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                                                   ABSTRACT 

 

One the most important problems in computational structural biology is protein 

designability, that is, why protein sequences are not random strings of amino acids but 

instead show regular patterns that encode protein structures.  Many previous studies that have 

attempted to solve the problem have relied upon reduced models of proteins.  In particular, 

the 2D square and the 3D cubic lattices together with reduced amino acid alphabets have 

been examined extensively and have lead to interesting results that shed some light on 

evolutionary relationship among proteins.  Here, additionally to the 2D square lattice, we 

study the 2D triangular and 3D face centered cubic (fcc) lattices, we perform designability 

studies using different shapes embedded in the 2D square lattice, and we use machine 

learning algorithms to classify binary sequences folding to highly- or poorly-designable 

conformations. 

In the first part of the thesis we extend the transfer matrix method to the 2D triangular 

lattice.  The transfer matrix method is a highly efficient method of enumerating all 

conformations within a compact lattice area that has earlier been developed for the 2D square 

and 3D cubic lattices.  In addition we also enumerated all compact conformations within 

simple geometries on the 2D triangular and 3D face centered cubic (fcc) lattices using a 

standard backtracking algorithm. 

In the second part of the thesis we described protein designability studies on various 

shapes in the 2D square lattice using a reduced hydrophobic-polar (HP) amino acid alphabet.  

We used a simple energy function that counted the number of H-H, H-P and P-P interactions 

within a restricted set of protein shapes that have the same number of residues and non-

bonded contacts.  We found a difference in the designabilities of different protein shapes. 

Finally, in the third part of the thesis we used standard machine learning algorithms to 

classify two classes of protein sequences.  We first performed a designability study for two 

shapes, using a binary HP alphabet, on the 2D triangular lattice and separated highly- and 

poorly-designable conformations.  Highly-designable conformations had many sequences 

folding to them with the lowest energy and poorly-designable conformations had few or no 

sequences folding to them.  Sequences were classified as highly- or poorly-designable 
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depending on whether they folded to highly- or poorly-designable structures.  Using several 

machine learning algorithms such as Decision Tree, Naïve Bayes, and Support Vector 

Machine, we were able to classify highly- and poorly-designable sequences with high 

accuracy. 
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CHAPTER 1. INTRODUCTION 

 

 Within the field of structural biology there has been and is still considerable interest 

in application of simple reduced models to the study of protein structure, function and 

dynamics.  These models span a wide range of complexity, from all-atom models with a 

realistic energy function to the simplest square lattice models with a reduced H/P binary 

amino acid alphabet.  Within the body of work comprising this thesis we have focused on the 

simpler end of that spectrum – lattice models with a binary amino acid alphabet.  There is 

much evidence that despite their simplicity the lattice models capture the essence of protein 

behavior.  Lattice models have the significant advantage of requiring fewer conformations to 

fully sample their conformations, in contract to finer-grained all-atom models.  Designability 

studies have shown that the vast majority of protein conformations are “non-designable” in 

the sense that few or no protein sequences would fold to them with energy lower than 

energies of all other conformations.  In addition, designable conformations tend to show 

some of the features of real protein structures, such as symmetries of shape and structural 

flexibility. 

 

Thesis Organization 

 

 The three main chapters cover studies using lattice models or extensions of tools 

developed for lattice models.  Chapter 2 deals with the extension of the transfer matrix 

method, originally developed for the square and cubic lattices, to the 2D triangular lattice.  

Chapter 3 is a study of the impact of protein shape on protein designability using the 2D 

square lattice.  Chapter 4 is an application of machine learning algorithms developed within 

the field of computer science to a study of protein designability on the 2D triangular lattice.  

Each of these chapters correspond to papers that have either been published or submitted. 

Protein conformations are often modeled as self-avoiding walks on a pre-defined 

lattice area.  Real globular protein structures tend to be densely packed, which is one reason 

why a compact self-avoiding walk without voids on a lattice area offers a reasonable 

representation.  Many structural and functional studies using reduced models employ 2D 
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square or 3D cubic lattices, having coordination numbers of 4 and 6, respectively. The body 

of the past work itself speaks of the utility and validity of these two simple lattices, but they 

do suffer from the parity shortcomings.  Parity refers to the even/odd checkerboard nature of 

these lattices.  Before any two points (residues) on a walk (protein chain) can be nearest 

neighbors on the lattice there must be an even number of points (residues) between them 

along the walk (chain).  The 2D triangular and 3D face centered cubic (fcc) lattices do not 

suffer from the parity constraints.  In addition, with coordination numbers of 6 and 12 for the 

2D triangular and 3D fcc lattices, respectively, we believe that they offer a better 

representation of actual bond angles found in real protein structures. 

We enumerate and generate all compact conformations (for paths and circuits) within 

numerous compact shapes embedded in the 2D triangular and 3D face centered cubic (fcc) 

lattices.  These conformations are used to model protein structures and such complete 

generations of conformations allow an exhaustive search of the protein conformational space 

within the confines of a lattice area, something not possible for continuous models. 

 The transfer matrix method is a way of enumerating and generating all self-avoiding 

walks that fit within a defined area of a given lattice. Other brute force methods of generating 

all possible conformations suffer from the serious problem of attrition – with increasing 

chain length most walks reach a dead end without visiting all sites within a predefined shape 

on the lattice.  Their method has previously been developed for the 2D square and 3D cubic 

lattices [1-4].  In addition, an application of the transfer matrix method using cooperative 

potentials to study the statistical averages of conformational ensembles has been developed 

[5]. 

 In our work we have extended the transfer matrix method to the triangular 2D lattice, 

which allows us to efficiently generate conformations on a lattice of higher coordination that 

does not have the parity issue mentioned above.  Because of the increased coordination 

number, the number of conformations within a given area, relative to the 2D square lattice, 

can be more representative even thought their number grows much faster.  We expect to 

develop the transfer matrix method for the 3D fcc lattice, a natural extension from the 2D 

triangular lattice.  We also expect to develop other applications for the method in addition to 

the above-mentioned application. 
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 One area that has been studied using lattice models is designability.  Some protein 

structures are more robust to mutations and have far more protein sequences folding to them 

than other protein structures.  Such robust structures are said to be designable because they 

are more likely to be “designed” by natural selection in real organisms.  Previous studies 

have found that, like real protein structures, lattice conformations that are selected for 

designability tend to have symmetries of shape and greater flexibility [6-22]. 

 In order to find the designable conformations we thread a protein sequence onto all 

lattice conformations within a given shape and use a simple energy function to find the 

energy of each threading.  If one conformation has lower energy than all other conformations 

we say the sequence folds to that conformation.  We use binary protein sequences, made up 

of simple polar (P) and hydrophobic (H) residues, in order to be able to enumerate 

completely all sequences. 

 Previous studies that worked within the described framework have tested all 

conformations for a given lattice shape in order to find the most designable compact 

conformations.  Here we extend that idea by generating all conformations within a group of 

lattice shapes.  In order to make approximate comparisons we only compare shapes that have 

the same total number of residues (24) and also the same total number of edges (37 or 38) 

between vertices.  In our model an edge represents either a peptide bond or a contact between 

two adjacent residues. 

 We found while comparing designability across lattice shapes that there is a marked 

difference in the number of sequences folding to each shape class, even after normalizing by 

the total number of conformations contained within each shape class.  In an attempt to 

elucidate which features of the shape classes that could account for this difference, we 

compare the number of outer corners in a shape class against the total number of sequences 

folding to a given shape class and the radius of gyration against total number sequences 

folding to a given shape class.   

In the case of the total number of outer corners we find a strong positive correlation 

with the number of sequences folding to a given shape class and in the case of radius of 

gyration we find a strong negative correlation with the number of sequences folding to a 

given shape class.  This suggests that the designability signal contains information on a 
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protein shape.  Previous studies have shown that designable proteins are compact but not 

maximally compact [24].  We speculate that the robustness required for proteins in their 

natural environment perhaps could manifest itself in this deviation from compactness. 

 In our final chapter we employ tools from the field of computer science – machine 

learning algorithms [23] – in order to classify highly- and poorly-designable protein 

sequences.  We use the 2D triangular lattice and a binary amino acid alphabet in order to 

model our protein structures and sequences.  We enumerate all conformations within either a 

hexagonal or triangular shape.  To determine designable conformations we thread binary 

sequences through all conformations within a given shape.  A simple energy function allows 

the rapid testing of all sequences against all conformations. 

 Once this was completed we then have a set of binary sequences, representing real 

amino acid sequences.  We can distinguish two subsets of sequences: those that had been 

designated as folding to conformations of higher and poorer designability.  It was these sets 

of sequences that we were able to classify, often effectively with high accuracy, into groups 

folding into highly-designable conformations and poorly-designable conformations.  The 

accuracy depends on how the binary sequence is represented and also depends on which 

machine learning algorithm is used. 

 To our knowledge this is the first time that machine learning algorithms have been 

used in the context of the designability of protein sequences and suggests that a designability 

signal exists and can be discerned in real protein sequences.   Previous studies have already 

shown that some real protein structures are more designable than others, having more 

sequences folding to them.  We are excited about the prospect of applying our study to real 

protein sequences and structures. 
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Abstract 

 

We enumerated all compact conformations within simple geometries on the 2D 

triangular and 3D face centered cubic (fcc) lattice.  These compact conformations correspond 

mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as 

simple models of proteins. The shapes that were studied for the 2D triangular lattice 

included: m×n parallelograms, regular equilateral triangles, and various hexagons.  On the 3D 

fcc lattice we generated conformations for a limited class of skewed parallelepipeds.  

Symmetries of the shape were exploited to reduce the number of conformations.  We 

compared surface to volume ratios against protein length for compact conformations on the 

3D cubic lattice and for a selected set of real proteins.  We also show preliminary work in 
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extending the transfer matrix method, previously developed by us for the 2D square and the 

3D cubic lattices, to the 2D triangular lattice.  The transfer matrix method offers a superior 

way of generating all conformations within a given geometry on a lattice by completely 

avoiding attrition and reducing this highly complicated geometrical problem to a simple 

algebraic problem of matrix multiplication. 

 

Introduction 

 

In spite of recent advances in computational biology, reduced models of proteins still 

enjoy considerable interest and applicability for studying protein structure, function, and 

dynamics.  Globular proteins have compact structures with very tight packing of amino acids 

inside proteins cores due in large part to the segregation between hydrophobic and polar 

residues.  Additionally amino acids in proteins are covalently bonded forming relatively long 

sequences, containing on average between few tens to few hundreds of residues. The 

simplest mathematical models that mimic the linear nature of the protein sequence, its tight 

packing in the native state and the exclusion volume effect are compact self-avoiding walks 

on simple lattices of finite sizes. A compact self-avoiding walk requires that each of the 

lattice points must be visited once and only once with no voids. Mathematically such walks 

are named Hamiltonian paths (an alternative nomenclature used sometimes in the literature is 

Hamilton paths). For regular (non-compact) self-avoiding walks some points on the lattice 

may be left unvisited creating voids. A compact self-avoiding walk that begins and ends at 

the same site is called a Hamiltonian circuit. The self-avoidance of the walks models the 

excluded volume condition. In lattice models of proteins each residue is usually represented 

by a single lattice node.  Much work has been done in the past for using these models as 

representations of collapsed polymers and proteins.1-11 

Native conformations of globular proteins are compact and unique.  The essence of 

comprehending protein folding is to find, for a given sequence of amino acids, the most 

energetically favorable conformation. This creates extremely difficult computational 

problem, since the number of possible conformations grows geometrically with the length of 

the chain.  Random search methods frequently fail to identify this single unique structure; 
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whereas complete enumerations, whenever feasible, are better suited and preferable for this 

task.  

