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ABSTRACT 

Large scale magneto-static field analysis in both the linear and non-linear regime are typi-

cally performed using differential equation (DE) based schemes; integral equation (IE) based 

schemes are less popular. This is in large part due to the computational complexity and mem-

ory requirements associated with IE-based schemes, both of which scale as O(N2 ) where N is 

the total number of unknowns used for the analysis. Reducing this complexity has been a focus 

of considerable research. In this thesis, we introduce a novel IE that is cast in terms of the 

magnetic flux density. This enables us to construct a solution using the method of moments 

(MoM) by choosing vector basis functions that satisfy the requisite boundary condition. This 

solver is then augmented with a recently introduced version of the fast multipole method. The 

magnetic field distributions computed using this scheme are validated against those obtained 

analytically. Finally, the efficacy of this scheme is demonstrated by applying it to the analysis 

of practical problems where the permeability is non-linear. 
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CHAPTER 1. INTRODUCTION 

1.1 Literature Review 

Evaluating magnetic field distribution is crucial for numerous practical applications. For 

instance, magnetic particle inspection (3; 38), magnetic flux leakage (24) and the analysis and 

design of the magnetic shielding (17), benefit from the availability of robust schemes for evalu-

ating magneto-static fields in inhomogeneous domains. Furthermore, in many practical appli-

cations, the field intensity is sufficiently high that the non-linear behavior of the permeability 

should be rigorously included in the analysis. Typically, magneto-static fields in inhomoge-

neous media are analyzed using either a differential equation (DE)- (29) or an integral equation 

(IE)-based methods (37). Common differential equation based techniques like the finite differ-

ence method and the finite element method demand the presence of perfectly matched layers 

to truncate the boundary and, therefore are not efficient in solving open boundary problems 

( 43; 10; 42). In contrast, the Green's functions used in the integral equation based techniques 

implicitly account for the boundary conditions (20; 41). Typically, integral equation based 

schemes give rise to dense matrices, whose inversion is expensive. Indeed, if the object being 

analyzed is discretized using N unknowns, both the memory and the computational complex-

ity scale as O(N2 ). The demand on computational resources seems to be the chief obstacle in 

preventing the widespread use of IE-based schemes. Reducing this complexity, thus, has been 

the focus of intense research over the past decade. The fast multipole method introduced by 

Rokhlin (8) successfully addresses most of these problems. Indeed, fast multipole augmented 

IE-based schemes have been used for a vast variety of applications ranging from capacitance 

extraction and molecular dynamics to large scale simulations in astrophysics (25; 2; 14). 

Magnetic field distribution in non-linear media is typically analyzed using volume inte-
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gral equations. These can be reduced to surface integral equations provided the material is 

homogeneous , and the field intensity is such that the permeability can be approximated as 

being constant. In the early 1970s, one of the first volume integral equations for nonlinear 

magnetostatics ( G FUN code, see ( 27)) was developed. G FUN is based on a piecewise constant 

vector approximation of magnetic field strength H inside elements. In the last two decades, 

most of the analysis relied on scalar formulations; see (38; 18; 34; 19) and references therein. 

Recently, Kettunen et al. (16) introduced a h-field formulation and demonstrated its accuracy 

and efficiency in a high performance computing environment. In this thesis, we introduce an IE 

that is based on the magnetic flux density. This equation is solved using vector basis functions 

that impose normal continuity of the fields (36). The IE, then, is validated by comparing the 

field distribution in a spherical shell with a constant permeability obtained numerically against 

analytical results. 

1.2 Organization 

This thesis is organized as follows: Chapter 2 outlines the volume integral equation for the 

magneto-static problem and its conversion to a matrix equation using the method of moments 

(MoM). Chapter 3, briefly describes the FMM and its incorporation into the solution procedure. 

