Selecting homozygous male fertile lines from an intermating soybean population.

The synthesis of random-mating soybean populations and their use in recurrent selection programs was enhanced by the discovery of the male sterile genotype, $\underline{ms_1} \ \underline{ms_1}$ (Brim and Young, 1971; Brim and Stuber, 1973). At some point in such a recurrent selection program, a plant breeder usually wishes to select lines for testing from one or more of the improved populations. There is a difficulty in this, however, because the progeny of every fertile plant selected from a random mating population will segregate for male sterility. This is because every fertile plant is an F_1 from a cross between a male sterile and a fertile plant and is therefore heterozygous at the $\underline{ms_1}$ locus. The following describes a simple technique for deriving homozygous fertile lines from a random mating population using single-seed descent.

Begin by selecting $\underline{x} \ F_1$ fertile plants from the random mating population. Grow the progeny of each plant in a row. This results in \underline{x} rows, each of which represents a different F_2 family. A set of lines are derived from the F_2 families by sampling a single seed from \underline{y} plants in each row. This results in a total of $\underline{x} \cdot \underline{y}$ lines which can be inbred by single-seed descent. In each generation of inbreeding, sample only the fertile plants for the next generation of inbreeding. At some generation, F_n , the fertile plants are harvested and each increased in plant rows (the F_{n+1} generation). In the F_{n+1} generation, only the fertile lines which do not segregate for sterility are saved. The result will be a group of F_n -derived lines which are homozygous for the dominant <u>Ms_1</u> allele.

Table 1 shows the proportion of fertile plants which can be expected with each generation of selfing, assuming the steriles are discarded each time. It also shows the number of F_n -derived $\underline{Ms_1}$ lines which one can expect at the nth generation. The number of F_n -derived lines depends upon $\underline{x} \cdot \underline{y}$, the original number of plants sampled. It should be noted that the proportion of F_n -derived lines increases by one-half of the proportional increase in the F_{n-1} generation. Proportions of homozygous male fertile lines which can be expected with each generation of inbreeding by single seed descent. Lines selected from a random mating soybean population

Generation	Proportion of F _n fertile plants	Expected number of F_n derived Ms_1Ms_1 lines	Proportional increase in expected <u>Ms₁Ms₁ lines</u>
F ₂	3/4	.500 x • y [†]	nanan mananan karang karang sanan sa Militi sama mada sa Tate, sanan sa
F ₃	5/6	.583 x • y	.083
F ₄	9/10	.625 x • y	.042
F ₅	17/18	.646 x • y	.021
F ₆	33/34	.656 x • y	.010
F ₇	65/66	.661 x • y	.005
• F _∞	in the in copy so		

 $^{\dagger}x$ and y represent the number of F₂-plant rows and the number of plants sampled within each row, respectively.

The table can be used to decide how many F_2 plants should be sampled in order to have a specified number of F_n -derived lines for testing. For example, if 500 F_4 -derived lines were needed, it would be necessary to begin with a population of $\underline{x} \cdot \underline{y} = 800$, since $.625 \times 800 = 500$. The relative sizes of \underline{x} and \underline{y} would be an individual judgment based on the size of the base random mating population and the number of generations it has intermated. The results in Table 1 can also be generalized to any recessive simply-inherited trait that can be easily identified and selected out of a population with each generation of selfing.

References

- Brim, C. A. and M. F. Young. 1971. Inheritance of a male-sterile character in soybeans. Crop Sci. 11: 564-567.
- Brim, C. A. and C. W. Stuber. 1973. Application of genetic male sterility to recurrent selection schemes in soybeans. Crop Sci. 13: 528-530.

J. W. Burton – USDA C. A. Brim – USDA

69

Table 1