
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 





Order Number 9311502 

Studies on the effect of heat shock, culture conditions, and 
packaging conditions on the heat resistance, recovery, and 
virulence of Listeria monocytogenes in ground pork 

Kim, Kee-Tae, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. Zeeb Rd. 
Ann Arbor, MI 48106 





Studies on the effect of heat shock, culture conditions, and packaging 

conditions on the heat resistance, recovery, and virulence of 

Listeria monocytogenes in ground pork 

by 

Kee-Tae Kim 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Food Science and Human Nutrition 
Major: Food Science and Technology 

Approved: 

In Charge of Major Work 

For th^ajor Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1992 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



Il 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS iv 

GENERAL INTRODUCTION 1 

LITERATURE REVIEW 4 

PAPER I. EFFECT OF HEATING AND STORAGE CONDITIONS ON 39 
SURVIVAL AND RECOVERY OF Listeria monocytogenes 
SEROTYPES IN GROUND PORK 

ABSTRACT 41 

INTRODUCTION 42 

MATERIALS AND METHODS 45 

RESULTS AND DISCUSSION 51 

REFERENCES 68 

PAPER II. PRODUCTION OF LISTERIOLYSIN O BY Listeria 71 
monocytogenes UNDER VARIOUS CULTURE CONDITIONS 

ABSTRACT 73 

INTRODUCTION 74 

MATERIALS AND METHODS 76 

RESULTS AND DISCUSSION 81 

REFERENCES 96 

PAPER III. DEVELOPMENT OF AN ENZYME-LINKED IMMUNOSORBENT 98 
ASSAY (ELISA) FOR ANALYSIS OF LISTERIOLYSIN O 
PRODUCED BY Listeria monocytogenes 

ABSTRACT 100 



Ni 

INTRODUCTION 101 

MATERIALS AND METHODS 103 

RESULTS AND DISCUSSION 107 

REFERENCES 115 

SUMMARY AND CONCLUSIONS 117 

LITERATURE CITED 122 



iv 

ACKNOWLEDGEMENTS 

I wouid lil<e to express my sincere ttianl<s to co-advisers, Dr. Eisa A. iVIurano and 

Professor Dennis G. Olson, for tlieir guidance, understanding, support and encourage

ment whicii tielped me during tiie course of ttiis research) project at Iowa State. 

1 also would like to thank all the members of my commitee, Deland Myers, Anthony 

L. Pometto, and Henry IVI. Stahr. 

I would like to thank Professor Ryung Yang. He has advised and shown concern 

for me since I studied for Master Degree at Yonsei University. 

I thank Yolande J. Crawford for laboratory assistance with my research. 

I would like to thank my parents, who not only raised me but also provided with me 

the best environment for learning and education I could possibly get. My deepest 

appreciation goes to my wife, Young-Mee, for her encouragement and support. 

Although she is tens of thousands of miles away from me on the other side of the earth, 

her love and encouragement have always been nearby throughout my entire period of 

graduate study. I would like to dedicate this dissertation to her. 

This project was supported by the Food Safety Consortium, funded by U.S.D.A. 

Special Grant Program. 



1 

GENERAL INTRODUCTION 

in the last decade, pathogenic bacteria not previously associated with foodborne 

Illness have emerged and their Incidence In outbreaks has been Increasing. The 

reasons for the appearance of such previously unknown organisms have been summa

rized by Cox (1989). These Include: 1) changes in eating habits increasing the accept

ability of fresh or wholesome foods, which do not contain as many barriers for control of 

microorganisms, 2) advances in epidemiology and more rapid and complete notification 

of outbreaks, 3) demographic changes in the number of III and older people, 4) larger-

scale food production and distribution, 5) changes in food processing such as vacuum 

packaging or chill storage, which promote survival of certain pathogens, 6) changes In 

handling and preparation practices, and 7) changes In the behavior and virulence of 

microorganisms by genetic exchange between pathogenic and nonpathogenic strains. 

Listeria monocytogenes Is considered one of these newly-emerging pathogens due to 

Its ability to grow In refrigeration conditions and to Its resistance to various environmen

tal conditions. In fact, cases of foodborne listeriosis have increased since the 1980's. 

Because of Its wide distribution in nature, the ecological niche of Listeria Is difficult 

to define. The organism is found in soil, water, and the intestinal tract of animals and 

humans. Consumption of foods contaminated with this organism cause septicemia, 

meningitis, endocarditis, spontaneous abortions, and stillbirths. 

Listeria monocytogenes is resistant to processing conditions used in food produc

tion such as salting, freezing, or sanitlzation. In particular, it is somewhat resistant to 

heat, which is a subject of concern to food processors. Heating is used for pasteuriza
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tion and cooking, and some organisms are found to become more lieat-resistant after 

exposure to mild heating that occurs during precooking. This phenomenon is called 

'heat shock', and these cells produce heat shock proteins that can protect the cells from 

subsequent heat treatments. Therefore, the heating rate of food products in thermal 

processing can affect thë survival of microorganisms by inducing a heat shock 

response. Coupled to this phenomenon, storage conditions such as vacuum packaging 

after cooking could affect the ability of heat-injured cells to recover at low temperatures, 

thus increasing the hazard to the consumer. 

Listeria monocytogenes has been detected routinely in dairy products and occa

sionally in meat products. Ground pork is one of the most common products used in 

production of processed meats. It has a higher potential for contamination with patho

gens due to having a larger surface area, high nutrient content, neutral pH, and high 

water activity. 

Thus, the possibility of outbreaks of listeriosis due to consumption of contaminated 

ground pork is a source of concern. However, information on the effect of heat shock 

on survival of Listeria in ground pork and on its effect on virulence of this organism is 

not available. For this reason, heat processing and storage methods must be evaluat

ed and the virulence of heat shocked Listeria in ground pork should be assessed. This 

information can help processors to design appropriate conditions for the destruction of 

Listeria monocytogenes in meat processing. 

The objectives of this study were: 

1) To determine the effect of heat shock on survival of Listeria monocytogenes and on 

production of listeriolysin in ground pork. 
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2) To determine the effect of varying the rate of heating on survival of cells to subse

quent processing in ground pork. 

3) To determine the effect of meat age, storage temperature, storage atmosphere, and 

presence of antioxidants on recovery of Listeria after heating in ground pork. 

An Explanation of the Dissertation Organization 

This thesis includes three manuscripts to be submitted to the Journal of Food 

Protection. A literature review precedes PAPER I and a general discussion of the 

research follows PAPER III. A separate reference section has been used for each of 

the manuscripts. References cited in the general introduction, listerature review, and 

summary and conclusions follow the summary and conclusions. 
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LITERATURE REVIEW 

1. History 

Descriptions of tlie invoivement of gram-positive rods In illnesses that may have 

been listeriosis were reported as early as 1891 (Gray and Killnger, 1966). Listeria 

monocytogenes was first isolated from rabbit liver by Hulphers in Sweden in 1911. at 

which time this organism was named Baciilus hepatis. In 1915 and 1919, the organism 

was isolated from a patient with meningitis. Murray et ai. (1926) reported that a gram-

positive rod-like organism was isolated from blood of infected rabbits and pigs in 1924, 

and the organism was named Bacterium monocytogenes since it produced monocytosis 

as one of the symptoms. In 1927, Pirie (1940) also isolated and described a bacterium 

from an African mouse, and named it Listereiia hapatoiytica. Both Listereiia and 

Bacterium were determinated to be the same organism, so the name of both was 

changed to Listereiia monocytogenes. Subsequently, it was changed to Listeria 

monocytogenes in 1940, because the name Listereiia had already been given to a 

Mycetozoan by Jahn in 1927. In the United States, research about Listeria v/as accom

plished principally by M. L. Gray. He used a cold enrichment method for isolation of 

Listeria (Gray et al., 1948) and developed the use of oblique lighting for detecting 

Listeria on isolating agar (Gray et ai., 1957). He also isolated this organism from the 

brain of an infected sheep from a flock fed contaminated silage. The cultures were all 

found to be serotype 4b (Gray, 1960), and the silage was shown to serve as a vehicle 

of infection. 
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Before 1960, most research on listeriosis was based on animals, but sporadic 

cases of listeriosis were reported often in workers who were in contact with diseased 

animals (Cain and McCann, 1986). As a result of outbreaks of foodborne listeriosis In 

the 1980's, interest in Listeria has grown rapidly among food industry, government, and 

health officials. Likewise, the amount of published information on the physiology, 

pathogenesis, and survival of this organism has increased significantly. 

2. General characteristics of Listeria monocytogenes 

Listeria monocytogenes is a small, short, gram-positive rod, 0.4-0.5 ^im In diameter 

and 0.5-2 |im in length, with rounded ends. Listeria cells are flagellated, exhibiting a 

characteristic tumbling or slightly rotating motility. The degree to which flagella are 

produced is temperature related: higher temperatures suppress expression of motility, 

although most cultures grown between 30°C and 37°C will still demonstrate some 

motility. Motility is best demonstrated at 20°C in 0.2-0.4% semi-solid agar in U-shaped 

tubes and confirmed by stabbing a tube of dextrose gelatine medium. This organism is 

catalase-positive (which is indicated by the evolution of gas from HgOg), oxidase-

negative (which denotes the absence of cytochrome oxidase), methyl red-positive 

(which exhibits the production of acids by fermentation of sugars), Voges-Proskauer(-

VP)-positive (which denotes the presence of acetylmethylcarbinol), and indole-negative 

(which denotes the absence of tryptophanase). In addition, this organism utilizes 

glucose and esculin with the production of acid but not gas. It can not utilize mannitol 

or xylose. Listeria spp. grow well on simple laboratory media in the pH range of 5.0-



6 

9.0. On solid media such as nutrient agar, Listeria colonies are translucent, dew-drop

like and bluish when viewed by 45° incident transmitted light. After 48 hr at 37°C, 

colonies are 0.2-0.4 mm in diameter. Listeria are resistant to some antibiotics such as 

polymyxin, nalidixic acid, cefotaxime, or acriflavine, which have been used as supple

ments in selective media. 

L. monocytogenes serotypes produce listeriolysin (LLO) and p-hemolysin, which 

are pore forming cytoiysins that are essential for its pathogenicity. These are discussed 

in more detail in section 4. of this review. 

L monocytogenes can grow in a wide pH range. Conner et al. reported the growth 

range in cabbage juice to be pH 5.0-9.0. Environments with pH values less than 4.5 

and more than 9.5 are hostile to this organism. However, the pH value for growth is 

dependent on temperature. Ahamad and Marth (1989) reported that the minimum pH 

required for initiation of growth ranged from 5.0 to 5.7 at 4°C and from 4.3 to 5.2 at 

30°C. 

Listeria is a psychrotroph. Junttila et aL (1988) reported that growth of 78 L, 

monocytogenes strains on tryptose soy agar occurred at a mean minimum temperature 

of 1.1°C. Although growth of this organism in laboratory media at fC is very slow, 

when incubated at higher temperatures (3-6''C), the growth rate increases so the organ

ism attains a final population of approximately 10° CFU/ml of media after several weeks 

of incubation (El-Shenawy, 1988). 

Humans, animals, and other environments serve as reservoirs of Listeria. This 

organism has been isolated from a wide variety of animals, including sheep, dog, rat, 

cat, rabbit, and mouse. While it was once thought that the principal source of human 
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listeriosis was animal contact, it is now believed that most human listeriosis results from 

ingestion of foods contaminated with this organism. 

3. Isolation and Identification methods 

Serology 

The basis for the present serotyping scheme for Listeria was established by 

Paterson (1940). His scheme was based on both somatic and flagellar antigens, 

resulting in four serotypes (serotype 1,2,3, and 4). Seelinger (1961) expanded the 

number of serotypes to five (serotype 1,2,3, 4a, and 4b) and Donker-Voet (1972) 

added more to the number of serotypes (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 

4d, 4e, and 7). L monocytogenes serotynes isolated from pathological sources are 

most likely to belong to serotypes 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, and 4b. Seeliger and 

Horhn (1979) reported that 98% of several thousand isolates associated with illness 

belong to those seven serotypes plus L ivanovii. The serotypes that were identified 

differed according to region where found. For example, serotype 4b predominates in 

most of Europe, but there appears to be an even distribution of serotypes 1/2a, 1/2b, 

and 4b in Canada and the United States. Some serotypes are cross-reactive with 

some enterococci, certain Esctierichia coli strains. Staphylococcus aureus, and some 

motile corynebacteria. 

Strain typing 

Phage typing has been proposed as a means of providing another epidemiological 
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tool that expands and Improves the capacity to Identify relationships between Listeria 

Isolates. Rocourt et al. (1989) increased the phage set to 31 by expanding the search 

for phages to include all recently recognized Listeria spp. Although phage typing is 

reproducible and discriminatory (McLauchlin et ai, 1986), it has a limitation of 90% of 

typable strains of serotype 1/2. There Is a lack of phages for other serotypes such as 3 

and 7 which are resistant to the phages but are not pathogenic. Recently, Audurler and 

Martin (1989) reported that L. monocytogenes was typed by using 34 phages in studies 

of listeriosis outbreaks and that the proportion of phage-typable L. monocytogenes 

serotype 1 and 4 was 61.1%. There is an international phage typing system for L. 

monocytogenes which is useful in epidemiological studies. The Pasteur Institute 

Laboratory is recognized as the International Center for L monocytogenes phage 

typing. Loessner and Busse (1990) developed a bacteriophage typing scheme for 

differentiating Listeria isolates from dairy products and various other foodstuffs. 

Isoenzyme typing is another method for Listeria typing (Selender etal., 1991). 

Piffaretti et aL (1989) isolated 175 L. monocytogenes irom various sources and found 

45 allele profiles (or electrophoretic types (ET)) ('allele' is defined as alternative forms 

of a gene that can occupy a particular chromosomal site). Bibb et al. (1989) found 56 

ETs from 310 strains. They discovered that all strains that cause listeriosis have the 

same or similar multilocus genotypes of enzymes. The typing is done by comparing the 

genetic relationships or genetic distance among the ETs. The method appears to be 

useful in either confirming or eliminating a common source as the cause of an outbreak 

of food-borne listeriosis. Later. Bibb et ai. (1990) found 11 different ETs by using 390 

isolates from patients with listeriosis in the United States during 1986 and 1987, ruling 
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out a single common source as a cause of tliat outbreal< in the United States. 

DNA fingerprinting is a method that uses restriction enzyme analysis (REA). It has 

been used to characterize strains causing outbreaks of listeriosis associated with 

cheese in Los Angeles, as well as the Nova Scotia outbreaks. By using this method, 

Wesley and Ashton (1991) reported that L monocytogenes serotypes isolated from the 

Nova Scotia, Los Angeles, and Massachusetts outbreaks each have a unique restriction 

enzyme pattern. As a modified method, rRNA typing involving both radioactive and 

nonradioactive methods has been evaluated recently and, along with DNA fingerprint

ing, was found to be more discriminatory than either serotyping or phage typing, and 

equivalent to isoenzyme typing (Olander et al., 1990). 

Media for Isolation and enumeration of Listeria monocytogenes 

The isolation of L. monocytogenes from foods and environmental sources requires 

enrichment culture. In general, cold enrichment (CE) has been used at 4°C for several 

weeks (Heyes et al., 1986), because this organism is psychotropic, which enables it to 

outgrow mesophiles present in the sample. But, because CE requires a long incubation 

time, selective agents have been used by many researchers for warm enrichment 

broths using many kinds of antibiotics which do not affect the growth of L 

monocytogenes. Major enrichment media for enumeration of L. monocytogenes are 

shown in TABLE 1. 

