dogs. PLoS One 10:e1004016. doi:10.1371/journal.pgen.1004016 

Freeman, L. M, M. L. Chandler, and B. A. Hamper. 2013. Timely topics in nutrition of raw meat-

based diets for dogs and cats. J. Am. Vet. Med. Assoc. 243:1549-1558. 

doi:10.2460/javma.243.11.1549 

Galliard, T., and P. Bowler. 1987. Morphology and composition of starch. In: Starch: properties 

and potential. T. Galliard, editor. Society of Chemical Industry, London, UK. p. 55-78. 

Grandin, T., and M. Dessing. 1998. Behavioral genetics and animal science. In: T. Grandin and 

M. Deesing, editors. Genetics and the behavior of domestic animals. 2nd ed. Academic Press, 

San Diego, CA, USA. p. 1-40. 

Gruenberg, W. 2015. Overview of salmonellosis. Merck Veterinary Manual. Available from: 

http://www.merckvetmanual.com/mvm/digestive_system/salmonellosis/overview_of_salm

onellosis.html  

Hamel, D., E. Shukullari, D. Rapti, C. Silaghi, K. Pfister, and S. Rehbein. 2016. Parasites and 

vector-borne pathogens in client-owned dogs in Albania. Blood pathogens and 

seroprevalences of parasitic and other infectious agents. Parisitology Res. 115:489–499. 

doi:10.1007/s00436-015-4765-8 

Hamper, B. A., C. A. Kirk, and J. W. Bartges. 2015. Apparent nutrient digestibility of two raw 

diets in domestic kittens. J. Feline Med. Surg. 1-6. doi:10.1177/1098612X15605535 

http://www.fda.gov/downloads/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/UCM361105.pdf
http://www.fda.gov/downloads/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/UCM361105.pdf
http://www.fda.gov/AnimalVeterinary/ResourcesforYou/AnimalHealthLiteracy/ucm373757.htm
http://www.fda.gov/AnimalVeterinary/ResourcesforYou/AnimalHealthLiteracy/ucm373757.htm
http://www.fda.gov/downloads/ForConsumers/ConsumerUpdates/UCM403398.pdf
http://www.merckvetmanual.com/mvm/digestive_system/salmonellosis/overview_of_salmonellosis.html
http://www.merckvetmanual.com/mvm/digestive_system/salmonellosis/overview_of_salmonellosis.html


39 
 

He, L., Y. Yin, T. Li, R. Huang, M. Xie, Z. Wu, and G. Wu. 2013. Use of the Ussing chamber 
technique to study nutrient transport by epithelial tissues. Front. Biosci. (Landmark Ed.). 
18:1266-1274. doi:10.2741/4178 

Hendriks, W. H., E. J. Bakker, and G. Bosch. 2015. Protein and amino acid bioavailability 
estimates for canine foods. J. Anim. Sci. 93:4788-4795. doi:10.2527/jas.2015-9231. 

Hendriks, W. H., M. M. A. Emmens, B. Trass, and J. R. Pluske. 1999. Heat processing changes the 

protein quality of canned cat foods as measured with a rat bioassay. J. Anim. Sci. 77:669-

676. doi:10.2527/1999.773669x 

Hill, T. L., and A. T. Blikslager. 2012. Effect of zinc L-carnosine compound on acid-induced injury 
in canine gastric mucosa ex vivo. Am. J. Vet. Res. 73:659-663. doi:10.2460/ajvr.73.5.659. 

IDEXX. 2015. Total T4 testing guide: canine hypothyroidism. IDEXX Laboratories. Available from: 
https://www.idexx.com/resource-library/smallanimal/catalyst-one-total-t4-testing-guide-
en.pdf  

Iske, C. J., C. L. Morris, and K. L. Kappen. 2016. Influence of pork and pork by-products on 
macronutrient and energy digestibility and palatability in large captive felids. J. Anim. Sci. 
94:3738-3745. doi:10.2527/jas.2016-0414 

Ilo, B. S., R. Schoenlechner, and E. Berghofe. 2000. Role of lipids in the extrusion cooking 

processes. Grasas y Aceites 51:97-110. doi:10.3989/gya.2000.v51.i1-2.410 

JAVMA news. 2015. Mexican horse meat banned by EU. American Veterinary Medical 
Association. Available from: 
https://www.avma.org/News/JAVMANews/Pages/150215r.aspx  

Jaspan, H. B., S. D. Lawn, J. T. Safrit, and L.-G. Bekker. 2006. The maturing immune system: 

implications for development and testing HIV-1 vaccines for children and adolescents. AIDS. 

20:483-494. doi:10.1097/01.aids.0000210602.40267.60 

Jędrzejewski, W., K. Schmidt, J. Theuerkauf, B. Jędrzejewski, N. Selva, K. Zub, and L. Szymura. 

2002. Kill rates and predation by wolves on ungulate populations in Bialowieza Primeval 

forest (Poland). Ecology 83:1341–1356. doi:10.2307/3071948 

Jenkins, D. J., J. J. Lievaart, B. Boufana, W. S. Lett, H. Bradshaw, and M. T. Armua-Fernandez. 

2014. Echinococcus granulosus and other intestinal helminths: current status of prevalence 

and management in rural dogs of eastern Australia. Aust. Vet. J. 92:292–298. 

doi:10.1111/avj.12218 

Jenkins, M., J. Brooks, D. Bowman, and J. Liotta. 2016. Pathogens and potential risks related to 

livestock or poultry manure. Cooperative Extension. Available from: 

http://articles.extension.org/pages/8967/pathogens-and-potential-risks-related-to-

livestock-or-poultry-manure  

https://www.idexx.com/resource-library/smallanimal/catalyst-one-total-t4-testing-guide-en.pdf
https://www.idexx.com/resource-library/smallanimal/catalyst-one-total-t4-testing-guide-en.pdf
https://www.avma.org/News/JAVMANews/Pages/150215r.aspx
http://articles.extension.org/pages/8967/pathogens-and-potential-risks-related-to-livestock-or-poultry-manure
http://articles.extension.org/pages/8967/pathogens-and-potential-risks-related-to-livestock-or-poultry-manure


40 
 

Joffe, D. J., and D. P. Schlesinger. 2002. Preliminary assessment of the risk of Salmonella 

infection in dogs fed raw chicken diets. Can. Vet. J. 43:441-442. 

Johnson, M. L., C. M. Parsons, G. C. Fahey, N. R. Merchen, and C. G. Aldrich. 1998. Effects of 

species raw material source, ash content, and processing temperature on amino acid 

digestibility of animal by-product meals by cecectomized roosters and ileally cannulated 

dogs. J. Anim. Sci. 76:1112–1122. 

Kawaguchi, K., I. Braga, A. Takahashi, K. Ochiaia, and C. Itakura. 1993. Nutritional secondary 

hyperparathyroidism occurring in a strain of German shepherd puppies. Jpn. J. Vet. Res. 

41:89-96.  

Kerr, K. R., A. N. Beloshapka, C. L. Morris, C. M. Parsons, S. L. Burke, P. L. Utterback, and K. S. 

Swanson. 2013. Evaluation of four raw meat diets using domestic cats, captive exotic felids, 

and cecectomized roosters. J. Anim. Sci. 91:225-237. doi:10.2527/jas2011-4835 

Kerr, K. R., B. M. Vester Boler, C. L. Morris, K. J. Liu, and K. S. Swanson. 2012. Apparent total 

tract energy and macronutrient digestibility and fecal fermentative end-product 

concentrations of domestic cats fed extruded, raw beef-based, and cooked beef-based 

diets. J. Anim. Sci. 90:515-522. doi:10.2527/jas.2010-3266 

Kendall, P. T., D. W. Holme, and P. M. Smith. 1982. Comparative evaluation of net digestive and 

absorptive efficiency in dogs and cats fed a variety of contrasting diet types. J. Small Anim. 

Pract. 23:557-587. doi:10.1111/j.1748-5827.1982.tb02518.x 

Köhler, B., C. Stengel, and R. Neiger-Casas. 2012. Dietary hyperthyroidism in dogs. J. Small 

Anim. Pract. 53:182–184. doi:10.111/j.1748-5827.2011.01189.x 

Koza, R. A., L. Nikonova, J. Hogan, J. Rim, T. Mendoza, C. Faulk, J. Skaf, and L. P. Kozak. 2006. 

Changes in Gene Expression Foreshadow Diet-Induced Obesity in Genetically Identical Mice. 

PloS Genet. 2:e81. doi:10.1371/journal.pgen.0020081 

Kreeger, T. J. 2003. The internal wolf: physiology, pathology, and pharmacology. In: L. D. Mech 

and L. Boitani, editors. Wolves: Behavior, Ecology, and Conservation. University of Chicago 

Press, Chicago, IL, USA. p. 192-217. 

Kreeger, T. J., G. D. DelGiudice, and L. D. Mech. 1997. Effects of fasting and refeeding on body 

composition of captive gray wolves (Canis lupus). Can. J. Zool. 75:1549-1552. 

doi:10.1139/z97-781 

Lankhorst, C., Q. D. Tran, R. Havenaar, W. H. Hendriks, and A. F. B. van der Poel. 2007. The 

effect of extrusion on the nutritional value of canine diets as assessed by in vitro indicators. 

Anim. Feed Sci. Technol. 138:285–297. doi:10.1016/j.anifeedsci.2006.11.015 



41 
 

Larsen, J. A., E. M. Parks, C. R. Heinze, and A. J. Fascetti. 2012. Evaluation of recipes for home-

prepared diets for dogs and cats with chronic kidney disease. J. Am. Vet. Med. Assoc. 

240:532–538. doi:10.2460/javma.240.5.532 

Le Roux, A. B., L. A. Granger, N. Wakamatsu, M. T. Kearney, and L. Gaschen. 2016. Ex vivo 

correlation of ultrasonographic small intestinal wall layering with histology in dogs. Vet. 

Radiol. Ultrasound. 57:534-545. doi:10.1111/vru.12392 

Lefebvre, S. L., R. Reid-Smith, P. Boerlin, and J. S. Weese. 2008. Evaluation of the risks of 

shedding Salmonellae and other potential pathogens by therapy dogs fed raw diets in 

Ontario and Alberta. Zoonoses Public Heal. 55:470-480. doi: 10.1111/j.1863-

2378.2008.01145.x 

LeJeune, J. T., and D. D. Hancock. 2001. Public health concerns associated with feeding raw 

meat diets to dogs. J. Am. Vet. Med. Assoc. 219:1222-1225. 

doi:10.2460/javma.2001.219.1222 

Lenz, J., D. Joffe, M. Kauffman, Y. Zhang, and J. LeJeune. 2009. Perceptions, practices, and 

consequences associated with foodborne pathogens and the feeding of raw meat to dogs. 

Can. Vet. J. 50:637-643. 

Lin, S., F. Hsieh, and H. E. Huff. 1998. Effects of lipids and processing conditions on lipid 

oxidation of extruded dry pet food during storage. Anim. Feed Sci. Technol. 71:283-297. 

doi:10.1016/S0377-8401(97)00157-0 

Lindsay, S. R. 2000. Handbook of applied dog behavior and training. Iowa State University Press, 

Ames, IA. 1st ed. 

Lombardi-Boccia, G., S. Lanzi, and A. Aguzzi. 2005. Aspects of meat quality: trace elements and 
B vitamins in raw and cooked meats. J. Food Compos. Anal. 18:39-46. 
doi:10.1016/j.jfca.2003.10.007 

MacDonald, E., R. White, R. Mexia, T. Bruun, G. Kapperud, H. Lange, K. Nygård, and L. Vold. 

2015. Risk factors for sporadic domestically acquired Campylobacter infections in Norway 

2010-2011: a national prospective case-control study. PLoS ONE. 10:e0139636. 

doi:10.1371/journal.pone.0139636 

McNamara, J. P. 2006. Introduction: nutritional terms and definitions. In: J. P. McNamara, 

editor. Principles of Companion Animal Nutrition. 1st ed. Pearson/Prentice Hall, Upper 

Saddle River, NJ, USA. p. 1-17. 

Mech, L. D. 1981. The wolf: the ecology and behavior of an endangered species. University of 

Minnesota Press, Minneapolis, MN, USA. 

Meeker, D. L. 2009. North American rendering: processing high quality protein and fats for 
feed. R. Bras. Zootec. 38:432-440. doi:10.1590/S1516-35982009001300043 



42 
 

Meyer, H., and G. Stadtfeld. 1980. Investigations on the body and organ structure of dogs. In: R. 

S. Anderson, editor. Nutrition of the dog and cat. Pergamon Press, Oxford, UK. p. 15-30. 

Michel, K. E. 2006. Unconventional diets for dogs and cats. Vet. Clin. North Am. Small Anim. 

Pract. 36:1269-1281. doi:10.1016/j.cvsm.2006.08.003 

Moré, G. A. 2013. Overview of sarcocystosis. Merck Veterinary Manual. Available from: 

http://www.merckvetmanual.com/mvm/musculoskeletal_system/sarcocystosis/overview_

of_sarcocystosis.html  

Morley, P. S., R. A. Strohmeyer, J. D. Tankson, D. R. Hyatt, D. A. Dargatz, and P. J. Fedorka-cray. 

2006. Evaluation of the association between feeding raw meat and Salmonella enterica 

infections at a Greyhound breeding facility. J. Am. Vet. Med. Assoc. 228:1524-1532. 

doi:10.2460/javma.228.10.1524 

Morris, J. G. 2002. Idiosyncratic nutrient requirements of cats appear to be diet-induced 

evolutionary adaptations. Nutr. Res. Rev. 15:153-168. doi:10.1079/NRR200238 

Morse, E. V., M. A. Duncan, D. A. Estep, W. A. Riggs, and B. O. Blackburn. 1976. Canine 

salmonellosis: a review and report of dog to child transmission of Salmonella enteritidis. 

Am. J. Public Health. 66:82-84.  

Moscicki, L., M. Mitrus, A. Wojtowicz, T. Oniszczuk, and A. Rejak. 2013. Extrusion-cooking of 

starch. In: S. Grundas and A. Stephniewski, editors. Advances in agrophysical research. 

InTech, Rijeka, HR. p. 319-346. 

Müller, V. M., T. Zietek, F. Rohm, J. Fiamoncini, I. Lagkouvardos, D. Haller, T. Clavel, and H. 

Daniel. 2016. Gut barrier impairment by high-fat diet in mice depends on housing 

conditions. Mol. Nutr. Food Res. 60:897-908. doi:10.1002/mnfr.201500775 

Müller, W. 2002. The domestication of the wolf – inevitable first? In: J.-D. Vigne, J. Peters, and 

D. Helmer, editors. The first steps of animal domestication. Oxbow Books, Oxford, UK. p. 34-

40. 

Neirinckx, E., C. Vervaet, J. Michiels, S. De Smet, W. Van den Broeck, J. P. Remon, P. De Backer, 

and S. Croubels. 2011. Feasibility of the Ussing chamber technique for the determination of 

in vitro jejunal permeability of passively absorbed compounds in different animal species. J. 

Vet. Pharmacol. Ther. 34:290-297. doi:10.1111/j.1365-2885.2010.01218.x 

Niza, M. M. R. E., C. L. Vilela, and L. M. A. Ferreria. 2003. Feline pansteatitis revisited: hazards of 

unbalanced home-made diets. J. Feline Med. Surg. 5:271-277. doi:10.1016/S1098-

612X(03)00051-2  

NRC. 2006. Nutrient requirements of dogs and cats. Natl. Acad. Press, Washington, DC, USA. 

http://www.merckvetmanual.com/mvm/musculoskeletal_system/sarcocystosis/overview_of_sarcocystosis.html
http://www.merckvetmanual.com/mvm/musculoskeletal_system/sarcocystosis/overview_of_sarcocystosis.html


43 
 

Olkkola, S., S. Kovanen, J. Roine, M. Hänninen, A. Hielm-Björkman, and R. Kivistö. 2015. 

Population genetics and antimicrobial susceptibility of canine campylobacter isolates 

collected before and after a raw feeding experiment. PLoS One 10:e0132660. 

doi:10.1371/journal.pone.0132660 

Pearce, S. C., M. V. Sanz-Fernandez, J. H. Hollis, L. H. Baumgard, and N. K. Gabler. 2014. Short-

term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. 

Anim. Sci. 92:5444-5454. doi:10.2527/jas2014-8407 

Pearce, S. C., V. Mani, R. L. Boddicker, J. S. Johnson, T. E. Weber, J. W. Ross, R. P. Rhoads, L. H. 
Baumgard, and N. K. Gabler. 2013. Heat Stress Reduces Intestinal Barrier Integrity and 
Favors Intestinal Glucose Transport in Growing Pigs. PLoS One 8:1–9. 
doi:10.1371/journal.pone.0070215 

Peterson, R. O. 1977. Wolf ecology and prey relationships on Isle Royale. National Park Service. 

U.S. Government Printing Office, Washington, DC, USA. 

Peterson, R. O., and P. Ciucci. 2003. The wolf as a carnivore. In: L. D. Mech and L. Boitani, 

editors. Wolves: Behavior, Ecology, and Conservation. University of Chicago Press, Chicago, 

IL, USA. p. 104-130. 

