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Automatic Classification of Bloodstain Patterns
Caused by Gunshot and Blunt Impact at

Various Distances

ABSTRACT: The forensics discipline of bloodstain pattern analysis plays an important role in crime scene analysis and reconstruction. One
reconstruction question is whether the blood has been spattered via gunshot or blunt impact such as beating or stabbing. This paper proposes
an automated framework to classify bloodstain spatter patterns generated under controlled conditions into either gunshot or blunt impact classes.
Classification is performed using machine learning. The study is performed with 94 blood spatter patterns which are available as public data
sets, designs a set of features with possible relevance to classification, and uses the random forests method to rank the most useful features and
perform classification. The study shows that classification accuracy decreases with the increasing distance between the target surface collecting
the stains and the blood source. Based on the data set used in this study, the model achieves 99% accuracy in classifying spatter patterns at dis-
tances of 30 cm, 93% accuracy at distances of 60 cm, and 86% accuracy at distances of 120 cm. Results with 10 additional backspatter pat-
terns also show that the presence of muzzle gases can reduce classification accuracy.
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A bloodstain pattern is an ensemble of bloodstains. Stains are
marks that can be observed on a solid surface called a target. A
blood spatter pattern is produced by drops from a blood source
which have traveled through the air before reaching a target surface,
such as a wall or the cardstock used in this study. Bloodstain pattern
analysis (BPA) has been used in US criminal courts since the sec-
ond half of last century (1-3). BPA interprets the bloodstain patterns
in a crime scene in order to provide evidence to support the crime
scene reconstruction (3,4). Typically, BPA uses principles of phy-
sics, statistics, biology, and mathematics. Example reconstruction
questions are as follows: “What is the mechanism causing the
bloodstain patterns? Where is the origin of the blood source?”

Regarding the latter question, established methods based on
the assumption of straight trajectories are widely used to predict
the region of origin of a blood spatter pattern (5,6). Reference
(7) proposed a method to improve the determination of the blood
source location, and Varney et al. (8) introduced a plot-based
method to locate the blood source. Further, Camana et al. (9)
used a probabilistic approach to identify the horizontal projection
of the location of the blood source.
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While there have been multiple academic efforts to estimate the
location of the blood source, less attention has been given to deter-
mine the mechanism causing the spatter pattern. A question of
interest is whether the spatter patterns were caused by a bullet or
blunt impact. Classifying the bloodstain patterns helps support
other evidences such as weapons or bullet marks found on the
crime scene. Stain size is used in Ref. (3) to classify spatter pat-
terns between high-velocity spatter patterns, usually generated
from gunshot, and medium-velocity blood spatter patterns, that is,
generated from blunt impacts of club, axe, hammer, fist, and brick.
They observed in their experiment that “many” stains in a med-
ium-velocity spatter pattern exhibit 1/8 inch diameter or smaller,
while “essentially all” stains in a high-velocity spatter pattern have
diameters smaller than 1/8 inch. James et al. (10) presents the tra-
ditional method of distinguishing medium- and high-velocity
impact spatter patterns based on a hypothetical correlation between
the velocity of the generation mechanism and the size of resulting
bloodstains. They stated that “medium-velocity impact spatters
(MVIS) are bloodstains created when the source of blood is sub-
jected to a force with a velocity in the range of 5 to 25 ft/sec. The
diameters of the resulting stains are in the size range of 1 to 3 mm,
although smaller and larger stains may be present. Stains in this
category were usually associated with beatings and stabbings.” On
the other hand, “High velocity impact spatters (HVIS) are blood-
stains created when the source of blood is subjected to a force with
velocity of greater than 100 ft/sec. The diameters of the spatters
are predominately less than 1 mm, although smaller and larger
stains are often observed....”

There is currently no widely accepted method to discriminate
between gunshot and impact patterns, and the forensic commu-
nity has abandoned the above distinction between medium-
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velocity and high-velocity impact spatter patterns (10,11). A rea-
son is that both gunshot and blunt spatter patterns exhibit a large
number of small stains under 1/8 inch (3). In addition, the above
classification criterion is not quantitative enough, with expres-
sions such as “many” and “essentially all under 1/8 inch diame-
ter.” Also, classification by BPA analysts is viewed as subjective
and vulnerable to contextual bias (12). For instance, the phrase
“predominately less” used in Ref. (10) depends on the apprecia-
tion of the BPA analyst. Taylor et al. (13) assessed the reliability
of classification decisions in bloodstain pattern analysis. In that
study, well-trained and experienced analysts achieved a classifi-
cation accuracy of 69.5%. Another challenge is that multiple fac-
tors affect the generation of blood spatter patterns and are
currently poorly considered. One factor is the horizontal distance
from blood to target, called hereafter the BT distance, that is, the
horizontal distance between the blood source and the stained tar-
get surface. For gunshot spatter patterns, if the BT distance is
larger than 3 or 4 feet, the average size of bloodstains will
increase because small drops cannot travel as far as larger ones.
The reason for this observation stems from basic physics and
experience: Small snowballs do not travel as far as larger ones,
because drag affects the inertia of smaller objects much more
than that of larger ones. Other factors causing variations in the
spatter generation process include the speed and shape of the
bullet, and these effects are not yet completely understood (14—
16). Within these current challenges, there are needs and oppor-
tunities for less ambiguous and more objective methods in foren-
sic analysis, and artificial intelligence is certainly a way to assist
the analyst in classification (17).

With the development of digital image analysis, a large number
of pattern recognition and machine learning methods have found
their way into the field of forensic science. De Chazal et al. (18)
proposed a system that automatically sorts a database of shoeprint
pattern categories in response to a reference shoeprint image.
Automatic classification has the potential to minimize bias in
forensic investigation and testimony. For instance, classification of
bloodstains patterns caused by different atomization processes
becomes more objective by applying digital image processing
methods. Arthur et al. (19) described in detail how to automati-
cally obtain measurements and features from a digital image, using
commercial software (20). Siu et al. (11) proposed a framework to
distinguish between forward gunshot and blunt force impact spat-
ter patterns in a quantitative way. In their work, descriptive statis-
tics were used to select the important features; however, they did
not show how to classify an unknown spatter pattern and did not
mention the performance of their framework. Arthur et al. (21)
proposed the first documented attempt to automatically classify
impact versus cast-off spatter patterns. This work is related to the
classification challenge addressed in this manuscript. The main
feature, identified in Ref. (21), to classify between impact and
cast-off was the linear alignment of the stains in a given pattern.
This feature is likely irrelevant to the case addressed in the present
study where the spatter mechanism is radial in both gunshot and
blunt impact cases, rather than linear.

It is the belief of the authors and one of the reviewers that BPA
needs research to build quantitative, less subjective methods to
underpin the pattern classification task. The route to developing
computer-assisted bloodstain pattern classification is a long one.