As a next step, many kinds of selective media have been suggested by many 

researchers for effective isolation of L. monocytogenes and for exact differentiation from 

other organisms after enrichment. As a physical method of differentiation of Listeria, 
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TABLE 1. Major enrichment media for L monocytogenes' 

Media Appiied samples Remarks 

FDA Enrichment Broth 

University of Vermont 
Medium (UVM) 

USDA Listeria Enrich
ment broth I (LEB I) 

USDA Listeria Enrich
ment broth II (LEB II) 

Fraser broth 

Tryptose Soy Broth 
(TSB) 

OxQid Nutrient Broth no. 
2 

TSB + potassium tel-
lurate 

milk, dairy products, poultry 

meat, poultry, milk seafood 

meat, poultry, seafood 

meat, poultry, seafood 

meat, poultry, factory envi
ronment 

milk, cheese, meat, tissue, 
environmental samples 

milk, cheese, cabbage, 
sludge, water 

feces, water 

warm enrichment broth 

warm enrichment broth 
used as first enrichment 
broth in USDA procedure 
for meat and poultry 

UVM + nalidixic acid 

USDA enrichment broth II + 
acriflavine 

modified USDA II. Used as 
secondary enrichment broth 
in USDA procedure for 
meat and poultry samples 

cold enrichment broth 

warm enrichment broth 

cold or warm enrichment 

cited from billot and Martn, isai 

obliquely reflected light has been used to observe the characteristic blue to blue-gray 

color when the plates are illuminated. Many kinds of antibiotics have been added into 

selective media. In particular, nalidixic acid has been used as a common ingredient in 

a large percentage of the formulations. It suppresses the growth of gram-negative 

bacteria. But, Pseudomonas spp, Proteus spp., and Streptococcus spp. can grow in 

media with this reagent. Watkins and Sleath (1981) reported that a combination of 

nalidixic acid and potassium thiocyanate was effective in selecting for Listeria while 
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suppressing tlie growtli of other bacteria. Rodriguez et al. (1984) evaluated nalidixic 

acid and trypan blue including esculin and ferric ammonium citrate which allowed detec

tion of esculin hydrolysis by Listeria to produce a black precipitate. However, even in 

such a formulation, enterococci were found to grow. Lovett etal. (1987) utilized acrifla-

vine which suppresses the growth of gram-positive bacteria such as Lactobacillus 

bulgarlcus and Streptococcus thermophilus, and nalidixic acid in combination with 

cycloheximide which suppresses fungal growth, as the selective basis for the FDA 

Enrichment Broth. Donelly and Baigent (1986) developed the UVM Listeria Enrichment 

Broth by a modification of the Rodriguez Enrichment Broth substituting acriflavine for 

trypan blue and eliminating the glucose and ferric ammonium citrate. Recently, McBri-

de's Listeria agar was developed, which has served as the basis for a number of other 

formulations. The media was incorporated with phenylethanol which suppress the 

growth of gram-negative bacteria and Proteus spp., lithium chloride (LiCI) which sup

presses the growth of gram-negative bacteria except Pseudomonas spp., and glycine 

and selective reagents including blood. Lovett et al. (1987) developed Modified 

McBride Agar by eliminating blood and adding cycloheximide to suppress eucaryotic 

microorganisms. Lee and IVIcClain (1986) further modified Modified McBride Listeria 

Agar (MLA) by increasing the LiCI concentration to 5 g/L and adding 20 mg of moxal-

actam/L, and this is called Lithium chloride-phenylethanol-moxalactam (LPM) agar. It 

inhibits the growth of many bacteria that interfere with the recovery of L. 

monocytogenes such as enterococci and Pseudomonas spp. Hayes etal. (1991) 

compared the cold enrichment (CE) and USDA methods by examining 402 food samp

les. The USDA method is a modified method of Lee and McClain for isolating L. 
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TABLE 2. Major important selection media for Listeria monocytogenes^ 

Media 

Macbride Listeria Agar 
(MLA) 

Modified MLA (MMLA, or 
MLA 2) 

FDA-Modified McBride Lis
teria Agar (FDA-MMLA) 

Trypticase Soy Agar 
(AC) 

LiCI-Phenyletlianol-Moxalac-
tam (LPM) Agar 

LPM witfi Xylose 
(LPMX) agar 

Agricultural Research Ser
vice-modified MLA (ARS-
MMLA) 

Modified Vogel-Jolinson 
Agar (MVJA) 

Oxford Agar (OXA) 

Modified Oxford Agar 
(MOX) 

Samples 

dairy products, vegeta
bles 

nonfat dry milk, cheese, 
meat, poultry 

dairy, vegetables, sea
food 

soft cheese, cheese fac
tory environment 

dairy, poultry, raw meat, 
seafood 

meat factory environment 

milk, dairy, meat 

dairy, seafood, vegetable, 
coleslaw 

cheese, milk 

meat, poultry 

Remarks 

phenylethanol, glycine, 
LiCI, and Sheep blood 
used. Streptococci and 
staphylococci can grow. 

more selective than 
MLA 

MLA2 + cycloheximide 

superior to FDA-MMLA 
in these products 

improved MLA2 by inc
reasing LiCI and mo-
xalactam 

modified LPM, Xylose + 
and - Listeria are distin
guished 

more selective than 
MVJA 

more readily discernible 
(Black colony in red me
dia) and better recovery 
yield than ARS-MMLA 

used in FDA procedure 
for isolation 

used in USDA procedu
re for isolation 



13 

TABLE 2. (continued) 

Media 

IVIerck Listeria Agar 

Gum Basic Nalidixic Acid 
Medium (GBNA) 

Trypafiavin Nalidixic Acid 
Serum Agar (TNSA) 

Acriflavine- Phenylethanol-
Aesculin- Mannitol-Egg Yolk 
emulsion (RAPAMY) agar 
(by Ralivich) 

Acriflavine-LiCl-Phenyletha-
nol-Aesculin-Mannitol-Egg 
Yolk (ALPAMY) agar 

Samples 

dairy product, meat, food 
processing environment 

soil, raw milk, meat, poul
try 

throat swab, feces, or-
gans,and other clinical 
specimens 

meat, milk 

raw milk, soft cheese, 
vegetables, chicken 

Remark 

commercially available 
in Europe 

modified MLA 2 

inhibition of all non-i./s-
teria 

modified TNSA. S. 
faecalis and S. faecium 
are not inhibited but can 
be differentiated easily 

modified RAP ANY (add
ed LiCI and omitted nali
dixic acid). S. aureus 
and Micrococcus spp, 
can grow. 

cited from biiiot and Marth, laai 

monocytogenes, in which they omitted the KOH treatment of enrichment broths before 

plating on LPM agar. They found that the USDA method was significantly better than 

the cold enrichment method in enumeration of L monocytogenes isolated from 51 food 

samples. The isolation efficiencies of the USDA and the CE methods were 96 and 

59%, respectively. 

Although MLA has long been used to isolate L monocytogenes directly from highly 

contaminated materials as well as after cold enrichments, LPM is also used for direct 

plating in conjunction with popular isolation procedures. Al-Zoreky and Sandine (1990) 



14 

also developed media by using acriflavine, ceftazidime, and moxalactam as selective 

agents. This medium was found to inhibit micrococcus and enterococcus. TABLE 2 

shows major selective media for isolation of L monocytogenes from various samples. 

To enumerate Listeria more effectively in foods, many kinds of media have been 

developed but no one medium appears to be suitable in all situations. To evaluate the 

ability of various methods of recovery and enumeration of L monocytogenes, it is 

important to consider the food that is to be analyzed, since the efficacy of the method 

may vary depending on its composition. Particulates, high lipid content, or pigmentation 

in foods can influence the performance of a medium by affecting distribution of the 

inoculum on the medium or by making the colonies more difficult to detect. Cassiday et 

al. (1989) evaluated three developed direct plating media for the enumeration of Listeria 

from whole milk, ice cream mix, cheese, and cabbage. In this study, LPIVI agar 

(LPMA), ARS agar, and Modified Vogel Johnson agar (MVJA) were used and compared 

with previously tested plating media which were gum base-nalidixic acid-tryptose-soy 

medium (GBNTSM) and modified Despierres agar (MDA). From their result, LPMA was 

the most suitable for analyzing cheese and cabbage, but GBNTSM was most suitable 

for analyzing milk and ice cream mix. Another important factor in selecting a medium is 

the type and population of indigenous microorganisms present. In addition, the state of 

health of Listeria cells can affect the efficacy of specific direct plating media. In 

particular, during food processing, one of the most obvious and Important consid

erations is the efficacy of a given medium to recover the injured L. monocytogenes from 

heating or freezing. Plating methods without a recovery step or with ineffective 

recovery steps for injured Listeria in foods can result in false colony-counting in the 
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evaluation of processing conditions. Aitliougli MU\, GBNTSiVI, IVIDA, IVIVJA, and 

modified MLA are among ttie best for recovery, ttiey often vary greatly in tlieir ability to 

allow recognition and counting of L monocytogenes colonies in different foods. 

Therefore, comparison studies with various media must be conducted in order to select 

the most effective media for enumeration of Listeria in a particular food product. For 

example, non-fermented dairy products have the fewest problems when direct plating is 

used because few contaminants are usually detected on the test media. However, 

fermented dairy products such as cheese and yogurt are among the most challenging 

foods from which to isolate and enumerate L. monocytogenes. The most suitable 

media for these products are LPMA, MLA, or IVIVJA. In meat products, which contain 

high populations of contaminating microorganisms (primarily gram-positive cocci), IVIVJA 

has been used as the most effective medium. With this medium, contaminants do not 

present a major problem when enumerating L monocytogenes because the colony 

types are sufficiently different to be easily distinguished from L. monocytogenes. 

Figure 1 and Figure 2 show procedures for isolating L. monocytogenes from foods 

used by the FDA and USDA, respectively. The FDA procedure was designed for milk 

and dairy processed food products, and the USDA procedure was designed for poultry 

and meat products. 

As a confirmation step of Listeria colonies on the media, several tests are required: 

hemolytic activity by using sheep blood cells, methyl-red test, and oxidase test. 

Rapid methods for detection of L. monocytogenes in foods 

Recently, many methods have been reported for more rapid isolation and identifica 
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25 (g or ml) of sample + 225 ml of FDA Enrichment Broth 

i 

blending or stomaching 

i 

incubation for 1 to 2 day at 30°C 

• >1 

Streak on Oxford Agar Streak on LPM Agar 

incubation for 2 days at 30°C 

Check for typical bluish-green colonies under oblique-transmitted light 
and 

Confirmation (p-hemolysis, Methyl-red test, Gram staining, Cataiase test) 
and 

Enumeration of colonies 

Figure 1. FDA procedure for isolating L monocytogenes from food 
(Elliot and IVIarth, 1991). 
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25 (g or ml) of sample + 225 ml of LEB I 

blending or stomaching for 2 min 

i 

incubation for 1 day at 30°C 

adding 0.1-10 ml Fraser Broth 

i 

incubation for 1 to 2 days at 35°C 

>L 

check Fraser Broth for blackening 

4 

If positive, streak on Modified Oxford Agar (MOX) 

incubation for 1 to 2 days at 35°C 

i 

streak typical Listeria colonies exhibiting black halos 
on Horse Blood Overlay Agar 

incubation for 1 day at 35°C 

confirmation (p-hemolysis, oxidase, Methyl-red test. Gram staining, Catalase test) 
and 

Enumeration of colonies 

Figure 2. USDA procedure for isolating L monocytogenes from food 
(Elliot and Marth, 1991) 
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tion of L monocytogenes. 

Flow cytometry is a method of measuring celis in a liquid suspension. In essence, 

suspended cells (one by one) are brought to a detector by means of a flow channel. 

Fluidic devices under laminar flow define the trajectories and velocities that cells 

traverse the detector. Donelly and Baigent (1986) have adapted flow cytometry for the 

detection of L monocytogenes in milk. However, the method is not practical for most 

laboratories due to the cost of the equipment involved. 

Farber and Speirs (1987) have described an enzyme-linked immunosorbent assay 

(ELISA) method for detecting L monocytogenes in raw milk that uses monoclonal 

antibodies directed against flagellar antigens (A, B, or C). The monoclones tested did 

not cross-react with any other 30 non-Listeria cultures including Staphylococcus aureus 

and Staphylococcus faecalls. However, although this method has good potential for 

foods that have sufficiently high Listeria counts to enable detection on direct plating, it 

is not suitable for foods with low levels of contamination, unless the culture Is enriched 

prior to testing. Datta et al. (1987) described a ®®P-labeled DNA probe, a fragment of 

about 500 base pairs of the p-hemolysin gene from L monocytogenes. Klinger et al. 

(1988), of the GENE-TRAK systems company, have developed a nucleic acid hybridiza

tion assay for Listeria spp. in dairy foods and environmental samples based on 

detection of Listeria 16s rRNA sequences using a ^^P-labeled synthetic DNA probe. 

They reported that the GENE-TRAK Listeria assay can be done in 2 days, compared to 

9-14 days required for traditional cultural methods, and has a lower false negative rate 

(6.7%) compared to conventional culture methods (22%) in milk, gouda cheese, ice 

cream, and sandwiches. 
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Monoclonal antibodies to extracts of p-hemolytic, CAMP-positive strains of L 

monocytogenes have been used to develop an enzyme-linked immunosorbent assay 

(ELISA) for Listeria spp. that does not cross-react with r\on-Listeria organisms (Mattingly 

etal., 1988). This method has been developed to enumerate Listeria in dairy and meat 

products as well as environmental samples (FDA-Modified McBride Listeria Agar or 

Fraser Broth). After enriching food samples 40-52 hr in a selective media, a double 

monoclonal antibody sandwich ELISA procedure (which is known as the LIsteria-Tek 

Assay) is performed on the enrichment culture. From the results, presumptive results 

about presence of Listeria in samples are available an average of 48 hr after initiation 

of enrichment. In addition to providing fast results that are easily interpreted, the 

LIsteria-Tek Assay also is safe to do since only heat-killed organisms are used. 

However, the procedure is complicated and the cost for the test is expensive (about 

$15/test). 

4. Virulence of Listeria monocytogenes 

In general, two of eight Listeria species, L. monocytogenes and L. ivanovii, can 

cause human and/or animal infection. In human infections, L. ivanovii has rarely been 

isolated with only three documented cases which accounted for about 10% of total 

animal listeriosis cases in Bulgaria (Rocourt and Seeiiger, 1985). Therefore, this 

organism is considered to be far less virulent than L. monocytogenes. The mechanism 

of virulence of Listeria is highly complex and remains poorly understood. The proce

dure involves penetration of the host cells (or phagocytosis), survival and reproduction 
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within the host, and invasion of target tissue. Phagocytosis is defined as a process in 

which particulate matter is ingested by a ceii, involving the engulfment of that matter by 

the cell membrane. Macrophage engulfment is the animal's protection against many 

bacterial invaders. Macrophages have mechanisms for producing various oxygen-

containing compounds such as singlet oxygen, peroxide, and superoxide anion that can 

inactivate enzymes and result in microbial death (1987). However, L monocytogenes 

contains highly active catalase to which can inactivate peroxide, and superoxide 

dismutase (SOD) which converts superoxide anion to an inactive oxygen derivative. 

Shortly after Listeria is phagocytosed by a macrophage, it can dissolve the phagosomal 

membrane and enter the cytoplasm of the phagocyte, thus eluding the action of toxic 

oxygen radicals of the host. Bacterial actin filaments then coat the bacterial cell and 

become rearranged to form a tail with which the cell moves to the macrophage surface 

as a prelude to exiting and spreading (Tilney et al. 1990). Racz et al. (1972) reported 

that epithelial cells lining the intestine serve both as a site of entry and as a site for 

bacterial reproduction before phagocytosis of the organism in the intestine. A correla

tion between virulence and lipase content has been observed in L. monocytogenes, 

where only virulent strains are considered to be lipolytic. Holder and Sword (1969) 

examined a lipid fraction of Listeria species that is responsible for monocytosis classi

cally associated with listeriosis. They determined that the lipid fraction (monocytosis-

producing agent, MPA) contributed to pathogenesis by disturbing steroid metabolism 

and altering the gluconeogenic process in the host. Once L. monocytogenes, through 

hydrophobic interactions or other mechanisms, has attached to the cells, it then 

becomes intracellular. 
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In 1934, Burn (1934) reported the presence of a soluble, filterable hemolysin 

produced by L. monocytogenes, believed to be present only In this hemolysin was 

termed 'listeriolysin'. Njoku-Obi etal. (1963) characterized the water soluble hemolysin 

as a heat-labile protein inactivated by filtration but reactivated by addition of sodium 

thiosulfate. Hemolytic activity of listeriolysin was found to be optimal at pH 5.5 but 

greatly reduced at pH 7 (1964). Later work (Kingdon and Sword, 1970) showed that 

this hemolysin reacted with antibodies to streptolysin O and, like streptolysin O, also 

possessed cardiotoxic activity, which prompted its being called listeriolysin O (LLO). 

LLO, a membrane-damaging cytotoxin, enables the cells to invade and grow within 

macrophages through lysis of the membrane-bound phagocytic vacuole (Mounier, et al., 

1990). Currently, LLO is generally recognized as a sulfhydryl-activated, cholesterol-

inhibited cytolysin and is composed of a single polypeptide chain of molecular weight of 

approximately 60 kDa. Geoffroy et al. (1989) showed there was a the difference in 

production of LLO between 26 Listeria subsp. and 5 main Listeria spp. including L. 

monocytogenes, L ivanovii, and L seellgerl, and reported that no LLO was produced 

by either L. innocua or L. welshimerl. 

Parrisius et aL (1986) isolated and characterized another hemolysin in L. 

monocytogenes by using SDS polyacrylamlde gel electrophoresis and immunoblotting. 

They suggested that the LLO related to streptolysin O should be called a-listeriolysin, 

and the remaining hemolysins that do not cross-react with streptolysin O be called p-

listerioiysin. This latter hemolysin is immunologically, genetically, and molecularly 

different from LLO. The CAMP test is definitive for identifying p-hemolysis activity 

because metabolites of p-hemolytic Staphylococcus aureus and Rhodococcus equi are 
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used to enhance Listeria spp. in sheep blood agar (Sl<all<a and Smola, 1983). The 

hemolytic action of L monocytogenes is enhanced by proximity to S. aureus culture but 

not by the R. equi streal<. Present findings indicate that p-listeriolysin may be responsi

ble for the positive CAMP reaction typical of L monocytogenes (Groves and Welshimer, 

1977). By using the CAMP test, Skalka et al. (1982) set up a routine test for the in vitro 

determination of the pathogenicity of Listeria strains, in which the exosubstance of R. 

equi in a prepurified form strongly enhanced the hemolytic effect of Listeria, and the 

Listeria strains that produced positive synergistic hemolysis with this exosubstance 

were also pathogenic for guinea pigs and white mice. 

5. Characteristics of listeriosis 

Most cases of human listeriosis are sporadic and the incubation period is from one 

to several weeks in adults. The process may be accompanied by transitory flu-like 

symptoms that may include malaise, diarrhea, and mild fever, which is frequently so 

mild as to be unnoticed. 