A plethora of numerical results are presented in Chapter 4. These serve to demonstrate the 

accuracy of our scheme and its applicability to the analysis of large practical problems. Finally, 

Chapter 5 summarizes the contribution of this work. 
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CHAPTER 2. FORMULATION OF THE INTEGRAL EQUATION 

2.1 Description of the problem 

Consider an inhomogeneous body with nonlinear magnetic permeability µ(r) occupying a 

volume Vin free space and bounded by a surface S (see Figure 2.1). The body is assumed to 

be isotropic and is immersed in an ambient magnetic field Hi ( r). 

µ (r) 

V 

s 
Figure 2.1 Inhomogeneous body immersed in an ambient magnetic field. 

The presence of the body perturbs the field and the total magnetic field can be written as: 

(2.1) 

The perturbed magnetic field, HP ( r), is fully characterized by the magnetic scalar potential 

due to the body and is expressed as HP ( r) = - v7 <f>'/J ( r) . 
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2.2 Formulation of the Integral Equation 

This magnetic field induces a magnetization current density M(r) in the body that in turn 

creates a magnetic field HP ( r). This field can be related to the magnetic scalar potential ¢JJ ( r) 

(31) as follows: 

HP(r) = -'v</?(r); q?(r) = _2_ f M(r'). ft ds' - _2_ 1 V'. M(r') dv' (2.2) 
41r } s R 41r v R 

In the above equation, R = Ir - r'I denotes the distance between the source and the observer 

points, and n is the outward normal at any point on the surface S. The quantities M(r') • 

ft and V · M(r') may be interpreted as the equivalent surface and volume magnetic charge 

densities , respectively. The magnetization current density is related to the total magnetic field 

via M(r) = X (IHt(r)I) Ht(r) where x (IHt(r)I) = µr (IHt(r)I) - 1 is the susceptibility and 

µr (IHt(r)I) is the relative permeability of the material and Ht(r) is the total magnetic field. 

Denoting qi(r) and ¢i(r) as the total and incident magnetic scalar potential, respectively, and 

using Ht(r) = -'v¢t(r),Hi(r) = -'v¢i(r) together with Equation (2.2) results in an integral 

equation in terms of the scalar potential: 

. 1 r x(IHt(r')l)V'¢t(r')·ft 1 1 'v'·(x(IHt(r')l)V'¢t(r')) 
¢\r) = ¢i(r) - 41r Js R ds' + 41r v R dv'. 

(2.3) 

As is apparent from the above equation, the nonlinearity of the material has been embedded 

in the magnetic susceptibility. It can be verified that the above equation reduces to 

(2.4) 

as in (10). 

In what follows, it will be implicitly assumed that the constitutive parameters are nonlinear 

and will be suppressed. The integral equation described in (2.3) or in (2.4) can be discretized 

using scalar basis functions (10) and solved using the method of moments (MoM) (11). How-

ever, as opposed to the method prescribed in (10), we cast the integral equation in a slightly 

different form that enables us to choose appropriate basis functions that represent physical 
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quantities of interest as well as permit the application of the FMM to accelerate the solution 

procedure. Observe that taking the gradient of the Equation 2.3 results in 

v'</i(r) = -Hi(r) - ~v' ( x(r')v''q}(r'). ft ds' + ~v' ( v''. (x(r')v''<P(r')) dv'. (2.5) 
41r ls R 41r iv R 

Before em bar king on the description of the MoM scheme, note that the quantity - µ ( r) v' q} ( r) 

is the total magnetic flux density. Thus, Equation 2.5 reduces to finding the distribution of 

the magnetic flux density, B(r) throughout the body and can be rewritten as 

B(r) = Hi(r) - ~v' ( x(r')B(r') . ftds' + ~v' ( v''. x(r')B(r') dv'. (2.6) 
µ(r) 41r } s µ(r')R 41r iv R µ(r') 

2.3 Solution Procedure 

2.3.1 Basis Functions 

In what follows , we shall prescribe a procedure to efficiently solve the above integro-

differential equation. Pursuant to this objective, the flux density is represented using basis 

functions , introduced by Schaubert et al (36) to compute scattering from dielectric obstacles. 