In this paper, we develop a stable, quantitative, and objective
framework to classify the blunt impact (referred as impact) spat-
ter patterns and backward gunshot spatter patterns (referred as
gunshot). The framework combines digital image analysis and
machine learning methods. All the spatter patterns used in this

study are available to the research community (22,23). The spat-
ters are generated under controlled conditions described in Refs
(22,23) and briefly repeated in the next section for the sake of
completion. Based on high-quality images of the spatter patterns,
we describe how to construct global and local features. A subset
of spatter patterns is used for feature engineering, which is the
process to construct features (24,25) based on intuition or on an
understanding of the physics at hand. Later, we randomly split
the remaining spatter patterns into a training and a test set. A
training set is used to train the machine learning model, here the
random forests model. Then, the model performance is obtained
by comparing the predicted mechanism of each test case with its
known mechanism. We repeat this procedure 1000 times on ran-
domly selected testing and training cases to obtain the average
performance of the proposed model on the given spatter patterns
(22,23). Meanwhile, we explore the influence of the BT distance
on features and calculate the performance of the proposed frame-
work at different BT distances. Our framework achieves 98.81%
accuracy in classifying impact spatter patterns versus gunshot
backspatter patterns at BT distances no larger than 30 cm,
93.20% accuracy at BT distances no larger than 60 cm, and
85.96% accuracy at BT distances no larger than 120 cm.

The major contribution of this study consists of three parts.
First, we construct a set of novel local or global features from
the image of a blood spatter pattern. Second, we propose a new
machine learning framework to predict the mechanism causing a
blood spatter pattern, either blunt impact or gunshot. Third, we
conduct a comprehensive analysis of the performance of the pro-
posed framework at different BT distance ranges. A major differ-
ence between the work presented here and the automatic
classification study (21) is that the data set used in Ref. (21) is
not publicly available, which currently makes it impossible to
reproduce the work in Ref. (21). The key contribution of this
paper is the methodology itself.

The manuscript starts with a presentation of the used methodol-
ogy: statistics, production of the bloodstain patterns, image process-
ing, feature developed for the classification, and presentation of the
classification method used, called random forests. Results are pre-
sented in terms of classification performance and ranking of the
most efficient features. Conclusions summarize the novelty of the
work, highlight the current limitations, and suggest future work.

Methods
Statistics Terminology and Useful Concepts

We briefly define the statistic terms used in this paper:
Consider a sample of n observed data points (xi, .. .x,), which
are independent and identically distributed. Let us define:

n
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n
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1. (sample) mean:x =

2. (sample) SD: s, =

of the data distribution

3. (sample) median: ordering all data points and selecting the
one in the middle (or if there are two middle numbers, tak-
ing the mean of those two numbers).

4. (sample) Pearson correlation coefficient: a measurement of
the linear correlation between two variables X and Y.

5. Skewness: measure of the asymmetry of the probability dis-
tribution about its mean. A Gaussian distribution is symmet-
rical about its mean; thus, its skewness is zero.

which measures the spread



Bloodstain Spatter Patterns and Digital Image Preprocessing

The data set used throughout this paper consists of 94 spatter
patterns generated via controlled experiments of gunshot
backspatter or blunt impact spatter (22,23). Ten additional pat-
terns from Ref. (23) were then used to specifically test the influ-
ence of muzzle gases on the classification accuracy. Table la,b
describes the names and characteristics of the patterns used in
this study. The experimental methods used to generate the spat-
ter patterns are fully described in Refs (22,23) and are only
briefly summarized here.

For the 94 impact and backspatter patterns considered in this
study, fresh swine blood with anticoagulants was used, at room
temperature. Spatter patterns were produced in an indoor room,
without external airflow. Spatter patterns were produced on a flat
target surface, placed vertically and made of white cardstock for
all spatters, except two generated on butcher paper. Spatter pat-
terns were then allowed to dry and scanned at the high resolution
of 600 dots per inch. The scanner eliminates the parallax error that
is often present in crime scene pictures. Since the area of the scan-
ner is smaller than the maximum target surface of
1.36 m x 1.1 m used to collect the spatter pattern, scans are per-
formed in a piecewise manner and assembled using graphics editor
software Adobe Photoshop®. The spatter patterns are listed in
Table 1b, and full description of how each pattern was generated
is in Refs (22,23).

To generate impact spatter patterns, the following procedure
was typically used (Fig. 10). A blood pool with volume 1 mL
on a flat immobile hard surface was impacted by either a rod (at
velocities between 5 and 9 m/sec, denoted as “hockey puck”) or
another parallel flat surface (at velocities between 2 and 4 m/sec,
denoted as “cylinder”). Horizontal distances between target and

blood source were varied between 30 and 200 cm. Table 1b lists
all the pattern names, with the few cases where the typical pro-
cedure was modified.

Gunshot backspatters are spatters where blood is atomized by
a bullet, and bloodstains are splashed in a direction opposite to
that of the bullet (5,26). Figure la describes the experimental
setup to generate the gunshot backspatter patterns. For the spat-
ter patterns investigated in this work, the travel direction of the
bullet is perpendicular to both blood source and the target, and a
bullet hole is created on the target surface. To generate gunshot
backspatter patterns, the following procedure was typically used.
A cavity with volume 2.5 or 10 mL was made in a foam board,
completely filled with blood, then closed, and held vertically.
This blood source was impacted normally by a bullet traveling
horizontally. Bullet with pointy, round, or flat nose was shot
with a handgun or a rifle, with velocities between 285 and
987 m/sec. Bullet velocities in handgun experiments were about
three times lower than the velocities in rifle experiments. Hori-
zontal distances between the vertical target and blood source
were varied from 10 c¢cm to about 120 cm. For most experiments,
a diffuser plate was used to prevent the muzzle gases of the gun-
shot to interact with the spattered drops, while this interaction
was purposefully present in 10 other experiments. The bullet
hole was hidden from the digitally scanned spatter patterns.
Table 1b lists all the pattern names, with the few cases where
the typical procedure was modified.

The reason why the effect of muzzle gases was investigated in
experiments involving 10 additional spatters is that an under-
standing of the role of muzzle gases is important. For instance,
Taylor et al. (27) showed that the blood droplets were observed
to change direction under the influence of muzzle gases. Recent
fluid dynamic work has quantitatively evaluated the influence of

TABLE 1—(a) Description of the set of 94 experiments (excluding the ones with muzzle gases) used throughout this study, with mention of distance between
blood source and vertical target surface where stains were collected (BT distance). (b) Name of all the patterns (including muzzle gases) used in this study,
which are fully described in Refs (22,23). Blood spatter patterns names are preceded with symbols R (rifle), H (handgun), p (pointy bullet), f (flat-tip bullet),
and r (round-tip bullet). For most impact experiments, a volume of blood of ImL deposited on a hard flat surface was impacted. For most gunshot experiments,
a volume of blood of 2.5 mL or 10 mL enclosed in a foam cavity was hit by a bullet. Symbols after pattern number describe the following special situations: m
(muzzle gases interacting with spatter), # or S (blood source in soaked foam), B (butcher paper used as target), and R (rougher side of cardstock used as tar-
get). Blood was at room temperature, which varied between 14.5 and 24.5°C, £1°C.