Risl( factors 

The majority of human cases of listeriosis occur in individuals who have an 

underlying condition which leads to suppression of their T-cell-mediated immunity. For 

example, listeriosis is associated with immunocompromised patients, pregnant women, 

patients at the extremes of age, as well as people suffering from diabetes mellltus, 

alcoholism, cardiovascular and renal collagen disease, and hemodialysis failure. 
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The highest incidence of listerial infection is usuaiiy seen In neonates, followed by 

people over 60 years old, because of the immaturity of the immune system in the 

neonate and the waning of immunity with advanced age (Cleslelski, 1988). From a 

survey conducted on listeriosis in 1989 from 16 countries (Farber and Peterkin, 1991), 

31 and 22 % of the total cases occurred in patients older than 60 years and younger 

than 1 month, respectively. Pregnancy also is a condition that predisposes the patient 

to infection with L. monocytogenes because it is associated with a decrease In T cell 

mediated immunity. During pregnancy, infection with Listeria commonly results in a 

variety of 'flu-like' symptoms which include fever, chills, headache, diarrhea, and 

backache. Abortion, delivery of premature infants, and inflammation of the pelvis and 

of the kidney also can occur (Schwartz et ai., 1989). Besides listeriosis in the pregnant 

woman, perinatal listeriosis can subsequently occur, in which two distinct clinical 

syndromes have been seen: an early onset illness (Anonymous, 1980, Filice et ai., 

1978) and a late onset infection (Winslow et ai., 1981). The early onset illness appears 

shortly after birth and/or generally in a prematurely delivered child with low body weight. 

The major symptom is septicemia. These Infants also have respiratory distress, 

pneumonia and microabscesses (also called 'granulomatosis infantiseptica'). L. 

monocytogenes can be isolated from the external ear, nose, blood, throat, and amniotic 

fluid of these patients. In addition, this organism can be found in the neonatal lung and 

gut. The manifestation appears as petechial eruptions or papules on the skin, or 

lesions in other tissues such as liver, esophagus, and lung. The mortality rate is 15-

50%. In the late onset neonatal infection, infants are colonized at birth and experience 

a delayed onset of infection, in which infants are born apparently healthy but, after 2nd 
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to 4th week of birth, meningitis appears as the most common symptom. The mortality 

is lower (10-20%) than in the early onset infection. The conditions are fever, diarrhea, 

irritability and poor feeding. 

AIDS patients are more likely than the normal public to contact listeriosis, estimat

ed by the FDA to be 670 times more susceptible than the healthy adults (Anonymous. 

1988) However, the incidence of listeriosis among AIDS patients is known to be less 

than that of normal humans. The reason is unknown, but Jacob and IVIurray (1986) 

suggested that the use of rigorous antibiotics such as trimethoprim and sulfamethoxaz

ole for their therapy, and the presence of partially active genetic determinants, make 

AIDS patients resistant to listeric infection. 

Symptoms of listeriosis 

Listeriosis causes many symptoms to humans as well as animals. Bacteremia is 

diagnosed in adults. In this case, fever is a common symptom, but other complaints 

vary nonspecifically according to the individual, such as fatigue and malaise, and 

include nausea, vomiting, pain, and diarrhea. The mortality rate is about 30% when the 

patient is immunocompromised, old, or newborn (Nieman and Lorber, 1980). 

A serious form of listeriosis occurs by infection of the central nervous system. The 

symptoms as meningitis, encephalitis (also called 'cerebritis'). or brain abscesses. The 

most common manifestation of listeriosis is meningitis, which develops predominantly in 

newborns and aged persons. In meningitis, the gastrointestinal tract can serve as an 

entry for bacteremia spread to the meninges (Schlech, 1984). In general, meningitis 

develops with high fever, headache and nuchal rigidity, which is fulminant. Mortality in 
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untreated patients, or those treated late, is approximately 70% (Seeliger and Finger, 

1983). In encephalitis, L monocytogenes affects the brain parenchyma in as many as 

20% of all cases, and this appears to be more common in renal transplant recipients 

than in other patients (Stamm et al., 1982). In brain abscesses, it Includes fever, 

headache, and focal neurologic signs. Mortality is approximately 57% (Dee and Lorber, 

1986). 

From a survey on listeriosis of 782 cases in 1989 from 16 countries (Farber and 

Peterkin, 1991), 43% were maternal (pregnant women) and neonatal infections, 29% 

were bacteremia, and 24% were central nervous system infections. Other localized 

forms were endocarditis and skin infections. Endocarditis follows central nervous 

system infection and bacteremia as the third most commonly recognized form of listerial 

infection. It is associated with malignancy and renal transplantation, and preexisting 

cardiac disease (Carvajal and Frederiksen, 1988). The mortality is as high as 48%. 

Direct inoculation of the skin and eye with L monocytogenes results in skin Infection 

(Amstrong, 1985). These infections are a hazard to veterinarians, slaughterhouse 

workers and laboratory workers. Bacteremic spread in the body can produce metastatic 

local infection in virtually any organ such as the spleen, gallbladder, and lymph nodes. 

6. Food-borne outbreaks by Listeria monocytogenes 

Foods as reservoirs 

Listeria monocytogenes has been detected in a wide range of foods. In meat 

products, most of the observed contamination is on the surface. However, Johnson et 
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al. (1990) recently found L monocytogenes In the interior muscle cores of 5 of 110 total 

samples of beef (50), pork (50), and lamb roasts (10). Serotype 1 is the prominent 

serotype found in meats worldwide. Chicken also seems to be heavily contaminated 

with L monocytogenes as surveys show contamination rates ranging from 12 to 60%. 

Bailey et ai. (1990) have recently examined the factors influencing colonization of 

broiler chickens with Listeria monocytogenes. Although L monocytogenes did not 

colonize chickens as easily as do salmonellae or Campylobacter Jejuni, younger birds 

were more susceptible to colonization than older birds. Glass and Doyle (1989) found 

that growth of L. monocytogenes on meat was highly dependent on product type and 

pH. The organism tended to grow well on meat products with a pH value near or 

above 6.0, whereas it grew poorly or not at all on meats near or below pH 5.0. For 

roast beef, summer sausage, and hot dogs, the inhibitory factors appeared to be pH, 

combined pH and water activity, and liquid smoke. Some investigators studying the 

fate of L monocytogenes in fermented sausages have found at least a 100-fold 

reduction in the level of the organism during the manufacture of fermented sausages 

(Berry eta!., 1990). 

The number of foodborne outbreaks of listeriosis caused by highly virulent strains 

of L monocytogenes have produced unprecedented surveillance of dairy foods by 

health officials. Although L. monocytogenes has been identified in various dairy prod

ucts, cheese has been the most intensively examined because of its known association 

with food-borne listeriosis. In particular, soft cheese was found to be especially 

vulnerable to contamination by Listeria spp. Actually, the main source is raw milk and 

this organism can usually be concentrated in the curd. Listeria can survive the 
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manufacture and ripening of many l<inds of cheeses. Ryser et al. (1987) reported that 

contamination with Listeria on the surface of cheese results from an Increase in pH 

during ripening. In yoghurt, Listeria also can survive for up to 30 days with pH values 

as low as 4.0 in storage (Griffiths and Deibel, 1989). Because L monocytogenes 

appears to be hardier than conforms in buttermilk, yoghurt, and cheese (Choi et ai. 

1988), this organism can be present even in coliform-free dairy products. In addition, 

Listeria is affected by the presence of other microorganisms In dairy products. In skim 

milk fermentation, the presence of Lactobaciilus buigaricus was found to be more 

detrimental to the growth and survival of Listeria than Streptococcus cremoris or 

Staphyiococcus iactis (Schaack and Marth, 1988). 

Vegetables can also be a source of listeriae, as indicated by an outbreak of 

listeriosis linked to consumption of L monocytogenes-contamlnated coleslaw (Schlech 

et al., 1983). Conner et al. (1986) reported that cabbage juice is a good growth 

medium for L. monocytogenes. Ho et aL (1986) investigated an outbreak of L. 

monocytogenes serotype 4b infection involving patients from eight Boston hospitals. 

They concluded that celery, tomatoes, and lettuce may have been the vehicles of 

infection. But, L. monocytogenes does not appear to be able to grow well on uncooked 

carrots (Beuchat and Brackett, 1990). Sources of contamination of vegetables include 

soil, water, animal manure, decaying vegetation, and effluent from sewage treatment 

plants. The association of Listeria spp. with food crops would be expected considering 

the distribution of the organism in nature. L. monocytogenes can survive for long 

periods in soils (Welshimier, 1960). Wels and Seeliger (1975) examined soils and 

vegetation from a variety sites. About 20% of soils and plant materials contained L. 
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monocytogenes, with the highest prevalence found in uncultivated fields. The predom

inant serotypes were serotype 1/2b and 4b. Surface waters are also often contami

nated with Listeria sçp. Watkins and Sleath (1981) isolated L monocytogenes irom 

every sample of sewage, river water, and trade effluent examined. The numbers of 

listeriae exceeded those of Salmoneila spp. found in the same sources. When fields to 

which sewage sludge had been applied were assayed for L monocytogenes, there was 

no decrease in the number of Listeria for more than 8 weeks. 

In the case of seafood, Weagant et ai. (1988) examined 57 samples of frozen 

seafood products, and found 15 samples, including shrimp, crab-meat, lobster tail, fin 

fish, and surimi-based seafood, to be positive for Listeria monocytogenes. Fish 

products have been epidemiologicaliy implicated in two listeriosis outbreak and have 

been thought to be the cause of one case of sporadic listeriosis. 

Outbreaks of Listeriosis 

Between 1917 and 1943, about 36 outbreaks of listeriosis have been recorded 

(Kaplan, 1945) and during 1949 through 1987, approximately 1300 cases of listeriosis 

have been documented (Ryser and Marth, 1990). 

In the Maritime Province of Nova Scotia in Canada, 34 cases of perinatal listeriosis 

and 7 cases of adult disease occurred between March 1 and September 1 in 1981 

(Schlech et ai., 1983). In this outbreak, perinatal cases were characterized by acute 

febrile illness in pregnant women followed by spontaneous abortion (5 cases), stillbirth 

(4 cases), live birth of a seriously ill premature or term infant (23 cases), or live birth of 

a well infant (2 cases). The case fatality rate for infants born alive was 27%. The 
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outbreak strain was L monocytogenes 4b, and tine investigation incriminated coleslaw 

as the vehicle. Because of this outbreak, it is now recognized that foods other than 

dairy products can be contaminated with L monocytogenes. 

In between June 30 and August 30, 1983, there was an outbreak in which con

sumption of pasteurized milk was related to 49 cases of listeriosis in Massachusetts 

(Fleming et al., 1985). Seven cases were fetus- or infant-related and 42 cases 

occurred in patients. The serotype detected was serotype 4b. The mortality was 29%. 

A specific brand of pasteurized whole or 2% milk was epidemiologically implicated as 

the vehicle. 

The ability of this organism to cause foodborne illness was re-estimated between 

January 1 and August 15, 1985, when consumption of Jalisco brand Mexican-style 

cheese was related to at least 142 cases of listeriosis in Los Angeles county, California 

(Linnan et al., 1988). Ninety three cases (65.5%) occurred in pregnant women or their 

offspring. There were 48 deaths (20 fetuses, 10 neonates, and 18 nonpregnant adults). 

Of the L monocytogenes isolates, 82% (86 of 105) were serotype 4b. 

In Philadelphia between 1986 to 1987, 36 cases of listeriosis occurred and 32 of 

36 (16 deaths) were nonpregnant adults and 4 were newborns (Schwartz et al., 1989). 

Twenty-four of 32 nonpregnant adults were immunosuppressed and 4 of the remaining 

8 were 80 years old or older, the serotypes identified were 4b, 1/2b, 1/2a and 3b. Ice 

cream, salami, or vegetables were suspected. 

In Texas in 1988, a woman with cancer was hospitalized with sepsis caused by L 

monocytogenes (Terplan and Steinmeyer, 1989). She had eaten 1 turkey frank which 

had been heated in a microwave oven. Serotype 1/2a was isolated from the patient, as 
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well as from opened and unopened packages of the franks. The same serotype was 

found in the processing plant 4 months later. Turkey franks were declared to have 

been the most likely source of listeriosis. 

Because of these and other listeriosis outbreaks in Europe where dairy products 

were not implicated, worldwide concern over the presence of Listeria in foods such as 

meat products, seafoods, and vegetables has been generated. 

7. Effect of food processing 

Although L monocytogenes has a temperature growth range of 2.5-44''C (Seeliger, 

1961), growth at 0°C has been reported (Khan et al., 1973). This organism can remain 

viable as long or longer than most other Listeria spp. during extended storage at less 

than 0°C. Palumbo and Williams (1989) reported that L. monocytogenes populations 

decreased only 1-3 orders of magnitude in inoculated samples of canned milk, 10% 

Karo corn syrup, ground beef, ground turkey, frankfurters, ice cream mix during 8 

weeks of frozen storage at -18°C. Two reports (Brasher etal., 1984, Wood and 

Woodbine, 1979) have noted that virulence of L. monocytogenes is related to growth 

temperature. Both reports indicated that virulence, as assayed in the chick embryo, is 

enhanced at lower temperatures. Future investigations need to more clearly define how 

the viability and pathogenicity of this organism are affected in food during extended 

frozen storage. 

L monocytogenes is resistant to drying. Some investigators (Doyle et al., 1985) 

determined that L. monocytogenes could survive the manufacture and storage of nonfat 
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dry milk when the initial concentration was 10®-10® listeriae/ml. The heat of the spray 

dryer was 165°C at the inlet and 67''C at the outlet. L monocytogenes survived storage 

at 25°C in all packages up to 4 weeks and in some of the packages up to the 12th 

week. 

Several studies (Fain et al., 1991, Boyle etal., 1990) have focused on the ability of 

L monocytogenes to survive a heat treatment. The heat effect on Listeria appeared to 

vary according to the serotype and the type of food (Lemaire et al., 1989). Bradshaw et 

al. (1985) heated Listeria at 52.2 to 74.4°C in milk. Temperatures of 52.2-68.9 °C were 

achieved in sealed glass tubes. The D-value for L. monocytogenes was estimated to 

be 0.9 sec at 71.7°C, and the z-value was 6.3°C. In this study, they concluded that 

current pasteurization process guidelines of the Food and Drug Administration were 

adequate to destroy L. monocytogenes in raw whole milk. But, investigators of the 

1983 Massachusetts outbreak of listeriosis (Fleming etal., 1985) suggested that 

pasteurized milk was the vehicle of Infection and that the intracellular position of L. 

monocytogenes in naturally infected cows' milk protected the organism from heat inacti-

vation by an unknown mechanism. To examine this hypothesis, Bunning etal. (1986) 

did parallel experiments in raw whole milk using freely suspended bacteria and bacteria 

Internalized by murine peritoneal phagocytes. The two suspensions in raw whole milk 

were heated in sealed glass tubes. The thermal inactivation kinetics of the two 

bacterial cell treatments were analyzed statistically and the differences were found not 

to be significant. In another study, Doyle et al. (1987) heated milk containing intracel

lular L. monocytogenes produced in experimentally infected cows. Cows were inoculat

ed by the feed, and milk from these cows, had L monocytogenes within leukocytes in 



32 

concentrations of 10^-10'* cells/ml of mill<. When processed at T\.7°C for 16.4 sec in a 

small, commercial-type plate pasteurizer. Listeria survivors could be detected occasion

ally in ttie pasteurized products, but only by extensive testing of tiie mill< using several 

different enrichment procedures. These results indicated that, if L monocytogenes 

within leukocytes were present in milk in unusually large numbers, the organism may 

survive the minimum treatment of high-temperature, short-time pasteurization. But, in 

practice, the usual levels of L. monocytogenes in farm milk is about 1 cell or less per ml 

and most dairy plants pasteurize milk at temperatures and holding times greater than 

the minimum requirements. 

L monocytogenes can survive at 37°C for 15 days in 10.5% NaCI, 10 days in 13% 

NaCI, and 5 days in concentrations of 20-30% NaCI. When the temperature is lowered 

to 22°C, survival times more than double. At 4°C, L. monocytogenes can survive more 

than 100 days in 10.5-30.5% NaCI (Schamat, etal., 1980). Some reports (Seeliger,, 

1961) indicate that L monocytogenes is capable of growing in up to 10% NaCI and 

surviving for 1 year at 16 % NaCI when the pH is 6.0. However, in cabbage juice, L. 

monocytogenes cells appear to grow in 2% NaCI but not in 5% NaCI. 

L. monocytogenes with a D value of 0.28-0.61 kGy (Cirigliano and Hartman, 1989) 

is more resistant to gamma irradiation in tryptose soy broth than are other commonly 

encountered non-spore forming foodborne pathogens such as Salmoneila typtiimurium 

(D value 0.28 kGy, Urbain, 1986), Staphylococcus aureus (D value 0.24 kGy, Urbain, 

1986) and Yersinia enterocolitica (D value 0.11 kGy, El-Zawahry and Rowley, 1979). 

But irradiation sensitivity of L. monocytogenes is also affected by age of the culture, 

irradiation menstruum, and the type of medium used for enumeration of cells after 
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irradiation. Huhtanen et al. (1989) reported ttiat ceils incubated for 1.5 and 2.5 hr are 

more irradiation resistant than those incubated for 5 and 18 hr. 