The complete enumerations of compact conformations (for both paths and circuits) 

within rectangles of varying sizes n×m on the square lattice in 2D and parallelepipeds of the 

size l×n×m on the cubic lattice in 3D have been studied by us and by other authors in the past. 

A major obstacle in such computations for longer chains is so called ‘attrition’ as it becomes 

more and more difficult to locate unoccupied neighboring sites for the continuation the walk.  

To overcome this problem we developed in the past the transfer matrix method12-16 to grow 

the chain not in the traditional linear way but in a piecewise way cross-section by cross-

section to avoid attrition. That approach enabled us to compute all possible Hamiltonian 

walks and Hamiltonian circuits within rectangles of varying sizes on the square lattice and 

parallelepipeds on the cubic lattice. 

The aim of our current work is the extension of these results to other popular lattices. 

The triangular lattice in 2D and the face centered cubic lattice (fcc) in 3D are especially 

suited for the modeling of proteins. The coordination numbers z for these lattices are 6 and 

12, respectively and because of this the protein conformations generated on such lattices are 

more realistic than for the square (z = 4) and the cubic (z = 6) lattices. It is well known that 

the packing of residues inside globular proteins fits the best the fcc lattice among all other 

lattices20. Additionally the distribution of angles between vectors connecting centers of side 

chains of spatially neighboring residues is best fitted to 12 directional vectors in the fcc 

lattice20. 

For various simple geometric shapes on the 2D triangular and 3D fcc lattice we 

enumerate all possible compact self-avoiding walks and circuits.  Figure 1 show examples of 

geometries studied for the triangular (Fig. 1a) and the fcc (Fig. 1b) lattice.   
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Figure 1.  The 2D triangular lattice (a) and a unit cell in the face centered cubic lattice (b). 

  

Figure 2 shows an example of a Hamiltonian circuit (Fig. 2a) and a Hamiltonian path 

(Fig. 2b) on the 2D triangular lattice.  We enumerate all possible Hamiltonian walks and 

circuits within several simple geometries such as: n×m parallelograms, equilateral triangles, 

and several classes of hexagons of varying size.  For the 3D fcc lattice we enumerate all 

possible walks and circuits within a limited class of skewed parallelepipeds. 

 

 

 

Figure 2.  Examples of a Hamiltonian circuit (a) and a Hamiltonian path (b) within a parallelogram of 

size 5××××5 on the 2D triangular lattice. 

 

We take advantage of the fact that the shapes studied here exhibit symmetries.  By 

excluding paths related by the symmetry of the shape we reduce the computer time necessary 

for generation.  A similar approach was used earlier by us for the generation of compact 

conformations on the square and the cubic lattices.  In the case of the 2D square and 3D 

cubic lattices other reductions are possible based on parity considerations. This is related to 
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the chessboard-like nature of these lattices that can be exploited to reduce the total 

computational time required for the generation of compact conformations. Such a reduction 

isn’t possible for the presently studied triangular and fcc lattices.  For the square and the 

cubic lattice, any two nodes of a given path (that represents a polypeptide chain) that are 

lattice neighbors must be separated by an even number of nodes along the path.  Because of 

this it is impossible to have a Hamiltonian circuit composed of an odd number of nodes. 

Indeed, one aim of our studies on the triangular and the fcc lattices is to utilize protein lattice 

representations that do not have such parity restrictions.  In addition, the fcc lattice closely 

approximates the dihedral angles of real proteins20.  The fcc lattice allows for the densest 

packing of hard spheres and thus the dihedral angles in densely packed proteins are 

associated with the fcc geometry. 

 

 

Figure 3. Examples of protein shapes on the triangular and the fcc lattices studied in the present work. 

(a) a 3××××4 parallelogram, (b) a regular (equilateral) hexagon of side length 1 (in lattice units), (c) a regular 

(equilateral) triangle with sides of length 3, and (d) a 2××××2××××3 skewed parallelepiped on the fcc lattice.  

 

 The standard method of enumerating walks, which we employ here, uses a naïve tree-

like growth algorithm.  Paths are generated by adding one bond (step) in each possible way at 

a time and checking for possible overlaps that are not allowed. The procedure is continued 

until every node in the graph is visited (i.e. a Hamiltonian path is completed) or until a dead 

end is reached, at which point the algorithm backs up to a node where a different path (along 

the branches of a tree starting from that node) might be possible.  This is a relatively simple 

to program but, especially for graphs of increasing size, suffers from the serious problem of 

attrition.  As the number of nodes increases, fewer and fewer steps in the path generation will 

eventually lead to a completed path.  In previous work we have developed the transfer matrix 

method for generating all Hamiltonian paths and Hamiltonian circuits within rectangles on 
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the 2D square lattice and parallelepipeds on the 3D cubic lattice.  Here we extend that work 

to the 2D triangular lattice, suggesting that it may also be possible to develop this method 

also for the fcc lattice and other simple lattices. 

 

Symmetries 

 We exploit symmetries of shapes in order to reduce the computational cost of 

conformation generation.  The total numbers of symmetries for all of the shapes studied in 

the present work (see Fig. 4 for examples) are given in Table 1.  For the 2D triangular lattice 

the regular (equilateral) hexagon has the most symmetries (12); the regular (equilateral) 

triangle has 6 symmetries; and a parallelogram with 4 equal sides (rhomb), as well as a near 

equilateral hexagon with 4 sides of equal length and 2 other sides of equal length both have 4 

symmetries.  In three dimensions we enumerated conformations within certain classes of 

skewed parallelepipeds and depending on the class there can be either 2 or 4 symmetries.  

The use of symmetries reduces the total numbers of paths by a constant factor σ or the 

number of symmetries of the shape.  Thus, if there are Ntotal paths without eliminating paths 

related by symmetry, then N = Ntotal/σ is the number of paths after removing paths related by 

symmetries. 

We note that, in addition to symmetries of the shape, there are also symmetries of the 

sequence if the graph representing the sequence is undirected.  Real proteins correspond to 

directed graphs because of the distinction between the N-terminal and the C-terminal.  It is 

useful however to consider undirected Hamiltonian walks on the lattice.  A conformation 

exhibits head-tail symmetry if starting at either end of the conformation produces the same 

undirected graph. Fig. 5 shows an example of two conformations on the triangular lattice 

related by the head-tail symmetry.  If the number of graphs with head-tail symmetry is Ns, 

then the total number of distinct directed graphs N, is related to the number of distinct 

undirected graphs Nu, by Nu = (N + Ns)/2. 
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Table 1 Symmetries for several class of shapes on the 2D triangular (above) and 3D face centered cubic 

(fcc) lattices (below).  

 
 
 
 
 
 
 
 
 
 

Type of 

symmetry 

     

 Skewed 2x2xn 

parallelepiped 

Skewed  2x3xn 

parallelepiped 

Skewed  1tri x n 

parallelepiped 

Skewed  2tri x n 

parallelepiped 

Skewed  3tri x n 

parallelepiped 

Identity 1 1 1 1 1 

180° 

rotation – 

facial axis 

1 

0 0 1 0 

Reflection 

in an axial 

plane 

1 

0 1 1 1 

Inversion 1 1 0 1 0 

Total 4 2 2 4 2 

Type of symmetry      

 Regular 

hexagon 

Regular 

triangle 

n×n 

parallelogram 

n×m (n ≠ m) 

parallelogram 

Near-regular 

hexagon 

Identity 1 1 1 1 1 

±60° rotation 2 0 0 0 0 

±120° rotation 2 2 0 0 0 

180° rotation 1 0 1 1 1 

Reflection axial 3 0 0 0 1 

Reflection diagonal 3 3 2 0 1 

Total 12 6 4 2 4 
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Figure 4.  Shapes embedded in the 3-d fcc lattice.  (a) 2x2xn, (b) 2x3xn, (c) 1tri x n, (d) 2tri x n, (e) 3tri x n, 

and (f) hex x n.  The symmetries of each are referred to in the preceding table.  Cross-sections are shown 

on the right side. 

 

 

Figure 5.  Dealing with symmetric conformations.  (a) An example of two conformations exhibiting head-

tail symmetry.  The two structures are equivalent upon rotation by 180° in the plane.  Shown in (b) is the 

method we use to eliminate symmetries.  If we start our path from the central node then only one of the 

six equivalent nodes is chosen as the first step and only one of the two equivalent nodes as the second step 

(the first two steps are shown as dark lines).  The other step, shown as a broken line, would produce 

conformations symmetrical to the first one. 

 

 We use the same method outlined in our previous work to remove symmetries. 

Specifically, we fix the first few steps of a path until the symmetry of the shape is broken.  

For example, when starting from the middle node of a regular equilateral hexagon we only 

need to enumerate paths with the fixed direction of the first step, since five other directions 
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are equivalent (see Figure 5b).  In addition, the second step is also fixed to break the 

symmetry of the shape. 

  

Extension of the transfer matrix method to the triangular lattice 

The self-avoiding walks allow the generation and enumeration of all possible 

compact conformations; however, due to the attrition mentioned above, the time required for 

these computations grows geometrically with the length of the chain. Attrition arises from the 

excluded volume condition together with the requirement of complete occupancy. Because of 

this (if the chain is grown in a traditional linear way) it becomes more and more difficult to 

find an unoccupied neighboring site for the subsequent step of the walk.  The traditional 

linear chain growth method is therefore not the most efficient method for growing a chain for 

a compact dense system. A better approach for growing a chain is one that utilizes a piece-

wise method to grow it cross-section by cross-section, using a transfer matrix method.12-16  

This method was first proposed in 1984 by Schmaltz, Hite and Klein16 for enumerations of 

Hamiltonian circuits within rectangles in 2D on the square lattice. The Hamiltonian circuit 

(Figure 2a) is defined as a walk through all available lattice points, subject to the conditions 

that each site can be visited only once, and that we return in the last step back to the starting 

point.  

The regular Hamiltonian path (Figure 2b) does not need to satisfy the second 

condition, and the walk (chain) has two ends.  In the past work we have extended this 

transfer matrix method to Hamiltonian circuits in three dimensions on the cubic lattice, and 

to Hamiltonian paths (chains), both in two dimensions on the square lattice15 and in three 

dimensions on the cubic lattice.14  To briefly illustrate this method let us consider the 

enumeration of Hamiltonian circuits on a square lattice constrained to the m×n rectangular 

strip of width m = 4 and variable length n.  Figure 5a defines all possible external 

connectivities to one side of the 4 points on a line.  Figure 5b shows all possible distributions 

of bonds among the 4 points on a line, including the case with no bonds (# 1 where all bonds 

would be to the neighboring lines).  We note that intersecting connectivities such as # 9 in 

Figure 5a are not allowed.  Additionally connectivities #4 and #5 in Figure 5a are not 
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allowed due to the parity reasons, so that the total number of the possible connectivity states 

is only six in this simple example. 

