
Design and implementation of a reusable type

inference engine and its application to Scheme

by

Brian Jam es Dorn

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Gary Leavens, Major Professor

Barbara Licklider
Markus Lumpe

Iowa State University

Ames, Iowa

2005

Copyright © Brian J ames Dorn, 2005. All rights reserved.

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Brian James Dorn

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

lll

DEDICATION

To my parents , for encouraging

a little boy to love school.

lV

TABLE OF CONTENTS

LIST OF FIGURES

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1. INTRODUCTION .
1.1 Design Overview

1.1.1 Problem
1.1.2 Goals for Solution .
1.1.3 Solution Overview

1.2 Outline

CHAPTER 2. NOTATION
2.1 Literate Programming .
2.2 Variant Record Definitions

CHAPTER 3. TYPE HELPER DESIGN AND IMPLEMENTATION
3.1 System Specification
3.2 Data Structures and Rule Interfaces .

3.2.1 Interfaces for Type Rules .
3.3 Rule Processing . .

3.3.1 Base Cases . . .
3.3.2 Error Cases . . .
3.3.3 Side Procedures .
3.3.4 Hypothesis Judgements .
3.3.5 Subtyping Judgements .

3.4 Summary

CHAPTER 4. USER DEFINED COMPONENTS
4.1 Type Expressions .
4.2 Method Dictionary
4.3 Annotation Rules

4.3.1 Examples of Simple Rule Use
4.3.2 Example of Complex Rule Composition .
4.3.3 Example of Side Definitions with Rule-Seq

4.4 Error Handling
4.4. 1 Error Generation
4.4.2 Error Output . .

Vl

Vll

Vlll

1
3
3
5
5
7

9
9

11

12
12
16
18
21
23
25
25
26
28
31

33
33
34
37

38
39
40
41
41
43

v

CHAPTER 5. LANGUAGE AND TYPING EXTENSIONS .
5.1 Module System
5.2 Bidirectional Type Checking
5.3 Variant Record Typing .

CHAPTER 6. IMPLEMENTATION CHALLENGES
6.1 Delayed Evaluation . . .
6.2 Unification Environment .. .
6.3 Runtime Speed

CHAPTER 7. FUTURE WORK
7.1 DrScheme Integration
7.2 Experimental Study

CHAPTER 8. CONCLUSION
8.1 Related Work
8.2 Contributions

44
44
47
50

52
52
54

55

57
57

. 59

61
61
62

APPENDIX A. LAMBDA CALCULUS TYPE CHECKER

APPENDIX B. APPLICATION DERIVATION COMPLETION

64

68

70 BIBLIOGRAPHY

Vl

LIST OF FIGURES

Figure 1.1 If-Exp Inference Rule in TypedScmOO 4
Figure 1.2 Conditional Expression Rule 4
Figure 1.3 TypedScm05 Architecture. 5
Figure 1.4 If-Exp Inference Rule in TypedScm05 7

Figure 3.1 Lambda Calculus Grammar . 13
Figure 3.2 Lambda Calculus Types. 14
Figure 3.3 Lambda Calculus Inference Rules 14
Figure 3.4 Judgement Datatype 17
Figure 3.5 Mixed Datatype 18
Figure 3.6 tc:rule-or Example in TypedScm05 . 19
Figure 3.7 tc:rule-if Example in TypedScm05 19
Figure 3.8 tc:rule-seq Example in TypedScm05 20
Figure 3.9 Initial Step in Type Derivation . 21
Figure 3.10 Outstanding Derivation Parts 23
Figure 3.11 Recursive Derivation on Hypothesis 26
Figure 3.12 TypedScmOO Type Hierarchy [JL96] 29

Figure 4.1 TypedScm05 Type Expressions . 34
Figure 4.2 Dealing with Lists of Subterms . 39
Figure 4.3 Example Error: Bad Subtying Relationship on Conditional 43

Figure 5.1 TypedScm05 Module Syntax 45
Figure 5.2 Error Message in TypedScmOO 48
Figure 5.3 Error Message in TypedScm05 48

Figure 7.1 DrScheme and the TypedScm Tool . 58
Figure 7.2 DrScheme Type Error Output 59

Vll

ACKNOWLEDGEMENTS

I would extend my sincere gratitude to those who have helped me during the course

of my Master 's work at Iowa State.

First, to Dr. Gary T. Leavens, thank you for your guidance throughout this entire

process. I am grateful for your patience, wisdom, encouragement, and support.

I also would like to thank my committee members for their influence on my life as

a graduate student. To Dr. Barbara Licklider, thank you for inspiring me to ask great

questions and always search for purpose in all that I do. To Dr. Markus Lumpe, thank

you for the opportunity to serve as your teaching assistant so many times. I will always

look fondly upon memories of CornS 430.

To Curt Clifton, thank you for providing insightful conversation in the office and

serving as a role model for me as a fledgling graduate student.

Philip, Curt , Charlie, Jared, and Brett: thanks for the many laughs and serving as

proof that a group of CS majors will always develop an algorithm to make life easier- even

if it is for choosing a place to eat.

Lastly, to all of my friends from Music Hall, I am indebted to you for the countless

times you listened to my esoteric Computer Science ramblings, replying only with a

simple nod and smile. I cherish the times we were able to share in our mutual joy of

music.

Vlll

ABSTRACT

Static type checking allows programmers to locate potential bugs prior t o code execu­

tion. However, developing a st atic type checker is a complicated endeavor. Implementers

must address a number of concerns including recursion over syntax elements, unification

of type variables within environments, and generation of meaningful error messages for

users. The inherent complexity of type checkers can lead to code that is difficult to both

understand and maintain.

This thesis presents the design and implementation of an abstract type inference

engine and its use in the revision of a student-oriented type checker for the Scheme

programming language. Our inference engine provides a complete set of unification

facilities to programmers for the specification of a type checking system. It allows for a

clean separation of unification algorit hms, inference rules, and error generation.

We also demonst rate the applicability of t he engine by using it to construct a type

checker for Scheme targeted at novice programmers. This checker borrows a student­

friendly type notation from a previous version and extends its system , providing for

language native module support , a more complete treatment of ad vanced data types,

and better error messages.

1

CHAPTER 1. INTRODU CTION

Learning to program in Scheme is hard. At least some of this difficulty can be

attributed to its lack of a static type system. Dynamically-typed languages, like Scheme,

provide programmers a great deal of freedom when defining operations over data. They

do not unnecessarily restrict programmers to specify particular types for each variable or

element of a data structure. By definition, dynamic languages do not attempt to validate

type correctness at compile time, but rather, they rely on run-time checks to ensure

proper data handling. Though there is no explicit notation for types in such languages,

typing is still important. Expert programmers have a great deal of intuition about

the types associated with their program's data structures and procedures, regardless of

dynamic typing mechanisms.

One of the greatest detractors to dynamic typing is that code is inherently difficult

to debug [Lin93][WC93][CF91] . This is mainly caused by the fact that errors are not

detected until run-time, at which point most systems raise an error condition and execu­

tion is aborted. The actual source of the type error may or may not be easily ident ifiable

given the location at which execution terminates.

Static type checking, on the other hand, attempts to identify errors prior to program

execution. Typically, static approaches provide more intuitive error messages and aid in

locating and correcting errors. However , these systems are more restrict ive than those

that are dynamic due to the fact that their conservative analysis results in errors for

things t hat only "might" be real problems depending on t he run-time context.

Despite the fact that dynamically-typed programming languages have more expres-

2

sive power than their static counterparts [CF91], the large majority of Scheme programs,

and those written by novices in particular, are in fact statically typeable. This is because

experience shows that only small portions of typical Scheme programs rely on dynamic

typing.

Classroom observations seem to indicate that novice programmers struggle with typ­

ing issues when writing code. Misuse of interfaces, improper type casting, and inability

to connect type error messages to source code errors are common problems that new

programmers make. Vie believe these problems are amplified by a dynamically-typed

language in which students may or may not be confronted with an error, depending on

the actual program flow path during runtime. From an educational perspective, static

type checking offers an avenue to reinforce good practice in the early stages of learning

a language.

The lack of tools for type error discovery traditionally associated with dynamic typ­

ing and the impact such tools can have on novice programmers provide motivation for

incorporating static type checking features into languages like Scheme in an educational

setting.

This thesis presents a variation on a static type checker for Scheme originally created

by Jenkins and Leavens [JL96] to aid introductory students at Iowa State University.

The original system, hereafter referred to as TypedScmOO, includes a student-friendly

notation for data types and has been used for several years. Since its original release ,

ease of maintenance has become increasingly important. However, the nature of its

implementation made this inherently difficult. This complexity provided the impetus

for a new implementation that expressly addresses the maintenance problem.

The new type checker, referred to as TypedScm05, uses the simple type notation

of TypedScmOO but provides a novel implementation approach as well as several en­

hancements to the original type system. Among the improvements, TypedScm05 is

itself designed to be highly extensible. It provides a reusable type checking engine that

3

can be applied to many type checking problems outside of the Scheme language. This

engine allows for a separation of concerns within TypedScm05, thereby simplifying the

maintenance process. The original polymorphic type system used in TypedScmOO has

also been extended to allow for a greater degree of modularity in user code and is more

complete in its handling of advanced datatypes.

1.1 Design Overview

Development of a static type checker is by no means a trivial task. These sys-

terns must take into account a myriad of concerns including abstract language syntax,

type inference rules, unification algorithms, and generated error messages. The inter-

relationships between these concerns can be quite complicated. Programmers who write

type checkers are, of course, subject to the same difficulties experienced by other software

engineers. It is not uncommon for software systems to be designed around the predom-

inant architectural concern while others are forced to take a back seat. Systems which

operate on programming languages themselves are influenced strongly by the language's

syntax and semantics. However, if other concerns are not also taken into account , the

resulting code can become an entangled mix of unification methods, type inference rules,

and error generation.

1.1.1 Problem

The previously mentioned TypedScmOO system developed by Jenkins , Clifton, and

Leavens is an example of a primarily syntax-driven decomposition. The code in Figure

1.1 provides a tangible, albeit small, example of the problem.

This code fragment is responsible for handling the type checking of a conditional

expression in Scheme. Essentially it encodes the inference rule1 given in Figure 1.2.

1The notation used for inference rules here is essentially that given by Cardelli in [Car87]. The
judgement II f--- e : T means that in a type environment II , it can be inferred that e has type T. \ i\Tithin

1 (tc: conditional-exp
(position test consequent alternate)
(tc:check-for-boolean
rec-typ-env seq-typ-env unif-env test
(lambda Cue)

6 ((tc:one-must-subtype-other

4

"Arms u of u if u expression u have u differentutypes"
"Left uu arm 11

"Right u arm")
rec-typ-env seq-typ-env ue

11 consequent alternate result-cont))))

Figure 1.1 If-Exp Inference Rule in TypedScmOO

However , the underlying rule for any given code section is not obvious to an outside

reviewer due to the other concerns dealt with in the same code. Notice that lines 7-9

above contain messages that will be used in error message generation and that there is a

good deal of verbosity centered around passing environment parameters (rec-type-env,

seq-type-env, etc) .

II f- t est : boolean
II f- cons : t
II f- alt : s

t <> s: sub super

II f- (if t est cons alt) : S'uper

Figure 1.2 Conditional Expression Rule

Even this small example leaves something to be desired for the programmer respon-

sible for maintaining TypedScmOO. The reader can imagine the even greater complexity

associated with a less trivial piece of Scheme syntax in this system. Put simply, the

problem here is to devise a means of implementation that allows for a cleaner and more

maintainable approach to type checking.

a type environment , x : T denotes the binding of variable x to type T. II , x : T represents the extension
of environment II by the binding x : T. The notation t < > s : subtype suptype is used to specify that
either t is a subtype of s ors is a subtype oft, where subtype and s'uptype are aliases for the appropriate
values on the left-hand side. Clauses appearing a bove the horizontal bar are said to imply those below
it.

5

1.1.2 Goals for Solut ion

Simplification of the maintenance process in the type checker serves as our primary

motivation for the work that makes up a substantial portion of this paper. Our main

goal was to develop a system in which type rules can be easily added or changed indepen-

dently of other concerns in the system, while at the same time preserving TypedScmOO's

behavior from the end user 's standpoint. In other words, the type system and errors

generated needed to be at least as helpful as those that already existed.

1.1.3 Solution Overv iew

The design of TypedScm05 abstracts many of the previously mentioned concerns into

independent modules that come together to form the type checker. Figure 1.3 illustrates

the basic architecture.

Annotation
Rules

Type
Expressions

Type Checking
Engine

Unification
System

Error
Generation

Error
Message
Output

Figure 1.3 TypedScm05 Architecture

At t he heart of the new system is t he type checking engine. This abstract component

is responsible for implementing a slightly modified Hindley-Milner unification algorithm

[Mil78][Car87]. Internally this engine is oblivious to the representation of syntax, types,

and errors; however, it does make use of abstract procedures that must be provided

through a m ethod dictionary in order to manipulate the specific representations. The

method dictionary is a data structure which encapsulates several required procedures

6

defined outside of the scope of the type checking engine. This engine is therefore reusable

and may be applied to various forms of type checking problems, limited only by the

components which are "plugged in" through the dictionary.

The external modules (shown in grey in the above diagram) are required to provide

a basic set of procedures in order to work with the type checking engine, but they typi­

cally implement a great deal of functionality within themselves related to their specific

function. Depending on the application, the programmer may specify an optional error

output mechanism. Given that this component is entirely separated from type checking,

it is possible that a programmer could specify multiple output methods to customize

the system to a particular environment.