Phillips-Donaldson, D. 2014. To improve petfood sustainability, stop negative marketing about 
by-products. Petfood Industry. Available from: http://www.petfoodindustry.com/blogs/7-
adventures-in-pet-food/post/4998-expert-to-improve-petfood-sustainability-stop-negative-
marketing-about-by-products  

Phipps, A. M., and M. S. Edwards. 2009. Diets offered to maned wolves (Chrysocyon 

brachyurus) in North American zoos: a review and analysis. In: A. Ward, K. Treiber, D. 

Schmidt, A. Coslik, and M. Maslanka, editors. Proceedings of the Eighth Conference on Zoo 

and Wildlife Nutrition. AZA Nutrition Advisory Group, Tulsa, OK, USA. Available from: 

http://nagonline.net/wp-content/uploads/2014/03/14_PhippsWolves.pdf 

Polizopoulou, Z., G. Kazakos, M. Patsikas, and N. Roubies. 2005. Hypervitaminosis A in the cat: a 

case report and review of the literature. J. Feline Med Surg. 7:363-368. 

doi:10.1016/j.jfms.2005.05.004 

Pribyl, L., and S. Crissey. 1999. Diets for African wild dogs (Lycaon pictus) – management 

guidelines. In: African wild dog SSP – husbandry manual. American Association of Zoos and 

Aquariums. Available from: http://www.2ndchance.info/bones-Pribyl1999.pdf  

Promeyrat, A., P. Gatellier, B. Lebret, K. Kajak-Siemaszko, L. Aubry, and V. Santé-Lhoutellier. 

2010. Evaluation of protein aggregation in cooked meat. Food Chem. 121:412-417. 

doi:10.1016/j.foodchem.2009.12.057 

Rao, S. K., and W. E. Art. 1989. Effect of extrusion on lipid oxidation. J. Food Sci. 54:1580-1583. 

doi:10.1111/j.1365-2621-1989.tb05164.x 

http://www.petfoodindustry.com/blogs/7-adventures-in-pet-food/post/4998-expert-to-improve-petfood-sustainability-stop-negative-marketing-about-by-products
http://www.petfoodindustry.com/blogs/7-adventures-in-pet-food/post/4998-expert-to-improve-petfood-sustainability-stop-negative-marketing-about-by-products
http://www.petfoodindustry.com/blogs/7-adventures-in-pet-food/post/4998-expert-to-improve-petfood-sustainability-stop-negative-marketing-about-by-products
http://nagonline.net/wp-content/uploads/2014/03/14_PhippsWolves.pdf
http://www.2ndchance.info/bones-Pribyl1999.pdf


44 
 

Rentfrow, G. 2010. How much meat to expect from a carcass. Cooperative extension service. 
University of Kentucky College of Agriculture, Lexington, KY, USA. Available from: 
http://www2.ca.uky.edu/agcomm/pubs/asc/asc179/asc179.pdf  

Riaz, M. N., M. Asif, and R. Ali. 2009. Stability of vitamins during extrusion. Crit. Rev. Food Sci. 

Nutr. 49:361-336. doi:10.1080/10408390802067290 

Rice, L. M. K. Frongillo, and J. F. Randolph. 1990. Trichinosis in a dog. J. Am. Vet. Med. Assoc. 

197:480-482. 

Ruiz, N., L. F. Pacheco, B. Farrell, C. B. Cox, B. S. Ermolinsky, E. R. Garrido-sanabria, and S. Nair. 

2011. Metabolic gene expression changes in the hippocampus of obese epileptic male rats 

in the pilocarpine model of temporal lobe epilepsy. Brain Res. 1426:86–95. 

doi:10.1016/j.brainres.2011.10.006 

Sá, F. C., F. L. Silva, M. D. O. S. Gomes, M. A. Brunetto, R. S. Bazolli, T. Giraldi, and A. C. Carciofi. 

2014. Comparison of the digestive efficiency of extruded diets fed to ferrets (Mustela 

putorius furo), dogs (Canis familiaris) and cats (Felis catus). J. Nutr. Sci. 3:e32. 

doi:10.1017/jns.2014.30 

Sanchez, S., C. L. Hofacre, M. D. Lee, J. J. Maurer, and M. P. Doyle. 2002. Animal sources of 

salmonellosis in humans. J. Am. Vet. Med. Assoc. 221:492-497. 

doi:10.2460/javma.2002.221.492 

Sato, Y., T. Mori, T. Koyama, and H. Nagase. 2000. Salmonella Virchow infection in an infant 

transmitted by household dogs. J. Vet. Med. Sci. 62:767-769. doi:10.1292/jvms.62.767 

Sequeira, I. R., R. G. Lentle, M. C. Kruger, and R. D. Hurst. 2014. Standardising the lactulose 
mannitol test of gut permeability to minimize error and promote comparability. PLoS ONE. 
9:e99256. doi:10.1371/journal.pone.0099256 

Siegal, M. 1988. Children’s knowledge of contagion and contamination as causes of illness. Child 

Dev. 59:1353-1359. doi:10.2307/1130497 

Singh, S., S. Gamlath, and L. Wakeling. 2007. Nutritional aspects of food extrusion: a review. Int. 

J. Food Sci. Technol. 42:916-929. doi:10.1111/j.1365-2621.2006.01309.x 

Soronen, J., P. Laurila, J. Naukkarinen, I. Surakka, S. Ripatti, M. Jauhiainen, V. M. Olkkonen, and 

H. Yki-Järvinen. 2012. Adipose tissue gene expression analysis reveals changes in 

inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-

resistant subjects. BMC Med. Genomics 5:9. doi:10.1186/1755-8794-5-9 

Sotelo, J., N. Rosas, and G. Palencia. 1986. Freezing of infested pork muscle kills cysticerci. J. 

Am. Med. Assoc. 256:893-894. doi:10.1001/jama.1986.03380070099027 

Spears, J. K., and G. C. Fahey Jr. 2004. Resistant starch as related to companion animal nutrition. 

J. AOAC Int. 87:787-791. 

http://www2.ca.uky.edu/agcomm/pubs/asc/asc179/asc179.pdf


45 
 

Sprinkle, D. 2013. Pet market premiumization: an industry update. Petfood Industry. Available 

from: http://www.petfoodindustry.com/articles/4024-pet-market-premiumization-an-

industry-update  

Stahler, D. R., D. W. Smith, and D. S. Guernsey. 2006. Foraging and feeding ecology of the gray 

wolf (Canis lupus): lessons from Yellowstone National Park, Wyoming, USA. J. Nutr. 

136(Suppl. 7):1923S-1926S. 

Striver, S. L., K. S. Frazier, M. J. Mauel, and E. L. Styer. 2003. Septicemic salmonellosis in two 

cats fed a raw-meat diet. J. Am. Anim. Hosp. Assoc. 39:538-542. doi:10.5326/0390538 

Swanson, K. S., K. N. Kuzmuk, L. B. Schook, and G. C. Fahey Jr. 2004. Diet affects nutrient 
digestibility, hematology, and serum chemistry of senior and weanling dogs. J. Anim. Sci. 
82:1713-1724. 

Taylor, J. 2014. The power of protein in petfood for dogs. Petfood Industry. Available from: 
http://www.petfoodindustry.com/articles/4490-the-power-of-protein-in-petfood-for-
dogs?v=preview  

Taylor, M. B., D. A. Geiger, K. E. Saker, and M. M. Larson. 2009. Diffuse osteopenia and 

myelopathy in a puppy fed a diet composed of an organic premix and raw ground beef. J. 

Am. Vet. Med. Assoc. 234:1041-10-48. doi:10.2460/javma.234.8.1041 

Tenter, A. M. 2009. Toxoplasma gondii in animals used for human consumption. Mem. Inst. 

Oswaldo Cruz. 104:364-369. doi:10.1590/S0074-02762009000200033 

Traversa, D., A. Frangipane di Regalbono, A. Di Cesare, F. La Torre, J. Drake, and M. Pietrobelli. 

2014. Environmental contamination by canine geohelminths. Parasit. Vectors 7:1–9. 

doi:10.1186/1756-3305-7-67 

Ueno, P. M., R. B. Oriá, E. A. Maier, M. Geudes, O. G. de Azevedo, D. Wu, T. Wilson, S. P. Hogan, 

A. A. Lima, R. L. Guerrant, D. B. Polk, L. A. Denson, and S. R. Moore. 2011. Alanyl-glutamine 

promotes intestinal epithelial cell homeostasis in vitro and in a murine model of weanling 

undernutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G612-G622. 

doi:10.1152/ajpgi.00531.2010 

USDA. 2006. Audit report. U. S. Department of Agriculture. Available from: 

https://www.usda.gov/oig/webdocs/50601-10-KC.pdf  

van Rooijen, C., G. Bosch, A. F. B. van der Poel, P. A. Wierenga, L. Alexander, and W. H. 

Hendriks. 2013. The Maillard reaction and pet food processing: effects on nutritive value 

and pet health. Nutr. Res. Rev. 26:130-148. doi:10.1017/S0954422413000103 

Vangay, P., T. Ward, J. S. Gerber, and D. Knights. 2015. Antibiotics, pediatric dysbiosis, and 

disease. Cell Host Microbe. 17:553-564. doi:10.1016/j.chom.2015.04.006 

http://www.petfoodindustry.com/articles/4024-pet-market-premiumization-an-industry-update
http://www.petfoodindustry.com/articles/4024-pet-market-premiumization-an-industry-update
http://www.petfoodindustry.com/articles/4490-the-power-of-protein-in-petfood-for-dogs?v=preview
http://www.petfoodindustry.com/articles/4490-the-power-of-protein-in-petfood-for-dogs?v=preview
https://www.usda.gov/oig/webdocs/50601-10-KC.pdf


46 
 

Vester, B. M., A. N. Beloshapka, I. S. Middelbos, S. L. Burke, C. L. Dikeman, L. G. Simmons, and K. 

S. Swanson. 2010a. Evaluation of nutrient digestibility and fecal characteristics of exotic 

felids fed horse- or beef-based diets: use of the domestic cat as a model for exotic felids. 

Zoo Biol. 29:432-448. doi:10.1002/zoo.20275 

Vester, B. M., S. L. Burke, C. L. Dikeman, L. G. Simmons, and K. S. Swanson. 2008. Nutrient 

digestibility and fecal characteristics are different among captive exotic felids fed a beef-

based raw diet. Zoo Biol. 27:126-136. doi:10.1002/zoo.20172 

Vester, B. M., S. L. Burke, K. J. Liu, C. L. Dikeman, L. G. Simmons, and K. S. Swanson. 2010b. 

Influence of feeding raw or extruded feline diets on nutrient digestibility and nitrogen 

metabolism of African wildcats (Felis lybica). Zoo Biol. 29:676-686. doi:10.1002/zoo.20305 

Waller, B. M., K. Pierce, C. C. Caeiro, L. Scheider, A. M. Burrows, S. McCune, and J. Kaminski. 

2013. Paedomorphic facial expressions give dogs a selective advantage. PLoS One. 

8:e82686. doi:10.1371/journal.pone.0082686 

Wen, S., G. Zhou, L. Li, X. Xu, X. Yu, Y. Bai, and C. Li. 2015. Effect of cooking on in vitro digestion 

of pork proteins. J. Agric. Food Chem. 63:250-261. doi:10.1021/jf505232g 

Westerhout, J., H. Wortelboer, and K. Verhoeckx. 2015. Ussing chamber. In: K. Verhoeckx, P. 
Cotter, I. Lόpez-Expόsito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. 
Wichers, editors. The impact of food bioactives on health. Springer International Publishing. 
p. 263-273. Available: http://download.springer.com/static/pdf/126/bok%253A978-3-319-
16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-
319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-
3-319-16104-
4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007
%252F978-3-319-16104-
4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48 

Wijtten, P. J., J. J. Verstijnen, T. A. van Kempen, H. B. Perdok, G. Gort, and M. W. Verstegen. 
2011. Lactulose as a marker of intestinal barrier function in pigs after weaning. J. Anim. Sci. 
89:1347-1357. doi:10.2527/jas.2010-3571 

Wilkinson, J. M. 2011. Re-defining efficiency of feed use by livestock. Animal. 5:1014-1022. 

doi:10.1017/S17517311110005X 

Williams, P. A., S. M. Hodgkinson, S. M. Rutherford, and W. H. Hendriks. 2006. Lysine content in 

canine diets can be severely heat damaged. J. Nutr. 136:1998S-2000S.  

Wilson, D. E., and D. M. Reeder. 2005. Canis lupus familiaris. In: D. E. Wilson and D. M. Reeder, 

editors. Mammal species of the world: a taxonomic and geographic reference. 3rd ed. Johns 

Hopkins, Baltimore, MD, USA. p. 2142. 

http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48
http://download.springer.com/static/pdf/126/bok%253A978-3-319-16104-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-16104-4&token2=exp=1478226534~acl=%2Fstatic%2Fpdf%2F126%2Fbok%25253A978-3-319-16104-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fbook%252F10.1007%252F978-3-319-16104-4*~hmac=6a4ca138ae539318a1a4e0c79587f06c96ce0404f3238f5256230779f8eacf48


47 
 

Wilson, N. O., R. L. Hall, S. P. Montgomery, and J. L. Jones. 2015. Trichinellosis surveillance – 

United States, 2008-2012. Surveillance Summaries. 64(SS01):1-8. Available from: 

https://www.cdc.gov/mmwr/preview/mmwrhtml/ss6401a1.htm  

Zeugswetter, F. K., K. Vogelsinger, and S. Handl. 2013. Hyperthyroidism in dogs caused by 

consumption of thyroid-containing heat meat. Schweiz. Arch. Tierheikd. 155:149-152. 

doi:10.1024/0036-7281/a000432 

Zimen, E. 1976. On the regulation of pack size in wolves. Z. Tierpsychol. 40:300-341. 

doi:10.1111/j.1439-0310.1976.tb00939.x  

https://www.cdc.gov/mmwr/preview/mmwrhtml/ss6401a1.htm


48 
 

CHAPTER 3 

EVALUATION OF DIET COMPOSITION, APPARENT TOTAL TRACT MACRONUTRIENT AND 
ENERGY DIGESTIBILITY, FEED INTAKE, FECAL OUTPUT, AND MICROBIAL PRESENCE IN 

DOMESTIC DOGS FED COMMERCIAL RAW MEAT-BASED DIETS.  
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1 Department of Animal Sciences, Iowa State University, Ames, IA, USA 
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Abstract 

Raw meat-based diets (RMBDs) varying in protein source are commonly fed to zoo 

carnivores and these diet types are gaining in popularity for pet domestic dogs. Most research 

has focused on exotic felids with limited information for managed exotic canids. Additionally, 

research of RMBDs for domestic dogs has focused almost exclusively on microbial concerns and 

not associated health effects. The objectives of this study were to evaluate diet macronutrient 

composition, apparent total tract macronutrient and energy digestibility, feed intake, fecal 

output, and microbial presence of four commercial RMBDs for zoo carnivores using domestic 

dogs. Four intact male dogs (Canis lupus familiaris) were fed dietary treatments including horse 

(Horse), pork (Pork), and two different beef diets (Beef 1; Beef 2) in a repeated 4x4 Latin square 

design consisting of 14-day periods. Dog saliva, feces, and diets were swabbed for microbial 

testing. Treatment nutrient concentrations ranged for dry matter (DM) (32.2 – 36.2%), organic 

matter (OM) (91.1 – 94.9%), crude protein (CP) (50.3 – 61.7%), fat (25.1 – 38.3%), and gross 

energy (GE) (5805.0 – 6419.8 kcal/kg). Fecal scores across treatments ranged from 1.2 (Horse) 

to 3.1 (Beef 1). Digestibility of nutrients and energy ranged from 83.3 – 92.4%, 88.4 – 95.3%, 

93.8 – 97.7%, 94.9 – 98.2%, and 91.3 – 95.5% for DM, OM, CP, fat, and energy, respectively. 

Dogs consuming Beef 2 had greater digestibility of (P<0.05) DM (92.4%), OM (95.3%), CP 
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(97.7%), and GE (95.5%) but lower (P<0.05) digestibility of fat (94.9%) than all other diets 

evaluated. Dogs consuming Pork diet had greatest GE (6419.8 kcal/kg DM), DE (6027.1 kcal/kg 

DM), and calculated ME (5547.2; 5093.1; 5504.5 kcal/kg DM) of all diets. All diet (n=16) and 

saliva samples (n=36) tested negative whereas two fecal samples (n=36) tested positive for 

Salmonella spp. Diet samples from Beef 2 (n=4) for both replicates and two saliva samples 

(Pork) tested positive for generic Escherichia coli (E. coli). Feeding RMBDs to domestic diets did 

not result in major reductions or differences in nutrient digestibility for three of four diets and 

fecal scores were maintained at 3.1 or less. Therefore, horse, pork, and beef-based diets can be 

utilized as effective options for managing dogs and likely exotic canids based on nutrient 

digestibility. Lastly, microbial presence in saliva and fecal samples was lower than expected and 

these data suggest a minimal risk of human health implications when feeding these RMBDs to 

exotic or domesticated carnivores.  