 

Figure 6.  All possible connectivity states (a) and bond distributions (b) for generation of Hamiltonian 

circuits within rectangles of size 4××××n. 

The transfer matrix T is constructed by combining all connectivity states (Figure 6a) 

with all bond distributions (Figure 6b) and finding the resulting connectivity states formed by 

their combinations. The combinations, which lead to unoccupied sites, triple connections or 

the formation of small loops are not allowed.  The element Tij of the transfer matrix is zero if 

there is no possible transition from connectivity state i to state j.  If there are possible 

transitions from state i to state j, then Tij indicates the number of different ways to realize this 

transition. (For Hamiltonian circuits on the square lattice the elements Tij of the matrix T are 

either 0 or 1, but in general Tij can be larger than 1.)  We construct the vector u of the starting 

states with elements ui, for each connectivity state i (such as in Figure 6a) as the first state on 

the left in the process of building a circuit (we use a left to right convention).  The number ui 

identifies the number of different ways in which this may be realized. As starting states, we 

use the distributions of bonds (such as in Figure 6b) that do not contain any unoccupied sites 
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(# 7 and 8 in Figure 5b).We then determine the connectivity state to which the given 

distribution of vertical bonds transforms if 1) the horizontal bonds connecting to vertical 

bonds in the neighboring column on the right side are added and 2) a vertical cross-section 

passing through these newly added horizontal bonds is taken.  (The distribution of bonds #7 

in Figure 6b leads to the connectivity state #5 in Figure 6a, while the distribution #8 leads to 

the connectivity state #4.) We also construct the vector v of the ending states with elements vi 

determining if a given connectivity state i may form a closed circuit by combining it with the 

distribution of vertical bonds. The exact counting of the number Nc of all possible 

Hamiltonian circuits on the rectangle of size m×n on the square lattice is then given by the 

simple formula 

 

Nc = u
T(T)n-2 v 

     

with the superscript T denoting the transpose of vector u.  If we neglect states number 4, 5 

and 9 in Figure 1a and renumber the remaining states from 1 to 6 then the transfer matrix T, 

the vectors of the starting states u and the ending states v are: 
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 In our previous work we have extended the method to Hamiltonian chains (with two 

ends) in two dimensions on the square lattice by generalizing the definition of the 

connectivity state to include the connectivities with up to 2 ends, and by generalizing bond 

distributions by including up to two ends.15  We have also generalized the transfer matrix 

method to three dimensions (3D) on the cubic lattice both for Hamiltonian circuits and 

Hamiltonian paths.14   In 2D, the cross-sections used for the generation and enumerations of 
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Hamiltonian paths (or circuits) were lines. In 3D the cross-sections are planes. We have 

written computer programs that automatically calculate the transfer matrices for paths and 

circuits in 2D and 3D.  The only limitation is the computer memory associated with the size 

of the transfer matrix.  The program was used to calculate transfer matrices as large as 

3104×3104. 

The transfer matrix method for generating and enumerating compact conformations is 

extremely efficient.  The main advantage is that the piece-wise generation of conformations 

is attrition-free.  Once the transfer matrix for a given cross-section is defined, the more 

complicated geometrical problem of conformation generation (or calculation of averages 

such as average energy) becomes a simple problem of matrix algebra that can be easily 

performed even for very long rectangles (parallelepipeds).  The main difficulty of this 

method lies in the rapidly growing number of connectivity states for the increasing size of the 

cross-section, but the development of the transition matrices will be automated in order to 

access larger structures.  Because calculations of transfer matrices are generated with a 

computer program, we are only limited by storage of large matrices. The algebraic 

formulation of the highly complicated compact self-avoiding walk problem is the principal 

beauty and power of this method. In the present paper we will extend the transfer matrix 

method to the triangular lattice. 

 

The extension of the transfer matrix method to the triangular lattice 

The triangular lattice is more difficult for studies of self-avoiding walks because its 

coordination number z =6 is larger than the coordination number z = 4 of the square lattice. 

Because of this the number of possible Hamiltonian walks and Hamiltonian circuits on the 

triangular lattice grows much faster with the length of the chain than for the square lattice. 

Additionally, for the square lattice, the parity effect associated with its chessboard-like nature 

(two sites that form a contact must be separated by an even number of other sites in the path) 

substantially reduces the number of possible connectivity states. The triangular lattice does 

not have this feature and all possible connectivities must be included.  

We will consider Hamiltonian circuits and Hamiltonian walks within parallelograms 

of various sizes on the triangular lattice, such as the 5×5 parallelogram shown in Figure 2.  
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We will concentrate in detail on the simplest case of Hamiltonian circuits within the 

parallelogram of the size 3×n that will enable us to better understand the proposed transfer 

matrix method. 

The connectivity states for the triangular lattice are defined similarly as for the square 

lattice by taking the cross-section along the skewed column and figuring out how various 

pieces of the chain are connected on the left side of this cross-section. The only 

generalization of this approach relative to the square lattice is that additionally to regular 

connectivity states similar to these shown in Figure 6a for the square lattice we need to 

consider situations such as that shown in Figure 7 where in the second skewed column 

 

 

Figure 7.  The extension of the transfer matrix method to the triangular lattice must take into account 

nodes (such as the central one in the figure) that are already occupied during the process of piece-wise 

building of the chain.  The consideration of such nodes on the triangular lattice leads to an extension of 

the definition of connectivity states compared to the square lattice. 

 

the upper and the lower sites are connected but, additionally, the site in the middle of the 

second column has already been occupied and therefore must be excluded in the process of 

choosing the transition to the connectivity states in the next cross-section.  We use the 

symbol of an “x” to denote these excluded sites in the generalized connectivity states. Figure 

8 shows all possible connectivity states to the 3×n parallelograms on the triangular lattice. 

We note that the connectivity state containing the excluded site at the top of the skewed 

column is not possible. 
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Figure 8.  All possible connectivity states for Hamiltonian circuits on 3xn parallelograms on the 

triangular lattice.  The cross symbol denotes connectivity states containing excluded nodes, such as the 

central node in Fig. 6. 

  
The idea of a bond distribution, as described on cross-sections in the square lattice, must be 

generalized to include all bonds within a cross-section of length two.  Bond distributions that 

would leave sites unvisited or contain short loops or triple connections are not allowed.  A 

bond distribution here is defined in relation to the connectivity state that it corresponds to, 

which differs from the definition of bond distribution for the square lattice. Valid transfers 

are superpositions of two connectivity states that do not introduce a small cycle, a triple 

connection, or an orphaned site.  In Figure 9 we have outlined the bond distributions as they 

would look in a two column format along with their corresponding connectivity states.  9b 

and 9c show valid and invalid transfers between two states, respectively.  We have tested all 

connectivity states against each other to see if a valid transfer is possible. 
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Figure 9. Bond distributions (a) for each of the 5 connectivity states.  All other distributions will not lead 

to valid conformations   (b) shows an example of a valid transfer from one state to another while (c) 

shows an invalid transfer from state 5 to state 4 because of a triple-bonded node. 

 
Figure 10 illustrates all possible transitions between connectivity states for the Hamiltonian 

circuits on 3×n parallelograms on the triangular lattice.   
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Figure 10.  All possible transitions between various connectivity states for Hamiltonian circuits on 3xn 

parallelograms on the triangular lattice.  The notation 1→3 means the transition from connectivity state 

1 (in Fig. 7) to connectivity state 3. 

 

Because of this the transfer matrix has the following form: 

 

1 0 1 2 1

1 0 0 1 0

1 0 0 1 0

1 1 0 1 0

1 0 1 1 0

 
 
 

=  
 
 
  

T  
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The element T14 of the matrix has the value 2 because there are two different ways to transfer 

from the connectivity state 1 to the connectivity state 4 in the next cross-section by using two 

completely different bond distributions as shown in Figure 9. 

The vector of starting states is obtained by considering all possible distributions of 

bonds in the first skewed column on the left and horizontal bonds joining the first column 

with the second one that have leave no voids in the first column and figuring out the resulting 

connectivity state in the second column. Figure 11a illustrates all these possibilities for 

Hamiltonian circuits on 3×n parallelograms on the triangular lattice. 

 

Figure 11.  Connectivity states that are the starting states (a) or the ending states (b) for Hamiltonian 

circuits on the 3xn parallelograms on the triangular lattice. 

 

The vector u of the starting states is therefore: 

 

1

1

0

1

0

 
 
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 
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The ending connectivity states are those that lead to the closing of the circuit. Figure 11b 

illustrates all these ending connectivity states for 3×n parallelograms. 

The vector v of ending states that follows from Figure 10b is 
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1

0

0

0

1
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v  

The number of Hamiltonian circuits for the parallelogram of length n is then obtained from 

the equation Nc = u
T(T)n-2 v.  Table 2 shows the computed numbers of Hamiltonian circuits 

(Nn) within parallelograms of size 3×n on the triangular lattice 

 

Table 2. Conformational enumeration results 

N Nn              Nn/Nn-1 

1                     1 1.000000 

2                     4 4.000000 

3                    13 3.250000 

4                    44 3.384615 

5                   148 3.363636 

6                   498 3.364865 

7                  1676 3.365462 

8                  5640 3.365155 

9                 18980 3.365248 

10                63872 3.365227 

11               214944 3.365231 

12               723336 3.365230 

13              2434192 3.365230 

14              8191616 3.365230 

15             27566672 3.365230 

16             92768192 3.365230 

17            312186304 3.365230 

18           1050578720 3.365230 

19           3535439040 3.365230 
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The last column in Table 2 shows the ratio of the number of Hamiltonian circuits 

Nn/Nn-1 for parallelograms differing in size by one column. Table 2 shows that this ratio 

converges rapidly with increasing size of the system. 

The number of possible connectivity states for the triangular lattice grows much faster 

with the width of the parallelogram than for the square lattice. For example for Hamiltonian 

circuits on 4×n parallelograms there are 20 possible connectivity states shown in Figure 12, 

while for the square lattice of the same cross-section size there are only 6 states. 

 

 

Figure 12.  All possible connectivity states for Hamiltonian circuits on 4xn parallelograms on the 

triangular lattice. 

 

The starting states for this case are shown in Figure 13 
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Figure 13.  Connectivity states that are starting states for Hamiltonian circuits on the 4xn parallelograms 

on the triangular lattice. 
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Figure 14.  Connectivity states that are ending states for Hamiltonian circuits on the 4xn parallelograms 

on the triangular lattice. 

Figure 14 shows all ending states. 

We are in the process of writing the computer code that will automatically generate 

transfer matrices and starting and ending vectors of states for varying sizes of parallelograms 

for both Hamiltonian circuits and Hamiltonian paths on the triangular lattice. In the future we 

will generalize this method to skewed parallelepipeds on the face centered cubic lattice (fcc). 

