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ABSTRACT

Computational methods are rapidly gaining importance in the field of structural biology,

mostly due to the explosive progress in genome sequencing projects and the large disparity

between the number of sequences and the number of structures. There has been an exponen-

tial growth in the number of available protein sequences and a slower growth in the number

of structures. There is therefore an urgent need to develop computed structures and identify

the functions of these sequences. Developing methods that will satisfy these needs both ef-

ficiently and accurately is of paramount importance for advances in many biomedical fields,

for a better basic understanding of aberrant states of stress and disease, including drug dis-

covery and discovery of biomarkers.

Several aspects of secondary structure predictions and other protein structure-related pre-

dictions are investigated using different types of information such as data obtained from

knowledge-based potentials derived from amino acids in protein sequences, physicochemical

properties of amino acids and propensities of amino acids to appear at the ends of secondary

structures. Investigating the performance of these secondary structure predictions by type

of amino acid highlights some interesting aspects relating to the influences of the individ-

ual amino acid types on formation of secondary structures and points toward ways to make

further gains. Other research areas include Relative Solvent Accessibility (RSA) predictions

and predictions of phosphorylation sites, which is one of the Post-Translational Modification

(PTM) sites in proteins.

Protein secondary structures and other features of proteins are predicted efficiently, reli-

ably, less expensively and more accurately. A novel method called Fast Learning Optimized

PREDiction (FLOPRED) Methodology is proposed for predicting protein secondary struc-



xxi

tures and other features, using knowledge-based potentials, a Neural Network based Extreme

Learning Machine (ELM) and advanced Particle Swarm Optimization (PSO) techniques that

yield better and faster convergence to produce more accurate results. These techniques yield

superior classification of secondary structures, with a training accuracy of 93.33% and a test-

ing accuracy of 92.24% with a standard deviation of 0.48% obtained for a small group of

84 proteins. We have a Matthew’s correlation-coefficient ranging between 80.58% and 84.30%

for these secondary structures. Accuracies for individual amino acids range between 83% and

92% with an average standard deviation between 0.3% and 2.9% for the 20 amino acids. On a

larger set of 415 proteins, we obtain a testing accuracy of 86.5% with a standard deviation of

1.38%. These results are significantly higher than those found in the literature.

Prediction of protein secondary structure based on amino acid sequence is a common

technique used to predict its 3-D structure. Additional information such as the biophysical

properties of the amino acids can help improve the results of secondary structure predic-

tion. A database of protein physicochemical properties is used as features to encode protein

sequences and this data is used for secondary structure prediction using FLOPRED. Pre-

liminary studies using a Genetic Algorithm (GA) for feature selection, Principal Component

Analysis (PCA) for feature reduction and FLOPRED for classification give promising results.

Some amino acids appear more often at the ends of secondary structures than others. A

preliminary study has indicated that secondary structure accuracy can be improved as much

as 6% by including these effects for those residues present at the ends of α-helix, β-strand and

coil.

A study on RSA prediction using ELM shows large gains in processing speed compared

to using support vector machines for classification. This indicates that ELM yields a distinct

advantage in terms of processing speed and performance for RSA. Additional gains in accu-

racies are possible when the more advanced FLOPRED algorithm and PSO optimization are

implemented.

Phosphorylation is a post-translational modification on proteins often controls and regu-

lates their activities. It is an important mechanism for regulation. Phosphorylated sites are



xxii

known to be present often in intrinsically disordered regions of proteins lacking unique ter-

tiary structures, and thus less information is available about the structures of phosphorylated

sites. It is important to be able to computationally predict phosphorylation sites in protein se-

quences obtained from mass-scale sequencing of genomes. Phosphorylation sites may aid in

the determination of the functions of a protein and to better understanding the mechanisms

of protein functions in healthy and diseased states. FLOPRED is used to model and predict

experimentally determined phosphorylation sites in protein sequences. Our new PSO opti-

mization included in FLOPRED enable the prediction of phosphorylation sites with higher

accuracy and with better generalization. Our preliminary studies on 984 sequences demon-

strate that this model can predict phosphorylation sites with a training accuracy of 92.53% , a

testing accuracy 91.42% and Matthew’s correlation coefficient of 83.9%.

In summary, secondary structure prediction, Relative Solvent Accessibility and phospho-

rylation site prediction have been carried out on multiple sets of data, encoded with a variety

of information drawn from proteins and the physicochemical properties of their constituent

amino acids. Improved and efficient algorithms called S-ELM and FLOPRED, which are

based on Neural Networks and Particle Swarm Optimization are used for classifying and

predicting protein sequences. Analysis of the results of these studies provide new and inter-

esting insights into the influence of amino acids on secondary structure prediction. S-ELM

and FLOPRED have also proven to be robust and efficient for predicting relative solvent

accessibility of proteins and phosphorylation sites. These studies show that our method is

robust and resilient and can be applied for a variety of purposes. It can be expected to yield

higher classification accuracy and better generalization performance compared to previous

methods.
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PART I

GENERAL INTRODUCTION
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Computational methods are rapidly gaining importance in the field of structural biology,

mostly due to the explosive progress in genome sequencing projects. This has resulted in

exponential growth in the number of available protein sequences with large numbers having

unknown structures and unknown functions. There is an urgent need to identify the structure

and function of these sequences with higher efficiency and accuracy. Developing methods

that will satisfy these needs is of paramount importance for advances in many biomedical

fields, including drug discovery and discovery of biomarkers, for a better basic understand-

ing of aberrant states of stress and disease.

Proteins are the essence of all living beings. They perform a variety of biological functions

and are essential for the well being of their hosts. Malfunctioning or unfolding of proteins can

result in various diseases in humans and other organisms. Knowledge of protein functions

can help attain various goals such as:

• Better medical care and quality of life for humans.

• Conduct studies for drug development and better understanding of genomes that im-

pact health and well being.

• Conduct studies in genetic engineering of plants and animals for productivity and man-

ufacture of safe industrial products that might impact humans and the environment.

Various factors influence protein functions, such as a protein’s native structure, informa-

tion coded in its constituent amino acid sequences and its interactions with the surrounding
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solvent environment which is influenced by the Relative Solvent Accessibility (RSA) values

of its residues. Methods which can predict protein structure and other properties which im-

pact protein interactions, such as relative solvent accessibility and phosphorylation, occupy a

central important role in structural biological research.

1.2 Specific aims of this study

The primary goal of our studies has been to predict protein secondary structures and

other features of protein sequences, such as relative solvent accessibility and phosphoryla-

tion, more accurately, efficiently and more reliably compared to existing algorithms found in lit-

erature. Considering the large amount of data that needs to be processed, another important

goal was to develop an algorithm which would be cost effective, simple and fast, which will

run without large demands on resources and provide prediction results within a reasonable

amount of time. To achieve these goals, a novel method called Fast Learning Optimized Pre-

diction (FLOPRED) methodology is proposed for predicting protein secondary structure and

other protein properties. Knowledge-based potentials and other sequence related informa-

tion such as physicochemical properties of amino acids are encoded as features in the data

set. FLOPRED methodology uses a modified version of a neural network algorithm called

Extreme Learning Machine (ELM) which is extremely fast compared to a traditional neural

network. The parameters of ELM are optimized using an advanced form of Particle Swarm

Optimization (PSO).

Several aspects of secondary structure prediction and protein related features were inves-

tigated using different types of data as listed below:

• Secondary structure prediction using data derived from knowledge-based potentials in

protein sequences and FLOPRED algorithm. We have been successful in achieving high

testing accuracies exceeding 90%, as discussed in Section 4.4 on page 86

• Secondary structure prediction using a database of physical and chemical properties of

amino acids AAindex (Kawashima et al., 1999). We find that secondary structures can
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be predicted with testing accuracy of 70% using only these properties as features, as

discussed in Section 6.3 on page 125.

• Study of secondary structure prediction using the propensity of amino acids to appear

at the ends of secondary structures (Richardson and Barlow, 1999; Duan et al., 2008).

We find that secondary structure prediction accuracies can be improved by at least 6%

by using these propensities, as discussed in Section 7.6 on page 139.

• Prediction of Relative Solvent Accessibility (RSA) of proteins. Our results are compara-

ble to others in the literature with testing accuracies between 60% and 89%. This study

mainly illustrates the rapid speed of ELM, which is several times faster than existing

algorithms, as discussed in Section 9.2 on page 161.

• Prediction of phosphorylation sites, which is one of the Post-Translational Modification

(PTM) sites in proteins. We find that phosphorylation sites can be predicted with a

testing accuracy of 91.42%, as discussed in Section 10.3 on page 173.

The FLOPRED method was used on each of the above aspects of protein sequences and

properties, to build and develop probabilistic models for protein structure and function pre-

dictions. All the experiments that were performed gave results that were higher than found

in literature for similar studies; indicating that the Fast Learning Optimized Prediction method-

ology (FLOPRED) is robust and reliable when applied to a variety of data, encoding a variety

of protein amino acid content, properties and functions.

1.3 Contributions of this study

1.3.1 Highly accurate prediction of protein secondary structures

The main contribution of this work is the prediction of protein secondary structures with

higher accuracy and efficiency compared to existing algorithms found in literature.
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1.3.2 Development of an efficient computational methodology

One contribution of this work is the development of an efficient and robust computational

methodology called FLOPRED to make predictions related to protein secondary structures

and other protein features. In addition, FLOPRED is expected to be cost effective, simple to

use, run without large demands on resources, provide prediction results within a reasonable

amount of time and yield higher classification accuracies. The FLOPRED technique can have

a wide variety of applications in bioinformatics and can be used to obtain higher accuracies

in multi-class prediction and classification problems on a variety of data encoding protein or

genetic information.

1.4 Knowledge-based methods used in this study

The various knowledge based methods used in this thesis are discussed below. A detailed

description of the methods and optimization, such as ELM-PSO, FLOPRED and PSO, which

are used throughout this study are discussed in this chapter. A description of other methods

such as GA and PCA will be given when they are actually applied in the studies detailed in

the following chapters. The methods used are as follows:

• An Extreme Learning Machine classifier (ELM-PSO) (Suresh et al., 2010; Saraswathi

et al., 2011) based on neural networks. FLOPRED is an improved version of (ELM-

PSO).

• Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995; Fernández-Martínez

and García-Gonzalo, 2008) based on the natural behavior of individuals in groups.

• Genetic Algorithm (GA) (Goldberg, 1989) based on evolutionary search techniques.

• Principal Component Analysis (PCA) (Pearson, 1901; Fernández-Martínez et al., 2010)

which performs an orthogonal decomposition of a given data to derive its principal

uncorrelated components.
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Figure 1.1 A single layer Neural Network

This figure shows a SLFN that has inputs that are mapped to outputs. We have one input
layer followed by one hidden layer and an output layer. The input layer presents each amino
acid, encoded as 27 knowledge-based potential features (P1, (P2, (P3, ...(P27), which are nor-
malized to have values between 0 and 1. The hidden layer has weights (W11) and biases (b11),
which are the parameters of the network. Many such hidden layer units will be used where 11

indicates first layer, first weight, first bias and 21 indicates second layer, first weight for the neural
network. Any non-linear activation function can learn N distinct observations by tuning the
input weights and the number of hidden neurons. Activation functions such as sigmoidal and
Gaussian functions can be used for the hidden neuron layer which outputs a = logsig(Wp+b),
while a linear activation function is used for the output neurons. In the ELM network, a sec-
ond set of weights and biases are analytically calculated using the Moore-Penrose inverse matrix.
The calculated parameters are learned during training and stored for later use during testing.
The output layer has three units (only one shown) which gives a vector of three real values
(output), one for each of the three secondary structures. The maximum of these three values
is considered to be the predicted structure for the residue of interest. In this figure the third
value is the highest, and it will be assigned as coil (C).

1.4.1 Extreme Learning Machine classifier

The Extreme Learning Machine classifier called ELM-PSO consists of two units, which

are the Single Layer Feedforward Network (SLFN) based Extreme Learning Machine (ELM)

algorithm and the Particle Swarm Optimization (PSO) algorithm that is used to tune the

parameters of the ELM.

1.4.1.1 Single Layer Feedforward Networks

Neural networks such as Single Layer Feedforward Networks (SLFN) have the capability

of approximating an existing function which relates a set of inputs to the outputs, to within a
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small error β. A SLFN with N hidden neurons and randomly chosen input weights can learn

a network with N distinct observations to within a small error, (Huang and Babri, 1998).

SLFN use slow gradient based methods for learning and tuning their parameters. An SLFN

network can be trained on a finite set of data, which has at most N hidden neurons. Any

non-linear activation function can learn N distinct observations with zero error. In theory,

this is possible if the input weights that connect the input layer and the hidden layers can

be adjusted or tuned for all these networks. These weights and the bias form the parameters

of these SLFN (Figure 1.1). If these weights are iteratively adjusted using traditional gradient

based methods, there will be a dependency between different layers of parameters. This can re-

sult in improper learning, convergence to local minima and the need for many more iterations

to reach good generalization performance.

1.4.1.2 Extreme Learning Machine

ELM is a modified version of Single Layer Feed-forward Network (SLFN) where the in-

put weights are chosen randomly and the output weights are calculated analytically. Activa-

tion functions such as sigmoidal and Gaussian functions can be used for the hidden neuron

layer, while a linear activation function is used for the output neurons. ELM is a fast and

simple algorithm compared to traditional Neural Networks and is capable of finding the best

results using smaller resources. If the parameters of SLFN (input weights and the bias of the

hidden layer) are randomly chosen, SLFNs become a linear system in which the output weights

can be determined analytically through a Moore-Penrose generalized pseudo-inverse opera-

tion of the hidden layer output matrices. This improved algorithm is called the Extreme Learning

Machine. A comprehensive overview of ELM was given by Huang et al., in (Huang et al.,

2006).

ELM has better generalization performance since the norm of its weights is small (Huang

et al., 2006). Theoretically, ELM speeds up computations considerably, providing for bet-

ter generalization performance and enabling extremely fast speeds during processing. On

comparative studies (Huang et al., 2006), ELM show that they can do as well or better than
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traditional methods such as Support Vector Machines (SVM), while enabling faster compu-

tations compared to other Feedforward networks. We perform a comparative study using a

Sparse-ELM called S-ELM (Suresh et al., 2010) which gives much faster performance speed

as compared to Support Vector Machines as discussed in 9.1 on page 157. The S-ELM is a

modified form of ELM which works well for data that are imbalanced, where the number of

features exceed the number of samples that are available for modeling. The features of the

ELM can be summarized as having:

• The smallest training error.

• Smallest norm of weights.

• Best generalization performance.

• Extremely rapid convergence compared to other neural networks.

1.4.1.3 Optimization of Extreme Learning Machine

If the number of training samples N is equal to the number of hidden neurons then the

network can approximate the training parameters with zero error. For very large data sets,

however, it will be computationally intensive to use a large number of hidden neurons. Hence

it is necessary to approximate the parameters to obtain outputs close to the observed solution

with minimum error. So, to train a SLFN with fixed input weights Wi, bias bi, and a single

hidden layer, we only need to find the least squares solution that minimizes the error. The

ELM algorithm minimizes this error by tuning its parameters using PSO, as explained next.

1.4.1.4 ELM-PSO algorithm

It has been shown that optimal selection of ELM parameters (input weights, bias values

and hidden neurons) can minimize errors and Particle Swam Optimization (PSO) can give

much improved prediction results (Suresh et al., 2010; Saraswathi et al., 2011). ELM-PSO

consists of the Extreme Learning Machine (ELM) classifier as the main algorithm, which uses

a set of training samples to build a model. The weights from the hidden layer to the output
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layer are analytically calculated. During the training phase, the PSO is called upon to opti-

mize the parameters, such as the weights, the number of hidden neurons and the biases of

the ELM, which result in improved classification accuracy. These parameters are stored and

used during the testing phase. A simple PSO algorithm is used for these initial studies.

1.4.1.5 Fast Learning Optimized Prediction methodology (FLOPRED)

The ELM-PSO was used on several data sets initially that yielded promising results. Later

on, an improved version of ELM-PSO, named Fast Learning Optimized Prediction methodol-

ogy (FLOPRED), which combines the simplicity of ELM and powerful PSO algorithms with opti-

mized and improved search techniques was developed for advanced studies in our research. The

ELM and the advanced PSO algorithms are described next.

1.4.1.6 Extreme Learning Machine algorithm

Let V be H × n input weights, b be H × 1 bias values for each hidden neuron and W be

C ×H output weights, for a multi-category classification (C-distinct classes) problem. If we

have N observations (Xi , Ti , i = 1, 2, . . . , N), the outputs of the ELM network with H hidden

neurons can be defined as,

yk =

H∑
j=1

wkjGj (V, b,Xi) , k = 1, 2, · · · , C (1.1)

where Gj (.) is the output of the jth hidden neuron and Gj(.) is the activation function.

For sigmoidal hidden neurons, the output of jth hidden neuron Gj(.) is defined as

Gj(V, b,Xi) = tanh

(
bj +

N∑
k=1

vjkx
k
i

)
, j = 1, 2, · · · , H (1.2)

In the case of a radial basis function (RBF), the output of the jth Gaussian neuron Gj(.) is

defined as

Gj(V, b,Xi) = e

−||Xi−Vj ||
2b2

j , j = 1, 2, · · · , H (1.3)

where b acts as the width of the Gaussian hidden neuron. Equation (1.1) can be written in

matrix form as
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Ŷ = W Yh (1.4)

where Yh is a HbyN matrix, which is defined as,

Yh =


G1 (V, b,X1) G1 (V, b,X2) · · · G1 (V, b,XN )

...
...

...
...

GH (V, b,X1) GH (V, b,X2) · · · GH (V, b,XN )

 (1.5)

The target (tki ) is defined as

tki =

 1 if ci= k, k = 1, 2, . . . ,C,

−1 otherwise,
(1.6)

where ci is the class label for Xi.

In the ELM algorithm, the input weights (V ) and bias (b) are chosen randomly for a given

number of hidden neurons. By assuming the network output (Y ) is equal to the coded class

label (T ), the output weights (W ) are analytically calculated as,

W = Y Y †h (1.7)

where Y †h is the Moore-Penrose generalized pseudo-inverse of the hidden layer output matrix

Yh.

In summary, the simple steps involved in the ELM algorithm are:

• Given training samples and class labels (Xi, Yi), select the appropriate activation func-

tion G(.) and the number of hidden neurons;

• Randomly select the input weights (V ), bias (b) and calculate the output weights W

analytically where W = Y Y †h .

• Use the calculated weights ( W,V, b) for estimating the class label. We try to minimize

the error between the observed and predicted values during training and select those

weights which give the best classification accuracy. The final performance depends on
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the choice of these parameters since overtraining or under-training can result in poor

test results. These are the values that are tuned by the PSO algorithm.

• The estimated class label is calculated as

ĉi = arg max
k=1,2,...,C

yki . (1.8)

Random selection of input weights (V ) and bias (b) affects the performance of the ELM

multiclass classifier significantly (Suresh et al., 2010) resulting in large variances in test-

ing accuracies. Proper selection of ELM parameters (input weights, bias values, and

hidden neurons) influences the performance (Saraswathi et al., 2011) of the ELM multi-

class classifier favorably by minimizing the error defined as:

{H∗, V ∗, b∗} = arg min
H,V,b
{Y − T} (1.9)

where Y is the observed class value and T is the calculated output value of the class,

for a given set of hidden neurons H and input parameters V and b. The best weights

and bias values (marked with *) for the ELM can be found using search techniques and

optimization methods that are not very computationally intensive. In this study, we use

Particle Swarm Optimization for tuning the ELM parameters (H,V, b).

1.4.2 Particle Swarm Optimization

Particle Swarm Optimization (Kennedy and Eberhart, 1995; Fernández-Martínez and García-

Gonzalo, 2008; Fernández-Martínez et al., 2008; Fernández-Martínez and García-Gonzalo,

2010) is a global optimization algorithm that it is based on a sociological model to analyze

the natural behavior of individuals in groups, such as a flock of birds that fly as a group to

reach their nests. The main feature of this algorithm is its apparent simplicity when applied

to solve optimization problems. The algorithm consists of the following steps:

1. Individuals, known as particles, are represented by vectors whose length is the num-

ber of degrees of freedom of the optimization problem, which is the dimension of the
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problem. This is the only prior knowledge we require to solve any optimization prob-

lem. While building the model we look for solutions in this search space as shown in

Figure 1.3 on page 19.

2. We start by randomly initializing the position (x0
i ) and velocities (v0

i ) of a population

of particles. Generally, the particles try to position themselves through intelligent sam-

pling of a prismatic volume in the model space. The velocities are the perturbations of

the model parameters needed to find the global minimum (assuming that it does exist

and is unique).

3. Initially the velocities are set to zero, or, they might be randomized with values not

greater than a certain percentage of the search space in each direction.

4. A misfit or cost function is evaluated for each particle of the swarm in each iteration,

e.g. the error between the observed and expected value could be the misfit. We might

try to minimize this error and use this value to measure fitness. As time advances, the

position and velocity of each particle is updated, which is a function of its own misfit

and the misfit of its neighbors.

5. At time-step k+ 1, the algorithm updates positions
(
xk+1
i

)
and velocities

(
vk+1
i

)
of the

individuals as follows:

vk+1
i = ωvki + φ1(g

k − xki ) + φ2(l
k
i − xki ),

xk+1
i = xki + vk+1

i

(1.10)

with

φ1 = r1ag φ2 = r2al r1, r2 → U(0, 1) ω, al, ag ∈ R. (1.11)

lki is the best position found so far by ith particle and gk is the global best position

with respect to the whole swarm (or within a neighborhood if a local topology is used).

ω, al, ag are called the inertia and the local and global acceleration constants, and these

are the parameters we have to tune for the PSO to achieve convergence. r1, r2 are uni-

form random numbers used to generate the stochastic global and local accelerations,
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φ1 and φ2. Due to the stochastic effect introduced by these numbers PSO trajectories

should be considered as stochastic processes. The deterministic trajectories of the PSO

are fully analyzed in (Fernández-Martínez et al., 2008), which is important to under-

stand the capabilities of the PSO algorithm.

Particle Swarm Optimization is a double discrete gradient method as shown in Figure 1.3

on page 19, with random effects introduced in the global and local acceleration constants, by

uniform random numbers r1, r2. The physical representation of the PSO algorithm can be

interpreted as a damped mass-spring system as shown in Figure 1.4 on page 20, with unit

mass, damping factor, 1 − ω, and stochastic stiffness constant, φ (Fernández-Martínez and

García-Gonzalo, 2008):
x′′i (t) + (1− ω) x′i(t) + φxi(t) = φ1g (t) + φ2li (t) , t ∈ R,

xi(0) = xi0,

x′i(0) = vi0,

(1.12)

In this model the force term is composed of the global and local attractors, g (t) and li (t) .

The spring-mass analogy was used (Fernández-Martínez and García-Gonzalo, 2008) to de-

rive the generalization of Particle Swarm Optimization (GPSO), for any iteration time and

discretization step, as:

vi(t+ ∆t) = (1− (1− ω) ∆t) vi (t) + φ1∆t (g (t)− xi(t)) + φ2∆t (li (t)− xi(t)) ,

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t), t, ∆t ∈ R

xi (0) = xi0, vi (0) = vi0.

(1.13)

Using different finite differences schemes to approach x′′i (t), x′i(t) the authors (Fernández-

Martínez and García-Gonzalo, 2009, 2010) have introduced different PSO versions of the same

family known under the following acronyms: CC-PSO for Centered-Centered PSO, CP-PSO

for Centered-Progressive PSO, RR-PSO for Regressive-Regressive PSO and PP-PSO for

Progressive-Progressive PSO. These families use a concept called cloud-PSO which enables

the particles to have different explorative and exploitative capabilities for better performance.

These versions of PSO families were tested out in this study and were found to be robust in
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all applications. In all the cases the algorithm convergence is related to the stability of the first

and second order moments of the particle trajectories considered as stochastic processes.

The performance of each algorithm will depend on the degree of numerical difficulties of

the cost function and the number of dimensions. In general, RR-PSO, CC-PSO and GPSO

are the most exploitative (search deeply in a small area) versions while CP-PSO and PP-PSO

are the most explorative (search far and wide in a bigger area). In particular, RR-PSO has very

good exploration capabilities, due to the way the algorithm updates its position and velocity.

In PSO which is ordinarily used, the velocity is updated first and then the position is updated.

CC-PSO updates the position first and then the velocity using two consecutive attractors’ po-

sitions. RR-PSO, CP-PSO and PP-PSO update positions and velocities at the same time and

are the more explorative versions. When numerical difficulties increase, exploration might be

needed and the CP-PSO could eventually provide very good results, which might be even

better than the more exploitative versions which can be get trapped either in a local minima

or in a flat area.

For different benchmark functions the parameter sets with a high probability of suc-

cess are close to the upper limit of second order stability, where the exploration is very

high since the variance of the trajectories becomes unbounded. Based on this idea the au-

thors (Fernández-Martínez and García-Gonzalo, 2008) have designed the cloud-PSO algo-

rithm, where each particle in the swarm has different inertia (damping) and acceleration

(rigidity) constants (García-Gonzalo, 2009). This work has been recently expanded to other

versions of the PSO-family (Fernández-Martínez and García-Gonzalo, 2010). This feature al-

lows the PSO algorithm to control the velocity update and to find sets of parameters that

are better suited for individual optimization problems, where some of the particles will be

more explorative while others will have higher exploitative character. In this algorithm de-

sign of the ∆t parameter arises as a natural numerical constriction factor to achieve stability.

When this parameter is less than one, the exploration around the global best solution is in-

creased. Conversely when ∆t is greater than one, the exploration of the whole search space

is increased, helping to avoid entrapment in local minima. This feature was used by the au-
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thors to create the lime and sand algorithm that combines different values of ∆t depending

on the iterations used (Fernández-Martínez and García-Gonzalo, 2008). All these methods

were applied during this thesis study at different times on various data sets. We saw typi-

cally, an improvement of 5 to 8 % in classification accuracy after applying these modified and

improved PSO methods, compared to previous performances with the traditional PSO.

1.5 Thesis organization

In this thesis, we present our two publications on protein secondary structure prediction

(Saraswathi et al., 2010b) and prediction of protein relative solvent accessibility (Saraswathi

et al., 2010a). The algorithm for the data development was done by Pawel Gniewek, as ac-

knowledged in the papers. Saraswathi, S. generated the data and developed the machine

learning algorithms and optimization methods to obtain the final results. Follow up studies

were conducted by Saraswathi.S, on a variety of protein data and the improved optimization

techniques have resulted in higher accuracies for protein secondary structure and function

predictions. The results of these studies, which are almost ready for submission to journals,

are also presented here. In essence, this thesis has five distinct parts.

1. Part I: Chapter 1: GENERAL INTRODUCTION: A discussion of the various studies

presented in this thesis, specific aims and thesis organization.

2. Part II: PROTEIN SECONDARY STRUCTURE PREDICTION:

(a) Chapter 2 is an introduction to secondary structure prediction.

(b) Chapter 3 is an initial study (published) for secondary structure prediction using

knowledge-based potentials data.

(c) Chapter 4 presents the same study with much improved results using the same

data but an advanced and optimized FLOPRED algorithm.