 

Introduction 

Research regarding raw meat-based diets (RMBDs) is limited for both managed exotic 

carnivores and companion animals. Focus of companion animal research relating to RMBDs has 

been pathogen shedding, case studies, and human health implications (Joffe and Schlesinger, 

2002; Lefebvre et al., 2008; Olkkola et al., 2015). Few studies have made comparisons of 

digestibility or health parameters in companion animals fed RMBDs compared to extruded or 

canned diets, particularly in dogs (Kendall et al., 1982; Kerr et al., 2011; Kerr et al., 2012; 

Hamper et al., 2015). Research efforts using managed exotic carnivores to evaluate RMBDs 

have been conducted almost exclusively with felid species not canids (Crissey et al., 1997; 
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Vester et al., 2010; Kerr et al., 2013a; 2013b; Iske et al., 2016). Further, beef and horse proteins 

have comprised the majority of RMBDs used in zoological institutions. Our laboratory 

previously demonstrated effective use of raw pork for managed exotic felids (Iske et al., 2016); 

however, similar studies have not been conducted in exotic canids.  

 

Exotic canids managed in zoological institutions are often housed in groups or packs, 

making individual feed intake and fecal output data for digestibility studies difficult to collect. 

Basic anatomy and physiology of digestion between dogs and wolves is thought to be highly 

conserved (Peterson and Ciucci, 2003). Apparent protein and fat digestion in exotic carnivores 

(e.g., canids, hyenids, ursids, etc.) follows a similar pattern as domestic dogs (Clauss et al., 

2010). Starch digestion has been the primary nutritional target in domestication of the dog 

(Axelsson et al., 2013; Arendt et al., 2014) which is further evidenced by an increased capacity 

for apparent total tract digestibility of starch (Clauss et al., 2010). Because of their conserved 

anatomy and physiology, along with starch being low or absent in RMBDs, domestic dogs may 

serve as valuable models in nutrition studies for exotic canids and other exotic carnivores. 

Additionally, diets for zoological carnivores are typically formulated to meet NRC nutrient 

requirements for dogs and cats as actual nutrient requirements for exotic species are unknown. 

Therefore, the objectives of this study were to evaluate diet macronutrient composition, 

apparent total tract macronutrient and energy digestibility, feed intake, fecal output, and 

microbial presence of four RMBDs commercially manufactured for zoological carnivores using 

the domestic dog as a model. We hypothesize all RMBDs 1.) will be comparable in 

macronutrient and energy composition, 2.) will have high digestibility for macronutrients and 
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energy in domestic dogs, 3.) will vary in fecal scores and fecal output between diets, and 4.) will 

pose low microbial risk to human health.  

 

Materials and Methods 

Animals: 

All animal procedures were approved by the Iowa State University Institutional Animal 

Care and Use Committee (IACUC) prior to animal experimentation. Four intact male domestic 

dogs (Canis lupus familiaris) with predominately hound bloodlines were used in this study 

ranging in age from 1.0 to 3.0 years, body condition score (BCS) from 4.0 to 7.0 (9-point scale; 

Nestlé Purina), and body weight from 16.5 to 23.0 kg. Dogs used in this study served as 

breeding males for a separate, biomedical research colony and were maintained on extruded 

kibble foods prior to initiation of our study. All dogs were housed individually in (2.5m L x 1.2m 

W x 1.8 m H) runs at the College of Veterinary Medicine at Iowa State University (Ames, IA, 

USA) in order to prevent inter-male aggression. Dogs were maintained in accordance with 

United States Department of Agriculture (USDA) and National Institutes of Health (NIH) 

guidelines for care of dogs used in biomedical research. To ensure all dogs were free of 

potential underlying health ailments that may confound data and to obtain baseline values, 

complete blood count (CBC) and serum chemistry panels with electrolytes were performed 

prior to initiation of the study. Fecal floatation examinations were performed prior to initiation 

of the study to ensure all dogs in the facility were free of protozoal and nematode parasites. 

Dogs were kept on a 14:10 hour light:dark schedule in a temperature controlled room (20°C). 
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Water was provided ad libitum throughout the study. Dogs were fed twice daily (0400 and 

1400) to maintain body weight and BCS based on previous energy intake estimates.  

 

Experimental Design: 

Dogs were randomly assigned to one of four dietary treatments in a repeated 4x4 Latin 

square design consisting of 14 d periods. Each period included a 10 d diet adaptation phase (d 1 

– 10) followed by a 4 d total fecal collection phase (d 11 – 14). This design allowed each dog to 

receive each diet for one period during each replicate. Previous energy intake was estimated 

for each dog prior to beginning the study. Dogs were fed to maintain body weight and body 

condition throughout the course of the study.  

 

Total feed intake, fecal output, and fecal scores were recorded for each dog during each 

collection period. Total fecal output for each dog was collected and scored daily and stored at   

-20.0°C until laboratory analyses. Fecal scores were determined using the following scale: 1 = 

very hard, dry feces to 7 = watery diarrhea (Nestlé Purina). On d 14 of each period, fecal and 

saliva samples were obtained and stored at -80.0°C in sterile Whirl-Pak® bags (Nasco; Atkinson, 

WI, USA) until microbial analysis was performed. On d 14 of each period, blood samples were 

collected and submitted for serum chemistry with electrolytes and CBC. Dogs were weighed 

and body condition scored on d 14 of each period and also at initiation and conclusion of the 

study.  
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Experimental Diets: 

Four commercially manufactured RMBDs commonly fed to managed exotic carnivores 

were evaluated in this study. Dietary treatments included one horse-based (Nebraska Brand 

Premium Feline; Central Nebraska Packing Inc.; North Platte, NE, USA (Horse)), one pork-based 

(Carnivore Essentials; Sustainable Swine Resources; Sheboygan Falls, WI, USA (Pork)), and two 

beef-based [Nebraska Brand: Special Beef; Central Nebraska Packing Inc.; North Platte, NE, USA 

(Beef 1); Frozen Beef Zoo Diet; Kennel Supply LLC; Council Bluffs, IA, USA (Beef 2)] diets. All 

diets were reported as formulated to meet or exceed nutrient requirements of domestic cats 

and dogs (NRC, 2006) except Beef 2 labeled as a custom specialty pet formulation marketed in 

the Iowa greyhound racing industry but utilized as a diet option in regional zoos. Ingredients for 

each dietary treatment are listed in Table 3.1. Each dietary treatment was subsampled, 

swabbed for microbial testing, and stored at -20.0°C until laboratory analyses.  

 

Diet and Fecal Chemical Analyses: 

Total fecal collections and dietary treatments were analyzed for macronutrient chemical 

composition and energy. A sub-sample (50 – 100g) of each diet was collected during each 

period and pooled for analyses. All chemical analyses except were conducted in the 

Comparative Nutrition Laboratory at Iowa State University (Ames, IA, USA). Fecal samples and 

dietary sub-samples were dried at 55.0°C in a forced air drying oven and ground with a coffee 

grinder to accommodate small sample size (model BCG11OB; KitchenAid). Diet and fecal 

samples were analyzed for dry matter (DM) (Method 934.01, AOAC) and organic matter (OM) 

(Method 942.05, AOAC). Crude protein (CP) was determined using a LECO Nitrogen Analyzer 
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(Method 992.15, AOAC) (model TruMacN; LECO Corporation; St. Joseph, MI, USA). Crude fat 

was determined via acid hydrolysis and hexane extraction (Method 960.39, AOAC). Gross 

energy (GE) was determined via bomb calorimetry (model 6200; Parr Instrument Co.; Moline, 

IL, USA). Total dietary fiber (TDF) was determined in diets as a more accurate assessment of 

fiber than crude fiber, using the Prosky method (Prosky et al., 1984; AOAC, 2003) at the 

Comparative Nutrition Laboratory at the University of Illinois at Urbana-Champaign. Nitrogen-

free extract (NFE) concentrations were calculated using the following equation: NFE % = 100 – Σ 

(moisture %, CP %, fat %, ash %, TDF %). 

 

Feed Intake and Fecal Output: 

Feed intake was recorded for each dog throughout the experiment. Total fecal output 

was collected daily during the collection phase of each period and averaged in order to 

determine daily fecal output (g as-is/d). These values were then used to determine energy and 

macronutrient digestibilities. Feces collected during the 4 d collection period was pooled for 

each dog and mechanically ground in order to homogenize samples. 

 

Apparent Total Tract Digestibilities and Energy Calculations: 

Apparent total tract macronutrient and energy digestibilities were determined using the 

chemical composition data from diet and fecal samples and feed intake/fecal output records. 

Apparent total tract macronutrient and gross energy (GE) digestibilities were calculated using 

the following equation: Apparent digestibility (%) =                                                      * 100 

Digestible energy (DE) values were calculated using the following equation: 

(intake – fecal output) 
    intake 
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DE = kcal GE/g of diet * % GE apparent total tract digestibility of diet 

Metabolizable (ME) energy values were estimated using Atwater values, modified Atwater 

values (AAFCO), and the NRC (2006) equation to provide a comparison of the three methods.  

Equations for all three ME estimations are listed below:   

 ME = 9.0 kcal ME/g of fat + 4.0 kcal ME/g of CP + 4.0 kcal ME/g of NFE      (Atwater) 

ME = 8.5 kcal ME/g of fat + 3.5 kcal ME/g of CP + 3.5 kcal ME/g of NFE      (AAFCO) 

ME = DE – (1.04 * g of CP)       (NRC)     

The NRC equation is assumed to be the most accurate because it factors in calculated DE from 

experimental results for a specific diet. Modified Atwater values use digestibility coefficients of 

81%, 85%, and 79% for CP, fat, and NFE, respectively. Modified Atwater values are commonly 

used in the pet food industry as an estimate of ME (Case et al., 2011). However, use of Atwater 

factors is recommended for estimated ME of homemade diets due to typically high 

digestibilities (NRC, 2006). Estimated digestibility coefficients of 91%, 96%, and 96% for CP, fat, 

and NFE, respectively, are used for calculation of Atwater values (Atwater and Bryant, 1900). 

 

Microbial Presence: 

Diet, saliva, and fecal samples were submitted to the Food Microbiology Laboratory in 

the Department of Animal Sciences at Iowa State University (Ames, IA, USA) for microbial 

testing. Two samples per dietary treatment were taken for each replicate for Salmonella spp. 

and generic Escherichia coli (E. coli) testing (n=16). One fecal and one saliva swab were 

obtained per dog and per period for each replicate and prior to initiation of the study (n=36). 

Diet and saliva samples were cultured for Salmonella spp. and generic E. coli and fecal samples 
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were cultured for Salmonella spp. Samples and extraneous fecal material from each sample bag 

were transferred to sterilized test tubes. For diet and saliva samples, 5mL of Buffered Peptone 

Water (BPW) was added to each test tube. For fecal samples, 3mL of BPW was added to each 

test tube.  

 

For Salmonella analysis, 1mL was transferred into Neogen® ANSR® Salmonella Broth for 

overnight enrichment at 37°C and streaked onto XLD overly with Triple Sugar Iron Agar (TSA) 

slant (Kang and Fung, 2000). Samples that produced typical black colonies and tested positive 

on Neogen® ANSR® were further tested on Neogen® Reveal® 2.0 strips for Salmonella. Samples 

that produced a positive result on Neogen® Reveal® 2.0 strips for Salmonella were considered 

confirmed positive for Salmonella. For E. coli analysis, samples were vortexed and a 1mL aliquot 

was transferred to a 9mL peptone tube (1:10 dilution) and vortexed. Further serial dilutions 

were completed. For each dilution, 1mL of sample was plated onto 3M™ Petrifilm™ E. 

coli/Coliform test plates in duplicate. Plates were incubated at 37°C for 24 h and examined for 

E. coli and enumerated.  

 

Blood Panels: 

A 4mL sample of blood was collected from each dog via cephalic venipuncture at 

baseline and on d 14 of each period. Samples were submitted to the Clinical Pathology 

Laboratory at Iowa State University College of Veterinary Medicine (Ames, IA, USA) for a serum 

chemistry panel with electrolytes (VITROS 5.1 FS Chemistry Analyzer; Ortho Clinical Diagnostics; 

Raritan, NJ, USA) and CBC (ADVIA 2120i Hematology System; Siemens Healthcare; Erlangen, 
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Germany). Data from all dogs for both replicates were averaged within diet and reported with 

corresponding reference intervals for each measure.  

 

Statistical Analysis: 

Apparent total tract digestibilities, feed intake, fecal output, fecal chemical composition, 

serum chemistry, and CBC data were analyzed using the mixed models procedure of SAS® 

(PROC MIXED, SAS Institute; Cary, NC, USA). The fixed effects of period, replicate, and diet were 

tested and dog was considered a random effect. Differences between diets were determined 

using least squared means (LSMEANS). A probability of P<0.05 was considered statistically 

significant and standard error of the means (SEM) were determined. Microbial data were 

analyzed as a binomial response (positive or negative) using the generalized mixed models 

procedure of SAS® (PROC GLIMMIX, SAS Institute; Cary, NC, USA). The fixed effects of period, 

replicate, and diet were tested and dog was considered a random effect.  

 

Results 

Diet and Fecal Chemical Analyses: 

Chemical compositions for dietary treatments are presented in Table 3.2. Dietary 

treatment nutrient concentrations ranged for DM (32.2 – 36.2%), OM (91.1 – 94.9%), CP (50.3 – 

61.7%), fat (25.1 – 38.3%), and GE (5805.0 – 6419.8 kcal/kg). TDF concentrations ranged from 

0.0 to 5.9% resulting in calculated NFE concentrations that were very low, ranging from 0.8 to 

5.4% for Beef 2 and Beef 1 diets, respectively. Chemical compositions of fecal samples collected 

from dogs fed each diet are listed in Table 3.3. Fecal nutrient concentrations ranged for DM 
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(27.4 – 46.9%), OM (58.9 – 72.8%), CP (12.7 – 22.9%), fat (2.9 – 21.5%), and GE (3.0 – 3.7 

kcal/g). Fecal samples from dogs fed Horse (46.9%) had greater than 71% DM compared to Beef 

1 diet (27.4%) (P<0.05). However, fecal samples from dogs fed Beef 1 (22.9%) contained 

approximately 80.3% more (P<0.05) CP than fecal samples from dogs fed Horse (12.7%). The 

most marked difference observed between fecal samples based on treatment was in fat 

concentration. Fecal fat concentrations for dogs fed Beef 2 (21.5% fat on DMB) were over 

240.0% greater than Beef 1 and Pork diets (6.3 and 6.1% fat on DMB, respectively) and over 

650.0% greater than the Horse diet (2.9% fat on DMB) (P<0.05).  

 

Feed Intake, Fecal Outputs, and Fecal Scores: 

Feed intake and fecal output data for dietary treatments are presented in Table 3.4. 

Feed intake (g AF/d) was the same across all dietary treatments as per experimental design. 

When considering the moisture contents, dry matter intake (DMI) varied slightly from a low of 

178.0 g/d for Beef 2 to a high of 200.2 g/d for Horse but were not significant. This variation 

reflected GE intakes (kcal/d) that ranged from 1132.2 to 1251.0, also not significant.  

 

Fecal output (g as-is/d) was 2.5 fold greater (P<0.05) in dogs fed Beef 1 diet (102.4 g/d) 

than Beef 2 (29.4 g/d) and approximately 0.6 fold higher (P<0.05) than Horse and Pork fed dogs 

(69.1 and 57.4 g/d, respectively). Fecal output (g DM/d) differed (P<0.05) between all dietary 

treatments including Beef 2 (13.5 g/d), Pork (21.3 g/d), Beef 1 (27.4 g/d), and Horse (32.3 g/d). 

Fecal scores of dogs consuming Horse (1.2) were more than one-fold lower (P<0.05) than fecal 
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scores from dogs consuming either Pork (2.7) or Beef 1 (3.1). Dogs consuming the Beef 2 diet 

had fecal scores of 1.9, differing (P<0.05) from the other treatments.  

 

Apparent Total Tract Digestibilities and Energy Calculations: 

Apparent total tract digestibility values and energy calculations are listed in Table 3.4. 

Digestibility of nutrients and energy ranged from 83.3 – 92.4%, 88.4 – 95.3%, 93.8 – 97.7%, 94.9 

– 98.2%, and 91.3 – 95.5% for DM, OM, CP, fat, and energy, respectively. Dogs consuming Beef 

2 diet had the greatest (P<0.05) digestibility of DM (92.4%), OM (95.3%), CP (97.7%), and GE 

(95.5%) compared with all other treatments. In contrast, dogs consuming this diet also had the 

lowest (P<0.05) digestibility of fat (94.9%) compared with all other diets evaluated that 

averaged 97.8% and were not different. Dogs consuming Horse diet had the lowest (P<0.05) 

DM (83.3%), OM (88.4%), and energy (91.3%) digestibility values compared to dogs consuming 

other treatments. Interestingly, dogs fed Horse had the lowest digestibility values for three of 

five measures (DM, OM, GE) while dogs fed Beef 2 had the highest digestibility values for four 

of five measures (DM, OM, CP, GE). Dogs feed Pork and Beef 1 diets had similar digestibility 

values for OM and fat that averaged 91.1 and 97.7%, respectively. Dogs fed the Beef 1 diet did 

have the lowest (P<0.05) CP (93.8%) digestibility values compared with all other treatments. 