 

Results 

 

 We enumerated the total conformations for numerous geometries on the 2D triangular 

lattice and for a specific class on the fcc lattice.  The totals for the various geometries in 2D 

and 3D are shown in Table 3.  Note that our totals for the numbers of circuits in the case of 

3×n parallelograms matches exactly with our results taken from that of the transfer matrix 

method. 
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Table 3. Enumerations of all paths and circuits for various geometries in 2D and 3D. 

(a) 2 × n parallelograms    (b) 3 × n 

parallelograms 

  

n N Cn  n N Cn 

2 3 1  2 17 1 

3 17 1  3 46 4 

4 44 1  4 509 13 

5 104 1  5 2525 44 

6 235 1  6 11731 148 

7 519 1  7 52282 498 

8 1131 1  8 225105 1676 

9 2448 1  9 943773 5640 

10 5279 1  10 3873553 18980 

 

(c) 4 × n 

parallelograms 

   (d) 5 × n 

parallelograms 

  

n N Cn  n N Cn 

2 44 1  2 104 1 

3 509 13  3 2525 44 

4 2984 80  4 63486 549 

5 63486 549  5 704218 7104 

6 632663 3851  6 29534833 208200 

7 6012755 26499  7 588668783 2950572 

8 55267216 183521     

9 494183548 2539368     

 

(e) Regular 

triangle, n×n×n 

   (f) Hexagons, 

n×n×m 

  

n N Cn  n, n, m N Cn 

2 1 1  2x2x2 10 6 

3 4 1  3x3x3 20843 1284 

4 38 3  2x2x3 40 40 

5 656 26  2x2x4 1090 132 

6 22104 474     
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(g) Skewed 

parallelepipeds 

(fcc) 2×2×n 

  (h) Skewed 

parallelepipeds 

2×3×n 

  

n N Cn n N Cn 

2 203 30 2 11628 381 

3 8084 514 3 4301512 64758 

4 296616 10136 4 1617258514 14000959 

5      

 

 

 

 

 

 

 

 

 

 

 

 

 

 The first column in each table, n, corresponds to the length of the lattice shape.  In the 

case of hexagons and triangles it gives an indication of the depth of the shape embedded in 

the lattice.  The second column gives the total directed paths unrelated by symmetry.  The 

third column gives the number of circuits.  Figure 15 shows the relationship between the 

(i) Skewed 

parallelepipeds 

1 tri×n 

  (j) Skewed 

parallelepipeds 

2 tri×n 

  

n N Cn n N Cn 

2 62 7 2 105 42 

3 618 28 3 12352 726 

4 5348 114 4 449942 14282 

5 41836 468 5 14652475 277002 

6 307764 1916 6 448917888 5380484 

7 2177928 7848    

8 15020794 32144    

9 101822828 131656    

(k) Skewed 

parallelepipeds 

3 tri×n 

  (l) Skewed 

parallelepipeds 

1 hex×n 

  

n N Cn n N Cn 

2 2188 103 2 137971 7588 

3 173740 3722 3 183278209 4542244 

4 12656898 152922    

5 818944912 6188332    
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number of conformations and the width of the cross section m for various lengths of the 

parallelogram. 

 

Figure 15. The plot of the number of possible Hamiltonian chains NC vs the length n for varying widths m 

of the m X n parallelogram. 

 
We also analyzed the relationship between the volume to area ratio and the total 

lattice sites (same as protein length) for a given lattice shape.  We used the data from the 

earlier studies on the 3D cubic lattice as a preliminary step.  We compared this with data for 

real protein sequences obtained from the pbd. 

We used PISCES17 to cull a data set of protein sequences with the following 

properties: the maximum percentage identity is less than 25%, the maximum resolution is 

below 2.0 Å, the maximum R-value is below 0.3, the minimum chain length is 40, and the 

maximum chain length is 60. We used the whole pdb18 entry instead of separate single chains 

to obtain a non-redundant data set of 26 high-resolution proteins. The minimum chain length 

is automatically constrained to 40 by PISCES.  We limited the maximum sequence length to 

60, as our aim here is to analyze how the real proteins compare with a 3D square lattice, 

instead of observing how volume/area ratio changes with protein length. The molecular 

surface area and volume calculations were performed with DeepView19. 

In the 3D-square lattice representation of proteins, an increase in protein length leads 

to a larger number of occupied lattice nodes, and therefore a larger lattice volume. Due to 

geometrical constraints, with increasing protein length the volume increases at a faster rate 
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than the area, leading to an upward slope of the volume/area ratio. This ratio can therefore be 

useful for assessing the reliability of any lattice model to represent protein structures. Though 

other descriptors, such as folding rates, and secondary structure formation, can also be used, 

a simple comparison of the volume/area ratio from simulations and experiments can provide 

a way of testing the model performance.  Figure 16 shows such a comparison to validate the 

performance of 3D-square lattice models for representing real proteins. Here, experimental 

and simulation data are provided for dissimilar protein lengths. Although computational 

power limits the availability of results for simulated sequences up to a length of 48, the 

experimental data nicely integrate with the simulation data for proteins up to the length of 60 

residues. The presence of noise in the experimental volume/area ratios creates a scattered 

plot, yet the experimental data are strongly compatible with those obtained in the 

simulations.  
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Figure 16. The volume/area ratio comparison of 3D cubic lattice conformations and real proteins as a 

function of protein length (length meaning number of residues).  

 

The complementarity between experimental and simulation in Figure 16 emphasizes 

the utility of compact 3D-square lattice as a useful model in analyzing conformational 

properties of proteins constrained by geometrical requirements. 

 

Discussion 

 

 The fact that we can enumerate the different conformations and extend the transfer 

matrix method lends support to the idea that we will be able to use this lattice for similar and 

further studies to those performed with the square and cubic lattices.  As we have already 

developed the transfer matrix method for the triangular lattice and expect to develop it soon 

for the fcc lattice, proof of an algebraic method to generate conformations is not necessary. 

 One application for the transfer matrix method involves calculating the average 

energy of an ensemble of conformations21 using differing assignments of hydrophobic and 

polar residues in the conformation.  We intend to develop other applications in the future. 
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Abstract 

 

One important problem in computational structural biology is protein designability, 

that is, why protein sequences are not random strings of amino acids but instead show regular 

patterns that encode protein structures.  Many previous studies that have attempted to solve 

the problem have relied upon reduced models of proteins.  In particular, the 2D square and 

the 3D cubic lattices together with reduced amino acid alphabet models have been examined 

extensively and have lead to interesting results that shed some light on evolutionary 

relationship among proteins. Here we perform designability studies on the 2D square lattice 

and explore the effects of variable overall shapes on protein designability using a binary 

hydrophobic-polar (HP) amino acid alphabet.  Because we rely on a simple energy function 

that counts the total number of H-H interactions between non-sequential residues, we restrict 

our studies to protein shapes that have the same number of residues and also a constant 

number of non-bonded contacts.  We have found that there is a marked difference in the 
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designability between various protein shapes, with some of them accounting for a 

significantly larger share of the total foldable sequences.  

 

Introduction 

 

Despite recent advances in experimental techniques and computational models for 

studying proteins, reduced models still enjoy considerable interest and applicability for 

studying fundamental features and characteristics of protein structure, function, and 

dynamics.  Globular proteins normally have compact structures with amino acids tightly 

packed inside protein cores, due in large part to the segregation between hydrophobic and 

polar residues. Additionally, amino acids in proteins are covalently linked, forming 

sequences usually containing between tens to hundreds of residues. The simplest 

mathematical models that mimic the linear nature of the protein sequence, its tight packing in 

the native state and the exclusion volume effect are compact self-avoiding walks on lattices 

(1-18).  The compact self-avoiding walk requires that each of the lattice points must be 

visited once and only once. Multiple visits are not allowed because of the excluded volume 

condition, and unvisited sites (cavities) are not allowed by the requirement of the 

compactness of the walk. In mathematics such walks are often called Hamiltonian paths (or 

Hamilton paths). A compact self-avoiding walk that begins and ends at the same site is called 

a Hamiltonian circuit.  

The native conformations of globular proteins are compact and unique.  The essence 

of comprehending protein folding is to find, for a given sequence of amino acids, the most 

energetically favorable conformation.  Random search methods frequently fail to identify the 

single unique form; whereas complete enumerations, whenever feasible, are better suited to 

and preferable for this task.  

  In past studies of protein designability, amino acid sequences were threaded onto all 

possible compact conformations of a given shape and for each threading the total energy of 

the fold was computed based on a specified energy function (19-35).  If there is a 

conformation that has a total energy lower than all other conformations, we assume that the 

sequence will fold to that specific conformation.  If many different sequences fold to the 
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same conformation we consider this conformation to be highly designable, and  thus possibly 

easily unfoldable (36, 37). There are also conformations with few or even no sequences 

folding to them, so these have low designability, or are even completely non-designable.  

Additionally, many sequences do not fold uniquely; and frequently different structures can 

sometimes have the same lowest energy. We may however expect that such degeneracies will 

be reduced if a simple 2 letter (HP) amino acid alphabet were replaced by a more complex 

one (38). Past studies of such simple model have lead nonetheless to interesting results that 

shed some light on evolutionary relationship among proteins (39-42). 

Previous studies that examined protein designability were mostly focused on 

conformations within regular lattice shapes in 2D and 3D, such as the 6×6 square or the 

3×3×3 cube.  Results of these studies imply the existence of few highly designable 

conformations among many that are less or non-designable.  These results obtained for lattice 

proteins also suggest that, as for real proteins, designable conformations tend to exhibit 

symmetries.  These findings show that a simple lattice model can demonstrate important 

traits observed for real proteins. 

In an effort to further extend this model and provide greater detail regarding the 

structural features of protein designability, we are investigating many different shapes on the 

2D square lattice.  All these shapes are constrained to have both the same number of nodes 

(residues) and additionally the same number of non-bonded close contacts.  However, lattice 

conformations confined by these shapes vary in their symmetries, surface characteristics, and 

radii of gyration.  We find for a given shape differences in both the number of highly 

designable conformations and the total number of sequences that fold.  In addition, we 

measure the depth of the energy well for each foldable sequence (i.e. the energy gap between 

the native structure and closest non-native structures) but observe only small differences in 

the average energy gap and average folding energy per shape class. 

 

Methods 

  

In an effort to extend the model to more irregular (than squares or rectangles) shapes 

that might more accurately mimic irregularities encountered in real proteins, we are 
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enumerating all possible conformations within various shapes embedded in the 2D square 

lattice.  We have performed computations for lattice proteins composed of 24 residues 

(nodes). The most compact shapes are the 4×6 rectangle and the 5×5 square without one of 

its corners (see Fig. 1A).  The square lattice restricted by those shapes contains 38 edges, and 

because the polypeptide chain takes up 23 of these edges, this leaves 15 remaining edges for 

non-bonded interactions (contacts). All other shapes allow for less than 15 non-bonded 

contacts. In addition to studying the two most compact shapes shown in Fig. 1A, we also 

study various possible lattice protein shapes having 14 non-bonded contacts. This allows us 

to consider a larger variety of more irregular protein shapes than the two maximally compact 

ones.  Restricting ourselves to only the most compact shapes (Fig. 1A) that allow for 

conformations with 15 non-bonded nearest neighbor interactions could lead to a significant 

oversimplification of the designability problem, and might prevent us from a more thorough 

examination of the  relation between protein designability and shape.  The shapes that allow 

for 14 non-bonded contacts that are studied in the present work are shown in Figure 1B.  