Perhaps the most important aspect of the type checking engine is its ability to sepa­

rate rule definitions from t he other concerns. Not only are these rules no longer tangled

with error message text and unification, but they are also defined using a syntax that

directly corresponds to a mathematical notation, like that shown in Figure 1.2. The

engine provides a type checker implementer a set of procedures which are used to spec­

ify a rule. For comparison, the Figure 1.4 illustrates the code for the same condit ional

expression shown earlier. Here lines 8-14 correspond directly to t he mathematical way

in which we specify the same rule, with t he minor exception that the ordering of the

syntax is slightly modified (prefix operators : - and : versus infix operators f- and :) .

In addition to the simple rule shown here, the type checking engine allows program­

mers to make use of side conditions and side definit ions with in their rules. These

features are outlined in more detail in chapter 4.

TypedScm05 utilizes t his engine for its implementation, but also makes several other

improvements beyond those impacting readability and maintainability. This work in­

troduces a module system that is a typeable subset of modules in MzScheme [FFF+97]:

MzScheme's module system allows users to specify a module that only uses names from

modules it explicitly imports. This feature allows for independent type checking of

JO

(tc:conditional-exp
(position test consequent alternate)
(let* ((t1 (tc : new- variab l e-type- expr))

(t2 (tc:new-variabl e-type-expr))
(supertype-var (tc : new-logical var))
(subtype-var (t c: new-logical v ar))

7

(supertype (tc: variable-type- e xpr supertype- var)))
(tc: rule (list

(: -pi (: test *tc:boolean*))
(:-pi (: consequent t1))
(:-pi (: alterna t e t 2))
(<:> t2 t1 s ubtype-var supe r type-var))

(: -pi(: e supertype)))))

Figure 1.4 If-Exp Inference Rule in TypedScm05

modules and was not available in TypedScmOO.

Where possible, TypedScm05 also makes use of more advanced typing rules m an

effort to provide better error messages to end users. Specifically we implement a bidi-

rectional inference method like that described in [PT98a] . The ability t o switch from

traditional bottom-up inference to top-down checking when a previous type definit ion

exists allows a greater degree of accuracy for generating error messages. The t op-down

approach enables t he type checker to point users to a particular expression within a pro-

cedure body that is suspected t o be the cause of the error, rather than simply report ing

a mismatch between a procedure's declared and inferred types as in TypedScmOO. Addi-

t ionally, this implementation provides insight into the power of t he type checking engine,

as it is able to handle features like bidirectionality when given t he appropriate rules.

1.2 Outline

T hroughout this paper , it is assumed that the reader has a functional knowledge of

basic type checking and is literate in t he Scheme programming language. The remainder

of this t hesis proceeds as follows. Necessary notation is introduced in chapter 2. Chapter

3 highlights important aspects of t he type checking engine implementation. Use of the

engine is discussed in chapter 4 t hrough example components taken from our Scheme

8

system. Chapter 5 examines new additions to the original type system and their impacts

on the system's overall usability. A brief overview of notable implementation challenges

is given in chapter 6 followed by a discussion of future work in chapter 7. Lastly, chapter

8 concludes.

9

CHAPTER 2. NOTATION

We begin by presenting a brief introduction to the notation used throughout this

paper. A style of coding and documentation known as l iterate programming is defined

in section 2.1. We elaborate on a variant record syntax for Scheme used in later code

examples in section 2.2.

2.1 Literate Programming

At various points in the explanation of our system it is necessary to examine source

code from the actual implementation. These sections consist of a mix of Scheme source

code and exposit ion. In an effort to keep code segments and their comments to a

digestible length for the reader , we adopt a notation similar to t hat used in literate

programming.

The idea of literate programming was introduced in t he mid-1980s by Knuth as a

way to interleave source code and descriptive text into a single document [Knu92]. His

work frees authors from trying to explain programs in the order required by a compiler

and allows t hem to choose an order t hat more naturally fits how a program actually

operates.

In addition to notation, Knuth developed a tool called Web t hat can manipulate

literate programs for eit her compilation or display. His original system uses the Pascal

language, but t he approach is applicable to any programming language. In fact , similar

tools have been developed for nearly every language imaginable [Ram94].

10

Though TypedScm05 is not implemented using one of the many literate program-

ming tools, Knuth's notation will be used here for descriptive simplicity. His notation

defines the notion of a code fragment or chunk. These chunks can appear in any order,

interleaved with textual information, and may internally reference other chunks. The

following is an example code chunk:

< YindDuplicates 2.1 > =
1 (define tc:find-duplicates

(letrec ((look-for-dups

< LookforDuplicates 2.1 >))
(lambda (ls)

(look-for-dups ls '()))))

Each code chunk is given a unique name made up of an identifier and a section number

(e.g., < FindDuplicates 2.1 >). Section numbers refer to this document , rather than the

files containing the actual code. The names are used to refer to chunks which appear

elsewhere in the text. Typically, code that needs more detailed description is abstracted

into its own chunk. In the above program the reference to < LookforDuplicates 2.1 >

illustrates this use; its definition appears below:

< Look.f orDuplicates 2.1 >
(lambda (ls dups)

(cond
((null? ls) dups)
((member (car ls) (cdr ls))

5 (look-for-dups (cdr ls) (cons (car ls) dups)))
(else (look-for-dups (cdr ls) dups))))

Thus, the meaning of < FindD'uplicates 2.1 > in the actual source program combines

all references to internal chunks in one procedure:

(define tc:find-duplicates
(letrec ((look-for-dups

(lambda (ls dups)
(cond
((null? ls) dups)
((member (car ls) (cdr ls))
(look-for-dups (cdr ls) (cons (car ls) dups)))

(else (look-for-dups (cdr ls) dups))))))
9 (lambda (ls)

(look-for-dups ls •()))))

11

2.2 Variant Record Definitions

On several occas10ns, this paper and the code to which it refers reqmres the ere-

ation of special datatypes within Scheme. These situations are treated using variant

record definitions presented with the define-datatype syntax specified in Essentials of

Programming Languages (second edition)[FWHOl]. Variant records are data structures

that allow a particular record instance to take on one several possible forms, called vari-

ants. For example, suppose we want to represent a binary tree with its own datatype.

A binary tree is a tree that is either empty or a root node with two descendant nodes,

left and right, which are also binary trees. Here we also allow a number to be associated

with each node in the tree. The Scheme code below defines a type, bintree, for a binary

tree record and its two possible variants using the define-datatype syntax.

(define-datatype bintree bintree?
(empty-bintree)
(root-node

(num number?)
5 (left bintree?)

(right bintree?)))

This syntax also defines a type predicate, bintree?, and constructors for each variant

case, empty- bintree and root-node. Thus, we can create and test for bintrees as follows:

(bintree? 8675309) ==> # f
(bintree? (empty - bintree)) ==> #t
(bintree? (root-nod e 5 (empty-bintree) (empty-bintree))) ==> #t
(bintree? (root-node 1 (root-node 2 (empty-bintree) (empty-bintree))

5 (root-node 3 (empty-bintree) (empty-bintree)))) == > #t

Variants are manipulated using a new expression called cases. The following code

illustrates how to define a procedure that computes the sum of all node values in a tree.

(define s umtree
(lambda (tree)

(cases b intree tree
(empty - bintree () 0)
(root - node (num l e ft r ight)

(+ num (sumtree left) (sumtree right))))))

12

CHAPTER 3. TYPE HELPER DESIGN AND

IMPLEMENTATION

T he ab st ract type checking engine described in chapter 1 is a collection of Scheme

modules which provide type checking functionality to client code. The implementation

strategy is t aken from an unpublished prototype for such a system written in Haskell

by Leavens, but has been enhanced to support addit ional functionality like subtyping

within an implementer 's type system. (The original system attempted t o model ideas

from Schmidt 's The Structure of Typed Programming Languages [Sch94].) The aspects

of interest to the reader here are collectively called t he type helpers. Procedures making

up the type helpers are responsible for processing type annotation rules and define the

interface used by implementers to specify a complete type checker.

This chapter highlights the design and implementation of the type helpers. We begin

with a high-level specification of t he system in section 3.1, followed by a discussion of our

representation for data and rules in section 3.2. A detailed descript ion of how inference

rules are processed is given in section 3.3. The chapter is summarized in section 3.4.

3.1 System Specification

Before we examine t he implementation details of t he type helpers, it is useful to

get a better picture of t he general goal. In t his section, we examine a design approach

for specifying an automated type checker for Church and Curry 's lambda calculus with

constants [CFC58]. T he aim is to implement a type checker using Scheme that can

13

process the lambda calculus language and infer types usmg Hindley-Milner inference

rules [Mil78]. Before a discussion of type checking is possible, it is necessary to first

define the language on which we will operate.

A grammar for the lambda calculus is given m Figure 3.1. The formal concrete

syntax is shown on the right of the figure and a corresponding Scheme variant record

definition appears on the left. This Scheme datatype will serve as the abstract syntax

for the type checker.

Scheme Representation

(define-datatype tc:lambda-calc tc:lambda-calc?
(tc:le-self-evaluating

(datum datum?))
4 (tc:le -var ref

(variabl e symbol?))
(tc:le -procedur e - cal l
(operator tc:lambda-calc?) (operand tc:lambda-calc?))

(tc:le-l ambda- exp
9 (formal symbol?) (body tc: lambda-calc?)))

Figure 3.1 Lambda Calculus Grammar

,\ Calculus

(e) .. -
se

I x

I (eo) (e1)

I .\x. (e)

With a grammar for syntax defined, the next step in developing a type checker is to

specify a representation for the types associated with data in the language. Figure 3.2

on the following page depicts type expressions within the system (where a basic type ,

B E {nu.mber, symbol, string , char, boolean}). Note that the final two type expression

variants in the Scheme code are outside those defined by the formal syntax. Polymorphic

type variables are represented with tc: variable-type-expr , and errors are detected with

tc: error-type-expr. These special types will allow rules to be type checked and are

discussed in greater detail in subsequent chapters.

With these notions in place, it is possible to discuss type checking rules. Ideally, a

type checker's implementation would closely mirror the inference rules defined for the

language. Thus, we propose a system that is capable of directly evaluating type rules.

Figure 3.3 illustrates our implementation style versus the formal notation of the lambda

Scheme R epresentation

(define-datatype tc:type-expr tc : type-expr?
(tc:basic-type-expr (symbol symbol?))
(tc:function-type-expr

14

(arg-type tc : type - expr?) (result-type tc: type - expr?))
; ; For type he ipers
(tc:variable-type-expr (lvar tc : logical v ar?))
(tc:error-type-expr))

Figure 3.2 Lambda Calculus Types

>. Calculus

Schem e Representation >. Calculus

(tc:le - self - evaluating
(datum)

3 (let ((B (tc:infer-simple-datum-type datum)))

(t c : axiom (: - pi (: e B)))))

(tc:le-var r ef
(variable)
(let ((lv (t c:new - logicalvar)))

(tc:rule-if
JO '() ; ; no hypotheses here

(lambda (ts)

15

20

2:i

(tc:env-bound? variable pi))
(lambda (ts)

(tc:type-expr-bind lv (tc:env-value variable pi)))

(: - pi (: e (tc:variable-type-expr lv))))))

(tc : le-procedure-call
(operato r operand)
(let ((rt (tc:new - variable-type-expr))

(operand - type (tc:new-variable-t ype-expr)))
(tc:rule (list

(: - pi (: operator
(tc : function-type-expr operand-type rt)))

(:-pi (: operand operand-type)))

(: - pi (: e rt)))))

(tc : le-lambda-exp
(formal body)
(let ((rt (tc:new-variable-type-expr))

30 (formal-type (tc : new-variable-type - expr)))

35

(tc: rule (list
(:- (tc:extend-env pi formal formal-type)

(: body rt)))

(:-pi (: e (tc : function - type-expr formal-type rt))))))

ITf--b:B

X: TEIT

ITf--x:T

IT f- e0 : T ---+ T 1

IT f- e1 : T

IT f- e0 e 1 : T 1

IT , .T : T f- e : T 1

IT f- (>.x : T. e) : T ---+ T1

Figure 3.3 Lambda Calculus Inference Rules

15

calculus.

In the code appearing on the left , we define the manner in which each of the lambda

calculus expression variants are checked. The free variable e is used to represent the

current syntax element being checked (as if this entire figure were specifying the clauses

of (cases tc:lambda-calc e ...)). The forms tc:axiom, tc:rule , and tc:rule-if are

introduced to model the axioms, rules, and rules with side conditions in the formal

specification. In each case, there is a direct correspondence between the Scheme and

formal representations.

Lines 1-5 of the code define the ax10m used to assign a type to a self-evaluating

expression. Specifically, line 3 looks up the associated basic type, B, which is used in

the axiom definition on line 5. Variable references require the use of a rule with a side

condition in order to specify that x : T E II. Such variable references are handled in

the clause given on lines 6-16. The side condition that the identifier name, variable, is

bound in the environment, pi , appears on lines 11-12. The side definition that follows

on lines 13-14 allows the conclusion to refer to the associated type value found in pi .

More involved rules for applications and lambda expressions are shown on lines 17-26

and lines 27-35, respectively. In the application variant case, tc: le-procedure-call , we

begin by declaring two new type variables, rt and operand-type , that correspond to the

variables T 1 and T in the formal rule. A simple rule is written with tc : rule that encodes

the two hypotheses using these type variables and the identifiers operator for e0 and

operand for e1 . Similarly, the clause for lambda expressions (lines 27-35) is translated

using tc: rule and the appropriate type variables. Extension of type environment II in

the hypothesis is modeled with a call to tc : extend-env seen on line 32.

Clearly, the notation presented here is analogous to the type rules themselves and

can easily be understood. Given an infrastructure capable of processing the somewhat

"magical" tc: rule and tc: rule-if , it is entirely possible to treat type checker imple­

mentation in this manner. Just as people manipulate type checking rules to perform

16

derivation proofs, one could imagine a system that automatically creates proof trees from

these rule definitions. In fact, the type helpers mentioned in the introduction to this

chapter do just that. The remainder of this chapter explores exactly how this process

takes place within our type checking engine.