(2)

BT Distance (cm)

Generation Mechanism 10 20 30 50 60 90 100 120
Impact: blood on flat surface, hit by another parallel flat surface 0 0 4 0 4 0 0 4
Impact: blood on flat surface, hit by a cylindrical rod 0 0 9 0 16 0 0 12
Handgun (no muzzle gases) 3 2 3 4 3 1 2 3
Rifle (no muzzle gases) 0 0 9 0 7 3 0 5
(b)
Generation Number of
Mechanism Submechanism Pattern Name Patterns
Impact Blood on flat surface, hit by Cl, C10, C11, C12, C2, C3, C4, C5, C6, C7, C8, C9 12
another parallel flat surface
Blood on flat surface, hit by a HP_0, HP_1, HP_10, HP_11, HP_12, HP_2, HP_23, HP_24, HP_25, HP_26, HP_27, 37
cylindrical rod HP_28, HP_29, HP_3, HP_30, HP_31, HP_32, HP_33, HP_34, HP_4, HP_5, HP_50s,
HP_51g, HP_52, HP_53, HP_54, HP_55, HP_56, HP_57, HP_583, HP_59g, HP_6,
HP_60g, HP_61x, HP_7, HP_8, HP_9
Gunshot Rifle Rf13# (T13), Rf14# (T14), Rp10#, Rp101#, Rpl1#, Rp12#, Rp15#, Rpl6#, Rp41, Rp42, 25
backspatter Rp43, Rp44, Rp45, Rp46, Rp47, Rp48, Rp49, Rp50, Rp51m, Rp53m, RpS5m, RpS6m,
Rp7#, Rp8#, Rpo#
Handgun Hf72, Hf73, Hf76, Hf77, Hf81, Hf84, Hf85, Hr105, Hr21#, Hr22, Hr23, Hr24#, Hr25, Hr27, 30

Hr28m, Hr29m, Hr30m, Hr31m, Hr32m, Hr33m, Hr34, Hr35, Hr36, Hr70, Hr71, Hr74,

Hr75, Hr78, Hr82, Hr83
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FIG. 1—(a) Experimental setup for gunshot backspatters. (b) Experimental setup for blunt impact spatters. A frame holding the blood source is placed at BT
distance away from the target surface. The blood source is either shot or hit to generate the blood spatters. Blood drops from a blood source travel through
the air until reaching the target surface, cardstock in this study, resulting in marks called bloodstains on the target cardstock.

muzzle gases on the resulting bloodstain patterns (28), and these
effects on classification are discussed in the section Further Dis-
cussions.

As shown in Table la, the BT distance is one of the main
parameters varied across the data set. BT distance affects spatter
patterns as the number of stains of a spatter pattern becomes smal-
ler with increasing BT distance, as more drops are deflected by the
effect of gravity and drag with increasing BT distance.

In this paper, we define the atomization mechanism as the speci-
fic cause of a bloodstain pattern, using the labels handgun, rifle,
cylinder, or hockey puck. We also define the atomization process
as the general cause of a bloodstain pattern, using the labels gun-
shot or blunt impact. In order to explore the interaction between
BT distance and the mechanism, we generate bloodstains spatter
patterns at different BT distances. The data used in the main paper
are 94 spatter patterns (excluding muzzle gases) with BT distance
no larger than 120 cm. The number of replicate experiments under
each BT distance and the mechanism is shown in Table 1a.

There is a wealth of possible ways to create impact or
backspatter patterns. A gunshot to a hairy head will give a dif-
ferent spatter pattern than a gunshot on a naked leg. The design
of realistic blunt impact and gunshot experiments is still an
open research issue. As mentioned in Ref. (23), there is still no
consensus on which experimental setup is best to simulate the
complexity of gunshot spatter patterns in realistic conditions,
where blood is located within a complex structure involving
body tissues and blood vessels, covered by skin, clothes, or
hair. Head of calves (29), a human cadaver filled with blood
(30), foams or sponges soaked in blood (11,26), or cavities
filled with blood (14) have been used. Experiments reported in
this study used both soaked foams and cavities filled with
blood as the blood source, and the information on which blood
source was used is specified. Certainly, there is a need for
research to produce more realistic models of blood containers
for gunshot experiments. We believe, however, that research on
classification of blood spatter patterns should not wait until
such an elusive model is developed. Furthermore, the models
used in this study for impact and for gunshot produce

repeatable results and have allowed a wealth of scientific find-
ings of interest to BPA (14,15,28).

Image Processing

The image analysis is processed using available routines of
the commercial software MATLAB® (20). After image segmen-
tation, we apply the image analysis tool regionprops to analyze
the identified spots (called connected components) in spatter pat-
terns. Not all the components are spatter bloodstains, with a
characteristic approximate elliptical shape; some undesired com-
ponents are pencil marks or overlapping bloodstains that are cur-
rently too complex to use for reconstruction. We apply the
following criteria to eliminate the undesired components: (i) dis-
card components with area smaller than 0.021 mm?® (3.4 x 3.4
pixels in scanner resolution); (ii) discard components with a
solidity smaller than 0.75, in which solidity is a measure of the
density of the pixels within a given component as defined in re-
gionprops; (iil) discard components with impact angle approxi-
mated from a fitted ellipse (arcsine of the ratio of the minor axis
divided by the major axis of fitted ellipse) smaller than /18
because the component has a high probability to be a linear
mark such as pencil mark or cardstock fold; and (iv) discard
components with a ratio of Area over FilledArea smaller than
0.95, in which Area and FilledArea are defined in regionprops.
The last criterion was found effective at removing the obvious
overlapping bloodstains. It is important to note that every image
processing method comes with their own choices, which are
based on a trial-and-error process focused (in our case) at sepa-
rating the stains of interest from other marks and from overlap-
ping stains. However, the above choices have been applied
consistently throughout the present study.

Global Features

Here, we describe the features that were engineered to
describe the spatter patterns. We define the features representing
the overall bloodstains in an entire spatter pattern as the global



features, and the ones representing bloodstains in a specific
region of the spatter pattern as local features.

Due to the complexity of performing blood spatter experi-
ments, the number of spatter patterns available for classification
(22,23) is not as large as other data sets used for classification,
such as face pictures of human beings. In order to minimize the
risk of overfitting associated with small data sets (24,25), we
assign 36 spatter patterns for feature engineering and later obtain
the overall performance of the proposed model by repeated ran-
dom splitting the remaining data set into a training and test set
(24,25). Features are created based on intuition and the limited
knowledge of fluid dynamics of blood spatter available today.

From Table 1, at least three spatter patterns were generated by
every mechanism at BT distances 30, 60, and 120 cm. We sam-
ple three images at each experiment setting in {Cylinder,
Hockey puck, Handgun, Rifle} x {30 cm, 60 cm, 120 cm} and
analyze those 36 spatter patterns to construct features. The fea-
tures are presented hereafter. Features are either based on an
understanding of the fluid dynamics or defined in an arbitrary
way. Since the physics of blood spatter generation and propaga-
tion is still not well understood (14,15,28), it makes sense that
some criteria are set arbitrarily.

Number of Bloodstains

The total number of bloodstains in a spatter pattern is affected
by the BT distance and the mechanism. Box plots in Fig. 2 com-
pare the number of bloodstains of spatter patterns grouped by
the BT distance and the mechanism. From the plots, we con-
clude: First, for the same mechanism, as the BT distance
increases, on average the number of bloodstains in a spatter pat-
tern decreases. This is supported by fluid dynamics since drops
only travel a given horizontal distance, which increases with
their initial diameter and their initial velocity. Second, on aver-
age, gunshot spatter patterns exhibit more bloodstains than blunt
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FIG. 2—Box plots of number of bloodstains in a spatter against BT dis-
tance d and mechanism based on 36 spatters for feature engineering, where
d € {30, 60, 120} cm. Colors represent different mechanisms. Box plots
belong to either gunshot or blunt impact at the same BT distance, which are
grouped by the long dashed and dotted rectangle, respectively.

impact spatter patterns, at least for short and medium BT dis-
tances (d < 60 cm).