(d) Chapter 5 presents an amino acid perspective of the results obtained using FLO-

PRED algorithm.
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(e) Chapter 6 presents a study of secondary structure prediction using a new database

of physicochemical properties of amino acids.

(f) Chapter 7 presents possibilities to improve the results of secondary structure pre-

diction using position specific residue preferences of amino acids at the ends of

secondary structures.

(g) Chapter 8 draws some general conclusions on secondary structure predictions.

3. Part III: Chapter 9: PROTEIN RELATIVE SOLVENT ACCESSIBILITY PREDICTIONS:

Results and analysis of RSA predictions (published) using protein sequences as input

data are given in Chapter 9.2 on page 161.

4. Part IV: Chapter 10: PROTEIN PHOSPHORYLATION PREDICTIONS: Results and anal-

ysis using a new set of data for phosphorylation prediction are given in Chapter 10.3 on

page 173.

5. Part V: Chapter 11: GENERAL CONCLUSIONS: Discussion of overall results and future

plans are given in Chapter 11 on page 176.

1.6 Collaborative work

Data generation

The data generation algorithm for the knowledge-based potentials data, used in chapters 3 and

4 and the data for the initial study of 84 proteins was generated by Pawel Gniewek, a summer

student in our lab. Saraswathi, S. collaborated with Pawel Gniewek in testing the results of the

algorithm during development. Pawel Gniewek was under the supervision of Prof. Robert

Jernigan (Iowa State University), his professor Dr. Andrzej Koliniski (Faculty of Chemistry,

Warsaw University, Warsaw) and Prof. Andrzej Kloczkowski (Ohio State University, USA).

All other data generated for other studies were developed by Saraswathi, S.
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Toolboxes

Simple PSO and GA toolboxes (Suresh et al., 2010; Saraswathi et al., 2011) used in Chap-

ters 3, and 9 respectively, and S-ELM (Suresh et al., 2010; Saraswathi et al., 2011) in chapter

9, is a modified version of the original open source ELM (Huang et al., 2006). These software

were developed by Prof. Suresh Sundaram of Nanyang Technological University, Singapore

and Saraswathi, S. was involved in testing of these toolboxes during development. These

were used in an earlier collaborative work (Saraswathi et al., 2011; Suresh et al., 2010).

ELM toolboxes used in all other chapters such as (FLOPRED) are modified versions of the

original open source ELM tool box (Huang et al., 2006; Saraswathi et al., 2010b) and S-ELM

(Saraswathi et al., 2011; Suresh et al., 2010). In FLOPRED, the hidden neuron parameters for

ELM are tuned by the advanced PSO algorithms instead of being user defined as in previous

ELM versions.

Advanced PSO and PCA toolboxes used in Chapter 4 through 9 (except for PSO in Chap-

ter 8), were initially developed by Prof. Luis Fernández-Martínez (Fernández-Martínez and

García-Gonzalo, 2010, 2009; Fernández-Martínez et al., 2008). These PSO algorithms were

improved in this study in collaboration with Saraswathi, S. to include ELM and PSO pa-

rameters in the tuning of advanced PSO algorithms. The publicly available WEKA toolbox

(Witten and Frank, 2005) was used for the SVM studies.

Research and Analysis

All advanced PSO algorithm studies and the PCA studies were conducted in collabora-

tion with Prof. Juan Luis Fernández-Martínez (University of Oviedo, Spain). All other data

generation, development of machine learning algorithms and analysis of results were per-

formed only by the author of this thesis (Saraswathi), under the guidance of her professors

Dr. Robert Jernigan and Prof. Andrzej Kloczkowski.
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Figure 1.2 A traditional neural network

This figure shows a Neural Network (NN) classification in progression, that has 27 features
as inputs, 30 hidden neurons (only one shown) and three units of output (only one shown)
for the three secondary structure classes. Data can be selected at random as residues from a
single or multiple proteins or all residues of a single protein can be selected for training or
testing purposes. In a Traditional NN, conjugate gradient method is used for optimization
but in FLOPRED we use PSO instead. The number of iterations is set to 1000 in this figure
and 35 of them have been completed as shown here. The gradient or PSO value (minimum
error) is evaluated during each iteration. The performance gives the Q3 accuracy obtained
(so far) for the classifications. The time used up until this point for these calculations are also
shown.
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Figure 1.3 PSO: a stochastic two-discrete gradient

The particle swarm optimization algorithm has three tuning parameters; the inertia term, the
global acceleration and local acceleration term which are iteratively updated according to
the formula shown. They are updated with respect to their local and global best positions
and the stochastic acceleration terms φ1 and φ2 and learning rate ω. The green dot denotes
the optimum desired value, the red dot is the next updated position for the particle Xi in
the kth iteration, while all the blue dots represent the swarm particles which are trying to
achieve the global minimum by getting closer to the green dot, which is the ultimate desired
position. The higher red streaked regions are far away from the global minimum while the
lighter color streaked lines show areas closer and closer to the desired global minimum. The
particles converge to the global minimum after a set number of iterations. (Slide printed with
permission from Prof. Juan Luis Fernández-Martínez.)
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Figure 1.4 PSO: Spring - Mass analogy

Particle Swarm Optimization algorithm is represented here as a damped spring system. The
trajectory of each particle mimics the motion of a unit mass, m, attached to two springs with
rigidity constants φ1 and φ2, and damping (1-ω), whose equilibrium positions are li(t), which
gives the individual best position for each particle and g(t),which gives the global best posi-
tion in the swarm. The given equation represents the damped spring system as a difference
equation. (Slide printed with permission from Prof. Juan Luis Fernández-Martínez.)
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CHAPTER 2. INTRODUCTION TO SECONDARY STRUCTURE PREDICTION

2.1 Background and significance

2.1.1 Motivation

It is important to have a deep understanding of protein functions in order to maintain and

improve the quality of life for all living organisms. A protein’s three-dimensional structure

(3-D) determines its function. Prediction of secondary structure is a useful intermediate step

to speed up the process of determining or predicting 3-D structure (Lomize et al., 1999; Or-

tiz et al., 1999), since proteins form local conformational patterns like residual α-helices and

β-strands that eventually fold up into the 3-D structure. Knowledge of secondary structures

of proteins can help in the identification and classification of protein 3-D structures (Liu and

Wang, 2007) and functional motifs, help with structure alignments in homology modeling

(Krissinel and Henrick, 2004; Wray and Fisher, 2007), help in investigating gene functions

and in sequence annotation. It has been difficult to predict structures for non-homologous se-

quences or for those sequences with weak homology to known structures (Rost, 2001; Zhang

et al., 2011). Existing 3-D structure prediction methods like homology modeling, have been

successful in determining the structures for newly discovered protein sequences when there

is greater than 30% sequence identity (Rost, 2001). But only about 40% of all available se-

quences can be annotated using this method. Even in these cases, structures for only parts of

sequences can be determined. For higher Eukaryotic organisms like Eukaryotes which have

long protein sequences it is even more difficult to obtain whole structures or even parts of the

structures in comparison with prokaryotes. Since structures are thought to be more conserved

than sequences, it is possible that non-homologous sequences might share the same structure.
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So information on secondary structures is even more important when we need to determine

structures of sequences where there is low homology (0% to 30%). Secondary prediction

can also help to determine structures for membrane proteins where very few 3-D structures

for those proteins are currently known (Kashlan et al., 2006). Computational methods will

be invaluable because prediction methods can help find structures and functions of proteins

where other methods fail. Further improvements in secondary structure prediction can lead

to progress in protein engineering, drug design and many other areas of applications. Hence

prediction of secondary structures and other related protein features from protein sequences

is an important subject among researchers.

Advances in mass-scale genome sequencing technologies have resulted in the availability

of millions of protein sequences. There are almost 11, 934, 213 protein sequences belonging

to 11, 536 organisms that are available to date according to RefSeq Release 45 (Pruitt et al.,

2009) while we have only 71635 known protein structures (Tuesday Mar 08, 2011 at 4 PM

PST), with an average yearly growth of just 7000 structures, according to RSCB PDB (Berman

et al., 2000). There is a big gap that needs to be filled in terms of protein structure determi-

nation. Protein structures determined through experimental techniques such as X-ray crys-

tallography and Nuclear Magnetic Resonance (NMR) are expensive and time consuming for

processing on the genome scale. Computational methods can predict secondary structure in a

much shorter time frame. Machine learning methods are useful for this purpose and once the

training models are built from existing information, which might take at most a few months,

structure prediction can be done at much lower cost. Protein secondary structure prediction

has gained increasing importance in computational biology due to this growing demand for

large scale structure prediction. Hence there is a need for faster and cheaper computational

methods (such as machine learning) that can predict a protein’s structure much more effi-

ciently and less expensively, with acceptable levels of accuracy.

Details necessary for studies conducted in more than one chapter, under secondary struc-

ture prediction (SSP), are given in this introductory chapter. The subjects to follow are:

• Protein structures.
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• Factors that determine protein secondary structure.

• Data encoding techniques.

• Secondary structure assignments SSP.

• Computational methods used in the literature for SSP.

• Secondary structure accuracy.

• Limits of secondary structure predictability.

• Knowledge recovery from secondary structure predictions.

• Description of generation of knowledge-based potentials with CABS (C-α-C-β-Side

group protein model described on page 46).

• References.

2.1.2 Protein structures

All proteins begin life as a string of amino acids, which constitute their primary structure.

Protein sequences are made of amino acid residues that have different physical and chemical

properties such as charges, polarities, heterogeneities, and many other such features, which

enable them to form different secondary structures such as α-helices (H), β-strands (E) and

coils (C).

The chemical structure of an amino acid consists of an amine group (NH2), an α-carbon

and a carboxylic acid (COOH), which are the common units in all amino acids. In addition a

side-chain ’R’ is attached to its α-carbon, which differentiates each of the 20 amino acids. The

side-chains have different physicochemical properties such as size, polarity, charge and hy-

drophobicity. These properties influence an amino acids’ interaction with other amino acids

and the solvent environment. These interactions in turn influence the proteins’ folding and

functions. Thus, the study of amino acid composition and arrangement in a protein sequence

is important.

Protein structures are of four types:
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• Primary structures: are polymers of 20 different types of amino acids. The amino acids

in a protein sequence are covalently bonded by peptide bonds between two adjacent

residues. The common units of all the amino acids in the polymer form the backbone

of the protein while the side-chains protrude away from the protein chain, as seen in

Figure 2.2, which shows a few residues ( 30 to 35) from the ubiquitin protein. This

string of amino acids is known as the primary sequence of a protein, which extends

from the N-terminal or amino end to the C-terminal or carboxyl end. In some places

disulphide bonds help to stabilize the proteins by bridging between cysteines.

• Secondary structures are formed from the primary protein sequences through local hy-

drogen bonding between the backbones, bringing stability to the protein structure. Some

examples of secondary structures are α-helices and β-strands, as seen in Figure 2.3.

• Tertiary structures are the 3-dimensional folding of a single polypeptide chain due to in-

teraction among the residues. Disulphide bonds between cysteine residues may also be

present. Super-secondary structures, which are almost like tertiary structures, are dis-

tinguished by peculiar arrangements of two or three secondary structures and are found

in different types of protein structures with completely different protein sequences. For

example, Coiled Coils, EF hand and Tim Barrels as seen in Figure 2.4 are such stuctures.

These motifs play a very important roles in drug design since infectious elements such

as HIV viruses use these structures to enter the cells of their victims.

• Quaternary structures have two or more polypeptide chains with their own tertiary struc-

tures that form a multi-subunit structure, which are stabilized by non-covalent interac-

tions, as seen in Figure 2.5 and 2.6.

2.1.3 Factors that determine protein structure

The order and variety of the primary sequences of amino acids is believed to play a major

role in determining a protein’s 3-D folded structure and function. Secondary structures and

their solvent environment determine the final tertiary or quaternary structures into which the
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proteins will eventually fold into. In the ideal case, it is believed the protein sequences and

the intermediary secondary structures play a pivotal role in determining the final structure

and function of a protein. Other viewpoints suggest that some folding may proceed sequen-

tially as synthesis on the ribosome occurs or that some folds may occur because of kinetic

trapping. These alternative mechanisms may account for some errors in secondary structure

prediction. Biotechnological advances provide exponentially increasing volumes of precise

sequence information that can be used by computational techniques to predict protein 2-D

and 3-D structures. There is a vast amount of information that can be obtained from the

protein data bank (Berman et al., 2000) and other databases such as :

• Secondary structures (DSSP, STRIDE) , Relative solvent accessibility (RSA) of proteins,

• Multiple Sequence Alignments (MSA), post-translational modification (PTM) regions,

• Disordered regions (DR) or dual-personality (DP) regions of proteins and

• Position-specific residue preference (PSRP) of amino acids at the ends of secondary

structures

These data have contributed to much improved computational techniques and better assess-

ments of accuracies in secondary structure predictions. With increasing sequence informa-

tion, secondary structure prediction has renewed the interests of many researchers and is the

focus of many of the studies in this thesis.

2.1.4 Data encoding for secondary structure prediction

Windows of protein sequences encoding local amino acid interactions have primarily been

used for secondary structure prediction. Protein sequences are coded using an orthogonal

binary representation of the twenty amino acids as a 20-element binary vector, where the

residue of interest is coded as 1 and all other amino acids are coded as 0s. Specification

of a window size determines the number of amino acids considered to influence the cen-

tral residue of interest in its local interaction with neighboring residues that may influence
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secondary structure formation. In lieu of binary coding, sequences are sometimes encoded

using position specific scoring matrices (PSSM) (Jones, 1999), which also encodes evolution-

ary information from MSA. These MSA have been popularly used for predicting secondary

structures, which resulted in improved prediction accuracies (Zvelebil et al., 1987). The ever-

growing databases of known protein sequences, on which more recent studies are based, have

also helped to improve prediction accuracies. With the increasing availability of newer and

more diverse protein structures, current studies increasingly try to use protein structure in-

formation, in addition to newer sequence and evolutionary information to take advantage of

these vast resources, to further improve secondary structure prediction. These limited suc-

cesses have encouraged us to use structural information encoded in the features of protein

sequences. This new data set does not use the traditional orthogonal coding, as in PSSM or

MSA. This new data captures the knowledge-based potential information embedded in the

amino acid sequences, calculated using the CABS algorithm (Kolinski, 2004), which captures

structural information by predicting probable structures. We have made sure that there is no

structural similarity between the templates used for building this structural data set and the

actual sequences used for modeling and testing our results.

2.1.5 Secondary Structure Assignment

The Database of Secondary Structure in Proteins (DSSP), (Kabsch and Sander, 1983), pro-

vides consistent secondary structure assignments to all known proteins, and these assign-

ments are widely accepted. These differ from the assignments given in the PDB database

by experimental crystallographers or NMR scientists. According to the DSSP classification,

there are eight types of secondary structure which can be assigned: H (α-helix), E (extended

β-strand), G (310 helix), I (π-helix), B (bridge, a single residue β-strand), T (β-turn), S (bend),

and C (coil). These assignments are calculated from the hydrogen bonds that form between

the backbone carbonyl (CO) and amino (NH) groups. Several groups have interpreted these

assignments in different ways (Kloczkowski et al., 2002) depending on the grouping of amino

acids into one of several smaller groups. It was shown (Rost, 2001) that secondary structure
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prediction accuracies can show higher accuracies compared to other interpretations if 310 he-

lices and β-bulges structures are interpreted as coil (C). Alternate assignments of secondary

structure assignments include STRIDE (Frishman and Argos, 1995) and KAKSI (Martin et al.,

2005). Commonly, secondary structure prediction is based on three structure types: α-helix

(H), β-sheets (E) and Coil (C). In our study, we use a standard 3-class secondary structure

assignment where Helix (H) in the three letter code includes the three DSSP states H, G, and

I; β-strand (E) contains E and B; and coil(C) consists of T, S, Blanks and C.

2.1.6 Computational methods for protein secondary structure determination

Secondary structures can provide complementary information which might be difficult to

obtain by experimental means (Oklejas et al., 2010). Study of secondary structures through

various computational means has been a popular topic for research. Many researchers have

been trying to improve prediction methods and accuracies. A discussion on the evolution of

computational methods for secondary structure prediction follows next.

2.1.6.1 Historical view of secondary structure prediction

Several computational methods have been used successfully for secondary structure pre-

diction. The most common methods used for secondary structure prediction are

• Empirical statistical methods

• Hidden Markov models

• Nearest neighbor methods

• Neural network methods

Chou and Fasman were the pioneers in the field of secondary structure prediction and

used empirical methods based on the simple relative frequencies of amino acids in secondary

structure for prediction of protein secondary structures (Chou and Fasman, 1974). The pop-

ular GOR prediction methods for secondary structure prediction, (Chou and Fasman, 1974;
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Garnier et al., 1978, 1996; Zvelebil et al., 1987) were based on information theory and Bayesian

statistics. This method was further improved by the same group through several subsequent

GOR versions. Evolutionary information was used in GOR V (Kloczkowski et al., 2002) for

improved structure prediction using multiple sequence alignments. Nearest neighbor algo-

rithms were used by several groups (Salzberg and Cost, 1992; Yi and Lander, 1993; Salamov

and Solovyev, 1995; Salamov, 1997). Support Vector Machines (SVM), based on statistical

Learning Theory (Vapnik, 2000), were also used (Ward et al., 2003) for secondary structure

prediction by many researchers.

Machine learning methods, particularly neural networks which are used in this study,

have proved to be most successful among all methods used for secondary structure pre-

diction. Hence, our discussion and comparison of results mostly relate to neural network

studies in literature. Early Neural Network based secondary structure predictors (Qian and

Sejnowski, 1988) were followed by numerous other studies as discussed below. Further im-

provements in structure prediction came when multiple sequence alignments (MSA) were

introduced by several groups (Rost and Sander, 1993; Rost, 1996; Cuff and Barton, 2000;

Kloczkowski et al., 2002), yielding around 70% accuracy. The most successful prediction algo-

rithms commonly used today are the PHD method (Rost, 1996) and PSIPRED (Jones, 1999)

yielding over 76% accuracy. The highly successful prediction algorithm, PredictProtein server

(Rost et al., 2004) uses MSA based neural networks. The PSIPRED algorithm (Jones, 1999)

relies on PSI-BLAST Altschul et al. (1997) and neural networks to obtain better than 80% pre-

diction accuracy. Increasing availability of protein sequences has also helped to build better

models and attain higher accuracies. The Jpred (Cuff and Barton, 2000) prediction server runs

on the JNet algorithm and can predict three types of secondary structures (α-helix, β-strand

and coil) for an accuracy of 81.5%, using PSI-BLAST (Altschul et al., 1997), a Position-specific

scoring matrix (PSSM) and HMMER (Eddy, 1998) using Hidden Markov Model (HMM)

profiles. Despite the many different methods and complicated algorithms used for secondary

structure predictions, the accuracies measured by Q3, have hardly exceeded 70% range for

methods that use stand alone algorithms and single sequences. The threshold of 88% has



33

usually been surpassed for methods that include MSA as part of the prediction algorithm.

Q3 gives the average accuracy for all three commonly used secondary structure classes as

explained in Section 2.1.7 on page 35. The difficulty in attaining higher accuracies might pos-

sibly be due to the exclusion of long-range interactions in the data that is used (Kihara, 2005).

More recently long range interactions were implemented (Madera et al., 2010) on a k-mer or-

der model and Markov chains were used to obtain prediction results of 77.4% with a standard

deviation of 0.2%. They also claimed to have improved the quality of prediction with an in-

creased Segment OVerlap (SOV) score which was 1.8% more than previously reported results

of 80.5%. We look at more recent studies next.

2.1.6.2 Recent studies in secondary structure prediction

Encouraged by the availability of biological information and better computing resources,

larger and more complicated algorithms are being built to achieve better prediction accura-

cies, but still have not been able to go much beyond the virtual accuracy barriers discussed

earlier. Recent studies were interested in long-range interactions of amino acids (Kihara, 2005)

and their effects on secondary structure formation. These studies suggested that long-range

interactions can potentially play an important role in achieving higher classification accuracy.

Secondary structure prediction methods using a large number of resources, were developed

(Montgomerie et al., 2006; Pollastri et al., 2007) using structural frequency profiles from exist-

ing PDB templates and high-throughput machine learning systems and reported an accuracy

of 85.7%, one of the highest accuracies reported so far. Three independent expert neural net-

works were used (Sivan et al., 2007) for the three secondary structures at the first level. Chou

and Fasman frequency values were used at the second level. This method helped reduce the

search space for experimental methods. The results of classifications from several secondary

structure prediction servers were studied and analyzed (Kazemian et al., 2007) to discern

patterns of prediction accuracies with respect to different amino acids. The authors gave an

analysis of these results from an amino acid perspective based on the results of the servers.

We have likewise done an in-depth analysis of the amino acids accuracies obtained from our
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own results and saw some interesting and intriguing patterns in the classification results. We

share these results in section 5.1.1 page 101 of this thesis.

Ghosh and Parai , (Ghosh and Parai, 2008) used three distance-based classifiers on pro-

tein sequences which are coded as features to represent patterns of neighboring residues

instead of traditional binary numbers. They found that minimum distance classifiers per-

form better than K-NN and fuzzy K-NN classifiers, with a best accuracy of 59.21%. They

drew attention to the fact that there needs to be a better representation for amino acid se-

quences, which takes into account the proximity of amino acid residues to the central residue

of interest. A two-stage algorithm was used (Yuksektepea et al., 2008) to predict secondary

structures from protein sequences, where they used a mixed-integer linear programming

(MILP) to determine the fold-type of the target sequence in the first stage. At the second

stage, a probabilistic approach was used to determine secondary structure classes of the tar-

get sequences, to get an overall accuracy of 74.1%. An ELM approach is used (Wang et al.,

2008) for secondary structure binary classification. Then a Probability Based Combination

(PBC) method and helix post-processing was used to combine these predictions for secondary

structure classification to yield an accuracy of 71.2% on the CB513 set of protein sequences.

Another knowledge-based secondary structure prediction method (Yang et al., 2009) called

KAAPRO (KDD* Association Analysis PROtein secondary structure prediction), used a

multi-hierarchical pyramid prediction model which classifies α-helix and β-strand proteins

at an accuracy of 74.6% for a very small set of 4 proteins. A combination of three neural net-

works was used (Malekpour et al., 2009) on sequences encoded as multiple sequence profiles

and used Segmental Semi-Markov Models (SSMMs) as the decision function to discriminate

between secondary structures, with an accuracy of 75.18%. Palopoli et al., used an ensemble

of predictors by combining the prediction results of several prediction servers (Palopoli et al.,

2009), tailored to particular aspects of the target protein. They showed improvements in the

prediction results of several individual proteins as compared to previous results.

Computational methods such as GOR, DPM and Predator were used by the ANTHE-

PROT server (Santiago-Gómez et al., 2010) to compare experimental results of secondary
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structure predictions. Zhou and Yang et al. used a Knowledge Discovery (KDD) approach

and proposed a Structural Association Classification (SAC) approach to secondary structure

classification (Zhou et al., 2010), which used high and low confidence information to form

over 8000 rules divided into three rule sets, one each for the three basic secondary struc-

tures. Through these rules they developed a Classification based on Multiple Association

Rules (CMAR) algorithm for secondary structure prediction yielding an accuracy of 80.49%

for the CB513 set. An attempt to capture distant interactions between amino acids residues

(Bidargaddi et al., 2009) has been carried out using generative models based on Bayesian seg-

mentation and generalized Hidden Markov Models with explicit state duration. They used a

neural network and optimization methods in the second stage for secondary structure classi-

fication using only protein sequence data to obtain an accuracy of 71%. Modular Reciprocal

Recurrent Neural Networks (MRR-NN) were used (Babaei et al., 2010) to model short-range

interactions and a Multilayer Bidirectional Recurrent Neural Network (MBR-NN) was intro-

duced to capture the long-range intramolecular interactions between amino acids. These two

networks were used to capture the secondary structure patterns of amino acids with an accu-

racy of 79.36%. A two-level Mixed-Modal Support Vector Machine ( MMS) was used (Yang

et al., 2011) for secondary structure prediction by using physicochemical properties of amino

acids and position-specific scoring matrices (PSSM) generated from PSI-BLAST (Altschul

et al., 1997). Use of PSI-BLAST helps to include evolutionarily divergent information and

conserved residue information on a longer range, contributing to increased accuracies. They

integrated the MMS module with a modified Knowledge Discovery in Databases (KDD*)

process and a Mixed-Modal Back Propagation neural network (MMBP) module to achieve

accuracies of up to 85.6%, one of the highest accuracy reported so far.

2.1.7 Secondary Structure Accuracy Measures

Secondary structure prediction results classify amino acids as belonging to one of three

secondary structure classes, α-helix, β-sheet or coil. There are certain performance measures

that are traditionally used for the per-residue accuracy level, such as Sensitivity, Specificity
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and Matthew’s correlation coefficient. Although these measures are commonly used, we want

to take a closer look at some issues regarding the reliability of these measures (Altman and

Bland, 1994). We would like to highlight these matters to point out that these values can vary

widely if the underlying composition of residues in the dataset is not well represented in the

training models. We discuss some aspects of these issues and suggest ways in which we can

gain a better understanding of the reliability of these measures. This understanding will al-

lows us to build better models yielding better classifications. Some other measures such as

SOV and Jscores which pertain to reliability of predictions with respect to segments of sec-

ondary structures are also discussed. These metrics are illustrated in Table D.1. All of these

discussions include the assumption that α-helix is the positive class and β-sheet and coil are

the negative classes, where the results are combined for these latter two classes. Similar argu-

ments can be made by considering the other two classes as the positive class. All quantities

that are used to calculate the accuracy measures given below are defined in Appendix D on

page 186.

2.1.7.1 Post-test odds

oddspost = oddspost ∗ LRN (2.1)

Oddspost incorporates four different kinds of information such as prevalence, nature of the

training samples, pre-test odds and the results of the test itself to determine the chances that

the classification results actually belong to the positive or negative classifications. This type

of information can help to determine the reliability of the test, as illustrated in Section 4.4.1

and Table 4.3.

If the value of Likelihood Ration Positive (LRP) is greater than 1, then the results indicate

that they are associated with the positive class or presence of α-helix. If LRP is less than one,

then the test is associated with the absence of the class. If LRP is greater than 5 then the pre-

test probability can help to get the post-test probability. If the LRP is greater than 8, then it

increases the likelihood of the predicted class actually belonging to that class. All these mea-
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sures help determine the quality of the data representation in the model, gauge the reliability

of the classification results with more confidence and can be used to fine tune error prone

prediction regions in classifications. Next we discuss some of the other measures of accuracy

commonly used in secondary structure predictions, which assume a balanced representation of

all the classes during model building.