Protein shapes in Figs 1A and 1B are identified by numbers in the figure, and additionally the 

total numbers of different compact conformations for each shape are given there. 

 

 

Figure 1A. The two most compact shapes comprising of 24 nodes on the square lattice, that accommodate 

lattice protein conformations having 15 non-bonded contacts. The shape index and the  total number of 

all possible protein conformations for each shape are indicated. 
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Figure 1B. Twelve different shapes composed of 24 nodes on the square nodes, which accommodate 

lattice protein conformations having 14 non-bonded internal contacts. The shape index and the  total 

number of all possible protein conformations are shown for each shape. 

 

We should note that the set of 12 shapes shown in Fig. 1B is not exhaustive, minor 

topological changes produce other different shapes without changing the number of vertices 

and edges.  For example, removing two nodes (and three edges) from the upper left side of 

shape no. 4 and pasting them at any other possible locations on the surface produces a new 

shape with 24 residues and 14 non-bonded contacts.  We should note, however, that there are 
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many shapes that are excluded for parity reasons. The square lattice (and similarly the cubic 

lattice) has parity or even/odd characteristics, resulting from a chessboard-like structure. The 

allowed steps of a walk on such a lattice must connect two nodes of different parity. Because 

of this, the numbers of ‘white’ and ‘black’ nodes (in a chessboard terminology) must be 

equal for Hamiltonian circuits or may differ by zero or one for Hamiltonian walks. Shapes 

for which the absolute value of this difference is larger than one are not allowed. Fig. 2 

shows an example of a shape that is excluded because for parity reasons; it contains 11 

‘white’ nodes and 13 ‘black’ nodes and therefore Hamiltonian paths (or circuits) within such 

a fully occupied shape are not possible.   

 

 

 

Figure 2.  A shape that is impossible to fill completely with a Hamiltonian path or a circuit. Black and 

white nodes illustrate chessboard-like feature of the square lattice. Growing a chain will leave unoccupied 

nodes in all cases. 

 

We tried to compute the number of shapes that are relatively compact by being contained 

within the 5×6 lattice that are the most designable. We calculate the total number of shapes 

with 24 residues and 14 non-bonded contacts that fit within a 5×6 rectangle on the 2D square 

lattice.  After excluding shapes that are impossible for parity reasons and after further 

exclusion of shapes related by symmetry we find 92 different shapes that satisfy the 5×6 

constraint. Because of limited computational resources we have not performed designability 

studied for all these shapes, and instead limited ourselves to sets shown in Figs 1A and 1B.  

Although the set of shapes in Fig. 1B is not complete, we feel that it is nonetheless adequate 

for the present protein designability studies and that a more complete set would add little to 

our findings. The set of shapes in Fig 1B contains several elongated shapes (#6, #7, #8 and 

#9) that do not actually fit within the 5×6 lattice; our computations have shown (see next 

section) that such elongated shapes are however not of high designability. 
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 The set of shapes in Fig 1A is complete, in that there are no other shapes comprised 

of 24 nodes (residues) having 15 non-bonded contacts.  However, such a limited number of 

shapes hinders a thorough investigation of the relationship between the shape and 

designability.  The total number of all possible conformations for the two shapes in Fig. 1A is 

3997. 

The total number of conformations in all the different shapes in Fig. 1B is 14,579 

(obtained by summing over the individual numbers of conformations for each shape). 

Because we study proteins with 24 residues and we are using the binary hydrophobic-polar 

(HP) alphabet, this amount to having 224 (~3.2×107) different possible sequences (for chains 

having two distinguishable ends: C-terminal and N-terminal), each of which is threaded onto 

all available conformations.  There are many possible energy functions even for the binary 

alphabet, and here we use the simplest one where each H-H non-bonded contact is given an 

energy score of -1.0 while all other contacts (H-P and P-P) are scored as 0.  That is, EHH = -

1.0, EHP = 0.0, EPP = 0.0 in arbitrary units of energy. There is much evidence that suggests 

that hydrophobic interactions are the driving force in protein folding, and therefore this 

simple energy model captures well the essence of hydrophobic energetics in folding of real 

proteins. 

 

Results 

 

 We calculate the total number of sequences that fold to each conformation with 

energy lower than for all other compact conformations within all shapes.  Similar to previous 

studies, we find that there are few conformations with many sequences folding to them (i.e. 

highly designable conformations), and many more conformations with few or even no 

sequences folding to them (less designable conformations).  In Fig. 3 we have shown the 

relationship between the number of sequences (Ns) and the logarithm (log10) of the number of 

conformations.  We can see a sharp reduction in the number of conformations as the number 

of folding sequences increases. 
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In addition to this general result, we also found that certain shapes were much more 

accessible to designable conformations than others.  The total numbers of sequences that 

folded to conformations confined within each shape are given in Table 1A-B.  It is 

remarkable to observe a large diversity (differing by many orders of magnitude) in numbers 

of sequences folding to each shape, given that all these shapes have the same fixed numbers 

of vertices and edges. 

A  

B  

Figure 3 – The logarithm of the number of conformations plotted as the function of the total number of 

sequences (NS) folding to a given conformation.  (A) and (B) refer to the two different shape classes, with 

15 and 14 non-bonded contacts respectively. 

 

Such diversity could be partially explained by differences in total numbers of 

compact conformations for each shape.  It is plausible to expect that shapes that 

accommodate more compact conformations might have more sequences folding to them.  

Because of this possibility we have normalized the number of sequences folding to a 
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particular shape by the total number of compact conformations allowed for such shape. Such 

normalized numbers of sequences folding to a given shape are shown in the last column in 

Table 1A and B. The normalized numbers still show range from 2.0 for the shape # 6 to 760 

for the shape # 12.  The low value (2.0) for the shape # 6 is easy to explain by its being the 

most elongated shape, but the unusual high designability propensity of shape # 12 is difficult 

to explain.  There is a similar correlation for the two shapes with 15 non-bonded contacts, 

but, owing to there being only two shapes, it is difficult to draw any definitive conclusions 

from this evidence. 

 To better elucidate some of the features of the shapes that could account for the 

differences in designability, we have calculated the radius of gyration and the total number of 

corners (both inner and outer) for each shape.  The mean square radius of gyration <Rg
2> for 

each shape was computed by using the formula: 
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where N is the number of nodes (N = 24) , and ri is the position of the i-th node. 

We have plotted the logarithms of the total numbers of sequences folding to particular 

shapes and the normalized numbers (normalized by the total number of compact 

conformations available for a given shape) against the mean square radius of gyration and the 

total number of inner and outer corners for each shape.  We have studied the dependence on 

the total number of corners in attempting to find out how the surface characteristics of 

proteins influence their designability.  Upon a closer examination of this problem we come to 

the conclusion that having corners, especially outer ones, enables energetically favorable 

contacts between two hydrophobic (H) residues that would not be possible for shapes without 

such corners.  The results are shown in Figs. 4 and 5. Figure 4A shows the dependence 

between the mean square radius of gyration of a given shape and the logarithm of the total 

number of sequences folding to that shape. Fig. 4B shows a similar plot for total numbers of 

sequences normalized by the total number of compact conformations for each shape.  It can 

be easily seen from these graphs that there is a strong correlation between the radius of 

gyration of a given shape and the logarithm of the total number of sequences folding to a 

particular shape.  This correlation is stronger in Fig. 4B when the numbers of sequences 
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folding to a given shape are normalized by the total number of compact conformations 

available for that shape.  Fig. 5 show a similar plot of the total number of corners (both inner 

and outer ones) for each shape. There is a strong correlation between the total number of 

corners for a given shape and the total number of sequences folding to that shape (not 

shown). Similarly as in the case with the radius of gyration, the correlation increases when 

we normalize the total number of sequences folding to a given shape by the total number of 

compact conformations for that shape. 

Table 2 Total and normalized numbers of sequences folding to a specific shape, corresponding to shapes 

with 14 non-bonded contacts. 

Shape Class Number of sequences folding to 

each shape class 

Normalized number of 

conformations 

1 88894 133.1 

2 58495 504.3 

3 201636 119.3 

4 166541 127.1 

5 55176 24.2 

6 1563 2.0 

7 99712 157.8 

8 37686 17.9 

9 166657 141.2 

10 238385 150.5 

11 381639 416.6 

12 1000177 760.0 

 

Table 3 Total and normalized numbers of sequences folding to a specific shape, corresponding to shapes 

with 15 non-bonded contacts. 

     
Shape Class Number of sequences folding to 

each shape class 

Normalized number of 

conformations 

1 2438869 1112.6 

2 536184 297.1 
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We have thoroughly examined the most designable conformations and, similar to previous 

studies, we detect symmetries and regular secondary structure elements associated with 

structures of high designability.  The most designable conformations for both sets of 

experiments are shown in Figure 6. There are 3269 and 4752 different sequences that fold to 

these most designable structures. The conformation A in Fig. 6 belongs to the shape # 12, 

which is not unexpected since this shape has the highest normalized number of sequences 

folding to it and hence the highest density of designable conformations.  The conformation B 

in Fig. 6 belongs to shape #1 in Fig. 1A, which is similarly densely populated with 

designable conformations.  It is interesting that the most designable structures reveal 

pronounced secondary structure characteristics.  It is however difficult to discern whether it 

is a valid representation of structural features of real proteins or an artifact resulting from the 

2D square lattice representation of proteins.  

 We also tried to correlate shape classes with the energy difference between the 

conformations with the lowest energy and next lowest energy conformation.  However 

because of the simple energy model used in our computations, for the vast majority of cases 

there was an energy difference of one (in arbitrary units of energy), i.e. the minimal possible 

separation between the two energy states.  We have examined the average total energy, 

which equals the total number of H-H contacts, for all designable conformations for each 

shape and found only very small variations among different shapes (data not shown). 

 

Discussion 

 

 We have generated all possible compact conformations for a variety of shapes 

embedded in the 2D square lattice and have performed systematic designability studies of all 

these conformations.  We found that the different shapes vary markedly from one another in 

their designability propensity, with the total number of sequences folding to these shapes 

ranging from ~1500 to over 1,000,000.  These significant differences persist even if we 

normalize numbers of folding sequences by the total number of possible compact 

conformations for each shape.  We have tried to find features of the shapes that could 

account for this considerable difference, and have found a correlation between the mean 
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square radius of gyration of the shape and the total number of different HP sequences folding 

to a given shape.  This correlation is somewhat stronger after the normalization of the total 

number of sequences folding to a given shape by the total number of possible compact 

conformations within this shape.  The correlation with the surface characteristics of the 

shapes measured by the total number of outer and inner corners is also strong, even in the 

case where we use total number of sequences.  However, this correlation may in fact be 

attributable to the particular chessboard-like nature of the 2D square lattice. 