Dogs fed Pork had the highest (P<0.05) fat digestibility (98.2%) compared with all other diets 

that averaged 96.7%. All diets were considered highly digestible (>90.0% digestibility) for CP, 

fat, and energy.  
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Digestible energy (DE) values ranged from 5297.7 to 6076.3 kcal/kg for Horse and Beef 2 

diets, respectively. The application of the NRC equation yielded metabolizable energy (ME) 

values of 4728.7, 5504.5, 5066.2, and 5435.1 kcal/kg for Horse, Pork, Beef 1, and Beef 2, 

respectively, that were similar to calculated values using Atwater factors that yielded 4659.4, 

5547.2, 5148.5, and 5414.4 kcal/kg for Horse, Pork, Beef 1, and Beef 2, respectively. The 

application of AAFCO recommended modified Atwater factors yielded lower values of 4233.9, 

5093.1, 4703.5, and 4940.1 kcal/kg for Horse, Pork, Beef 1, Beef 2, respectively.  

 

Microbial Presence: 

Microbial presence in diet, saliva, and fecal samples are presented in Table 3.5. All diet 

samples (n=16) tested negative for Salmonella spp. Generic E. coli was detected in 2 of 4 diet 

samples from the Beef 2 treatment and was negative in all other diet samples. Salmonella spp. 

were not detected in any of the saliva samples (n=36); however, two saliva samples obtained 

from dogs fed Pork, tested positive for generic E. coli. Salmonella spp. was detected in only two 

fecal samples (n=36) and both samples were obtained from dogs fed Pork.  

 

Blood Panels: 

Means are reported by diet for both serum chemistry panel with electrolytes (Table 3.6) 

and CBC (Table 3.7). Hematology revealed treatment differences (P<0.05) for white blood cell 

(WBC) counts and mean platelet volume (MPV) but all values were within normal reference 

ranges. Overall, no other treatment differences were detected for CBC values. Slight elevations 

above reference intervals were observed for blood urea nitrogen (BUN) for dogs fed Beef 2 diet 
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(31.1mg/dL; reference: 10.0 – 30.0mg/dL) and triglycerides for dogs fed Beef 1 diet 

(115.5mg/dL; reference: 24.0 – 115.0mg/dL). Dogs fed RMBDs had, on average, an increase of 

76.0, 39.1, and 18.7% for BUN, triglycerides, and cholesterol, respectively, compared to 

baseline values. All dogs exhibited higher than normal concentrations of hemoglobin (range: 

18.7 – 19.2g/dL; reference: 12.0 – 18.0g/dL) and high-normal hematocrit during each treatment 

period and at baseline (range: 56.1 – 56.6%; reference: 37.0 – 57.0%). Treatment differences 

(P<0.05) were detected for BUN, creatinine, calcium, and magnesium.  

 

Discussion 

Diet Chemical Composition and Nutrient Digestibility 

The study objectives included evaluation of various products manufactured for zoos 

using the domestic dog as a model; therefore, dietary treatments varied in ingredients and 

chemical composition. As expected, all dietary treatments were high in CP (>50.0% DMB) and 

fat (>25.0% DMB) and were comparable in nutrient and energy concentrations (Table 3.2). 

Digestibility of nutrients and energy ranged from 83.3 – 92.4%, 88.4 – 95.3%, 93.8 – 97.7%, 94.9 

– 98.2%, and 91.3 – 95.5% for DM, OM, CP, fat, and energy, respectively (Table 3.4). A previous 

study from our laboratory using large exotic felids reported similar ranges for DM (83.6 – 

88.0%), OM (88.5 – 90.8%), CP (92.7 – 95.7%), fat (96.5 – 99.0%), and energy (90.9 – 92.4%) 

digestibility of RMBDs including the Horse, Pork, and Beef 1 diet used in the present study (Iske 

et al., 2016). In an alternative study by Kerr et al. (2012), the same Beef 1 diet was evaluated in 

domestic cats. Apparent total tract digestibility for DM (86.1, 85.6, and 86.7%), OM (90.3, 89.2, 

and 90.5%), CP (93.8, 93.1, and 93.3%), fat (97.1, 96.5, and 95.5%), and GE (92.0, 90.9, and 
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91.5%) were similar between the current study, Iske et al. (2016), and Kerr et al. (2012) studies, 

respectively. These similarities suggest similar digestive efficiencies between domestic dogs and 

cats and certain species of exotic felids consuming RMBDs (Clauss et al., 2010). Therefore, dogs 

and cats may have potential application in evaluating raw meat-based dietary options for 

certain species of exotic carnivores.  

 

Although dietary treatments differed in apparent total tract digestibilities, all diets were 

highly digestible. Specifically, digestibility of CP, fat, and energy all exceeded 90.0% indicating a 

high availability to the animal. In comparison, dogs fed processed diets have lower digestibility 

of nutrients with average apparent total tract digestibility for CP and fat ranging from 78.0 – 

81.0% and 77.0 – 85.0%, respectively (Davenport and Remillard, 2010). Kerr et al., (2012) 

reported apparent total tract digestibilities in a super-premium, extruded diet of 78.2, 83.9, 

81.6, 91.3, and 84.7% for DM, OM, CP, fat, and energy, respectively. Hamper et al., (2015) 

reported slightly higher values in kittens fed a processed canned diet (83.8, 88.4, 88.9, 94.2, and 

90.2% for DM, OM, CP, fat, and energy, respectively). Although high for all treatments, 

digestibility of fat was lower in dogs fed the Beef 2 diet (94.9%) compared with other 

treatments that averaged 97.8%. Dry fecal output was only 13.5 g/d for Beef 2 compared with 

an average of 27.0 g/d for the other treatments. Additionally, 21.5% of the fecal DM was fat 

when dogs consumed the Beef 2 diet compared with an average of 5.1% for the other three 

treatments. Beef 2 was the only diet that did not include a dietary fiber source. Inclusion of 

dietary fiber typically decreases macronutrient digestibility of a diet, consistent with data 

obtained from this study (Kendall et al., 1982; Kerr et al., 2013b). Although lower in fat 
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digestibility, dogs consuming Beef 2 had greater (P<0.05) DM, OM, CP, and energy digestibility. 

Studies in dogs and poultry have found that inclusion of moderate amounts of dietary fiber may 

actually improve fat digestibility (Muir et al., 1996; Kienzle et al., 2001; Jiménez-Moreno et al., 

2009). This may provide an explanation for the reduced digestion of fat observed for dogs fed 

Beef 2. Although Beef 2 diet had superior digestibility, this diet was not formulated to meet or 

exceed nutrient requirements of domestic cats or dogs. As a result, potential nutrient 

deficiencies, especially in micronutrients, are probable with extended feeding of this diet. No 

symptoms of nutrient deficiencies were observed in dogs during this study; however, our 

experimental design dictated that each dog was rotated through each of the four dietary 

treatments. Because dogs were not maintained on a single diet for a period greater than one 

month, this period of time may not have been long enough to elicit symptoms of micronutrient 

deficiency in the dogs.  

 

Meat Sourcing and Ingredient Selection for Carnivore Management: 

Diets in our study varied in their main protein ingredient. Purchasing decisions based on 

selection of primary protein ingredient are influenced by many factors including availability, 

source variability, safety concerns, cost, and possibly perceptions related to particular meat 

sources. Perception concerns include misinformation about product labeling, sourcing of meat, 

and safety of ingredients. Historically, concerns regarding pseudorabies and Trichinella-infected 

pork decreased its use in the human, pet food, and zoological industries (CDC, 2012). However, 

due to improved farming practices and freezing of raw pork meat, risk from commercially raised 

pork in the United States is considered negligible (CDC, 2012). Although diets in this study were 
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named for their main protein source (horse, pork, or beef), Beef 1 also contained meat by-

products, fish meal, and soybean meal as additional protein ingredients. Meat by-products are 

defined by the Association of American Feed Control Officials (AAFCO) as: “The non-rendered, 

clean, parts, other than meat, derived from slaughtered mammals. This ingredient can include, 

but is not limited to, lungs, spleen, kidneys, brain, liver, blood, bone, partially defatted low-

temperature fatty tissue, stomach, and intestines freed of their contents. It does not include 

hair, horns, teeth, and hoofs (AAFCO, 2016).” Labeling of this diet with meat by-products allows 

the manufacturer to use any species of meat that is available potentially increasing variability 

between different lots of the diet but also likely reducing production and consumer costs 

(Hendriks et al., 2002). Although providing variety to managed exotic carnivores can be 

beneficial from a health and enrichment standpoint (AZA Canid TAG, 2012), unknown variability 

in protein source within a diet may pose potential issues for carnivores with food allergies or 

aversions. This variation of source may also contribute to nutrient variability across lots when 

diets are mixed.  

 

All diets used for this study utilized protein ingredients readily available from the 

agricultural industry including horsemeat, pork, pork by-products, beef, beef by-products, fish 

meal, soybean meal, and dried egg. Animal agriculture is an important provider of animal-based 

protein ingredients for both the pet food and zoological industries. Inclusion of by-products in 

Pork and both beef diet treatments serves to utilize portions of the carcass not in direct 

competition with the human-food industry. Recent trends in the pet food industry have moved 

toward exclusion of by-products due to consumer misconceptions about nutritional quality of 
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these products. Animal by-products (i.e., organ meats) are considered a very high-quality 

protein source from both an amino acid profile and bioavailability standpoint. Additionally, wild 

canids, most notably wolves, preferentially consume organ meats from a kill prior to skeletal 

muscle and other portions of the carcass (Peterson and Ciucci, 2003; Stahler et al., 2006). 

Inclusion of by-products in dietary treatments still resulted in high apparent total tract 

digestibilities (DM >86.0%, OM >90.0%, CP >93.0%, fat > 94.0%, and GE > 92.0%) suggesting 

that inclusion of animal by-products does not negatively impact apparent total tract digestibility 

of macronutrients and energy. For these reasons, inclusion of animal by-products in carnivore 

diets for zoological institutions increases the economical sustainability of the livestock industry 

by utilizing a greater percentage of the carcass while lessening the economic load that is 

associated with purchasing animal-based protein sources. 

 

Another obvious ingredient difference between the dietary treatments was fiber type. 

Horse diet contained cellulose, a non-fermentable fiber. Beef 1 diet contained beet pulp, a 

moderately fermentable fiber while the pork diet contained a mixture of both beet pulp and 

cellulose. Beef 2 did not contain any added fiber ingredient. The resulting TDF concentrations 

were 5.9, 4.0, and 3.8% for Horse, Beef 1, and Pork, respectively, while Beef 2 did not contain 

measurable concentrations of TDF. These differences in dietary fiber type and concentrations 

may have contributed to observed differences in stool quality, appearance, fecal scores, and 

consistency (Figure 3.1) which is in agreement with existing literature (Kendall et al., 1982). 

Specifically, feeding Horse (highest TDF and non-fermentable cellulose only) resulted in stools 

with the lowest fecal score (1.2) compared to other diets (2.6). Stools were very hard and 



66 
 

several samples were observed with frank blood visible indicating the dogs had difficulty 

passing stools (Figure 1). The ideal fecal score on a 7-point scale (Nestlé Purina) would be a 

score of 2 to 3 because these scores reflect fecals that are firm but not hard and leave little to 

no residue on the ground when picked up. As expected, fecal score had positive correlation 

with fecal moisture % for Horse, Pork, and Beef 1 diets. Differences in dietary fiber sources 

likely contributed to differences in fecal score and moisture content in these diets as Pork and 

Beef 1 diets included beet pulp, a soluble dietary fiber, which can increase fecal moisture. 

Further, Pork diet also included cellulose, which likely contributed to greater fecal DM % and 

lower fecal scores. Beef 2 did not have the same correlation, likely due to the relatively high fat 

content and absence of additional fiber.  

 

On an as-is basis, dogs fed Beef 1 produced greater (P<0.05) fecal output (102.4 g as-

is/d) than all other dietary treatments. Stools from dogs fed Beef 1 were wetter in appearance 

(Figure 1) and had lesser (P<0.05) DM (27.4%) than all other diets (Table 3.3). These data are 

important considerations for manure management and enclosure cleaning. Similar results were 

obtained in a study by Kerr et al. (2013b) where cats fed raw beef-based diets containing beet 

pulp as a fiber source had greater (P<0.05) fecal output than cats fed a raw beef-based diet 

substituted with cellulose as the fiber source. Further, the authors of this study indicated that 

smaller species of exotic felids (e.g., cheetahs, jaguars) tolerated beet pulp well whereas large 

species of exotic felids (e.g., Malayan and Siberian tigers) were more sensitive to the inclusion 

of beet pulp and had more ideal fecal scores with cellulose (Kerr et al., 2013b). Similar 
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sensitivities relating to colonic fermentation and fiber source have been noted in large breeds 

of domestic dogs (Zentek et al., 2002; Nery et al., 2012).  

 

Dietary fiber plays an important role in gastrointestinal health by acting as substrate for 

large intestinal fermentation to promote production of short-chain fatty acids, maintaining 

stool quality and consistency, modulating metabolism, and aiding in removal of putrefactive 

byproducts (Kerr et al., 2013b). For exotic carnivores, animal-derived indigestible dietary 

components (e.g., skin, bone, hair) termed “animal fiber” are suspected to have fiber-like 

functions in the gastrointestinal tract (Depauw et al., 2013). Research regarding animal fiber is 

just beginning and initial studies have focused solely on managed exotic felids (Depauw et al., 

2013). Dogs fed Beef 2 produced stools that were greasy in appearance and contained 21.5% 

fat on a DMB compared to Horse, Pork, and Beef 1 (Figure 1). Due to exclusion of fiber in Beef 2 

and high fat-content feces, changes in gut microbiota and fecal fermentative products may 

have occurred but were not analyzed as part of this study. Future diet formulations for 

managed exotic carnivores should consider selection of fiber type based on individual species 

tolerance or feeding a mixture of fermentable and non-fermentable fibers (Kerr et al., 2013b). 

As previously discussed, long term effects of feeding the Beef 2 diet to managed exotic canids 

should be considered as absence of fiber in diets of dogs and cats is not considered to be 

nutritionally sustainable (Swanson et al., 2013). Additionally, previous and current data may 

support formulation of species specific or size specific diets for carnivores rather than general 

carnivore formulations.  
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Economics of Energy: 

The Pork diet provided the highest GE (64198.8 kcal/kg DM) and calculated ME values of 

5547.2, 5504.5, and 5093.1 kcal/kg DM using Atwater, NRC, and modified Atwater values, 

respectively, compared to all other diets even though it was not the highest in apparent total 

tract digestibility for energy (Table 3.4). Given these data, a cost comparison can be made 

between diets based on dollars per 1000 kcal energy provided to the animal. Cost estimates on 

an as fed basis are included in Table 3.8 based on recent delivery data for each of the diets. 

Cost ($) per kg of diet ranged greatly from approximately $2.20 for Beef 1 to approximately 

$4.40 for Pork. Due to differences in nutrient composition and diet digestibility, the same as fed 

weight of each diet provides notably different amounts of energy. When cost ($) is calculated 

per 1000 kcal DE (Horse: 1.72, Pork: 2.07, Beef 1: 1.10, Beef 2: 1.69) or per 1000 kcal ME 

(Horse: 1.96, 2.15, 1.93; Pork: 2.25, 2.45, 2.27; Beef 1: 1.19, 1.31, 1.21; Beef 2: 1.89, 2.07, 1.89), 

the diets are closer in cost. Given diet costs are an important management consideration for 

zoological institutions, estimating feeding costs based on energy content may provide 

additional insight into purchasing and budgeting decisions. Further, it is important to note the 

differences observed in calculated ME values for each diet based on Atwater, modified Atwater, 

and NRC equations (Horse: 4659.4, 4233.9, 4728.7 kcal/kg DM; Pork: 5547.2, 5093.1, 5504.5 

kcal/kg DM; Beef 1: 5148.5, 4703.5, 5066.2 kcal/kg DM; Beef 2: 5414.4, 4940.1, 5435.1 kcal/kg 

DM for Atwater, modified Atwater, and NRC equations, respectively). Interestingly, the values 

between Atwater and NRC values were very similar whereas modified Atwater values markedly 

differed. Similarly, Clauss et al. (2010) demonstrated that dietary ME estimates using Atwater 

factors more similarly compared to ME values calculated using experimental results for exotic 
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carnivores. Current AAFCO labeling recommendations for the pet food industry in the United 

States recommend the use of modified Atwater values to estimate energy content of a diet. 

Commercially manufactured exotic diets are also under the recommendations of AAFCO in the 

U.S. However, these data and results obtained by Clauss et al. (2010) indicate that modified 

Atwater values may be an underestimate of ME, especially in highly digestible diets. This 

underestimation of ME content may further exacerbate obesity issues that are common among 

companion animals and animals managed in zoological institutions.  

 

Microbial Presence: 

Diet, saliva, and fecal samples were obtained from all dogs prior to initiation of the 

study when dogs were consuming a commercial, extruded diet and all samples tested negative. 