2.1.7.2 Q3 accuracy

Q3 is a commonly used measure for expressing the average accuracy for all three classes

of secondary structures, while QH, QE and QC are used to indicate individual accuracies for

the three secondary structures. In the accuracy matrix [Aij] of size 3 X 3, i and j correspond

to the three classes H, E and C. The ijth element Aij of the accuracy matrix is defined as the

number of residues predicted to be in class j, which are actually observed to be in class i. The

diagonal entries of [Aij], are numbers of correctly predicted residues for each class where N

is the total number of residues being classified. Q3 is defined as:

Q3 =

∑
Akk

N
where i = j = k (2.2)

The individual accuracies for each of the secondary structures, QH, QE and QC, are the

percentage of correct predictions for each class with respect to the total number of samples

present in each of those classes. If N is the total number of residues, and Ni are the residues

in each secondary structure,

Qi =
Aii
Ni

where i = H, E, C (2.3)

2.1.7.3 Matthew’s correlation coefficient

Matthew’s correlation coefficient (MCC) is another commonly used measure to determine

the quality of secondary structure predictions. It is defined as:

MCCα =
TPα ∗ TNα − FNα ∗ FPα√

([TNα + FNα] [TNα + FPα][TPα + FNα] [TPα + FPα])
(2.4)
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MCC, for α-helix of class H as calculated above, is commonly used in machine learning

studies to measure the quality of binary classifications. Although we use a multi-class (3-

class) classification algorithm which simultaneously classifies all three classes, we calculate

MCC by considering the positive classifications (α-helix) against the combined negative clas-

sifications (β-sheet and coil). MCC takes into account results of all positive and all negative

classifications and is considered more balanced than other metrics like sensitivity or speci-

ficity which are not fair to all types of classification results as discussed earlier. This measure

is important in protein secondary structure classifications where there is often an imbalance

in the class representations among the three secondary structures. MCC shows the correla-

tion between the observed and predicted values and ranges in value between +1 for perfect

correlation and -1 for negative perfect correlation. An intermediate value means there is no

correlation between observed and predicted values.

2.1.7.4 Segment Overlap score

Segment Overlap score (SOV) evaluates secondary structure predictions (SSP) on the ba-

sis of secondary structure segment overlaps rather than on the basis of accuracies with respect

to individual residues in a sequence. SOV was defined in (Zemla et al., 1999). The traditional

Q3 measure for SSP is not adequate for many purposes as discussed by those authors. Q3

scores for some secondary structure segments could show high accuracies while SOV scores

can show them to be highly inaccurate. They argued that the type and location of secondary

structures were very important for 3-D predictions and illustrated how Q3 accuracies can

give an unrealistic, misleading and distorted assessment of the quality of SSP. They showed

that Q3 cannot differentiate between multiple breaks in a segment of secondary structure

and a segment with only half the number of residues correctly predicted (without a break). A

comprehensive discussion is given in their paper (Zemla et al., 1999). Hence, SOV has been

increasingly considered as a more robust metric for estimating the quality of SSP. We use the
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C-code for SOV shared by the authors, to obtain the SOV scores for our classifications.

2.1.7.5 Jscore1 and Jscore2

Jscore1 and Jscore2 are two coefficients that were proposed (Kloczkowski et al., 2002) as an

improvement over SOV, to measure classification accuracy. The authors argued that even if

one prediction had a larger number of residues predicted correctly compared to another pre-

diction of the same segment, it would still have a lower SOV score if there was even a single

residue misclassification in the middle of the segment, disrupting the predicted structure and

causing a break. If another prediction of the sequence had a larger number of misclassified

residues but with no breaks in the middle of the predicted secondary structure, that classifi-

cation would have a higher SOV, although its accuracy score (total number of residues pre-

dicted correctly) would be lower. They also argued that SOV does not take relative positions

of overlapping segments into account and does not credit predictions, which had structures

more centered compared to other predictions. These are important considerations in using

secondary structure predictions for 3-D modeling of proteins. Jscore1 and Jscore2 are much

simpler to calculate compared to SOV calculations and were designed to overcome these

problems. Within a given segment of secondary structure, each residue is assigned a weight,

according to predetermined values, as defined in (Kloczkowski et al., 2002). The two scores

differ only in the values of the weights that are assigned to the first four residues on either

end of the segment. Jscore1 and Jscore2 will be included in the results of our future studies.

2.1.8 Limits of secondary structure predictability

Most of the successes in prediction studies were due to the availability of improved se-

quence alignment software such as PSI-BLAST, inclusion of non-homologous sequences,

better MSA alignment programs such as CLUSTAL-W and the use of modern techniques

such as machine learning algorithms and Hidden Markov Models (Karplus et al., 1997). Im-

provements in secondary structure prediction can originate in larger databases (Bairoch and

Apweiler, 1997) or differences in secondary structure assignments. But many of these studies

http://predictioncenter.org/download_area/other/
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have shown only a small 2% to 3% improvement from these factors. In a review of protein

secondary structure prediction methods, Rost (Rost, 2001) suggested a theoretical limit of 88%

for Q3 accuracy while more recent estimates (Pollastri et al., 2007) put this number between

90% and 95%. A recent study (Yang et al., 2011) using a two-level mixed-modal support vec-

tor machine, as discussed above, has obtained an accuracy of 85.6% using a combination of

several methods and data. It is to be noted that prediction methods that use single protein

sequences (without including MSA information) have not succeeded in predicting secondary

structures beyond a Q3 accuracy of about 70%. Other studies that do use multiple sequence

alignments have to resort to very complicated algorithms which might require large compu-

tational resources, time and expense to build the models and yet still yield accuracies mostly

below 80%. Those that show considerable improvements use very complicated models, peri-

ods of up to three months for training the models and might need costly resources to achieve

higher accuracy.

The Jernigan lab has proposed several secondary structure prediction methods recently

and has set up the much improved GOR V server (Sen et al., 2005). The performance of GOR

V, which includes evolutionary information from multiple sequence alignments, is presently

comparable but slightly lower than the best cross-validated secondary structure prediction

methods such as PHD (Rost, 1996, 2001) and PSIPRED (Jones, 1999). For example, the pre-

diction accuracy measured by Q3 is 73.5% for GOR V, 71.9% for PHD, and 76.6% for an ear-

lier version of PSIPRED. The Fragment Data Mining (FDM) algorithm for protein secondary

structure prediction uses fragments of known structures obtained from multiple sequence

alignment (MSA) of protein sequences. Its performance is excellent where high-scoring MSA

matches are available. By combining the FDM with GOR V, a new Consensus Database Min-

ing (CDM) method was developed (Cheng et al., 2007), which surpasses the performances

of both FDM and GOR V. A web server for a Fragment Database Mining and Consensus

Data Mining (FDM/CDM) approach has been set up by the Jernigan lab. This server has

become more popular due to the reliability and efficiency of its performance, the simplicity

of its use, and its potential for improvement with the rapidly growing number of determined

http://gor.bb.iastate.edu/
http://gor.bb.iastate.edu/cdm/
http://gor.bb.iastate.edu/cdm/
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structures. Encouraged by the success of these methods, we have continued to seek for im-

provements in secondary structure prediction methods. We have incorporated information

from increasingly available structure and sequence information in the protein databases as

they become available. In the current study, in addition to using sequence information we in-

corporate long and short range interaction information for the amino acids in the sequences

mined from existing structures, as discussed below.

2.1.9 Knowledge recovery from secondary structure predictions

Although machine learning methods have proved to be the most successful among other

methods in secondary structure prediction, there has been a long standing objection to neural

networks, since they are considered to be black boxes. It has been difficult to know the logic

behind the process of classification to understand the accuracies are actually obtained. It

would be good to know what factors or rules of classification contribute to these accuracies in

order to understand the biological implications from such studies. A survey by (Tickle et al.,

1998) revealed that several techniques have been developed (Andrews et al., 1995; Aldrich

et al., 2000), which can help to extract a set of rules from neural network models. The strength

of artificial neural networks comes from their ability to learn from the training of models.

Using the knowledge gained from trained models, neural networks are then able to be gen-

eralized to unknown test cases. They achieve this goal by distributing their learning during

modeling, in the form of weights and biases for the different neurons used in the modeling

process. This capability to learn helps neural networks succeed where many other compli-

cated algorithms and methods fail in real world applications.

Many researchers have worked with the problem of extracting knowledge from the work-

ings of a neural network, but it has been a hard task due to the abstract nature of these net-

works. On the other hand, systems where rule-based symbolic languages such as Fuzzy Rule

Bases (FRBs) are used are more comprehendible and these can be easily refined. Such sym-

bolic rules could help to understand the decision principles that lead to the final decisions.

Using these ideas, a hybrid intelligent system has been built (Kolman and Margaliot, 2005)
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where symbolic and sub-symbolic information from the outputs of a neural network have

been brought together. The synergy helped the authors to meld the capabilities of neural

networks and the openness of FRBs. They reduced 64 parameters of the neuron network

weights and biases down to 10 rules and were able to discern the knowledge behind the clas-

sification of numbers by a Light-Emitting Diode (LED) digital system in recognizing the 10

digits 0, 1, 2, ...9 used by LEDs.

A similar approach can be used to extract the information from the neural networks used

in secondary structure prediction studies. The gains will likely be significant but the task

will be daunting. The LED system had only 64 weights (and biases) whereas the weights

and biases in the neural network system that we have built number in the thousands. If

computing resources are the only obstacles to get this information, this problem can easily be

overcome, in so far as the complexity of the problem can be handled by powerful computers.

It will be interesting to see such gains in knowledge in future studies.

2.2 Contribution of this thesis research to secondary structure prediction

The biggest contribution for our model is that it is very simple, requires fewer resources and

yields high accuracy through a simple single layer neural network consisting only of one such

network. The results from this algorithm are further optimized by using a very simple par-

ticle swarm optimization algorithm. These features make our algorithm highly efficient, ex-

tremely accurate and far less expensive to use compared to other proposed algorithms. The

only drawback to this algorithm is in the time needed to generate the 27 features used to

encode the sequence information for any new protein for which we need to predict the struc-

ture. It takes about a day to generate data for a small protein of less than 100 amino acids

with reasonable resources on a single Linux machine while it might take up to a week for

a bigger protein of 1500 residues, depending upon the capacity of the computer. With in-

creasing availability of computer resources the data can be generated very quickly with an

improved algorithm and a more powerful computer. The time and resources needed to build

our training model is also much less compared to some algorithms, which can require a train-
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ing period of several months. Our model needs a training period of only a few days to a week

(computer dependent) after the actual training data has been generated and can be updated

similarly when new information becomes available. Once the model is built it can be used

for testing and it takes only a few seconds to determine the secondary structure for any new

protein (not including the time needed for the data that needs to be generated for the new

protein). Our studies yield results better than the virtual limit of 80%, and we have obtained

much higher accuracies. We are able to predict secondary structures with a higher training

accuracy of 93.33% and a testing accuracy of 92.24% on a group of 84 proteins, which shows

excellent generalization performance. Breaking it down, the contributions for the high ac-

curacies come from the high individual testing accuracies of 94.19% for α-helix, 92.39% for

β-strand and 91.11% for coil, resulting in very low standard deviations, ranging from 0.3% to

2.78% for the 20 types of amino acids. We have a Matthew’s correlation-coefficient ranging

between 80.58% and 84.30% for these secondary structures. On a larger set of 415 proteins, we

obtained a testing accuracy of 86.5%. These results are significantly better than those found

in the literature even if compared with studies that include MSAs , while our studies use only

sequence and existing structure information from the CATH (Orengo et al., 1997) database.

2.2.1 ELM-PSO for secondary structure prediction

Initially, a novel method called ELM-PSO for predicting protein secondary structure, us-

ing data derived from knowledge-based potentials and an Extreme Learning Machine, was

developed (Saraswathi et al., 2010b). Classifier performance was maximized using the gen-

erally available Particle Swarm Optimization (PSO) algorithm. Preliminary results for ELM-

PSO were good when prior information was used in the form of scaled feature values. Since

prior information will not be available for newer protein sequences, other methods were in-

vestigated. ELM-PSO was improved to exclude prior scaling information. A new model

called FLOPRED was developed which used advanced PSO algorithms to give higher clas-

sification accuracies.
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2.2.2 FLOPRED for secondary structure prediction

In our current studies, a novel method called Fast Learning Optimized Predictor (FLO-

PRE) has been proposed for predicting protein secondary structure and protein function, us-

ing knowledge-based potentials, Neural Networks and Particle Swarm Optimization. Higher

secondary structure prediction accuracies are achieved by applying the FLOPRED algorithm

to the CB513 (Cuff and Barton, 2000) set of proteins which are the target sequences for which

we need to predict secondary structures. While there are many more recent datasets, we used

the CB513 set in order to be able to compare our results with several others present in the

literature. We plan to test the FLOPRED algorithm on a newer larger set of proteins also.

The protein sequences in the dataset were encoded with long-range and short-range inter-

actions, using potentials extracted by using CABS (Kolinski, 2004) algorithm. Details of the

data generation are given in Section 2.3 on page 46.

We use a machine learning method called Extreme Learning Machine (ELM) (Huang et al.,

2006). This algorithm is based on a traditional Neural Network (NN) and can be used for

classification of protein data, such as sequences and other related information. An Extreme

Learning Machine (ELM) classifier, based on a Neural Network, is used to model and predict

protein secondary structure. ELM is an improved version of a feed-forward neural network

consisting of a single hidden layer. The initial set of input weights is chosen randomly. The

output weights from the hidden layer to the output layer are calculated analytically. A sig-

moidal (or Gaussian) activation function is used for the hidden layer and a linear activation

function is used for the output neurons.

In initial studies, the input weights and other parameters of ELM were tuned using a

simpler Particle Swarm Optimization (PSO) algorithm (Kennedy and Eberhart, 1995). In our

current studies, an improved and extended family of advanced (PSO) algorithms (Fernández-

Martínez and García-Gonzalo, 2008, 2009, 2010) have been used to tune the parameters (hid-

den neurons, bias and width) of the sigmoidal/Gaussian activation function of ELM. The

use of these efficient algorithms has resulted in much improved accuracies for all predictions

as discussed in Section 2.2 on page 42. These algorithms are explained in methods in Sec-
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tion 1.4.1 on page 6 and under optimization in Section 1.4.2 on page 11.

2.2.3 An amino acid perspective of secondary structure prediction

For many years, researchers have worked with protein structure prediction and they have

had highly varied degrees of success while slow progress has been made beyond particu-

lar thresholds. There is a need for improved structure and functional-site prediction methods to

increase accuracy and efficiency, in view of the need to predict the structures of millions of se-

quences. It is of interest to analyze the reasons for being unable to predict secondary structures,

beyond a particular degree of accuracy. While there might be several reasons for this, we offer

an amino acid perspective of the prediction results in order to investigate the nature of sec-

ondary structure prediction with respect to amino acid composition and ease of prediction.

This analysis throws some light on the nature of weakly predicted regions (regions where er-

rors occur more frequently) in protein sequences with respect to the amino acid compositions.

The results of this study is given in Section 5.1.1 on page 101 .

2.2.4 Use of physicochemical properties for secondary structure prediction

In order to determine the effects of biophysical properties of amino acids on formation

of particular secondary structures, a database was set up where protein sequences from the

CB513 data set were encoded using 544 physicochemical properties of amino acids derived

from the AAindex (Kawashima et al., 1999) database. A window of 9 residues was used to

code the 544 properties which resulted in 4896 features. These features were reduced to less

than 150 features using Genetic Algorithm (GA) 6.2.2 described on page 118 and Principal

Component Analysis (PCA) 6.2.4 described on page 123. This reduced dataset was then used

for secondary structure prediction using our FLOPRED algorithm. Preliminary results show

82% accuracy for training and 65% for testing. These results are discussed in Section 6.3 on

page 125.
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2.2.5 Use of position specific propensities of amino acids for secondary structure predic-

tion

Due to physicochemical properties, some amino acids appear more often at the ends of

secondary structures than others. A preliminary study has indicated that secondary structure

accuracy can be improved for those residues present at the ends of α-helix, β-strand and

coil. Hence, information on Position Specific Residue Preferences (PSRP) of amino acids, can

be used to improve secondary structure predictions. Preliminary studies show that PSRP

values can contribute as little as 6% or as much as 15%, depending on the models used for

representing the ends of secondary structures. These results are discussed in Section 7.6 on

page 139. We hope to use the PSRP information as prior knowledge to improve secondary

structure prediction results in future studies.

2.3 Data generation using CABS force field

The CB513 data set (Cuff and Barton, 2000) is a collection of a set of 513 non-redundant

protein domains that has less than 30% homology between the pairs of sequences. This

dataset is used for all the secondary structure prediction studies in our research. The pro-

tein sequences in the CB513 set are the target sequences that are used for both model building

and testing purposes.

Data derived from the potential energies of amino acids in the CB513 set of protein se-

quences were encoded into three secondary structures using the CABS force field (Kolin-

ski, 2004). The secondary structure assignments were discussed earlier in Section 2.1.5 on

page 30. CABS is a "versatile reduced representation tool for molecular modeling" (Kolin-

ski, 2004). This algorithm encodes both short-range and long-range interactions in proteins.

CABS stands for C-α-C-β-Side group protein model where C-α is the α-carbon and C-β is

the β-carbon in an amino acid backbone structure. This algorithm uses a high resolution re-

duced model of proteins and the force field. It uses a lattice model to represent hundreds of

possible orientations of the virtual α-carbon-α-carbon bonds, using Replica Exchange Monte

Carlo for sampling the conformational space. The knowledge-based potentials of the force
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field includes the following information:

• Protein-like conformational biases

• Statistical potentials for the short-range interactions

• A representation of main chain hydrogen bonds

• Statistical potentials describing the side chain interactions.

The CABS model is an accurate lattice model and has been used in many applications to

represent proteins in a reduced representation. Our knowledge-based potential data genera-

tion consists of the following steps:

• Download templates from the CATH (Cuff et al., 2008) database.

• Compute secondary structure information using DSSP for each residue in each tem-

plate.

• Compute contact maps for each template, including both secondary and tertiary inter-

actions.

• Thread a window of 17 sequences for each template sequence, onto each of the 422

templates and calculate the reference energy for each residue in all templates. A list of

these templates is given in Appendix A.

• Thread a window of 17 residues for each of the target sequences onto each template and

calculate the reference energy for each residue in all target sequences.

• Read in the DSSP information for the window of residues for the template sequences

which has the best fit. This is done only for the central 9 residues in each window.

• Find the probability that the 9 residues in the window will adapt to each of the three

secondary structures, to obtain 27 feature values.
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2.3.1 Structures from the CATH database

A database of protein structure templates has been created by downloading structures

from the CATH (Orengo et al., 1997) library. We are interested in the connectivity between

the residues in the sequence fragments under consideration. Hence the structures found at the

topology level were downloaded since these have the same overall fold (Orengo et al., 1997;

Cuff et al., 2008), and share similarity in the arrangement and interconnectivity of structural

elements. For each structure template, secondary structure information was found using the

DSSP algorithm (Kabsch and Sander, 1983). Only those templates with complete information

were downloaded from CATH in order to ensure accurate and complete DSSP secondary

structure assignments for a given sequence fragment. This method of selection yielded 422

structures.

2.3.2 Contact maps and reference energy for template sequences

A contact map has been computed for each of the 422 templates, with two residues consid-

ered to be in contact, if the distance between their heavy atoms (carbon, oxygen and nitrogen)

is less than 4.5 Å. The contact maps are used to calculate the force field values.

A window of 17 amino acids is used where the 9th (central) amino acid is the residue of

interest, with null spaces representing places where no neighbors are available at the starts

and ends of sequences. The window is moved, one residue at a time, along the full length

of the sequence. Each of these windows in each sequence is considered for each of the 422

templates, by placing the window centered on the 9th residue. The sequence fragment inside

the window adopts the structure of the template where it is placed. A reference energy is then

calculated for each amino acid in each of the 422 templates.

2.3.3 Reference energy for the target sequences

The CB513 dataset is used for potential energy extraction. CB513, a collection of non-

redundant protein domains (Cuff and Barton, 2000) with less than 30% homologous sequences



49

has been used for the target sequences. Reference energy is calculated for the target sequences

using a non-gapped threading procedure with the 422 template structures.

2.3.4 Threading procedure for calculating reference energy

The template structures are used to search for a match with the residues in the window.

When a match is found a scoring function (unpublished) is used to assess and calculate the

degree of compatibility. For each of these placements,the secondary and tertiary energy is

calculated and the lowest energy values are retained. For example, for the fourth amino acid

in a target sequence, we might have obtained the lowest energy (best fit), while it was centered

on the 10th amino acid of a template sequence.

2.3.5 Secondary structure assignment and creation of profile matrices

The secondary structure assignments from DSSP (Kabsch and Sander, 1983) are read in

for the template sequences for which the best fit was determined. Although the window origi-

nally consisted of 17 residues, only the values for the central 9 residues are utilized henceforth,

for each of the three secondary structures, α-helix, β-sheet and coil. The final profile matrix,

consists of one row of data for each of the residues represented by the sequence of a given pro-

tein. Each row has a set of 27 features (profile values), where the first 9 features correspond

to the probability that the residues from the target sequence, adopt an α-helix (H) structure.

The next 9 features, correspond to the probability that they adopt an extended β-strand (E)

and the last 9 features correspond to the probability that they adopt a coil (C) structure. The

probability p of getting such a threading match is then determined (Silva, 2008).

2.3.6 Calculation of reference energy

Reference energy are calculated using the (Kolinski, 2004) CABS force fields. Short range,

long range and hydrophobic sequence dependent interactions are calculated. R13, R14 and

R15 potentials depend on the geometry and identity between the ith and i+2nd, i+3rd and i+4th

amino acids respectively. Sequence dependent (short-range) interactions for these residues
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are calculated. In order to include long-range interactions, a contact energy is added to the

previously calculated energy values only for the aligned residues observed to be in contact

after the threading procedure has been done. The contact information comes from the contact

maps established for each template. A score for the hydrophobic and hydrophilic amino acid

matches between the template and target sequence fragments is also calculated (Silva, 2008).

The energy values from these three calculations are weighted in the ratio 2.0 : 0.5 : 0.8 for the

long : short : hydrophobic interactions respectively. The selected weights are based on other

computations for 3-D threading (unpublished), although it has been found that the results are

not very sensitive to the selection of these parameters.

2.3.7 Homology between template and target sequences

Since the energy profiles are based on the template sequences, we need to make sure that

a low degree of homology exists between the 422 CATH template structures and CB513 set

of target sequences. A global Needleman-Wunsch (Needleman and Wunsch, 1970) sequence

alignment was performed using the BLOSUM62 (Henikoff and Henikoff, 1992) matrix, with

a penalty function of 10 for an initial gap and 1 for gap extensions. Figure 2.1 shows a his-

togram of the similarity scores for the approximately 500, 000 pair-wise sequence alignments,

between the 1000 templates (initially selected) and the 513 target sequences. Although, ini-

tially 1000 structures were selected from the CATH database, subsequently only 422 of these

templates were used (due to errors in the PDB files and computational resource concerns).

For the set of 513 proteins, those which were found to have more than 70% sequence simi-

larity with at least one of the 1000 templates have been removed. These proteins were not

included during cross-validation or testing of the data. For this reason, the final data set was

reduced to 415 proteins which has less than 70% homology with the template sequences. As

shown in Figure 2.1 on page 61 the overall similarity is very less for all the 513∗1000 pairwise

alignments. It can be seen that 97% of the global-Needleman-Wunch pair-wise alignments

(Needleman and Wunsch, 1970) have between 10% and 18% homology between the template

and the target sequences. The list of 422 templates are given in Appendix A on page 178.
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Individual homology scores have not been shown.

2.3.8 Homology between template and target structures

We performed a structure comparison study using Homology-derived Secondary Struc-

ture of Proteins (HSSP) (Sander and Schneider, 1991) in order to detect structure similarity

between the CB513 target set and the template sequences. This was done to eliminate the

possibility that structural similarity might contribute to the higher accuracy that we obtain

from the initial study. We downloaded all of the 422 template files that were used for data

generation from RSCB PDB. Then we searched for the name of each of the 513 proteins in

the downloaded HSSP files to see if any of the HSSP files contain any of target proteins as

recognized structure similar to the templates. The results show that there were only 23 pro-

teins having structures similar to the templates. Of these only 3 were included in the initial

study using dataset-84 and 23 were included in the final study using dataset-415. These will

removed from our final results before submitting the paper. This test was done recently to

make sure that we have not included any structure information in our data in order to get

higher accuracies. Considering the very low standard deviations for the results which range

from 0.3% to 2.78% for all the amino acids, removal of these 23 proteins from the data set is

not expected to have a huge impact on the results for either set. The results are still expected

to be above what is seen in the literature.

2.4 Summary of secondary structure studies conducted in this thesis

In summary, the 27 profiles for each of the amino acids in each of the 415 target sequences

have been calculated using the CABS force field (Kolinski, 2004). This data was used for

model building and testing of classification accuracy. The data generation process is very

computationally intense and is dependent on the number of template structures used for

threading and the size of the target protein set. It took several hours for a small protein (100

to 300 residues) and several days for a large protein (over 1000 residues), depending on the

computers used. Traditionally, orthogonal binary representations and PSSM (Jones, 1999)
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profile matrices (which are easily generated) are used to represent amino acids in protein

sequences. Since the energy calculations using the CABS algorithm are very computationally

intensive, the time involved in generating the profile matrices can be a limiting factor in using

our algorithm.
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Figure 2.1 Sequence homology between templates and the set of 513 target
sequences

This figure shows the sequence homology between the 1000 template sequences and the set of
513 target sequences. There are a total of 513∗1000 = 513000 pair-wise alignments which gave
scores of between 0% and 99% homology between pairs. The x-axis shows the % sequence
similarity scores. There were 499175 pair-wise alignments with less than 10% sequence sim-
ilarity and 12480 sequences with between 10% and 20% similarity. The remaining 8 bins
had 308, 14, 14, 6, 8, 9, 25 and 37 pair wise sequence similarities for intervals in the range of
30, 40, 50, 60, 70, 80, 90, 100% where each bin will be between 30% and 40% etc. The number
of pair-wise sequences with over 70% homology were 37 + 25 + 9 = 71 sequences which were
removed from the study. It can be seen that 97% of the alignments that were preformed, using
the global-Needleman-Wunch (Needleman and Wunsch, 1970) algorithm, have less than 10%
homology with the templates target sequences.
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Figure 2.2 Proteins and their amino acids

This figure shows residues 30 to 35 from the ubiquitin protein (1ubq.pdb) (Berman et al., 2000;
Vijay-Kumar et al., 1987). The residues shown are marked in yellow in the list shown and are
ordered anti-clockwise starting with isoleucine in green and ending in glycine in white. These
residues were rendered using VMD (Humphrey et al., 1996).
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Figure 2.3 Proteins and their secondary structures

This figure shows the secondary structures of Ubiquitin protein (1ubq.pdb) (Berman et al.,
2000; Vijay-Kumar et al., 1987) which has three and one half turns of α-helix (purple), one
short piece of 310-helix and a mixed β-sheet (yellow) with five strands and seven reverse
turns (light blue). These secondary structures were computed and assigned according to the
STRIDE (Frishman and Argos, 1995) classification of secondary structures. The residues were
rendered using VMD (Humphrey et al., 1996).
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Figure 2.4 Proteins and their tertiary structures

This figure shows the TIM barrel fold of protein (8TIM.pdb) (Berman et al., 2000; Artymiuk
et al., 2011) triose phosphate isomerase, an enzyme. This protein has 8 α-helices (purple),
and 8 β-sheets (yellow) in an alternating pattern, in each domain. This protein was rendered
using VMD (Humphrey et al., 1996).
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Figure 2.5 Proteins and their quaternary structures

This figure shows the quaternary structure of hemoglobin (1GZX.pdb) (Berman et al., 2000;
Paoli et al., 1996) which has four protein chains, two α chains and two β chains, colored
according to the residue type. It has a heme group, which binds oxygen atom(not shown).
The structure was rendered using VMD (Humphrey et al., 1996).
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Figure 2.6 Proteins and their quaternary structures

This figure shows the quaternary structure of hemoglobin (1GZX.pdb) (Berman et al., 2000;
Paoli et al., 1996) which has four protein chains, two α chains and two β chains, colored
according to the residue type. It has a heme group, which binds oxygen atom(not shown).
The structure was rendered using VMD (Humphrey et al., 1996).
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Abstract

A novel method is proposed for predicting protein secondary structure using data de-

rived from knowledge based potentials and Neural Networks. Potential energies for amino

acid sequences in proteins are calculated using protein structures. An Extreme Learning Ma-

chine (ELM) classifier is used to model and predict protein secondary structures. Classifier

performance is maximized using the Particle Swarm Optimization (PSO) algorithm. Prelimi-

nary results for ELM-PSO show improved results.
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3.1 Introduction

Large scale advances in genome sequencing and resultant availability of large numbers of

proteins sequences has given protein secondary structure prediction increasing importance in

computational biology. Improvements in secondary structure prediction can lead to progress

in protein engineering and drug design. Existing crystallographic techniques are too expen-

sive and time consuming for large-scale determination of protein three-dimensional struc-

tures. Prediction of secondary structures might be a useful intermediate step to speed up

structure prediction (Lomize et al., 1999; Ortiz et al., 1999). Secondary structure prediction

can assist in gene identification and classification of structures and functional motifs and in

identifying malfunctioning structures which cause human diseases.