This latter fact can be associated with the higher velocity and
kinetic energy imparted by the bullet to the blood (15). Although
gunshot spatters tend to generate more bloodstains than impact
spatters, the number of bloodstains is not by itself discriminative
enough for classification (see Fig. 2).

Distribution of Stain Diameters

References (3,10,11) showed that higher velocity events pro-
duce patterns with smaller stains. The statistical distribution of
stain diameters is studied with the following approach based on
density function of the stain diameter. Fluid dynamics also dic-
tate that only the larger drops can travel large distances, because
they are less affected by drag and gravity than the smaller drops.
It is thus expected that both the speed of impact associated with
the generation mechanism and the BT distance affect the distri-
bution of stain diameters.

The diameter of a bloodstain is estimated by
diameter = 24/Area/m, where Area is the area of the bloodstain
in mm?. We use kernel density estimation (KDE) (31,32) to esti-
mate the density of the diameter of the bloodstain in a spatter.
Given (Xi,...,X,), then the KDE at a given point x is as fol-
lows:

-~ 1< —X;
A = Sk (5),
i=1

where K is, for example, the Gaussian kernel with bandwidth 4.
Figure 3 compares the KDE of the diameter of the bloodstain of
a gunshot backspatter pattern with a blunt impact spatter pattern
at BT distance d = 60 cm, while omitting bloodstains with
diameter larger than 3 mm, which are outliers.

Our results show that both the BT distance and the generation
mechanism impact the density of the diameter of the bloodstain
in a spatter pattern. At the same BT distance, a gunshot gener-
ates smaller bloodstains than a blunt impact and the dispersion
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FIG. 3—Comparison of the kernel density estimator (KDE) of the diameter
of the bloodstain (<3 mm) in a gunshot spatter “Hr27” and a blunt impact
spatter “C5” at the BT distance d = 60 cm.



of the diameter of the bloodstain is smaller, suggesting that bul-
lets may produce smaller drops than impacts and that stain sizes
produced by bullets have a smaller variance than those from
blunt impact. Thus, both the mean and SD of the diameter of
the bloodstains can be used to classify gunshot and blunt impact
Spatter patterns.

Figure 4a,b show box plots of sample mean and sample SD
of the diameter of the bloodstain in a spatter pattern. First,
sample mean diameter of the bloodstain can be used to clas-
sify gunshot patterns from blunt impact patterns at short and
medium BT distances (d < 60 cm). Gunshots generate smaller
bloodstains on average than blunt impact. In addition, sample
SD of the diameter of the bloodstain distinguishes between
impact and gunshot spatter patterns at short BT distance
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FIG. 4—Box plots of (a) sample mean diameter of the bloodstains (mm)
(b) sample SD of the diameter of the bloodstain (mm) in a spatter against
BT distance and mechanism based on 36 spatters for feature engineering.
Long dashed and dotted rectangles represent gunshot and blunt impact box
plots, respectively.

(30 cm). The dispersion of the diameter of the bloodstain in
gunshot backspatter patterns is smaller than that of blunt
impact spatter patterns at a BT distance of 30 cm. Second,
those two features are a function of BT distance. The average
diameter of the bloodstains in a spatter pattern becomes larger
with increasing BT distance, because small blood drops are
more affected by air resistance than heavier drops (33) and
thus experience stronger deflections due to gravity, with the
result that they do not reach the target. At large BT distance
(120 cm), both features cannot differentiate between gunshot
and blunt impact spatter patterns.

We also tested features based on higher order moments of
the diameter distribution, for example, skewness and kurtosis,
but according to the classifier these features are not significant
to differentiate between blunt impact and gunshot spatter pat-
terns.

Fraction of Large Stains

Fraction of large bloodstains has been shown to be influenced
by the generation process of a spatter pattern (11). For each spat-
ter pattern, we calculate the fraction of bloodstains with area lar-
ger than a threshold area s, fraction = ), I[Area; > s]/n, where
n is the total number of bloodstains in a spatter pattern and I[A]
is the indicator function of an event A, that is, if A is true,
I[A] = 1 and zero otherwise.

For s € fn(%)z, n(ﬂ)z,n:(z%)z, n(%)z, n(%)z mm?, thresh-
olds n(%g)zmmg and né)zmm are found best at”discriminating
between gunshot and blunt impact patterns based on 36 spatter
patterns used for feature engineering. The sample Pearson corre-
lation coefficient (34) between the mean area of the bloodstain
and fraction of bloodstains larger than 71(()244)2mm2 is 0.98, indi-
cating the fraction of large bloodstains is highly correlated with
average size of the bloodstain. This feature helps distinguish
between impact and gunshot spatter patterns at BT distance of
30 cm. By calculating this feature over all the stains of the cases
with BT distance of 30 cm, we found that <15% of the blood-
stains_ in a gunshot backspatter pattern are larger than
n(%)zmmz, while impacts generate more than 15% large blood-
stains.

Vertical Difference Between Large and Small Bloodstains

In Fig. 1, we define a three-dimensional coordinate system
where the z direction is opposite to the gravity direction and
the target is in the y-z plane at x = d (BT distance). The origin
of the two-dimensional coordinate system is at the lower left of
the target cardstock. We construct a feature to measure the
average vertical distance between large and small bloodstains.
According to fluid dynamics, air resistance reduces the velocity
of small blood drops more than that of larger drops. If the ini-
tial velocity is the same for small and large blood drops, small
blood drops will eventually hit on the cardstock in a position
lower than the large blood drops because gravity has had more
time to modify their trajectories. Similarly, assuming that the
blood drops generated by a bullet have higher initial velocity
than the ones generated by impact, they are affected by gravity
during a shorter period, possibly leading to smaller vertical dis-
tances between large and small bloodstains than in impact spat-
ters.

Thus, we rank bloodstains in a spatter pattern by their areas
and define the bloodstains whose area falls in the range [12.5th
percentile, 37.5th percentile] as small bloodstains and the ones



with area within [62.5th percentile, 87.5th percentile] as large
bloodstains. Bloodstains with area smaller than 12.5th percentile
or larger than 87.5th percentile are considered as outliers and
removed. The thresholds used to define large and small blood-
stains are selected based on trial and error on 36 spatter patterns
used for feature engineering. Finally, we construct the following
feature delta.z to measure the shift in height between the large
and small stains:

1 [0.875n]

delta.z =
M= T0.8750] — [0.625n] + 1 Z=i=lo6251]

1 [0.375n]
Zi - . i
[0.3751] — [0.1251] + 1 Zz:[o.lzsrﬂ '

where Z; indicates the vertical distance between the ith largest
bloodstain to the bottom of the spatter, [x1 denotes the ceiling
function, and # is the number of bloodstains in the spatter. The
first term of the right-hand side is the mean vertical position of
the large bloodstains, while the second term is that of small
bloodstains. From Fig. 5, the proposed feature differentiates
between gunshot and impact spatter patterns at BT distance
60 cm. Similar to our earlier discussion, the gunshot spatter pat-
terns have less vertical difference between large and small
bloodstains than blunt impact spatter patterns. However, BT
distance 30 cm seems too close for gravity to take effect and
BT distance 120 c¢cm seems too far, in the sense that most blood-
stains are large for both gunshot and blunt impact spatter pat-
terns, leading to difficulties in differentiating spatter patterns at
BT distances 30 and 120 cm.