Addition of acids can affect the growth of Listeria. Ahamad and Marth (1989) 

studied the effect of acetic, citric, and iactic acid in preventing growth of L 

monocytogenes in tryptose soy broth. According to their results, the acids were more 

effective at 7 °C than at 13, 21, and 35°C and increasing the concentration of acids to 

0.2% completely suppressed growth of the organism with death of the cells occurring in 

the presence of more than 0.3%. Acetic acids had the highest antilisterial activity 

followed by lactic and citric acid. 

8. Heat shock response 

When cells or whole organisms are exposed to elevated sublethal temperatures for 

a short time, they respond by becoming more tolerant to a subsequent heat treatment. 

This increase in thermotolerance has been ascribed to production of a small number of 

highly conserved proteins, termed 'heat shock proteins' (hsps) by the cells during heat 

shock. 

The function of hsps has been extensively studied, but their role in protection of the 

cells during heating is unknown. Bensaude et al. (1990) proposed that unfolding of 

cellular proteins during heat shock would expose hydrophobic internal domains which 

would bind several constitutive hsp molecules. This binding, which Is reversed by ATP 

hydrolysis, would prevent aggregation of the unfolded proteins polypeptides to an 

inactive form while protecting them from the effects of a subsequent heat treatment. 
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Studies on the heat shock response began in 1962 (Ritossa, 1962), describing a 

new set of alternated puffs on the salivary gland of a fruit fly induced by heat, dinitro-

phenol, or sodium salicylate. Some investigators discovered that many other factors 

such as alcohol or arsenate as well as heat could induce the synthesis of similar pro

teins in yeast (IVIiller et ai, 1979) and in cultured avian cells (Kelly and Schlesinger, 

1982). In eucaryotes, the molecular weight and intracellular locations of hsps are 

different according to species. For example, hsp 95 (molecular weight, 95 kDa ) is 

located in the golgi apparatus of vertebrate or plant cells, and is modified by phosphory

lation into an active form, while hsp 84 (83-90 kDa) is located in the cytosol of yeast, 

plants, or Drosophila cells and is modified by methylation. Hsps can also be produced 

by procaryotes. In E. coli, initial observations on the heat shock phenomenon were 

made on proteins visualized by two-dimensional gels (Neidhardt et ai, 1981). Allan et 

ai (1&88) discovered two hsps (the m.w. 76 kDa and 61 kDa) from Pseudomonas 

aeruginosa. Whitaker and Batt (1991) observed the enhanced synthesis of approxi

mately 13 proteins in heat shocked Lactococcus lactis, and Streips and Polio (1985) 

detected a 66 kDa hsp in heat shocked Bacillus subtills. 

In food processing, the heat resistance of L monocytogenes can be increased 

during heat treatment such as in preheating, or if a slow rate of heating is used. Fedio 

and Jackson (1989) reported that cultures of Listeria preheated at 48''C for 2 hr in broth 

and UHT milk before heating at 60 °C increased the heat resistance of the cells com

pared with controls. Linton et al. (1992) reported that the Dgg-value of cells heat-

shocked at 48°C for 15 min was 2.1-fold higher than nonheat shocked cells. However, 

Sunning et ai (1990) compared the effect of heat shock of L monocytogenes with that 
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of Salmonella typhimurium and found that the induction of increased thermotoierance 

by heat shock at 45°C for 30 min was not significant in Listeria in comparison with that 

of S. typhimurium. They suggested that induced thermotoierance was not long lived 

unless the shock temperature was maintained. Sokolovic et al. (1990) suggested that 

the increased heat resistance of heat-shocked Listeria was because of the production 

of heat shock proteins that protected the cell from the heat-treatment. Sokolovic and 

Goebel (1990) showed that listeriolysin was still very efficiently synthesized intracellul-

ary and induced under heat shock conditions. 

9. Heat injury and recovery of Listeria monocytogenes 

When microorganisms are subjected to environmental stresses such as heat, 

freezing, radiation, and sanitizer, cells can become injured. In general, injured cells can 

not grow in selective media which uninjured cells can tolerate. Therefore, whether a 

culture has suffered metabolic injury can be determined by plating aliquots separately 

on a nonselective and a selective medium and enumerating the colonies that develop 

after suitable incubation. The mechanisms of cell injury can vary according to the type 

of environmental stress to which the cells are exposed. 

In this review, discussion will be limited to heat injury. IVIetabolic injury as a result 

of heating is accompanied by damage to the cell wall, cell membrane, ribosomes, DNA, 

and proteins (Hurst, 1977). In particular, the cell membrane appears to be the most 

commonly affected because the lipid components of the membrane are susceptible to 

the effect of heat. Loss of sodium, potassium, and magnesium from injured cells as a 
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result of heating has been reported (Hurst, 1974). Damage to ribosomes has also been 

documented, and is considered an important event due to the destruction of 16S RNA. 

Strange and Shon (1964) reported that the primary event in the damage to ribosomes 

was the loss of magnesium which was required for the integrity of ribosomes and, 

moreover, it served to inhibit a ribonuclease. Heat or freezing treatment can cause 

single strand breaks in bacterial DNA. However, the single strand breaks in DNA are 

thought not to be the direct result of heating but rather the consequence of nuclease 

activity. Heat can also degrade proteins such as enzymes. Dehydrogenases are 

particularly heat sensitive, but most of their activity returns during the recovery period. 

However, this is not true of all enzymes. For example, heated Staphylococcus aureus 

cells had 75% of the fructose diphosphate aldolase and 51% of the lactate dehydro

genase activity of normal cells after recovery (Tomlins et ai, 1971, Bluhm and Ordal, 

1969). 

The effect of various nutrients on heat injury has been studied. Smith (1990) 

reported that the addition of sugars, polyols, or salts to the heating menstruum pro

tected the L monocytogenes cells against heat Injury, and fructose and NH4CI were 

unusual in not being protective and actually potentiating the killing of cells by the 

normally sublethal heat treatment. The recovery or repair process has been defined as 

a restoration of the capabilities lost after damage from environmental stress. It also has 

been termed resuscitation, implying that cells are revived from apparent death. In order 

for injured cells to recover certain conditions are required. These include the presence 

of specific nutrients, pH, temperature, gaseous atmosphere, culture age, redox poten

tial, osmolality, water activity, ionic strength, salt content, surface tension, and storage 
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conditions. Studies on the effect of pyruvate or cataiase on recovery of injured ceiis 

tiave been conculuded by many researcfiers (IVIcDonaid etal., 1983, Martin et ai, 

1976). During injury, the accumulation of hydrogen peroxide is a universal response in 

celis and injured celis have an increased sensitivity to its toxic effects. Pyruvate and 

cataiase have been shown to degrade hydrogen peroxide during recovery periods, thus 

allowing the cells to repair themselves. 

Many researchers have also studied the recovery and growth of Listeria after a 

heat treatment. Dallmier and Martin (1988) reported that cataiase activity of heat 

stressed cell extracts decreased sharply between 55 and 60''C and SOD was more heat 

labile than cataiase, both of which are important factors for cell recovery. Knabel et al. 

(1990) reported that anaerobic conditions resulted in a increase in recovery of the cell 

in media because of absence of oxygen. Petran and Zottola (1989) studied the effects 

of pH, carbohydrates, and temperature on recovery and growth of Listeria. They 

showed that this organism can grow in solutions of up to 39.4% sucrose. Busch et ai. 

(1992) developed media for recovery of heat-injured Listeria in trypticase soy broth 

supplemented with divalent cations, yeast extract, carbohydrates, pyruvate, and 

cataiase. Temperature is also an important factor for recovery of injured cells. Lovett 

(1988) found that 25°C was the optimum temperature for repair of heat injured L 

monocytogenes in pasteurized milk. Smith (1990) reported that complete or nearly 

complete recovery of heat injured cells was observed between 6-9 h incubation at 

temperatures ranging 20 to 40°C on tryptose phosphate broth agar. 
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As we discussed previously, L monocytogenes is a pathogenic bacterium which 

cause many fatal syndromes particularly to immunocompromised patients. However, 

the ubiquity of L monocytogenes in the environment, its widespread occurrence in 

food, and the drastic changes connected with modern food production have created an 

unprecedented reservoir for this organism. To be effective, preventative steps should 

start at the place of food and feed production, making use of heat to destroy Listeria 

when practical. In particular, during processing the main factor to be considered is the 

potential for the organism to survive heating if exposed to a heat shock. Because the 

organism is able to recover and grow during storage, the packaging conditions are also 

important. However, information on heat resistance of heat shocked L monocytogenes 

in ground pork during pasteurization conditions and the effect of packaging style during 

storage have not been elucidated. The objectives of this study were to determine the 

effect of heat shock on survival of L monocytogenes after heating and on production of 

LLO in ground pork, to determine the effect of varying the rate of heating on survival of 

cells to subsequent processing, and to determine the effect of storage conditions on 

recovery of heat-injured L. monocytogenes. 
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PAPER I. EFFECT OF HEATING AND STORAGE CONDITIONS ON SURVIVAL AND 
RECOVERY OF Listeria monocytogenes SEROTYPES IN GROUND PORK 
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ABSTRACT 

Listeria monocytogenes serotype 1 and Scott A were examined to determine tfieir 

survival to iieating in ground pork according to: 1 ) heating rate during come-up time, 2) 

meat age, and 3) aerobic vs. anaerobic packaging of ground pork. The D-value was 

calculated by plotting the log number of survivors after heating for 0 min, 10 min, 20 

min, or 30 min at 62°C. In addition, L monocytogenes serotype 1 was examined to 

determine the recovery of heat-injured cells during storage at 4, 20, and 30°C in aerobi

cally packaged or vacuum-packaged ground pork at various temperatures. The effect 

of 100, 200, and 300 ppm of butylated hydroxyanisole (BHA) and 300, 500, and 700 

ppm of butylated hydroxytoluene (BHT) in this recovery was examined in aerobically 

packaged ground pork stored at 7°C and 30''C. The results show that L 

monocytogenes serotype 1 was more heat-resistant than Scott A in ground pork. With 

serotype 1, a heating rate of 1.3 "C/min resulted in the highest D value (9.2 min), when 

compared with a rate of 8.0 "C/min, which resulted in a D value of 5.5 min after heating 

at 62°C. IVIore survivors of both subspecies were detected after heating in fresh ground 

pork compared with those in long-stored (3 months) ground pork. During storage, 

higher number of survivors after heating were counted when the meat was packaged 

aerobically before heating than when packaged anaerobically for both serotypes. After 

heat treatment at 62°C for 10 min. Listeria grew more rapidly in vacuum-packaging at 

4°C than in aerobic packaging. Antioxidants did not significantly affect the cell growth 

after stationary phase at 7°C or at 30°C. 
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INTRODUCTION 

Listeria monocytogenes is a non-spore-forming, gram-positive, and patiiogenic 

bacterium that causes septicemia and meningitis in patients who are 

immunocompromised, as weii as induces stilibirths in pregnant women. It is wideiy 

distributed in the environment because it can survive or reproduce over a wide range of 

environmental conditions. IVioreover, this organism is not only resistant to heat (5, 12, 

20), salt (28), freezing (9), drying (8), and sanitizers (26) during food processing, but it 

can even grow in vacuum packaged foods (7,15) after processing. Although It has 

been recognized as a human and animal pathogen for more than 50 years, this 

organism has only recently emerged as a serious food borne pathogen. The survival of 

L monocytogenes in different food products can threaten the food safety. It has been 

isolated from a wide range of foods such as dairy products, meat products, vegetables, 

and seafood, and in the 1980's, it was the causative agent of outbreaks of foodborne 

illness all over the world (13). 

The heat-resistance of L monocytogenes has been studied by many researchers 

as one of the factors that must be understood in order to determine if current food 

processing methods are adequate to destroy it. Some researchers reported that 

exposing Listeria cells to a mild heat treatment, or heat shock, resulted in production of 

heat shock proteins, which are thought to protect the organism from the harmful effects 

of further heating (29, 30). Studies on the heat shock response of L monocytogenes 

have been done in meat products (12), milk (14) as well as broth media (6, 20). 

Some investigators have questioned whether heat shocking of cells actually occurs 
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in nature, or wiiettier it is a phenomenon only to be found in the laboratory. Mackey 

and Derrick (21 ) showed that varying the rate at which Salmonella were heated resulted 

in significant changes in the ability of the cells to survive a heat treatment at the target 

temperature. It is possible that cells are exposed to conditions similar to a heat-shock 

during a slow heating and thus become better able to tolerate the final heat treatment 

compared with cells exposed to fast heating. 

L monocytogenes has been studied for its ability to recover from heat treatments 

in various products and under various conditions. Knabel et al. (18) reported that 

enumeration under anaerobic conditions resulted in a higher number of survivors after a 

heat treatment in milk when compared with aerobic plating. These investigators 

suggested that the lack of oxygen radicals in anaerobic conditions offers the cells an 

opportunity to recover from injury over cells incubated in the presence of oxygen. 

However, Hart etal. (17) reported higher numbers of survivors in chicken packaged in 

air vs. modified atmosphere. In both of these studies, the cells were heated in the 

presence of air and then packaged aerobically or anaerobically. It would be of signifi

cance to determine whether exposure to air vs. vacuum during heating (prior to storage) 

affects the ability of Listeria to survive a heat treatment. 

The D-values of Listeria have been established in different foodstuffs such as 

cheese (27), ground beef (2, 10), and milk (3, 5), as well as in Trypticase Soy Broth 

with 0.6 % yeast extract (TSBYE) (20). Even though ground pork is one of the major 

ingredients used in the manufacture of processed meats, the D-value of L monocytoge

nes in this product has not been determined. Investigators have suggested that D-

values of this organism may vary in many food products according to the Listeria 
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subspecies present (19). 

Because tliis organism can grow weii in refrigerated food products such as ham, 

sausage, cheese, and miik, concerns about the possible role of these food products as 

vehicles of listeriosis have emerged (4). Furthermore, this organism can survive 

freezing even at -18°C for 1 month in tryptose broth and phosphate buffer (9). L 

monocytogenes is relatively more heat-resistant than other non-spore-forming microor

ganisms (20). Inadequate processing during pasteurization could lead to recovery of 

heat-injured cells (23), and to growth of this organism during refrigerated storage. 

Ryser et al. (27) reported that, in cottage cheese, heat-injured L monocytogenes Scott 

A and serotype 1 were recovered during storage at 3°C for up to 28 d. Packaging 

atmosphere also is a very important factor for sun/ival and recovery of L monocytoge

nes in food products (15, 31). Razaviiar and Genigeorgis (15) reported that 100% CO; 

was significantly more inhibitory to growth initiation than any other atmospheric condi

tion in blood agar. Knabel et al. (18) reported higher numbers of heat-injured cells in 

strictly anaerobic conditions vs. aerobic condition. 

Antioxidants are substances that can delay the onset, or slow the oxidation rate of, 

autooxidizable materials such as lipids. This occurs by inhibition of formation and 

propagation of free radicals (16). In meat products, butylated hydroxyanisole (BHA), 

butylated hydroxytoluene (BHT), tertiary butylated butyhydroquinone (TBHQ) and similar 

compounds have been used for this purpose. Prabhu et al. (24) and Yousef et al. (32) 

demonstrated that BHA and BHT inhibited L. monocytogenes by prolonging the logarith

mic phase of growth while decreasing the overall growth of the organism. Payne et al. 

(22) reported that TBHQ was more effective than BHA and BHT in media. However, it 
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is not known whether Listeria will be affected in these same way in ground pork 

containing the antioxidants during storage. 

The objectives of this study were to determine the effect of heating rate, packaging 

atmosphere, and meat age on heat resistance of L monocytogenes serotype 1 and 

Scott A to heating at 62°C in ground pork, to determine the effect of storage tempera

ture on recovery of heat-injured L monocytogenes In aerobic- or vacuum-packaged 

ground pork, and to investigate the effect of antioxidants on this organism during 

storage. 
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MATERIALS AND METHODS 

Bacterial culture conditions 

Listeria monocytogenes serotype 1 (ATCC 19111) was obtained from the American 

Type Culture Collection in Rockville, Maryland, and L. monocytogenes Scott A was 

obtained from the National Animal Disease Center Laboratory in Ames, lA. The 

microorganisms were incubated in Tryptlcase Soy Broth (BBL Beckton Dickinson, 

Cockeysville, MD) with 0.6% yeast extract (TSBYE) at 37°C for 12 h. The plating 

media used were Tryptlcase Soy Agar (TSA, BBL Beckton Dickinson, Cockeysville, MD) 

with 0.6% yeast extract as a nonselective medium, and Oxoid Agar (OXA, Oxford, 

Unipath LTD, Hampshire, England) as a selective medium. 

Sublethal heat treatment for determination of heat resistance and Injury 

After 10 h of incubation in TSBYE media, the culture of each serotype was heat-

treated at.48°C for 2 h In a water bath, immediately cooled to room temperature in an 

ice bath and diluted in 80 ml of 0.1% peptone (Difco, Laboratories, Detroit, Ml) solution. 