Several computational methods have been successfully used in secondary structure pre-

diction, of which empirical and machine learning methods have proved to be the most suc-

cessful (Chou and Fasman, 1974; Qian and Sejnowski, 1988; Ward et al., 2003). GOR was a

pioneer method based on information theory (Garnier et al., 1978, 1996). Evolutionary infor-

mation was used (Kloczkowski et al., 2002) for improved structure prediction. PredictPro-

tein server (Rost et al., 2004) uses multiple sequence alignment based neural networks. The

PSIPRED algorithm (Jones, 1999) uses PSIBLAST (Altschul et al., 1997) and neural networks.

The Jpred prediction server (Cole et al., 2008) runs on the Jnet algorithm (Cuff and Barton,

2000). Large scale secondary structure prediction methods were developed (Montgomerie

et al., 2006; Pollastri et al., 2007) using existing structural information and computational

methods to claim an accuracy of 85.7% for sequences with over 30% sequence homology. It

was suggested that long-range interactions are an important factor to be considered (Kihara,

2005) in order to achieve higher classification accuracy.

We propose a novel strategy for secondary structure prediction using knowledge based

potential profiles. A two stage Extreme Learning Machine classifier called the ELM-PSO,

is used for classification of secondary structures. PSO (Clerc and Kennedy, 2002) is used

to improve the performance of the ELM classifier, by tuning its parameters such as input

weights, bias and number of hidden neurons used in the neural network.
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This paper is organized as follows: Section 2 gives a brief description of the data. Section

3 describes the two-stage ELM-PSO classification technique. Section 4 discusses the results

and gives a comparative study followed by conclusions in Section 5.

3.2 Data generation using CABS force field

Data is derived based on CABS force-fields, (Kolinski, 2004), which includes informa-

tion pertaining to long and short range interactions between amino acids in proteins. The

dictionary of secondary structure assignment Database of Secondary Structure in Proteins

(DSSP), (Kabsch and Sander, 1983), has 8 classes of protein secondary structures. We use

only a reduced set of three secondary structures, namely, α-helix (H), β-strand (E) and coil

(C). A profile matrix was created using 513 non-homologous (target) protein sequences from

the CB513 data set (Cuff and Barton, 2000), where the sequence homology is less than 30%.

A comprehensive description of the data generation using the CABS algorithm is given under

section 2.3 of this thesis.

3.3 Methods and optimization

An Extreme Learning Machine (ELM) (Huang et al., 2006) classifier, which is a form of

Neural Network, is used for classification. PSO is used to tune the parameters of the ELM.

The data was also evaluated using Support Vector Machine (SVM) and Naïve Bayes (NB)

algorithms using the WEKA (Witten and Frank, 2005) software tool for classification.

3.3.1 Encoding of knowledge-based potential data

In a neural net framework, the input consists of a set of patterns (residues), each having

a set of 27 features (profile values), which are normalized to values between 0 and 1. The

output consists of three units which correspond to one of three secondary structure elements,

represented as a 1 for the class of interest and a −1 for the other two classes. A given input

is combined with a bias and a set of weights and is processed through an activation function

at the hidden layer level. The output of the hidden layer is combined with another set of
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weights to yield three outputs. The predicted class is considered as the output which has the

maximum value, which corresponds to choosing the output with the smallest mean-squared

error.

The knowledge based potential data used for classification is derived from the CB513

(Cuff and Barton, 2000) set of protein sequences. The profile of each amino acid present in the

protein sequences consists of 27 features for each of N amino acids, where N is the number

of residues in a single protein. Of the 27 features, the first 9 features are the energy potentials

related to α-helices (H), the next 9 features are related to β-strands (E) and the last 9 features

are related to coils (C) as seen in Figure 3.1 and Figure 3.2 .

3.3.2 Scaling method used for secondary structure prediction

The relationship between the columns of the data and the three classes of secondary struc-

tures gives a particular advantage in getting better classification accuracy, since this informa-

tion can be used as prior information during the training phase (although this information

will not be available on a blind set or a new set of proteins). Based on this prior knowledge,

class specific features of the target class can be given extra weights (importance) compared to

the rest of the features that belong to the negative classes. Hence the class specific features of

each class (9 columns per class) were scaled (values boosted) according to a predetermined

factor prior to building a training model. These factors (not unique) were obtained by brute

force trial and error method, where selection was based on getting better classification re-

sults. It is noteworthy that the classification accuracy after this scaling depends on the scal-

ing factors used, and ranges from 60% (for non-scaled data or data scaled with sub-optimal

boosting values), to over 95%, when the optimal scaling factors are used. The first 9 features

of all samples belonging to the H class, were scaled by a factor of 5, while the second set of

9 features were scaled by a factor of 3 and the last set of 9 features were scaled by a factor

of 8. The scaling of data improves the classification accuracy considerably during the train-

ing phase. Samples which were scaled according to their classes were used for the 10-fold

cross-validation in WEKA (Witten and Frank, 2005), which gave very high results for SVM
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and Naïve Bayes algorithms. Since it is not possible to perform class-specific feature scaling

during testing (blind) phase for the ELM method, three sets of test samples were generated

for each sample in the test set. The first set had the first 9 features boosted in the same ratio

as for the H class for all samples. The second set of test samples had the next set of 9 features

boosted according to the factor used for the E class for all samples and the third set of test

samples had the last set of 9 features scaled according to the factor used for the C class for

all samples. Each test set was sent in turn and the votes were collected for the classification.

For robustness, ten sets of training models were used to get the classification results for the

same test set. Each training model yielded a set of three votes for each sample. These votes

were all gathered to determine the class which receives the maximum number of votes. The

results for the classification accuracies with and without feature scaling (value boosting) are

given in the results section. Blind testing with voting was not done for SVM and Naïve Bayes

algorithms since it would require modification of WEKA code.

3.3.3 Two-stage Extreme Learning Machine

The ELM-PSO consists of the Extreme Learning Machine (ELM) classifier (Huang et al.,

2006) as the main algorithm, which uses a set of training samples to build a model. During

the training phase, PSO is called upon to optimize the parameters, such as weights, number

of hidden neurons and bias of the ELM, which results in improved classification accuracy.

These parameters are stored and used during the testing phase. ELM is an improved version

of a feed-forward neural network consisting of a single hidden layer. The initial set of input

weights are chosen randomly, but they are tuned later by the PSO. The output weights from

the hidden layer to the output layer are analytically calculated, using a pseudo inverse. A

sigmoidal activation function is used for the hidden layer and a linear activation function is

used for the output neurons. A comprehensive description of the ELM algorithm is given

under Section 1.4.1 of this thesis. The simple steps involved in the ELM algorithm are:

• Given training samples and class labels (Xi, Yi), select the appropriate activation func-

tion G(.) and number of hidden neurons;
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• Randomly select the input weights (V ), bias (b) and calculate the output weights W

analytically where W = Y Y †h .

• Use the calculated weights (W,V, b) for estimating the class label in the test set and

try to minimize the error between the observed and predicted values. Generalization

performance depends on the choice of these parameters. They are later tuned by the

PSO algorithm.

• The class label is estimated as the maximum value of K outputs yki .

ĉi = arg max
k=1,2,...,C

yki . (3.1)

It has been shown (Suresh et al., 2010) that the random selection of input weights (V )

and bias (b) affects the generalization performance of the ELM multiclass classifier sig-

nificantly resulting in large variances in testing accuracies. It has been shown (Saraswathi

et al., 2011) that proper selection of ELM parameters (input weights, bias values, and

hidden neurons) influences the generalization performance of the ELM multiclass clas-

sifier favorably by minimizing the error defined as:

{H∗, V ∗, b∗} = arg min
H,V,b
{Y − T} (3.2)

where Y is the observed class value and T is the calculated output value of the class,

for a given set of hidden neurons H and input parameters V and b. The best weights

and bias values (denoted with the * symbols near the parameters) for the ELM can be

found using search techniques and optimization methods that are not very computa-

tionally intensive. In this study, we use Particle Swarm Optimization for tuning the

ELM parameters (H,V, b).

3.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization technique (Kennedy and

Eberhart, 1995; Clerc and Kennedy, 2002). This method mimics the intelligent social behavior
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of flocks of birds or schools of fish, represented as particles in a population. These particles

work together to find a simple and optimal solution to a problem in the shortest possible

time. The PSO algorithm is initialized with a set of random values called particles which

contribute collectively to the desired solution. These values represent various parameters

that we hope to tune in order to improve performance. The algorithm iteratively searches a

multi-dimensional space for the best possible solution, determined by a fitness criterion. PSO

will find the best combination of hidden neurons, input weights, and bias values and return

the (training) validation efficiency obtained by the ELM algorithm along with the best ELM

parameters to obtain better generalization performance. The best parameters are stored and

used during the testing phase. A comprehensive description of the PSO algorithm is given

under Section 1.4.2 of this thesis.

3.4 Results and discussion

Several training models were built using ELM and two other algorithms, namely SVM

and Naïve Bayes ( NB ) from the WEKA (Witten and Frank, 2005) suit of software for data

classification. A 10-fold cross validation was performed for SVM and NB , where 90% of

the proteins were used to build the training model while the remaining 10% were retained

for testing the model, but all input information was scaled according to previously described

values. A blind test was conducted using ELM with 4797 proteins for training and 4835 for

testing. These residues were selected from a random selection of 30 proteins for the train-

ing set out of 400 proteins, while the test samples came from a separate set of 41 proteins

retained for testing. Preliminary studies for the ELM-PSO classifier, SVM and NB show high

accuracies of around 99% for the scaled training as seen in Table 3.2, while the results for the

un-scaled version of the data, as seen in Table 3.1, is much lower at only 60% or less. The

un-scaled version of the data uses only row specific feature information while the scaled data

also uses column specific class information which increases the accuracy considerably. The

lower testing accuracy of 94.4% for the ELM (blind) tested 4835 samples might be due to the

smaller number of residues tested as compared to the other two models built from SVM and
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Table 3.1 Confusion matrix and accuracies without feature scaling.

This table gives the results for the three classes of secondary structures, using ELM-PSO,
SVM and Naïve Bayes, using data without feature scaling.

Confusion Matrix - ELM-PSO - Without feature scaling
H E C % Correct Category

H 1147 116 457 66.7 QH
E 300 329 474 27.1 QE
C 604 175 1195 30.6 QC

55.7 Q3

Confusion Matrix - SVM - Without feature scaling
H E C % Correct Category

H 3153 533 1672 58.8 QH
E 817 1353 1411 22.8 QE
C 1446 595 5083 20.5 QC

59.7 Q3

58.5 F-Measure
70.0 AUC

Confusion Matrix - Naïve Bayes - Without feature scaling
H E C % Correct Category

H 3244 1217 897 60.2 QH
E 705 2168 708 60.1 QE
C 2028 2168 708 47.6 QC

54.8 Q3

55.1 F-Measure
73.5 AUC

NB with the full data set. The ELM classifier trains on sets of 2000 to 3000 samples at a time

and builds several of these models by selecting samples at random from the pool of available

training samples (from the 400 training proteins), a very computationally intensive process.

The parameters for every ELM model are optimized by calling PSO and a single pattern from

the test set is repeatedly tested by each model, giving a consensus classification for the type

of the test sample. The class that occurs with the highest frequency in these classifications

is taken to be the predicted class for this test sample. Preliminary results for a set of 4835

test samples are given in Table 3.1 and Table 3.2 for scaled and un-scaled data. On the other

hand the high accuracies for SVM and NB can be attributed to the technique of cross vali-
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Table 3.2 Confusion matrix and accuracies with feature scaling.

This table gives the results for the three classes of secondary structures, for data with feature
scaling, using ELM-PSO, SVM and Naïve Bayes algorithms.

Confusion Matrix - ELM-PSO - With feature scaling
H E C % Correct Category

H 1814 0 0 100.0 QH
E 56 942 0 94.3 QE
C 224 0 1799 89.9 QC

94.4 Q3

Confusion Matrix - SVM - With feature scaling
H E C % Correct Category

H 24854 67 8 99.7 QH
E 0 16879 4 100.0 QE
C 0 0 31096 100.0 QC

99.9 Q3

99.8 F-Measure
99.9 AUC

Confusion Matrix - Naïve Bayes - With feature scaling
H E C % Correct Category

H 24896 33 0 99.9 QH
E 256 16627 0 98.5 QE
C 0 19 31077 99.9 QC

99.6 Q3

99.6 F-Measure
100.0 AUC

dation where the input data is uniformly scaled according to previous criteria, using feature

specific class information, which results in higher accuracy. There is no blind test of data.

So, unless the algorithm can discern this feature specific pattern automatically without in-

volving the computationally intensive brute force method for finding the scaling parameters

that was used here, it is not very practical. Future work will aim to improve the ELM-PSO

algorithm to learn this prior information automatically. Table 3.3 shows that the ELM-PSO

methods perform very well compared to other studies in the literature for scaled data. The

accuracy on the un-scaled data is lower for all models and is comparatively low for the blind

test, indicating that the learning algorithm needs further tuning to discern the column-wise
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information during (blind) testing phase. The column-wise class information is a unique fea-

ture of our data that separates the three classes linearly and hence gives high results. Table 3.1

and Table 3.2 also give the F-measure and area under the curve (AUC) values for SVM and

Naïve Bayes classifications. These calculations help us to gauge the quality of the predictions.

The performance of classifications can be evaluated in terms of the true positives (TP-

correct) and false positive (FP-error) terms. Similar definition holds for true negatives (TN)

and false negatives (FN). The output of a classification might provide estimated probabilities

which determine the predicted class according to a pre-set threshold. TP rate and FP rate can

be graphed as coordinate pairs which form the receiver operating characteristic curve (ROC

curve). The area under the ROC curve (AUC or AUROC) helps to aggregate the performance

of all the testing results, where a higher value closer to 1.00 denotes perfect performance. F-

measure gives the test’s accuracy. It uses precision p and recall r of the test, where p is the ratio

of correct results divided by all returned results (TP/(TP+FP)) and r is the number of correct

results divided by the number of expected results (TP/(TP+FN)). F-measure is calculated as

given in Equation 3.3, where the best score for F-measure can be as high as 1 and the worst

score can be as low as 0.

F−measure = 2 ∗ (precision ∗ recall)/(precision+ recall) (3.3)

Table 3.3 Comparison study of results for secondary structure prediction

This table compares the results of ELM-PSO based prediction results, on data with scaled
features, with other studies in literature.

Method Q3% QH% QE% QC%
PHDRost and Sander (1993) 70.8 72.2 66.0 72.0

JNet server (Cuff and Barton, 2000) 76.4 78.4 63.9 80.6

SVMpsi (Kim and Park, 2003) 76.6 78.1 65.6 81.1

SPINE server Dor and Zhou (2007) 80.0 84.4 72.2 80.5

ELMPSO with feature scaling (our study) 94.4 100.0 94.3 89.9
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3.5 Conclusions

A two stage approach for secondary structure prediction was presented where an Extreme

Learning Machine (neural network) was used along with Particle Swarm Optimization (ELM-

PSO) for classifying a reduced set of three secondary structures, namely, α-helix, β-strand and

coil. The data was generated using CABS potential energy. ELM-PSO needs improvement

to achieve better accuracies on blind tests so that comparative results can be achieved on new

proteins.
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Figure 3.1 Visualization of data without feature scaling.

Energy potentials are represented along the x-axis, the first 9 features belong to helix (H),
the next 9 features are for strand (E) and the last set of features 19 - 27 for coil (C). The color
intensity indicates the value of the potential energy, with a dark blue for a low value and a red
indicates a high value. The residues (total: 4282) along the y-axis have been sorted according
to the three classes, where residues 1 - 1487 belong to class H, 1488 - 2541 belong to class E and
2542 - 4282 belong to class C. Note: there is not much horizontal differentiation among the
three classes which becomes evident in Figure 3.2, after data is subjected to feature specific
scaling. Results for classification of this un-scaled data is given in Table 3.1. These results are
discussed further in the results section.
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Figure 3.2 Visualization of data with feature scaling.

The same sample data shown in Figure 3.1, is given here after feature scaling. Descriptions of
the X,Y axes and colors are the same as given in Figure 3.1. Compared to Figure 3.1, it can be
seen that class-specific feature scaling provides for a distinct separation of the classes, which
results in higher accuracy during classification, using ELM, SVM-SMO and Naïve Bayes al-
gorithms, with results shown in Table 3.2. These results are discussed further in the results
section.
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CHAPTER 4. FLOPRED FOR SECONDARY STRUCTURE PREDICTION

USING KNOWLEDGE-BASED POTENTIALS

1

4.1 Introduction

Previous studies applying the PSO-ELM algorithm to a set of proteins from the CB513

dataset gave high prediction results when prior information was included as part of the input

information, as discussed in Section 3.3.2 on page 70. The knowledge-based potential data

consists of 27 features, where the first 9 features belong to α-helix, the next 9 features belong

to β-sheet and the last 9 features belong to coil. This prior information was used in initial

studies to investigate the nature of the encoded data but not in later studies. Our aim, in

this study is to develop an algorithm that learns from the information encoded in protein

sequences from given feature sets with no user intervention.

4.2 FLOPRED Methodology for secondary structure prediction

The FLOPRED algorithm was developed using ELM as explained in Section 1.4.1 on

page 6 and advanced PSO algorithms as explained in Section 1.4.2 on page 11. By using

FLOPRED, we achieve accuracies between 86% and 92%, which are better than previously

reported in the literature for similar studies.

1In preparation for submission to journal
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4.3 Data generation

The data for this study was generated and encoded using the CB513 data set (Cuff and

Barton, 2000) and the CABS algorithm (Kolinski, 2004) as discussed in Section 2.3 on page 46

and Section 3.3.1 on page 69. Several training models were built using ELM as the classi-

fier which calls on PSO for optimization. Two sets of data were built to test the FLOPRED

algorithm as described below. Part of each dataset was selected for training models and the

remaining independent sets of sequences were tested for classification accuracy.

• Dataset-84: The first set of data consists of a selection of a small set of 84 proteins,

with 7, 500 residues, hitherto referred to as dataset-84. The selection criteria for this set

was the requirement that the sequence length had to be less than 125 residues, to keep

computational time and resources within manageable limits for the initial study, due to

the complex nature of the CABS algorithm for data generation.

• Dataset-415: A larger set of 415 proteins with 62, 000 residues (hitherto referred to as

dataset-415) were selected from the CB513 data set, which includes the initial set of 84

proteins. The criteria for sequence selection in this data was to select sequences which

did not share a pair-wise homology of greater than 70% with any of the templates. The

overall homology distribution between the template and the target sequences can be

seen to be between 10% and 18% as shown in the histogram in Figure 2.1. The remaining

113 of the 513 proteins were discarded from this study since they were found to be either

homologous to the template sequences as discussed in Section 2.3.7 on page 50 or they

were homologous to the template structures as discussed in section 2.3.8 on page 51. The

list of templates and sequences used in each of these studies are given in Appendix A,B

and C on page 178.

The results of studies conducted using these two datasets are discussed below in the

results section.
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4.3.1 Parameters used for PSO

Table 4.1 gives the parameters used by PSO and ELM algorithms. Max-iteration is

the number of iterations (50) the PSO goes through to select the best parameters while

swarm-size (100) is the number of particles used during each search. Lambda is one of

the ELM parameters used in the sigmoidal activation function. The search space (27 ∗

1, 250) is needed to represent the weights of the training network where 27 is the number

of features and 1, 250 is the number of hidden neurons. Another 1, 250 values are needed

for the bias of the hidden layer, for a total of 37, 350 + 1, 250 = 38, 600 parameters in

the search space. Although this seems to be a large number, we are using thousands

of samples to train the model and this number is still much less than what would be

needed for over fitting the model. We need 100 sets of these parameters in each of the

50 iterations, since there are 100 particles used in each search. In each of the 50 iterations

100 sets of 38, 600 values are randomly generated and each set is evaluated by ELM. The

particle which holds the set of 38, 600 values closest to the desired result (the parameters

which give the minimum error to give the best classification accuracy) is considered as

the best set of parameters. The best set from each of the 50 iterations is stored and

the overall best set from all the 50 iterations is finally used during the testing of the

independent set of data.

The parameters for the maximum number of iterations, swarm size, lambda and the

number of hidden neurons can vary widely if selected manually by the user. Higher

values of these parameters can mean there has been over-fitting of the training data,

whereas lower values mean under-fitting. Either of these two extremes will result in

lower generalization performance resulting in lower accuracies. FLOPRED is able to

select the minimum number of each of these parameters needed to achieve high testing

accuracies while maintaining lower standard deviations, resulting in excellent gener-

alization performance. Each of these parameters have been included for optimization

by the PSO and validated by FLOPRED at different stages of our research, resulting

in improved accuracies from an initial Q3 testing accuracy of 79% to the final results
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obtained for the two data sets exceeding 92%.

4.4 Results and discussion

Table 4.1 Parameters used for PSO and ELM

This table gives the parameters used by PSO and ELM algorithms. Max-iteration is the num-
ber of iterations the PSO goes through to select the best parameters. Swarm-size (100) is the
number of particles in each iteration. The search space is (27 ∗ 1, 250) for the weights of the
training network where 27 is the number of features and 1, 250 is the number of hidden neu-
rons. Another 1, 250 values are needed for the bias values, for a total of 37, 350 + 1, 250 =

38, 600 parameters in the search space. Lambda is one of the ELM parameters used in the sig-
moidal activation function. In each of the 50 iterations 100 sets of 38, 600 randomly generated
values are evaluated by ELM. Finally, the overall best set of 38, 600 values are stored for use
during the testing of the independent testing data. These parameters are discussed further
under Section 4.3.1 on page 85.

Parameters Values
Max-iteration 50

Swarm-size 100

ELM-Features 27

ELM-Hidden Neurons 1, 250

ELM-lamda 0.016

4.4.1 Results for dataset-84: Performance metrics

We use dataset-84, where 4, 000 residues are used to build a training model and the re-

maining 2, 647 residues are used for secondary structure prediction. The training set has a

good mix of the three secondary classes, α-helix,β-strand and coil, represented in the propor-

tion in which they naturally occur in the sequences. For this dataset, we are able to predict

secondary structures with a higher Q3 training accuracy of 93.33% and a testing accuracy of

92.24% with a standard deviation of 0.48%, on a small group of 84 proteins, which shows a

good generalization performance. The contribution to these high accuracies come from the

high individual testing accuracies of 94.19% for α-helix, 92.39% for β-strand and 91.11% for

coil. We observe a Matthew’s correlation-coefficient ranging between 80.58% and 84.30% for
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the three secondary structure classes. For dataset-415 we obtain a testing Q3 accuracy of

85.16% with improved performance. These are the most recent results.

Table 4.2 Metrics of the testing results for dataset-84

This table gives various metrics for the results of classification using dataset-84, averaged over
25 separate runs. 4, 000 residues were used for the training model and 2, 647 residues were
used for testing. The same training and testing set was used in all runs. All metrics given
in the table, including Q3 and MCC accuracies are defined and explained in Section 2.1.7
on page 35. These results are illustrated in Figure 4.1 and are discussed further under Sec-
tion 4.4.1

Metrics α-helix β-sheet Coil Average Stdev
Q3-training 94.42 88.05 90.18 90.89 0.33
Q3-testing 88.41 87.53 93.15 89.70 0.48

Sensitivity (recall) 70.50 80.42 87.64 79.52 0.50
Specificity 97.67 93.93 90.57 94.06 0.23
Matthew’s-corr-coeff (MCC) 0.74 0.76 0.78 0.76 0.61

+ve Predictive Value (precision) 93.15 87.53 88.41 89.70 0.48
+ve Predictive Value-Prev 92.35 83.56 * 87.85 87.92 0.50

-ve Predictive Value 88.05 90.05 89.92 89.34 0.35
-ve Predictive Value-Prev 89.26 92.59 * 90.39 90.75 0.23

False +ve Rate (Type I error) 2.33 6.07 9.43 5.94 0.23
False -ve Rate (Type II error) 29.50 19.58 12.36 20.48 0.50

Likelihood Ratio +ve 30.39 13.28 9.30 17.65 0.96
Likelihood Ratio -ve 0.30 0.20 0.13 0.21 0.08

The results of a previous study, with slightly lower accuracies, are given in Table 4.2 on

page 87. In this study 25 different sets of data are created. The same training and testing set is

used on all runs and the individual results are averaged over these 25 runs. Various training

and testing accuracies are given in Table 4.2 and Figure 4.1. This figure shows accuracies

for the three classes of secondary structures α-helix, β-strand and coil and the average Q3

accuracies. Q3-training, Q3-testing, sensitivity, specificity, Matthew’s Correlation Coefficient

(MCC), (Positive Predictive value (PPV), Negative Predictive Value (NPV) with and without
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Table 4.3 Post-test probabilities for dataset-84

This table compares the post-test probabilities for positive and negative classifications of the
three secondary structures. Sensitivity (Sen) and Specificity (Spc) are used to calculate the
Likelihood Ratio Positive (LR+ve) and Negative (LR-ve) values. The Prevalence (Prev) or
common occurrence of secondary structure percentage in the dataset and Pre-test odds (P-
odds) is also taken into consideration as post-test probabilities. The post-test probabilities are
calculated when the classification is given as positive (P+ve) and when it is given as nega-
tive (P-ve). The D+ve gives the difference between pre-test and post-test probabilities when
classification is positive. The D-ve gives the difference between pre-test and post-test proba-
bilities when a classification is negative. We see that the post-test probability percentages for
positive classifications are better since there is a greater difference for them compared to the
post-test probabilities when the classifications are negative. This shows that this model yields
better confidence in classifying positive cases than ruling out negative cases. The calculations
for these results are discussed in Section 4.4.1

Sen Spc Prev LR+ve LR-ve P-odds P+ve% D+ve P-ve% D-ve
α-helix 0.71 0.98 0.36 30.26 0.30 1.81 0.94 0.59 0.14 0.21
β-sheet 0.80 0.94 0.22 13.25 0.21 3.45 0.79 0.57 0.06 0.17
Coil 0.88 0.91 0.42 9.29 0.14 1.39 0.87 0.45 0.09 0.33

prevalence), are given. All metrics given in the table are defined and explained in Section 2.1.7

on page 35.