During the study, only 2 fecal samples tested positive for Salmonella spp. (Table 3.5) and 3 

saliva samples and 2 diet samples tested positive for generic E. coli. Literature surrounding 

RMBDs in dogs has primarily focused on fecal shedding of Salmonella spp. and other 

microorganisms of concern from a public health standpoint. Several studies have documented 

increased shedding of Salmonella spp. and other microorganisms in feces of dogs fed RMBDs 

compared to dogs fed extruded diets (Joffe and Schlesinger, 2002; Lefebvre et al., 2008; Lenz et 

al., 2009). Over 2500 serotypes of Salmonella have been described and less than 100 of those 

are considered pathogenic in humans (CDC, 2015). Further, overall shedding of Salmonella spp. 

in dogs, regardless of diet, is suspected to be low but estimates up to 18.0% in clinically normal 

dogs have been documented (LeJeune et al., 2001; Lowden et al., 2015). This notion is 

consistent with data obtained from our study with less than 5.6% of total fecal samples (n=36) 
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testing positive for Salmonella spp. and none of the saliva samples (n=36) testing positive for 

Salmonella spp. Samples for this study were taken at single time points at the end of each 

period rather than serial samples taken over the course of several days that were cost 

prohibited in this study. Therefore, our data may present an underestimate of true fecal 

shedding of Salmonella spp. but do appear low from data obtained. Future studies should aim 

to further quantify the transmission risk associated with Salmonella spp. through animal feces 

or saliva using serial sampling. Although the overall incidence of shedding is low, common 

sense practices should be considered when handling RMBDs and feces of any species 

consuming any diet. Safe handling of RMBDs for zoos has been well outlined and published by 

Crissey et al., (2001).  

 

Blood Panels: 

 Mild elevations above reference interval for BUN (31.1; reference interval: 10.0 – 30.0 

mg/dL) for dogs fed Beef 2 and triglycerides (115.5; reference interval: 24.0 – 115.0 mg/dL) for 

dogs fed Beef 1 were reported but all other serum metabolite and electrolyte concentrations 

were within normal limits suggesting no change in health status of dogs during this study based 

on blood parameters. BUN (Horse: 28.0, Pork: 23.1, Beef 1: 23.4, Beef 2: 31.1 mg/dL) for all 

treatments was greater (P<0.05) than baseline (15.0 mg/dL) (reference interval: 10.0 – 30.0 

mg/dL). Serum increase in BUN may be indicative of late stage renal dysfunction especially if 

elevations in serum creatinine and inorganic phosphorus are also observed (Brown, 2013). 

However, elevations in BUN in the absence of elevated creatinine can be caused by 

consumption of a high-protein diet or be associated with upper gastrointestinal (GI) bleeding 
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(eClinpath, 2013). Melena was not observed in the dogs during this study indicating that upper 

GI bleeding was unlikely. As a result, the elevation observed in BUN was likely dietary related 

(CP >50% for all dietary treatments) and not caused by an underlying pathologic change. 

Although numerical increases in triglycerides and cholesterol were observed in dogs fed the 

RMBDs, the differences did not reach statistical significance; therefore, expected within 

reference ranges.  

 

Cats used in a related study by Kerr et al. (2012) had elevations in serum alanine 

aminotransferase (ALT) across dietary treatments; extruded (57.0 U/L), raw beef (67.8 U/L), and 

cooked beef (70.1 U/L) diets (reference interval: 8.3-52.5 U/L) (Kerr et al., 2012). Baseline 

bloodwork was not reported for this study so it is unknown whether diet affected serum ALT 

concentrations. Elevations in serum ALT in dogs were not observed in this study. Hematology 

revealed mild elevations in hemoglobin and hematocrit above reference intervals that were 

observed across dietary treatments. However, these elevations were consistent with baseline 

values reported prior to study initiation; 18.7g/dL and 56.4% for hemoglobin and hematocrit, 

respectively (reference intervals: 12.0 – 18.0g/dL; 37.0 – 55.0%). These mild elevations in 

hemoglobin and hematocrit may indicate mild dehydration in the dogs used in this study.  

 

Reference intervals for serum chemistry screening and CBC are laboratory specific and 

are typically established with a sample population of dogs (eClinpath, 2016). These values 

provide an indication of internal health status (e.g., organ function, immune status, etc.). Since 

feeding extruded diets to dogs predominates in developed nations, these reference intervals 
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were likely established in extruded-fed dogs. Swanson et al. (2004) found differences in serum 

chemistry values in dogs associated with diets that were animal-product based (APB) or plant-

product based (PPB). The authors reported a tendency (P<0.01) towards increased blood 

cholesterol concentrations in dogs fed an APB diet, speculating that this was related to the 

increased fat content of this diet. The results of this study and others indicate that differences 

in serum chemistry values may occur between dogs fed diets differing markedly in 

macronutrient concentrations, such as with extruded- and RMBDs. 

 

Conclusions: 

Results from this study indicate these raw meat dietary options varying in protein 

source and ingredients were all comparable in nutrient composition and highly digestible in the 

domestic dog. In addition, fecal scores were at 3.1 or less and most blood chemistry values 

were within normal reference intervals. Elevations seen in BUN and triglycerides for Beef 2 and 

Beef 1, respectively, were likely dietary related and not related to an underlying pathologic 

change, indicating dog health was not negatively impacted by feeding these RMBDs. Variations 

between diets in energy content, fecal output, stool characteristics, and fiber type exist and are 

important considerations for nutrition management of exotic canids. Further research is 

needed to determine a greater understanding of dietary options for management of exotic 

carnivores in order to increase dietary options for nutrition management taking into account 

species natural history, body size, and ingredient selection. In addition, our comparison of ME 

calculations provided additional support for the use of Atwater or NRC equations over the 

AAFCO recommended modified Atwater equations when evaluating energy content of RMBDs. 
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Generating apparent total tract digestibility data for a variety of diets across various species 

provides valuable information for zoological institutions to make informed decisions regarding 

available commercial diets. As expected, this study indicated a low risk of pathogen exposure to 

humans from RMBDs and the dogs consuming them as evidenced by positive fecal swabs for 

Salmonella spp. and positive diet swabs for generic E. coli. However, overall incidence was low 

(5.6% for Salmonella spp.). Additionally, utilizing domestic dogs as a nutrition model for exotic 

canids allows researchers to gain valuable insight into exotic canid nutrition while advancing 

our understanding of similar diets and tolerances in order to benefit the pet food industry, as 

well. 

 

Dietary selection for managed exotic carnivores and companion animals should consider 

nutrition, economics, and environmental sustainability (Swanson et al., 2013) and decisions will 

vary across institutions in light of these criteria. Ingredient selection also should be evaluated to 

ensure diets appropriately address long-term nutrition needs of animals, economic feasibility, 

minimization of negative impacts on the environment, and goals of the feeding program. 

Further, ingredient supply ideally should be consistently available and free of potential safety 

concerns. Although all dietary treatments were similar in macronutrient and energy 

concentrations and considered highly digestible, ingredient differences had marked differences 

on fecal characteristics and digestibility of macronutrients and energy. Based on our results, we 

conclude that all diets evaluated may be suitable for the nutritional management of exotic 

canids; however, long-term feeding of Beef 2 is not advised due to likely micronutrient 

deficiencies and absence of fiber in the diet.   
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Table 3.1: Ingredient composition of horse-, pork-, and beef-based raw meat diets fed to 
domestic dogs (Canis lupus familiaris).  

Diet Ingredients 

Horse 

Nebraska Brand ®, 

Nebraska Packing Inc.; 

North Platte, NE, USA; 

Premium Feline 

Horsemeat, powdered cellulose, dicalcium phosphate, calcium 

carbonate, vitamin premix (roughage products, vitamin E 

supplement, mineral oil, niacin supplement, biotin, menadione 

sodium bisulfite complex, vitamin A supplement, riboflavin, 

pyridoxine hydrochloride, folic acid, calcium pantothenate, 

thiamine mononitrate, vitamin D3 supplement), trace mineral 

premix (copper sulfate, manganese sulfate, ethylenediamine, 

dihydriodide, sodium selenite), choline chloride, taurine, salt.  

Pork 

Sustainable Swine 

Resources , LLC;  

Sheboygan Falls, WI, USA; 

Carnivore Essentials 

Pork, pork-byproducts, vitamin premix (beet pulp, cellulose, 

calcium carbonate, rice hulls, sodium chloride, mineral oil, 

vitamin E supplement, d-α-tocopheryl acetate, biotin, niacin 

supplement, thiamine mononitrate, vitamin B12 supplement, 

vitamin A acetate, vitamin D3 supplement, pyridoxine 

hydrochloride, riboflavin supplement, d-calcium pantothenate, 

folic acid), mineral premix (beet pulp, cellulose, calcium 

carbonate, rice hulls, mineral oil, choline chloride, calcium 

phosphate, magnesium oxide, potassium chloride, ferrous 

sulfate, zinc sulfate, copper sulfate, manganese sulfate, zinc 

oxide, sodium selenite, cobalt carbonate, calcium iodate).  

Beef 1 

Nebraska Brand ®, 

Nebraska Packing Inc.; 

North Platte, NE, USA; 

Special Beef Feline 

Beef, meat by-products, fish meal, soybean meal, dried beet pulp, 

calcium carbonate, dicalcium phosphate, dried egg, brewers 

dried yeast, salt, vitamin premix (choline chloride, vitamin E 

supplement, niacin, vitamin B12, riboflavin, folic acid, vitamin A 

acetate, thiamine mononitrate, d-calcium pantothenate, 

mineral oil, biotin, pyridoxine hydrochloride, vitamin D3 

supplement,), taurine, trace mineral premix (zinc oxide, 

manganous oxide, copper oxide, mineral oil, sodium selenite, 

calcium iodate).  

Beef 2 

Kennel Supply, LLC; 

Council Bluffs, IA, USA  

Frozen Beef Diet 

Beef, kidney, heart, liver, calcium carbonate.  
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Table 3.2: Chemical composition (DM basis) of horse-, pork-, and beef-based raw meat diets fed 
to domestic dogs (Canis lupus familiaris).1 

 Diet  

Item Horse Pork Beef 1 Beef 2 SEM 

DM % 36.2 35.2 35.8 32.2 1.9 

Moisture % 63.8 64.8 64.2 67.9 1.9 

OM % 91.1 94.7 93.0 94.9 0.3 

ASH % 8.9 5.3 7.0 5.1 0.3 

CP % 54.7 50.3 51.8 61.7 3.7 

Fat % 25.1 38.3 31.8 32.4 3.7 

TDF % 5.9 3.8 4.0 0.0   0.4 

NFE % 5.3 2.3 5.4 0.8 1.4 

GE (kcals/kg DM) 5805.0 6419.8 6090.4 6363.7 141.6 

1 Abbreviations: SEM, standard error of the mean; DM, Dry Matter; OM, Organic Matter; CP, 
Crude Protein; GE, Gross Energy; kcals, kilocalories; g, grams.  



80 
 

Table 3.3: Chemical composition (DM basis) of fecal samples collected from domestic dogs 
(Canis lupus familiaris) fed horse-, pork-, and beef-based raw meat diets.1 

 Diet  

Item Horse Pork Beef 1 Beef 2 SEM 

DM % 46.9c 37.4b 27.4a 46.7c 1.4 

OM % 63.7b 72.8c 64.7b 58.9a 0.5 

ASH % 36.3b 27.2a 35.3b 41.1c 0.5 

CP % 12.7a 19.3b 22.9c 18.9b 0.7 

Fat % 2.9a 6.1b 6.3b 21.5c 0.7 

GE (kcals/g DM) 3.0a 3.7c 3.5b 3.7c 0.1 

a-c Means within a row lacking a common superscript letter are different (P<0.05). 
1 Abbreviations: SEM, standard error of the mean; DM, Dry Matter; OM, Organic Matter; CP, 
Crude Protein; GE, Gross Energy; kcals, kilocalories; g, grams.  
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Table 3.4: Feed intake, fecal output, fecal scores, apparent total tract macronutrient and 

energy digestibilities, and energy calculations in domestic dogs (Canis lupus familiaris) (n=4) fed 

horse-, pork-, and beef-based raw meat diets.1 

 Diet  

Item Horse Pork Beef 1 Beef 2 SEM 

Intake      

 Feed intake (g AF/d) 553.5 553.5 553.5 553.5 -- 

 Feed intake (g DM/d) 200.3 194.8 198.1 178.0 -- 

 GE intake (kcals/d) 1162.8 1250.8 1206.5 1132.2 -- 

Output       

 Fecal output (g as-is/d) 69.1c 57.4c 102.4d 29.4a 7.2 

 Fecal output (g DM/d) 32.3d 21.3b 27.4c 13.5a 1.2 

 Fecal scores 1.2a 2.7c 3.1c 1.9b 0.2 

Apparent Digestibilities      

 DM % 83.3a 89.4c 86.1b 92.4d 0.6 

 OM % 88.4a 91.8b 90.3b 95.3c 0.4 

 CP % 96.2b 95.9b 93.8a 97.7c 0.3 

 Fat % 98.1b 98.2b 97.1b 94.9a 0.3 

 GE % 91.3a 93.9b 92.0a 95.5c 0.4 

Energy Calculations      

 DE (kcal/kg) 5297.7 6027.1 5605.2 6076.3 -- 

 ME1 (kcal/kg) 4659.4 5547.2 5148.5 5414.4 -- 

 ME2 (kcal/kg) 4233.9 5093.1 4703.5 4940.1 -- 

 ME3 (kcal/kg) 4728.7 5504.5 5066.2 5435.1 -- 

a-c Means within a row lacking a common superscript letter are different (P<0.05). 
1 Abbreviations: SEM, standard error of the mean; AF, As Fed; GE, Gross Energy; DM, Dry 
Matter; OM, Organic Matter; CP, Crude Protein; DE, digestible energy; ME, metabolizable 
energy; g, grams; d, day; kcals, kilocalories. 
ME1 = 9.0 kcal of ME/g of fat + 4.0 kcal of ME/g of CP + 4.0 kcal of ME/g of nitrogen free-extract 
ME2 = 8.5 kcal of ME/g of fat + 3.5 kcal of ME/g of CP + 3.5 kcal of ME/g of nitrogen free-extract 
ME3 = DE - (1.04 * g CP of diet) 
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Table 3.5: Salmonella spp. and generic E. coli presence in diet (n=16), saliva (n=36), and fecal 

(n=36) samples obtained from domestic dogs (Canis lupus familiaris) fed commercially available 

horse-, pork-, and beef-based raw meat diets.1 

  Treatment 

Item  Baseline Horse Pork Beef 1 Beef 2 

R
ep

lic
at

e 
1

: 

Sa
lm

o
n

el
la

 Diet:  -- Negative Negative Negative Negative 

Saliva: Negative Negative Negative Negative Negative 

Fecal: Negative Negative Positive Negative Negative 

E.
 C

o
li Diet: Negative Negative Negative Negative Positive 

Saliva: Negative Negative Positive Negative Negative 

R
ep

lic
at

e 
2

: 

Sa
lm

o
n

el
la

 Diet:  -- Negative Negative Negative Negative 

Saliva: -- Negative Negative Negative Negative 

Fecal: -- Negative Positive Negative Negative 

E.
 C

o
li Diet: -- Negative Negative Negative Positive 

Saliva: -- Positive Positive Negative Negative 

1 Abbreviations: spp, species; E. coli, Escherichia coli.   
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Table 3.6: Serum metabolite and electrolyte concentrations of domestic dogs (Canis lupus 
familiaris) fed commercially available horse-, pork-, and beef-based raw meat diets.1 

 Diet  
Reference 

Interval2 Item Baseline Horse Pork Beef 1 Beef 2 SEM 

BUN (mg/dL) 15.0a 28.0c 23.1b 23.4b 31.1c 1.6 10.00 – 30.00 

Creatinine (mg/dL) 0.9b 0.9b 0.8b 0.7a 0.9b 0.0 0.50 - 1.50 

Glucose (mg/dL) 89.0 87.1 89.3 89.0 86.0 2.6 68.00 - 115.00 

Total Protein (g/dL) 6.3 6.3 6.5 6.5 6.4 0.1 5.20 - 7.10 

Albumin (g/dL) 3.6 3.5 3.5 3.5 3.5 0.1 2.70 - 4.00 

Alk Phos (U/L) 34.3 24.6 26.1 25.1 26.1 2.5 20.00 - 150.00 

ALT (U/L) 52.8 40.3 35.8 42.1 46.0 4.0 24.00 - 90.00 

Total Bilirubin (mg/dL) 0.2 0.4 0.3 0.3 0.3 0.1 0.10 - 0.60 

Cholesterol (mg/dL) 181.3 208.8 227.0 193.6 231.5 20.7 132.00 - 300.00 

Triglycerides (mg/dL) 76.3 107.5 98.6 115.5 103.0 13.9 24.00 - 115.00 

Sodium (mEq/L) 144.0 143.9 144.6 140.6 144.4 1.9 141.00 - 151.00 

Potassium (mEq/L) 4.9 4.8 4.8 4.8 4.9 0.1 3.90 - 5.3  

Chloride (mEq/L) 110.3a 114.4b 114.9b 114.5b 114.5b 0.6 112.00 - 121.00 

Bicarbonate (mEq/L) 25.0 22.0 22.1 22.3 22.6 0.7 19.00 - 25.00 

Calcium (mEq/dL) 10.6 10.4a 10.5a,b 10.7b 10.5a,b 0.1 9.70 - 11.30 

Phosphorus (mEq/dL) 4.3 4.1 4.2 4.3 4.0 0.2 3.20 - 6.00 

Magnesium (mEq/dL) 2.0b 1.7a 1.9b 1.9b 2.0b 0.0 1.70 - 2.50 

a-c Means within a row lacking a common superscript letter are different (P<0.05). 
1 Abbreviations: SEM, standard error of the mean; BUN, blood urea nitrogen; Alk Phos, alkaline 
phosphatase; ALT, alanine aminotransferase; mg, milligrams; g, grams; U, standardized units; 
mEq, milliequivalent; L, liters; dL, deciliters.  
2 Reference intervals for canines are laboratory specific.  
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Table 3.7: Plasma complete blood count of domestic dogs (Canis lupus familiaris) fed 
commercially available horse-, pork-, and beef-based raw meat diets.1 