3.2 Data Structures and Rule Interfaces

Before looking at processing, we int roduce the type helper interfaces. Logical vari­

ables are the most basic element used in the type checker (denoted tc: logical var in

our system). We define a logical variable here as a variable bound to a specific value,

another logical variable, or nothing at all in the unification system's environment . They

are used during unification to gather typing constraints on various pieces of syntax.

Additionally, there are three primary data structures used by the type helpers in the

processing of rules: attributed syntax pairs, typing judgements, and mixed hypothesis

elements. Of these, syntax pairs are t he most straight forward. Attributed syntax pairs

are simply a pair that contains a piece of syntax and some attribute. We provide a

procedure named " :" as the constructor for such pairs. For our concerns, the attribute

consists of a type expression, and these pairs associate the given type information with

a particular piece of syntax.

By themselves, these syntax pairs are not very interesting. Things become more

complex when they are incorporated into typing judgements. A judgement is used to

specify a typing constraint to be checked by the system. The code in Figure 3.4 defines

a variant record for judgements. Each variant represents a different type of judgement

in TypedScm05.

vVe provide four different forms of typing judgements. The first, : - d , is t he most

common type of judgement and corresponds to a simple assertion that in environment

17

(define-datatype tc:judgement tc:judgement?
(:-d (env tc:environment?) (attr-pair (tc:attrib-pair-of datum? datum?)))
(·?- (lvar tc:logicalvar?) (attr-pair (tc:attrib-pair-of datum? datum?)))
(<: (subtype datum?) (supertype datum?))

5 (< : > (t 1 datum?) (t 2 datum 7)

(subtype-var tc:logicalvar 7) (supertype-var tc:logicalvar 7)))

Figure 3.4 Judgement Datatype

env a given attributed syntax pair, (: syn type) , holds2 3 . The second form, : ?- , allows

for the environment field to be a logical variable which can be defined elsewhere. This

is only useful in certain declaration forms. The last two judgement forms allow for

the specification of subtyping relationships in the system. In most cases the simple

subtype assertion form, <: , is sufficient; however , we also provide a more general form,

<: >. This form is used to specify that one of two types, t 1 and t2 must subtype the

other. It also allows for two logical variables that will be bound to the appropriate types

if the relationship holds. It is made available primarily as a convenience to the rule

programmer as it is possible to convert it into a composition of two or more rules using

the simple subtype judgement.

These data structures are adequate for most judgements a programmer would want

to encode. However, an additional structure is needed in the case where a programmer

needs to mix true hypotheses with side conditions and side definitions that are to be

executed to either alter the unification environment or to test for some correctness

condition before proceeding to a subsequent hypothesis. The variant record shown in

Figure 3.5 defines the mixed datatype used in these cases.

The tc: mixed type provides three different possibilities. The first , tc: hyp , is a wrap-

per for the standard judgements described above. The tc: when variant is used to specify

side conditions, and tc: def allows for incorporation of side definitions. Examples of how

2Examples shown thus far have used the notation :- for this simple judgement case. \¥hile :-d and
: - are technically different things, the reader may consider them aliases for one another for the moment.
The need for two separate operators is discussed later in section 6.1.

3The term holds in this sense means that the relationship denoted by the syntax pair is valid within
the given environment context.

(define-datatype tc:mixed tc:mixed?
(tc:hyp (judgement tc:judgement?))

18

(tc:when (f (->(list-of datum 7) boolean?)))
(tc:def (f (-> (list-of datum?) (tc:subst-of datum?)))))

Figure 3.5 Mixed Datatype

each of these used is specified in greater detail in chapter 4.

3.2.1 Interfaces for Type Rules

These datatypes are used in conjunction with one of five procedures defined by the

type helpers to specify a type rule. The given procedures are: tc: axiom, tc: rule ,

tc: rule-or , tc: rule-if , and tc: rule-seq. The axiom procedure, tc: axiom, is used to

specify a rule that has no hypotheses; the judgement provided in an axiom is always

t reated as true in the type checker. The tc: le-self-evaluating rule of the lambda

calculus in Figure 3.3 exemplifies the use of tc : axiom.

The most common rule helper is tc: rule , and we have already seen several examples

of it in Figures 1.4 and 3.3. Using this helper, implementers specify a list of judgements

which serve as hypotheses and conclusion judgement which is true if and only if no type

errors are found while processing the hypotheses.

More advanced type rules are specified using the other three type helpers. A con-

venience that allows a more fine-grained splitting of rules into cases is the tc: rule-or

combinator. It combines two or more rules and checks that at least one of them holds.

An example rule for a hypothetical equals expression is shown in Figure 3.6. This rule

asserts that a tc: equals-exp expression is valid with a boolean type if its two subforms,

e1 and e2 , have either both number or both boolean types.

Rules with simple side conditions can be specified using the tc: rule-if form. It

requires a list of hypotheses and a conclusion like standard rules, but it also takes two

procedures that define side conditions. The first is a function from type attributes to

10

(tc: equals -exp
(e 1 e2)
(tc:rule-or
(tc: rule (list

(: - pi (: e 1 * t c: number*))
(:-pi (: e2 *tc:number*)))

(:-pi (: e *tc:boolean*)))
(tc: rule (list

(:-pi (: e1 *tc:boolean*))
(:-pi (: e2 *tc:boolean*)))

(:- pi (:e *tc:boolean*)))))

19

Figure 3.6 tc:rule-or Example in TypedScm05

a boolean value. If this returns true, then the type attributes are passed to the second

procedure which can return a substitution defining any number of new variables in the

unification environment. When no definitions need to be made, the second procedure

returns the null substitution.

Figure 3. 7 depicts a simple use of this rule form that checks a lambda expression with

multiple formal parameters. First , the body is checked in an environment containing

bindings for the formals , as in the lambda calculus. The side condition enforces the

restriction that the formal parameters must be unique, and the side definition is not

used.

(tc: lambda-exp
(formals body)
(let ((rt (tc:new-variable-type-expr))

(formal-ts (tc:listof-new-variable-type-expr (length formals))))
5 (tc:rule-if (list

10

(:- (tc:extend-mult-env pi formals formal-ts)
(: body rt)))

(lambda (ts) Side Condition
(tc:no-duplicates? formals))

(lambda (ts)
(tc:type -expr-null- subst))

Side Definition

(:-pi (: e (tc:function-type-expr formal-ts rt))))))

Figure 3.7 tc:rule-if Example in TypedScm05

The only thing one cannot accomplish with the above type helpers are rules that, like

sequential declarations, need to alter the environment in the middle of the rule. For this

20

we provide a specialized form, tc: rule-seq. This helper requires a list of tc :mixed data

elements and a conclusion which is a normal judgement. Rather than the independent

processing of hypotheses present in the other helpers, tc: rule-seq processes its argument

list sequentially. The list may contain hypotheses, side conditions, and side definitions

in any order. Elements tagged with tc: def or tc: when are passed the list of attributes

computed thus far. Ones marked as side definitions can define new values for logical

variables to be used later, and those which are side conditions are tests which are used

to terminate type checking when they return false.

A sample appears in Figure for a simple sequential declaration form, tc: then-exp, is

checked here. If the first declaration, d1, type checks, its bindings are added to original

environment to check the second declaration, d2. When both declarations successfully

check, their bindings are combined and provided in a declaration type used as the con-

clusion 's inferred type.

(tc: then-exp
(d1 d2)
(let ((pi1 (tc:new-variable-type-expr))

(pi2 (tc:new-variable-type-expr))
5 (pi3 (tc:new-logicalvar))

(pi4 (tc:new-logicalvar)))
(tc: rule-seq
(list
(tc:hyp (:-pi (: d1 pi1)))

10 (tc:when (lambda (ts) (tc:all tc:declaration-type-expr? ts)))
(tc:def (lambda (ts) (tc:type-expr-bind

pi3
(tc:declaration-type-expr
(tc:env-join

15 pi (tc:declaration-type-expr->env (car ts)))))))
(tc:hyp (:?- pi3 (: d2 pi2)))
(tc:when (lambda (ts) (tc:all tc:declaration-type-expr? ts)))
(tc:def (lambda (ts) (tc:type-expr-bind

pi4
20 (tc:declaration-type-expr

(tc:env-join
(car ts)
(cadr ts)))))))

25 (:-pi (: e (tc:variable-type-expr pi4))))))

Figure 3.8 tc:rule-seq Example in TypedScm05

These datatypes and type-helping procedures provide the functionality needed by

21

an external programmer to specify how type checking should proceed in their specific

application.

3.3 Rule Processing

Each of the five type helpers supplies a slightly different feature set to program-

mers. However, it is not necessary to discuss each of them individually due to the fact

that tc: rule and tc : rule-if can be converted into special instances of the more gen-

eral tc : rule-seq form. These translations are quite straightforward and merely involve

wrapping up existing judgements and side procedures with the corresponding tc :mixed

variants. For this reason, we limit the remaining discussion to tc : rule-seq.

The processing of sequential rules (and thus all rules) proceeds in a manner that

is analogous to standard type derivation. The item of syntax being checked serves as

the starting point for type inference. For example, assume we would like to check t he

application:

(AX. x) n in environment II = { n : number}

Figure 3.9 shows the first step of derivation. Based on the type of syntax (an application

in this case) we choose the correct rule. At this stage, we assign type variables to the

elements since we do not know anything more specific.

II f- (A.T: T 1. x): T3 ___, T2 II f- n: T3

II f- (Ax : T 1. x) n : T 2

Figure 3.9 Initial Step in Type Derivation

This step is analogous the invocation of t c: rule given the arguments as specified in

Figure 3.3. Verifying that the application is correctly typed requires us to examine each

of the hypotheses for the sub-expressions and ensure no errors exist in them. All rule

processing begins in a similar fashion and is depicted in < RuleSeqH elper 3.3 >.

< HuleSeqH el per 3.3 > =
(define tc:rule-seq-helper

(lambda (md annotate)
< UnpackM ethodDictionary 4. 2 >
(lambda (h s cone)

22

5 (cases tc:judgement cone

JO

15

20

)))))

(:-d (env attr-pair)
(let ((result_trees

((tc:sequen ce md annotate) hs '()))
(syn (tc : attrib -pair->syn attr-pair))
(tau (tc: attrib -pai r ->type attr-pair)))

(if (no t (tc:error-noted?))
(let* ((s (tc: get - current -subst))

(ts (tc:map -tops Capp s) result_trees)))
(: syn (tc : n ode ((app s)

Type error
(: syn (tc:node

(tc:force-if-promise tau))
ts)))

(gen-error-rule syn result_trees)
result_trees)))))

(else (error "Conclusion u judgement umust u be u a u : - u judgement")))

As wit h manual derivations, we must process the sub-expressions based on the hy-

potheses given in the rule definition. Here, we invoke a helping procedure to validate the

list of tc :mixed hypotheses, hs (line 8). If no type errors result during the processing of

this list, we generate a new attributed syntax pair that associates t he syntax item and

type given in the original conclusion for the rule (lines 14-16). The system also adds type

information gleaned during hypothesis checking4 which can be used at a later poiut in

error processing. If errors occur, the resulting syntax pair contains an error type instead

of the type given in the conclusion. Here we make use of one of the procedures from

the method dictionary, gen-error-rule , allowing complete flexibility for the handling of

errors which occur during rule processing (line 19) .

In reality only a small portion of the type inference work (that relating to conclu­

sions) pertains to this code. The majority of the complexity comes in processing the

sub-expressions and checking their mutual constraints. Revisiting t he same procedure

application example, Figure 3.10 illustrates the outstanding areas in the derivation with

vertical ellipses.

4 T his information forms a syntax tree with inferred type annotations for each syntactic element.

23

D D
II f-- (AX : T1. x) : T3 -----+ T 2 II f-- n : T3

II f-- (AX : T 1. x) n : T 2

Figure 3.10 Outstanding Derivation Parts

The missing parts of the derivation must be filled in by further annotating each sub-

expression and its hypothesis in turn. Our internal helping procedure for processing

lists of hypothesis and optional side procedures appears in < tc : sequence 3.3 > on

the next page. The code may appear daunting at first , but the general idea behind

tc: sequence is quite simple. If the list of terms passed as an argument, hs , contains

at least one element, we determine how to proceed based on a case analysis of the first

element of hs . The kind of tc :mixed element we are considering leads to an appropriate

action. Remember that, in addition to hypotheses, our lists may contain optional side

procedures that must be handled specially. Furthermore t he typical tc: hyp hypothesis

elements, must be separated by their type of judgement . Thus any one of six normal

actions will be taken; error checking from previous hypothesis adds another four cases

as seen on lines 17, 22, 29, and 33.

The subsections t hat follow define t he specific behaviors for each of the six cases

referred to within < tc : sequence 3.3 >. Subsection 3.3.1 cover the base case, and

subsection 3.3.2 reviews the error cases. Implementation for side conditions and side

definitions is outlined in subsection 3.3.3. The judgements containing environments

are handled by subsection 3.3.4, and those pertaining to subtyping are dealt with in

subsection 3.3.5.

3.3.1 Base Cases

T he most simple case is the base case, which executes when the list of hypotheses

contains no elements. Its implementation is trivial; we simply return the list of type

5

10

15

20

25

30

35

<tc :sequence 3.3> =
(define tc:sequence

(lambda (md annotate)

24

< U npack!vl elhodDict ionary 4. 2 >
(lambda (hs attrs)

(letrec ((recurse (tc:sequence md annotate))
(vars-in (tc:vars-in md)))

(let ((check-subtype-judgement
(tc:check-subtype-judgement hs md app bind attrs recurse)))

(if (null? hs)
< BaseCase 3.3. l >
(cases tc: mi xed

(tc :force-if-promi se (car hs))
(tc : def (f)

(if (tc:error-noted 7)

<ContinueCase 3.3.2 >
< SideDef initionCase 3.3.3 >))

(tc: when (p)
(if (tc:error-not ed?)