Shape of the Bloodstain

Every bloodstain is automatically fitted with an ellipse as
shown in Fig. 6. The measurements include:

1. Estimation of the impact angle o (in degrees) based on the
ellipticity of the stain
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FIG. 5—Box plots of delta.z in a spatter against BT distance and mecha-
nism based on 36 spatters for feature engineering. Long dashed and dotted
rectangles represent gunshot and blunt impact box plots, respectively.

180 . MmAKXis
= ——arcsin -
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where mAxis and MAxis represent the length of the minor axis

and the length of the major axis of the fitted ellipse, see Fig. 6.

Note that the above formula is an approximation first formulated

in Ref. (35) in analogy to bullet impact holes, which leads to

systematic errors for specific impact conditions (36).

2. Adjusted impact angle o: Some bloodstains have long tails
on their backward part, thus the following ad hoc formula is
used to better fit the ellipse to the forward part of the stain
as follows

. tail,educti .
FllledArea> areduction mAXis
9 €

Adjyaxis = MAxi ~ Adjyace
IMAxis XLS ( * AdeAxis '

EllipsArea

where EllipsArea is the number of pixels in the fitted ellipse.

FilledArea is the number of pixels in a filled image returned

from regionprops in Ref. (20), and tail_reduction = 3 is an ad

hoc parameter.

3. 7v: Angle between the vertical reference line and the major
axis of the fitted ellipse in Fig. 6. y = 90°—Orientation,
ranging from 0° to 180°, where Orientation is obtained from
regionprops in Ref. (20). Note that no attempt is made to
determine the forward or backward part of the ellipse, so that
values of y and y + 180° have same meaning in the frame-
work proposed here.

4. Eccentricity: the ratio of the distance between the foci of the
fitted ellipse and its major axis length, measuring the circu-
larity of the ellipse.

5. Solidity: proportion of the pixels in the convex hull that are
also in the identified region.

We construct the sample mean and sample SD of the above
five shape measurements of bloodstains in a spatter pattern as 10
new global features. However, after adding these global shape
measurement features into the proposed random forests model

Vertical Reference Line

Major Axis

Minor Axis

FIG. 6—Illustration of the fitting procedure with an ellipse (cyan ellipse).
Shape measurement y of a bloodstain based on the fitted ellipse is defined
by the angle between the vertical reference line and the major axis of the fit-
ted ellipse.



(section Modeling) and ranking the features by the importance,
they turned out to be of minor importance for the classification.
In contrast, the use of these shape measurements in local features
proved relevant to classification, see the section Binning
Methodologies and Local Features, below.

Distance of Bloodstains to the Centroid

We construct features which contain the location information
of bloodstains in a spatter. Following the coordinate system in
Fig. 1, the target is in the two-dimensional vertical plane sup-
ported by two perpendicular coordinate axes y and z. Given n
bloodstains in a spatter, the observed positions for all bloodstains
are (Y, Z;) for i = 1,...n from the distribution of (¥,Z). We first
define the centroid of a spatter pattern as the sample median posi-
tion of all bloodstains in the spatter pattern as (median(Y), me-
dian(Z)). Given that there are outliers in the spatter, we choose
the median instead of the mean for the sake of robustness.

We then define the variable distance as the Euclidean distance
between each bloodstain and the centroid in a spatter. Given n
bloodstains in a spatter, the observed Euclidean distances
between bloodstains and the centroid are denoted as distance;,
i = 1,...n. The sample median of these distances is a new fea-
ture median(distance) which depicts the average spread of blood-
stains in a spatter. The box plots of the proposed feature are
shown in Fig. 7a. At BT distance 30 cm, the median(distance)
of gunshot patterns is typically larger than that of impact pat-
terns. A possible reason is that bullets produce drops with larger
radial dispersion than impacts, at least for short BT distances.
Figure 7a also shows that the spread of bloodstains in a spatter
pattern increases as BT distance increases (except gunshot spat-
ter patterns at 30 cm), a phenomenon that can be explained geo-
metrically as per Fig. 9. We use this finding to construct local
features in next section. Note that the spread angle of gunshot
spatters can be estimated theoretically as in Ref. (15).

To minimize the effect of BT distance on the spread of a spat-
ter, we construct a new random variable %, which can
be interpreted as normalized distance. We construct the follow-

: ot : distance
ing two features to reflect the distribution of — Tian(distance) for
distance

each spatter: (i) sample mean of redian(distance)
distance mean(distance)

‘median(distance)" In Flg' b, median(distance)
patterns at BT distance 30 cm and it is larger than gunshot spat-
ter patterns, indicating that the distribution of the distance for
the blunt impact spatter is skewed more to right at BT distance
30 cm, that is, the impact spatter pattern has obvious outliers,
which are further away from the centroid.

and (ii) sample SD

> 1 for impact spatter

Local Features and Binning Methodologies

All features described above are global features which contain
the information for the entire spatter. From here on, we split the
whole spatter pattern into small areas and construct features
locally in the small area. Each area is called a bin, and so-called
bin features represent the spatial information of a spatter pattern.
This section first describes binning methodologies and then their
use to construct local features.

Binning Methodologies

Fixed Bins: Annulus with Fixed Width—In this process, the
bins are concentric annuli, with a common center, taken as the

centroid of the spatter pattern. An annulus is a ring-shaped
object, a region bounded by two concentric circles. The width of
the annulus is ry = R — r with R the radius of the outside circle,
and r the radius of the inner circle. Following the convention of
Ref. (11), a bloodstain spatter pattern is segregated into 40
annuli with 2.5 cm width that radiate outward from the pattern’s
centroid. Figure 8 illustrates this process conceptually, and each
annulus is labeled with an index i = 1,...40. The innermost
annulus is labeled as bin 1 with the centroid as its center and
radius ry. For annulus with index i, the radius of inner circle is
(i—1)rg and radius of the outside circle is i-rg. We set
ro = 2.5 cm for all spatter patterns.

Adaptive Bins: Annulus with Width Proportional to the Med-
ian Distance—Similar to the previous feature, a bloodstain pat-
tern is segregated into 40 equidistant annuli that radiate outward
from the pattern center as shown in Fig. 8. However
) :%median(distance), which varies among spatter patterns.
The definition of median(distance) is discussed in the above

(@) type E2 Rifle B8 Handgun E3 Cylinder E2 Hockey

N
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w
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FIG. 7—Box plots of (a) median(distance) and (b) % in a spatter
against BT distance and mechanism based on 36 spatters for feature engi-
neering. Long dashed and dotted rectangles represent gunshot and blunt

impact box plots, respectively.
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FIG. 8—Concentric ring bins. The star represents the position of the cen-
troid in the spatter.
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FIG. 9—Cone shape bloodstain trajectory if gravity and air resistance are
ignored. Spatters close to the target cardstock generate spatter patterns with
smaller spread.

Y

section Distance of Bloodstains to the Centroid. The total num-
ber of annuli equates to 40, and the constant 2 is chosen such
that more than 98% of bloodstains fall within the distance of
2 * median(distance) away from the centroid.