 

 A  

B  

Figure 4. Correlation between the logarithm of the total number of sequences folding to a given shape 

and the mean square radius of gyration of this shape (A) .  In the second plot (B) the number of 

sequences is normalized by the total number of possible compact conformations within a given shape.  A 

linear function fits well for both plots.  px,y refers to the correlation coefficient, which is negative because 

there tend to be fewer sequences folding to shapes as the radius of gyration increases. 
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A  

 

B  

Figure 5. Correlation between the logarithm of the total number of sequences folding to a given shape (A) 

and the total number of inner and outer corners for this shape. (B) shows the same correlation of surface 

features against the total sequences normalized by the total number of possible compact conformations 

for a given shape. 
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A                  B  

Figure 6A-B. The most designable conformation among all the shapes studied.  There are 3269 different 

H-P sequences folding to A and 4752 sequences folding to B.  A & B correspond to the shapes with 14 and 

15 non-bonded contacts, respectively. 

 

 It seems possible that the differences in designability propensity between various 

shapes relate to the density of conformations for those shapes.  Real globular proteins have 

dense, compact structures and we expect similar features for lattice protein models.  We have 

explicitly tried to account for this compactness by limiting shapes that were studied to be 

only the most compact ones. Additionally we have compared shapes that have the same 

number of nodes (N = 24) and the same number of non-bonded contacts (15 contacts for two 

of the most compact shapes, and 14 contacts for 12 other slightly less compact shapes).  A 

simple HP model that we use favors compact conformations in which the total number of H-

H contacts are maximized, and, assuming that contacts add to the thermodynamic stability of 

a macromolecule, the maximization of energetically favorable H-H contacts maximizes 

protein stability.  We may ask if there are other reasons for protein compactness.  A 

correlation between protein designability within a given shape and the radius of gyration of 

this shape that we found in the present study leads us to a suggestion that perhaps proteins 

have evolved to minimize this value in addition to maximizing of the number of the H-H 

contacts.  The high correlation we have found between surface features and designability 

may in fact suggest that proteins have evolved surfaces of optimal roughness, possibly 

because this lends itself to maximal compactness of the structure.  However, further studies 

are required to rule out the possibility that our results might be artifacts of lattice used. 

 Similarly as in previous studies, we have found that there are relatively few highly 

designable conformations while the majority of compact structures generated on the square 

lattice are either completely non-designable or lowly designable.  We have also found that 
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most HP sequences fail to fold to a single conformation with the lowest energy.  In addition, 

the most designable conformations tend to show some symmetry within the constraints 

allowed by the particular shape. 

 Recent studies (43, 44) have elucidated a structural determinant of protein 

designability for real proteins, different traces of powers of the contact matrix.  These 

different traces correspond roughly to the average number of contacts per residue and suggest 

that structures with larger average number of contacts per residue are more designable.  A 

correlation has been found between this structural determinant of designability and the size 

of a protein family, accounting for the evolutionary age of the family (44).  It has also been 

discovered that proteins in thermophilic organisms, which presumably have been selected for 

higher thermodynamic stability, are on average more designable than those of non-

thermophilic organisms (45).  Our lattice protein study suggests the possibility of a 

correlation between protein designability and the radius of gyration (when average number of 

contacts per residue is used) as well as surface features in real proteins. We will attempt to 

examine this problem in further detail in the future work. 
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Abstract 

 

By using standard Support Vector Machine (SVM) with a Sequential Minimal 

Optimization (SMO) method of training, Naïve Bayes and other machine learning algorithms 

we were able to distinguish between two classes of protein sequences: those folding to 

highly-designable and poorly- or non-designable conformations.  First, we have generated all 

possible compact lattice conformations for the specified shape (the hexagon or the triangle) 

on the 2D triangular lattice. Then we generated all possible binary hydrophobic/polar (H/P) 

sequences and by using a specified energy function, threaded them through all these compact 

conformations. If for a given sequence the lowest energy was obtained for a certain lattice 

conformation we assumed that this sequence folds to that conformation.  Highly-designable 

conformations have many H/P sequences folding to them, while poorly-designable 

conformations have few or no H/P sequences.  We classified sequences as folding to either 
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highly- or poorly-designable conformations.  We have randomly selected subsets of the 

sequences belonging to high-designable and poorly-designable conformations and used them 

to train several different standard machine learning algorithms such as Support Vector 

Machine with SMO, Naïve Bayes, and Decision Tree. By using these machine learning 

algorithms with ten fold cross-validation we were able to classify the two classes of 

sequences with high accuracy -  in some cases exceeding 95%. 

 

Introduction 

 

 Elucidating the relationship between protein sequence and protein structure remains 

one of main unsolved problems in computational structural biology.  The related specific 

problem is protein designability, that is, why real proteins are not random sequences of 

amino acids but show rather regular patterns that encode protein structures within the limited 

number of folds.  Reduced (coarse-grained) models of proteins enjoy considerable interest 

and applicability for these studies.  In coarse-grained models of proteins a detailed atomistic 

description of the structure is replaced by a much simpler view where each amino acid is 

represented by a single point. Additionally, theoretical models of proteins frequently replace 

the 20-letter amino acid alphabet with a much simpler binary hydrophobic/polar (H/P) 

representation and significantly restrict the conformational space by imposing lattices [1-18].  

Through the use of complete enumerations of H/P sequences and compact lattice 

conformations it has been found that most protein sequences fold to a relatively small 

number of so called “highly-designable” conformations, while the remaining conformations 

have few, or no, sequences that fold to them [30, 38]. In the present work we use a standard 

H/P alphabet and a 2D triangular lattice and apply machine learning algorithms to study 

protein designability for such a reduced model. 

 Much of the past work on protein designability has focused on searching for most 

significant features of designable protein structures, for both lattice models and for real 

proteins, and relating them to energetic stability and evolution.  Recently, it has been shown 

that proteins selected for thermal stability tend to be more highly designable, owing to their 

increased energetic stability [32-35].  There is also evidence suggesting that designable 
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proteins are unfolding more easily, due to their greater flexibility [36].  Various studies have 

shown that designable conformations embedded on various lattices show important traits of 

real proteins, such as symmetrical shapes and secondary structure elements [20-31]. In 

addition, recent studies suggest that designable lattice structures tend to have more peptide 

bonds between the protein core and its surface, which increases protein flexibility [17, 36]. 

 Those significant traits of designable conformations, found in previous works, 

suggested the use of machine learning algorithms to discriminate between sequences folding 

to highly- and poorly-designable structures.  Symmetrical shapes, secondary structure 

elements, and extraordinary surface-core bonds can possibly show up as definitive patterns in 

the protein sequence; something we wanted to exploit in this study to classify sequences 

folding to conformations of differing designability. 

 In past studies of protein designability amino acid sequences were threaded onto all 

possible compact conformations for a given shape, and each time the total energy of the 

structure was computed based on a specified energy function.  If, for a given amino acid 

sequence, there is a conformation having a total energy lower than all other conformations, it 

was assumed that the sequence folded to that specific structure.  If many different sequences 

folded to the same conformation it was assumed that such a structure has high designablility.  

There were also conformations with few or even no sequences folding to them, i.e. with poor 

designability.  Additionally many sequences do not fold uniquely; frequently the lowest 

energy is similar for different structures. We may however expect that such a degeneracy 

effect would rapidly diminish if a simple 2-letter (H/P) amino acid alphabet is replaced by a 

more complex one. Previous studies that examined the idea of protein designability were 

mostly focused on the conformations within regular lattice shapes in 2D and 3D, such as a 

6×6 square or a 3×3×3 cube.  Results of these studies imply the existence of only a few 

highly designable conformations among a much larger number of less or non-designable 

structures.  The results obtained for lattice proteins also suggest that, like in real proteins, 

designable conformations tend to exhibit structural symmetries.  These findings show that a 

simple lattice model can demonstrate important traits that are mirrored in real proteins. 

Our aim here is to extend designability studies to different shapes on the 2D 

triangular lattice and classify sequences folding to highly and poorly designable 
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conformations using machine learning algorithms.  The two shapes that are studied by us 

here are the triangle and the hexagon, shown in Figure 1.  The triangular lattice with the 

shape of the regular hexagon in Figure 1 has 19 nodes, while the equilateral triangle contains 

21 nodes.  Therefore there are 219 (≅5.2×105) and 221 (≅2.1×106) different H/P sequences for 

each shape. (We have no sequence symmetry because of the difference between the C and 

the N terminals).  Because of relatively small numbers of possible H/P sequences and the 

numbers of all possible compact (no voids allowed) self-avoiding walks unrelated by shape 

symmetries for the hexagon (20,843) and the triangle (22,104), we are able to enumerate 

them completely and perform complete designability computations.  Similarly, as in previous 

studies, we find that certain distinct conformations have many sequences folding to those 

structures, while other have few or no sequences folding to them. 

 

Figure 1.  The hexagonal and the triangular shapes used in the designability studies in the present work.  

There are 20,843 different compact conformations unrelated by shape symmetries for the hexagon and  

22,104 for the triangle. 

 

After finding highly- and poorly-designable structures we then compare the 

sequences that folded to these two classes of conformations and tested whether we could 

classify them by using standard machine learning algorithms.  We used the Waikato 

Environment for Knowledge Analysis (WEKA) software developed at 

http://sourceforge.net/projects/weka/ as a platform for our classification computations, testing 

several different algorithms such as Support Vector Machine, Naïve Bayes and Decision 

Tree.  We first trained those statistical learning algorithms on a randomly chosen subset of 
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our data (training set) and then checked the prediction accuracy on a remaining test set. We 

have performed ten-fold cross-validation experiments to eliminate possible bias. By using a 

Support Vector Machine with a Sequential Minimal Optimization method of training we are 

able to obtain highly accurate predictions, often with an accuracy exceeding 90%, depending 

on how the binary sequence was represented to the learning algorithm.  We are quite 

optimistic that our approach may also be successfully applied to real proteins to distinguish 

protein-like sequences folding to distinct native structures from random and non-protein-like 

sequences that carry no significant structural signal. 

 

Methods 

 

 The complete enumeration of all possible compact conformations for each shape was 

done using a backtracking algorithm generating walks on a tree that checks for all accessible 

nodes for the next step of the walk.  If none of the nodes is available then the algorithm 

backtracks to the first node offering a different path.  Each of nodes must be visited once and 

only once, voids and chain overlaps are not allowed. For longer chains this algorithm suffers 

from significant attrition and is less efficient than the alternative attrition-free transfer matrix 

approach developed by us previously [12-15]. However for the relatively short chains 

containing 19 or 21 nodes studied here a backtrack algorithm is much simpler to use. The 

energy functions that we use when calculating the total energy of the fold obtained by 

threading of a sequence through a conformation are based only on non-bonded nearest-

neighbor contacts.  Two neighbors can either be both hydrophobic (EHH), one hydrophobic 

and one polar (EHP or EPH), or both polar (EPP).  We used a standard energy function, used in 

[36, 38]., that sets EHH = -2.3, EHP = EPH = -1.0 and EPP = 0 in energy units.  This function 

satisfies two significant physical requirements: (i) EHH < EHP < EPP and (ii) 2EHP > EPP + EHH.  