< ContinueCase 3.3.2 >

(tc:hyp
(judgement)

< SideConditionCase 3.3.3 >))

(cases t c:j udgement judgement
(:-d (env attr-pair)

(if (tc:error-noted 7)

< ContinueCase 3.3.2 >
< NormalHypolhesisCase 3.3.4 >))

(:? - (lvar attr - pair)
(if (tc: error-not ed 7)

< ContinueCase 3.3.2 >
< VariableEnvironmentHypothesisCase 3.3.4 >))

(<: (subtype supertype)
< SimpleSubtypeCas<> 3.3.5 >)

(<:> (ti t2 subtype-var s upertype-var)
< EitherSubtypeCase 3.3.5 >)))

)))))))))

25

information gathered for the sub-expressions, attrs, accumulated earlier. This is a list

of annotated syntax trees with one tree for each sub-expression.

<BaseCase 3.3.l >
attrs

3.3.2 Error Cases

Another relatively simple case also requires little additional processing. This case

primarily arises when a type error has already been encountered in a previous judgement.

Rather than processing anything further at this stage, we just continue to the next

judgement. The current one is effectively ignored.

< ContinueCase 3.3.2 >
(recurse (cdr hs) attrs)

3.3.3 Side Procedures

As mentioned earlier in this chapter, there are two different types of side procedures:

those that are conditions and others that provide additional definitions. Side conditions

are used to incorporate additional constraint checking into a rule. For example, one could

use them to require that no duplicate identifiers occur in a list of formal parameters.

Evaluation of a condition, shown in < SideCond'it'ionCase 3.3.3 >, involves calling the

given procedure, denoted p in line 1, with the type information gathered thus far. If this

condition holds and results in a true value, unification continues normally. Unsuccessful

tests of the side condition are noted as errors prior to continuation (line 5).

Side definitions are processed in a manner similar to their conditional counterparts

(< SideDefinitionCase 3.3.3 >). We first begin by evaluating the given procedure,

denoted below by f. Its result is a substitution which provides additional definitions for

logical variables that are to be added to the current unification environment. This is

< SideConditionCase 3.3.3 >
(if (p (map tc:root attrs))

(recurse (cdr hs) attrs)
(begin

; ; Update unification env with error
(tc: note-error')
< ConlinueCase 3.3.2 >))

< SideDefinitionCase 3.3.3 >

26

(let ((del ta_subst (f (map tc: root attrs))))
; ; Update the current environment

(tc: set-current -subst -list!
(list

5 (tc:subst-compose
(tc:get-current-subst)
delta_subst)))

(recurse (cdr hs) attrs))

accomplished by first composing additional definitions with those already present and

then updating the global environment accordingly (lines 3-7). Evaluation then proceeds

with the next element in the list.

3 .3.4 H ypothesis Judgements

The most interesting of the cases is the one that processes a normal hypothesis. To

verify the first hypothesis in our sample derivation, we must recursively annotate its

syntax and check that our previously guessed expected type and the inferred type unify.

Figure 3.11 shows this process5 . Similarly, the code in < N ormalH ypothesisCase 3.3.4 >

performs this task.

D
II f- (>..x : T1. x) n : T2

Figure 3.11 Recursive Derivation on Hypothesis

5In this diagram we show all type variables used as per the rules. If two variables appear in a vertical
column, the variable on top is the inferred type from the upper judgements, and the one on the bottom
is the expected type specified by the conclusion below.

27

< N ormalHypothesisCase 3.3.4 > _
(let* ((syn (tc :attrib-pair->syn attr-pair))

2 (recur-result (annotate env syn)))

12

17

22

27

32

37

(if (tc: error-noted?)
; ; Unification erro r on su b annotatio n
(recurse (cdr hs)

(append attrs (list (tc:attrib-pair->type recur-result))))
;; So far so good ...
(let* ((result-attr (tc :attrib-pair->type recur-result))

(attr
(tc:node

((app (tc:get-current-subst)) (tc:root result-attr))
(tc:leaves result-attr)))

(expected
((app (tc: get - current - subst))
(tc:force-if-promise (tc:attrib-pair->type attr-pair)))))

(let* ((renaming
(if (nul l 7 (tc :intersect (var s -in (tc:root attr)) (vars-in expected)))

(lambda (trm) trm)
((tc:rename-vars md)

(+ 1 (tc:max-list (map cdr (vars-in expected)))))))
(rt (renaming (tc:root attr)))
(delta-substl ((tc:mgu md) expected rt)))

(if (null? delta -substl)
;; no result substitution
(begin

(tc: note - error!)
(recurse (cdr h s)

(append attrs

(begin

(list (tc: node (gen-error-mismatch s yn expected rt)
'())))))

(tc: set - current -subst -list !
(list
(tc:subst -compo se
(tc : get-current-subst)
(car delta-subst l))))

(let ((t2 ((app (tc:get-current-subst)) rt)))
(recurse (cdr hs)

(append attrs
(list (tc:node t2 (tc:leaves attr))))))))))))

Processing this form begins by annotating t he inner piece of syntax with its inferred

type and determining whether an error occurs on the subform (lines 1-6) . We then

resolve any known type variables in the inferred type and extract t he expected type

from the original judgement form (lines 9-15). The expected and inferred types are t hen

adjusted to make sure that they have mutually exclusive type variables (lines 16-21).

The unification algorithm, tc: mgu, is invoked on line 22 in an attempt to compute a

most general unifier for t he expected and inferred types. If the types can not be unified

we note that an error has occurred and place a type mismatch error into the annotation

list (lines 24-30). It is important to note that this is the sole location of error type

28

generation in the sequence routine. The only errors which occur at this level are simple

mismatches between given and actual types. This does not, however, limit the error noti-

fication capabilities of the system. A greater degree of error information can be obtained

when tc: sequence returns to its caller, tc: rule-seq-helper , and context information for

an entire rule can be analyzed by the user-defined procedure gen-rule-error.

When no unification error is detected, the resulting substitution is added to the

current unification environment (lines 32-36) and the remaining hypothesis are processed

with the newly inferred type added to the accumulation list (lines 37-40).

The other hypothesis case, < VariableEnviornmentHypothesisCase 3.3.4 > , deal-

ing with variable environments involves much less work. Judgements of this form have a

logical variable instead of a concrete environment. Thus, processing begins by attempt-

ing to resolve the given variable to a value within the global unification environment

(lines 1-2). If resolution is successful and the returned binding does indeed contain a

type environment, we rewrite the current judgement using the normal form and process

it as usual (lines 5-7). A bad binding here is considered a fatal error and type checking

terminates (line 8).

< VariableEnviornmentH ypothesisCase 3.3.4 > =
(let ((te ((app (tc:get-current-subst))

(to-term lvar))))
(cond
((is -dec-t ype -expr ? te)
(recurse (cons (tc:hyp (:-d (dec-type-expr->env te) attr-pair))

(cdr hs))
attrs))

(else (error "tc:sequence:uBadubindingufor u logical u var: u " lvar))))

3.3.5 Subtyping Judgements

The current type helpers support a primitive notion of subtyping. Our restricted

su btyping stems from the type system specified for TypedScmOO in [JL96]. It defines

two special types, datum and poof , which are used as the top-most (i.e., most super)

29

and bottom-most (i.e., least specific) types, respectively. All other types exist directly

between datum and poof . Figure 3.12 depicts the hierarchy.

datum

boolean m (vector-of character)

number (list-of number)

character (pair-of number boolean)

void (-> inurnber) boolean)

poof

Figure 3.12 TypedScmOO Type Hierarchy [JL96]

Given that the type system to be plugged into the type checking engine for Typed-

Scm05 would also only require a bare minimum in terms of subtyping, support for more

advanced subtyping was not included in the initial design of the type helpers.

The actual processing of subtyping cases makes use of an additional procedure shown

in < tc: check-subtype-judgement 3.3.5 >. The simple subtyping case just invokes this

procedure with the types it was given and two new logical variables, which are not used

further here:

< SimpleS'ubtypeCase 3.3.5 > =
(check - s ubt yp e -judgement s ubtype supertype

(tc:new-logicalvar) (tc:new- logicalvar))

Judgements making use of the < : > constructor are handled specially. Recall that

judgements of this form look like (<: > t 1 t2 sub-var super-var) . The intended be-

havior is to verify that either t1 is a subtype of t2 or vice versa. The implementation

for this begins in < E'itherSubtypeCase 3.3.5 > by saving a copy of the current global

environment to be restored if needed (line 1) and by testing whether t 1 is a subtype of

t2 (line 2). If this check ends in success, execution continues to the next tc :mixed form.

However, if t he first test fai ls, we must restore the global environment to its original

status and test the opposite relation (lines 7-10).

5

10

10

15

2 0

25

3 0

30

< EdherSubtypeCase 3.3.5 > -
(let ((saved-subst-list (tc :get-current-subst-list))

(ti-sub-result (check-subtype-judgement ti t2 subtype-var supertype-var)))
(if (not (tc:error-noted?))

; ; t1 <: t2 passed, pa s s a Long answer
ti-sub-result
; ; t1 <: t2 faded, try other way
(begin

;; restore subst - List
(t c : set - current - subst -1 ist ! saved - subst -1 ist)
(check-subtype-judgement t2 ti subtype-var supertype-var))))

< t c : check- subtype - judgem ent 3.3.5 >
(define tc:check-subtype-judgement

(lambda (hs md app bind attrs recurse)
(lambda (subtype supertype subtype-var supertype-var)

(if (tc:error-noted 7)

; ; Type error aLready, so just pass it on
< ContinueCase 3.3.2 >
; ; Attempt subtype test, first appLy current s ub s titution to vars
(let* ((cur-app Capp (tc:get-current-subst)))

(subtype-val (cur-app subtype))
(supertype-val (cur-app supertype)))

(let ((subtype-substl ((tc:subtype-mgu md) subtype-val supertype-val)))
(if (null? subtype-substl)

subtype reiationship faiLure
(begin

; ; Update unification environment
(tc : note -error!)
< C ontinueCase 3.3.2 >

, , subtype reiation is vaLid , pass on subst
(begin

; ; Update unification environment
(tc: set-current-subst-list !
(list

(tc:subst-compose
(tc:get-current-subst)
(tc:subst-compose
(car subtype-substl)
(tc:subst-compose

(bind subtype-var subtype- val)
(bind supertype-var supertype-val))))))

(recurse (cdr hs) attrs)))))))))

31

V./e rely on < tc: check-subtype-judgem ent 3.3.5 > for t he bulk of the work in subtype

processing. In essence it requires the same four parameters as the <: > judgement. The

first two are used for the actual test, and the second two are logical variables that are to

be bound as result-like values so that the supertype and subtypes can be used elsewhere

inside rule definitions easily. When checking a subtyping judgement, t he two types

must first be resolved in the global unification environment (lines 8-10). The unification

algorithm for subtyping is then invoked upon the resolved types (line 11). At present,

the algorithm implemented by tc: subtype-mgu is the same as that described in [JL96],

but could feasibly be extended to allow for a more general treatment of subtyping.

When a subtype relationship is successful, the unification environment is updated with

any constraints gathered as a result of subtype unification and bindings which provide

correct values for the two logical variables given as parameters (lines 19-29) .

3.4 Summary

The various data structures and type helping procedures described in this chapter

comprise an abstract type checking engine that can be used to specify a type checking

system for an arbitrary language. The variety of mechanisms made available to program­

mers provide enough support to implement common type inference rules. Effectively,

the type helpers construct type derivation trees based on the rules to accomplish check­

ing6. The syntax chosen for interaction with these interfaces is designed explicitly to

correspond to a type checker implementer's concept of typing rules.

Most importantly, a separation of concerns within the type checker is accomplished

under this design. All code manipulating type judgements and rules exists solely within

this module. Users of t he engine provide definitions for t hose procedures required by

the method dictionary in external modules. A detailed look at the structure of these

r; Appendix B completes the partial derivation used in t his chapter.

32

external components is the focus of t he following chapter.

33

CHAPTER 4. USER DEFINED COMPONENTS

The previous chapters have alluded to the external modules which must be added to

the type checking engine to completely specify a type checker. However, most examples

have ignored these details (the type checker outlined for the lambda calculus pretended

as if they did not exist). Here we more closely examine each of the typical components

needed and a portion of their specific implementations in the TypedScm05 system. In

essence, this allows users to customize the type checking engine to meet the needs of

their system. An example set of type expressions from TypedScm05 appears in section

4.1. Section 4.2 discusses each of the procedures contained within the method dictionary.

Sample annotation rules of interest are shown in section 4.3, and an example strategy

for error generation in this system is given in section 4.4.

4 .1 Type Expressions

Any type checker must provide a representation of data types in order to annotate

syntax elements. The method dictionary requires a bare minimum of two basic types for

checking: variables and errors; however, most type checkers would contain definitions for

many other type expressions. We have already seen an example of a minimal type system

in the lambda calculus grammar given iu the figures of section 3.1. A more advanced

grammar for type expressions is that used in the TypedScm05 implementation, which

defines eleven different types. Its datatype definition is shown in Figure 4.1.

The first eight variants (lines 2-15) are used to implement the types specified in the

(define-datatype tc:type-expr tc:type-expr?
(tc:basic-type-expr (symbol symbol 7))

(tc:function-type-expr

34

(arg-types (list-of tc:type-expr?)) (result-type tc:type-expr?))
5 (tc:intersection-type-expr (conjoined-types (list-of tc:type-expr?)))