Figure 9 illustrates why we vary r, among spatter patterns. If
the gravity and air resistance are ignored, the trajectory of drops
is contained in a cone (15,16), whose base is roughly circular on
the target surface. Moving the blood source toward the target
surface, the area of the base progressively becomes smaller. In
order to have a fair amount of bloodstains in bin 7, i = 1,...40
for spatter patterns at different BT distances, ry is expressed as a
function of the area of the base. The median(distance) is used to
reflect the area of the base. In this way, the bin with index i is
comparable among spatter patterns at different BT distances.

Figure 10 shows an example comparing the two bin definitions.
Handgun backspatter patterns at BT distances 30 and 120 cm
are split into 40 bins according to the definition of fixed bins
and adaptive bins. The fraction of bloodstains in bin 7 in spatter
pattern j at BT distance d is the ratio of number of bloodstains
in the ith bin to the total number of bloodstains in spatter pattern
J and denoted as fraction;y, where i = 1,...40, j =1, 2, 3, and
d =30 cm, 120 cm. The point (circle) of error bar plots at x = i

3

in Fig. 10 is defined as fraction; :%Zfractionijd, which is
j=1

over 3 replicated spatter patterns (j = 1, 2, 3) at distance d and

0.100
[72)
£
©
+0.075
©
o
: %
5 0.050 ~120
c
)
‘g 0.025 |

y N l\\‘\l“,ﬂf}l’lﬁ -
0.000¢ ity
1 6 11 16 21 26 31 36
bin

®) Adaptive bins
0 0.075
c
5
[72)
3
©0.050 o
g ~30
5 =120
S
% 0.025
o
o

0.000{"+!

1 6 11 16 21 26 31 36
bin

FIG. 10—(a) Fixed bins. (b) Adaptive bin. Error bar plots of the fraction
of bloodstains in each bin against the index of the bin grouped by BT dis-
tances 30 and 120 cm for handgun backspatters in the feature engineering
data set. Points (circle) and half-length of the bars in error bar plots repre-
sent the mean and the standard error of the mean over three trial replicates.
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bin i. The half-length of each error bar is the standard error of
the mean over three trial replicates. We connect points with
curves to easily observe the curvature information.

Figure 10q illustrates that when fixed bins are used at the
short BT distance 30 cm, almost no bloodstains fall further
than bin 22. For BT distance 120 cm, there is a fair amount
of bloodstains appearing in bin 22-30. BT distance has thus a
significant impact on features with fixed bin size. Therefore,
adaptive binning is used in Fig. 10b. The curves at BT dis-
tances 30 and 120 cm are reshaped such that most bins con-
tain at least a few bloodstains. In addition, the curves are
smoothed (especially for small BT distance), to facilitate the
comparison of derivatives over bins between gunshot and blunt
impact spatter patterns, as done in the section Shape of Curve
Over Adaptive Bins.

Rectangular Bins—A different asymmetric definition of bins is
to segregate the spatter pattern area into equal-size rectangular
areas along the vertical direction. We define the random variable Z
as the vertical distance between the bloodstain to the bottom of the
spatter. Given n bloodstains, the observed vertical distances are
Zi, i=1,...n. The width of each rectangle is the same as the
width of the spatter pattern and the length of rectangle is
& median(|Z — median(Z)|), where median(|Z — median(Z)|) is
the median absolute deviation of vertical distance (in z direction)
between the bloodstain to the centroid. The total number of bins
equals 40, and the factor 6 is chosen so that more than 81% of
the bloodstains are falling within a distance of 3 % median
(|Z — median(Z)|) from the centroid in the vertical direction and
are covered by rectangular bins (see Fig. 11). Both the lower side
of rectangle 21 and the top side of rectangle 20 pass through the
centroid.

Construction of Local Features

Local features are typically constructed by defining features in
each bin. These are called local features; comparison between

25

24
23
22

. 21
20

19

18
17

16

FIG. 11—Rectangle bins. The star represents the position of centroid in
the spatter.

bins helps describe how the features are spatially distributed
within a given pattern. We illustrate the construction of local
features with the following example: the fraction of bloodstains
with diameter larger than 1 mm in each bin.

Fraction of Large Stains in Bins—The construction procedure is

ALGORITHM—Local Feature Construction Example
For BT distance d = 30, 60, and 120 cm:

1. Choose a binning method, for example, fixed bins with a
width of 2.5 cm.

2. For bin i, i = 1,...40, calculate the ratio of bloodstains
with diameter larger than 1 mm in bin i to the number of
bloodstains in bin i, which is ratio;, We select the thresh-
old 1 mm because it is the best at discriminating between
gunshot and blunt impact spatter patterns based on fea-
ture engineering data set.

3. Plot error bars of the fraction of bloodstains with diame-
ter larger than 1 mm against the index of the bin over 3
replicated spatter patterns (see Fig. 12a).

4. Select a set of bins S in which ratio; shows a difference
between gunshot and blunt impact spatter patterns.

5. construct a new local feature LF by simple average:
R = ﬁz ratio;, where |S| is the cardinality of the set S.

icS

Algorithm 1.

Although it is difficult to classify spatter patterns at BT dis-
tance 120 cm, for BT distances 30 and 60 cm, in bins with
index i € {15, 16, ...25}, the fraction of large bloodstains of
gunshot spatter patterns is significantly smaller than that of blunt
impact spatter patterns. The simple average of the fraction of
bloodstains with diameter larger than 1 mm from bin 15 to 25 in
a spatter pattern is a new local feature, shown in Fig. 12b. The
proposed feature is useful to classify impact from gunshot spatter
patterns at BT distances 30 and 60 cm.

Following this method, one can construct additional features
by selecting different combinations of the set of bins, binning
method, and averaging method (e.g., weighted average).

Shape of Stains in Bins—Our study found that shape measure-
ments in local features are proved relevant to classification, for
example, the average mean adjusted impact angle of the blood-
stain over rectangle bin 27,.. ., 30 in Fig 15a.

Shape of Density Curve Over Adaptive Bins—Figure 13a shows
the error bar plots of the fraction of bloodstains in each adaptive
bin for spatter patterns at BT distance 30 cm grouped by process
(gunshot or blunt impact). We plot a curve connecting the points
which are the mean fractions over 3 replicated spatter patterns,
with red and blue curves representing the blunt impact and gun-
shot spatter patterns, respectively.

To smooth the data, we use local polynomial regression (37).
Consider the data (Xy,Y;),...,(X,,Y,) which form an indepen-
dent and identically distributed (i.i.d.) sample from a population
(X, Y), where X; is the index of the ith adaptive bin, Y; is the
fraction of bloodstains in ith adaptive bin, and n is the total
number of bins. The local polynomial regression estimator in an
arbitrary point x is obtained by minimizing the following
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FIG. 12—(a) Error bar plots of the fraction of bloodstains with diameter
larger than Imm against the index of the bin for spatters at BT distance
60 cm grouped by mechanism. Points and half-length of the error bar repre-
sent the mean and the standard error of the mean over three trial replicates.
(b) Box plots of the average of the fraction of large stains with the diameter
larger than Imm from bin 15 to bin 25 against BT distance grouped by
mechanism. Long dashed and dotted rectangles represent gunshot and
impact box plots, respectively. Both (a) and (b) are based on the 36 spatters
used for feature engineering.

weighted least squares problem (37):

p

2
};?Eiﬁ 2 {Yz' - Zﬁj(Xi —x)f} Kn(X; — x).