Here we see an average Q3 training accuracy of 90.89% while the individual training ac-

curacies are 94.42%, 88.05% and 90.18% respectively for the three secondary structures with

a standard deviation of 0.33% for training and 0.48% for testing which are small compared

to other reported values. The small standard deviations and the small difference of less than

1.19% between the training and testing accuracies show good generalization performance in-

dicating that we have built a good model. We see an average Q3 testing accuracy of 89.70%

while the individual testing accuracies are 88.41%, 87.53% and 93.15% respectively for the

three classes. Similarly, the other metrics seen in this table such as the average correlation co-

efficients 0.76, specificity 94.06, sensitivity 79.52 and precision 89.70 are also higher compared

to those found in the literature (not shown in the comparison table; when the final predictions

are higher then, all other metrics will also show correspondingly higher values). We have val-
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ues for MCC ranging between 0.74 and 0.78, which shows that the observed and predicted

values are well correlated indicating good prediction results. Our MCC is higher than seen

for other results in the literature as shown in Table 4.5.

The positive predictive value for β-sheet is much lower when prevalence is taken into

consideration, indicating that beta-sheets may not be sufficiently represented in the training

model. There is a 4% difference between the PPV and PPV with prevalence. In general all

the three secondary structures show lower accuracies when prevalence of the structures is

taken into consideration, showing that Q3 accuracies give an optimistic view of the predic-

tions when prevalence is not taken into consideration. There is a 2.22% reduction in the final

positive predictive value with prevalence. All the values for NPV show higher values with

prevalence although the gain is less than 1% for α-helix and coil while the biggest gain is for

β-sheet at 2.54%, with a final overall gain of 1.41% with prevalence. Initially, the PPV and the

NPV values seem to have values close to each other, with only a difference of 0.44% between

them, indicating that this model might have the same level of discrimination between posi-

tive and negative classes. But, after we take prevalence into consideration, we can see that the

model is much better at classifying negative classes than classifying positive classes. There is

a difference of 2.77% between these values when we take prevalence into account. This type

of analysis can help us to improve the model and modify it to obtain better positive predictive

values.

On comparing the false positive (FPR) and false negative (FNR) rates, we see that there

are four times more false negatives at 20.48% than false positives at 5.94%. The worst FNR

seems to be for α-helix followed by β-sheet, while the accuracies seem to reverse themselves

in quality for FPR. This information can be used to improve the model to reduce its FNR,

which will help to increase the accuracies of classification.

Next, we look at post-test probabilities for these tests. The Likelihood Ratio +ve LRP

show large values for all three secondary structures. As discussed in the definition for these

metrics, if the LRP values are greater than 8 then there is a large increase in the odds that

these evaluations indeed belong to the positive classes as classified by the algorithm. The
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LRN do not show large gains. Post-test probabilities are analyzed further and the results are

shown in Table 4.3 on page 88. In this table we see that the post-test probability percent-

ages for positive classifications are better, with an average of 52% increase compared to only

9% increase for negative classes. This shows that this model has better post-test confidence

in classifying positive cases than ruling out negative cases. This information could be used

for fine-tuning the SSP accuracies when combined with other criteria such as propensities

of certain amino acids to appear at the ends of secondary structures or other physicochemi-

cal properties of amino acids. Although the PPV-Prev values indicate that the model might

be good for predicting negative classes, the post-test probabilities show high confidence in

predicting positive classes.

It is to be noted that such high accuracies are not seen in the literature for any methods

as shown in Table 4.5. The high accuracies can be attributed to the advanced PSO algorithms

Fernández-Martínez and García-Gonzalo (2010) used. Initially when these algorithms are

used to tune only the weights and biases of ELM they provided accuracies which were about

5% higher than simpler PSO algorithms. Later on these algorithms are optimized to include

more ELM parameters like the number of hidden neurons, lambda and other PSO parameters

specific to the advanced algorithms, and this helped to tune the ELM further to provide very

high accuracies as seen in these results.

4.4.2 Results for dataset-415: Performance metrics

Dataset-415 underwent a 5-fold cross-validation test, using the sequences in dataset-415.

The ELM and PSO parameters used are similar to the ones used for dataset-84 and the search-

ing techniques are the same as discussed above. The dataset of 415 proteins is divided into

five equal numbers of proteins. Each of the five sets is retained for testing, iteratively, while

the remaining four sets are used for building training models. All the four training sets are

concatenated into one large training set and five models are built, each with approximately

6647 to 9000 residues. The training set is divided into smaller subsets (models) to facilitate

computation. The ELM algorithm uses a pseudo-inverse to analytically calculate some of its
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Table 4.4 Metrics of the testing results for dataset-415

This table gives various metrics for the results of classification using dataset-415, with a 5-
fold cross-validation test. MCC is the Matthew’s correlation-coefficient. These results are
discussed further under Section 4.4.2

Metrics α-helix β-sheet Coil Average Stdev
Q3-training 91.78 78.83 82.99 84.53 0.50
Q3-testing 79.08 75.58 90.37 81.67 1.38

Sensitivity (recall) 67.35 60.06 78.62 68.67 2.38
Specificity 94.09 91.60 84.65 90.12 0.81
Matthew’s-corr-coeff (MCC) 0.65 0.56 0.63 0.61 1.91

+ve Predictive Value (precision) 90.37 75.58 79.08 81.67 1.38
+ve Predictive Value-Prev 85.16 69.30 79.16 77.88 1.17

-ve Predictive Value 77.82 84.14 84.26 82.07 1.23
-ve Predictive Value-Prev 85.16 87.92 84.22 85.77 1.06

False +ve Rate (Type I error) 5.91 8.40 15.35 9.88 0.81
False -ve Rate (Type II error) 32.65 39.94 21.38 31.33 2.38

Likelihood Ratio +ve 11.49 7.18 5.14 7.94 0.64
Likelihood Ratio -ve 2.90 2.30 3.97 3.06 0.22

parameters and it is difficult and computationally intensive to invert large matrices. Since

each protein has a different number of residues, the data sets differ in the number of residues

and the composition of amino acids contained in them. But since whole proteins are selected

randomly from the initial set to make five groups, the datasets has a reasonably similar dis-

tribution of amino acids as seen in normal proteins. There are between 10, 000 and 12, 000

residues in each test set. Best parameters selected in each of the 5 models are tested using the

same set of sequences (one of five initial sets set up for cross-validation) that are set aside for

testing purposes during each cross-validation. This results in five votes (classification), for

each residue in the testing set, one from each model. The class with the highest number of

votes gathered from these models is taken as the predicted secondary structure for a given

residue in the test set. This exercise yields an average cross-validation training accuracy of
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84.53% with a standard deviation of 0.5% and a testing accuracy of 81.67% with a standard

deviation of 1.38% as given in Table 4.4.

Here we see an average Q3 training accuracy of 84.53% while the individual training ac-

curacies are 91.78%, 78.83% and 82.99% respectively for the three secondary structures with

a standard deviation of 0.5% for training and 1.38% for testing which are small compared to

other reports in the literature. The small standard deviations and the small interval of less

3% between the training and testing accuracies show good generalization performance indi-

cating that we have built a good model. We see an average Q3 testing accuracy of 81.67%

while the individual testing accuracies are 79.08%, 75.58% and 90.37% respectively for the

three classes. Similarly, the other metrics seen in this table such as specificity 90.12, sensitiv-

ity 68.67 and precision 81.67 are also higher compared to those found in the literature (not

shown in the comparison table; when the final predictions are higher then, all other metrics

also show correspondingly higher values). The average Matthew’s correlation coefficient is

0.61.

We see the same trends here as we saw for the dataset-84 for the positive predictive value

for β-sheet, which is 5% lower for α-helix and 6% lower for β-sheet, when prevalence is taken

into consideration. There is no significant change for coil and the overall differences in accu-

racy fall by more than 4% when prevalence is taken into account for positive predictions. We

see the opposite behavior for the negative predictive values with α-helix having the biggest

gains and an overall 3% increase in accuracies, for negative values when prevalence is in-

cluded.

On comparing the false positive (FPR) and false negative (FNR) rates, we see that there are

almost 3 times more false negatives at 31.33% than false positives at 9.88%. The worst FNR

seems to be for β-sheet followed by α-helix, while the accuracies seem to reverse themselves

for FPR. The Likelihood positive values are over 8 indicating that the Post-test results yield a

greater confidence for positive predictions than for negative predictions.

Results of a more recent study and information about the number of total and average

residues and accuracies for the 5-fold cross validations are given in Table 4.6, 4.7, 4.8 and 4.9.
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Table 4.5 Comparison of results for secondary structure predictions

This table compares the results of FLOPRED with some popular secondary structure predic-
tion studies in the literature, which use the CB513 dataset (except for PHD method). There
are many other studies that give similar range of accuracies. Q3 accuracies (CH , CE , CC) of
FLOPRED are seen to be 4.26% higher, compared to other studies given in this table. The
correlation-coefficients are lower by 1% for α-helix but higher by 7% and 15% for β-sheet and
coil respectively. These results are discussed further in Section 4.4.1 and 4.4.2

Method Data SOV% Q3% QH% QE% QC% CH CE CC

PHD 1 - 75.81 79.5 66.52 73.65 - - -
JNet 2 74.21 76.4 78.4 63.9 80.6 - - -
PSIPRED 3 76.0 79.69 81.41 71.59 78.15 0.75 0.69 0.63

SPINE 4 - 80.0 84.4 72.2 80.5 - - -
MMBP 5 - 85.6 - - -
Porter-H 6 - 85.7 - - -
FLOPRED7 - 89.96 88.74 87.75 93.39 0.74 0.76 0.78

FLOPRED8 - 85.16 88.20 85.04 82.23 - - -
1 (Rost and Sander, 1993)
2 (Cuff and Barton, 2000)
3 Jones (1999)
4 (Dor and Zhou, 2007)
5 (Yang et al., 2011)
6 (Pollastri et al., 2007)
7 dataset-84
8 dataset-415

4.4.3 Comparative study with the literature

All the methods that are listed include multiple sequence alignments to develop their

datasets whereas in our datasets we use sequence information and knowledge-based po-

tential information calculated using the CABS algorithm. Our method provides accuracies

which are higher than all the methods listed and provides for an improvement of 9.96% over

the SPINE server (Dor and Zhou, 2007). Compared to the recent (Pollastri et al., 2007; Yang

et al., 2011) methods which give an overall accuracy of 85.7% and 85.6%, our method for

dataset-84 gives an improvement of 4.26% and it is almost the same for dataset-415 with a

score of 85.16% which is lower by just 0.44%. The correlation-coefficients are lower by 1%

for α-helix but higher by 7% and 15% for β-sheet and coil respectively, when compared to
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PSIPRED.

4.5 Conclusions

Protein secondary structure predictions can be improved by including long range and

short range interaction information gained from sequences and by using improved machine

learning and optimization techniques. The increasingly available newer protein sequences

could help with improved secondary structure predictions. At the same time the variety of

homologous sequences can be a limiting factor since they provide varied information which

makes it more complicated to build models with good generalization. Information gained

from secondary structure predictions of proteins might lead to better understanding of the

role of proteins in diseases and industrial applications and help to advance technology in

these fields. A two stage Extreme Learning Machine approach was presented where an im-

proved Neural Network algorithm called the Extreme Learning Machine was used for clas-

sifying a reduced set of three secondary structure, namely, alpha-helix, beta-strand and coil.

The PSO algorithm was used to tune the ELM parameters in order to get higher classification

results. The data was generated using CATH library (Orengo et al., 1997; Cuff et al., 2008)

structures and CABS (Kolinski, 2004) force field. We were able to predict secondary struc-

tures with a higher training accuracy of 93.33% and a testing accuracy of 92.24% with a stan-

dard deviation of 0.48%, on a small group of 84 proteins, which shows good generalization

performance. On a larger set of 415 proteins, we obtained a testing accuracy of 86.5% with

a standard deviation of 1.38%. These results are much higher than those found in literature

and are validated by a comparison of our results with similar studies.
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Figure 4.1 Metrics of thetesting results for 84 proteins

This figure shows the Q3-training, Q3-testing, precision (positive predictive value or PPV),
sensitivity, specificity and Matthew’s correlation coefficient for a testing set of 2647 residues
selected from a set of 84 proteins. These results are discussed further under Section 4.4.1 and
Section 4.4.2. The data for this graph is given in Tables 4.2 and 4.4.
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Table 4.6 Metrics of the training results for 415 proteins

This table shows the training results for each of the 5-fold cross validation models. The per-
centage values for the accuracies are shown on the right. These results are discussed further
under Section 4.4.2.

Confusion Matrices - 5 fold CV Training accuracy %
H E C Total H E C

CV-1
H 3030 21 400 3451 86.88 0.72 12.41

E 4 1856 338 2198 0.21 81.20 18.59

C 275 488 3582 4345 6.30 13.02 80.68

CV-2
H 3108 18 405 3531 84.91 1.10 13.99

E 2 1880 329 2211 0.79 78.73 20.48

C 271 498 3636 4405 7.06 13.69 79.24

CV-3
H 2888 16 372 3276 87.47 0.54 11.99

E 3 1844 310 2157 0.23 80.83 18.94

C 268 492 3507 4267 7.67 13.07 79.26

CV-4
H 2862 16 368 3246 86.19 0.82 12.99

E 1 1860 327 2188 0.87 78.74 20.39

C 253 471 3440 4164 8.09 13.88 78.03

CV-5
H 3311 14 401 3726 87.18 0.52 12.30

E 1 1902 328 2231 0.27 82.26 17.47

C 281 475 3304 4060 7.92 12.75 79.33
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Table 4.7 Metrics for testing results for 415 proteins

This table shows the testing results for each of the 5-fold cross validation models. The per-
centage values for the accuracies are shown on the right. These results are discussed further
under Section 4.4.2.

Confusion Matrices - 5 fold CV Testing accuracy %
H E C Total H E C

CV-1
H 3151 26 450 3627 87.80 0.61 11.59

E 6 2367 542 2915 0.18 84.44 15.38

C 334 690 4275 5299 6.33 11.23 82.44

CV-2
H 3617 47 596 4260 88.02 0.51 11.47

E 26 2591 674 3291 0.09 85.03 14.88

C 408 791 4577 5776 6.15 11.31 82.54

CV-3
H 3903 24 535 4462 88.16 0.49 11.36

E 5 1750 410 2165 0.14 85.49 14.37

C 341 581 3523 4445 6.28 11.53 82.19

CV-4
H 4623 44 697 5364 88.17 0.49 11.34

E 27 2440 632 3099 0.05 85.01 14.95

C 434 744 4184 5362 6.08 11.31 82.61

CV-5
H 3529 21 498 4048 88.86 0.38 10.76

E 7 2100 446 2553 0.04 85.25 14.70

C 407 655 4075 5137 6.92 11.70 81.38
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Table 4.8 Metrics for average training results for 415 proteins

This table shows the confusion matrices for the total and average number of residues used in
the 5-fold cross-validation training models. The variation in the number of residues used for
each model is given as a standard deviation. The training results and their standard deviation
values are also given on the right for the 5-fold cross validation. These results are discussed
further under Section 4.4.2.

Total number of residues - 5 CV Training accuracy %
H E C Total H E C

H 15199 85 1946 17230

E 11 9342 1632 10985

C 1348 2424 17469 21241

Total 49456

Avg-CV H 3040 17 389 3446 86.52 0.74 12.74

E 2 1868 326 2197 0.47 80.35 19.17

C 270 485 3494 4248 7.41 13.28 79.31

Total 9891

Avg-Std-dev H 182 3 18 197 1.02 0.24 0.79

E 1 23 10 28 0.33 1.57 1.27

C 10 11 130 139 0.73 0.48 0.94

Avg-acc 82.06

Avg-Std-dev 1.18
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Table 4.9 Metrics for average testing results for 415 proteins

This table shows the confusion matrices for the total occurrences and average number of
residues used in the 5-fold cross-validation testing in each iteration. The variation in the
number of residues used for each model is given as a standard deviation. The testing results
and their standard deviation values are also given on the right for the 5-fold cross validation.
These results are discussed further under Section 4.4.2.

Total number of residues - 5 CV Testing accuracy %
H E C Total H E C

H 3765 32 555 4352 88.20 0.50 11.30

E 14 2250 541 2805 0.10 85.04 14.86

C 385 692 4127 5204 6.35 11.42 82.23

Total 12361

Avg-Std-dev H 110 2 19 0.40 0.08 0.32

E 2 66 23 0.06 0.39 0.37

C 9 16 77 0.33 0.19 0.50

85.16

0.43
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CHAPTER 5. AN AMINO ACID PERSPECTIVE OF SECONDARY

STRUCTURE PREDICTION

1

5.1 Background and Significance

Most secondary structure predictions give the results of their prediction in terms of the

three common secondary structures. It is rare to see an analysis of the results at the amino

acid level with few exceptions. The results of classifications from several secondary structure

prediction servers were studied and reanalyzed (Kazemian et al., 2007) to discern the patterns

of prediction accuracies with respect to different amino acids. The authors gave an analysis

of these results with an amino acid perspective based on the results of the servers. We have

done an in-depth analysis of the amino acids accuracies obtained from our own results and

see some interesting and intriguing patterns in the classification results. The set of proteins

used are all globular and there are no membrane proteins included in the data set.

We have developed several new methods for secondary structure prediction and accuracy

results are presented for the secondary structures α-helix, β-strand and coil for individual

amino acid types. These results are obtained in our studies on secondary structure prediction

using FLOPRED methodology on dataset-84 as discussed in Section 4.4.1 on page 86. We

investigate the influence of the composition and physicochemical properties of amino acids in

predicting secondary structures and see if there is a correlation between these properties and

the prediction accuracies. These results might help to determine the influence of amino acids

on formation of secondary structures themselves and may result in a deeper understanding

1In prepartion for submission to journal
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of how these contribute to the final structure and functions of proteins.

5.1.1 Discussion of results for amino acid types in dataset-84

Table 5.1 Q3 test accuracies for amino acids in dataset-84

This table shows the Q3 accuracies for all amino acids in dataset-84. It also gives the ranking
which is ordered from 1 (least accurate) to 20 ( most accurate) for each of the amino acids. The
results are discussed under Section 5.1.1.

Rank Amino acid
Amino Acid Alpha-helix Beta-strand coil overall Q3-Acc % Content
Alanine 7 12 19 18 92.49 7.42

Arginine 9 3 7 3 86.70 5.37

Asparagine 4 6 12 7 88.00 3.86

Aspartic Acid 15 15 3 9 88.83 5.83

Cysteine 20 1 5 2 85.76 2.23

Glutamic acid 13 2 10 5 89.52 4.16

Glutamine 10 10 8 11 87.09 8.25

Glycine 5 7 13 8 88.40 7.57

Histidine 2 19 20 17 92.27 1.67

IsoLeucine 14 17 11 14 91.54 5.26

Leucine 8 9 16 13 90.40 8.21

Lysine 6 18 6 12 90.10 6.93

Methionine 19 14 18 20 93.84 1.40

Phenylalanine 12 13 2 6 87.54 3.63

Proline 1 4 4 1 82.29 4.88

Serine 18 5 9 10 89.19 5.60

Threonine 17 16 14 19 93.03 6.06

Trypotphan 3 20 15 15 91.86 1.10

Tyrosine 11 11 17 16 92.08 3.60

Valine 16 8 1 4 86.83 6.96

Q3 accuracies for individual amino acids for dataset-84 are shown in Table 5.1. We can see

from the table that the highest accuracies are for Methionine, Threonine, Alanine, Histidine,

Lysine, Leucine, Isoleucine, Tyrosine and Tryptophan whose accuracies are above 90% and

whose rankings are above 14 (out of 20) while the lowest accuracies are seen for Proline, Cys-

teine, Arginine, Valine and Glutamic acid with rankings are below 6. The right-most column

gives the percentage content of each amino acid in the test set. This table shows the amino
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acid composition among the 2647 residues for each of the secondary structures in the test

set. It can be seen that amino acids are not present in uniform quantities in each secondary

structure. There are very few amino acids such as Glutamine, Glutamic acid and phenylala-

nine, which have comparable quantities in each of the three secondary structures. All the

other amino acids are present in varying quantities in each of the structures. Proline, serine,

threonine and glycine have the lowest number of α-helix residues while glutamic acid and

leucine have the highest quantities. In the case of β-strand, aspartic acid, proline and serine

seem to have the lowest content while isoleucine, phenylalanine, Threonine and valine have

the highest content. Large numbers of residues are in coil structures for proline, asparagine,

aspartic acid, glycine and serine, while valine, phenylalanine and glutamic acid seem to have

the lowest presence in coil.

Table 5.1 shows Q3 accuracies for all amino acids in dataset-84. The accuracy ranking is

given for each of the three secondary structures, where a rank of 1 is the lowest and a rank

of 20 is the highest. The overall rank is given according to the final Q3 accuracies. The last

column gives the percentage content of each of the amino acids. The values marked in red in

the last two columns indicate the highest Q3 accuracies obtained for those particular amino

acids. It can be observed that those with the highest accuracies are not always matched with

the highest content in the last column. The content of each amino acid is given in sorted order

in and Figure 5.7. In the cases of histidine (1.67%), methionine (1.4%) and tryptophan (1.1%)

the content is the lowest compared to other amino acids while their accuracies are high, at

between 92% and 94%. Some amino acids such as glutamic acid (8.25%) , glycine (7.57%)

and valine (6.96%) have the highest content but have lowest accuracies between 87% and

88%. Figure 5.9 illustrates these values. It can be seen that proline has average content but

the lowest accuracies at 82%. The overall accuracy is 89.38% with a standard deviation in the

accuracies of 2.9%, which is low compared to the literature. It has always been argued that

higher number of samples can lead to better accuracies but this is clearly not the case. It was

proposed that one of the reasons for lower secondary structure accuracies over the years was

due to lack of enough sequences which were representative of all the protein sequences. Here
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we see that at least at the amino acid level, more content does not necessarily mean better

accuracies for those amino acids.

5.1.2 Prediction accuracies and physicochemical properties

Table 5.2 shows five physicochemical properties of amino acids and the accuracies of

amino acids that were obtained for dataset-84. It can be seen from this table that the residues

that are hydrophobic have better accuracies than those which have other properties such as

charge or polarity. Those categories such as size or rings (listed under special) do not neces-

sarily enjoy higher accuracies, indicating that these properties may not be useful to discern

secondary structure. Hence hydrophobic residues seems to be the one of the physicochemical

properties among the five properties here, which enjoys higher accuracies, with the exception

of phenylalanine and valine. Among the positively charged amino acids histidine and lysine

enjoy higher accuracies, with the exception of Arginine. Residues with other properties seem

to have average accuracies.

5.1.3 Prediction accuracies and content of amino acids in secondary structures

Figure 5.8 shows the ratio in which each amino acid is present in secondary structures.

Some amino acids such as arginine and glycine are represented in equal proportions in all

three secondary structures. Some amino acids such as valine, isoleucine and alanine are in

unequal proportions but two of their accuracies are good at 92% . Tyrosine seems to have a

large imbalance of content in the three secondary structures, yet it seems to have one of the

highest accuracies of over 92%, while serine has an average accuracy of 89.2% even though its

content is imbalanced among the three secondary structures. Histidine has a fairly even rep-

resentation and a high accuracy of 92.3% while cysteine has a lower accuracy with imbalance

in amino acid content in the three structures. So, there does not seem to be any significant

correlation between uniform content and accuracies of secondary structure prediction.
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5.2 Conclusions

The results of FLOPRED secondary structure have been analyzed with respect to their

amino acid content. Our analysis indicates that high accuracies were obtained for some of

the amino acids while reasonable contributions to accuracies came from other amino acids.

There was not a great imbalance in the data with respect to any particular amino acids. A cor-

relation study between content and accuracies revealed that there is no correlation between

the content of an amino acid and its accuracy. In some cases, amino acids which comprised

as little as 1% of the total content had the highest accuracies while some amino acids which

were present in large quantities compared to others, had lower accuracies. This contradicts

the perception that lack of data might be contributing to lower accuracies during classifica-

tions. Our studies with respect to the influences of the content of amino acids to secondary

structure predictions can perhaps throw some light as on their influences on the formation

of secondary structure and help to guide development of better future secondary structure

prediction methods.
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Table 5.2 Prediction accuracies and physicochemical properties

This figure shows five physicochemical properties of amino acids and the accuracies of amino
acids that were obtained for dataset-84. It can be seen from this table that the residues which
are hydrophobic have better accuracies than those which have other properties such as charge
or polarity. This figure is further discussed under Section 5.1.2.

Physical and chemical properties
Amino Special Charged Charged Polar Hydro- Q3-Acc % Amino
Acid Property positive negative uncharged phobic acid
Alanine Y 92.49 7.42

Arginine Y 86.70 5.37

Asparagine Y 88.00 3.86

Aspartic Acid Y 88.83 5.83

Cysteine Y 85.76 2.23

Glutamic acid Y 89.52 4.16

Glutamine Y 87.09 8.25

Glycine Y 88.40 7.57

Histidine Y 92.27 1.67

IsoLeucine Y 91.54 5.26

Leucine Y 90.40 8.21

Lysine Y 90.10 6.93

Methionine Y 93.84 1.40

Phenylalanine Y 87.54 3.63

Proline Y 82.29 4.88

Serine Y 89.19 5.60

Threonine Y 93.03 6.06

Trypotphan Y 91.86 1.10

Tyrosine Y 92.08 3.60

Valine Y 86.83 6.96
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Figure 5.1 Ratio of amino acid content in secondary structures for
dataset-84

This table shows the ratio in which each amino acid is present in secondary structures. Some
amino acids such as arginine and glycine are represented in equal proportions in all three sec-
ondary structures. Some amino acids such as valine and alanine are in unequal proportions.
The results are discussed under Section 5.1.1.
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Figure 5.2 Test Accuracy and error in α-helix for all amino acids -
dataset-84

This figure shows the accuracy and error in α-helices for each amino acid. The long bars give
the accuracy while the shorter bars give the error rate. Data is included in this figure. These
results are further discussed under Section 5.1.1.
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Figure 5.3 Test Accuracy and error in β-sheet for all amino acids -
dataset-84

This figure shows the accuracy and error in β-sheets for each amino acid. The long bars give
the accuracy while the shorter bars give the error rate. Data is included in this figure. These
results are further discussed under Section 5.1.1.
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Figure 5.4 Test Accuracy and error in coil for all amino acids - dataset-84

This figure shows the accuracy and error in coils for each amino acid. The long bars give
the accuracy while the shorter bars give the error rate. Data is included in this figure. These
results are further discussed under Section 5.1.1.
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Figure 5.5 Overall test Accuracy and error for amino acids - dataset-84

This figure shows the overall accuracy and error for each amino acid. The long bars give the
accuracy while the shorter bars give the error rate. Data is included in this figure. These
results are further discussed under Section 5.1.1.