The samples were blended in a Stomacher (Lab-Blender 400, Tekmar Company, 

Cincinnati, Ohio) for 3 min, serially diluted, and plated on TSAYE (nonselective) or OXA 

agar (selective). The plates were Incubated at 37°C for 48 h, and the colonies were 

counted. In TSAYE media, only Listeria colonies were counted. These were identified 

by colony morphology and gram strain. The number of injured cells was determined by 

subtracting the CFU/g of ground pork in selective from CFU/g of ground pork in 

nonselective media. 
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Heat treatment for determination of D-value In ground pork 

One-hundred microliters of the cultured broth were added into 5 ml of TSBYE and 

Incubated at 37°C for 6 h to achieve the mid-logarithmic phase of growth based on 

standard growth curve at 625 nm. 

Twenty-grams of ground pork obtained from a local retailer were placed Into screw 

capped tubes and heated to 62°C in a water bath. When the temperature of the 

samples reached 62°C, 0.2 ml of Listeria cells (serotype 1 or Scott A) was injected Into 

the geometric center of each sample and Incubated at 62''C for 0,10, 20, or 30 min. 

The numbers of total and healthy cells were detected as previously described. 

Effect of heating rate 

Ten grams of ground pork in a test tube were inoculated into the geometric center 

with L monocytogenes serotype 1 and placed In a water Ipath at SS^C. The tempera

ture was increased in the water bath to achieve 62°C at a rate of either 1.3 "C/mln, 2.2 

°C/min, or 8.0 °C/min. The heating rate was controlled by adjusting the controller of the 

water bath (Model 730, Fisher Scientific, Pittsburgh, PA). The temperature was 

detected with a J type thermocouple (Omega Engineering Inc., Stamford, CT) and 

datalogger (Model LI-1000, Li-COR, Lincoln, NE). In this experiment, the heating rate 

(or time required for the temperature to Increase from 35°C to 62''C) was 20.5 min at a 

rate of 1.3 ®C/min, 12.3 min at 2.2 °C/mln, and 3.3 min at 8.0 °C/min. After 0 min, 10 

min, 20 min, and 30 min of heating at 62°C, each sample was cooled rapidly in an ice 

bath. One-hundred milliliter of 1% peptone solution was added to each sample, 

blended, diluted properly and plated on the media to determine total, healthy, and 
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injured cells as described before. 

Effect of meat age 

Fresh pork was defined as pork obtained and used within 3 days of slaughter, and 

long-stored ground pork was defined as pork used after storage for 3 months at -10°C. 

Twenty-grams of each sample was placed into screw capped tubes and 0.1 ml of 

Listeria cells (serotype 1 or Scott A) were injected into samples as described before. 

The heat treatment was 62°C for 0, 10, 20, or 30 min and the samples were cooled 

immediately in an ice bath to room temperature. The number of survivors was deter

mined by plating onto TSBYE and OXA as previously described. 

Effect of vacuum environment during heating 

Twenty-grams of ground pork were placed into each of eight 863 Saran pouches 

(6" X 4") (Curwood Inc., Oshkosh, Wl) and heated to a target temperature of 62''C in a 

water bath (Model 730, Fisher Scientific, Pittsburgh, PA). After the target temperature 

was reached, 0.2 ml of Listeria cells (serotype 1 or Scott A) were injected into each bag 

and mixed. Half of the bags were sealed in air and half were vacuum-sealed (Fresh 

Vac. Model A300, CVP Systems Inc., Downers Grove, II) at 380 torr. All samples were 

heat-treated for 0,10, 20, and 30 min at 62°C by submerging the bags in a water bath 

set at 62°C. After heating, the samples were cooled rapidly to room temperature in an 

ice bath. Eighty-milliliters of a 0.1% peptone solution were added into each sample, 

which were blended in a Stomacher, serially diluted, plated onto appropriate media, and 

incubated at 37°C. The number of survivors was determined by colony counting after 
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Effect of storage conditions on recovery of heat-ln]ured L. monocytogenes 

In order to determine the effect of packaging conditions on recovery of heat treated 

Listeria, the cells and the meat samples were heat-treated separately, and then the 

cells were Inoculated Into the meat, which was then packaged and stored. In this 

procedure, 100 |xl of the cultured broth were added Into 30 ml of TSBYE and incubated 

at 37°C for 12 h to achieve stationary phase of growth. The culture was heat-treated at 

62°C for 10 min. The come-up time was 3 min as determined by a J-type thermocouple 

(Omega Engineering Inc., Stamford, CT) and datalogger (Model LI-1000, LI-COR, 

Lincoln, NE). The heat-treated culture was cooled rapidly to room temperature in an ice 

bath. 

Twenty-grams of ground pork were placed into pouches (Curwood Inc., Oshkosh, 

Wl) and vacuum-sealed (Fresh Vac. Model A300, CVP Systems Inc., Downers Grove, 

II) at 380 torr, and the pork was heat-treated for 1 h at 62°C by submerging the bags in 

a water bath (Model 730, Fisher Scientific, Pittsburgh, PA). Point-three milliliter of heat-

treated Listeria cells was Injected Into each bag aseptically. After that, the samples 

were vacuum-sealed and stored at 7, 20, 30°C until tested. To count the organisms in 

each sample, 80 ml of 0.1% peptone solution was added Into the samples, blended In a 

Stomacher (Lab-Blender 400, Tekmar Company, Cincinnati, Ohio) for 3 min, serially 

diluted, and plated on TSAYE or OXA. After incubation at 37''C for 48 h, the number 

of survivors was determined by colony counting. 
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Effect of antioxidants on enumeration of Listeria In ground pork during storage 

Butyiated hydroxyanisole (BHA, Sigma Chemical Co., St. Louis, iVIO) and butylated 

hydroxytoluene (BHT, Sigma Chemical Co., St. Louis, IVIO) were used as antioxidants in 

this study. One-milliliter of 1%, 2%, and 3% BHA solution in 50% (v/v) ethanol, or 3%, 

5%, and 7% BHT in 95% (v/v) ethanol was added to 100 g of ground pork and blended 

for 5 min per sample. In preliminary experiments, it was found that addition of ethanol 

to achieve a 1% solution in sample did not affect survival of Listeria. Ten grams of 

each sample blended with antioxidant were then placed in a 863 Saran pouch (6" x 4") 

and heated to 62°C in a water bath (Model 70 Isotemp Immersion Circulator, 28 L) of 

62°C. The come-up time which was calculated as the time required for the temperature 

to increase from 35°C to 62°C in ground pork, was set-up to be 3 min in this experi

ment. After heating at 62''C for 1 h, each sample was cooled rapidly in an ice bath. 

Point-three milliliters of the heat treated Listeria was then injected into the geometric 

center of the ground pork, aerobicaily packaged, and stored at 7, 20, or 30 ®C until 

tested. Enumeration was done as described previously. 
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RESULTS AND DISCUSSION 

Heat resistance of Listeria monocytogenes serotypes 

In this study, L monocytogenes serotype 1 and L monocytogenes Scott A were 

tested for their ability to survive a heat treatment in ground pork. From Figure 1, 98% 

of the cells of serotype 1 survived the sublethal heat treatment at 48''C, and the number 

of healthy cells decreased to 43% of the healthy cells after heating. In contrast, only 

32% of Scott A cells survived and the number of healthy cells decreased to 12% of 

total healthy cells. Lemairé et al. (19) reported that strains belonging to serotype 1 

were more heat-resistant than those belonging to serotype 4 in milk. Bradshaw et al. 

(3) reported that Scott A was more heat-resistant than serotype 1 in milk. From the 

data presented here (Figure 2), the opposite results were obtained, namely that 

serotype 1 was found to be slightly more heat resistant than Scott A In ground pork. 

Perhaps serotype 1 is better adapted to the conditions found in meat than Scott A. 

Because serotype 1 has been detected more in heat-processed pork products than 

Scott A, a higher heat treatment than usual should be required in processing of these 

products to ensure complete destruction of Listeria monocytogenes serotype 1. 

Effect of heating rate on survival of Listeria monocytogenes In ground pork 

In this study, the heating rate during heat treatment was tested in ground pork by 

using L. monocytogenes serotype 1 because this organism has been more commonly 

detected in meat products than Scott A. After heating from 35''C to 62''C at a rate of 

1.3 °C/min, 2.2 °C/min, or 8.0 "C/min, the concentration of cells dropped from 1.2 x 10® 
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Figure 1. Comparisons of heat resistances and injury of Listeria monocytogenes 
serotype 1 and Scott A after heating at 48°G for 2 hrs. (TSAYE medium was 
used for total cell counting and OXA medium was used for healthy cell 
counting.) 
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Figure 2. Heat resistance of Listeria monocytogenes serotype 1 and Scott A during tieat 
treatment at 62°C in ground pork 
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(initial inoculum ) to 1.3 x 10\ 6.7 x 10^ and 4.77 x 10^ respectively. Thus, no signific

ant difference in the effect of heating rate on Listeria was noted before heating to the 

target temperature. After heating at 62°C, higher numbers of survivors were found 

when the cells were initially heated at the lowest heating rate (Figure 3). The D-values 

were calculated to be 9.2 min, 6.2 min, and 5.5 min at the rates of 1.3 °C/min, 2.2 

°C/min, and 8.0 "C/min, respectively. IVIackey and Derrick (21) reported that the heat 

resistance of Salmoneila typtiimurium was dependent on the heating rate and that the 

slower the temperature rise, the greater the increase in resistance. The results of these 

studies on L monocytogenes serotype 1 concur with those on Saimoneila by Mackey 

and Derrick (21), and point to a concern that the rate at which products are heated can 

have a significant impact on their microbiological safety. 

Effect of meat age on survival of Listeria monocytogenes 

Listeria inoculated into three-months-old ground pork was more sensitive to heating 

than Listeria inoculated into fresh ground pork (TABLE 1). The reasons for this are not 

very clear. It is possible that, although the meat was stored frozen, chemical reactions 

such as oxidation (which still occur during storage (1 )) and chemical by-products 

produced during storage could have damaged the cells upon inoculation. Moreover, 

during heat treatment, lipids in pork could contain peroxides, radicals, or other organic 

materials (16) which could have made the injured cells more fragile. For example, it is 

known that the reaction of hydroxy radicals with deoxyrlbose results in fragmentation of 

DNA with loss of the bases and strand breaks (11). Therefore, it is possible that 

freezing may have affected these cells as suggested above. These results show that 
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TABLE 1. Effect of meat age on heat resistance of Listeria monocytogenes serotype 1 
and Scott A. 

D-values at 62°C 

Serotype 1 Scott A 

Fresh ground pork^ 7.7 ± 0.5® 6.5 ± 0.6 

Old ground pork 5.2 ± 0.4 4.3 ± 0.5 

^ The fresh ground pork was obtained within 3 days after slaughter and the old ground 
pork was obtained after 3 months of storage at -lO^C. 

® Average values of three replications ± standard deviation. 

the conditions at which meats are stored may play an important role in the survival of 

Listeria to a subsequent heat treatment. 

Effect of vacuum packaging during heating on survival of Listeria 

monocytogenes in ground pork 

TABLE 2 shows that higher numbers of survivors were detected after heating when 

the meat was heated aerobically than anaerobicaily. Knabel et aL (18) reported that 

higher numbers of Listeria were recovered if the cells were plated under anaerobic 

conditions compared with aerobic conditions. They suggested that the reason for this is 

that, after heating, catalase and superoxide dismutase are inactivated, which prevents 

the cells from growing in the presence of toxic oxygen radicals found in aerobic 

storage. Linton et ai. (20) also reported that enumeration of heat-shocked cells in 
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TABLE 2. Effect of packaging atmosptiere on thermai destruction of Listeria 
monocytogenes during iieating in ground porl< 

D-values at 62°C 

Atmospheric package 7.8 ± 0.3^ 

Vacuum package® 6.2 ± 0.4 

^ Average vaiues of tfiree replications ± standard deviation. 
^ Vacuum-packaged at 380 torr prior to heating. 

anaerobic media resulted in higher numbers than those In aerobic media. The results 

presented here show that anaerobic conditions, although beneficial to the cells during 

recovery after a heat treatment, are detrimental to their survival during heating. The 

rapid change in atmosphere from the aerobic conditions of the original culture to the 

anaerobic conditions of vacuum packaging may have made the cells more susceptible 

to destruction during the heat treatment. 

in addition, after heating, the cells which had been packaged anaerobically were 

enumerated aerobically. It is possible that the subsequent change of atmosphere 

placed an additional stress on the organism, which resulted in lower counts than cells 

which were kept under aerobic conditions before, during and after heating. 

Effect of package environment on recovery of heat-treated Listeria 

To determine the effect of packaging on recovery of heat-injured L. monocytogenes 

serotype 1 in ground pork, Listeria was heat-treated at 62''C for 10 min, packaged 
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aerobically or anaerobically in ground pork heated at 62°C for 1 h, and stored at 4°C 

(Figure 4), 20°C (Figure 5), and 30°C (Figure 6). No difference in recovery between 

sample packaged aerobicaliy vs. vacuum was detected at 20 and 30°C due to rapid 

growth of ceils at these temperatures. However, a difference in the growth rate of the 

organism was detected between aerobic vs. vacuum packaging at 4°C of storage. The 

recovery of heat-injured Listeria was also determined at 4°C in ground pork. After heat 

treatment at 62°C for 1 h, the number of cells was enumerated by using TSAYE and 

OXA media. The numbers of total and healthy cells were 1.09 x 10" CFU/g of ground 

pork and 4.62 x 10® CFU/g of ground pork, respectively, in which the percentage of 

healthy cells was 42.4%. Figure 7 shows the trends of recovery of heat-injured Listeria 

in aerobically-packaged and vacuum-packaged ground pork during storage at 4°C for 0, 

9, 18, and 26 days. From Figure 7, the growth rate of the cells was greater in vacuum-

packaged samples than in aerobically-packaged samples during storage at 4°C. 

Knabel et ai. (18) indicated that the use of strictly anaerobic culture conditions signifi

cantly Increased recovery in TSAYE with aerobically incubated controls. They ex

plained that the heat treatment could result in inactivatlon of catalase which serves as 

protection against oxygen radicals present in aerobic environments. 

Effects of storage temperature and packaging on growth of Listeria 

Listeria monocytogenes in meat inadequately pasteurized may grow during long 

time storage even at low temperatures. In these studies, the effect of storage condi

tions on recovery of heat-injured L. monocytogenes serotype 1 was determined during 

storage at 4, 20, or 30°C. The maximum cell number in ground pork was detected after 
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40 days at 4°C, 4 days at 20°C, and 2 days at 30°C. The number of cells during 

storage was also affected by packaging atmosphere. Lower numbers were detected in 

vacuum-packaged ground pork than in ground pork packaged aerobically. Carpenter 

and Harrison (7) reported that L monocytogenes grew more slowly on vacuum-

packaged chicken breast than on film-overwrapped samples. 

Effects of antioxidants on survival of Listeria in ground pori< 

Yousef et al. (32) reported that Listeria exhibited increasingly longer lag phase 

periods and generation times as well as lower maximum populations in the presence of 

BHA at 200 ppm in Tryptose broth. In practice, these antioxidants have two opposite 

roles in food products: the quenching of oxidative components which are toxic to 

organisms, and the inhibition of growth of organisms. However, the role which antioxi

dants play under various storage conditions has not been determined. To determine 

the effect of antioxidants in ground pork during storage, BHA and BHT were tested at 

concentration of 100, 200, and 300 ppm BHA, or 300, 500, and 700 ppm BHT at 7°C 

(Figure 8) and 30°C (Figure 9). Neither antioxidant significantly affected the growth of 

cells in ground pork regardless each concentrations of antioxidants. These results 

show that the practical concentrations of BHA and BHT for meat processing do not 

affect the cell growth in ground pork during storage regardless temperatures. 
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Summary 

The heat resistance of L monocytogenes can differ according to subspecies of the 

organism, heating rate during a heat treatment, packaging atmosphere during heating, 

and meat age. In the case of ground pork, serotype 1 was more resistant than Scott A 

after heat treatment. The heating rate was a very important factor in the heat resistanc-

e of this organism. According to these studies, a shorter initial heating time such as 

pre-cooking and pasteurization would be needed to minimize the heat resistance of 

pathogens. The heat-treated Listen'a packaged anaerobically was less heat resistant 

than that packaged aeroblcally. 

Given the results presented here, further studies on the combined effects of 

heating rate, meat age, and packaging atmosphere on the heat resistance of L 

monocytogenes serotype 1 should be conducted. Such information should aid proces

sors to design processing procedures that would prevent or minimize the chances for 

survival of pathogens like L monocytogenes. 