These basis functions can be thought of as the three dimensional analogue of rooftop basis 

functions ( 30). These basis functions are defined on a pair of tetrahedra and preserve normal 

continuity of the flux density. Consequently, the spatial variation of the flux density may be 

represented using 

N 

B(r) = L Bnfn(r) (2.7) 
n=l 

where N is the number of unknowns and Bn is the unknown expansion coefficient. 

The spatial basis (see Figure (2.2)) functions associated with the n th face are defined as: 

\ 
a: p-:/; r E T;t 

fn(r) = 3;: _ _ 
~Pn r E Tn 3vn 

(2.8) 

where T,! are the pair of tetrahedra that share the n th face , an is the area of n th face, and 

v; is the volume of T,!. The vector p-:/; is defined from the free vertex of T;t to the position 

vector r ; p;;_ is defined similarly except that it is directed towards the free vertex of T;;. The 



(j 

th f . h n ace wit area a 
n 

r 

Figure 2.2 Geometrical Parameters associated with the n th face . 

T 
n 

subscripts refer to faces and the superscripts refer to tetrahedra. The triangular faces residing 

on the boundary of V have basis funct ions that are non-zero over a single tetrahedron since 

only one of it is associated with those fae<:-.'s. 

2.3.2 Matrix Equations 

The integral equation is now discretized using a Galerkin testing procedure. Upon substi-

tution of the magnetic flux density representat ion given by Equation (2.7) into Equation (2.6) , 

the resulting equat ion is tested with the basis funct ions fm(r): m = 1: ···: N: using the sym-

metric inner product, < fm( r ): gm(r) > = .f\i fm( r ) · grn( r)dv. After test ing: the fin al equation 

can be written as: 

(2.9) 

T his represents N independent equations for t he unknown expansion coefficients { Bn} . In 

matrix form this yields 

ZB = H (2 .10a) 

T T where Bis an array of weights [BL: B2: · · · : B iv] · and H = [H 1, H2, · · · , H N] is evalua ted as 

am [ 1 ;· H 'i ( ) + i 1 ;· H'i ( ) - d l H m = - + r · Pm c. v + ----=- r · Pm v . 
3 Vm T,; Vm T;-;, 

(2.10b) 
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Z is the interaction matrix. Each element of the interaction matrix is given by 

(2.10c) 

where the self contribution (Z;;;/ = < fm(r), ;:(~/ >) to Zmn is evaluated as 

(2.11) 

whereµ~ is the permeability within T;;_ and the integrals are evaluated analytically using (36). 

Finally, the second term on the right hand side of Equation (2.10c), denoted as z!:-,,n, can be 

expanded as 

(2.12) 

and is evaluated using a procedure similar to that given in (36) as: 

T;:; and T~ EV 
(2.13) 

where 

~(r) = { x(r')fn(r') -ftds'- { v'' _ x(r')fn(r')dv'. 
n 41r} s µ(r')R 41r Jv R µ(r') (2.14) 

The volume and surface integrals in Equations (2.lOb,2.13) are computed using quadrature 

rules for tetrahedra and triangles, respectively ( 40; 15). The resulting matrix equation can be 

solved for the unknown magnetic flux density. In all the examples shown here, this equation 

is solved using a non-stationary iterative solver like (TF)QMR (35). If the material is linear, 

both the construction of the matrix equation and its solution are straightforward. Solving 

for fields in a non-linear media is a little more involved, and one needs to find a solution 

to the susceptibility iteratively. Before we proceed with the solution procedure, note that in 

Equations (2.11) and (2.14) apart from the permeability and susceptibility, the rest of the 

terms depend solely on the geometry. By virtue of the approximation that the permeability 

and the susceptibility are constant in each tetrahedron, these integrals can be precomputed 

and stored. The Z matrix can then be computed on the fly for each iteration that uses the 
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appropriate value of x(r). The scheme for computing x(r) proceeds as follows: (i) Start with an 

initial guess for x(o) (r); (ii) For any iteration i, compute the magnetic flux density by solving 

z(i-l) B(i) = 1-i , where the superscript indicates that the results are obtained using the ith 

value of X· As before an iterative solver like (TF)QMR is used together with a block-diagonal 

precondi tioner; (iii) Use B( i) to find x(i\ r) using either an approximate analytical model ( 12) 

or from a B-H curve; iterate until the prescribed convergence for x(r) is reached using an 

appropriate non-linear solver. In most of the examples in this thesis , a globally convergent 

scheme like the Broyden's method ( 4) is used. 
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CHAPTER 3. ACCELARATION PROCEDURE 