111

Figure 5.6 Overall test Accuracy and standard deviation for the three sec-
ondary structures - dataset-84

This figure shows the overall accuracy and standard deviation for the three secondary struc-
tures α-helix, β-sheet and coil and their average accuracy. The long bars give the accuracy
while the shorter bars give the standard deviation. Data is included in this figure. These
results are further discussed under Section 5.1.1.
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Figure 5.7 Sorted content of amino acids in the test set of dataset-84

This figure shows the amino acid composition among 2647 residues. It can be seen that certain
amino acids like tryptophan, methionine, cysteine and histidine are present in very small
quantities of 1% to 2% while others such as valine, alanine, glycine, leucine and glutamic acid
are present in comparatively large quantities between 7% and 8% while some other amino
acids are present in average quantities ranging between these two extreme values. The data
for this figure is given under Table 5.1 . These results are further discussed under Section 5.1.1.
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Figure 5.8 Content of amino acids in each of the three secondary structures
in the test set of dataset-84

This figure shows the comparative content of amino acid composition among 2647 residues
for each of the amino acids in the three secondary structures. The data for this figure is given
under Table 5.7 . These results are further discussed under Section 5.1.1.
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Figure 5.9 Correlation between accuracy and content for each amino acid
in the test set of dataset-84

This figure shows the correlation between the content of the amino acids and their secondary
structure prediction accuracies. It can be observed that there is no correlation since some
amino acids such as methionine, histidine and tryptophan are present in low quantities but
enjoy high accuracies which are above 90% while some amino acids such as glutamic acid,
glycine and valine are present in comparatively large quantities and yet have lower accuracies
which are between 86% and 88%. Proline has the lowest accuracy but average content in the
data set. The data for this figure is given under Table 5.1 . This figure is further discussed
under Section 5.1.1.
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CHAPTER 6. FLOPRED FOR PROTEIN SECONDARY STRUCTURE

PREDICTION USING PHYSICOCHEMICAL FEATURES OF AMINO ACIDS

Abstract

Protein secondary structure predictions, based on amino acid sequences, are commonly

used as input to protein 3-D structure predictions. Physical properties of the constituent

amino acids might influence the formation of particular secondary structures. Additional

information such as the biophysical and chemical properties of amino acids might help to

improve the results of secondary structure prediction. In order to determine the effects of the

various properties of amino acids on the formation of protein secondary structures, a database

of 544 physicochemical amino acid properties was used to encode protein sequences and this

data was used for secondary structure prediction. Genetic Algorithm (GA) was used for fea-

ture selection and Principal Component Analysis (PCA) was used for feature reduction and

FLOPRED was used for the predictions. FLOPRED methodology is a combination of a neu-

ral network based method called Extreme Learning Machine (ELM) and advanced Particle

Swarm Optimization techniques. Preliminary studies using FLOPRED for secondary struc-

ture classification show promising results.

6.1 Introduction

Proteins consist of sequences of amino acid residues that play a key role in determining

the secondary and tertiary structures of a protein. Various factors influence protein functions,

such as the proteins’ native structure, information encoded in its constituent amino acid se-

quences and its suitability in the surrounding environment when folded. All of these features
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play an important role in protein function determination. Methods to predict protein struc-

tures occupy a central role in biological research due to their potential contributions to several

important fields of study.

Proteins interact with their solvent environment and perform a variety of biological func-

tions. These interactions depend on the chemical and physical nature of the amino acids in

their sequences. It will be reasonable to assume that the physicochemical properties of the

amino acids will determine, at least to some extent, the formation of secondary structures.

Many studies in literature have used a few of these properties such as hydrophobicity, po-

larity, solvent accessibility and other common properties and included them as features in

secondary structure predictions. Many secondary structure prediction methods have been

used in the literature (Ooi et al., 1987; Shen and Vihinen, 2003; Adamczak et al., 2004; Cheng

and Baldi, 2006; Saraswathi et al., 2010a). A two-step approach has been developed (Meshkin

and Ghafuri, 2010) using feature selection on physicochemical properties of residues and Sup-

port Vector Regression (SVR) to predict RSA. Position specific residue preferences (PSRP) of

amino acids that appear at the ends of secondary structures have been used (Richardson and

Richardson, 1988; Duan et al., 2008) to improve secondary structure predictions accuracy by

about 3%. A two-level mixed-modal support vector machine (MMS) was used (Yang et al.,

2011) for secondary structure prediction using physicochemical properties of amino acids and

position-specific scoring matrices (PSSM) generated from PSI-BLAST (Altschul et al., 1997b)

to achieve accuracies of up to 85.6%, the highest accuracy seen so far. We have developed new

sets of features using physicochemical properties of amino acids from the AAindex database

and use this data for secondary structure prediction. The data and methods used are dis-

cussed next.

6.2 Data and Methods

6.2.1 Data generation - Encoding physicochemical properties

A database was set up where protein sequences from the CB513 data set (Cuff and Bar-

ton, 2000) were encoded using the physicochemical properties of amino acids derived from
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the AAindex (Kawashima et al., 1999) database. AAindex is a database of amino acid physic-

ochemical properties that were collected from previous publications. Some of the properties

that are indexed in this database include amino acid chemical shifts, RSA values, molecular

weights, lengths of side chains, hydrophobicity, volume, flexibility, amphiphilicity, frequency

and so many other properties. In total 544 properties of amino acids were normalized to val-

ues between 0 and 1 and stored. The color map of these values is shown in Figure 6.1 where

red is a high value and blue is a low value closer to zero. The varying colors represent the

varying values for different amino acid physicochemical properties, which may help machine

learning algorithms find good patterns in the sequence data when these values are encoded

for the sequences. In principle, good patterns can lead to higher accuracies for secondary

structure predictions. If the sequences were to be represented with orthogonal binary values,

these rich patterns would not be available since 95% of the values will be zeros and only 5%

of the values will be a 1, resulting in an almost complete blue colored values (zero) with occa-

sional red dots (for ones). The values from this colorful matrix (Figure 6.1) were then encoded

into sequences using a moving window of 9 residues. Each amino acid in the window is then

substituted with its corresponding values from the stored table of physicochemical proper-

ties. This process was repeated 544 times, once for each amino acid property. This resulted in

4896 (544 ∗ 9) features for each residue of interest in the fifth (middle) position in a window

of 9 residues. A sample encoding of protein 1ahb2 is given in Figure 6.2. It would be very

computationally intensive to use these large feature sets for secondary structure predictions.

It will also need a lot of computational resources in terms of memory and computing power.

Hence the features were reduced by using two different methods. One of the methods used

is a feature selection method, where a Genetic Algorithm is used. The desired number of fea-

tures can be specified and the algorithm will go through all the features and select the best set

which will maximize prediction accuracy. We can select as many as 500 properties or as few

as 20 properties and determine which set of values yield the best classification accuracies.

The classification accuracies are evaluated using our FLOPRED methodology. The second

method is a feature reduction method where Principal Component Analysis (PCA) is used to
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reduce the data set into its most important components. Each of these reduced data sets were

then used for secondary structure prediction. A preliminary study has been conducted using

these two methods. There are large amounts of data that need to be processed and evaluated

before definitive results can be discussed with respect to the usefulness of all 544 properties

for predicting secondary structures. Our preliminary results are given under the results sec-

tion. A description of the Genetic Algorithm and Principal Component Analysis used for this

study is given next.

6.2.2 Integer coded Genetic Algorithm (ICGA) for Gene Selection

The genetic algorithm (GA) is perhaps the most well-known of all evolution-based search

techniques. Genetic algorithms, which are based on evolutionary search techniques (Gold-

berg, 1989; Holland, 1975; Michalewicz, 1996), were developed in an attempt to explain the

adaptive processes of natural systems and to design artificial systems based upon these nat-

ural systems. Genetic algorithms are widely used to solve complex optimization problems

where the number of parameters and constraints are large and analytical solutions are diffi-

cult to obtain. In recent years, many schemes for combining genetic algorithms and neural

networks have been proposed and tested for feature selection (Suresh et al., 2010; Saraswathi

et al., 2011). In this study we have used the GA algorithm to select the best features (which

encode protein physicochemical properties) which are likely to make the maximum contribu-

tions for secondary structure prediction.

Genetic Algorithms model evolution at the gene level. The components of the GA con-

sist of String Representation, Selection Function, Genetic Operators and the Fitness Function. GAs

use representations of fixed length strings. String representation is the process of encoding

a potential search node (solution) as a string. In GA, string representation depends on the

structure of the problem and on the genetic operators used in the algorithms. In earlier work

on genetic algorithms (Holland, 1975; Goldberg, 1989), the string values were restricted to bi-

nary digits (0 and 1). A natural number (positive) representation of strings is considered to be

more efficient (Michalewicz, 1996) and hence produces better results. Hence, in our studies,
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we have used an Integer Coded Genetic Algorithm (ICGA) (Saraswathi et al., 2011) in which

the string representation for search nodes is encoded as a string of M independent integers,

where M represents the length of the string. There are three main processes essential for ac-

curate functioning of Genetic Algorithms; selection, cross-over and mutation. GA is a search

algorithm based on the mechanism of natural selection that transforms a set of individuals

(population of fixed length strings) into a new population (i.e., the next generation) using ge-

netic operators such as crossover and mutation (Holland, 1975; Goldberg, 1989; Michalewicz,

1996). These processes are generated similarly to what occurs in our genes. For each action,

a fitness value is assigned and the features that give the fittest values will finally survive af-

ter going through several iterations (Michalewicz, 1996). A survival of the fittest strategy is

adopted to identify the best strings and subsequently the genetic operators are used to create

the next generation. Genetic algorithms have been successfully used to obtain solutions for

many combinatorial optimization problems.

Genetic algorithms applied to combinatorial optimization problems work as follows: The

search space contains all the search nodes for the given combinatorial optimization problem.

GA starts with an initial population of N search nodes from the search space. Each search

node in the population is evaluated using the objective function and the fitness is assigned to

each search node. New search nodes are generated for the next generation based on the fitness

value and by applying genetic operators (crossover, mutation and reproduction) to the current

search nodes. This process is continued for several generations until the algorithm converges.

The Genetic Algorithm uses the concept of survival of the fittest by passing good search nodes

to the next generation, and combining different search nodes to form new generations.

We need to address the following factors in order to apply ICGA for selecting the best

features from a given data set. Only features selected through this process will be used in the

classification models used for further studies. Each of these factors is discussed next.
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6.2.2.1 String Representation

In our studies, the string representation for a search node is encoded as a string of in-

dependent integers, where M represents the length of the string. The integer values in the

string represent the selected features from the given set of features. For example, the string

1,10,22, 25,35,42,47,48,49,50 represents a set of 10 independent features selected from an ini-

tial set of 50 features. In this string representation of search nodes, we can uniquely represent

all combinations of the M best features in the given set and use only these features for our

classification model.

6.2.2.2 Population Initialization

In GA, an initial population of N search nodes is generated using a random selection

from the given set of features. The size of population N and the method of initialization will

affect the convergence of the problem. Since GA can iteratively improve the classification

accuracy, the initial population can start off with an existing solution or it can potentially be a

good solution by itself. Future populations can be randomly generated and used to improve

the existing solution. The population size N is typically problem-dependent and has to be

determined through simulations.

6.2.2.3 Selection Function

In GA, the selection of a search node plays an important role. This node is selected from

existing search nodes (population), in order to produce new search nodes for the ensuing

generations. A probabilistic selection is performed using genetic operators, where this selec-

tion is based upon the fitness of search nodes, such that the better search nodes have a better

chance of being selected for producing new search nodes. It is possible that a search node in

the population can be selected more than once for producing new search nodes, but we en-

sure that the final set of nodes will be unique. In the literature (Goldberg, 1989; Michalewicz,

1996), there are several schemes such as roulette wheel selection and its extensions, scaling

techniques, tournament, elitist models and ranking methods which are presented for the se-
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lection process. In our study, we have used the normalized geometric ranking method given

by Michalewicz (1996) for the selection process. Here, the search nodes in the population

are arranged in decreasing order of their fitness values, and a rank is assigned to each of the

search nodes. The ranking method assigns a probability of selection, sj to each search node

j, based on its rank in the partially ordered set. Let q be selection probability for selecting the

best search node and rj be the rank of the jth search node in the partially ordered set. The

probability sj of search node j being selected, using normalized geometric ranking method is

sj = q
′
(1− q)rj−1 (6.1)

where q
′

= q
1−(1−q)N and N is the population size.

6.2.2.4 Genetic Operators

Genetic operators provide the basic search mechanism of the GA. The operators are used

to create new search nodes based on existing search nodes in the population. Two types

of operators namely crossover and mutation are commonly used in GA. Crossover is the

primary operator in GA, and mutation is a secondary operator. Reproduction is another

genetic operator. The genetic operators for feature selection problems are described below.

• Crossover operation: Crossover operation uses two search nodes (parents) to produce

two new search nodes (off-springs). During the crossover, the parents exchange parts of

their solutions (search nodes). This is done in order to combine and pass on parts of the

good solutions present in each parent to produce the off-springs. In this work, a heuris-

tic crossover operator is used to generate valid solutions (Michalewicz, 1996), where the

fitness values of the two parent chromosomes are used to determine the direction of the

search.

• Mutation operation: The mutation operation alters one search node (solution) to pro-

duce a new search node. Mutations introduce a certain amount of diversity into the

population and are also useful to overcome premature convergence and local minima
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problems. In this operation, the mutation site is selected randomly and a new value

is assigned to the site based on a random integer generated from the range of num-

bers representing the feature set. This new number must be different from the feature

numbers already present in the string.

Let U be the search node selected for mutation and the mutation site is shown in bold

face.

U = [1, 5, 11, 14,24, 30, 33, 40, 47, 50] (6.2)

The feature 24 is removed and a new feature (3) different from those features already

present in the string U is inserted. The string generated after the insertion operation

will then be:

U = [1, 5, 11, 14,3, 30, 33, 40, 47, 50] (6.3)

• Reproduction operation: Reproduction is a commonly used genetic operator. We have

used an elitist model discussed in Michalewicz (1996) for our experiments. In this

method, the best search node (solution) generated in the current generation is passed

on to the population in the next generation.

6.2.2.5 Fitness Function

The fitness function in genetic algorithms is typically the objective function that we want

to optimize for the given problem. Our objective is to select the best M features that are

required to develop a classification model. The performance of the classification model is

evaluated using a different set of samples other than those used for model development. In

this study, we use a single hidden layer neural network called Extreme Learning Machine for

classifier model development. The ELM network is developed using a set of training samples

and its performance is tested on a set of independent samples. The classification accuracy (η)

obtained from the testing samples is used as the fitness value.

F = η (6.4)
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6.2.2.6 Termination Function

In GA, for each generation, solutions are selected on the basis of their fitness and are sub-

ject to genetic operations such as crossover and mutation. The evolution process of succes-

sive generations continues until a termination criterion is satisfied. The most frequently used

stopping criteria are population convergence and specification of a value indicating maxi-

mum number of generations. The population convergence criterion used for our problem is

specified as the incident when the solutions in the population are the same for two successive

generations. We have used this as the termination criterion. If this does not occur then the

maximum number of generations will be the stopping criteria.

6.2.3 Efficacy of the Integer Coded Genetic Algorithm

In previous studies using this algorithm, we have seen that the genetic algorithm has the

capability of selecting optimal features that contribute to higher accuracies in classification

(Saraswathi et al., 2011). In this study, this algorithm is used for secondary structure pre-

diction, using data that encode the physiochemical properties of amino acids. Preliminary

results are promising and we hope to improve it further.

6.2.4 Principal Component Analysis

Global optimization methods such as Particle Swarm Optimization can be applied to a

given data set when the number of features are within manageable limits. When the feature

set is very large such as microarray data where there are thousands of features, it is necessary

to reduce the number of features using some feature reduction methods such as Principal

Component Analysis (PCA). In our studies relating to structural effects of over 544 physico-

chemical properties of amino acids in protein sequences, a database has been developed using

a moving window of 9 residues centered on each amino acid of interest. This results in a set

of 4896 (9 ∗ 544) features for each amino acid representation, that needs to be reduced using

PCA, before the data can be processed by FLOPRED for secondary structure prediction. A

simple methodology is proposed for secondary structure prediction, to perform sampling in
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high dimensional spaces through the combined use of a family of particle swarm optimizers

and reduction techniques, using PCA.

Generally, multiple evaluations of the objective (or fitness) function are carried out to ob-

tain an optimal result. A large number of features will result in costly forward evaluations and

hamper the use and effectiveness of global optimization algorithms such as PSO. Sampling

can be performed in a reduced model space to obtain results close to the optimum. Dimen-

sion reduction is accomplished by PCA computed on a the reduced data set using stochastic

simulation techniques. The use of a reduced basis helps to regularize the problem and to find

a set of equivalent models that fit the data within a prescribed tolerance, allowing analysis

of the data around the minimum misfit solution obtained using FLOPRED. PSO was chosen

for optimization because its shows interesting exploration and exploitation capabilities, as

discussed in previous chapters.

The reduction of the existing features to a set of basis vectors (that are consistent with our

prior knowledge of amino acid properties) allows us to reduce the space of possible solutions.

The data reduced to a set of bases using PCA should have the following desirable properties:

• The bases can be ranked, and allow classification of the model variability.

• The bases are orthonormal and allow us to take into account the contribution of each

model parameter independently in order to reduce the bases.

• The bases are separable (enable good classification of the data) and enable us to expand

our methodology to higher dimensions.

Principal component analysis (Pearson, 1901) is a well-known mathematical procedure

that transforms a number of correlated variables into a smaller number of uncorrelated vari-

ables called principal components. The resulting transformation is such that the first principal

component accounts for much of the variability and each succeeding component accounts for

less of the remaining variability (Jolliffe, 2002). PCA involves finding orthogonal bases of the

experimental covariance matrix estimated using the available data with a large number of

features. We then select a subset of the most important principal components that are used
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as the reduced model bases. The cloud versions of the different PSO optimizers discussed

earlier in Section 1.4.2 on page 11 are used on these basis vectors, for secondary structure

prediction. Preliminary results are promising.

If we have a matrix of modelsX(n, l) where n is the dimension of the model space (or data

space) and l is the number of samples that you have in the model space. Then the Cprior =

(X−µ)∗(X−µ′) is the transposed centered matrix. Cprior, which is of size (n, n), is symmetric

and semi definite positive so it admits orthogonal diagonalization as follows:

Cprior = V DV ′ where columns of V are the eigenvectors and D contains the eigenvalues .

The PCA method used is described as follows:

1. Initially, we generate an ensemble X = [m1, m2, . . . , mq] of plausible scenarios that are

constrained using the prior information encoded in the data.

2. We need to find a set of patterns {v1, v2„ . . . , vq} that provide an accurate lower dimen-

sional representation of the original set with q being much smaller than the dimension

of the model space.

PCA does this by diagonalizing the prior experimental covariance matrix:

Cprior = 1
N

N∑
k=1

(mk − µ) (mk − µ)t

where µ = 1
N

N∑
k=1

mk is the experimental ensemble mean.

This ensemble covariance matrix is symmetric and semi-definite positive, hence, diago-

nalizable with orthogonal eigenvectors vk , and real semi-definite positive eigenvalues.

Eigenvectors vk are called principal components, the d first eigenvectors representing

most of the variability in the model ensemble. Then, any model in the reduced space is

represented as a unique linear combination of the d first eigenmodels m = µ+
d∑

k=1

akvk.

6.3 Results and discussion

A preliminary study has been carried out on a small number of 30 proteins, where 2000

residues were encoded with the AAindex feature values. A PCA toolbox (Fernández-Martínez
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et al., 2010) was used to reduce 4896 features down to 120 features and a secondary structure

classification was done on this data using FLOPRED. (Since this is a preliminary study, this

algorithm has not yet been optimized by fully using advanced PSO). On this data with re-

duced features, secondary structure prediction accuracy was 82% for training and 65% on

testing. These tests were averaged over 25 runs and have a standard deviation of 7% and 9%

for training and testing respectively, as seen in Table 6.1.

The same set of data with 2000 residues and 4896 features were used for feature selection

by the Genetic Algorithm. Only about 180 (20 * 9) features were selected, in sets of 9 features

(window-size) so as to make sure that all columns belonging to a particular property were

all included in the feature selection). These 180 features were used for secondary structure

classification, and we obtained a training accuracy of 79% and testing accuracy of 70%. These

results were averaged over 15 runs and they have a standard deviation of 10% and 3% for

training and testing, respectively, as seen in Table 6.2. It can be seen that the training and test-

ing accuracies vary widely with a standard deviation of 10% and 3% respectively. Although

it will be useful to look at the selected features to learn what are the important features, we

have not investigated this because of the size of the data. Ultimately we hope to find the best

set of features that will give good secondary structure predictions when we repeat this study

on on a larger data set.

The approach needs to be tested on a larger, newer protein data sets. In addition to this,

the results need to be optimized using the advanced PSO algorithms that were used in other

studies to give optimal results. The current studies are preliminary runs to see if the AAindex

data could give good secondary structure prediction accuracies. These data are encoded only

with AAindex data and no multiple sequence alignments or PSSM values have been used.

Yet the results we have seen are promising and we plan to apply these algorithms on larger

data sets in our future studies.

We also tried a combination of PCA and GA, where the GA was used to select the features

and PCA was used to reduce this set further. The FLOPRED methodology was used on this

data for secondary structure prediction. This method did not work very well (yielded only
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53% accuracy), probably due to the fact that the features were selected based on a very small

set of proteins.

6.4 Conclusions

A small set of proteins was used to encode 544 physicochemical properties of amino acids.

The sequences were coded using a window of 9 residues to obtain a total of 4896 features.

These features were reduced using GA and PCA to obtain secondary structure prediction

accuracies that look promising. Future studies will include larger protein sets and advanced

PSO techniques. We hope to find the best set of amino acid properties which contribute most

to secondary structure prediction.
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Table 6.1 Accuracy for PCA reduced features of AAindex properties.

This figure shows the accuracies for secondary structure prediction on a small set of 30 pro-
teins encoded with 4896 features from AAindex data which were reduced to 120 features
using Principal Component Analysis.

Testcase Training Testing
Test 1 0.85 0.76

Test 2 0.69 0.74

Test 3 0.84 0.69

Test 4 0.85 0.76

Test 5 0.74 0.63

Test 6 0.89 0.82

Test 7 0.92 0.75

Test 8 0.84 0.76

Test 9 0.86 0.57

Test 10 0.88 0.68

Test 11 0.86 0.64

Test 12 0.74 0.58

Test 13 0.79 0.60

Test 14 0.78 0.44

Test 15 0.89 0.60

Test 16 0.80 0.71

Test 17 0.70 0.64

Test 18 0.91 0.64

Test 19 0.84 0.58

Test 20 0.71 0.58

Test 21 0.81 0.56

Test 22 0.90 0.63

Test 23 0.83 0.61

Test 24 0.74 0.63

Test 25 0.81 0.55

Average 0.82 0.65

Std-dev 0.07 0.09
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Table 6.2 Accuracy for GA selected features of AAindex properties.

This figure shows the accuracies for secondary structure prediction on a small set of 30 pro-
teins encoded with 4896 features from AAindex data. Genetic Algorithm was used to select
the best set of 120 features from this larger set. These reduced set of 120 features were then
used for secondary structure prediction.

Testcase Training Testing
Test 1 0.81 0.70

Test 2 0.63 0.69

Test 3 0.69 0.73

Test 4 0.95 0.66

Test 5 0.70 0.75

Test 6 0.89 0.64

Test 7 0.74 0.69

Test 8 0.86 0.70

Test 9 0.81 0.67

Test 10 0.81 0.67

Test 11 0.91 0.73

Test 12 0.75 0.73

Test 13 0.83 0.69

Test 14 0.68 0.75

Test 15 0.56 0.70

Average 0.79 0.70

Std-dev 0.10 0.03
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Figure 6.1 544 properties of amino acids from the AAindex database.

This figure shows the normalized color map values of the 544 amino acid physicochemical
properties that were used for this study. Red is of high value and blue is of low value closer
to zero. The varying colors represent the varying values for different amino acid physico-
chemical properties, which will help machine learning algorithms find good patterns in the
sequence data when these values are encoded in the sequences. Good patterns can lead to
higher accuracies for secondary structure prediction. These values are discussed under Sec-
tion 6.2.1.
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Figure 6.2 1ahb protein encoded with 4896 features derived from 544

amino acids properties.

This figure shows the normalized color map values of 1ahb protein encoded with 4896 fea-
tures derived from 544 amino acid physicochemical properties that were used for this study.
Each amino acid (each row on the vertial axis) is encoded with 4896 features. Red is of high
value and blue is of low value closer to zero. The varying colors represent the varying val-
ues for different amino acid physicochemical properties, which will help machine learning
algorithms find good patterns in the sequence data when these values are encoded in the
sequences. Good patterns can lead to higher accuracies for secondary structure prediction.
These features were reduced using PCA and GA as discussed under Section 6.3.
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CHAPTER 7. IMPROVING SECONDARY STRUCTURE PREDICTION USING

POSITION SPECIFIC RESIDUE PREFERENCES OF AMINO ACIDS

7.1 Abstract

In previous chapters, protein secondary structure predictions were obtained from knowledge-

based potentials, using FLOPRED methodology. These predictions are improved using in-

formation extracted from the Position Specific Residue Preferences (PSRP) of amino acids

present in a set of 1, 860 proteins. The influence of the lengths of secondary structures and the

preferences of amino acids to appear at either end of the three secondary structures, α-helix,

β-strand and coil are investigated. We find that PSRP can be employed to improve secondary

structure prediction.

7.2 Secondary structure prediction with FLOPRED

Current methods of secondary structure prediction have accuracies slightly above 70%

if only sequences information is used, while they achieve a prediction accuracy near 80% if

the methods include multiple sequence alignments. The initial secondary structure predic-

tions using FLOPRED are based on ELM classifications using advanced PSO algorithms to

tune parameters such as the number of hidden neurons, weights and biases of the sigmoidal

activation function. We are able to predict secondary structures with a training accuracy of

93.33% and a testing accuracy of 92.24% with a standard deviation of 0.48%,using a small set

of 84 proteins as discussed in previous chapters. The low standard deviation and the small

difference of less than 1% between the training and testing set shows good generalization per-

formance. Here we investigate whether these accuracies can be improved further with the use
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of information gleaned from position specific residue preferences and other information such

as length of secondary structures and the frequency of occurrences of each secondary struc-

ture. We have conducted a preliminary study to where these values are used for voting on

the class of secondary structure. The collective voting scores are used for the final secondary

structure prediction as discussed in the results section.

7.3 Results obtained from FLOPRED

A set of small proteins (Dataset-84) has been selected from the CB513 data set (Cuff and

Barton, 2000) for secondary structure prediction, using the FLOPRED methodology. This set

is a collection of small proteins with less than 125 residues each and a total of 7, 500 residues.

The results obtained for secondary structure prediction using FLOPRED on this data set is

much higher than those found in literature as discussed in section 4.4 on page 86.

Residue preferences of amino acids at the ends of secondary structures have been used for

secondary structure prediction (Richardson and Barlow, 1999; Duan et al., 2008) . In order to

improve FLOPRED classification results, we investigate here, the usefulness of Position Spe-

cific Amino Acid Preferences (PSRP) to appear at the ends of secondary structures. We will also

look at the propensities of structures to appear within particular lengths and the number of

occurrences of each secondary structure in a given set of proteins. We will investigate amino

acid residue preferences for seven positions in an α-helix and five residue positions for β-

strand and coil at the N-terminal end and the C-terminal end. Propensities for a given length

and propensity for number of occurrences for secondary structures are also investigated to

see if there are any possibilities for improving secondary structure prediction results.