(tc:type-predicate-for-type-expr (type tc:type-expr?))
(tc:variant-record-type-expr
(variants (list-of tc : type-expr 7)))

(tc:applied-type-expr
10 (operator -type tc:type-expr?) (operand -type s (list-of tc:type-expr?)))

(tc:variant-type-expr
(variant-name symbol?)
(fields (list-of tc:type-expr 7)))

(tc:field-type-binding-type-expr
15 (field-name symbol?) (type tc:type-expr?))

; ; Those required for type helpers
(tc:variable-type -expr (lvar tc:logical v ar 7))

(tc:declaration-type-expr (pi (tc:environment-of tc:type -expr ?)))
(tc:error -type-expr (error-record tc:error -record?)))

Figure 4.1 TypedScm05 Type Expressions

notation from TypedScmOO [LCD05], while the latter three add functionality needed in

order to use the type helpers. Implementation of a method dictionary for these type

expressions is straightforward.

4.2 Method Dictionary

Type checker implementers wishing to use our engine need to specify a number of

procedures that allow the abstract system to work with the concrete, user-defined type

expressions declared externally. This collection of functionality has earlier been referred

to as the method dictionary, but its contents have largely been glossed over. This

dictionary is defined as a record containing several procedures used by the inference

engine. The type helpers extract the various procedures from a record instance, md, as

shown in the chunk < U npacklvl et hod Dictionary 4. 2 > on the following page.

This section enumerates each element of the dictionary, providing insight into its

purpose. A sample invocation is used in t he explanation of items which are procedures.

Throughout , the word term is used to refer abstractly to a value that is a type expression.

The exact definition of a term is specified concretely by the external module.

35

< U npackM ethodDictionary 4.2 >
(cases tc:unifiable-md md

(tc:unifiable-md-dict
(to -term get-var subterms same-kind nullSubst bind app

contravar -subterms covar-subterms invar-subterms
subtype-replace is-intersection-type?
find-intersection-subtyping find-intersection-supertyping
is-bottom? is-top? is-error 7 gen-error-mismatch gen-error-rule
is-dec-type-expr? dec-type-expr->env)

The following seven elements are the most basic and would be required for even the

most rudimentary type checking. They allow for the manipulation of logical variables

and simple terms within the type checking engine.

(to-term lv) converts the logical variable, lv, into a term that represents the same
variable. Typically, such a procedure would just incorporate 1 v as a data member
of the new term.

(get-var t) extracts a logical variable from a term, t . Its value is a maybe type7 that is
(make-something lv) when t represents a logical variable lv, and (make-nothing)
when it does not.

(same-kind t s) is true if and only if t and s are the same "kind" of term, which is to
say that they have the same operator. For example, when t and s are both error
types, (same-kind t s) returns true.

nullSubst is the empty substitution. It is like the identity function in that, for all
logical variables lv, (tc: subst-apply nullSubst lv) = (to-term lv) . Often the
nullSubst is used as an initial value for the unification environment.

(bind lv t) represents a substitution that maps a particular logical variable, lv, to a
specific term, t. In all other cases, this substitution behaves like nullSubst. In
other words, when the resulting substitution is applied to lv, the original term t
is returned.

Capp s) transforms the substitutions into a function that maps terms to terms. This is
particularly useful within the type helpers for direct manipulation of terms, rather
than logical variables.

(subterms t) is a list of all subterms contained int.

7 Like in Haskell, an instance of a maybe type represents a value that is either an actual value or
nothing at all.

36

The type helpers allow for subtyping, but it requires several addit ional procedure

definitions from the external modules. These eight method dictionary members specify

the functionality related to subtyping.

(contravar-subterms t) is a list of all subterms in t which are to be considered con­
travariant in the unification of subtypes. Contravariant subterms are treated in
the inverse direction from their containing types with respect to subtyping. For ex­
ample, assume A <: B. Then (contravar-subterms A) returns a list of terms that
should be checked as supertypes (i.e., : >) to the terms in (contravar-subterms B) .

(covar-subterms t) extracts the covariant subterms of t. Covariant subterms are
checked in the same direction as their containing types for subtyping purposes.

(invar-subterms t) provides the subterms that are invariant int . Invariant subterms
are those terms which are not to be handled with the subtype unification algorithm.
They are instead checked with the same algorithm used for terms in (subterms t) .

(subtype-replace sub super) returns a pair , like (sub . super) , except that any
special replacements due to subtyping have been made. This is useful for the
treatment of advanced type constructs that need to be de-sugared to more simple
types during the tests for subtyping (e.g., variable arity function types) .

(find-intersection-subtyping intersection sought) attempts to subtype unify
its arguments and returns the result substitut ion of the first type in intersection
that unifies with sought

(find-intersection-supertyping sought intersection) attempts to find a substi­
tution that makes sought a subtype of each type contained inside intersection.
If no such substitution exists, it results in the empty list.

(is-bottom? t) returns true when t is the bottom type within the type hierarchy.

(is-top? t) tests whether or not t is the top type.

The final six procedures needed allow the type checker to test and manipulate three

special terms: error types, intersection types, and declaration types. These particular

terms are the only three required to be defined by the method dictionary procedures

aside from polymorphic variable types. However, it is possible to provide stubs for these

three procedures in the event that the implementer 's type system has no need for t hem.

All other types are entirely left to the user 's discretion.

37

(is-error? t) is true only when t is an error type.

(is-intersection-type? t) tests whether or not t is an intersection of types. That
is, t is thought to have more than one allowable type.

(is-dec-type-expr? t) is true when t is a type expression that represents a decla­
ration type in the system. These types are useful for specifying rules for syntax
elements that result in new variable bindings (e.g., formal parameter lists, defini­
tion forms , etc).

(dec-type-expr-> env dec-t) extracts the environment of bindings contained within
the declaration type dec-t.

(gen-error-mismatch syn expected inferred) returns an error term that may con­
tain an error record for syntax element, syn, generated from the expected and
inferred types.

(gen-error-rule syn trees) creates an error type expression possibly containing an
appropriate error record for when the rule corresponding to syn fai ls. This is used
for generating more specific error messages than can be achieved with the basic
mismatch generator.

In reality, many of these procedures are commonly implemented while specifying

the other external aspects, like type expressions. Thus, the method dictionary is fairly

simple to produce. A complete example method dictionary for a lambda calculus type

checker is included in appendix A.

4.3 Annotation Rules

The type helpers require one procedure (called tc: annotate in TypedScm05) that

does not exist as part of the method dictionary. Type annotation rule definitions for

the abstract syntax appear in this procedure, and it is probably where the most effort

is spent when implementing a type checker. The purpose of the annotation code is to

delineate the process by which a type is inferred for any given piece of syntax. For

example, we say that the call (annotate pi e) results in an annotation for the syntactic

clement e in the type environment pi .

38

We have already seen a couple examples of how this annotation takes place in the

sample rules given in chapters 1 and 3. Essentially, for each item of syntax, we must

define a rule using one of tc: axiom, tc: rule , tc: rule-or , tc: rule-if , and tc: rule-seq.

In order to get a better picture of how these type helpers are actually used, this section

uses real code taken from the TypedScm05 checker to illustrate some interesting uses.

4.3.1 Examples of Simple Rule Use

Often, the rules needed are quite small. They tend to have, at most , a handful of

hypotheses and do not need side conditions. The simplest cases, t hose that require no

hypotheses at all, need only declare an axiom. Below is an axiom for self-evaluating

elements in Scheme. Self-evaluating items consist of singular numeric constants (e.g.,

42) , string literals (e.g., "Brodie"), and assorted other simple data. These data can be

typed more or less by just asking a question like "is this a number?" Here we need only

ask what simple type e represents (line 3) and assert that e has this type with tc: axiom.

(tc:self -evaluating
(position datum)
(let ((t (tc: infer-simple-datum-type datum)))

(tc:axiom (: -pi (: et)))))

Another common use for rules arises when a piece of syntax contains a list of subterms

that need to be included in the list of hypotheses somehow. One way to handle these

cases nicely is to use the map procedure to quickly create judgements for each member.

For example, an and expression in Scheme takes one or more tests as arguments:

(and (number? 1029) (symbol? 'IBM) (null? '()))

The rule in Figure 4.2 shows how one can automatically generate judgements for each

test without multiple explicit calls to : -.

(tc:and-exp
(position tests)
(tc : rule (map (lambda (test)

39

(: - pi (: test * t c : boo 1 e an*)))

5 tests)

(:-pi (: e *tc:boolean*))))

Figure 4.2 Dealing with Lists of Subterms

4 .3.2 Example of Complex Rule Composition

While the above rules serve as mce "toy examples" they do not exploit the full

range of the type helpers' features. Combining rules together allows for the specification

of logically larger rules and is achieved by using t c: rule-or . The rules specified as

arguments to tc: rule-or are executed one at a time until a rule holds. The annotation

code below depicts how one can nest rules and gives more instances of tc: rule - if .

(tc:normal-list-datum
(position elements)
(let ((t (tc: new-variable-type-expr))

(ts (tc : listof-new-variable-type-expr (length elements))))
5 (tc:rule-or

10

15

20

; ; no elements
(tc:rule-if '()

(lambda (ts) (null 7 elements))
(lambda (ts) (tc:type-expr-null-subst))

(:-pi (: dat (tc : make-applied-type-expr
(tc:make-basic-type-expr 'list-of)
(list (tc:new-variable-type-expr))))))

;; all elements have the same type, t
(tc:rule-if (map (lambda (element)

(:-pi (: element t)))
elements)

(lambda (ts) (tc:all (lambda (x) (equal? (car ts) x)) (cdr ts)))
(lambda (ts) (t c :type-expr-null-subst))

(: -pi (: dat (tc:make-applied-type-expr

(t c : make - bas i c - type - exp r ' 1 i st - of)
(list t)))))

; ; elements have different types
25 (tc:rule (map (lambda (element t y pe)

30

(: - pi (: element type)))
elements ts)

(:-pi (: dat (tc : make - applied - type-expr
(tc: make-basic - type -ex pr 'list -of)
(list *tc:datum*))))))))

This rule is applied to Scheme lists like: '() , '(2 3 4 5) , and' (6 ' Hello "World").

40

The rule specifies that such lists are empty (lines 9-14), are homogeneous with a type

like (list-of number) (lines 16-29) , or that they are heterogeneous and must have the

generic type (list-of datum) (lines 31-38).

Even complex combinations of rules like one are readily understandable for those

reviewing the code. \,\Then appropriate comments are provided within the code, the rule

notation is quite effective.

4.3.3 Example of Side Definitions with Rule-Seq

For more evidence that the type helpers are useful and convenient , we can turn to a

sequential rule definition. Recall that these rules require additional notation allowing for

mixing judgements and side procedures in any order. Our specimen of interest for this

case is a syntactic addition made to Scheme that allows for importing modules (more

on the specifics of modules appears in chapter 5):

(tc:file
(position path)
(let ((mod- sym (tc: extract -name path))

(prog - exp (tc:parse - scm - file path position))
5 (file-type (tc:new-variable-type-expr))

(mod-env-var (tc:new-logicalvar)))
(tc:rule-seq (list

(tc:hyp (: - (tc:env-empty) (: prog-exp file-type)))
(tc:def

JO (lambda (ts)
(let* ((file-env (tc : d ec laration-t ype-expr ->en v (car ts)))

(mod-env-type-expr (tc:binding->type-expr
(tc:env - value mod- sym file -env))))

(tc:type -expr-bind mod-env - var
15 mod-env -type - expr)))))

(:- pi (: modnarne (tc:variable-type-expr rnod -env-var))))))

The concrete syntax here is not as important as the semantic meaning associated

with tc: file . Upon seeing one of these elements, we need to first check the contents

of the file for which it is named without using the type environment pi (line 8). Then

we must extract the definitions given for this module (lines 9-10) and provide them in

the resulting type (line 12-13) . A t c : def is used here in order to grant access to the

41

loaded module's environment in the conclusion judgement through the logical variable

mod-env-var.

All told , over 100 rule and axiom definitions make up the annotation procedures

used for TypedScm05. Despite its size, managing the code is a relatively simple process

due to the rule-based strategy. For any given element of syntax, one need only alter

its corresponding rule. Adding new syntax is a similarly easy process: after adding

the necessary abstract syntax a new rule is added to the annotation code. Anecdotally

speaking, the has-type expression described in [LCD05] was added to TypedScm05 by

someone not familiar with the bulk of the rule implementation, and the whole process

required was done in approximately an hour.

4.4 Error Handling

One of the most important parts of any type checker is its ability to generate mean­

ingful error messages once a discrepancy is detected. The type checking engine permits

a great deal of flexibility in terms of errors . Programmers of the external modules may

specify highly advanced error generation routines, or ones that do very little. In fact ,

it is possible to define one generic error type generator that is used for all errors and

nothing more , though in practice, this would not be very useful. TypedScm05 provides

a good example of how such processing could proceed.

4.4.1 Error Generation

TypedScm05's error creation process is somewhat similar to type annotation. Given

any particular piece of syntax, a list of the annotation results associated with its subex­

pressions, and knowledge of the underlying inference rule, we determine what situation

caused the error to occur. We then encapsulate the necessary information into an error

record. These error records are another variant type where each form corresponds to

42

particular message to be displayed for the end user. They store pertinent data so that

a proper error message can be generated from them following the completion of type

checking.

Consider the annotation rule example given for conditional expressions in Figure 1.4.

There exist three possible scenarios that can result from execution of this rule. First , it

is possible that a non-boolean value was specified for the test subexpression. Second, it

may be the case that some general type error was found in the test or consequent and

alternate arms. Lastly, it is feas ible that no subexpression had an error, but that the

consequent and alternate types were found incompatible during checking of the subtype

relationship. Any one of these cases will produce an error in the type checking engine

and will result in a call to the implementer's gen-error-rule procedure.