During storage of ground pork, heat-injured L monocytogenes were recovered 

more rapidly in vacuum packaging although the total number of cells was lower than 

controls in aeroblcally packaged ground pork. In addition, the number of cells after 

maximum growth in vacuum-packaged ground pork decreased slower than cells packa

ged in air. While primarily used to prevent oxidation of fats, some of these antioxidants 

also posses antimicrobial activity. Payne et al. (22) indicated that the antimicrobial 

activity differed according to the kinds and concentration of antioxidants used. Howev

er, antioxidants at added concentrations approved by FDA did not affect the cell growth 

of Listeria in ground pork at 7 and 30°C. In the food industry, antioxidants should be 
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evaluated in order to achieve both sheif-iife extension by preventing iipid oxidation, ; 

well as increased food safety by Inhibiting the growth of pathogens such as Listeria 

before practically using in food products. 
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ABSTRACT 

Listeria monocytogenes serotype 1 and Scott A strains were examined to deter

mine ttie effect of culture strain on production of listerlolysin 0 (LLO). The effects of pH 

(between 5.0 and 7.0), incubation time, and culture methods also were examined after 

the addition of 0.5%, 1.0%, or 1.5% glucose. As another culture method, a repeat fed-

batch method was tested. The hemolytic activity of the culture was quantitated by 

hemolysis of red blood cells. LLO was produced in greater concentrations by serotype 

1 than by Scott A. The fed-batch method resulted In higher levels of LLO than one-time 

addition of glucose. In the fed-batch method, maximum production was detected at pH 

5.5 through 6.5 after 2 h of stationary phase. The addition of more than 1.0% glucose 

for cell growth significantly reduced the production of LLO by the cells. In addition, the 

heat stability of the listerlolysin was also determined. Heat shocking of Listeria cells at 

48°C for 2 h resulted in almost total reduction of listerlolysin O. Within 4 h of incubation 

at 37°C, heat-shocked cells resumed production of listerlolysin, achieving on activity 

level 40-times higher than that Immediately after heat shock. However, LLO activity of 

control cells was higher than that of heat-skocked cells throughout the incubation 

period. Thus, heat shock did not result In an increase in the total concentration of LLO 

compared with nonheat-shocked controls. Inactivatlon of listerlolysin Increased with 

temperature, with none detected immediately after exposure to 62°C. Even though the 

heat shocking induce a production of LLO more rapidly, the heat-treated meat may be 

less vilulent than nonheat-treated meat due to lower concentration of LLO in heat-

treated meat. 
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INTRODUCTION 

Listeria monocytogenes is a facultative anaerobic, gram-positive, and intracellular 

pathogenic bacterium that can cause septicemia, meningitis, and stillbirths in humans. 

In general, serious listeriosis can occur in patients who have underlying conditions 

which lead to suppression of their immunity such as AIDS, cancer, or alcoholism (8). In 

particular, most cases of listeriosis occur in individuals at the extremes of age (newborn 

and elderly). This organism is widely distributed in the environment and is transmitted 

to humans through contamination of foodstuffs such as dairy products, meat products, 

and vegetables (5, 19, 20). The infection has relatively low morbidity but a high case-

fatality. Pregnant women and immunocompromised patients are very sensitive to this 

microorganism (19). In particular, the mortality rate for infected infants is 36% (8) 

despite aggressive supportive care and appropriate antibiotic therapy. Listeria is a 

psychrotroph, capable of growing at refrigerator temperatures. As consumption of 

refrigerated ready-to-eat foods has increased, so has isolation of Listeria in these 

products. In addition, this organism is somewhat resistant to conventional processing 

treatments such as heating (7,13). The degree of heat resistance of this organism has 

been reported to vary depending on bacterial strain (3, 6) and packaging conditions (9). 

Listeriolysin O (LLO, molecular weight; 60,000) is a water-soluble, heat-labile 

protein produced by L. monocytogenes that exhibits cardiotoxic activity. This protein is 

activated by sulfhydryl groups such as sodium thiosulfate and is antigenically similar to 

streptolysin O (1,17). Listeriolysin aids the cells in invading host macrophages and 

triggers lysis of the membrane-bound phagocytic vacuole in these cells by forming 
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pores in the membrane of phagocytes, which enables Listeria to escape and be free to 

invade other phagocytes (12, 16, 18, 21, 22, 23). Many recent reports indicate that the 

gene coding for the hemolysin produced by L monocytogenes is at least partly 

responsible for the organism's virulence (11, 21, 22). Until now, LLO has been 

considered one of the main virulence factors of Listeria spp. Sokolovic et ai (22) 

reported that growth at 48 °C (rather than heat shock) resulted in resumption of 

listeriolysin production by a nonhemolytic mutant strain of L monocytogenes. However, 

these investigators did not provide information on whether heat shock actually enhanc

es the ability of cells to produce listeriolysin, or whether it simply induces it. With the 

help of LLO, the organism can invade macrophages, epithelial cells, and fibroblasts in 

the host. When the bacteria escape from a host cell vacuole, this event is mediated 

partly by the action of LLO which can form pores that enable the organism to leave (16, 

23). For this reason, LLO has been used as a good marker for evaluating the 

virulence of heat-stressed L. monocytogenes (11, 15). However, the production of LLO 

may differ depending on environmental conditions such as pH, availability of nutrients, 

and growth phase of various subspecies. 

The objectives of this study were to determine the effect of subspecies type, and of 

various culture conditions on production of LLO by L. monocytogenes, to determine the 

maximum amount of LLO that can be produced by this organism by using optimized 

conditions, to quantitate production of listeriolysin by heat-shocked vs. nonheat-shocked 

cells, and to determine the heat stability of listeriolysin at various temperatures. 
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MATERIALS AND METHODS 

Bacterial culture conditions for productivity of LLO 

Species As test organisms, L monocytogenes serotype 1 (ATCC 19111) was 

obtained from tine American Type Cuiture Collection in Rockviile, iViaryiand, and L 

monocytogenes Scott A was obtained from tiie National Animal Disease Center in 

Ames, iA. Tlie piating media used were trypticase soy agar (TSA, BBL Becl<ton 

Dici<inson, Cockeysviile, MD) witii 0.6 % yeast extract as a nonselective medium and 

Oxford Agar (OXA, Oxoid, Unipath LTD, Hampsiiire, England) as a selective medium. 

pH At the stationary phase, the pH of the cuiture was detected with pH meter 

(Accumet 910, Fisher Scientific, Pittsburgh, PA) and adjusted to 5.5, 6.0, 6.5 or 7.0 by 

adding 1 N NaOH. After incubation at 37°C for 4 h, each culture was tested for 

hemolytic activity. 

SIngle-tlme glucose addition To determine the effect of glucose on production of 

LLO, 0.1 ml of an 12 h broth culture was inoculated into 100 ml of brain heart infusion 

broth (BHI, Difco Laboratories, Detroit, iVIl) supplemented with 0.5%, 1.0%, or 1.5% 

glucose and incubated at 37°C. Hemolysis activity of LLO was determined for each 

culture every hour. The pH of the culture was monitored and readjusted to 7.0 whenev

er it dropped to 5.5 because low pH has been shown to destroy LLO activity (1 ). 
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Repeat fed-batch procedure Glucose was added to the culture to achieve 0.5% in 

100 ml BHI broth. Hemolysis activity was measured every hour, and the pH readjusted 

to 7.0 whenever it dropped to 5.5. Cells were at 37''C, with the stationary phase being 

reached after 12 h. This time was referred to as 'stage 1'. After 'stage I', 0.5% glucose 

was added until the stationary phase was reached for a second time (referred to as 

'stage 11'). Glucose (0.5 g) was added to the culture broth an additional time until stage 

III was reached (see Figure 1). Therefore, a total of 1.5 g of glucose was added by the 

end of stage III (0.5 g x 3 times = 1.5 g). 

To determine the effect of pH on production of LLO after 'stage 1', 0.5 g of glucose 

was added to the culture after 'stage I' and the pH was adjusted in three ways. In 

method 1, the pH was readjusted to 7.0 whenever it dropped to 5.5 until the stationary 

phase in 'stage IT and again until 'stage III' was reached. In method 2, the pH was 

adjusted to 6.3 whenever it dropped to 5.5. This also was done two times (in 'stage 11' 

and 'stage III'). In method 3, the pH of the BHI culture broth was adjusted to 6.0 but 

glucose was not added. The pH in all methods was detected and adjusted as de

scribed above. 

For the studies involving the effect of incubation time on production of LLO by the 

fed-batch procedure, the pH of the culture in BHI with 0.5% glucose at the stationary 

phase was readjusted to 7.0 whenever it dropped to 5.5. During incubation, the culture 

was assayed for hemolysis at various time intervals of incubation at 37 °C. 

Preparation of crude LLO 

Crude LLO was prepared by modifying the method of Bhal<di et al. (2). Briefly, 
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bacteria were sedimented in a Becl<man J2-21 centrifuge (Beckman Spinco division, 

Palo Alto, CA)(rotor JA-10, 11,000 x g) and tlie supernatant was filtered througti a 0.45 

|im cellulose acetate membrane filter (COSTAR, Cambridge, MA). For inhibition of 

protease, phenylmethylsulfonyl fluoride (SIGMA Chemical co., St. Louis, MO) was 

added as a 1 mM solution. Fifty-three grams of ammonium sulfate (Fisher Scientific, 

Fair Lawn, NJ) was then added per 100 ml of solution to precipitate the proteins, and 

the sample was stirred in an ice bath for 60 min. The precipitate was collected by 

centrifuging at 13,000 x g, resuspended in distilled water (final volume, 70 to 80 ml), 

and diaiyzed with Spectra/For membrane tubing (Spectrum Medical Industries Inc., 

Houston, TX, MWCO : 25,000) overnight against 5 L of 50 mM NaCI-4 mM EDTA at 

4°C. Twenty-five grams of polyethylene glycol (PEG) 4000 (Fisher Scientific, Fair Lawn, 

NJ) was added to 100 ml of sample solution and stirred at 4°C for 30 min. After 

centrifugation at 30,000 x g for 60 min, the supernatant was discarded and the precipi

tate was resuspended in 50 ml distilled water containing 3 mM NaNg and was refrigerat

ed until used. 

Preparation of red blood cells (RBC) for hemolysis assay 

Defibrinated sheep blood (Adam Scientific, Wanwicl<, Rl) was centrifuged at 600 x g 

for 5 min with a Becl<man Model TJ-6 centrifuge. The red blood cells were resuspe

nded in phosphate-buffered saline solution (PBS, pH 7.4) and washed, stirring gently. 

The cells then were centrifugud at 600 x g, and the washing steps were repeated two 

times. The final cell concentration was adjusted to 2.0 x 10® cells per ml of red blood 

cell (RBC) solution in PBS containing 3 mM NaNg, and the resulting solution was stored 
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Hemolysis assay 

The assay was performed as a modified titration method of Bhakdi et al. (2). 

Briefly, samples were diluted with distilled water and 0.5-ml aliquots of each diluted 

sample were added into 0.5 ml of 20 mM dithlothreitol in PBS solution and incubated 

for 10 min in a 37°C water bath to activate the listeriolysin O. One ml of sheep red 

blood cell suspension was added and the mixture was Incubated for 60 min at 37°C. 

After hemolysis, the mixture was diluted to 1:1 with PBS solution and resuspended with 

a vortex mixer for even turbidity of the solution. The turbidity was detected spectropho-

tometrically at 650 nm by using a Spectro 20 spectrophotometer (Bausch & Lomb 

Analytical System Div., Rochester, NY), and the hemolytic activities were calculated as: 

OD3 
Hemolysis % = (1 ) x 100 

OD, 

ODs : difference of optical density at 650 nm between sarnple and 

100% hemolyzed RBC solution 

OD, ; difference of optical density at 650 nm between nonhemolyzed and 

100% hemolyzed RBC solution 

When the RBC solution was not hemolyzed at all, the 00 value was 0.62 ± 0.02. 

Therefore, the dilution ratio of sample solution required for 50% hemolysis of RBC was 

that which resulted in an OD value of 0.31 ± 0.02. 
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Heat-shock treatment of Listeria 

At the stationary phase, 3.5 x 10® Listeria cells per ml of culture broth were heat-

shocked by exposing the cells to 48°C for 2 h and then cooling them to room tempera

ture in an ice bath (7). BHI broth was then added into the heat-shocked culture (1:1) 

and the cells were incubated at 37°C for 4, 8, or 10.5 h. Each sample was assayed for 

hemolysis, and plate counts were done on appropriate agar as described previously. 

Heat treatment of llsterlolysin O 

One ml of crude listeriolysin O solution was heat treated at 48, 55, or 62°C for 

various periods of time in a water bath. After heat treatment, each sample was immedi

ately cooled in an ice bath, and the hemolysin activity was assayed as described 

previously. 
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RESULTS AND DISCUSSION 

Effect of pH on production of LLO 

Listeria monocytogenes serotype 1 and Scott A may have different physiological 

characteristics because they have been isolated from different sources. Serotype 1 has 

been isolated predominantly from meat products and Scott A has been isolated mainly 

from dairy products (8). In this research, we examined whether the serotype responded 

differently to the pH needed for optimum production of LLO In BHI media. We found 

that the hemolytic activity of serotype 1 was greater than that of Scott A (TABLE 1 ) 

since a dilution about 20 times greater than that of the Scott A sample was required to 

achieve the same amount of activity. However, the range of pH required for optimum 

LLO production by serotype 1 and Scott A was about pH 6.0-6.2 and pH 5.8-6.0, 

respectively (Figure 1). However, at pH 7.0, which is an optimum condition for Listeria 

growth, the production of LLO decreased In both strains. 

Effect of culture method on production of LLO 

Some researchers have used 0.5 % glucose as a supplement in BHI for Listeria 

growth (17,18). In these studies, the effect of glucose on growth of this organism was 

tested to determine the relationship between cell growth and LLO production. Glucose 

was added into BHI media at 0.5,1.0, or 1.5% in a single addition procedure. Addition

ally, a repeat fed-batch method was used for more effective recovery of LLO, in which 

glucose was added after the stationary phase was reached and the pH was adjusted to 

various specific levels. In this procedure, 0.5% glucose was added three times 
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TABLE 1. Comparison of LLO fiemoiytic activity between Listeria monocytogenes 
serotype 1 and Scott A strains 

Hemolysis % In RBC solution^ 

D.I.® Serotype 1 D.I. Scott A 

160 98.7 ±0.5^ 8 100.0 

320 70.3 ±3.1 16 62.8 ± 4.6 

640 26.8 ± 3.9 32 26.2 ± 5.1 

^ Hemolytic activity of LLO samples produced in BHI culture after 4 h Incubation at pH 
6.0. 

® Dilution index : reciprocal of dilution ratio. 
® Average liemolysis % of RBC of ttiree trials ± standard devlatlon.incubation period by 

throughout the incubation period by each of 3 methods. As expected, an Increase In 

glucose concentration resulted in an increase In cell growth (Figure 2); it also resulted 

in a decrease in LLO activity by these cells (TABLE 2). The reduction may have 

occurred because of a negative feedback mechanism, in which higher levels of glucose 

caused inhibition of LLO synthesis by the cells. In the repeat fed-batch procedure, 

about a two-fold increase in the concentration of LLO was seen through the three 

stages, compared with the single addition procedure. However, the LLO was produced 

more effectively at stage II than at any other stages of glucose feeding (TABLE 3). 
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1 0 1 5 2 0  25 

Time (h) 

Figure 2. Growth curves of Listeria monocytogenes Scott A in BHI broth grown with 
0.5%, 1.0%, or 1.5% added glucose, or by fed-batch method; In the fed-batch 
procedure, the arrows Indicate point of addition of 0.5% glucose and the pH 
was adjusted to 7.0 whenever it dropped to 5.5 
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TABLE 2. Effect of culture method on production of LLO by Listeria monocytogenes 
Scott A 

Hemoiysis % in RBC solution^ 
D.1.2 

0.5% glucose 1.0% glucose 1.5% glucose fed-batch® 

5 97.9 ± 2.0" 93.6 ±2.1 93.5 ±0.8 98.4 ±1.6 

10 50.0 ±4.0 38.4 ±5.9 27.4 ± 1.9 98.9 ±1.2 

20 19.9 ±4,1 15.1 ±2.5 8.1 ±3.2 59.7±4.8 

^ Hemolytic activity of LLO samples produced in culture after incubation for 4 h at 37°C 
at the stationary phase. 

^ Dilution index : reciprocal of dilution ratio. 
® Repeat fed-batch : pH of the culture was adjusted to 7.0 whenever it dropped to 5.5. 
" Average hemolysis % of RBC of three trials ± standard deviation. 

Effect of pH control on LLO production In fed-batch procedure 

To more effectively recover LLO by neutralization of acidic conditions during 

growth, three methods were used. Method 1 was set up for both cell growth and LLO 

production; method 2 was set up only for more production of LLO but less cell growth 

than method 1, and method 3 was set up just for production of LLO without growth of 

cells. The growth rate of Listeria in method 2 was slower than that of method 1 (Figure 

3). Hemolytic activity of LLO was detected with greater numbers of Listeria regardless 

of the methods used (TABLE 3). Production of LLO was affected more by the number 

of cells in culture than by the pH of the culture. The cell numbers in the early stage of 

method 1 were as high as the numbers at the last stage of method 2 (9.8 Log[CFU/ml]) 
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Growth curves of method 1 and method 2 in stage II (pH of culture; method 
1 ; pH 5.5 ~ pH 7.0, with 0.5% glucose, method 2; pH 5.5 - pH 6.3, with 
0.5% glucose) 
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TABLE 3. Effect of pH on production of LLO by Listeria monocytogenes Scott A in fed-
batcfi culture 

Stage^ D.l.^ 
Hemolysis % in RBC solution 

Stage^ D.l.^ 
Control® Method 1'* Method 2® Method 3® 

1 16 80.8 ± 2.0^ 80.8 ± 2.0 80.8 ± 2.0 80.8 ± 2.0 

32 12.3 ±1.5 12.3 ± 1.5 12.3 ± 1.5 12.3 ± 1.5 

11 16 69.0 ± 2.7 94.5 ± 0.6 96.7 ± 1.6 95.1 ±1.6 

32 -0.5 ± 1.8 57.2 ±1.6 45.4 ± 2.0 31.0 ±3.1 

111 16 ND 96.0 ± 0.5 96.4 ± 0.3 90.0 ± 0.8 

32 ND 54.6 ± 3.5 56.7 ± 1.6 18.7 ±2.5 

^ Point during growth curve at which the culture had reached stationary phase and at 
which glucose was added. 