All these structures are formed starting from the amino acid sequence. The folding itself is

influenced by the several types of interactions between the residues which are determined by

the physicochemical properties of the amino acids. We aim to investigate these features with

respect to different secondary structures and their constituent amino acids. These amino acids

might have position specific preferences to appear near the ends of secondary structures.
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7.4 Initial studies to determine contribution of PSRP

The structure propensities for the training sequences and position specific amino acid

propensities 7.1 for the amino acids in the full data set were initially determined, as listed

below. The usefulness of the data, (as determined from the classification results) in contribut-

ing to increased prediction accuracy is discussed below. The different propensity values for

various metrics are given in various figures.

• Structure propensities: as given in Figure 7.2 statistics on lengths of sequences between

20 and 30 amino acids do not contribute much to improve prediction accuracies, since

they are not very significant as seen in the figure. Propensities for individual structures

Table 7.1 such as α-helix, β-sheet and coil are found to be useful both as stand-alone

parameters and when combined with other parameters and are used as a sort of rule set

to determine membership to particular secondary structures.

• Amino Acid propensities : the occurrences of the 20 amino acid residues at ends of

secondary structures as shown in Figure 7.1, is useful. As can be seen from the figure,

each amino acid has a different propensity for the three secondary structures and these

propensities are different for each of the 20 amino acids. AA propensities for particu-

lar residues at specific positions is also useful. Propensities for particular residues with

particular length of a secondary structure (Helix, Sheet, Coil) in a particular position is a

useful parameter in combination with structure propensity for occurrence. Propensities of

amino acids to appear at the ends of secondary structures (Duan et al., 2008) is also an

important contribution to determining secondary structure.

Many of these propensity values are used in the calculations and are given a vote in de-

termining the secondary structure of the testing set. A sample rule set is shown in Table 7.1,

where it shows that an alanine residue with an entry 1 − 0 − 0 will be considered to be fa-

vored to be in an alpha helix rather than in a beta sheet or coil. Several of the PSRP values

were similarly assigned votes so that they got a chance to vote on their choice of secondary

structure, for the residue of interest.
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Using the values in Table 7.1, an analysis was made on 699 test residues, to see if the

PSRP values can help to increase prediction accuracy. It was found that if we disregard the

ELM results and depend only on the votes cast by the PSRP values, we obtain only an ex-

tremely low accuracy rate of less than 50% for the first guess (first of three choices) and less

than 13% (second of three choices). So, it was decided that it was prudent to keep the ELM

results since they are almost 100% accurate for residues which are not at the ends of the sec-

ondary structures. So, PSRP values should be considered only for the residues at the ends of

the structures, where the boundaries between secondary structure elements are located since

the highest accuracies comes from the ELM-PSO method. If the PSRP results are combined

with ELM then some of the correct entries are incorrectly classified and the overall accuracy

percentage declines. At the same time it was found that the PSRP values do have some cred-

ibility since the first Guess was the correct class in some cases where the ELM gave the wrong

classification (for some end residues). It seems that if we could find a way to somehow com-

bine ELM and PSRP predictions, we would be able to improve the classification accuracy

considerably over the ELM-PSO accuracies. But trying to increase the accuracies manually

would be too arbitrary and too cumbersome when it comes to classification of thousands or

even millions of residues. Hence we developed a methodology to model the PSRP values

and incorporate them as part of the machine learning process to assess their contributions to

secondary structure prediction, which is discussed next.

7.5 PSRP models for secondary structure prediction

Sequences from 1860 proteins with 511, 648 residues (Duan et al., 2008) are used to cal-

culate the PSRP values. The structure-changes from one structure to another, either at the

beginning of a structure or at the end of a structure, can be expressed in terms of five residues

(5%-mers) starting from two residues just before the start ( or just after the end) of a struc-

ture and three residues which are part at the beginning of the secondary structure element

itself (or at the end). For the first set of patterns, which are pattern changes at the beginning

of secondary structures, the first two letters are replaced by the six combinations of H, E C
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followed by patterns HHH, EEE or CCC. This yields a total of 27 patterns (32 ∗ 3). Similarly

in the next set the last two letters are replaced by the six combinations of H, E C, preceded

by the three patterns HHH, EEE or CCC. Pattern-changes like HHH HH are also included

for completion. The middle residue is the residue of interest for which we seek secondary

structure assignment. There are a total of 27 + 27 = 54 possible patterns of 5-mers. Only 45

are used in this study. The remaining 9 patterns which were not investigated in this study will

be considered in future. Of the 45 patterns, only 13 cases capture most of the occurrences of

which only 8 represent over 4% of the residues as seen in Figure 7.5. Only these most frequent 8

patterns are used in our analysis. The counts of the remaining patterns are relatively insignifi-

cant and have not been included. For example, the pattern HHCCC is a boundary between an

α-helix structure and a coil. Besides these boundaries we also consider non-boundary, con-

tinuing structures such as HHHHH, EEEEE, CCCCC. 45 of these models consisting of 359, 579

residues were considered, and a list of these is shown in Table 7.2. This table shows the data

for all the 45 cases for three secondary structures.

Of these 45 types, only 13 share most of the residues as shown in Figure 7.5 and Table 7.3.

The number of residues in each of the three secondary structures is given in Figure 7.3 and

the number of residues in each of the 13 cases are given in Table 7.3. Of these 13 models, only

8 share over 4% of the residues (as seen in the data and figure) and these are the only ones

used in our analysis.

The dataset of 1860 sequences were scored for each of the 45 patterns and the number of

occurrences of each of the 20 amino acids in the five positions in the patterns are stored. These

statistics are used to encode the sequence features and are used during secondary structure

prediction. The ELM-PSO algorithm will train on some of the sequences encoded with these

features and then predict the secondary structure of the central residue in a 5-mer pattern.

The values calculated for the pattern HHHHH are given in Table 7.4 and Figure 7.6, which

shows the propensities for each of the 20 amino acids for each of the five positions. Here the

residue of interest is the third or the middle residue. If the pattern is HHEEE then the residue

of interest is E. This figure shows a rich variety of colors where red indicates a high value or



139

higher propensity to occur at one of the five positions compared to blue which indicates lower

propensity. Such tables were built for all these cases. For each of the 8 cases, the sequences are

encoded with the values in these tables. Then these features are used instead of the traditional

orthogonal or PSSM values.

7.6 Results and discussion

The ELM-PSO is run on the sequences encoded with the CABS potential data, as dis-

cussed in earlier chapters. The ELM-PSO algorithm used for these runs is the general PSO

algorithm and not the advanced PSO algorithms which were used in FLOPRED. Hence the ac-

curacies obtained for secondary structure prediction for these runs is nearer to 79% and not

higher as seen in later studies using FLOPRED. Then the same sequences are encoded with

the feature values derived for each of the models. 8 different classifications are done and the

accuracy for secondary structure classification is given in Figure 7.7. The patterns for which

models were built are shown in the figure. Depending on the pattern, each of these data

will have a different number of positive and negative patterns since all patterns do not occur

uniformly in the data set. The tables show that the ELM-PSO results of secondary structure

classification for the sequences coded with just the CABS potentials data is on an average

79% while the accuracies for secondary structure classification using only the PSRP feature

values vary between 25% for Model M4, corresponding to the HHHCC pattern and 71% for

the model M2 corresponding to EEEEE pattern. In these models the middle residue is the

one for which secondary structure is predicted. The combined accuracy for these two models

ranges between 83% and 93% but some of these accuracies will be overlapping where the pre-

dictions for the ELM-PSO and those for PSRP are both correct. So, the actual accuracies can

range between 78% and 93% depending on which model we choose. The last line in the ta-

ble gives the contribution that the PSRP values could potentially make to increase secondary

structure prediction accuracies and these values range between 6% and 15%. These are results

of preliminary runs on about 1000 residues. The advanced PSO optimizations of FLOPRED

have not yet been performed on any of these data. Using the PSRP values derived from
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these analyses, we can make a more thorough study using larger and newer protein data sets

to check whether the PSRP can indeed make useful contributions to increases in secondary

structure prediction accuracies.

7.7 Conclusions and future work

Feature values for different structure-changes patterns found in protein sequences have

been derived. Amino acid counts found in these positions were used to calculate these feature

values, which are the propensities of each amino acid to occur in particular positions at the

beginning and end of the three secondary structures. Secondary structure classifications for

the same set of sequences encoded with CABS potentials data and the PSRP features were

obtained using ELM-PSO algorithm. The results were compared and combined to estimate

the minimum and maximum gains that can be obtained in secondary structure prediction

accuracies using PSRP feature values. Future work in this area would use PSRP values on

larger data set and optimize the classification results using the more advanced FLOPRED

algorithm for classification.

It is to be noted that only a trial run with many combinations of the PSRP values has been

carried out in this project. A more elaborate scheme that would include the PSRP values as

part of the ELM data itself needs to be made before any conclusions can be drawn. This will

prevent any subjective and biased rules being imposed on the classifications. We can also use

only PSRP values to isolate their contribution to the classification of secondary structures.
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Figure 7.1 The propensities of the 20 amino acids in secondary structures

Data for this graph is derived from 1860 protein sequences (Duan et al., 2008). The percentage
of each of the 20 amino acids , in each of the three secondary structures present in this data
set, is shown in this figure. We observe that some of the amino acids such as alanine, glutamic
acid, leucine, methionine and tryptophan prefer to be present in α-helices while others such
as isoleucine and valine prefer β-strands while the remaining residues prefer coil. This figure
clearly illustrates that preferences of the various amino acids for secondary structures is non-
uniform.



142

Table 7.1 Propensities of 20 amino acids to appear at the ends of secondary
structures.

Data for this graph is derived from 1860 proteins (Duan et al., 2008). This figure shows the
number, letter codes and names of 20 amino acids. The number 1 indicates a preference and a
0 indicates absence of preference (relative to the structure having greater preference). Some of
the amino acids such as alanine, glutamic acid, phenylalanine, leucine, methionine and tryp-
tophan prefer to appear at the ends of α-helices more than other secondary structures while
isoleucine and valine prefer to appear at the ends of β-strands and the remaining residues
prefer coil. These values were calculated based on the statistics of the content of the amino
acids at the ends of secondary structures in the given dataset.

# Letter 3-letter Amino acid α− helix β − sheet Coil
code code name

1 A Ala Alanine 1 0 0
2 C Cys Cysteine 0 0 1
3 D Asp Aspartic Acid 0 0 1
4 E Glu Glutamic Acid 1 0 0
5 F Phe Phenylalanine 1 0 0
6 G Gly Glycine 0 0 1
7 H His Histidine 0 0 1
8 I Ile Isoleucine 0 1 0
9 K Lys Lysine 0 0 1
10 L Leu Leucine 1 0 0
11 M Met Methionine 1 0 0
12 N Asn Asparagine 0 0 1
13 P Pro Proline 0 0 1
14 Q Gln Glutamine 0 0 1
15 R Arg Arginine 0 0 1
16 S Ser Serine 0 0 1
17 T Thr Threonine 0 0 1
18 V Val Valine 0 1 0
19 W Trp Tryptophan 1 0 0
20 Y Tyr Tyrosine 0 0 1
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Figure 7.2 Length distributions of the 20 amino acids in secondary struc-
tures

Data for this graph is derived from 1860 proteins (Duan et al., 2008). The counts of the lengths
of secondary structures present in this dataset for each of the three secondary structures, is
shown in this figure as a percentage. This figure shows that most of the secondary structures
found in this dataset have lengths ranging from single residues to around 10 residues (al-
though helices start at 3 residues, which might include half turns). α-helices tend to be longer
than other secondary structures and coils are also longer than β-strand. The length propen-
sities for sequences of length between 20 and 30 are not found to contribute significantly to
secondary structure prediction, possibly because not enough sequences of those lengths are
available.



144

Figure 7.3 Secondary structure counts in PSRP analysis

This figure shows the number of residues in each of the three secondary structures used for
the PSRP analysis. The data is derived from the a data set of 1860 proteins (Duan et al., 2008).
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Figure 7.4 Amino acid counts for the full data set in PSRP analysis

The data is derived from the a data set of 1860 proteins (Duan et al., 2008). This figure shows
the number of residues for each of the 20 amino acids in the full dataset used for the PSRP
analysis
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Table 7.2 PSRP models - 5-mers of patterns

The data for this table is extracted from 1860 protein sequences (Duan et al., 2008). This figure
shows the counts for 45 structure boundaries between different secondary structures. For the
first set of patterns, which are pattern changes at the beginning of secondary structures, the
first two letters are replaced by the six combinations of H, E C followed by patterns HHH,
EEE or CCC. This yields a total of 27 patterns (32 ∗ 3). Similarly in the next set the last two
letters are replaced by the six combinations of H, E C, preceded by the three patterns HHH,
EEE or CCC. Pattern-changes like HHH HH are also included for completion. The middle
residue is the residue of interest for which we seek secondary structure assignment. There
are a total of 27 + 27 = 54 possible patterns of 5-mers. Only 45 are used in this study. The
remaining 9 patterns which were not investigated in this study will be considered in future.
Of the 45 patterns, only 13 cases capture most of the occurrences of which only 8 represent over
4% of the residues as seen in Figure 7.5. Only these most frequent 8 patterns are used in our
analysis. The counts of the remaining patterns are relatively insignificant and have not been
included. struct gives the secondary structures of which the central residue is the class of the
pattern, count gives the number of patterns of this type that is found in the dataset, % gives
the fraction this pattern found in the full dataset.

ID Pattern Struct Cls Count % ID Pattern Struct Cls Count %
1 HHHHH 11111 1 108386 30 24 EEECH 22231 2 1064 0
2 HEHHH 12111 1 14 0 25 EEECE 22232 2 489 0
3 EEHHH 22111 1 1096 0 26 EEECC 22233 2 14915 4
4 CEHHH 32111 1 395 0 27 CCCCC 33333 3 77935 22
5 HCHHH 13111 1 1415 0 28 HHCCC 11333 3 13261 4
6 ECHHH 23111 1 1725 0 29 EHCCC 21333 3 0 0
7 CCHHH 33111 1 14687 4 30 CHCCC 31333 3 0 0
8 HHHEH 11121 1 14 0 31 HECCC 12333 3 178 0
9 HHHEE 11122 1 616 0 32 EECCC 22333 3 12918 4

10 HHHEC 11123 1 251 0 33 CECCC 32333 3 2529 1
11 HHHCH 11131 1 1415 0 34 CCCHH 33311 3 11678 3
12 HHHCE 11132 1 982 0 35 CCCHE 33312 3 0 0
13 HHHCC 11133 1 15974 4 36 CCCHC 33313 3 0 0
14 EEEEE 22222 2 37295 10 37 CCCEH 33321 3 280 0
15 HHEEE 11222 2 531 0 38 CCCEE 33322 3 14290 4
16 EHEEE 21222 2 0 0 39 CCCEC 33323 3 2765 1
17 CHEEE 31222 2 0 0 40 HHEHH 11211 2 14 0
18 HCEEE 13222 2 529 0 41 HHCHH 11311 3 1415 0
19 ECEEE 23222 2 476 0 42 EEHEE 22122 1 0 0
20 CCEEE 33222 2 15835 4 43 EECEE 22322 3 344 0
21 EEEHH 22211 2 907 0 44 CCHCC 33133 1 0 0
22 EEEHE 22212 2 0 0 45 CCECC 33233 2 2961 1
23 EEEHC 22213 2 0 0 Total 359579 1
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Table 7.3 T

his data is derived from a data set of 1860 proteins (Duan et al., 2008). This histogram shows
the number of residues for each of the 13 models used in the PSRP analysis. Some patterns
such as HHHEE, HHHCC, EEECC, CCCHH, CCCEE have few occurrences (relative to the
total) and are combined with other models during our studies. Some patterns present in
negligible quantities are not used in our analysis. The data for this figure is given in Table 7.3
and is further discussed in Section 7.5

Model Number Pattern Number of Residues %
1 HHHHH 108386 0.32

2 CCHHH 14687 0.04

3 HHHEE 616 0

4 HHHCC 15974 0.05

5 EEEEE 37295 0.11

6 HHEEE 531 0

7 CCEEE 15835 0.05

8 EEECC 14915 0.04

9 CCCCC 77935 0.23

10 HHCCC 13261 0.04

11 EECCC 12918 0.04

12 CCCHH 11678 0.04

13 CCCEE 14290 0.04

Total 338321
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Figure 7.5 Amino acid counts for 13 models in PSRP analysis.

The data is derived from the a data set of 1860 proteins (Duan et al., 2008). This figure shows
the number of residues in each of the 13 models used for the PSRP analysis. Some patterns
such as HHHEE, HHHCC, EEECC,CCCHH, CCCEE which are few in number (relative to
number of occurrences of other patterns) were combined with other models during our stud-
ies. Some patterns which were present in negligible quantities are not used in our analysis.
This data is given in Table 7.3 and is further discussed in Section 7.5
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Table 7.4 Propensities of the 20 amino acids to appear in the HHHHH pat-
tern

The data is derived from the data set of 1860 proteins (Duan et al., 2008) and represents the
propensities of amino acids at the five different positions in the HHHHH pattern. Sequences
are coded with these features (for a window size of 9) for secondary structure prediction. Sim-
ilar tables are used for the other 12 models. A model is built with the set of protein sequences
encoded with the features in this table that are used for secondary structure prediction of
the central residue in each pattern. A graphical view of these features is given in Figure 7.6,
where the larger values are colored red and the blue ones are small values close to zero.

Amino Acid 1 2 3 4 5
A 0.12 0.12 0.13 0.13 0.13

R 0.06 0.06 0.06 0.07 0.07

N 0.03 0.03 0.03 0.03 0.03

D 0.05 0.05 0.04 0.04 0.04

C 0.01 0.01 0.01 0.01 0.01

Q 0.05 0.05 0.05 0.05 0.05

E 0.10 0.09 0.08 0.08 0.08

G 0.04 0.04 0.03 0.03 0.03

H 0.02 0.02 0.02 0.02 0.02

I 0.06 0.06 0.07 0.07 0.06

L 0.11 0.12 0.13 0.14 0.13

K 0.06 0.06 0.06 0.07 0.07

M 0.03 0.03 0.03 0.03 0.03

F 0.04 0.04 0.04 0.04 0.04

P 0.03 0.01 0.01 0.01 0.01

S 0.04 0.04 0.04 0.04 0.04

T 0.04 0.04 0.04 0.04 0.04

W 0.02 0.02 0.02 0.02 0.01

Y 0.03 0.03 0.04 0.04 0.04

V 0.07 0.07 0.07 0.07 0.06
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Figure 7.6 Color map of feature values for the HHHHH pattern in PSRP
analysis

The data is derived from the a data set of 1860 proteins (Duan et al., 2008). This table shows
the color map of the propensities of all amino acids in the ’HHHHH’ pattern. Sequences are
coded with these features (for a window size of 9) for secondary structure prediction. Similar
tables are used for the other 12 models. This figure shows that the 20 amino acids have differ-
ent propensities to appear at different positions in the HHHHH pattern. Some of the residues
have very high propensity (red) to appear in the H secondary structure while others have
very low propensities (blue). This information could be mined to improve secondary struc-
ture prediction. The data values for this color map is given in Table 7.4. These propensities
are discussed further in Section 7.5
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Figure 7.7 Classification accuracy for the 3 secondary structures

The data for the patterns is derived from the 1860 protein set (Duan et al., 2008). The features
are encoded in the CB513 protein sequences (Cuff and Barton, 2000) and used for secondary
structure prediction. This figure gives the classification accuracies for the three secondary
structures for different patterns at the ends of secondary structures. Accuracies for some
patterns, as illustrated in the figure, are combined with others (if the total count of a pattern
is small in comparison to occurrences of other patterns). Table 7.2 gives the counts of each
pattern that occurs in the dataset. The accuracies using only PSRP features gives accuracies
between 26% and 71%. Secondary structure accuracies using knowledge-based potentials and
general PSO are 78% to 79%, as shown in the figure. The combined accuracies, where both
models give correct classifications is between 84% and 93%. But, these including overlapping
accuracies, where both models (ELM and PSRP) are correct. The contribution from PSRP is
expected to be between 6% and 12%. These results are discussed further in Section 7.6



152

CHAPTER 8. Conclusions and future studies - Part II

8.1 Secondary structure prediction using knowledge-based potentials

Improved protein secondary structure prediction methods using machine learning and

optimization are implemented. Data is generated using CATH library (Orengo et al., 1997;

Cuff et al., 2008) structures and CABS (Kolinski, 2004) force field, to encode long and short

range interaction information that is present in the CB513 (Cuff and Barton, 2000) protein se-

quences. Sequences which shared more than 20% pair-wise sequence similarity or any struc-

ture similarity with the CATH structure templates are removed from the study. A modified

form of neural network called Extreme Learning Machine (ELM) (Huang et al., 2006) is used

to develop a multi-class algorithm for secondary structure classification of three secondary

structure types; α-helix, β-strand and coil. Use of advanced Particle Swarm Optimization

(PSO) (Kennedy and Eberhart, 1995) techniques leads to gains in processing time and im-

provements in the quality of predictions, as more of the machine learning parameters are

included in the PSO optimization.

Two sets of data from the CB513 dataset are used for our studies, dataset-84 which

has 84 proteins and dataset-415 which has 415 proteins. Initially, the ELM-PSO algorithm

yields an average accuracy of 79% using knowledge-based potentials data (Saraswathi et al.,

2011), where a general PSO is used to tune the weights and the biases of ELM (Saraswathi

et al., 2010b). Later on, an improved PSO algorithm with advanced capabilities (Fernández-

Martínez and García-Gonzalo, 2008, 2009, 2010) has been used and other parameters such as

the number of hidden neurons, lambda values and other PSO parameters are included in the

algorithm, which results in the improved FLOPRED algorithm that is used in many of our

applications. The improved techniques lead to gains in accuracies of between 2% and 3% at
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each stage of our studies. Our final Q3 accuracies for dataset-84 are 93.33% for training and

92.24% for testing, with a standard deviation of 0.48%. A testing accuracy of 86.5% with a

standard deviation of 1.38% is obtained on dataset-415. A comparative study against similar

work in the literature on the CB513 dataset of proteins sequences indicates that our results

are better by almost 6% for dataset-84 and is by less than only 0.44% for dataset-415. In addi-

tion, our algorithm is much simpler, faster and needs fewer resources to achieve these results.

The only drawback of our algorithm is in the time required for the computationally intensive

data generation for training and test sequences.

Our future work will aim to improve prediction accuracies by utilizing larger sets of Se-

quences for training and testing.

8.2 An amino acid perspective of secondary structure prediction

Our secondary structure prediction results obtained by using FLOPRED were analyzed

with respect to their amino acid content. We found that many types of amino acids con-

tributed to the high accuracies obtained in our results although they were present in lower

quantities, compared to other amino acids, contradicting the usual perception that increased

representation in the data used for training set would lead to higher accuracies.

Future studies will involve further investigation of secondary structure prediction results

at the amino acid level to confirm our findings. We would like to investigate a multi-class

algorithm that would classify secondary structures on the basis of the membership of amino

acids in secondary structures. This will be a multi-class problem involving classification of

60 classes, where there will be 20 classes for each amino acid in each of the three secondary

structures.

8.3 Secondary structure prediction using physicochemical properties of amino

acids

544 physicochemical properties of amino acids from the AAindex database AAindex1

(Kawashima et al., 1999) database are used in an initial study, on a small set of proteins, to
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determine the contribution of physicochemical properties to secondary structure predictions.

A Genetic Algorithm and Principal Component Analysis are used to reduce this large number

of features. The results of this study show results as good as those that use orthogonal data

representation for secondary structure predictions.

Future studies will try to improve the current prediction accuracies in addition to identi-

fying the most important physicochemical properties that lend themselves to improved sec-

ondary structure predictions.

8.4 Position specific residue preferences of amino acids at ends of secondary

structures

Amino acid occurrences at five positions near the two ends of secondary structure seg-

ments are used as features to encode protein sequences. ELM-PSO is used to determine

the secondary structure of these sequences. Initial studies indicate that the position specific

residue preferences of amino acids may contribute to some increased secondary structure

prediction accuracies.

Future studies will implement the FLOPRED algorithm on this data and will attempt

to determine the contribution of position specific residue preferences of amino acids to sec-

ondary structure prediction.

In summary, several secondary structure prediction schemes are implemented in this

study, with some of them showing good results while others show promise. We hope to

improve these results in our future studies.
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PART III

RELATIVE SOLVENT ACCESSIBILITY PREDICTION
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CHAPTER 9. AN EXTREME LEARNING MACHINE CLASSIFIER FOR

PREDICTION OF RELATIVE SOLVENT ACCESSIBILITY IN PROTEINS

A paper published in the Proceedings of IJCCI/ICNC 20101

Saras Saraswathi 2,3, Robert L. Jernigan2 and Andrzej Kloczkowski2,4

Keywords

Relative Solvent Accessibility, Support Vector Machine, Neural Network, Extreme Learn-
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Abstract

A neural network based method called Sparse-Extreme Learning Machine (S-ELM) has

been used for predicting Relative Solvent Accessibility (RSA) in proteins. We have shown that

multiple-fold gains in speed can be achieved by the proposed S-ELM algorithm compared to

using Support Vector Machines (SVM) for RSA prediction. Classification accuracies obtained

by the S-ELM algorithm are comparable to those in literature. This study indicates that using

S-ELM would give a distinct advantage in terms of processing speed and performance for

RSA prediction in proteins.

1Reprinted with permission of IJCCI/ICNC, 2010, ISBN 978-989-8425-32-4, pp. 364-369.
2Graduate student and Professors, respectively, Department of Biochemistry, Biophysics, and Molecular Biol-

ogy, L .H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University
3Primary researcher and author
4Author for correspondence
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9.1 Introduction

Proteins perform a variety of important biological functions that are imperative to the

wellbeing of all living things. Various factors determine protein functions, such as, its native

structure, the information coded in its constituent amino acid sequences, its reactions to the

surrounding solvent environment and the Relative Solvent Accessibility (RSA) values of its

residues. Evaluating RSA values will help to gain an insight into the structure and function

of a protein. Protein structures and other related values such as RSA can be experimentally

determined by using NMR spectroscopy or X-Ray crystallography. But these methods can be

expensive in terms of cost, time and other factors. There is an urgent need to process large

amounts of data (spawned by advances in biotechnology) accurately and speedily in order to

decipher the information buried in biological data, since it is impractical to do it manually.

Computational methods such as machine learning algorithms provide an alternate way by

which we can study this data in a cost and time efficient manner. Still, accuracies and pro-

cessing efficiencies in existing methods are inadequate and there is a need for improvement.

This study endeavors to attain a large gain in processing efficiencies.

RSA prediction has contributed to the study of protein functions in many applications.