3.1 The Fast Multipole Method 

It is apparent from the preceding description that the dominant cost of computing mag-

netic fields arises from computing the matrix vector product while using the iterative solver. 

Since Z is dense, using an iterative solver costs O(N2 ) per iteration. Furthermore, another 

drawback is that the filling of Z is an O(N2 ) process. These factors have in the past made 

integral equation based methods unattractive for practical analysis in spite of their many ad-

vantages. Fortunately, relieving this computational complexity was a topic of intense research 

(32; 28; 33; 23; 39; 7) over the past two decades. In the late eighties, Greengard and Rokhlin 

presented a seminal paper that discusses a multilevel fast algorithm for the N-body problem 

that considerably alleviates the computational complexity of computing kernels of the form 

1/ R, where R is the distance between any two interacting pairs. It is apparent from the above 

equations that this method can be retrofitted into our codes to accelerate the matrix vector 

products. 

In what follows, we present a gist of the scheme. Rigorous mathematical proofs regarding 

the validity and error bounds of this method can be found in (8). The FMM employs a divide 

and conquer strategy to accelerate field computation. This is achieved using a hierarchical 

subdivision of the body, which proceeds as follows: The body to be analyzed is enclosed in the 

fictitious cubical box. This box is recursively divided into eight boxes. A box that is subdivided 

into smaller boxes is termed the "parent" of the "child" boxes that have resulted from this 

operation. This systematic division leads to a uniform oct-tree structure. For an n + 1-level 

scheme, this subdivision proceeds n times. At the lowest level, the boxes are populated by 

basis functions or equivalently a set of point magnetic dipoles and charges. The strengths of 
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these dipoles and charges can be trivially related to the quadrature rules used in Equations 

(2.13, 2.14). Potentials/fields due to these charges are computed at other locations by upward 

and downward traversal of the tree. In order to accomplish this in a hierarchical manner, the 

following dictum is used to create interaction lists: A pair of boxes at any level are said to be 

in the far field of each other if the distance between their centers is greater than a prescribed 

distance and if their parents are in the near field of each other. In practice, this distance, at any 

level, is chosen to be twice the linear dimension of the box at that level. Thus, for any given 

box at a level greater than one, interactions with boxes in the near field have to be resolved 

at lower levels in the tree. Interaction with a box in its far field can be computed at a higher 

level in the tree provided that the respective parent boxes are in the far field of each other. 

This concept of hierarchical ordering of computations is illustrated in Figure 3.1, depicted in 

two dimensions for clarity illustrates the hierarchical subdivision of a geometry placed in a 

fictitious cubical box and the interaction between the boxes at different levels. Also shown in 

the figure are the source blocks for an observer block for direct (i.e., near field) interaction, 

and interactions at level 1, 2 and 3. The matrix vector product required by the iterative 

solver is computed by first multiplying the vector with the sparse matrix that corresponds to 

interaction between the elements of level-1 boxes that are in the near-field of each other. All 

other contributions are computed using a top-down traversal. 

3.2 Implementation of the FMM 

The above description is intended to outline integration of the FMM within the classical 

solver. These ideas have been elaborated in great length in (8) and is hence, not repeated 

here. However, in implementing this algorithm several improvements some changes were made 

to that described in (8; 5), the principal of which is to exploit symmetry in the multipole 

coefficients. This reduces both the time and the memory required by the FMM portion by a 

factor of two. 
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Level Direct 

Source block § [J] 

Observer block : 

2 

ffiil] 

iE 

3 

g 
Figure 3.1 Interaction between boxes. 
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CHAPTER 4. RESULTS 

4.1 Verification: Spherical Shell in a Uniform Field 

This section presents numerous results that serve to verify the mathematical model and 

to confirm the applicability of the numerical procedure discussed thusfar while demonstrating 

the efficiency of the FMM augmented classical scheme. 