The code below illustrates how it is possible to dissect the information given by the

engine and contained in the annotated syntax trees to create the appropriate error record

for a conditional expression.

(tc:conditional-exp
(position test consequent alternate)
(let ((test-type (car tree-tops)))

(cond
5 ((and (tc:error-type-expr 7 test-type)

(tc:mismatch-error-record?
(tc:error-type-expr->error-record test-type)))

(tc:error-type-expr (tc:badtest-error-record
(tc:error -type-expr- >error-record test-type))))

IO ((tc:contains-errors 7 tree-tops)
(tc:composite-error-maker tree-tops))

(else
(tc:error-type-expr
(tc:if-subtype -error-record consequent (cadr tree-tops)

15 alternate (caddr tree-tops)))))))

Lines 8-9 handle the situation where a bad test expression is provided, while lines 10

and 11 deal with other generic errors that might arise in the subexpressions. If checking

otherwise failed, it must have been caused by a bad subtype relationship and is handled

in lines 12-15. For each of these different errors we define a special error record (e.g. ,

tc: if-subtype-error-record) that can be used to produce a meaningful error message

43

at a later point. A composite error record form is allowed to concatenate multiple errors

together.

The process of generating error records for each of the special cases in TypedScm05

follows the basic pattern illustrated in the above code. All errors for which no special

message is generated are handled by a generic routine that propagates the messages

onward.

4.4.2 Error Output

Completely separate from the type checking engine is the process by which errors

are presented to the type checker's end user. In the event of an error, the type checking

engine will produce an abstract error record like that described in the previous section.

There are any number of ways in which this information can be conveyed to a user.

The current implementation of TypedScm05 uses it to produce a textual error message

nearly identical to the messages given in TypedScmOO. A sample error message for an

instance of tc: if-subtype-error-record (i.e., the case when a conditional expression's

subtyping judgement is violated) appears in Figure 4.3.

typed> (if (number? 1919) 'AEA "Bohumil")
<standard input>: line 2: Arms of if expression have different types

line 2: Left arm: (quote aea)
line 2: Right arm: "Bohumil"
Left arm's type: symbol
Right arm's type: string

Figure 4.3 Example Error: Bad Subtying Relationship on Conditional

The output mechanism is trivial since all that need be done is to add necessary

textual information to what is already contained in the error records corresponding to

a particular type of error. Additional future possibilities for error output are discussed

later in Chapter 7.

44

CHAPTER 5. LANGUAGE AND TYPING EXTENSIONS

Beyond the benefits which stem from an implementation that separates the various

concerns within the type checker, TypedScm05 improves upon the previous type system.

This chapter explores these enrichments in detail. Section 5.1 delves into the largest

addition, a language-level module system. Variations on inference rules and the value

they add are investigated in section 5.2. The chapter ends with section 5.3 and a

discussion of corrections made to variant record typing. Aside from the extensions

mentioned here, the type system is the same as in TypedScmOO; the reader is directed

to [JL96] for formal specifications.

5.1 Module System

The language designated in TypedScm05 adds modules to that specified in Typed­

ScmOO. "A module defines a scope for names (and syntax), and hides all names (and

syntax) that it does not export explicitly [LCD05, pg. 19]." There are many benefits

to using a module system, such as the separation of interfaces and implementation, in­

dependent compilation, and enhanced code reusability [Que03]. However , the Scheme

standard does not include a definition for modules.

We extend the language to allow for a simple module system that is typeable. Our

module syntax is a restricted version of that given in MzScheme [Fla04]. It permits a

single provide form and limits the user to at most one require form. Formally, the

syntax is defined by the grammar in Figure 5.1 [LCD05].

(module) ::= (module (identifier)
I (initial-required-module-name)
I (provide)
I { (deftype) }*
I (require-for-syntax-opt)
I (require-opt)
I (defrep-opt)

45

I {(definition)}*)
(initial-required-module-name) ::= (module-name)
(module-name) ::= (identifier)

I (unix-relative-path-string)
I (file (path-string))
I (lib (filename-string) { (collection-string)}*)

(unix-relative-path-string) : : = (string)
(path-string) : : = (string)
(filename-string) ::= (string)
(collection-string) : : = (string)
(defrep-opt) ::= I (defrep)
(require-for-syntax-opt) ::= I (require-for-syntax)
(require-for-syntax) ::= (require-for-syntax (require-spec))
(require-opt) ::= I (require)
(require) ::= (require {(require-spec)}+)
(require-spec) ::= (module-name)
(provide) : : = (provide {(identifier)}*)

Figure 5.1 TypedScm05 Module Syntax

46

Other than the use of deftype and defrep, the semantic meaning for a module re-

mains that of MzScheme. The notion of a defrep is identical to that used in TypedScmOO

and allows for the declaration an internal representation for an abstract datatype; how-

ever, such declarations may now only appear inside of a module. This requirement,

combined with the ability to restrict exports using a provide clause, allows for a greater

degree of clarity when implementing ADTs.

An example module definition for a box abstract data type whose internal represen-

tation is a (vector-of number) follows.

(module module-d (lib "typedscm.ss" "lib342")
(provide make-box box->value box-set!)
(deftype make-box (-> (number) box))
(deftype box->value (-> (box) number))

s (deftype box-set' (-> (box number) void))
(require (lib "module-a . scm" "lib342"))
(defrep (box (vector-of number)))
(define make-box (lambda (n) (vector n)))
(define box->value (lambda (b) (vector-ref b 0)))

10 (define box-set! (lambda (b v) (vector-set' b 0 v))))

T yping a module definition requires the use of tc : rule-seq and a large number of

mixed hypotheses. In lieu of listing the entire code here, we will give a general overview

to the approach taken. Steps resulting in the creation of a type environment define a

name to be used to refer to it in subsequent stages.

1. Import all definitions given inside require forms and combine these types into an
environment , e1

2. Retrieve the abstract types provided by the deftype forms and save them for later
in an environment, e2

3. Translate the abstract types given in the def types into their corresponding concrete
types based on the defrep information and store the bindings in an environment,

e3

4. Merge environments e 1 and e3 to form the environment e4 to be used for inference
on the definition forms

5. Infer the types of the internal definitions using e4

6. Merge the bindings gleaned in step 5 with those in e1 and e2 such that bindings
from e2 have highest precedence, resulting in e5

47

7. Filter out all bindings from e5 which do not appear in the provide list to form e6

8. Return a declaration type containing the a binding from the module name to the
environment e6

When the bindings contained with in a module are needed later for a require form,

the type checker simply performs a lookup of the module name and unpacks values found

in the corresponding environment.

5.2 Bidirectional Type Checking

The type notation defined for both TypedScmOO and TypedScm05 allows program-

mers to assign a particular type to an identifier using a deftype definition. The syntax

for this top level form is given below [LCD05].

(deftype) ::= (deftype (name) (type-exp))
(name) ::= (identifier)

The intent is for the type checker to generate an error message if t he inferred type of

a subsequent definition of the same name does not match the given type. However, in

practice the TypedScmOO checker does not make full use of the information given during

type checking. At best, it can only issue a message saying that the given and inferred

types do not match for a procedure. For example, consider the definitions:

(deftype f (-> (boolean number) number))
(define f (lambda (t x)

(if x t 9)))

This code contains an intentional error on line 3; the first and second arguments to

the if-expression have been mistakenly swapped. The error produced by TypedScmOO is

48

shown in Figure 5.2. While it does detect that an error occurred, the message generated

does little to point the programmer to the position of the real error.

<standard input>: line 5: Type mismatch between inferred and expected types
Syntax: (lambda (t x) (if x t 9))
Expected: (-> (boolean number) number)
Inferred: (-> (number boolean) number)

Figure 5.2 Error Message in TypedScmOO

This less than ideal error message arises from the fact that standard inference rules

for procedure definitions do not take into account the constraints placed on arguments

by a previous type definition. Type inference occurs in a bottom-up fashion and the

comparison is only made when a top-level type has been determined. However, in the

case where a previous deftype exists, it is reasonable to assume the deftype is correct

and use it while processing the body of the definition. Such an approach would allow

the type checker to point out that x and t are, in fact, incorrectly used in the above

definition (see Figure 5.3).

<standard input>: line 4: Wrong type for test expression
Test expression: x
Expected: boolean
Inferred: number

Figure 5.3 Error Message in TypedScm05

To achieve this behavior in TypedScm05 we make use of a bidirectional checking

scheme. Pierce and Turner introduced this strategy as a refinement on the basic typ-

ing inference algorithm [PT98a]. They provide for two distinct modes within the type

checker: "synthesis mode, where typing information is propagated upward from subex-

pressions, and checking mode, where information is propagated downward from enclosing

expressions [PT98a, pg. 16]." In their system, synthesis mode corresponds to the stan-

<lard typing rules and is used when no previous information is present. Thus, if given no

49

type definitions, processing proceeds using basic inference. Checking mode, on the other

hand, is applied when the context determines the type of the expression. In such cases,

the system simply needs to verify that the expression does indeed have the correct type.

If checking mode were applied to our above code example, a more useful error mes­

sage would be expected. This is possible because the restrictions that t: boolean and

.T: number can be propagated down into the processing of the lambda body. The anno­

tation rules implemented in TypedScm05 leverage bidirectional checking where possible

for this reason. Procedure definitions like these are encapsulated into special named­

lambda expressions and handled with the synthesis and checking rules:

SYN-NAMED-LAMBDA

IT , X1 : O"]) •••) Xn : CTn f- e : T

IT f- (nlambda name (x1 ... Xn) e) : (---t (0"1 ... O"n) T)

CHK-N AM ED-LAMBDA

IT, name: (---t (0"1 ... O"n) T), X1 : 0"1 , ... , Xn: O"n f- e : T

IT, name: (---t (0"1 ... O"n) T) f- (nlambda name (x1 ... Xn) e) : (---t (cr1 ... O"n) T)

In the checking rule, the system extracts the argument type information already

known and places it into the environment for checking the body expression. As expected

this tactic produces a more precise error message that can be used to locate errors. Figure

5.3 shows the message generated for the same two definitions. Notice that this message

points the programmer to the specific expression suspected of being the source of the

problem (the misuse of argument x).

One consideration to make with top-down propagation is that incorrect type dec­

larations could report false errors. However, this is not an unusual behavior as it is

commonplace among statically-typed languages with explicit type declarations. It is ,

as always, up to the programmer to interpret error messages. Nonetheless, this strat­

egy tends to more accurately direct novice programmers to the source of their common

mistakes.

50

5.3 Variant Record Typing

TypedScmOO added syntax to Scheme that provides for variant record types. This

syntax was adapted from [FWHOl] and incorporates both the define-datatype defin-

ition form and the cases expression. The old system did not perform type checking

on these record types and thus limited its usability in more advanced educational set-

tings. TypedScm05 makes no new alterations to the syntactic forms specifically, but it

does allow for proper verification of these advanced types. Checking a define-datatype

declaration results in bindings for the variant record type and the types of the variant

constructors. Consider the example definition from [LCD05]:

(define-datatype person person?
(student (name string?) (major string?))
(professor (name string?) (office number 7)))

This has the effect of the following several deftype declarations:

(deftype person? (type-predicate-for person))
(deftype student (-> (string string) person))
(deftype professor (-> (string number) person))
(deftype person

(variant -record
(student (name string) (major string))
(professor (name string) (office number))))

Variants of type person can be constructed and used in a typeable cases expression:

(professor "Gary u Leavens" 229) : person

(cases person (student "Brian u Dorn" "Computer u Science")
(student (name major) name)

5 (professor (name office) (string-append "Dr. u " name))) string

The bidirectional approach presented in the previous section is a key aspect of the

means by which cases expressions are typed. Bottom-up type synthesis for variant

record types is a non-trivial problem in general as noted in [Wan87], [Rem89], and

others. However, we can reframe the specific problem here to use a top-down checking

strategy. Just as is the case when a procedure 's type is known from a previous deftype ,

51

variant types are known due to previous define-datatype definitions. Using the types

defined for the variant record and the various constructors, top-down verification of the

clauses is a simple task.

52

CHAPTER 6. IMPLEMENTATION CHALLENGES

Throughout the implementation of TypedScm05, a number of significant problems

were encountered. Not all of these obstacles warrant mention here; however, three

issues resulted in considerable design changes. A brief discussion of each and their

impact on the final design is provided in this chapter. Considerations between lazy

and eager evaluation are summarized in section 6.1. Complications with the unification

environment appear in section 6.2, and section 6.3 reflects upon runtime performance

issues.

6.1 D elayed Evaluation

Chapter 3 introduces the type helper system as being based upon a prototype written

in the Haskell programming language. Like Scheme, Haskell is a functional language,

but it incorporates a lazy evaluation mechanism. Lazy evaluation refers to a just-in­

time strategy for performing computations. In such systems, arguments to procedures

are frozen until the results are explicitly needed. This is in contrast to eager evaluation,

like that employed in Scheme. Here, all argument values are computed immediately,

regardless of whether or not they are actually used at some later time.

The different evaluation methods were not taken into consideration during the ini­

tial code translation from Haskell to Scheme. Not surprisingly, the resulting program

did not function as anticipated. The root problem here was that not all rules and

judgements should be computed immediately when they appear in the annotation code.