 Diet  
Reference 

Interval2 Item Baseline Horse Pork Beef 1 Beef 2 SEM 

WBCs (x103/μL) 12.5b 10.8a 10.7a 11.2b 10.8a 0.3 6.0 - 17.0 

Neutrophils (x103/μL) 7.6 6.8 6.4 6.9 6.5 0.3 3.0 - 11.4 

Lymphocytes (x103/μL) 3.7 3.5 3.5 3.3 3.4 0.1 1.0 - 4.8 

Monocytes (x103/μL) 0.5 0.5 0.5 0.5 0.5 0.0 0.2 - 1.4 

Eosinophils (x103/μL) 0.6 0.4 0.4 0.4 0.4 0.0 0.0 - 0.8 

Basophils (x103/μL) 0.03 0.03 0.03 0.03 0.03 0.0 0.00 - 0.10 

RBCs (x103/μL) 8.0 7.9 7.8 7.8 7.9 0.1 5.5 - 8.5 

Hemoglobin (g/dL) 18.7 19.2 19.0 19.1 19.1 0.2 12.0 - 18.0 

Hematocrit (%) 56.4 56.5 56.1 56.3 56.6 0.9 37.0 - 55.0 

MCV (fL) 70.8 71.6 71.6 71.9 71.8 0.4 60.0 - 77.0 

MCH (pg) 23.5a 24.3b 24.2b 24.3b 24.2b 0.1 19.5 - 30.0 

MCHC (g/dL) 33.2 34.0 33.9 33.8 33.7 0.2 32.0 - 36.0 

RDW (%) 12.8 12.4 12.4 12.4 12.4 0.2 11.6 - 14.8 

Platelets (x103/μL) 237.0 238.9 256.9 251.8 245.9 11.5 200.0 - 500.0 

MPV (fL) 9.9b 9.2a,b 9.0a,b 9.1a,b 8.7a 0.2 7.00 - 11.00 

a-b Means within a row lacking a common superscript letter are different (P<0.05). 

1 Abbreviations: SEM, standard error of the mean; WBCs, white blood cells; RBCs, red blood 
cells; MCV, mean corpuscular volume; MCH, mean cell hemoglobin; MCHC, mean cell 
hemoglobin concentration; RDW, red cell distribution width; MPV, mean platelet volume; g, 
grams; pg, picograms; μL, microliter; dL, deciliter; fL, femtoliter.  
2 Reference intervals for canines are laboratory specific.  
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Table 3.8: Cost analysis and total GE, DE, and estimated ME provided by commercially available 

horse-, pork-, and beef-based raw meat diets when fed to domestic dogs (Canis lupus 

familiaris).1 

 Diet 

Item Horse Pork Beef 1 Beef 2 

Intake     

 Feed intake (g AF/d) 553.5 553.5 553.5 553.5 

 Diet % DM 36.2 35.2 35.8 32.2 

 Feed intake (g DM/d) 200.3 194.8 198.1 178.0 

DE Estimates     

 DE (kcal/d) 1061.2 1174.3 1110.4 1081.3 

ME Estimates     

 ME1 (kcals/d) 933.3 1080.8 1019.9 963.5 

 ME2 (kcals/d) 848.1 992.3 931.8 879.1 

 ME3 (kcals/d) 947.2 1072.5 1003.6 967.2 

Approximate Cost of Diets     

 Cost ($/kg AF) 3.30 4.40 2.20 3.30 

 Cost ($/1000 kcal DE) 1.72 2.07 1.10 1.69 

 Cost ($/1000 kcal ME1) 1.96 2.25 1.19 1.89 

 Cost ($/1000 kcal ME2) 2.15 2.45 1.31 2.07 

 Cost ($/1000 kcal ME3) 1.93 2.27 1.21 1.89 

1 Abbreviations: AF, As Fed; DM, Dry Matter; DE, digestible energy; ME, metabolizable energy; 
g, grams; d, day; kcals, kilocalories. 
ME1 = 9.0 kcal of ME/g of fat + 4.0 kcal of ME/g of CP + 4.0 kcal of ME/g of nitrogen free-extract 
ME2 = 8.5 kcal of ME/g of fat + 3.5 kcal of ME/g of CP + 3.5 kcal of ME/g of nitrogen free-extract 
ME3 = DE – (1.04 * g CP of diet)
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CHAPTER 4 

EX VIVO EVALUATION OF INTESTINAL INTEGRITY AND GASTROINTESTINAL HISTOLOGY TO 

DETERMINE POTENTIAL GASTROINTESTINAL HEALTH IMPLICATIONS BETWEEN DOMESTIC 

DOGS FED COMMERCIAL EXTRUDED OR RAW MEAT-BASED DIETS.  

 

Chelsea A. Iennarella-Servantez1, Cayla J. Iske1, Jeremy M. Servantez2, and N. Matthew 
Ellinwood1. 

1 Department of Animal Sciences, Iowa State University, Ames, IA 
2 College of Veterinary Medicine, Iowa State University, Ames, IA 
 

Abstract: 

Feeding raw meat-based diets (RMBDs) to companion animals has continued to increase 

over the years due to perceived nutritional benefits on health. However, few data are published 

regarding the health effects of feeding RMBDs compared to extruded diets beyond nutrient 

digestibility. The objective of this pilot study was to evaluate the use of gastrointestinal 

histology and Ussing chamber technology for evaluations of transepithelial electrical resistance 

(TER) and macromolecule permeability in determining intestinal health effects associated with 

feeding extruded- versus RMBDs to domestic dogs (Canis lupus familiaris). Two intact male dogs 

were fed a rotation of four different RMBDs and two intact female dogs were fed a rotation of 

two different extruded diets for a minimum of seven months prior to euthanasia. Following 

euthanasia, tissue samples of the gastrointestinal tract and associated tissues were collected 

from each dog for histological examination. Additional intestinal samples were collected and 

used for Ussing chamber evaluation of TER and macromolecule permeability. As expected, diet 

macronutrient and energy concentration varied greatly between extruded- and RMBDs for dry 

matter (DM) (89.0, 34.8%), crude protein (32.2, 54.6%), fat (16.1, 31.9%), and gross energy (GE) 

(3.9, 6.2 kcal GE/g DM), respectively. Histology revealed that all dogs on study had mild 
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inflammation throughout the gastrointestinal tract and associated tissues but no clear 

differences in degree of inflammation were observed between dietary groups and mild 

inflammation was expected in adult dogs within the range obtained. Intestinal TER and 

macromolecule permeability data was highly variable across all dogs but numerical increases in 

apparent permeability coefficient (Papp) of FITC-Dextran transport were observed in extruded-

fed dogs suggesting lesser intestinal barrier function. The results of this pilot study suggest that 

gastrointestinal histology and Ussing chamber evaluation of intestinal membrane integrity may 

be used to characterize internal health effects of differing diet types and additional health 

benefits of feeding RMBDs may extend beyond nutrient digestibility.  

 

Introduction: 

Feeding raw meat-based diets (RMBD) has increased in popularity among pet owners in 

developed nations (Michel, 2006). Owner motivations for feeding RMBDs include perceived 

nutritional superiority and health benefits compared to processed diets such as extruded 

kibbles (Freeman et al., 2013). However, current published research efforts related to RMBDs 

fed to companion animals have focused primarily on macronutrient digestibility and microbial 

contamination. Health effects of feedings RMBDs, including diet-related histological changes, 

have not been evaluated and normal reference ranges for blood work have been established 

using primarily extruded-fed dogs. Currently, it is unknown if these ranges are appropriate for 

RMBD-fed dogs.  
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Ethical considerations for using companion animals in research have made it difficult to 

obtain tissue samples to better understand the influence of diet on internal health of the 

animal. Previous research has utilized opportunistic tissue collections from animals scheduled 

for euthanasia at animal shelters or research facilities. Ussing chamber ex vivo evaluation of 

intestinal integrity, as assessed by intestinal transepithelial electrical resistance (TER) and 

macromolecule permeability, has been used commonly in both porcine and murine models 

(Schulzke et al., 2005; Clarke, 2009; Boudry et al., 2011; He et al., 2013; Pearce et al., 2013; 

Pearce et al., 2014). Intestinal TER measures ion flux across a membrane. Increased TER due to 

decreased ion flux across a membrane is an indicator of increased intestinal integrity and 

barrier function (He et al., 2013). Ussing chambers also can be utilized to determine 

macromolecule permeability. Decreased macromolecule permeability, as determined by 

relative fluorescence, is another indicator of increased intestinal integrity and barrier function 

(He et al., 2013). TER and macromolecule permeability are typically inversely related. Ussing 

chamber evaluation may provide insight into intestinal barrier integrity and function. The 

objectives of this experiment were to compare histology of gastrointestinal tract and associated 

tissues, intestinal integrity, and intestinal barrier function of domestic dogs tended for 

euthanasia that have been fed extruded diets or RMBDs. We hypothesize no difference in 

histology of gastrointestinal tract and associated tissues, intestinal integrity, and intestinal 

barrier function between dogs fed extruded- versus RMBDs. 
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Materials and Methods: 

Animals: 

A total (n=4) of two intact males and two intact female domestic dogs (Canis lupus 

familiaris) with predominately hound bloodlines were used in this study ranging in age from 2 

to 3 years, body condition score (BCS) from 4 – 7 (9-point scale), and body weight from 12.5 – 

23.0 kg. Male dogs (n=2) were housed individually and female dogs (n=2) were co-housed in 

grated (2.5m L x 1.2m W x 1.8 m H) runs at the College of Veterinary Medicine at Iowa State 

University (Ames, IA, USA). Dogs used in this study served as breeding animals for a separate 

research colony and were scheduled for management euthanasia prior to conducting this 

experiment and had no diagnosed disease or known clinical symptoms. All dogs were used in 

accordance with the Iowa State University Institutional Animal Care and Use Committee 

(IACUC). Dogs were kept on a 14:10 hour light-dark schedule in a temperature controlled room 

(20°C). Water was provided ad libitum and dogs were fed to maintain body weight and BCS. 

 

Experimental Design and Diets: 

All dogs were provided and maintained on either a standard laboratory extruded diet 

after reaching one year of age (Envigo: Teklad 8653 Laboratory Dog Diet; Madison, WI, USA) or 

an extruded puppy food (Royal Canin: Medium Puppy Dry Dog Food; Sioux City, SD, USA) (Table 

4.1). Female dogs served as the control group and were maintained on a combination of the 

extruded diets. Male dogs were enrolled in a separate nutrition study evaluating digestibility of 

RMBDs in domestic dogs and served as the treatment group. Male dogs were provided a 

combination of one of four rotating RMBDs for a total of seven months prior to euthanasia and 
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were previously fed the same extruded diets as the females. RMBDs included one horse-based 

(Nebraska Brand Premium Feline; Central Nebraska Packing Inc.; North Platte, NE, USA (Horse)), 

one pork-based (Carnivore Essentials; Sustainable Swine Resources; Sheboygan Falls, WI, USA 

(Pork)), and two beef-based [Nebraska Brand: Special Beef; Central Nebraska Packing Inc.; 

North Platte, NE, USA (Beef 1); Frozen Beef Zoo Diet; Kennel Supply LLC; Council Bluffs, IA, USA 

(Beef 2)] diets (Table 4.1). Chemical analyses of RMBDs were conducted according to AOAC 

methodology as part of an alternative experiment (Chapter 3). Diet ingredients are presented in 

Table 4.1 and chemical compositions are presented in Table 4.2. 

 

Gastrointestinal Histology: 

All dogs were euthanized via administration of barbiturate overdose. Immediately 

following euthanasia, tissue samples were taken of liver, stomach, duodenum, jejunum, ileum, 

proximal colon, and mesenteric lymph nodes and placed into 10% neutral-buffered formalin for 

subsequent histological examination. Fixed tissue samples were trimmed, embedded in 

paraffin, sliced into 5μm sections, mounted onto slides in duplicate, and stained with 

hematoxylin and eosin (H&E). Following mounting and staining, tissue samples were evaluated 

by a single, board-certified veterinary histopathologist. The evaluator was blinded to dietary 

treatment and instructed to evaluate histological differences between dogs.  

 

Intestinal Transepithelial Electrical Resistance & Macromolecule Permeability: 

Immediately following euthanasia, intestinal samples from all dogs were taken of 

duodenum, jejunum, ileum, and proximal colon and transferred to chilled, oxygenated Krebs-
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Henseleit buffer (KHB) solution (25 mM NaHCO3, 120mM NaCl, 6.3 mM KCl, 1 mM MgSO4, 0.32 

mM NaH2PO4, and 2 mM CaCl2; pH = 7.4). Each intestinal section was trimmed into approximate 

2.5cm2 sections in duplicate. Tunica muscularis and tunica serosa layers were removed by blunt 

and sharp dissection. Intestinal sections were rinsed with KHB prior to mounting into modified 

Ussing chambers (Physiological Instruments; San Diego, CA, USA) in order to remove residual 

intestinal contents. Time from euthanasia to mounting did not exceed 30 minutes per dog. 

 

All intestinal sections from each individual dog were processed together so only one dog 

was euthanized per day. Intestinal sections were pinned flat, clamped at a voltage of 0 mV, and 

mounted between the halves (serosal side and mucosal side) of each chamber. All chamber 

slides had a surface area of 1.0 cm2. Each chamber was connected to dual channel current and 

voltage electrodes submerged in 3.0% noble agar and filled with 3 M KCl for electrical 

conductance as described by Pearce et al. (2013). Both serosal and mucosal sides of each 

chamber were filled with 4mL warm KHB solution. KHB solution was continuously oxygenated 

and circulated in water-jacketed reservoirs throughout the experiment to maintain a solution 

temperature of 37°C. Transepithelial electrical resistance (TER, Ω.cm2) was recorded for 30 

minutes.  

 

Following collection of TER data, KHB was removed from the luminal side of each 

chamber and replaced with 2.2mg/mL of 4.4 kDa fluorescein isothiocyanate labeled dextran 

(FITC-Dextran). Samples from both sides of each chamber were obtained in duplicate every 20 

minutes for a total of 80 minutes. The relative fluorescence was determined using a fluorescent 
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plate reader (Bio-Tek, USA). Excitation and emission wavelengths were 485 and 520 nm, 

respectively. An apparent permeability coefficient (Papp) was calculated for each tissue sample 

using the following equation: 

Papp = dQ/(dt x A x C0); where: dQ/dt = transport rate (μg/min); C0 = initial concentration 

in donor chamber (μg/mL); A = surface area of membrane (cm2).  

 

Statistical Analyses: 

Statistical analyses were not performed on these data due to small sample size and high 

expected variability of the data. TER and Papp values are reported individually for each dog and 

sample means were averaged across treatment group. Ranges across all dietary treatments are 

also reported.  

 

Results 

Diet Compositions: 

Diet macronutrient and energy profiles for extruded diets are presented in Table 4.2. On 

average, RMBDs were 83.1, 41.0, 49.4, and 36.9% greater in moisture, crude protein (CP), fat, 

and gross energy (GE) than extruded diets, respectively. On average, extruded diets contained a 

calculated nitrogen-free extract (NFE) content of 36.2% whereas the RMBDs had a calculated 

NFE content of 3.5%.  
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Gastrointestinal Histology: 

The histopathologist concluded that all dogs (n=4) in this study had mild inflammation 

noted throughout the gastrointestinal tract and accessory organs (Tables 4.3). Clear differences 

in degree of inflammation between extruded-fed or RMBD-fed dogs were not observed by the 

veterinary histopathologist. Dog 4 (RMBD-fed) had a focal liver change as characterized by 

irregular vacuolization by clear to eosinophilic flocculent material. No other histological 

abnormalities were noted. 

 

Intestinal Transepithelial Electrical Resistance & Macromolecule Permeability: 

Average intestinal TER ranged from 156.4 to 268.5 Ω.cm2 between the two dogs fed the 

extruded diet (Table 4.4). TER values ranged for duodenum (151.0 – 302.2 Ω.cm2), jejunum 

(152.8 – 339.0 Ω.cm2), ileum (242.8 – 235.7 Ω.cm2), and proximal colon (78.9 – 197.0 Ω.cm2). 