Jj=0

where f3; are the solutions to the weighted least squares problem.

w2
We select the Gaussian kernel Kj, (1) = ﬁe_ﬁ. The bandwidth

h is selected from {1, 1.006,..., 4}. According to the properties
of local polynomial regression, (9 (x) =4¢! ﬁq is an estimator

for the gth order derivative where g = 0,. .., p. In Fig. 13b, the
red and blue points represent the fraction of bloodstains in each
adaptive bin for the respective impact and gunshot spatter pattern
at BT distance 60 cm. The fitted regression curves (¢ = 0) are
estimated using the above equation with p = 1 for the respective
impact and gunshot patterns. From both plots in Fig. 13, it is
obvious that the regression function for gunshot patterns is con-
vex over bins 1,..., 10 and 30,. ..., 40, while concave for blunt
impact spatter patterns. The physical meaning of this difference
is not clear at the present time. In addition, the absolute values
of the first-order derivatives for the gunshot curve are larger than
the blunt impact curve over bins 10-15 and 25-30. We construct
the estimated first- and second-order derivatives at different
adaptive bins using local quadratic (p = 2) and cubic (p = 3)
regression as new features to measure the shape of curves.

(a) BT distance 30cm
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FIG. 13—(a) Error bar plots show the fraction of bloodstains in each
adaptive bin against the index of the bin for spatters at BT distance 30 cm
grouped by process based on feature engineering data. Point and half-length
of the error bar represent the mean and the standard error of the mean over
three replicates. (b) Blue points are fractions of bloodstains in adaptive bins
for the gunshot spatter “Rp45” and Red points are for the blunt impact spat-
ter “C6.” Both spatters are generated at BT distance 60 cm. Blue dashed
line and red solid line are the local linear regression curves for the gunshot
and Dblunt impact spatter, respectively.
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Modeling
Random Forests

Random forests is an automatic learning method for classifica-
tion, which can determine which features are most useful for
classification. Random forests apply bagging, which averages
the prediction over a collection of bootstrap samples, to decision
tree (38—40), while only selecting a part of the predictors (fea-
tures), say m ~ v/number of features, at random in each split of
the tree. Algorithm 2 illustrates the training and prediction using
the random forests in the classification problem.

ALGORITHM—Random Forests for Classification
For b =1 to B:

1. Bootstrap sample from the training set. (The bootstrap sam-
ple is obtained by sampling with replacement from the
training set with sample size equal to the training set.)

2. Fit a classification tree to bootstrapped sample by split-
ting every terminal node whose size is larger than the
minimum size of terminal nodes:

a Randomly sample m features.
b Pick the best split among m and split node into two
children nodes.

The predictions for an unseen sample are made by taking the
majority votes of the classification trees.

Features

A brief description of each feature is shown in Table 2. Dedi-
cating 36 spatter patterns to feature engineering, 58 spatter pat-
terns are left for training and testing. Thus, the feature matrix for
the remaining spatter patterns is 58 x 58, which is composed of
58 features from Table 2 for 58 spatter patterns.

We use the following procedure to determine the average per-
formance and variability of the model:

1. Randomly split spatter patterns into a training (75%) and test
(25%) set. Values of the label y € {blunt impact, gunshot}.

2. Use random forests (38-40) on the training set and obtain

predictions on the test set.

Compare the predicted labels and true label for test set.

4. Repeat (1) — (3) 1000 times to obtain the average perfor-
mance and variability of the model.

»

In step (2), the number of features randomly sampled as can-
didates at each split of each tree is set to /58, and the minimum
size of the terminal nodes in each tree is 1. The number of trees
is set to 5000.

Results
Simulation Results

Two metrics are used to evaluate the performance of the clas-
sifier (38,39):

1. Misclassification (MSC) rate:

> I[predicted label # actual label]
size of test set

2. OQOut-of-bag (OOB) error:

For each tree in the random forests, only 2/3 of the bootstrap
sample from the original data is used to construct the tree and
the remaining samples are referred to as the out-of-bag (OOB)
samples. We can predict the label for ith sample using each of
trees in which that observation was OOB and take a majority
vote, leading to the OOB prediction for ith sample. The OOB
error is the classification error for all samples with predication
obtained in this way and OOB error is asymptomatic approxima-
tion to the leave-one-out cross-validation (LOO-CV) error (25).

Both MSC rate and OOB error are obtained at each iteration.
The performance of the proposed classifier is shown in Fig. 14
based on the MSC rate and OOB error over 1000 replications.
In order to study the performance of the proposed classifier at
different BT distance ranges among 58 spatter patterns, we per-
form a Monte Carlo simulation on the spatter patterns with BT
distance no further than 30, 60, and 120 cm separately. Table 3
shows the total number of spatter patterns used for training
(75%) and testing (25%), the mean MSC error, the mean OOB
error, and the mean accuracy, where accuracy = 1 — OOB error
in each replication. For spatter patterns at short BT distances
d <30 cm, the proposed classifier achieves 98.81% accuracy,
and for spatter patterns with BT distances d < 60 cm, the pro-
posed classifier achieves 93.20% accuracy on average. For spat-
ter patterns with BT distances d < 120 cm, the average accuracy

TABLE 2—All features used for classification.

Feature Name Brief Description

Number of bloodstains
Mean diameter of the bloodstain
SD diameter of the bloodstain

number.stains
Diameter.mean
Diameter.std

fc Ratio of number of bloodstains with area larger
than (%) "mm? to the total number of
bloodstains

fd Ratio of number of bloodstains with area larger

than 7t(}) 'mm? to the total number of bloodstains

delta.z Vertical difference between large and small
bloodstains

mean.ratio Sample mean of %, where distance is the
Euclidean distance between the bloodstain and
the centroid

sd.ratio Sample SD of —distance

Average of thenllcerdellgt%ﬁmg?bloodstains with area
larger than T[(%)mez in fixed bins 15, 16... ., 25

Average of the fraction of bloodstains with area
larger than n(%)zme in fixed bins 35, 36,..., 40

Average of the fraction of bloodstains with area
larger than n(%) mm? in fixed bins 1, 2,..., 17

Average of the fraction of bloodstains with area
larger than 7t(%Z) "mm? in fixed bins 20, 21

Average of the fraction of bloodstains with area
larger than (%) 'mm? in adaptive bins 25,
26,. ..., 31

Average of the fraction of bloodstains with area
13:1(;ger than () "mm? in adaptive bins 27, 28,.. ..,

Average of mean impact angle of the bloodstain
over adaptive bins 23, 24,...30

Average of mean adjusted impact angle of the
bloodstain over adaptive bins 23, 24,...30

Average of mean adjusted impact angle of the
bloodstain over rectangle bins 27, 28,...30

Second-order derivatives of the regression function
of the fraction of bloodstains at the adaptive bin
ie{l,2,..9, 30,31,..39}

First-order derivatives of the regression function of
the fraction of bloodstains at the adaptive bin
ie{5,6,..15,25,26,...35}

fractionl_bin_15_25
fractionl_bin_35_40
fraction075_bin_1_17
fraction075_bin_20_21

fraction075_adp_25_31

fractionl_adp_27_30

alpha_adp_23_30
epsilon_adp_23_30
epsilon_rec_27_30

derivatives2bin_i

derivativeslbin_i
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FIG. 14—Monte Carlo study with 1000 runs for the proposed classifier at
different BT distance ranges using (a) misclassification rate and (b) Out-of-
bag error.

TABLE 3—Performance of the model.