53

This situation arises primarily in the case of tc: rule-or and tc: rule-seq. These two

helpers require, by definition, that their arguments are processed in a sequential fashion,

and thus eager evaluation causes errors. As an example, consider the rule for variable

references below:

(tc:le-varref
(variable)
(rule-if

'() ;; no hypotheses here
5 (lambda (ts)

10

(tc:env-bound? variable pi))
(lambda (ts) (tc:type-expr-null-subst))
(:-pi (: e (tc:env-value variable pi)))))

Here the evaluation of the expected type in the conclusion should only proceed when

the side condition holds true. If the variable is not bound in the environment, an attempt

to procure its value will cause a run-time error. Granted, it is possible to rewrite this

rule using the optional side definition procedure so as to not perform the lookup in the

conclusion. However, such tricks are not always possible in general and thus delayed

evaluation is required.

In order to achieve proper function, it was necessary to add explicit delay expressions

around arguments to these procedures, as well as the judgement constructor : -. The

Scheme macros shown below were used in order to preserve the desired notation and

alleviate any programmer burden caused by managing evaluation concerns.

(define-syntax tc:rule-seq
(syntax-rules (list)

((tc:rule-seq (list hi ...) cone)
(tc:rule-seq-local (list (delay hi) .. .) cone))))

(define-syntax tc:rule-or
(syntax -rules ()

((tc:rule- or ti ...)
(tc:rule-or-local (delay ti) ...))))

(define-syntax : ­
(syntax-rules (:)

((:-pi(: st))
(:-d pi (: s (delay t))))))

In conjunction with proper calls to force subsequent evaluation, these simple syntax

54

macros accommodate our need for some degree of delayed evaluation within the system.

6.2 Unification Environment

Unfortunately, not all errors could be addressed as mere differences between the

two languages involved in the translation. A number of more severe deficiencies were

discovered in the original prototype when the type checking engine was applied to non­

trivial examples. Of these, the most significant was the manner in which the unification

environment was managed.

The original design called for the unification environment, otherwise referred to in­

ternally as the current substitution, to be threaded through calls to the type helpers

and the annotation procedure. At some point, the current substitution must be init ial­

ized, and this took place within tc : rule-seq-helper upon each call to the procedure

t c: rule- sequence. The problem with this approach only became apparent when large

syntax trees were annotated. \Vhen examples grew large (i.e., they cont ained many

levels within their syntax trees), typing anomalies were detected. The fundamental flaw

here was that constraints gathered from rule processing across a particular level of the

tree were lost because each invocation of the type helpers on subexpressions was treated

semi-independently.

Creation of a single global substitution list and elimination of the threading not only

preserved all constraints correctly, but it also greatly simplified the code within the type

checking engine. An external interface is now exported from the type helper module so

that the global environment can be initialized once and only once upon the first call to

the annotation routine.

55

6.3 Runtime Speed

Of the major problems in TypedScm05, slow execution times proved the most frus­

trating. The data structures originally specified in the Haskell prototype were too simple

to support reasonably efficient execution. This version designed substitutions as finite

functions from logical variables to terms and represented the variable resolution process

as an application of these functions. These substitutions are the building blocks for the

environment used during type checking. Creating a unification environment with this

style equates to the composition of all individual functions into one large function. While

this stores sufficient information needed for the resolution of bindings, the application

process can be time consuming. Consider a hypothetical composition of six functions:

ue(x) = J(g(h('i(j(k(x))))))

where the function that resolves a specific logical variable y is f(x). In this situation the

application of the unification environment toy , ue(y) , requires that all six functions be

traversed (from innermost to outermost) prior to finding an answer. Likewise, unbound

variable resolution requires computation of all functions before one can determine that

no binding exists in the environment. Essentially application of a substitution in this

scheme boils down to a linear search, whose average and worst case run-times are O(n) .

For small examples, a linear run-time penalty is not noticeable to the user; however,

code to be typechecked need not grow too large before this becomes a very real factor for

usability. This is due to the fact that a large number of logical variables (and bindings)

are used in the creation and processing of the annotation rules.

To overcome this fundamental speed limitation, the functional representation was

replaced with one that uses hash tables to store and retrieve bindings. A major de­

sign concern here was the need to preserve the same notions of substitutions and their

application. An interface was designed to achieve this goal as well as the need for the

56

abstraction of substitutions. It allows for the creation of a null substitution, instantia­

tion of a substitution for a specific binding, application of a substitution to a variable,

and substitution composition.

Internally, substitutions are represented by a variant record type that maintains a

hash table containing the relevant bindings. In this sense, the null substitution encap­

sulates an empty table; application is emulated by a value lookup in the hash table;

and composition requires the merge of two tables. While the composition task here is

less efficient than that used in the functional representation, most of the time spent on

substitutions is in application. This is where the hash table version shines. Its 0(1)

average case run-time produces marked speedup for almost any example.

While speed remains a minor issue in the current version of Typed8cm05, the sys­

tem now runs at a tolerable speed for reasonably large Scheme programs. The current

system's point of slowdown is in the computation of a fixed point when logical variables

are resolved in the unification environment. Remember that these logical variables may,

and often times do, refer to other logical variables. What can result is a potentially large

chain of variables that must be sequentially processed until a final result is reached. We

believe this can be addressed in the future by standard techniques, such as incorporating

a union-find algorithm to short-circuit variable resolution.

57

CHAPTER 7. FUTURE WORK

TypedScm05 provides a number of possibilities for future work. The current imple­

mentation supports the DrScheme/MzScheme and the ChezScheme interpreters, but it

is possible that it could be further extended to work with other systems (SCM, etc.).

Within the currently supported programming environments, there is an opportunity to

more tightly incorporate the type checker in order to leverage specific environmental

features. There is also need to conduct experimental evaluations to determine whether

or not a static type checker actually does make learning Scheme easier for novices.

7 .1 DrScheme Integration

Up to this point, we have largely ignored the programming environments in which

the type checker will running. However, special considerations were made during im­

plementation that allow for future extension, especially with one particular system.

DrScheme is "a comprehensive programming environment for Scheme [that] fully inte­

grates a graphics-enriched editor, a mult i-lingual parser that can process a hierarchy of

syntactically restrictive variants of Scheme, a functional read-eval-print loop, and an al­

gebraically sensible printer [FFF+97, pg. 369]." It was design specifically as a pedagogic

sand box for beginning Scheme programmers.

Among DrScheme's features is the ability to extend the programming environment

itself using a tool mechanism. One such tool is the syntax checker that comes standard

with DrScheme. This tool allows on-demand processing of a program's lexical structure.

58

It can highlight errors in a student's program and provide other useful syntax anno-

tations. Invoking the syntax checker is as simple as clicking the appropriate toolbar

button. Figure 7.1 shows a screen capture of the interface.

mMtm§.f.§ ij ! H+H1;ui11-:;p 1j~,jfM . ;
file f;;dit ~iew l.•"'1Uo09• Si;.heme S~ecial tteip

hone·book-as-ribcege .scm

define ...)
ICistepll : Type Check II Cl,. Check5yntaxll$Runl l<iJstopl

~provide create-empty-phone-book add-to-phone-book look-up
add-several-t.o-phone-book~

\def type CI:"eate-ernpt.y - phone-book (-> () phone-book))

~ def type add-co-phone-book ~-> (S ~'Tnbol nwobe r phone-book J phone- book] i
tdeftype lool-::-up (-.> (phone- book synlbol) rn.unber ~ ~

1 0 Road/Write

Figure 7.1 DrScheme and the TypedScm Tool

not running

Ideally we would like to provide functionality similar to the syntax checker usmg

TypedScm05. As of t he t ime of writing, DrScheme integration of the type checker

is minimally supported. The current tool incorporates a language definition for our

extensions and adds a button for type checking on the tool bar (see Figure 7 .1). Clicking

the "Type Check" button invokes the type checker and processes t he results. If the

program is type correct, t he user gets no error information. Type errors that are detected

are displayed in the same textual format is used when the type checker is in interactive

mode, but they appear in a separate window as seen in Figure 7.2.

Though this tool is already useful for students using the DrScheme environment,

there are many possibilities for additional features. For example, it would aid students

in error location if the type checker tool could highlight expressions containing errors

59

File Edit

-------------BEGIN ERROR REPORT----------------
<def ini t ions>: lines 34 to 35 : Type mismatch between inferred and
expected types

Syntax: ((co ns (make-rib (list name) (list old-book)) old-book))
Expected: (list-of (pair-o f (list-of syrnbo l) (vector-of number)))

Inferred: (list-of dat wn)

--------------END ERROR REPORT-----------------

Figure 7.2 DrScheme Type Error Output

much like the syntax checker does. Fortunately, the error record generation and output

mechanisms discussed in Chapter 4 make this matter of simply providing the DrScheme

library functions with the appropriate information.

7.2 Experimental Study

It is important that we evaluate the educational effectiveness of our type checker

given that its original design was to ease the learning process for students. Specifically,

it would be pertinent to explore how static typing affects the number of latent errors

in student code and how interaction with the type checker impacts retention of typing

concepts.

We believe that many of the common errors made by novices result from incomplete

mental models of the system being programmed and the language being used, especially

since these issues have been seen to decrease in frequency with experience. When a

student is able to write code that produces the correct output but has latent type

errors (a common situation with new students using dynamically-typed languages), their

incorrect or incomplete mental model persists. A static type checker disallows such errors

and confronts students with any potential misunderstandings they may have. Developing

an ability to recognize and overcome misconceptions by oneself is an integral part of the

60

learning process [WM98]. Thus, it is our belief that the use of a statically-typed language

for introductory programming experiences more quickly develops an accurate intuit ion

about a program's correctness and makes a student more aware of typing in future

applications, even when static type checking may not be available.

P revious research [Gan77] [PT98b] has held that the use of a static type checker

increases programmer productivity and reduces the number of latent errors in finished

products. Gannon [Gan 77] also noted that higher performing individuals (as measured

by course grades) in his study showed a smaller benefit from type checking than lower

performers. This observation supports our suspicion regarding the development of men­

tal models when coupled with the assumption that higher performers typically have a

more acute sense of typing going into t he experiment.

However , these studies have not examined the after-effect s t hat use of a static type

checker has on learners. In fact , they tend to utilize sample groups consisting of relatively

experienced programmers (e.g., Ph.D. students). How these systems impact t rue novices

remains a largely unexplored question. Such a study was intended to be incorporated

into this paper but was lat er eliminated due to t ime const raints in the academic term.

It would be a relatively simple matter to design and conduct a pilot study with a future

group of ComS 342 students at Iowa State University.

61

CHAPTER 8. CONCLUSION

We conclude by considering the space in which TypedScm05 resides relative to other

systems and recap the overall contributions of this work.

8.1 Related Work

The addition of static type checkers to Scheme and other dynamically-typed lan­

guages is certainly not a new phenomenon. There are several other existing systems that

address this issue including, but not limited to, SoftScheme [WC93], STYLE [Lin93],

SPS [Wan89] , MrSpidey [FF99] , and of course TypedScmOO [JL96] [LC05]. Each of these

different systems has its own unique set of advantages and disadvantages.

For the specific audience with which we are concerned (novice programming stu­

dents) , Jenkins and Leavens provide a convincing argument for the type notation used

in TypedScmOO over SoftScheme, Style, and SPS [JL96]. They note that, while the other

systems are feature rich and complete, in many cases they would be unusable by typical

introductory students due to complex type notation, runtime overhead, and occasional

incompatibility with pre-existing code. Because it is based on the same fundamental

type notation and inference system, TypedScm05 inherits these characteristics.

It differs from TypedScmOO primarily in its implementation approach. While Typed­

ScmOO 's code is difficult to understand and maintain , our system utilizes an external type

checking engine, providing for a greater separation of concerns and enhanced readability.

In addition, TypedScm05 produces more usable error messages through use of bidirec-

62

tion, is more complete in its treatment of variant record data types, and introduces a

typeable module system.

A lesser goal of TypedScm05 (and an area of future work) is to provide seamless

integrat ion with the DrScheme programming environment. Another static analysis tool,

MrSpidey [FF99] , already provides a great deal of support for DrScheme. This tool,

developed directly by the DrScheme team, provides for the declaration of types and for

the addition of type assert ions within Scheme programs. Unfortunately, it only supports

version 103pl of DrScheme (which has been outdated for quite some t ime). TypedScm05

functions properly with current versions of DrScheme, and its type checking infrastruc­

ture should be compatible with any chan ges to DrScheme made in t he forseeable fut ure.

Though it is easy to find examples of other type checking systems, it is more difficult

to find details about the manner in which they are implemented. Our reusable unification

engine provides the ability to quickly create type checkers for languages other t han

Scheme. Another system, TyS, developed at Universidad de Oviedo also addresses the

issue of type checker construct ion [Rod03], but from an object -oriented st andpoint . It

aims to automatically build object-oriented type checkers that can be incorporated into

language processing systems. Like our system, TyS requires programmers to specify a

set of rules that are to be used during static analysis. However , rules in this system

are given as Java classes rather than in a syntax closely aligned to mathematical rule

specification like that of TypedScm05.

8.2 Contributions

This thesis has out lined a number of the features unique to our approach to static

type checking in Scheme. We have discussed the specifics of the TypedScm05's de­

sign and implementation . Addit ionally, we have explored the practical benefits it has

over previous systems and have demonstrated its extensibility for support in addit ional

63

programming environments.

We solve the problem of code entanglement by creating an abstract type checking

engine comprised of a reusable set of "type helping" operations. These type helpers:

• achieve a modular separation between type checking and unification algorithms,
type inference rules , and error message generation,

• export an interface that allows programmers to implement type rules in a manner
that closely mirrors the formal way they specify such rules, and

• support a high level of maintainability and readability in type checking code.

The type checker we implemented using this engine is evidence for its usefulness and

provides a number of other contributions. Specifically it:

• adds a module system to the typeable language of TypedScmOO,

• incorporates bidirectional type checking rules to produce more detailed error mes­
sages for declared identifiers,

• offers a semantically correct typing of variant record types, and

• allows for easy future extension of the DrScheme tool for a more integrated ap­
proach to displaying type errors.