As a first example, a linear problem for which exact analytical solutions are available is 

chosen. The numerically computed values for the magnetic scalar potential and the total mag-

netic field are compared against analytical solution to validate the above described numerical 

scheme. A spherical shell of inner radius a and outer radius b, made of material of permeability 

µ and placed in a uniform constant magnetic field B 0 (= B 0 z) is considered (see Figure 4.1). 

The analytical expressions for the scalar potential and the total magnetic fields at any point 

(r , 0, 0) are given by (13) as 

</l'(r, 0, 0) = l a 
--2 cos(0) r>b 
µor 

1 
-(br cos(0) + Bor cos(0)) r<a 
µo 

(4.la) 

H;(r, 0, 0) = l 1 2a 
-(Bo cos(0) + 3 cos(0)) r > b µo r 

1 --6 cos(0) r<a 
µo 

( 4.1 b) 

H~(r, 0, 0) = l ~(-Bo sin(0) + sin(0)) r>b 
µo r 

2_5 sin(0) r<a 
µo 

(4.lc) 
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where 

-[ (2µ+ l)(µ-1) l (b3 - 3)B a - 3 a o 
( 2 µ + 1) ( µ + 2) - 2 :3 (µ - 1) 2 (4.ld) 

and 

[ 
9µ l 6 = 3 Bo 

(2µ + l)(µ + 2) - 2:3 (µ -1)2 
( 4. le) 

In our experiment, a spherical shell of outer radius 3.5 meters and inner radius 2.0 meters 

was discretized into 468 tetrahedral elements, and Bo was chosen to be 41r x 10-7 T. The 

total magnetic field and the scalar potential were computed both inside and outside the shell 

for different values of the permeability. Figures 4.2 and 4.3 compare the results obtained 

numerically and analytically at a radius of 5m for µr = 2 and µr = 1000, respectively. Figures 

4.4 and 4.5 compare the analytical and numerical results at a radius of 0.5m for µr = 2.0 

and µr = 1000. The analytical and numerical results presented in Figures 4.2- 4.5 indicate the 

accuracy of the prescribed method. In our analysis, excellent agreement was observed between 

the analytical solutions and numerical results for a wide range of µr and radii of observation. 

4.2 Coil Surrounding a Ferromagnetic Material 

As a second example, the practical problem of magnetic flux leakage (MFL) inspection used 

in nondestructive testing (22; 21) is considered. In this application, a ferromagnetic sample to 

be analyzed is first magnetized. Cracks in the sample produce leakage flux in air surrounding 

the sample. The detection of leakage flux is indicative of defects in the material. The sample 

can be magnetized by a coil or by another magnet. In our experiments, a nonlinear material 

in the shape of a cylinder was chosen as shown in Figure 4.6. The material has a radius of 

50 mm and a height of 30 mm and is placed so that its axis coincides with the Z axis. It is 

surrounded by a coil with inner and outer radii 55 mm and 60 mm respectively and is 10 mm 

thick. This problem was modeled using a geometry consisting of 314 tetrahedrons. The 

nonlinearity of the material is characterized by the B-H curve shown in Figure 4.7. The coil 
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was excited by a current of 5000 A and the flux density due to the sample was observed at 

various loacations in air on the y = 0 plane. Figure 4.8 is a contour plot of absolute values 

of the flux density due to the material, Br and B 2 , on the X - Z plane, in the absence of any 

defect. 

A defect was created in the cylinder by removing a portion of the cylinder in the shape 

of a pillbox of size 1mm x 1mm x 1mm. This defect was located on the wall of the cylinder, 

symmetric about the positive X axis. Figure 4.9 is a contour plot of the absolute values of Br 

and B 2 , on the X - Z plane, with this defect. Figures 4.10 and 4.11 are the contour plots for 

defects of sizes 2mm x 2mm x 2mm and 4mm x 4mm x 4mm respectively. 