® Dilution index : reciprocal of dilution ratio. 
^ Sample of the stationary phase of Stage I, pH 7.0. 
" pH of culture : pH 5.5 ~ pH 7.0, 0.5% glucose. 
® pH of culture : pH 5.5 ~ pH 6.3, 0.5% glucose. 
® pH of culture : pH 6.0, no addition of glucose. 
^ Average hemolysis % of RBC of three trials ± standard deviation. 

Therefore, method 1 was more effective than method 2 in production of LLO because, 

even though the hemolysis activity between the two methods was not significantly 

different, a shorter incubation time was required for production of the same amount of 

LLO by method 1 than by method 2 (TABLE 3). In both the control in cells exposed to 
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method 3, the cells did not grow. However, in method 3, a small amount of LLO was 

produced. 

Effect of culture time on LLO production In repeat fed-batch procedure 

Njoku-Obi etal. (17) reported that productivity of LLO varies depending on culture 

time and Listeria species. In general, productivity of LLO is greater at the stationary 

phase, but in some Listeria species, these investigators showed that the hemolytic 

activity decreases during the stationary phase because of instability of this protein, 

caused by oxidation during incubation of the culture. In our studies, serotype 1 and 

Scott A were used to detect the pattern of LLO production in BHI broth with 0.5% 

glucose. Figure 4 shows that, although the growth curves were different between the 

two strains, the maximum hemolytic activity occurred after 2 h at stage II regardless of 

serotype. When glucose was not added to the culture, cell growth did not occur but 

maximum hemolytic activity occurred after 6 h at stationary phase and, after that, the 

activity decreased (TABLE 4). Jenkins et ai reported that LLO, which contains -S-S-

linkages, is deactivated by oxidizing agents (10). It is possible that LLO was affected 

by metabolites such as acids present during cell growth or by oxygen. The pH of the 

culture dropped below 4.8 during incubation, which may also have affected LLO 

production. 

Effect of heat shock on LLO production 

After heat shock in trypticase soy broth with 0.6% yeast extract (TSBYE) at the 

stationary phase, cell growth and LLO production were determined. Figure 5 shows 
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Figure 5. Growtli of lieat-slioci<ed Listeria monocytogenes serotype 1 after dilution (1:1) 
witii BHI broth. Both heat shocked and nonheat-shocked Listeria (control) 
cells were heat-treated at 62''C for 10 min. Total numbers of survivors and 
healthy cells were enumerated by plating onto nonselective media (TSA + 
0.6% yeast extract) 
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TABLE 4. Hemolytic activity of listeriolysin 0 during the incubation time at stage II 
without addition of glucose 

Incubation time(hr)^ Hemolytic activity(%)® 

0 65.5 ± 5.2 

2 74.4 ± 8.1 

4 88.2 ± 4.4 

6 95.1 ±4.2 

8 83.8 ± 3.6 

^ Incubation time during stage II. 
® Dilution index : 160 

that the number of survivors after a 62°C heat treatment for 10 min was significantly 

higher in heat-shocked Listeria immediately after heating (time 0). However, incubation 

at 37°C resulted in an increase in the number of healthy cells, with control cells 

recovering faster than heat-shocked cells. Immediately after heat shock, the hemolytic 

activity of LLO was not detected even in undiluted culture sample, regardless of 

whether the cells were heated at 62°C or not (TABLE 5). This may be because of a 

decrease in the production of LLO as a result of heat shock, or because of Inactivation 

of LLO by the heat shock treatment. McCarthy (15) showed that heat-stressed cells 

were less pathogenic at 10" cells per Immunocompromised mouse than resuscitated 

cells. Within 4 h of incubation after heat shock, the production rate of LLO by 
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TABLE 5. Effect of heat-shock treatment on production of LLO by Listeria 
monocytogenes serotype 1 

Control Heat shocked' 

Time" Not heated heated^ Not heated heated 
(h) 

D.I.^Hemolysisyo® D.I. Hemolysis% D.I. Hemolysis% D.I. Hemolysis% 

0 200 36.5 ±9.7 1 ND® 1 ND 1 ND 

4 400 46.8 ±4.4 10 17.4 ±7.3 40 62.7 ±3.2 1 ND 

8 - 20 59.1 ± 4.4 80 64.2 ±3.1 1 28.1 ±1.8 

10.5 - - 80 59.1 ± 4.4 8 27.5 ±2.7 

' Heat shocked at 48°C for 2 h in BHI broth. 
^ Cells incubated at 37°C after a heat treatment. 
^ Cells heated at 62°C for 10 min. 

Dilution index: reciprocal of dilution ratio. 
® Hemolytic activity of LLO. See 'Materials and Methods'. 
® Not detected. 

heat-shocked cells without heat treatment increased more than 40 fold over the initial 

hemolytic activity, in comparison with a two-fold rate increase for the nonheat-shocked 

controls (TABLE 5). These results agreewith those of Sokolovic (22) who reported that 

heat shocking induced synthesis of LLO in mutants. However, the hemolytic activity of 

control cells was higher than that of heat-shocked cells before and after heating, and 

throughout the time of incubation at 37°C. This delay in the synthesis of LLO by heat-

shocked cells compared with controls was probably due to the fact that heat shock itself 

results in injury of cells even before heating at 62°C. 
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Heat stability of LLO 

LLO is a fieat-labile protein (17). To determine its heat stability, a concentrated 

LLO solution, which is able to hemolyze 50 % of RBC at 1:1,600 dilution, was used. 

According to Farber et al. (7), the heat resistance of Listeria has been known to be 

maximized after a heat shock at 48°C for 2 h, and Sokolovic et al. showed that iisteriol-

ysin is still synthesized by Listeria, even intracellulariy, under heat-shock conditions. 

According to Figure 6, LLO was deactivated rapidly after heating. When the sample 

was incubated at 48°C for 2 h, the hemolytic activity of the culture was not detected 

even without dilution. 

Summary 

Listeria monocytogenes serotype 1 produced more LLO than Scott A. The pH 

range of the culture for niaximum production of LLO by L monocytogenes serotype 1 

and Scott A was determined to be pH 5.8-6.0 and pH 6.0-6.2. The highest amount of 

LLO was obtained by using the repeat fed-batch procedure where 0.5% glucose was 

added than by using the single addition of any concentration of glucose. In the repeat 

fed-batch procedure, the optimum conditions for production of LLO were determined 

when the pH of the culture was readjusted to between 5.5 and 7.0 at stage II using 

method 1. The final, concentrated, crude LLO solution was able to hemolyze 50% of 

RBC solution at a 1:1,600 dilution ratio. 

In food products, the productivity of LLO could vary under different conditions. 

From the results, although the environmental conditions may be optimum for growth of 

the cells, they may not be ideal for production of LLO. Future studies need to be 



94 

• 48 C 
• 55 C 
D 62 C 

I 

1 0 

y = 2.4152 - 0.0548X R = 0.98 

y s 1.7803 - 0.2813x R = 0.99 
y = 1.5-1x R = 1.00 

T 
20 30 40 

Time (min) 

Figure 6. Effect of heat on stability of listeriolysin O at 48, 55, and 62''C 
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conducted on the effect of other growth parameters on the production of LLO by this 

organism, especialiy, to determine whether pH changes above 7.0 affect synthesis of 

this protein. 

Exposure of Listeria to a stress such as heat shock during processing can result in 

an increase in the number of survivors to a subsequent heat treatment (14). This has 

serious Implications for the industry and methods of processing must be designed in 

such a way as to minimize the possibility of this occurring. Heat shocl<ing also seems 

to induce synthesis of LLO. However, this induction does not appear to increase the 

virulence of the organism, since the levels of LLO never exceeded those of nonheat-

shocked controls. Christman et al. (4) found that synthesis of heat-shock proteins by 

Salmonella typhlmurium is necessary for virulence factors to develop. However, this 

does not necessarily mean that virulence of such a pathogen can be enhanced by 

induction of the heat shock response. More research is needed on the effect of 

incubation temperature and atmosphere on the ability of heat-shocked cells to recover 

and synthesize LLO after a heat treatment. In addition, we must determine whether 

any change in virulence factors determined in vitro can occur in a host system, and 

whether these changes are transitory or even reversible. 
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PART III. DEVELOPMENT OF AN ENZYME-LINKED IMMUNOSORBENT 
ASSAY (ELISA) FOR ANALYSIS OF LISTERIOLYSIN O 
PRODUCED BY Listeria monocytogenes 
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ABSTRACT 

Listeriolysin O (LLO) is a heat-labile hemolysin produced by Listeria 

monocytogenes. Its hemolytic activity has been evaluated qualitatively by sodium 

dodecyl sulfate (SOS) electrophoresis and immunoblotting. In this experiment, an 

enzyme-linl<ed immunosorbent assay (ELISA) was developed for quantitative analysis 

of LLO by using Streptolysin O (SLO) and antistreptolysin O (ASO) as the reagents. 

The selected coating and blocking buffers were 0.05 M Tris buffer (pH 8.5) and 0.25% 

casein solution with phosphate-buffered saline solution (PBS) + 0.05% Tween 20, 

respectively. A relationship between antigen and antibody was achieved with 5 mg/ml 

ASO and a 1:1,000 dilution of conjugate. The heat stability of LLO at 48, 62, 72, and 

80°C was examined by using this method. Although the LLO is inactivated easily at 

those temperatures, the protein structure was not affected at temperatures lower than 

80°C for 3 min. 
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INTRODUCTION 

Listeriolysin G [LLC, molecular weight, 60,000 (3)] is a water-soluble, heat-labile 

protein produced by Listeria monocytogenes that possesses cardiotoxic activity. This 

protein is activated by sulfhydryl groups such as sodium thiosulfate, and the primary 

sequence of the protein is almost identical to that of streptolysin O (SLO) (9), which 

means that LLC can be bound by antibodies specific for SLO. Many researchers have 

reported that the gene coding for the hemolysin produced by L. monocytogenes is at 

least partly responsible for the organism's virulence (8,14). When the bacteria escape 

from a host vacuole, this event is mediated partly by the action of LLC, which forms 

pores that enable the organism to escape (10). According to Sokolovic etal. (14), this 

protein seems to be produced even under heat shock conditions and is the only major 

extracellular protein produced at this point. To evaluate LLO activity qualitatively, 

sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and immunoblotting 

using antiLLO antibodies conjugated with an enzyme such as horseradish peroxidase 

have been used (12, 14). However, with these methods, it has been difficult to deter

mine whether LLO is inactivated or actually denatured during a heat treatment such as 

heat shock. Enzyme-linked immunosorbent assay (ELISA) is a method that can be 

used for the quantitative analysis of protein because it is specific as well as accurate (5, 

15). However, it is a procedure that can be expensive inasmuch as it often requires 

preparation of antibodies specific for the antigen being studies. SLO reagent and 

antiSLO are standardized commercial products that have been used in clinical hemolyt

ic titrations. As such, they offer an inexpensive and convenient alternative to the 
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purification of antibody and antigen reagents for tlie measurement of LLO. 

Tiie objectives of this study were to deveiop an ELISA method for the quantitative 

measure of LLO by using commercial ASO and SLO reagents and to determine the 

heat stability of LLO using this method. 
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MATERIALS AND METHODS 

Bacterial culture conditions for production of llsterlolysln 0 

Listeria monocytogenes serotype 1 (ATCC 19111) was obtained from tiie American 

Type Culture Collection in Rockviile, IVID. One milliliter of the strain was incubated in 

500 ml Brain Heart Infusion broth (BHI, Difco Laboratories, Detroit, Ml) supplemented 

with 0.5% glucose at 37°C for 12 h. At the stationary phase of growth, 0.5% glucose 

was added, and the cells were incubated for another 2 h. During incubation, the pH of 

the BHI culture with 0.5% glucose was adjusted to 7.0 and readjusted whenever the pH 

of the culture dropped to 5.5. 

Preparation of crude llsterlolysln O 

Crude listeriolysin O was prepared by a modified method of Bhakdi et al. Bacteria 

were sedimented in a Beckman J2-21 centrifuge (Beckman Spinco division, Palo Alto, 

CA) (rotor JA-IO, 11,000 x g), and the supernatant was filtered through a 0.45-nm 

cellulose acetate membrane filter (COSTAR, Cambridge, MA). For inhibition of 

protease, phenylmethylsulfonyl fluoride (SIGMA Chemical Co., St. Louis, MO) was 

added as a 1 mM solution. Fifty-three grams of ammonium sulfate (Fisher Scientific, 

Fair Lawn, NJ) were then added per 100 ml of solution to precipitate the proteins, and 

the sample was stirred in an ice bath for 60 min. The precipitate was collected by 

centrifuging at 13,000 x g, resuspended in distilled water (final volume, 70 to 80 ml), 

and dialyzed with Spectra/Por membrane tubing (Spectrum Medical Industries Inc., 

Houston, TX, MWCO : 25,000) overnight against 5 L of 50 mM NaCI-4 mM EDTA in 
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the cold room. Twenty-five grams of polyethylene glycol (PEG) 4000 (Fisher Scientific, 

Fair Lawn, NJ) was added to 100 ml of sample solution and stirred at 4°C for 30 min. 

After centrifugation at 30,000 x g for 60 min, the supernatant was discarded, and the 

precipitate was resuspended in 50 ml distilled water containing 3 mlVI NaNg and stored 

in the refrigerator until used. The final solution was able to hemolyze 50% of red blood 

cells (RBC) at 1:1,600 dilution. 

Determination of heat-treated llsterlolysin O 

One milliliter of crude and concentrated llsterlolysin O solution was heat-treated at 

48, 62, 72, and 80°C in a water bath for 3 min. The come-up time for each temperature 

was about 30 sec. The temperature was detected with J type thermocouple (Omega 

Engineering Inc., Stamford, CT) and datalogger (Model LI-1000, LI-COR, Lincoln, NE). 

After heat treatment, each sample was immediately cooled in an Ice bath and diluted 20 

times with 0.05 M Tris buffer (pH 8.5). An equal volume of various concentrations of 

SLO (10, 5, 2.5, or 0 mg/ml) was added. The overall dilution ratio was 1:40. One-

hundred microliter of the mixture was tested for activity by ELISA. 

Indirect ELISA 

Antibody and antigen Streptolysin O (SLO, Difco Laboratories, Detroit, Ml) and 

antistreptolysin 0 (ASO, Difco Laboratories, Detroit, Ml) were used as antigen and 

antibody, respectively. These reagents are shipped in lyophilized desiccated powder 

form. 

Selection of coating buffer Phosphate-buffered saline (pH 7.6) (PBS, Sigma, 
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SIGMA Chemical Co.. St. Louis, MO), 0.05 M Tris buffer (pH 8.5)(Sigma, SIGMA 

Chemical Co., St. Louis, MO), and 0.05 M bicarbonate buffer (pH 9.5) (Sigma, SIGMA 

Chemical Co., St. Louis, MO) were tested for their effect on binding of LLO onto wells 

of an activated microtiter plate (96 wells. Corning Laboratory Sciences Company, 

Corning, NY). One-hundred microliter of 5 mg/ml ASO solution was used, and the 

dilution ratio of antibody conjugated with enzyme used for this experiment was 1:1,000. 

Selection of blocking buffer Point-five percent casein (Sigma Chemical Co., St. 

Louis, MO) and bovine serum albumin (BSA, Sigma Chemical Co., St. Louis, MO) 

solution in PBS buffer containing 0.05% Tween 20 (Sigma, SIGMA Chemical Co., St. 

Louis, MO) were examined to determine which provided more effective blocking of 

unbound antibodies. 

Optimization of concentration of enzyme-conjugated antibody Monoclonal 

antihuman immunoglobulin (y-chain specific) conjugated with GG-5-alkaline phospha

tase (Sigma Chemical Co., St. Louis, MO) was diluted with PBS buffer containing 

0.05% Tween 20 to 1:500, 1:1,000, 1:2,000, 1:3,000, and 1:4,000. One milligram per 

milliliter of p-nitrophenyl phosphate (Sigma Chemical Co., St. Louis, MO) with 1 M 

diethanolamine buffer + 0.5 mM MgClg reaction mixture (pH 9.8) was used as the 

substrate solution. 