Average TER for extruded-fed dogs was 212.4 Ω.cm2. Unfortunately, TER data were not 

obtained from the RMBD-fed dogs because tissue samples were not clamped at a voltage of 0 

mV. Values for Papp (arbitrary units) ranged for duodenum (3.1 – 43.8), jejunum (3.8 – 91.1), 

ileum (4.5 – 76.6), and proximal colon (0.8 – 118.8) (Table 4.4). Marked differences were 

observed in Papp values between extruded- and RMBD-fed dogs. Average Papp for extruded-fed 

dogs was 57.9 (20.3 – 118.8) and 8.6 (0.8 – 23.9) for RMBD-fed dogs. Further, Ussing chamber 

technology was utilized in this study to evaluate region-specific differences in intestinal 

integrity and barrier function. Average Papp values for extruded-fed dogs were 36.3 (28.8 – 

43.8), 71.2 (51.2 – 91.1), 48.5 (20.3 – 76.6), and 75.7 (32.5 – 118.8) while Papp values for RMBD-

fed dogs were 6.9 (3.1 – 10.7), 8.4 (3.8 – 13.0), 14.2 (4.5 – 23.9), and 5.1 (0.8 – 9.4) for 
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duodenum, jejunum, ileum, and proximal colon, respectively. Although Papp values for RMBD-

dogs were lower than extruded-fed dogs for all sections measured, the most marked difference 

was observed in the colon with a 13.8-fold lower average Papp for RMBD-fed dogs (Table 4.4, 

Figure 4.1). 

 

Discussion 

Diet Composition and Implications: 

The extruded and RMBDs used in this study differed notably in nutrient profiles and 

ingredients as expected. Raw meat diets contained high moisture concentrations (63.8 – 

67.9%), CP (50.3 – 61.7%, dry matter basis (DMB)), and fat (25.1 – 38.3%, DMB) with little 

inclusion of dietary fiber and low NFE. In contrast, extruded diets were very low in moisture 

(10.0 – 12.0%), moderate in CP (31.1 – 33.3%, DMB) and fat (12.3 – 20.0%, DMB), and high in 

NFE (34.4 – 38.0%, DMB). Dogs do not have a metabolic requirement for dietary glucose and 

can meet their requirement through gluconeogenesis for both growth and maintenance 

(Romsos et al., 1976). However, dogs can efficiently digest dietary NFE when processed in 

extruded diets with apparent total tract digestibility of NFE as high as greater than 95% (Bazolli 

et al., 2015) and NFE can be used as an economical source of energy in the diet especially 

during lactation or illness (Romsos et al., 1976).  

 

Studies have documented high digestibility of RMBDs fed to exotic and domestic 

carnivores (Kendall et al., 1982; Hendricks et al., 1999; Vester et al., 2008; Vester et al., 2010a, 

2010b; Kerr et al., 2012; Kerr et al., 2013; Hamper et al., 2015; Iske et al., 2016). This increase in 
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digestibility can result in decreased feed intake and fecal output aiding in overall management 

and husbandry; however, increased digestibility may provide additional health benefits to the 

animal. Apparent total tract macronutrient and energy digestibilities were calculated as part of 

an alternative experiment (Chapter 3) for all RMBDs fed. Digestibility of nutrients and energy 

for RMBDs ranged from 83.3 – 92.4%, 88.4 – 95.3%, 93.8 – 97.7%, 94.9 – 98.2%, and 91.3 – 

95.5% for DM, organic matter (OM), CP, fat, and energy respectively. Apparent total tract 

digestibility averages for commercial processed dog and cat diets range from 78.0 – 81.0% and 

77.0 – 85.0% for CP and fat, respectively. Commercial, processed diets considered to be low-

residue, high-digestible diets have apparent total tract digestibilities exceeding 87.0 and 90.0% 

for CP and fat, respectively (Davenport and Remillard, 2010). Apparent total tract digestibilities 

were not determined for extruded-fed dogs in this study; however, an alternative study 

reported apparent total tract digestibilities in dogs fed a super-premium, extruded diet of 78.2, 

83.9, 81.6, 91.3, and 84.7% for DM, OM, CP, fat, and energy, respectively (Kerr et al., 2012). 

Suspected differences in apparent total tract macronutrient digestibility, especially CP 

digestibility, between extruded- and RMBD-fed may have implications on gastrointestinal 

health.  

 

Specifically, undigested dietary proteins and proteins from endogenous losses (e.g., 

digestive enzymes, sloughed intestinal cells, mucin, mesenteric blood, etc.) enter the large 

intestine and are subjected to microbial fermentation (Fuller and Reeds, 1998). Bacterial 

protein amino acid metabolism occurs through proteolysis, peptide degradation, deamination, 

and decarboxylation (Vince and Burridge, 1980; Jha and Berrocoso, 2016). Microbial 
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fermentation of protein in the large intestine produces putrefactive compounds that are 

associated with decreased intestinal integrity, gastrointestinal distress, and gastrointestinal 

disease across species (MacFarlane and Cummings, 1991; Ramakrishna et al., 1991; Hughes et 

al., 2000; Jha and Berrocoso, 2016).  

 

Putrefaction of proteins entering the large intestine leads to an accumulation of 

fermentative products including but not limited to: ammonia, biogenic amines, phenols, 

indoles, branched-chain fatty acids (BCFA), and short-chain fatty acids (SCFA) (MacFarlane and 

Cummings, 1991; Hughes et al., 2000; Kerr et al., 2012). Although SCFAs, such as butyric acid, 

play an important role in colonocyte energy metabolism; ammonia, phenols, indoles, and BCFAs 

can contribute to inflammation both in the large intestine and systemically (Bone et al., 1976; 

Nollet and Verstraete, 1996; Bikker et al., 2006). This indicates a balance between putrefactive 

and saccharolytic catabolism in the large intestine and has implications for intestinal and 

potentially whole body health (MacFarlane and MacFarlane, 1997).  

 

Some studies have indicated CP digestibility, rather than CP content, has the biggest 

influence on concentration of fecal putrefactive compounds because decreases in CP 

digestibility results in increased protein entering the large intestine acting as a substrate for 

microbial fermentation (Kerr et al., 2013). Kerr et al. (2013) documented that fecal ammonia 

and BCFA concentrations were greater (P<0.05) in domestic cats fed an extruded beef diet 

(190.4μmol/g DM, 43.7μmol/g DM) compared to cats fed a raw beef (69.4μmol/g DM, 

17.6μmol/g DM) or cooked beef (72.0μmol/g DM, 16.8μmol/g DM) diet, respectively. Although 
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these diets did not differ in CP concentration, apparent digestibility of protein from the 

extruded beef diet was (81.6%) compared with (P<0.05) the raw beef (93.3%) and cooked beef 

(92.9%) diets (Kerr et al., 2013). Considering dogs, Nery et al. (2012) demonstrated that CP 

concentration and CP digestibility both influenced concentration of fecal putrefactive 

compounds as dogs fed a medium-digestibility poultry meal (PM) diet had greater (P<0.05) 

fecal concentrations of ammonia (1.0μmol/g DM) and BCFAs (14.4μmol/g DM) than dogs fed a 

high-digestibility wheat gluten (WG) diet (0.8μmol/g DM; 9.7μmol/g DM, respectively). Dogs in 

this study fed a high protein (38.2-39.2% CP) diet had greater (p<0.001) concentrations of fecal 

ammonia (1.0μmol/g DM) and BCFAs (13.5μmol/g DM) compared with dogs fed a low-protein 

(21.4-21.6% CP) diet (0.7μmol/g DM; 10.6μmol/g DM, respectively), regardless of protein 

source (Nery et al., 2012).  

 

Interestingly, other studies have found that diets differing in CP digestibility did not 

result in higher concentrations of fecal putrefactive compounds. Vester et al. (2010b) 

documented that fecal ammonia and total BCFA concentrations did not differ significantly 

(p>0.05) between African Wildcats (Felis lybica) fed extruded (190.3μmol/g DM, 31.1μmol/g 

DM) or raw meat (137.2μmol/g DM, 21.2μmol/g DM) diets. Moreover, fecal ammonia 

concentrations of dogs fed a raw beef diet (125.9μmol/g DM) or raw chicken diet (105.1μmol/g 

DM) were not different and numerically similar to values obtained in the wildcats by Vester et 

al., (2010b) (Beloshapka et al., 2012). In contrast, fecal total BCFA concentrations in dogs (16.4-

17.6μmol/g DM) were numerically lower than values obtained in wildcats by Vester et al., 

(2010b) (21.2-31.1μmol/g DM) (139). Likewise, a study by Swanson et al. (2002) found that 
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fecal ammonia concentrations and total BCFA concentrations for adult female dogs fed 

extruded diets were 134.4μmol/g DM and 18.9μmol/g DM, respectively. Although there are no 

established reference ranges for concentrations of protein fermentation products, these 

published values suggest some similarities across dogs and cats and across various diet types. 

However, these values can be highly variable as they measure by-products of fermentation and 

not fermentation directly. These fermentation by-products (e.g., phenols, indoles, SCFAs, etc.) 

are constantly being absorbed across the intestinal epithelium and values present in the feces 

may not be reflective of the degree of macronutrient fermentation.  

 

Gastrointestinal Histology: 

Histopathology indicated all dogs exhibited mild inflammation throughout the digestive 

tract (Table 4.3). Inflammation in the gastrointestinal tract is triggered by the binding of 

pathogen-associated molecular patterns (PAMPs) that are molecular patterns shared by a 

variety of microorganisms, to pattern recognition receptors (PRRs) located on the cell 

membrane or within cellular vesicles in the gastrointestinal parenchyma (Gourbeyre et al., 

2015). Low numbers of inflammatory cells (e.g., lymphocytes, plasma cells, eosinophils) are 

expected within the lamina propria of the gastrointestinal tract due to continuous exposure to 

microorganisms and ingesta (Gourbeyre et al., 2015). As a result, a relatively broad range of 

inflammation in the gastrointestinal tract is considered normal (Jergens et al., 2014). As 

previously indicated, there were no observable differences in gastrointestinal inflammation 

between dietary groups even though the bacterial load in the RMBDs was suspected to be 

much greater than in the extruded diets because they did not undergo an antimicrobial, kill 
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step as is common in commercial, extruded diets. Dogs, as carnivores, have several anatomical 

and phsyiolgoical adaptations that allow them to tolerate the consumption of bacteria that 

would otherwise cause illness in humans (Bosch et al., 2015). As a result, dogs do not frequently 

exhibit clinical illness when colonized by potentially pathogenic bacteria (NRC, 2006; Lenz et al., 

2009). Continuous exposure of PRRs to their associated PAMPs can cause a desensitization of 

the PRRs and subsequent attenuation of down-stream inflammatory signaling (Lotz et al., 

2006). For this reason, long-term consumption of a diet high in microorganisms may not elicit 

an increased inflammatory response due to the desensitization of PRRs. With no differences 

detected in histology after 7 mo of feeding raw, it does not appear that RBMDs increased risk of 

inflammation in the gastrointestinal tract.  

 

Liver histology from Dog 4 indicated a mild focal vacuolar change. Interpretation from 

the histopathologist indicated that the focal nature of the lesion suggests that it was unlikely to 

be diet related as a systemic response typically manifests in a generalized manner. It is 

suspected that this lesion resulted from a prior liver insult or may represent an early 

hyperplastic change. 

 

Intestinal Transepithelial Electrical Resistance & Macromolecule Permeability: 

Marked differences were observed in intestinal TER values (extruded-fed only) and Papp 

values between dogs and tissue types. Previous studies in humans and non-human primates 

have indicated a correlation between aging and decreased intestinal integrity as indicated by 

decreased TER and increased macromolecule permeability (Tran and Greenwood-Van 
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Meerveld, 2013; Man et al., 2015). Dogs used in this study were young adults and 

approximately the same age at time of euthanasia (2.0-3.0 years old); therefore, age of dog 

likely did not influence results. A limitation of this study is that extruded-fed dogs were both 

female whereas RMBD-fed dogs were both male. Sex differences in mucosal immune activation 

have been documented in humans and rodent models (Al-Nakkash et al., 2011; Sankaran-

Walters et al., 2013; Shastri et al., 2015). As a result, differences in TER and macromolecule 

permeability may have been influenced by sex hormones. The TER values obtained from the 

extruded-fed dogs are similar to existing canine data (range approximately 80 – 260 Ωcm2) in 

the literature (Neirinckx et al., 2011; Hill and Bliklager, 2012). However, use of the Ussing 

chamber technique in canines is minimal and used biomedically, not for nutritional application. 

Limited use of this technology is likely due to ethical considerations involving euthanasia and 

tissue collection.  

 

Numerically, RMBD-fed dogs had an almost 6-fold lower Papp (8.6; range: 0.8 – 23.9) 

compared to extruded-fed dogs (57.9; range: 20.3 – 118.8). Greater Papp values indicate 

increased intestinal macromolecule permeability and are typically associated with decreased 

intestinal membrane integrity. The results of this preliminary study suggest that dogs fed 

extruded diets had decreased intestinal membrane integrity compared to RMBD-fed dogs as 

evidenced by a 85% reduction of Papp between extruded- and RMBD-fed dogs. Interestingly, 

these values compared to data from pigs were notably higher. Pearce et al. (2013) reported Papp 

of 3.61 +/- 0.93 and 2.74+/-3.55 for pigs housed under thermoneutral conditions and 7.92+/-

1.08 and 15.67+/-3.55 for heat stressed pigs for ileum and colon, respectively. Alternative 
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studies are consistent indicating lower Papp values in pigs than obtained for the dogs in this 

study for 4.4 kDa FITC-Dextran (Pearce et al., 2014).  

 

Given these data, the hypothesis that diet type affects gastrointestinal health and 

integrity in dogs should be evaluated in a larger scale experimental study. Human and non-

human primate studies have utilized biopsies in order to obtain tissue samples for Ussing 

chamber evaluation of intestinal integrity and barrier function (Tran and Greenwood-Van 

Meerveld, 2013; Man et al., 2015). Using biopsies for tissue collection would allow additional 

evaluation without using a terminal patient. Other studies in various species have measured 

urinary excretion of lactulose mannitol (or similar compound) following oral administration in 

order to assess intestinal barrier function in vivo (Wijtten et al., 2011; Sequeira et al., 2014). 

Although lactulose mannitol tests can provide an indication of gastrointestinal permeability, 

these results are not typically correlated with macromolecule permeability on Ussing chamber 

evaluation or bacterial translocation into intestinal epithelium (Wijtten et al., 2011). Further, ex 

vivo studies utilizing Ussing chambers allows for regional specific evaluation of intestinal 

integrity and therefore provides additional knowledge regarding gastrointestinal health 

(Westerhout et al., 2015). Differences in observed macromolecule permeability between 

lactulose mannitol tests and Ussing chamber evaluation may related to increased absorptive 

area of total tract in vivo measurements versus ex vivo regional specific differences.  
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Conclusions: 

After seven months on rotated raw diets, dogs did not show changes in inflammatory 

status but did exhibit a potential improvement in intestinal integrity as evidenced by an 85.0% 

lower Papp value compared to extruded-fed dogs. These data suggest that raw diets may, in fact, 

provide some health benefit beyond increased digestibility that warrant further investigation. 

Overall, additional studies need to be performed in order to explore the effects of diet type on 

intestinal health and integrity in dogs either from longitudinal studies using donated tissues or 

ex vivo experimental studies with differing simulated dietary conditions. Opportunistic tissue 

collection from the gastrointestinal tract and associated tissues can provide valuable insight 

into the internal health of dogs on varying diet types. Moreover, establishing baseline TER and 

Papp values for dogs of varying ages and sex may provide needed baselines for determining 

expected variability and analyzing experimental results in future studies. Our data provide some 

initial information and knowledge obtained using a novel application of Ussing chamber 

technology to evaluate intestinal integrity and barrier function differences in relation to diet 

type.   
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Table 4.1: Ingredient composition of extruded- and RMBDs fed to domestic dogs (Canis lupus 
familiaris).  

Diet Ingredients 

Extruded 1 

Envigo ®, Teklad 25% Lab 
Dog Diet; 8653 

 
 
 
 
 
 

 

Ground corn, porcine meat and bone meal, dehulled soybean 
meal, corn gluten feed, wheat middlings, porcine fat, poultry 
digest, dried beet pulp, ground wheat, dried whey, iodized salt, 
choline chloride, calcium propionate, kaolin, ferrous sulfate, 
vitamin E acetate, manganous oxide, zinc oxide, niacin, thiamin 
mononitrate, copper sulfate, calcium pantothenate, vitamin A 
acetate, menadione sodium bisulfite complex, riboflavin, 
pyridoxine hydrochloride, cobalt carbonate, ethylenediamine 
dihydroiodide, vitamin B12 supplement, folic acid, vitamin D3 
supplement, biotin. 