4.3 Team Problem 13 

Next the benchmark Problem 13 defined in the TEAM Workshop (26) is considered. The 

Team Problem 13, (refer Figure 4.12) , consists of two steel channels with a steel plate inserted 

between the channels. A coil is set between two steel channels and is excited by a DC current 

of 1000 AT. The nonlinearity is modeled by the B - H curve shown in Figure 4.13. The 

curve for high flux densities (IBI 2: 1.8T) is approximated by the following equations: 

B = f µoH + ( aH2 + bH + c) l µoH + Ms 

(1.8 :S: B :S: 2.22T) 

(B 2: 2.22T) 
(4.2) 

where the constants a, band care -2.822 x 10-10 , 2.529 x 10-5 and 1.591, respectively. Ms is 

the saturation magnetization (2.16T) of the steel. The objective is to compute the magnetic 

fields at various positions. The problem was discretized into 18293 tetrahedral elements with 

43195 unknowns. Due to the geometry of the problem, the interaction matrix (Z) becomes 

highly ill-conditioned thereby affecting convergence rate of the TFQMR. For faster convergence, 

a block diagonal preconditioner was used in conjunction with TFQMR. The values of the 

average flux densities obtained numerically are plotted against measured values for comparison 

(Figure 4.14). Figure 4.15 shows a normalized surface plot of the distribution of magnetic flux 

density on the plates. 
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4.4 Computational Complexity 

Finally, the theoretically predicted scaling laws for both complexity and memory require-

ments are experimentally verified. The results are obtained on a 500 MHz Linux PC. In Figure 

4.16(a) , the logarithm of computational time required for both the classical and FMM aug-

mented solvers are plotted against the logarithm of the number of unknowns. It can be verified 

that the slopes for the direct and FMM augmented schemes are 1.998 and 1.013, respectively. 

The break-even point is around 300 unknowns. Likewise, Figure 4.16(b) compares the mem-

ory requirements of the classical and FMM augmented schemes. Again the breakeven point 

is around 250 unknowns. These results were obtained for an accuracy of 10-3; the accuracy 

dictates the number of multipoles and associated integration rules. 
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Bo 

Figure 4.1 Spherical Shell in a uniform field. 
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Figure 4.2 Spherical Shell with r 5 meters and µr 2.0. 
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Figure 4.3 Spherical Shell with r 5 meters and µr 1000.0. 
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Figure 4.4 Spherical Shell with r 0. 5 meters and µr 2.0. 
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CHAPTER 5. CONCLUSION 

This thesis presented a novel integral equation for solving nonlinear magneto-static prob-

lems. The integral equation has been solved using the classical solver that is augmented with 

FMM. Numerical simulations that were conducted demonstrate the accuracy and usefulness 

of the prescribed formulation. 
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APPENDIX COMPUTATION OF ROTATION COEFFICIENTS 

In this section, formulae for the evaluation of the rotation coefficients for spherical harmon-

ics are expressed in terms of the binomial coefficents. Suppose that ynm ( 0, ¢) are the spherical 

harmonics of a point (r , 0, ¢) in the original coordinate system and that a , (3 and , are the 

Eulerian angles (refer (6), (9)). The spherical harmonics under rotation are transformed by 

l 

ynm(0', ¢') = L G~,m(a/3,)Ynm' (0, ¢) (A.l) 
m'=-l 

where ( 0', ¢') is the spherical angular coordinate of the point after rotation in the original 

coordinate system and G~m' ( a/3,) are the rotation coefficients to be computed. For the 

rotation of complex spherical harmonics, the rotation coefficients are defined by the formula 

(9)' 

(A.2) 

where 

where 

1 

K = [ (j + m')!(j - m')!l 2 

(j + m)!(j - m)! 
(A.4) 

Additional materials on the definition of Eulerian angles and the derivation of rotation coeffi-

cients can be found in references ( 1) and ( 6). 
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