We look forward to seeing students make use of TypedScm05 and hope that it proves

to be as valuable a learning tool for them as its implementation was for us.

64

APP ENDIX A . LAMBDA CALCULUS TYPE CHECKER

This fiLe provides customizations for a Lambda caLcuLus-Like type checker
with no subtyping.

(require (lib "tc-util.scm" "lib342")
5 (lib "maybe.scm" "lib342")

(lib "tc-subst.scm" "lib342")
(lib "tc-type-helpers.scm" "lib342")
(lib "tc-environments.scm" "lib342"))

10 Def i ne our Language grammar
(define-datatype tc:lambda-calc tc:lambda-calc?

(tc: le-varref
(variable symbol?))

(tc : le-self-evaluating
15 (datum datum?))

20

(tc:le-procedure-call
(operator tc:lambda-calc 7) (operand tc:lambda-calc?))

(tc: l e-lambda-exp
(formal symbol?) (body tc:lambda-calc?)))

Def i ne our types and heLping procedures
(define-datatype tc:type-expr tc:type-expr?

(tc:basic-type-expr (symbol symbol 7))

(tc: f unction-type-expr
25 (arg-type tc:type-expr?) (result-type tc : type-expr?))

;; For type heLpers
(tc: variable-type-expr (lvar tc:logicalvar?))
(tc:error-type-expr))

30 (define tc:new-variable-type-e xpr
(lambda ()

(t c :variable-type-expr (tc:new-logicalvar))))

Define our method dictionary
35 (define tc: null-subst

40

(lambda () (tc:make-null-subst tc : variable-type-expr)))

(define tc:type-expr-bind
(lambda (v t)

(tc:make-subst v t tc:variable-type-expr)))

(define tc:type-expr-as-unifiable
(lambda ()

(t c: unifiable-md-dict
45 ; ; to - term

50

(lambda (v) (tc:variable-type-expr v))
;; get-var
(lambda (te)

(cases tc:type-expr te
(tc:variable-type-expr (v) (make-something v))
(else (make-nothing))))

55

,, subterms
(lambda (t)

(c ases tc:type-expr t
(tc:function-type-expr
(arg-type result-type)

65

(cons arg-type (list result-type)))
(else '())))

same -lcind
60 (lambda (t s)

65

(let ((get-kind
(lambda (te)

(cases tc:type-expr te
(tc: basic -type -expr (symbol) symbol)
(tc: function-type-expr (arg-type result-type) 'function)
(tc:variable-type-expr (lvar) 'variable)
(tc:error-type-expr () 'error)))))

(eq? (get-kind t) (get-kind s))))
,, nuLLSubst

70 (tc:null-subst)

75

8 0

85

90

bind
tc:type-expr-bind
' ' app
(l ambda (s)

(lambda (attrib)
(letrec ((app-once

(lambda (t)
(cases tc:type-expr t

(tc:variable-type-expr
(lvar)
(tc:subst-apply s lvar))

(tc:function-type-expr
(arg-type result-type)
(tc:function-type-expr Capp-once arg-type)

Capp-once result-type)))
(else t))))

(app
(lambda (attrib applied)

(if (equal? attrib applied)
applied
Capp applied Capp-once applied))))))

Capp attrib Capp-once attrib)))))
contravar-subterms

(lambda (t) '())
9 5 ;; covar - subterms

(lambda (t) '())
;; invar - subterms
(lambda (t) '())
;; subtype-repLace

100 (lambda (sub super) (cons sub super))
; ; intersection-type ?
(lambda (t) #f)
;; Jind-intersection - subtyping
(lambda (intersection sought) (tc:null-subst))

105 ; ; Jind - intersection-supertyping
(lambda (sought intersection) (tc:null-subst))
;; is-bottom?
(lambda (t) #f)
; ; is-top?

1 10 (lambda (t) #f)
;; is - error?
(lambda (t)

115

(cases tc : type-expr t
(tc: error-type-expr () #t)
(else #f)))

gen-error-mismatch
(lambda (syn expected inferred) (tc : error-type-expr))

66

; ; gen-error-rule
(lambda (syn trees) (tc:error-type-expr))

120 ;; is-dec-type - expr?
(lambda (t) #f)

125

;; dec-type-expr->env
(lambda (t) #f)
)))

Instantiate the type heLpers
(define tc:axiom (tc:axiom-helper (tc:type-expr-as-unifiable)))
(define tc:rule (tc:rule-helper

(tc:type-expr-as-unifiable)
130 (lambda (pie) (tc:lambda-calc-annotate-lower pie))))

(define tc:rule-if (tc:rule-if-helper
(tc:type-expr-as-unifiable)
(lambda (pie) (tc:lambda-calc-annotate-lower pie))))

(define rule-seq-helper (tc:rule-seq-helper
135 (tc :type-expr-as-unifiable)

(lambda (pie) (tc:lambda-calc-annotate-lower pie))))
(define rule-or-helper (tc:rule-or-helper

(tc:type-expr-as-unifiable)
(lambda (pie) (tc:lambda-calc-annotate-lower pie))))

140 (define-syntax tc: rule-seq
(syntax-rules (list)

((tc:rule-seq (list hl ...) cone)
(rule-seq-helper (list (delay hl) ...) cone))))

(define-syntax tc:rule-or
145 (syntax-rules ()

((tc:rule-or tl .. .)
(rule-or-helper (delay tl) ...))))

Define annotation ruLes and heLpers
150 (define tc: infer-simple-datum-type

(lambda (datum)

155

(cond
((number? datum)
((char? datum)
((string 7 datum)
((boolean 7 datum)
((symbol? datum)

(tc:basic-type-expr 'number))
(tc:basic-type-expr 'char))
(tc:basic-type-expr 'string))
(tc:basic-type-expr 'boolean))
(tc:basic-type-expr 'symbol)))))

(define tc:lambda-calc-annotate
160 (lambda (pi e)

(tc::set-current-subst-list' (list (tc:null-subst)))
(tc: : lambda-calc-annotate-lower pi e)))

(define tc:lambda-calc-annotate-lower
165 (lambda (pi e)

170

175

180

(cases tc:lambda-calc e
(tc : le-self-evaluating

(datum)
(let ((t (tc:infer-simple-datum-type datum)))

(tc:axiom (:-pi (: et)))))
(tc : le-varref
(variable)
(let ((lv (tc:new-logicalvar)))

(tc:rule-if
'() ; ; no hypotheses here
(lambda (ts)

(tc:env-bound? variable pi))
(lambda (ts)

(tc:type-expr-bind lv (tc : env-value variable pi)))

(: -pi (: e (tc:variable-type-expr lv))))))
(tc : le-procedure-call
(operator operand)

185

190

195

200

67

(let ((rt (tc: new-variable-type-expr))
(operand-type (tc:new-variable-type-expr)))

(tc: rule (list
(: - pi (: operand operand-type))
(:-pi (: operator (tc:function-type-expr operand-type rt))))

(: - pi (: e rt)))))
(tc:le-lambda-exp

(formal body)
(let ((rt (tc:new-variable-type-expr))

(formal -type (tc: new-variable -type -expr)))
(tc:rule (list

)))

(:- (tc:extend-env pi formal formal-type)
(: body rt)))

(:-pi (: e (tc:function-type-expr formal-type rt))))))

68

APPENDIX B. APPLICATION DERIVATION

COMPLETION

During the discussion of how type rules are processed by the helpers in chapter 3

we made use of an example type derivation with the lambda calculus inference rules.

This appendix completes the partial derivation given in this chapter. We last saw the

derviat ion tree after the first top-level hypothesis had been recursively processed:

x : T4 E IT , x : T4

T4
IT, x: T4 f--- x:

T5 D
IT f--- (AX : T1. x) n : T2

Next, we process the second hypothesis:

x : T4 E IT, .T : T4

T4
II, x : T4 f--- :r :

T5
n : nurnber E II

number II f--- n:
T3

II f--- (.Ax : T1 . x) n : T2

Logically, we propagate the substitution that T3 = nuniber through the tree:

x : T4 E II , x : T4

T4
II, x: T4 f--- x:

---~~--~-T-"-5~-- n : number E II
T4 T4 ----7 T5

IT f--- (.Ax : . x) : II L b
T1 nurnber ----+ T2 • n : num er

II f--- (.Ax : T1 . x) n : T2

And finally,

69

x : number E II , x : n?Jirnber

number
II, x : number f- x :

T5

II f- (.Ax: number. x) : number--+ T5

T1 number --+ T2

II f- (.Ax : T1 . x) n : T2

x : number E II, x : number

II, x : number f- x : number

II L (, b) nv:mber --+ number
1 /\ X : nurn e1-. .T : b

nurn er --+ T2

II f- (.Ax : number . . T) n: T2

x : number E II, x : number

n : number E II

II f- n : number

n : number E II

II f- n : number

II , x : number f- x : number n : number E II

II f- (.Ax: number. x) : number--+ number II f- n: number

II f- (.Ax: number. x) n: number

This completes the derivation.

70

BIBLIOGRAPHY

[Car87] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro­
gramming, 8(2):147- 172, April 1987.

[CF91] Robert Cartwright and Mike Fagan. Soft typing. In PLDI '91: Proceedings
of the ACM SIG PLAN 1991 conference on Programming language design and
implementation, pages 278- 292, New York, NY, USA, 1991. ACM Press.

[CFC58] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic. Stud­
ies in logic and the foundations of mathematics. North-Holland Pub. Co. ,
Amsterdam, 1958.

[FF99] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis.
ACM Transactions on Programming Languages and Systems, 21(2):370- 416,
March 1999.

[FFF+97] Robert Bruce Findler, Cormac Flanagan, Matt hew Flatt, Shriram Krishna­
murthi, and Matthias Felleisen. DrScheme: A Pedagogic Programming Envi­
ronment for Scheme. Programming Languages: Implem entations, Logics, and
Programs, 1292:369- 388, September 1997.

[Fla04] Matthew Flatt. FLT MzScheme: Language Manual (version 209), December
2004. Available from http: //download. plt-scheme . org/doc/ 209/ html/
mzscheme/index . htm.

[FWHOl] Daniel P. Friedman, Mitchell Wand, and Christopher T . Haynes. Essentials
of Programming Languages. The MIT Press, New York, NY, second edition,
2001.

[Gan77] J. D. Gannon. An experimental evaluation of data type conventions. Com­
mun. ACM, 20(8):584- 595, 1977.

[JL96] Steven J enkins and Gary T . Leavens. Polymorphic type-checking in scheme.
Computer Lanugages, 22(4):215- 223, 1996.

[Knu92] Donald E. Knuth. Literate Programming, volume 27 of CSL! Lecture Notes.
Center for the Study of Language and Information , Stanford University, 1992.

71

[LC05] Gary T. Leavens and Curt is Clifton. A type notation for Scheme. Tech­
nical Report 05-03, Depart ment of Computer Science, Iowa State Univer­
sity, Ames, Iowa, 50011 , February 2005. Available by anonymous ftp from
ftp.cs.iastate.edu.

[LCD05] Gary T . Leavens, Curtis Clifton, and Brian Dorn. A type notat ion for
Scheme. Available from ht tp : I /www . cs. iast ate . edu/~leavens/ComS342/
docs/typedscm_toc. html , April 2005.

[Lin93] Christ ian Lindig. STYLE: A practical type checker for Scheme. Informatik­
Bericht 93-10, Technische Universitat Braunschweig, October 1993.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348- 375, December 1978.

[PT98a] Benjamin C. Pierce and David N. Turner. Local type inference. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGA CT Symposium on
Principles of Programming Languages, San Diego, California, pages 252- 265,
New York, NY, 1998.

[PT98b] Lutz Prechelt and Walter F. Tichy. A cont rolled experiment to assess the
benefits of procedure argument type checking. IEEE Trans. Softw. Eng. ,
24(4):302- 312, 1998.

[QueO~)] Christian Queinnec. 23 things I know about modules for Scheme. In Third
Workshop on Scheme and Functional Programming, Pittsburgh, PA , October
2003.

[Ram94] Norman Ramsey. Literate programming simplified . IEEE Software, 11 (5):97-
105, 1994.

[Rem89] D. Remy. Typechecking records and variants in a natural extension of ML. In
Conference Record of the Sixteenth Annual A CM Symposi'um on Principles of
Programming Languages, Austin, Texas, pages 60- 76. ACM, January 1989.

[Rod03] Daniel Rodriguez. Diseno y construccion de una herramienta para la gen­
eracion automatica de sistemas de t ipos orientados a objetos (manual de
usuario del framework TyS) . Documento Interno 1022010, Depart ment of
Computer Science, Universidad de Oviedo, Oviedo, Spain, March 2003.

[Sch94] David A. Schmidt. The Strncture of Typed Programming Languages. Foun­
dations of Computing Series. MIT Press, Cambridge, Mass., 1994.

[Wan87] M. Wand. Complete type inference for simple objects. In Symposium on Logic
in Computer Science, Ithaca, NY, pages 37- 44. IEEE, June 1987. Corrigen­
dum in Third A nnual Symposium on Logic in Computer Science, page 132,
1988.

72

[Wan89] Mitchell Wand. Semantic prototyping system (SPS) reference man-
ual , version 1.4 (Chez Scheme). In ftp: //ftp.cs.indiana.edu/ pub/scheme­
repository /code/ lang/sps.tar.gz, Apr 1989.

[WC9~··1] Andrew K. Wright and Robert Cartwright. A practical soft type system
for Scheme. Technical Report COMP TR93-918, Department of Computer
Science, Rice University, Houston, Texas, December 1993.

[WM98] Grant Wiggins and Jay McTighe. Understanding by Design. Association for
Supervision and Curriculum Development , Alexandria, VA, 1998.