BT Distance  Number of Spatter OOB Error  MSC Rate  Accuracy
(cm) Patterns (Average) (Average) (Average)
d <30 cm 18 1.19% 1.04% 98.81%
d <60 cm 40 6.80% 7.08% 93.20%
d <120 cm 58 14.04% 14.00% 85.96%

drops to 85.96%. From the discussion in the section Global Fea-
tures and section Binning Methodologies and Local Features,
many features, “Diameter.mean,” “Diameter.std,” “fc,” “mean.ra-
tio” (in Table 2), etc, could distinguish between blunt impact
and gunshot spatter patterns at BT distance 30 cm based on fea-

ture engineering data with a high accuracy, while it is difficult

to find such a feature or a set of features at BT distance 120 cm.
In addition, since the BT distance d is treated as unknown, it is
challenging to classify the spatter patterns at different BT dis-
tances correctly.

Figure 15a shows the six most important features selected by
random forests based on a one-time simulation for spatter pat-
terns at BT distances d < 120 cm. The features are sorted in
decreasing order of importance. Figure 156 shows OOB error
based on that one-time simulation.

Based on 1000 simulations, the distribution of the size of blood-
stains is important (i.e., mean and SD of the diameter of the blood-
stain), which coincides with the observations in Refs (3,10). The
“average size” feature has also been found important for classifica-
tion between cast-off and impact spatter patterns (21). In our data

rf
(a)
Diameter.std o
epsilon_rec_27_30 o
mean.ratio o
fraction1_bin_15_25 o
fd o
fraction075_adp_25_31 o
\ \ \ \ 1
0.0 0.5 1.0 1.5 2.0
MeanDecreaseGini
(b)
0.5
0.4
S
(o]
=
wo.3
m
(@)
(@)
0.2
0.1

0 1000 2000 3000 4000 5000
number of trees

FIG. 15—(a) Important feature. (b) OOB error of random forests against
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set, the SD of the bloodstain diameter is the most important. The
feature “fraction of large stains” is also an important feature as per
Fig. 15a, as shown in Ref. (11). Figure 15a also shows that
“mean.ratio” and other local shape features are also important.
When the procedure is repeated 1000 times, the rank of important
features depends on the choice of the training and testing data set,
possibly indicating that some of these features carry the same
information. Due to the data size limitation, a further study on a
larger data set would be recommended.

Further Discussions
Include Feature Engineering Data

Using 94 spatter patterns (i.e., including the 36 feature engi-
neering spatter patterns) in the Monte Carlo study to split for the
training (75%) and test (25%) set, error rates obtained after 1000
simulations (Table 4) are similar to the ones obtained in Table 3,
without including the 36 patterns used for feature engineering.

Based on the Monte Carlo study with 1000 runs, the proposed
model achieves 99.72% accuracy at BT distance d < 30 cm.

Performance on Gunshot Spatter patterns Involving Muzzle
Gases

As presented in the section “Bloodstain Spatter patterns and
Digital Image Preprocessing,” the data set (23) contains 10 gun-
shot backspatter patterns in which muzzle gases interact with the
backspatter. We did not use those spatter patterns in previous
sections for the sake of simplicity. This section determines the
performance of the proposed classification model on gunshot
backspatter patterns with muzzle gases. Among the 10 gunshot
backspatter patterns involving muzzle gases, the number of spat-
ter patterns at each BT distance is given in Table 5:

We use random forests on 94 spatter patterns with 58 features
listed in Table 2 to train the model and classify the 10 gunshot
spatter patterns involving muzzle gases. The misclassification
rate is 0% for spatter patterns at BT distances 30 and 60 cm,
and 100% at BT distance 120 cm. This indicates that the pro-
posed model and features also work on gunshot backspatter pat-
terns with muzzle gases at short and medium BT distances (30,
60 cm); however, they do not work for gunshot backspatter pat-
terns with muzzle gases at BT distance d = 120 cm. A possible
cause for this is that interactions between muzzle gases and spat-
ter drops are more important for d = 120 cm than for shorter
distances. Certainly, the production of drops during gunshot and
the propagation of muzzle gases have different time scales,
which is a topic of current research (14,16,27,28).

Conclusion and Future Work

This study proposes a machine learning method to classify
between blood spatter patterns generated by blunt impact and

TABLE 4—Performance of the model including the feature engineering

data.
BT distance ~ Number of Spatter OOB Error  MSC Rate  Accuracy
(cm) Patterns (Average) (Average) (Average)
d <30 cm 30 0.28% 0.14% 99.72%
d <60 cm 64 8.00% 8.40% 92.00%
d <120 cm 94 13.90% 13.60% 86.10%

TABLE 5—Number of gunshot backspatter patterns involving muzzle gases.

BT Distance (cm)

30 60 120

Number of spatter patterns 2 4 4

gunshot backspatter for cases where muzzle gases do not inter-
fere with the spatter. The patterns are generated at various hori-
zontal distances between blood source and stained target
surface. Ninety-four spatter patterns are considered, in which
36 spatter patterns are used for feature engineering and the rest
are used for training and testing. We engineer 58 features and
several binning methods to segment images to construct local
features. Random forests is used to fit to the training set and
to predict the label on the test set. Based on 1000 replications
of random splitting training and test data, the proposed method
achieves 98.81% accuracy in classifying generation mechanisms
at BT distance no larger than 30 cm, 93.20% accuracy to clas-
sify spatter patterns at BT distance no larger than 60 cm, and
85.96% accuracy on spatter patterns at BT distances no larger
than 120 cm.

A main contribution of this paper is to propose a formal quan-
titative and physics-based method to engineer features relevant
to classification, especially the local features. Another contribu-
tion is to propose a novel and quantitative method to classify
bloodstain spatter patterns by combining digital image process-
ing method and machine learning methods.

The classification model is then used to classify gunshot
backspatter patterns where muzzle gases are present and possibly
interact with the motion of drops. In that case, the model
achieves a classification accuracy of 100% at BT distance of 30
and 60 cm. However, at BT distance 120 cm, all the backspatter
patterns are classified as impact patterns, corresponding to a
classification accuracy of 0%.

We emphasize that all the bloodstain patterns studied here were
generated under controlled laboratory conditions, which may dif-
fer from actual crime scenes because of more complicating and
compound factors involved. The effect of those complicated fac-
tors needs further study. However, the key point of this paper is to
demonstrate a methodology that can be adapted to classification of
spatter patterns created with different mechanisms.

Despite limitations on the availability of open access spatter
data and real crime scene patterns, it would be important to vali-
date this method on other spatter data.

The results of our study demonstrate the importance on clas-
sification accuracy of the distance (BT distance) between blood
source and the target where stains are collected. Features such
as the mean diameter of the bloodstains, the SD of diameter of
the bloodstains, and the ratio of large bloodstains are found
important and effective to classify gunshot vs. impact spatter
patterns at a short and medium BT distance (<60 cm). How-
ever, the same features may not work well for larger BT dis-
tances especially when muzzle gases exist. This important
result suggests that classification between impact and backspat-
ter pattern is only reliable at BT distances no larger than
60 cm.

Future work might focus on applying the same classification
method to other spattering mechanisms, such as the expiration
spatter patterns recommended by one of the reviewers. A prereq-
uisite of this effort certainly is the availability of more open
access data sets of spatter patterns produced under a variety of
controlled conditions representative of actual crime scenes.
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