Extruded 2 

Royal Canin ®; Medium 
Puppy Dry Dog Food 

Chicken by-product meal, brewers rice, corn gluten meal, check 
fat, corn, wheat gluten, dried plain beet pulp, wheat, natural 
flavors, brewers rice flour, fish oil, calcium carbonate, grain 
distillers dried yeast, sodium silico aluminate, vegetable oil, 
potassium phosphate, salt, fructooligosaccharides, L-lysine, 
hydrolyzed yeast, choline chloride, taurine, DL-methionine, 
vitamins [DL-alpha tocopherol acetate, L-ascorbyl-2-
polyphosphate, biotin, D-calcium pantothenate, vitamin A 
acetate, niacin supplement, pyridoxine hydrochloride, 
thiamine mononitrate, vitamin B12 supplement, riboflavin 
supplement, folic acid, vitamin D3 supplement, zinc proteinate, 
zinc oxide, ferrous sulfate, manganese proteinate, manganous 
oxide, copper sulfate, calcium iodate, copper proteinate, 
sodium selenite, rosemary extract, mixed tocopherols, citric 
acid. 

Horse 

Nebraska Brand ®, 
Nebraska Packing Inc.; 
North Platte, NE, USA; 

Premium Feline 

Horsemeat, powdered cellulose, dicalcium phosphate, calcium 
carbonate, vitamin premix (roughage products, vitamin E 
supplement, mineral oil, niacin supplement, biotin, menadione 
sodium bisulfite complex, vitamin A supplement, riboflavin, 
pyridoxine hydrochloride, folic acid, calcium pantothenate, 
thiamine mononitrate, vitamin D3 supplement), trace mineral 
premix (copper sulfate, manganese sulfate, ethylenediamine, 
dihydriodide, sodium selenite), choline chloride, taurine, salt.  
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Table 4.1 continued: Ingredient composition of extruded- and RMBDs fed to domestic dogs 
(Canis lupus familiaris).  

Pork 

Sustainable Swine 
Resources , LLC;  

Carnivore Essentials 

Pork, pork-byproducts, vitamin premix (beet pulp, cellulose, 
calcium carbonate, rice hulls, sodium chloride, mineral oil, 
vitamin E supplement, d-α-tocopheryl acetate, biotin, niacin 
supplement, thiamine mononitrate, vitamin B12 supplement, 
vitamin A acetate, vitamin D3 supplement, pyridoxine 
hydrochloride, riboflavin supplement, d-calcium pantothenate, 
folic acid), mineral premix (beet pulp, cellulose, calcium 
carbonate, rice hulls, mineral oil, choline chloride, calcium 
phosphate, magnesium oxide, potassium chloride, ferrous 
sulfate, zinc sulfate, copper sulfate, manganese sulfate, zinc 
oxide, sodium selenite, cobalt carbonate, calcium iodate).  

Beef 1 

Nebraska Brand ®, 
Nebraska Packing Inc.; 
North Platte, NE, USA; 

Special Beef Feline 

Beef, meat by-products, fish meal, soybean meal, dried beet pulp, 
calcium carbonate, dicalcium phosphate, dried egg, brewers 
dried yeast, salt, vitamin premix (choline chloride, vitamin E 
supplement, niacin, vitamin B12, riboflavin, folic acid, vitamin A 
acetate, thiamine mononitrate, d-calcium pantothenate, 
mineral oil, biotin, pyridoxine hydrochloride, vitamin D3 
supplement,), taurine, trace mineral premix (zinc oxide, 
manganous oxide, copper oxide, mineral oil, sodium selenite, 
calcium iodate).  

Beef 2 

Kennel Supply, LLC;  

Frozen Beef Diet 

Beef, kidney, heart, liver, calcium carbonate.  
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Table 4.3: Histopathology results for extruded- and RMBD- fed domestic dogs (Canis lupus 

familiaris).1 
 Tissue: Findings: 

D
O

G
 1

 –
 E

X
TR

U
D

ED
-F

ED
 

R
es

u
lt

s:
 

Liver: Within normal limits.  

Stomach: In widely scattered locations, superficial lamina propria infiltrated by 
low numbers of lymphocytes and plasma cells.  

Pancreas: Within normal limits.  

Duodenum: Multifocally, the superficial villus lamina propria is expanded by low 
numbers of lymphocytes and plasma cells.  

Jejunum/Ileum: Within normal limits. 

Proximal Colon: Superficial colonic lamina propria is multifocally expanded by low to 
focally moderate numbers of lymphocytes and plasma cells.  

MLN: Medullary sinuses are moderately expanded by clear spaces.  

C
o

n
cl

u
si

o
n

s:
 Stomach: Mild, multifocal, lymphoplasmacytic gastritis.  

Duodenum: Mild, multifocal, lymphoplasmacytic enteritis.  

Proximal Colon: Mild, multifocal, lymphoplasmacytic colitis.  

MLN: Moderate medullary edema. 

D
O

G
 2

 –
 E

X
TR

U
D

ED
 F

ED
 

R
es

u
lt

s:
 

Liver: Within normal limits.  

Stomach: In widely scattered locations, superficial lamina propria infiltrated by 
low numbers of lymphocytes, plasma cells, and occasional eosinophils.  

Pancreas: Within normal limits. 

Duodenum: Multifocally, the superficial villus lamina propria is expanded by low 
numbers of lymphocytes, plasma cells, and occasional eosinophils. 
Low numbers of lymphocytes are migrating through the surface 
epithelium.  

Jejunum/Ileum: Within normal limits. 

Proximal Colon: Superficial colonic lamina propria is multifocally expanded by low 
numbers of plasma cells and lymphocytes.  

MLN: Medullary sinuses are mildly expanded by clear spaces.  

C
o

n
cl

u
si

o
n

s:
 Stomach: Mild, multifocal, lymphoplasmacytic and eosinophilic gastritis.  

Duodenum: Mild, multifocal, lymphoplasmacytic and eosinophilic enteritis.  

Proximal Colon: Mild, multifocal, lymphoplasmacytic colitis.  

MLN: Mild, medullary edema. 
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Table 4.3 continued: Histopathology results for extruded- and RMBD- fed domestic dogs 
(Canis lupus familiaris).1 

D
O

G
 3

 –
 R

M
B

D
-F

ED
 

R
es

u
lt

s:
 

Liver: Within normal limits. 

Stomach: -- 

Pancreas: Within normal limits.  

Duodenum: Multifocally, the superficial villus lamina propria is expanded by low 
numbers of lymphocytes and plasma cells.  

Jejunum/Ileum: Within normal limits.  

Proximal Colon: Within normal limits.  

MLN: --  

C
o

n
cl

u
si

o
n

s:
 

Duodenum: Mild, multifocal lymphoplasmacytic enteritis.  

 

 

 

D
O

G
 4

 –
 R

M
B

D
-F

ED
 

R
es

u
lt

s:
 

Liver: Sections of liver have a small, irregular focus in which hepatocyte 
cytoplasm is diffusely distended by clear to eosinophilic flocculent 
material.  

Stomach: In widely scattered locations, the superficial lamina propria is 
infiltrated by low numbers of lymphocytes and plasma cells.  

Pancreas: Within normal limits.  

Duodenum: -- 

Jejunum/Ileum: Multifocally, the superficial villus lamina propria is expanded by low 
numbers of lymphocytes and plasma cells.  

Proximal Colon: Superficial colonic lamina propria is multifocally expanded by low to 
focally moderate numbers of plasma cells and lymphocytes. 

MLN: Medullary sinuses, and to a lesser extent the subcapsular sinuses, are 
moderate to markedly expanded by clear spaces.  

C
o

n
cl

u
si

o
n

s:
 

Liver: Mild, focal, vacuolar change. 

Stomach: Mild, multifocal, lymphoplasmacytic gastritis. 

Jejunum/Ileum: Mild, multifocal, lymphoplasmacytic enteritis. 

Proximal Colon: Mild, multifocal, lymphoplasmacytic colitis. 

MLN: Moderate edema. 

1 Abbreviations: MLN, Mesenteric Lymph Node. 
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Table 4.4: Intestinal transepithelial electrical resistance (TER, Ω.cm2) and apparent permeability 
coefficients (Papp) for domestic dogs (Canis lupus familiaris) fed extruded- versus RMBDs.  

 Extruded-fed RMBD-fed   

Item Dog 1 
Tissue 

Average Dog 2 Dog 3 
Tissue 

Average Dog 4 Average Range 

Duodenum         

 TER (Ω.cm2) 151.0 226.6 302.2 -- -- -- 226.6 151.0 - 302.2 

 Papp  28.8 36.3 43.8 10.7 6.9 3.1 21.6 3.1 - 43.8 

Jejunum         

 TER (Ω.cm2) 152.8 245.9 339.0 -- -- -- 245.9 152.8 - 339.0 

 Papp 91.1 71.2 51.2 3.8 8.4 13.0 39.8 3.8 - 91.1 

Ileum         

 TER (Ω.cm2) 242.8 239.3 235.7 -- -- -- 239.2 235.7 - 242.8 

 Papp 76.6 48.5 20.3 4.5 14.2 23.9 31.3 4.5 - 76.6 

Proximal Colon         

 TER (Ω.cm2) 78.9 138.0 197.0 -- -- -- 137.9 78.9 - 197.0 

 Papp 32.5 75.7 118.8 9.4 5.1 0.8 40.4 0.8 – 118. 

TE
R

 (
Ω
.c
m

2 ) 

Dog Average 156.4 268.5 -- -- 
 

Dog Range 78.9 - 242.8      197.0 - 339.0 -- 

Diet Average 212.4 -- 

Diet Range 78.9 - 339.0 -- 

P
ap

p
 

Dog Average 57.3 58.5 7.1 10.2 

Dog Range 28.8 - 91.1 20.3 – 118.8 3.8 – 10.7       0.8 – 23.9 

Diet Average 57.9 8.6 

Diet Range 20.3 - 118.8 0.8 - 23.9 

1 Abbreviations: TER, transepithelial electrical resistance; apparent permeability coefficient, Papp. 
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CHAPTER 5 

CONCLUSIONS 

 

Dietary options and protein source, including pork, in RMBDs has been evaluated in 

exotic felids (Vester et al., 2010; Kerr et al., 2012; Iske et al., 2016). Few data exist regarding 

digestibility and fecal characteristics associated with feeding raw zoological diets to exotic 

canids. Conducting nutrition studies with managed exotic canids is often difficult because 

animals are group-housed, preventing accurate individual feed intake and fecal output 

collection. Instead, domestic dogs may serve as an experimental model for nutrition studies for 

some exotic canid species.  

 

From a nutritional standpoint, domestication gave dogs an increased ability to digest 

and utilize starch in the diet (Axelsson et al., 2013). However, dogs still possess physiological 

adaptations (e.g., short gastrointestinal tract, low stomach pH, commensal bacteria, etc.) 

characteristic of carnivores (Bosch et al., 2015). The functional and anatomical similarities 

between dogs and exotic canids suggest that dogs may be appropriate models for nutrition 

studies when diets are low in starch. 

  

As RMBDs increase in popularity among pet owners, concerns increase regarding 

nutritional appropriateness and also human and animal health concerns associated with 

feeding these diets. Suspected pathogen exposure to humans from saliva of dogs consuming 

RMBDs is one concern that has recently been evaluated. Fecal shedding of microorganisms in 

dogs fed RMBDs has been documented and may expose humans to these pathogens. To date, 
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the author has found no documented cases of human illness from a dog fed a RMBD. However, 

these risks should be considered and common sense hygiene practices should be implemented 

when handling these diets.  

 

As the field of companion animal nutrition expands, increasing emphasis is being placed 

on effects of nutrition on health and longevity. Nutrition research in companion animals not 

only offers benefits to pets and owners alike, it may also provide needed insight into exotic 

canids and felids. Future studies should be designed to maximize application of research to 

encompass both companion animals and exotic carnivores. The overall objectives of this 

research were to evaluate four existing raw meat-based dietary options available for exotic 

canids and to evaluate human and animal health implications of feeding these diets to domestic 

dogs. We hypothesized all RMBDs evaluated: 1.) would be highly digestible in domestic dogs, 

2.) microbial risk to humans would be low, and 3.) there would be no adverse implications on 

canine health as a result of feeding RMBDs.  

 

Specific Aim 1 (chapter 3): Evaluate diet composition, apparent total tract macronutrient and 

energy digestibility, feed intake, fecal output, and microbial presence in domestic dogs fed 

RMBDs commercially manufactured for zoological carnivores.  

Nutrient and energy concentrations for all diets ranged for dry matter (DM) (32.2 – 

36.2%), organic matter (OM) (91.1 – 94.9%), crude protein (CP) (50.3 – 61.7%), fat (25.1 – 

38.3%), and gross energy (GE) (5.8 – 6.4 kcal/g). Digestibility of nutrients and energy ranged 

from 83.3 – 92.4%, 88.4 – 95.3%, 93.8 – 97.7%, 94.9 – 98.23%, and 91.3 – 95.5% for DM, OM, 
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CP, fat, and energy respectively, with Beef 2 diet having greater (P<0.05) DM (92.4%), OM 

(95.3%), CP (97.7%), and GE (95.5%) digestibilities but lesser (P<0.05) fat digestibility (94.9%) 

than all other diets evaluated. These data suggest although dietary treatments varied they were 

comparable in diet composition and apparent total tract macronutrient and energy 

digestibilities, indicating that all RMBDs evaluated may be effective dietary options for exotic 

canids from a digestibility standpoint.  

 

Average fecal scores across treatments were 2.2 out of 7 (Nestlé Purina). Fecal output 

was greatest (P<0.05) for dogs consuming Beef 1 diet (102.4 g/d) and lowest for dogs 

consuming Beef 2 diet (29.4 g/d) on an as-is basis. Fecal dry matter ranged from 27.4% (Beef 1) 

to 46.9% (Horse). These data indicate that RMBDs evaluated did not cause poorly formed stools 

or diarrhea. Because marked differences in fecal output on both a dry matter and as-is basis 

were observed, dietary selection may have implications on feces management and frequency of 

defecation for animals.  

 

All diet samples (n=16) tested negative for Salmonella spp. while both diet samples from 

the Beef 2 diet tested positive for E. coli. All saliva samples (n=36) tested negative for 

Salmonella spp.; two saliva samples tested positive for E. coli. Two fecal samples (n=36) tested 

positive for Salmonella spp. These data indicate that dogs consuming RMBDs, as well as RMBDs 

themselves, may serve as vectors for bacterial illness in a small percentage of cases. As a result, 

common sense hygiene practices should be followed when handling RMBDs or when coming 

into contact with saliva or feces of animals, regardless of diet.  
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Specific Aim 2 (chapter 4): Application of novel technology to compare gastrointestinal 

histology, intestinal transepithelial electrical resistance, and intestinal macromolecule 

permeability between domestic dogs fed commercial extruded versus RMBDs. 

Histological examination showed that all dogs had mild inflammation throughout the 

gastrointestinal tract and associated tissues; however, no clear differences in the degree of 

inflammation were observed between extruded- versus RMBDs. These data suggest that 

consumption of RMBDs, assumed to be comparatively high in bacteria, did not contribute to 

increased inflammation in the gastrointestinal tract or in associated tissues. High variability 

existed in the intestinal transepithelial electrical resistance (TER) and macromolecule 

permeability data. Substantial numerical increases in apparent permeability coefficient (Papp), 

indicating increased macromolecule permeability and decreased intestinal integrity, were 

documented in extruded-fed dogs. These data suggest potential differences in intestinal 

permeability between dogs consuming different diet types and may indicate some benefit to 

RMBDs beyond digestibility improvements. Larger scale studies are warranted due to observed 

high variability between animals and tissues within and across dietary treatments. Moreover, 

histological evaluation of gastrointestinal tract and associated tissues, in addition to Ussing 

chamber evaluation of intestinal TER and macromolecule permeability, may provide additional 

insight to the internal health of dogs on varying diet types.  

 

Future Research:  

Although this research provided new insights in the area of canid nutrition as it relates 

to feeding RMBDs on human and animal health, many questions still remain that should be 
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targets of future research efforts. Additional studies are needed to evaluate specific diet 

ingredients and nutrient concentrations for management of exotic carnivores, specifically in 

reference to ingredient types (e.g., fiber, protein sources, etc.). For this research, domestic dogs 

were used as an experimental model for exotic canids because of functional and anatomical 

similarities between their gastrointestinal tracts. Future research should aim to make a direct 

comparison between digestion efficiencies of domestic dogs and different species of exotic 

canids for varying diet types.  

 

To date, research efforts surrounding health effects associated with RMBDs have 

focused almost exclusively on improperly formulated diets. Short-term feeding trials of RMBDs, 

for the purpose of digestibility studies, have provided some insight on the ability of domestic 

dogs and cats to tolerate RMBDs. To our knowledge, this study provides the first look at the 

potential health effects of long-term feeding of RMBDs to domestic dogs. Preliminary data 

suggest potential intestinal integrity benefits associated with feeding RMBDs compared to 

extruded diets. Additional long-term feeding studies need to be performed in order to assess 

the internal health implications of varying diet types. When possible, obtaining tissue samples 

can provide added insight to internal health of companion and exotic animals but should only 

be taken opportunistically due to ethical considerations.  
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