Method A modified ELISA was used according to the method of Hornbeck (5). One 

hundred microliter of sample or standard solution was added into the microtiter plate, 

incubated at 37°C for 30 min, transferred to 4°C and incubated for 16 h. The Antigen-

bound microwell was rinsed three times with deionized distilled water, and the wells 

were filled with blocking buffer and incubated for 30 min at room temperature. After the 
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blocking step, the plate was rinsed three times with deionized distilled water. ASO 

solution containing PBS and 0.05% Tween 20 was added into each well and the plate 

was incubated at room temperature for 2 h. After binding of antibody, the plate was 

rinsed three times in deionized distilled water, the wells filled with blocking buffer, and 

incubated for 10 min at room temperature. After blocking, the plate was rinsed three 

times with deionized distilled water. After the final rinse, residual liquid was removed by 

wrapping the plate in tissue paper and gently tapping it face down onto several paper 

towels. As the next step, 100 |xl of alkaline phosphatase-linked antibody solution (anti-

human immunoantibody, SIGMA Chemical Co., St. Louis, MO) was added into each 

well, and the plate was incubated at room temperature for 2 h. After incubation, the 

plate was rinsed three times with deionized distilled water, and 100 ^1 of p-nitrophenyl 

phosphate as a substrate was added as the substrate. The enzymatic reaction was 

carried out at 30°C for 30 min and stopped by addition of 50 |il of 3 N NaOH. The 

optical density was detected at 405 nm by using a Kinetic Microplate Reader spectro

photometer (Molecular Devices, Palo Alto, CA). 
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RESULTS AND DISCUSSION 

Selection of coating buffer 

In general, aqueous diluents at neutral or alkaline pH of various buffer solution 

have been used successfully for ELISA of most proteins, but the coating effect of each 

buffer is different according to the protein. For example, Barlough et al. (1) showed that 

carbonate buffer (which is the most popular coating buffer for ELISA) used to bind 

coronavirus antigens resulted in diffuse and nonspecific staining but that sodium 

phosphate buffer, sodium chloride, or distilled water gave excellent results with that 

antigen. In our study, PBS buffer (pH 7.5), 50 mM Tris buffer (pH 8.5), and 50 mM 

carbonate buffer (pH 9.5) were tested as coating buffers. Figure 1 indicates that Tris 

buffer was the most effective because the slope of the line obtained with this buffer was 

greater (indicating greater SLO binding) and that the optical density without SLO was 

less than with of any other buffers (indicating minimal background). Therefore, we 

selected the 50 mM Tris buffer (pH 8.5) as the coating buffer. 

Selection of blocking buffer 

A 0.25% BSA solution and a 0.25% casein solution were tested for their ability to 

block effectively any residual binding capacity and to prevent nonspecific adsorption 

while enhancing specific interaction of antigen and antibody. In this ELISA method, the 

blocking step was used twice: the first was after binding of SLO and, the second, after 

binding of ASO. TABLE 1 shows that the casein solution was more effective in 

blocking than the BSA solution inasmuch as addition of ASO resulted in lower 



108 

y = 0.1517 + 0.1968X R = 0.99 

y = 0.2386 + 0.1546X R = 0.99 

y = 0.1222 + 0.1453X R = 0.99 

SLO (mg/ml) 

Figure 1. Effect of type of coating buffer on SLO binding (for conditions used, 
see 'MATERIALS AND METHODS') 
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TABLE 1. Comparison of BSA and casein solutions for tlieir blocking effect in ELISA^ 

Optical density at 405 nm 

ASO 0.25 % BSA 0.25 % Casein 

(mg/mi) 1st+2nd^ 2nd" 1st+2nd 2nd 

5.00 0.698 >3.000 0.192 2.720 

2.50 0.164 1.224 0.040 0.641 

1.25 0.031 0.120 0.008 0.022 

0.61 0.008 0.030 0.002 0.012 

^ Tile binding step of SLO was omitted in tiiis experiment. 
^ The blocking steps were done twice; before adding of each concentration of ASO (1st 

step) and after binding of ASO for 2 h (2nd step). 
^ The blocking step was done just after binding of ASO for 2 h (2nd step). 

absorbance readings when casein was used as the blocking buffer when compared with 

BSA. 

Determination of antl-ASO antibody conjugated with alkaline phosphatase by a 
criss-cross matrix analysis 

Serial dilution titration analyses were performed to determine the optimal concen

tration of enzyme-conjugated antibody that would result in detection of SLO. According 

to TABLE 2, a ASO dilution of 1:1,000 resulted in the highest optical density reading at 

250 |.ig/ml ASO, and a dilution of 1:500 resulted in highest optical density at 62.5 |ig/mi 

ASO. Because the concentration of ASO used in our experiments was greater than 

125 |xg/ml, an enzyme dilution rate of 1:1,000 was established. At this dilution, the 
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TABLE 2. Optimization of anti-ASO antibody concentration (conjugated with 
all<aiine pliospiiatase) in ELISA 

Optical density at 405 nm 

ASO |Lig/ml 1:500' 1:1,000 1:2,000 1:3,000 1:4,000 

250 2.528 1.248 0.458 0.367 0.225 

62.5 1.078 0.514 0.180 0.144 0.089 

15.6 0.055 0.021 0.004 0.012 0.005 

3.9 0.007 0.005 0.003 0.003 0.000 

^ Dilution ratio of anti-ASO antibody conjugated with alkaline phosphatase. 

enzymatic activity was 630 units/ml (one unit refers to the amount of enzyme necessary 

to hydrolyze 1.0 nmole of p-nitrophenylphosphate to form p-nitrophenol and inorganic 

phosphate per min). 

Determination of ASO and SLO concentration for the standard curve 

The standard curves of ASO concentration vs. SLO concentration were plotted by 

using the optimal enzyme conjugate concentration and appropriate blocking and coating 

buffer. At 0.63 mg/ml of ASO, the linear relationship was detected at less than 0.63 

mg/ml of SLO, and, at 1.25 mg/ml of ASO, it was detected at less than 1.25 mg/ml of 

SLO. The predicted equations were: 



y = 0.134+ 0.172X 

y = 0.034 + 0.093X - 0.007X® 

y = 0.068 + 0.144X- 0.011X^ 

y = 0.015 + 0.043X- 0.002X2 

111 

1.00) at 5,00 mg/ml of ASO 

1.00) at 2.50 mg/ml of ASO 

1.00) at 1,25 mg/ml of ASO 

1.00) at 0.63 mg/ml of ASO 

(R = 

(R = 

(R = 

(R = 

y: Optical density at 405 nm 

X: The concentration of SLO (mg/ml) 

Therefore, the same concentration of SLO and ASO (1:1) resulted in a linear 

relationship. However, the OD value obtained when less than 1.25 mg/ml of ASO was 

used was too low to detect. Figure 2 shows that less than 5.0 mg/ml SLO at 5.0 mg/ml 

ASO resulted in a linear relationship. Therefore, a concentration of ASO of 5.0 mg/ml 

was selected to be used in determining concentrations of SLO of up to 5.0 mg/ml of 

SLO. 

Heat stability of LLC 

After heating of samples, the absorbance at 405 nm was determined by ELISA. 

The corresponding concentration of LLO was obtained from the standard curve of 

absorbance vs. SLO concentration (Figure 2). Concentrations of LLO in samples 

heated at 48 through 72°C showed similar values, whereas samples detected at 80''C 

had significantly lower LLO concentration (Table 3). 

In addition, the concentrations of LLO of the heat-treated samples were less than 

that of the standard curve of 5 mg/ml of ASO, which indicates that there was an 
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1.0 

5.0 mg/ml ASO 
2.5 mg/ml ASO 
1.25 mg/ml ASO 
0.63 mg/ml ASO 

0.8-

0.6-
>• 

0.4 -

a. 

0.2 -

0.0 
0 2 3 1 4 5 6 

SLO concentration (mg/ml) 

Figure 2. Standard curves of SLO on ASO concentration (The dilution ratio of 
antiASO antibody conjugated with enzyme was 1:1,000) 



113 

TABLE 3. Effect of heat treatment on stability of LLO 

25=0 48°C 62°C 72=0 80°C 

LLO 
(mg/ml)^ 0.18 ±0.02^ 0.17 ±0.03 0.17 ±0.05 0.15 ±0.03 0.05 ± 0.02 

^ Corresponing concentration of LLO was calculated from the standard curve by using 
SLO (Figure 2). 

^ Average values of three replications ± standard deviation. 

interference effect in the sample solutions against detection of LLO. This interference 

could be attributable to possible binding of some components onto the wells, essentially 

competing with antibodies. Also, protein-protein interactions in the absorption process 

could occur (known as 'protein-stacking'). Because these are not stable, detachment of 

the protein from the surface could result (7). In this experiment, the interference was 

defined as: 

The interference (%) = 100 - (slope of sample/slope of SLO standard curve) 

The interference percentages of the samples heated at 48, 62, and 72°C were 

calculated to be in the range of 19.8 - 24.8%, whereas the sample heated at 80°C 

resulted In the least interference % (14.5%). From these data, the inhibitors can be 

denatured or inactivated by heating to decrease the interference effect. 
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Summary 

The optimal conditions for quantitative determination of LLO by an ELISA method 

were established. The selected coating buffer and blocking buffer were 0.05 M Tris 

buffer (pH 8.5) and 0.25% casein solution in PBS buffer with 0.05% Tween 20. The 

optimal dilution ratio of anti ASO antibody conjugated with alkaline phosphatase was 

1:1,000, and the optimal concentration of ASO was 5 mg/ml. The amount of LLO in 

heat-treated samples was analyzed by ELISA using these conditions. According to the 

results, the structure of LLO was stable at temperatures less than 80°C, at which it is 

inactivated (11). 

In general, evaluation of the hemolytic activity of listeriolysin of Listeria 

monocytogenes is usually determined in vitro by the CAMP test in BHI agar by using 

sheep blood cells for p-hemolysis (4, 13) and by microtitration assays (2). These 

methods do not offer an accurate measure of LLO produced because conditions such 

as pH and presence of oxidant often affect them (3, 6). Assays such as ELISA provide 

a quantitative measure of the production of LLO while not being affected by these 

factors. In this ELISA, the effective concentration range of SLO was 5 mg/ml through 

0.156 mg/ml. The protein composition in SLO was analyzed to be 48% of the total. 

Therefore, the minimum concentration of SLO that can be detected by this test can be 

estimated to be less than 0.075 |xg/|il. Although ELISA does not measure a hemolytic 

activity by itself, ELISA coupled to hemolytic assays can provide an indication of activity 

where the sensitivity or accuracy of hemolytic assays may be questionable. 
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SUMMARY AND CONCLUSIONS 

Recently, concerns about the prevalence of Listeria monocytogenes in foods have 

been increasing. Detection of this pathogen In many food products has prompted 

recalls and has led to staggering financial losses for the Industry. According to a 

survey by Todd (1989), even though the estimated cases of listeriosis were lower in 

comparison with other pathogens, he estimated that the number of deaths per year due 

to this organism was higher than by any other pathogen, and that the average cost per 

case for listeriosis was estimated to be $12,520 In the United States. 

In the food Industry, the process that is most commonly used to increase food 

quality and shelf-life Is heating. In the heat treatment of foods, such as in precooking of 

ham or sausage, or in pasteurization of milk, Listeria may be exposed to a heat shock 

during processing and thus may become more heat resistant to a subsequent heat 

treatment. In addition, the cells may become more virulent, which has serious implica

tions for the industry. It Is imperative that processing methods be designed In such a 

way as to minimize the possibility of this occurring. 

Murray and Young (1992) suggested that pathogens can adapt to hostile conditions 

such as heating through changes in gene expression. In heat processing, a slow rate 

of heating during come-up time or pre-heating for a short time can cause an increased 

heat resistance of L. monocytogenes because of production of heat shock proteins, and 

virulence can also be increased because of increased production of listerioiysin. More 

research is needed on the effect of environmental stresses like heat shock on the 

survival and virulence of foodborne pathogens. In particular, we must determine 

whether the increase In virulence factors translates to a host system, and whether this 
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increase in virulence is transitory or even reversible. 

In these studies, the conclusions are: 

1) The heat resistance of L monocytogenes can vary according to subspecies of 

the organism, growth state, packaging atmosphere, storage time of sample, and heating 

rate during the heat treatment. In the case of ground pork, serotype 1 was more 

resistant than Scott A, and heat-shocking of both subspecies increased the ability of the 

cells to survive a heat treatment at 62°C in ground pork compared with nonheat-

shocked cells. Heating of Listeria in anaerobic conditions resulted in lower number of 

survivors compared to cells heated in aerobic packaging in ground pork. The rate of 

heating is also a very important factor in heat resistance of this organism. According to 

results presented here, a heat rate of 1.3 °C/min resulted In a significant increase in 

survival of cells exposed to a heat treatment compared with cells heated at a rate of 8.0 

°C/min. Therefore, a shorter preheating time during heat treatments such as pasteur

ization should be required to minimize the heat resistance of pathogens as well as to 

increase food quality. 

During storage of the ground pork, the heat-injured L monocytogenes cells were 

recovered more rapidly in vacuum packaging although the total number of cells was 

lower than control in aerobically packaged ground pork. In addition, the number of cells 

after the maximum growth in vacuum-packaged ground pork decreased slower than 

pork packaged aerobically. Some antioxidants possess antimicrobial activity, while 

primarily used to prevent oxidation of fats. Payne et al. (1989) indicated that the 

antimicrobial effect also varied according to type of antioxidant and concentration. 

However, from these studies, antioxidant at the allowed concentration by FDA did not 
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affect significantly ttie growth of Listeria during storage at 7 and 30°C. 

2) In designing a heating process for food products information about the heat 

resistance of pathogens such as Listeria should be considered. Various growth condi

tions and methods were studied to determine the optimal conditions for maximum 

production of LLO by L. monocytogenes. The maximum amount of LLO was obtained 

by L monocytogenes serotype 1 by using the fed-batch method with B H 1+0.5% 

glucose. The pH range of the culture was pH 5.5 through 6.5. The final, concentrated, 

crude LLO solution was able to hemolyze 50% of RBC solution at 1:1,600 dilution ratio. 

In food products, the productivity of LLO could be vary under different conditions. From 

these results, environmental conditions that are optimum for cell growth and reproduc

tion may not be optimal for LLO production. 

Even though the concentrated, crude LLO solution was able to hemolyze 50% of 

RBC solution at a 1:1,600 dilution ratio, LLO was not stable at temperatures greater 

than 62°C, and LLO was easily deactivated at 48°C. However, it was produced by 

Listeria cells exposed to 48°C for 2 hrs at a faster rate than by nonheat-shocked cells, 

even after a heat treatment. However, the total activity of LLO was higher in nonheat-

shocked cells than heat-shocked cells. 

3) To evaluate the virulence of heat-shocked cells, the hemolytic activity of L 

monocytogenes is usually determined in vitro by the CAMP test in BHI agar by using 

sheep blood cells for p-hemolysis (Groves and Welshiemer, 1977, and Skalka et ai., 

1982) or by microtitration assays (Bhakdi et ai. 1984). But, both methods do not offer 

an accurate measure of hemolysin produced because conditions such as pH and 
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presence of oxidant often affect them (Geoffioy eta!., 1987 and Jenkins etal., 1964). 

Therefore, quantitative analysis methods as well as qualitative methods should be 

performed. Assays such as ELISA provide a quantitative measure of the production of 

LLO while not being affected by these factors. In this study, the optimal conditions for 

quantitative determination of LLO by an ELISA method were established. The selected 

coating buffer and blocking buffer were 0.05 IVI Tris buffer (pH 8.5) and 0.25% casein 

solution in PBS buffer with 0.05% Tween 20. The optimal dilution ratio of anti ASO 

antibody conjugated with alkaline phosphatase was 1:1,000, and the optimal concentra

tion of ASO was 5 mg/ml. In this ELISA, the effective concentration range of SLO was 

5 mg/ml through 0.156 mg/ml. The protein composition in SLO was analyzed to be 

48% of the total. Therefore, the minimum concentration of SLO that can be detected by 

this test can be estimated to be less than 0.075 ng/^l. By using this ELISA, the 

structure of LLO appeared to be stable at temperatures less than 80°C, at which it is 

inactivated. Although ELISA does not measure hemolytic activity by itself, ELISA 

coupled to hemolytic assays can provide an indication of activity where the sensitivity or 

accuracy of hemolytic assays may be questionable. 

Listeriosis can not be prevented solely by improved hygienic practices because of 

the ubiquitousness of the organism. However, it is possible to stop the reproduction of 

L monocytogenes during and after food processing if we apply an appropriate heating 

process. In heat processing, a number of cells undergo injury when they are subjected 

to the stress of heating and the effect can vary according to heating conditions. More 

intense heating conditions should be used in fresh pork than in old pork due to the 

ability of Listeria to survive in the former. Faster heating rates In come-up time and 
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vacuum packaging sliould required for more effective pasteurization, in particular, slow 

fieating and pre-heating can cause the increase of thermotolerance of Listeria cells and 

thus increase the number of survivors during subsequent heat treatment. Moreover, 

heat shock3ri L. monocytogenes can be more virulent because it can produce listeriol-

ysin at a faster rate than nonheat-shocked cells. In addition, the importance of 

microbial injury to the safety of food products should not be underestimated. During 

storage of processed products containing ground pork, injured Listeria cells can recover 

more rapidly in vacuum packaging conditions, but storage at low temperature and the 

use of appropriate concentration of antioxidants can inhibit recovery and growth of cells. 

For further research, we need to study the combined effect of meat age, vacuum 

packaging, and heating rate during processing, which may be the most effective way to 

destroy L monocytogenes in meat products. 

In addition, basically, little is known concerning the underlying mechanisms 

involved in the injury and recovery processes nor is there much information concerning 

the nutritional and physical conditions necessary for recovery of injured cells and more 

information is needed concerning the minimum temperature for recovery because this 

organism is found in refrigerated foods. Considering the importance of L. 

monocytogenes today, the heat resistance and recovery during meat processing is a 

problem that warrants further study. 
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