The first requirement minimizes the number hydrophobic residues on protein surface, and the 

second condition allows for the separation of different amino acid types. This potential will 

preferentially yield overall a hydrophobic core and a polar exterior. 

 In order to classify the sequences folding into highly- and poorly-designable 

structures we used the WEKA machine learning workbench [37] and several classification 
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algorithms, including Support Vector Machine (SVM), Decision Tree, and Naïve Bayes.  As 

the input of the statistical learning algorithms we use two different representations of the 

binary amino acid sequence.  Because all sequences for a given shape have the same length it 

was possible to simply use the binary sequence itself as input.  The input vector would thus 

be x = (x1,x2,…,xn) with elements xi (1≤ i ≤n) defined as members of the set x є {0,1}, 

corresponding to either a hydrophobic or polar amino acid.  In addition, we also tried using 

as input a percentage count of different tripeptides from the set {HHH, HHP, HPH, PHH, 

PPH, PHP, HPP, PPP}.  The input vector is then  x = (x1, x2, x3, x4, x5, x6, x7, x8) with xi (1≤ i 

≤8)  corresponding to a percentage of the i-th tripeptide in the sequence.  Encoding a 

sequence in this manner allows us to compare sequences of unequal length.   The resulting 

classifiers classify a target sequence as either folding to a conformation of high designability 

or low designability. 

 The performance of our classifiers is tested using ten fold cross-validation 

experiments, where the data is randomly divided into ten sets, the classifier is trained on nine 

of the parts, and then the classifier blindly attempts to classify the remaining (known) 

section. The whole procedure has been repeated ten times using each of the ten sets as a test 

selection and the final results are compiled.  The performance of a classifier can be 

summarized by the following metrics: False Positives (FP) constitute the sequences that fold 

to conformations of low designability but are incorrectly labeled as folding to conformations 

of high designability, True Positives (TP) are sequences that are correctly labeled as folding 

to conformations of high designability, False Negatives (FN) are sequences that are 

incorrectly labeled as folding to conformations of low designability, and True Negatives (TN) 

are sequences that are correctly labeled as folding to conformations of low designability. 

 

Results 

 

We enumerate all binary sequences and test them for possible folding to a unique 

native conformation with the lowest energy among all compact conformations within the 

given shape.  As the two shapes studied by us had 19 (hexagon) and 21 (triangle) nodes this 

amounted to 219 and 221 (524,288 and 2,097,152) H/P sequences; combined with 20,843 and 
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22,104 conformations for each shape, repectively.  We then count the number of different 

sequences folding to a given conformation with energy lower than all other conformations 

within a given shape and store the counts. These results are shown in Figure 2a for the 

hexagon, and Figure 2b for the triangle, where the logarithm of the number of conformations 

log Nconf having Ns sequences folding to them is plotted against Ns. These two graphs express 

qualitatively the same ideas previously reported in earlier studies [17, 20, 21, 31, 36, 38].  

There are many conformations with relatively few (or no) sequences folding to them and a 

rather small amount of conformations that have many sequences that fold to these structures.  

The later conformations are named designable conformations.   

 

Figure 2. The logarithm of the number of conformations log Nconf having NS sequences folding to them 

plotted as a function of NS. a) corresponds to the data for the hexagonal shape and b) is forthe triangular 

shape. 

 

 Figure 3 shows the most designable conformations for both of the shapes.  The most 

designable conformation for the hexagonal shape shows features of symmetry that have been 
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found in .  Both of the conformations contain many peptide bonds between the protein 

surface and the core, a feature that has been suggested to play an important role in the 

flexibility of proteins [36].  

 

Figure 3. The most designable conformations for a) the hexagonal and b) the triangular shape.  

Conformation a) has 54 sequences folding to it and 11 peptide bonds connecting the protein interior with 

exterior; conformation b) has 423 sequences folding to it and 9 interior-exterior peptide bonds.   

 

 We have also plotted the average energy gap vs. designability of conformations for 

the two shapes; the results are shown in Figures 4a and 4b.  The energy gap is defined as the 

difference between the energy of the ground state conformation and second lowest energy 

conformation for a given sequence. The average energy gap is the average energy gap for 

sequences folding to conformations of equal designability (NS).  Similarly as observed in 

previous studies [30, 31, 36, 38] there is a marked tendency for the energy gap to increase as 

we examine more designable conformations.  This trend seems weaker for larger Ns, which is 

probably a result of having too few conformations to obtain a reliable average.  For the 

hexagonal shape there are less than 40 conformations more than 38 sequences folding to 

them, whereas there are more than 20,000 conformations with fewer sequences folding to 

them. 
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Figure 4. Average energy difference between the ground state and the next lowest energy state vs. 

designability for the hexagonal (a) and triangular (b) shapes.  Although there is a strong visible trend 

towards a higher energy gap as the conformations become more designable, there are exceptions and the 

most designable conformations (corresponding to the largest Ns) in both cases have average energy gaps 

below the maximum. 

 

 It has been suggested that the number of peptide bonds connecting protein interior 

with exterior is related to designability, by increasing amount of protein secondary structure 

and allowing for easier unfolding and folding of the sequence [36].  Previous studies using 

lattice models have found such a relationship between the number of covalent bonds between 

the interior and exterior and protein designability [17, 36].  We have computed the average 

number of sequences folding to conformations having a specified number of peptide bonds 

between protein interior and exterior. The results are plotted in Figure 5 for both the 
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hexagonal (Fig. 5a) and the triangular (Fig. 5b) shapes.  Both plots show a strong dependence 

between the increase in the number of covalent bonds connecting protein interior with 

exterior and the increase in f designability, confirming earlier results of [17, 36]. 

 

 

 

 

Figure 5. The average number of sequences folding to conformations having the specified number of 

covalent bonds connecting protein interior with exterior for  a) hexagonal and b) triangular shapes. 

 

In addition to the general results presented above, we apply machine learning 

algorithms to distinguish between sequences folding to highly designable and poorly 

designable conformations.  In our first attempt we define two subsets from the set of all 

possible sequences: those from the bottom 10% of designable conformations and those from 
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the top 10% of designable conformations.  Because the number of sequences in both subsets 

differs greatly, and to reduce the computational cost, we take a random sample of sequences 

from each group.  We could not compare sequences corresponding to different shapes, since 

the triangle has 21 resides while the hexagon has 19, and we performed separate 

computations for each shape. 

 Table 1 compares the accuracy of prediction obtained by using J48 Decision Tree, 

Naïve Bayes, and Support Vector Machine with Sequential Minimal Optimization training. 

As can be seen from Table 1, we are quite successful in classifying sequences based on 

whether they fold to highly or poorly designable conformations.  All algorithms are 

consistently above 80% accuracy and using a Support Vector Machine results in the highest 

~95% accuracy.  In addition, the area under the curve (AUC), which is a measure of the 

overall tradeoff between the number of false positives and false negatives, was also high.  

This indicates that we have high accuracy with few false positives. 

 

Table 1. Accuracy of three different machine learning prediction algorithms (J48 Decision Tree, Naïve 

Bayes and SVM with SMO training) using binary H/P sequences.  We compare random subsets of 

sequences corresponding to the top 10% and the bottom 10% of designabile structures for the a) 

hexagon, and b) triangle. Prediction accuracy and area under the curve (AUC) for each method are 

shown.  

 

 J48 Naïve Bayes SMO 

a) Sequences folding to the top 10% 

and the bottom 10% of designable 

conformations for the hexagon 

95.2% correct 

AUC .97 

86.0% correct 

AUC 0.96 

98.2% correct 

AUC 0.98 

 

b) Sequences folding to the top 10% 

and the bottom 10% of designable 

conformations for the triangle 

92.7% correct 

AUC 0.93 

82.4% correct 

AUC 0.92 

95.0% correct 

AUC 0.95 

 

 

 We repeat the above analysis using a different representation of the binary sequence. 

The sequence is now represented by the percentages of all different  tripeptides, which for a 
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binary alphabet, creates 8 possibilities (HHH, HHP, HPH, PHH, HPP, PHP, PPH, and PPP).  

The choice of using three residue long fragments for representing the sequence seems the 

most natural for the triangular lattice. Using the frequency of occurrences of such short 

segments, gives us the advantage of being able to compare sequences of varying lengths 

across different shapes, allowing us to examine whether the designability traits encoded 

within the binary sequences are a general feature independent of the specific protein shape. 

 

Table 2. Accuracy of three different machine learning prediction algorithms (J48 Decision Tree, Naïve 

Bayes and SVM with SMO training) using the frequencies of all possible short tripeptide binary 

segments.  We compare random subsets of sequences corresponding to the top 10% and the bottom 10% 

of designabile structures for the a) hexagon, and b) triangle. Prediction accuracy and area under the 

curve (AUC) for each method are shown. 

 

 J48 Naïve Bayes SMO 

a) Sequences folding to the top 

10% and the bottom 10% of 

designable conformations for the 

hexagon 

89.7% correct 

AUC 0.98 

78.8% correct 

AUC 0.98 

91.0% correct 

AUC  

 

b) Sequences folding to the top 

10% and the bottom 10% of 

designable conformations for the 

triangle 

97.1% correct 

AUC 0.98 

93.6% correct 

AUC 0.79 

100% correct 

AUC 1.00 

 

 We were mildy surprised by some of the results of Table 2, namely the noticeable 

difference in performance between the two shapes (triangle and hexagon) as well as the 

100% correct prediction accuracy using Support Vector Machine on sequences folding to 

conformations in the triangle shape.  Neither the Naïve Bayes nor SMO algorithms give 

indications as to the rules that are developed and used to classify sequences as belonging to 

one group or another.   

From the J48 decision tree results we were able to discern the tripeptide sequences 

that contained the most information.  For the hexagon shape the two most informative 

tripeptides were HHH and PPP; for the triangle shape the two most informative tripeptides 
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were PPH and HHP.  This means that the percentage of HHH and PPP sequences often was 

used by the classifier in determining whether sequences were highly- or poorly-designable 

for conformations in the triangle shape (likewise PPH and HHP were used for the hexagon 

shape). 

As to what the percentages of those particular tripeptides means, we can speculate 

that it could be related to the number of interior/exterior peptide bonds, as with more 

interior/exterior bonds we would expect more shifts between H and P, since P residues are 

more often found on the surface and H residues in the interior. 

We are unable to formulate a reasonable justification for the differences in 

performances between triangle and hexagon and for the perfect classification for the triangle 

except to suggest that those results were an artifact of the different shapes or of the 

limitations of the lattice and binary alphabet. 

 

 

 

Figure 6. ROC curve for Naïve Bayes classifier.  Tripeptide segments are used to classify binary 

sequences folding to highly- and poorly-designable conformations of the hexagonal shape.  The diagonal 

line y=x, which we would expect if we used a classifier that randomly guessed which class to put a 

sequence, has been added for clarification. 

 

In figure 6 we show a receiver operating characteristic (ROC) curve for the Naïve 

Bayes classifier on tripeptide sequences in the triangular shape.  This plot of true sensitivity 
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(true positives found) vs. specificity (few false positives found) gives a visual indication how 

our classifier performed.  Qualitatively, we see that we get a large rate of true positives 

without having to accept many false positves.  This is exactly how we want our classifier to 

perform and is an indication of the success of the Naïve Bayes classifier on tripeptide 

segments of sequences folding to conformations in the hexagonal shape. 

 In order to test more clearly whether the ability to distinguish between the two types 

of sequences is perhaps an artifact we attempt to classify highly and poorly designable 

sequences against random binary sequences of the same length.  This means that the random 

sequences are of length 19 for the hexagonal shape and of length 21 for the triangular shape.  

As previously, we have first randomly sampled sequences from the top 10% and the bottom 

10% of designable conformations for the hexagonal and triangular shapes. Then we have 

randomly sampled sequences of a given length (19 or 21 residues) from the set of 219 (or 221) 

possible binary sequences and performed machine learning predictions for all these sets. 

Tables 3 and 4 show the results of those studies. 

 For each class there were approximately 300 sequences, chosen to allow a sufficient 

number to train the classifier but limited for the sake of computational frugality.  We tested 

using a larger set of sequences, on the order of 1000, and saw qualitatively the same results 

as we see using the smaller set.  The random sequences were generated using standard C++ 

tools.  In all cases we were careful to ensure that we used two similar sized sets of sequences 

for our classification tests, as a disparity between the sizes of two classes can artificially 

improve the performance of the machine learning algorithms. 

   

Table 3 Accuracy of machine learning predictions classifying sequences folding to the most designable 

conformations among random binary sequences for a) hexagonal and b) triangular shapes. Prediction 

accuracy and area under the curve (AUC) for each method are given. 

 

 J48 Naïve Bayes SMO 

a) Sequences folding to the top 

10% of designable structures vs. 

random binary sequences of 

length 19 for the  hexagon 

97.2% correct 

AUC 0.97 

94.2% correct 

AUC 0.98 

97.3% correct 

AUC 0.98 
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b) Sequences folding to the top 

10% of designable structures vs. 

random binary sequences of 

length 21 for the  triangle 

90.3% correct 

AUC 0.91 

84.4% correct 

AUC 0.92 

95.2% correct 

AUC 0.95 

 

 

Table 4 Accuracy of machine learning predictions classifying sequences folding to the least designable 

conformations among random binary sequences for a) hexagonal and b) triangular shapes. Values of 

prediction accuracy and area under the curve (AUC) for each method are shown. 

 

 J48 Naïve Bayes SMO 

a) Sequences folding to the bottom 

10% of designable structures vs. 

random binary sequences of length 

19 for the  hexagon 

57.5% 

correct 

AUC 0.58 

55.6% correct 

AUC 0.59 

57.9% correct 

AUC 0.58 

 

b) Sequences folding to the bottom 

10% of designable structures vs. 

random binary sequences of length 

21 for the  triangle 

50.1% 

correct 

AUC 0.50 

52.3% correct 

AUC 0.53 

56.0% correct 

AUC 0.56 

  

 The general result is that we are quite successful in classifying sequences that fold to 

highly designable structures among random sequences but are far less successful in 

classifying sequences folding to poorly- and non-designable structures among randomly 

chosen sequences.  This observation is true of all machine learning algorithms and for both 

shapes studied . 

 Finally, in order to further elucidate whether binary sequences carry the shape 

information in their designability patterns, we attempt to classify both sequences folding to 

highly designable and poorly designable conformations of the hexagonal shape and the 

triangular shape. We have also tried machine learning methods to distinguish sequences 

folding to highly designable conformations folding to the hexagonal shape from poorly-

designable sequences folding to the triangular shape as well as highly-designable sequences 

folding to the triangular shape from poorly-designable sequences folding to the hexagonal 
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shape.  Again, because we were classifying binary sequences of unequal length, we used the 

vector of percentages all possible tripeptides as the input to our classifiers. 

 

Table 5 Accuracy of machine learning predictions classifying a) sequences folding to highly-designable 

conformations for the hexagonal and triangular shapes against sequences folding to the least designable 

conformations for these two shapes; b) sequences folding to the most designable conformations of the 

hexagonal shape against sequences folding to the least designable conformations of the triangular shape 

and c) sequences folding to the most designable conformations of the triangular shape against sequences 

folding to the least designable conformations of the hexagonal shape. Prediction accuracy and area under 

the curve (AUC) for each method are shown. 

 

 J48 Naïve Bayes SMO 

a) Sequences folding to the top 

10% of designable structures  vs. 

sequences folding to the bottom 

10% of designable structures for 

both shapes 

69.5% correct 

AUC 0.73 

65.0% correct 

AUC 0.69 

65.6% correct 

AUC 0.67 

 

b) Sequences folding to the top 

10% of designable structures  of 

hexagonal shape vs. sequences 

folding to the bottom 10% of 

designable structures  in the 

triangular shape 

98.1% correct 

AUC 0.99 

84.9% correct 

AUC 0.92 

87.0% correct 

AUC 0.87 

c) Sequences folding to the top 

10% of designable structures  of 

triangular shape vs. sequences 

folding to the bottom 10% of 

designable structures  in the 

hexagonal shape 

 

98.0% correct 

AUC 0.99 

65.8% correct 

AUC 0.70 

64.3% correct 

AUC 0.63 
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Figure 7. ROC curve for Decision Tree (J48) classifier.  Tripeptide segments were used to classify binary 

sequences folding to highly- and poorly-designable conformations for both the hexagonal and triangular 

shape.  The line x=y, which we would expect if we used a classifier that randomly guessed which class to 

put a sequence, has been added for clarification.  

  

 

In figure 7 we show a receiver operating characteristic (ROC) curve for the decision 

tree (J48) classifier on tripeptide sequences in both the triangular and hexagonal shape.  In 

this case our classifier performs worse than in the case of single shaped sequences 

(hexagonal) but is still significantly better than random guessing.  This suggests there is some 

signal from the tripeptide segments of binary sequences folding to both shapes. 

 From Table 5 which shows these results we see that, although there are wide 

disparities among different classification algorithms and between different shapes, in general 

we are relatively successful in classifing sequences folding to different shapes based upon the 

composition of different tripeptides as the sequence representation.  It is also surprising how 

well the Decision Tree algorithm (J48) classifies sequences folding to different shapes, in 

comparison to the other algorithms.  When we more closely examined the tree output by the 

WEKA software package we found that the tri-peptide sequence PPP of three sequential 

polar residues carries most of the structural information.  This means that the percentage of 

PPP tripeptide segments was a good indicator of which class (designable vs. non-designable) 

a sequence would fold to.  Mentioned earlier, we speculate that this is related to the number 
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of interior/exterior peptide bonds.  Conformations with fewer interior/exterior bonds would 

have correspondingly more seqments of pure H or pure P, thus leading to the result seen. 

 

Discussion 

 

 The protein structural designability results obtained in the present paper for two 

regular shapes on the 2D triangular lattice are not qualitatively different from results obtained 

in numerous earlier studies[17, 20, 21, 26, 31, 36, 38].  We found that designable 

conformations that have many sequences folding to them are relatively rare among a large 

number of conformations that have few or no sequences folding to them with the lowest 

energy.  We have also found that the average energy gap between the ground state and next 

lowest energy state increases with increasing designability of structures; similarly as 

observed earlier by [30, 38]. 

 The most interesting results obtained in our present study relate to our ability to 

successfully classify sequences folding to highly- and poorly-designable conformations using 

several standard freely available machine learning algorithms.  For both studied shapes (the 

hexagon and the triangle) we were able to classify successfully the sequences using their full 

binary representation, which we may ascribe to the fact that there are relatively few highly 

designable conformations, and sequences folding to them probably share similar patterns in 

the distribution of hydrophobic and polar residues along the protein sequence. 

 Additionally, our further testings of sequences folding to the most designable 

structures among completely random sequences seems to suggest that the structural 

designability pattern is somehow encoded in the sequence.  If the structural designability 

information is indeed encoded in the binary sequence we would expect to discern sequences 

folding to highly designable structures among random sequences much more effectively than 

sequences folding to poorly-designable structures.  The results of our computations fully 

support these expectations. We could classify sequences folding to highly-designable 

structures among random sequences with an accuracy exceeding 90%; whereas for sequences 

folding to poorly- and non-designable structures our accuracy of prediction among random 

sequences was below 60%, i.e. not much better than random guessing (a 50% accuracy rate). 
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Our testing of sequences folding to designable conformations in different shapes suggests 

that the overall shape of the fold may also be encoded in the protein sequence. 

The results presented here lend further support to the simple H/P lattice models 

developed for protein structural studies.  Our success in classifying sequences folding to 

conformations in the triangular lattice, a lattice without the parity effects of the square or 

cubic lattice, offers evidence of the usefulness of simple models.  As mentioned earlier, an 

interesting next step would be to test our machine learning algorithms on sequences of real 

proteins which fold to higher or lower designable proteins.  Recent work [31-33] finds that 

proteins of thermophilic organisms tend also to be more designable than proteins in 

mesothermic organisms.  We are working on classifying those two sets of protein sequences 

using the same tools used in this study.  It would be remarkable if a designability footprint 

existed in real protein sequences. 
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CHAPTER 5.  CONCLUSION 

 

The results obtained here suggest that simplified lattice/HP models of proteins are still highly 

useful.  The ability to enumerate completely a set of conformations and a set of sequences 

leads to analyses and conclusions that would otherwise be difficult or impossible with more 

detailed or continuous models.  We have expanded the existing knowledge on lattice models 

of proteins in three significant ways. 

1. We took the transfer matrix method developed originally for the square and cubic 

lattices and applied it in a novel way to a new lattice with higher coordination 

number, the 2-D triangular lattice, that has no limitations due to parity.  We have 

already found an application for this method in studying averages of conformational 

ensembles.  In the future we expect to develop more applications for this method and 

also to extend it to the 3D fcc lattice. 

2. We undertook a novel study examining the general shapes of lattice conformations 

and how that shape influences the designability of proteins.  Somewhat unexpectedly, 

even after holding the total numbers of bonds and residues constant and accounting 

for the differences in total numbers of conformations available for a given shape, we 

see significant differences in the designabilities of various shape classes.  We 

attempted to account for those differences, in the form of different radii of gyration 

and other physical traits.  Extending this work to other lattices would probably be too 

computationally expensive to be feasible, as the number of shape classes would grow 

much faster for lattices with higher coordination numbers.  However, it should be 

possible to compare radii of gyration and surface features against designability for 

real proteins. 

3. We applied machine learning algorithms to the designability issue and found that we 

can distinguish quite well between sequences folding to highly- and poorly- 

designable conformations.  We attempted to account for possible artifacts by using a 

sequential three peptide representation, comparing against random sequences, and by 

comparing sequences folding to different shapes (triangle and hexagon).  In all cases 

were we successful in our ability to classify the two categories of sequences.  As with 



 78 

the previous study of protein shapes, an important next step in this direction would be 

to apply our method to real protein structures and sequences.  It would be interesting 

if we were able to detect designability signals discernable for real amino acid 

sequences.  If this were indeed the case, it would open up new avenues for protein 

design using machine learning algorithms. 

 