RSA can be used to determine protein hydration properties (Ooi et al., 1987), temperature

sensitive residues can be identified and targeted for mutagenesis or it can be used to deter-

mine residues in contact (Shen and Vihinen, 2003). RSA has been used to improve secondary

structure prediction (Adamczak et al., 2004) and for fold recognition and protein domain

(DOMpro) prediction (Cheng and Baldi, 2006). RSA values can be used to gauge the degree

of solvent exposure of segments of globular proteins (Carugo, 2000), to find residues with

potential structural or functional (ConSeq) importance (Berezin et al., 2004), to help in the

rationale design of antibodies and other proteins to improve binding affinities (David et al.,

2007). In general RSA values can help to achieve cost and time efficiencies in drug discovery

processes and help to gain a better understanding of biological processes. Probability profiles

have been used (Gianese et al., 2003) to predict RSA values from single sequence and Multiple

Sequence Alignment (MSA) data. RSA values can also be estimated from an atomic perspec-
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tive (Singh et al., 2006). Homologous structural information can be used (Pollastri et al., 2007)

to improve RSA prediction. In addition, tertiary structure predictions are increasingly be-

ing augmented and improved with information derived from secondary structures and RSA

values. It has also been shown (Zarei et al., 2007) that pairs of residues can influence RSA

prediction accuracy. Knowledge-based tools which use machine learning techniques and sta-

tistical theory can be valuable in predicting RSA, especially in the absence of evolutionary

information or when sequences are not well conserved. Neural Networks have popularly

been used for RSA prediction (Ahmad and Gromiha, 2002; Adamczak et al., 2004; Cheng

et al., 2006). RSA values have been used (Pollastri et al., 2002) for scoring remote homology

searches and for modeling protein folding and structure using a bidirectional recurrent neu-

ral network (ACCpro). Other methods used for RSA prediction include Information Theory

(Naderi-Manesh et al., 2001), Multiple Linear Regression (Pollastri et al., 2002; Wagner et al.,

2005), Support Vector Machines (Nguyen and Rajapakse, 2005) and fuzzy K-nearest neighbor

algorithm (Sim et al., 2005). SVMpsi and long range interactions have also been used (Kim

and Park, 2004) to improve RSA accuracy. In order to compare their capabilities for RSA pre-

diction, five different methods; Decision Tree (DT), Support Vector Machine (SVM), Bayesian

Statistics (BS), Neural Network (NN) and Multiple Linear Regression (MLR) were applied to

the same data set (Chen et al., 2004). The authors conclude that NN and SVM were among the

best methods that were suitable for RSA prediction. More recently, sequence and structural

information (Bondugula and Xu, 2008) were combined to estimate RSA values (MUPRED).

A reliability Z-score has been developed (Petersen et al., 2009) to measure the degree of trust

that can be related to individual predictions of RSA. A two-step approach has been devel-

oped (Meshkin and Ghafuri, 2010) using feature selection on physicochemical properties of

residues and Support Vector Regression (SVR) to predict RSA. We propose to use a new fairly

new method called Sparse Extreme Learning Machine (S-ELM), based on neural networks,

which is capable of extreme speeds compared to traditional neural networks while maintain-

ing current classification accuracies.

This paper is organized as follows. Section 2 on methods and data briefly discusses the
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S-ELM algorithm and characteristics of the RSA data. Section 3 discusses the results of this

study with performance comparisons with SVM and NETASA methods followed by conclu-

sions in Section 4.

Methods and data

9.1.1 Extreme Learning Machine

Single Layer Feed-forward Networks (SLFN), with a hidden layer and an activation func-

tion possess an inherent structure suitable for mapping complex characteristics, learning and

optimization. These networks have applications in bioinformatics for solving various prob-

lems like pattern classification and recognition, structure prediction and data mining. The

free parameters of the network are learned from given training samples using gradient de-

scent algorithms that are relatively slow and have many issues in error convergence. It has

been proved theoretically (Huang et al., 2006) that a modified SLFN model called an Extreme

Learning Machine (ELM), can provide good generalization performance and overcome some

of the problems associated with traditional NNs such as stopping criterion, learning rate,

number of epochs and local minima. ELM has good generalization capabilities and capacity

to learn extremely fast. The input weights are chosen randomly but the output weights are

calculated analytically using a pseudo-inverse. Many activation functions such as sigmoidal,

sine, Gaussian or hard limiting functions can be used at the hidden layer and the class is de-

termined as the class which has the maximum output value. A comprehensive description of

the S-ELM algorithm (Huang et al., 2006) is given in the general introduction section of this

thesis, under methods and optimization. Even though the ELM algorithm requires less train-

ing time, the random selection of input weights affects the generalization performance when

the data is sparse or data is imbalanced. An improved version of ELM called the Sparse-ELM

(S-ELM) (Suresh et al., 2010) which gives better generalization for sparse data, is used for pre-

dicting the RSA of proteins, where the imbalance in data varies with the different threshold

values used. S-ELM is also well suited for RSA predictions of sequences whose structures

have not yet been determined and for which there are no homologs in existing sequences.
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The data used in this study is discussed in detail under the methods and data section. We

call the ELM algorithm for each of the training data sets over several thresholds (degree of

exposure to the solvent environment). We find the optimal number of hidden neurons using

a unipolar sigmoidal activation function (lambda = 0.001) and perform K-fold (K = 5) valida-

tions. In K-fold validation, the training set is separated into K-groups. K − 1 groups are used

for training in each of the K iterations and the model is tested on the remaining Kth group. The

optimal parameters obtained during model building are stored and used during the testing

phase. The performance of the S-ELM classifier and the time taken to develop the S-ELM

model for RSA prediction are compared with the performance and time taken to process the

same data using SVM algorithm. LIBSVM (Fan et al., 2005) software was used to determine

the results for SVM approach. We show that the S-ELM algorithm can achieve better perfor-

mance with much smaller processing times. Five-fold cross validation accuracies, processing

time gains and comparative studies are further discussed in the results section.

Table 9.1 Number of residues per class for 2-class and 3-class data.

Thresholds for data were set between 0 and 50% for two class (C0 and C1) and between 10,
20, 25 and 50% for 3-class (C0,C1 and C2) data. The asterisk indicate null values where there
is no class-3.

No. of Training residues No. of Testing residues
% C0 C1 C2 C0 C1 C2

0 867 6678 ** 4713 38424 **
5 5796 1749 ** 32943 10194 **
10 2826 4719 ** 15864 27273 **
20 4065 3480 ** 23111 20026 **
50 5796 1749 ** 32945 10192 **

10:20 3888 831 2826 22265 5008 15864

25:50 1750 1750 4065 10194 9832 23111

9.1.2 Data generation for RSA prediction

Proteins consist of sequences of amino acid residues that play a key role in determining the

secondary and tertiary structure of a protein. The sequential relationship among the solvent
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accessibilities of neighboring residues can be used to improve the results (although solvent

accessibility is considered evolutionarily less preserved than secondary structure). We use

binary values and a window size of 8 to represent the amino acid sequences. RSA of an amino

acid residue is defined (Mucchielli-Giorgi et al., 1999) as the ratio of the solvent-accessible

surface area of the residue observed in the 3-D structure to that observed in an extended tri-

peptide (Gly-X-Gly or Ala-X-Ala) conformation. RSA is a simple measure of the degree to

which each residue in an amino acid sequence is exposed to its solvent environment. For

our study, we consider the well-known Manesh data set (Naderi-Manesh et al., 2001) which

has high imbalance with respect to the number of samples per class as given in Table 9.1,

where the number of samples belonging to some classes is much less compared to the number

of samples belonging to the other classes. The Manesh data set consists of 215 proteins, of

which 30 proteins (7545 residues) with variable number of amino acid residues were used

for classifier model development and the remaining 185 proteins (43137 residues) were used

for evaluating the generalization performance of the S-ELM classifier through a 5-fold cross-

validation model. The data in the training and testing set were cast into two-class and three-

class problems 9.1 by determining whether the RSA value was below, between or above a

particular threshold. We used various percentage-thresholds (0, 5, 10, 25, 50 for two-class and

between 1020 or 2550 for three class), in order to compare our results with those existing in

literature. A residue is considered as buried if its value is less than or equal to the lower range,

partially buried if it is between the lower and the higher range and considered exposed if its

RSA value is higher than the range of values (> 20 or > 50). The accuracy of the predictions

depend on the value of the thresholds chosen and can vary widely with different residue

compositions in different proteins as discussed in the results section.

9.2 Results and discussion

We compare the results of our simulation using S-ELM on the Manesh data set with the

SVM algorithm and NETASA (Ahmad and Gromiha, 2002) methods Figure 9.1, using the

same set of proteins for training and testing. Hence comparisons with literature are made only
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Figure 9.1 Accuracy comparison between NETASA , SVM and S-ELM

This figure shows improvements for S-ELM method. The results are discussed in detail in the
results section.

with the NETASA results. The accuracy of the RSA predictions is measured by the number

of residues correctly classified (positive class) as belonging to class1 for the two class problem

and as belonging to class2 for the three class problem. Prediction accuracy for training and

testing data sets is defined as the total number of correctly predicted values for each class

over the total number of available residues. S-ELM approach achieves a better accuracy for

training and testing than the corresponding results for the NETASA method for all sets of

data as shown in Figure 9.1. The SVM algorithm takes a longer time to build the model as

shown in Figure 9.2, whereas the S-ELM algorithm processes data at the same speed for all

combinations of data, showing that the algorithm does not slow down when complex data is

involved. S-ELM uses optimal parameters that are stored during the training phase making

it possible to run through the tests quickly.
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The training results for the SVM algorithm using this data set are at 99% for a range of

thresholds. The corresponding test results for SVM vary from 69% to 89% over a range of

thresholds for the two class problem. We see gains for all of the thresholds except for thresh-

old of 20 where the accuracy is 69.5 which is slightly lesser when compared to NETASA

results. The results are much better for the S-ELM algorithm, where the training and testing

results are closer to each other showing better generalization. The training results vary be-

tween 73% and 89% for the 2-class problem, while the test results vary between 71% and 89%

which are better than the results for the SVM and NETASA method. Our interest in including

the SVM in our simulations was to show the advantages in time factor when the S-ELM algo-

rithm is used. The training results for the S-ELM show a little gain over the NETASA and the

SVM results, but the testing results for S-ELM clearly show higher results of between .006 to

4.476% as seen in Figure 9.1. Similarly for the three-class problem, seen on the last two lines

of Table 9.2, the training accuracies for SVM are very high at 99% while the testing accuracies

are 64% and 58% for two different thresholds, which are slightly higher than for the NETASA

results.

For the S-ELM results, the training accuracies are closer to the testing accuracies, indi-

cating better generalization for the 3-class problem also. Here the S-ELM test results show

between 3 to 4% gains as compared to the NETASA results. As indicated by many results in

the literature, the accuracies can vary widely for different thresholds and different number

of classes into which the data is divided. A general trend in the literature is that the RSA

prediction results vary between 70% and 80%, similar to what is seen here. So, the S-ELM

gives comparable results to literature. These results can be further improved with optimiza-

tion methods which can tune the parameters for the S-ELM and this will be a subject for our

future studies. The main aim of this study is to show the efficiency with which S-ELM is able

to process large amounts of data.

The biggest advantage of using S-ELM comes from the speed with which the data can be

processed by the algorithm, while providing better accuracies. It can be seen from 9.2 that S-

ELM has a clear advantage when it comes to processing speed. The same number of samples
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Figure 9.2 Processing time for training and testing: SVM Vs S-ELM.

This figure shows huge gains in processing time for S-ELM compared to SVM. These results
are discussed in detail in the results section.

of 7545 training sample residues was used for model building for both algorithms. The ratio

of time taken by SVM and S-ELM for model building, for the various thresholds range from

20.562 : 175 seconds which amounts to almost 8.51 times time gain by S-ELM for 0% thresh-

old data. We find that the time gains range from 8 fold to multiple folds, the highest being for

the 20% threshold data where the ratio is 20.562:1372.2 which is a 66.734 fold gain . Generally,

the time taken for model building is most crucial, since the model needs to learn as much

as possible in the shortest time. S-ELM will help to achieve these gains, which will be very

important and necessary in view of the exponential increases we see in the availability of pro-

tein sequence information. For real time applications and for batch processing applications it
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might be useful to have faster testing capabilities and here we see that the SELM algorithm

is much faster in its testing capabilities also. The same number of 43137 testing residues was

used for the test runs in both algorithms. Processing time ratio between the SVM and S-ELM

algorithms for testing runs for 0% threshold is seen as .922:410, which amounts to 444.69 times

faster processing by S-ELM. We find similar gains for other thresholds with the highest gain

for the 20% threshold at .937:857 which is 914.62 times faster processing speed. Both the SVM

and the S-ELM were run on the same computer running XP windows operating system with

4 GB RAM and MATLAB (Moler, 2011) software. Time taken for training and testing runs by

SVM and S-ELM algorithms is given in Table 9.2 and Figure 9.2 illustrate the high process-

ing time of SVM and the very low and steady processing times of S-ELM very clearly. The

time taken by S-ELM is very low at less than one or two seconds, shown as a horizontal line

close to the x-axis while the time taken by SVM is quite high, ranging between 200 and 1400

seconds for training and between 400 and 900 seconds for testing. S-ELM takes very little

time for testing compared to the NETASA results, since stored optimal parameters are used

to calculate the output analytically using ELM. As indicated by many results in the literature,

the accuracies can vary widely for different thresholds and different number of classes into

which the data is divided. A general trend in the literature is that the RSA prediction results

vary between 70% and 80%, similar to what is seen here. So, the S-ELM gives comparable re-

sults to literature. There is no data known to us on processing times to compare speeds with

the NETASA method. Future studies will concentrate on increasing the accuracy of S-ELM

further using optimization techniques to tune the S-ELM parameters for RSA prediction.

9.3 Conclusions

We have used the SVM and S-ELM methods of classification for RSA prediction, using

the Manesh data set. We have compared the performance of these algorithms with each other

and with NETASA results, with respect to the speed of processing and have shown that there

are multiple-fold gains in computational efficiency while using S-ELM algorithm. It will be

advantageous to use the S-ELM algorithm for real time and batch processing applications
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Table 9.2 Comparison between SVM and S-ELM processing times

SVM S-ELM
Time in Seconds Time in Seconds

Threshold% Modeling Training Testing Modeling Training Testing
0 175 24.6 410 20.6 0.5 0.92

5 990 105 561 20.9 0.6 0.94

10 1273 67 686 20.9 0.6 0.92

20 1372 76 857 20.9 0.5 0.94

50 977 89 645 20.9 0.6 0.95

10:20 1239 88 723 21 1.1 1.08

25:50 226 74 728 21 0.7 1.08

where accuracy and speed are equally important.
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CHAPTER 10. FLOPRED METHODOLOGY FOR PREDICTION OF

PHOSPHORYLATION SITES IN PROTEINS

Abstract

Phosphorylation is a post-translational modification on proteins to control and regulate

their activities. It is an important mechanism for regulation of the biological functions in the

body. Phosphorylated sites are known to be present often in intrinsically disordered regions

of proteins that lack unique tertiary structures, and thus less information is available about the

structures of phosphorylated sites. An important challenge is the prediction of phosphoryla-

tion sites in protein sequences obtained from mass-scale sequencing of genomes. Phosphory-

lation sites may aid in the determination of the functions of a protein or even differentiating

mechanisms of protein functions in healthy and diseased states. FLOPRED is used to model

and predict experimentally determined phosphorylation sites in protein sequences. Our new

PSO optimization methods have enabled FLOPRED to predict phosphorylation sites with

higher accuracy and with better generalization. Our preliminary studies on 984 sequences

show that this model can predict phosphorylation sites with a training accuracy of 92.53% , a

testing accuracy 91.42% and Mathews correlation coefficient of 83.9%.

10.1 Introduction

Phosphorylation often controls protein functions either by causing a change in structure

or by changing charge of a binding site. This process activates and controls the reactions in

a cell. Since phosphorylation sites are known to be in disordered regions, it is not always

possible to detect these sites experimentally. It will be useful to have computational methods
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to efficiently detect these sites.

10.2 Methods and data generation

FLOPRED methodology is used for predicting phosphorylation sites, where a neural net-

work based Extreme Learning Machine is used for classification. The parameters of ELM are

tuned by advanced Particle Swarm Optimization. The details of these methods can be seen in

Section 1.4.1 and Section 1.4.2.

Data generation for phosphorylation prediction

13, 604 sequences were obtained from the Phosphoto. ELM database (Dinkel et al., 2011),

where experimental phosphorylation data found in literature has been stored for public use.

In these sequences, a single residue is marked as a phosphorylated residue while all others are

non-phosphorylated. If there are multiple phosphorylation sites, then they are given as two

separate sequences. The phosphorylated sites are usually one of three residues, namely, ser-

ine, threonine or tyrosine, but for our preliminary study we are considering only two classes

where a residue is either phosphorylated or not, i.e., we do not consider the type of residue

that is phosphorylated.

The sequences in the data are coded using an orthogonal representation (binary coding)

where each amino acid is represented as a twenty digit binary code, with the letter of interest

being a 1 and the remaining letters denoted as a zero. A sliding window of 9 residues are used

to represent the data. This data is then used for determining whether a residue is phospho-

rylated or not. Since only one residue in each sequence is marked as phosphorylated, there

were 13604 residues with positive class for phosphorylation but many more residues which

were in the negative class for unphosphorylated residues. To maintain a balance, the same

number of residues were selected from each group for the classification using FLOPRED .
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10.3 Results and discussion

1968 residues are used for each classification of which 984 residues are phosphorylated

and 984 are not phosphorylated. Similarly, the test set also has 985 residues each in both

classes. Our new PSO optimization methods have enabled FLOPRED to predict phospho-

rylation sites with higher accuracy and with better generalization. Our preliminary studies

on 984 sequences show that this model can predict phosphorylation sites with a training ac-

curacy of 92.53%, a testing accuracy 91.42% and Mathews correlation coefficient of 83.9%. In

the testing results, the sensitivity for class-1 (non-phosphorylated) is 85.60% and specificity

is 99.51% and Mathews corr-coeff is 83.97%, with accuracy of 99.59%. For class-2 (phospho-

rylated) residues, sensitivity is 85.60% and specificity is 85.60% and Mathews corr-coeff is

83.97% and accuracy was lower at 83.25%. So, the results for the negative class are higher

than the results for the positive class (phosphorylated), although there are the same numbers

of each class in our trials.

This experiment can be carried out in larger data sets with larger numbers of residues or

as a multi-class problem where we can try to differentiate between various types of phospho-

rylation sites. The main aim of this study has been to show the robustness of the FLOPRED

algorithm in being able to do good classification on sparse data and the results are promising.

10.4 Conclusions

FLOPRED methodology was used to classify phosphorylated and non-phosphorylated

data with fairly high accuracy. Future studies may include larger data sets and multiple

classification of different phosphorylation sites. These classifications can also be combined

with the study of disordered regions that are more likely to contain phosphorylation sites.
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CHAPTER 11. GENERAL CONCLUSIONS

11.1 Secondary Structure Prediction

Several secondary structure prediction methods are used in this study as summarized in

as summarized in Section 8.1 on page 152 . While initial studies using Extreme Learning Ma-

chine and Particle Swarm Optimization yield good results, later studies using advanced and

improved Particle Swarm Optimization techniques yield better results. Several other algo-

rithms such as Genetic Algorithm and Principal Component Analysis are used for secondary

structure prediction on a variety of data and these studies show promising results.

11.2 Relative Solvent Accessibility prediction

Support Vector Machines and Extreme Learning Machines are used for Relative Solvent

Accessibility predictions on a set of protein sequences. The results of this study show results

comparable to those in the literature. This study illustrates the increased speed with which

Extreme Learning Machine is able to classify data. With the large number of available protein

sequences, it is important to build algorithms that will be able to process data at faster speeds

without compromising accuracy.

11.3 Prediction of phosphorylation sites

Prediction of phosphorylation sites using FLOPRED algorithm yields higher accuracies

compared to those found in similar studies. This study illustrates that our algorithm is equally

proficient at classifying binary data as it is in classifying real-number coded data that en-

codes better patterns to enable machine learning algorithms to differentiate between different
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classes.

In summary, several algorithms such as ELM, PSO, GA, PCA and SVM were used in

our studies. Several of their parameters were learned through the PSO approach. The re-

sults are significantly better than those found in literature for secondary structure prediction

and phosphorylation prediction and comparable in quality for predicting the relative solvent

accessibility.

Our contribution to secondary structure prediction is the FLOPRED algorithm which is

simpler and faster. We have shown that FLOPRED can be used to predict secondary struc-

tures with better accuracies in a shorter period of time. These two aspects become increas-

ingly important as huge numbers of protein sequences are available from the many genome

sequencing projects and as increased numbers of sequences of individual organisms and in-

dividual humans are available for diagnostics of diseases.
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APPENDIX A. List of template proteins used to generate profiles

Table A.1 List of 200 template proteins

. The given list of 422 proteins, in Table A.1 and Table A.2, were used to generate profile
features for all the proteins used in this study. The list had to be separated into two tables in
order to fit the page. The first 200 proteins are listed below. Table A.2 gives the remaining 222

proteins.

List of template proteins
1 1a6m 1d4o 1g4i 1i4u 1k6u 1lug 1oa0 1pwg 1sen 1uai
2 1aho 1d4t 1g66 1i76 1k7c 1lwb 1oai 1pz4 1sfs 1ucr
3 1arb 1dbf 1ga6 1ifc 1ka1 1lzl 1od3 1q6o 1sg4 1ucs
4 1b9o 1e4m 1gqv 1ijv 1kf3 1m1q 1odm 1qft 1six 1ufy
5 1bkr 1e5k 1gve 1iqz 1kg2 1m4l 1oh4 1ql0 1sjw 1ug6
6 1bqk 1e9g 1gwe 1iro 1kmv 1m6z 1ok0 1qtw 1su8 1unq
7 1brf 1eaj 1gwm 1itx 1kng 1mj5 1olr 1r0r 1sxv 1uow
8 1bx7 1eb6 1gxm 1iua 1knm 1mn8 1ooh 1r2q 1t2d 1use
9 1byi 1et1 1gxu 1j0o 1kqp 1n0q 1oot 1r6j 1t3y 1uwc
10 1c5e 1euw 1gyx 1j8q 1kqw 1n1p 1oqv 1rb9 1t8k 1uz3
11 1c75 1exr 1h12 1jfb 1kt7 1n40 1p1x 1rg8 1tg0 1uzv
12 1c7k 1f1g 1h1n 1jg1 1kth 1n8v 1p4c 1rqw 1thm 1v0l
13 1c9o 1f41 1h4g 1jkv 1kug 1nki 1p5f 1rro 1tjy 1v6p
14 1cc8 1f94 1h97 1jm1 1kyf 1npi 1p6o 1rtq 1tkj 1vbw
15 1cex 1f9y 1hdo 1jo0 1l9l 1nww 1p9g 1rwy 1tqg 1vf8
16 1cse 1fcy 1hx0 1jo8 1lk2 1nwz 1pjx 1s0r 1tu9 1vh5
17 1ctj 1fd3 1hxh 1jr0 1lkk 1nxm 1plc 1s1p 1tuk 1vim
18 1ctq 1fk5 1hyo 1k3y 1lni 1nyk 1po7 1s5n 1u07 1vkk
19 1cy5 1flm 1i1x 1k4i 1lq9 1o7j 1pq7 1sau 1u1w 1vyr
20 1czp 1g2r 1i40 1k5c 1ls9 1o7q 1psr 1sby 1u2h 1w0n
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Table A.2 List of 222 template proteins

. The given list of proteins, in A.1 and Table A.2, were used to generate profile features for
all the proteins used in this study. The list had to be separated into two tables in order to fit
the page. The first 200 proteins are listed in Table A.1. The remaining 222 proteins are given
below.

List of template proteins - continuation of Table A.1
1 1w23 1xmk 2akf 2ccv 2erl 2gxq 2ixt 2o0b 2qdy 2wea
2 1w2l 1xmt 2akz 2ccw 2f01 2hds 2izx 2o37 2qf4 2z4u
3 1w66 1xqo 2aqm 2chh 2f91 2heu 2j45 2o90 2qim 2z5w
4 1wbe 1xt5 2asc 2ciw 2fba 2hin 2j6b 2o9s 2qsk 2zex
5 1wc2 1y2k 2avm 2cl2 2fdn 2ho2 2j6l 2ofc 2r31 3b4u
6 1wcg 1yfq 2axw 2cov 2fe5 2hxm 2j8b 2okt 2r5o 3b5m
7 1wcw 1ys1 2b3h 2cs7 2fgo 2hxs 2j8w 2oln 2rb5 3b64
8 1wdd 1z2n 2b3n 2cws 2fma 2hyk 2j9c 2oss 2rdq 3b9w
9 1wdp 1z2u 2b82 2czq 2frg 2hys 2jcq 2ov0 2tps 3bc9
10 1wkr 1z53 2b97 2d5w 2fs6 2i24 2jda 2oxc 2uu8 3bfo
11 1wm3 1zk4 2bf6 2ddx 2ft6 2i49 2jek 2p02 2uuy 3bfq
12 1wma 1zl0 2bf9 2dfb 2fvv 2i4a 2jfr 2p5k 2v1q 3bmz
13 1wmd 1zlb 2bjd 2dkj 2fvy 2i5v 2jhf 2pgo 2v3g 3bqp
14 1wpn 1zuu 2bt9 2drm 2fwh 2i61 2lis 2phn 2v3i 3bs2
15 1wri 1zuy 2bv4 2dsx 2gb4 2i7d 2mhr 2pie 2v8t 3bxu
16 1wuk 1zzk 2bwf 2e3b 2gf3 2i8t 2nlr 2pmr 2v9v 3c2u
17 1wvf 2a26 2c2u 2e4t 2ggc 2ibl 2nn8 2pnd 2vb1 3c3y
18 1wyx 2a28 2c6z 2e5f 2gj3 2ic6 2nrl 2pne 2vba 3c70
19 1x1r 2a6z 2c71 2e6f 2gke 2igd 2nsz 2pwa 2vbk 3c8p
20 1x6i 2ab0 2c9v 2e7z 2gkg 2iim 2nuk 2q20 2vfr 3c8y
21 1x8q 2ahn 2cak 2ehz 2gqt 2imf 2nwd 2q3g 2vji 3ci3
22 1x9i 2aib 2car 2ekp 2gud 2imq 2nxv 2qcp 2vla 3cjs

6fd1
7a3h



180

APPENDIX B. List of target proteins used in the initial study

Table B.1 List of 40 target proteins

used in the initial study. The given list of 84 proteins, in Table B.1 and Table B.2, consisting of
a total of 6635 residues, were used in the initial study. The list had to be separated into two
tables in order to fit the page. The first 40 proteins are given below. The protein names and
the number of residues in each protein are given.

List of proteins
No. Protein name Num. of residues No. Protein name Num. of residues
1 1aazb-1-DOMAK 87 21 1cc5 83
2 1acx 108 22 1cdlg-1-DOMAK 20
3 1adeb-2-AUTO.1 100 23 1cdta 60
4 1ahb-2-GJB 67 24 1cei-1-GJB 85
5 1amg-2-AS 57 25 1ceo-2-AUTO.1 53
6 1atpi-1-DOMAK 20 26 1cewi-1-DOMAK 108
7 1avhb-3-AS 86 27 1cfb-1-AS 101
8 1avhb-4-AS 74 28 1cgu-2-GJB 96
9 1ayab-1-GJB 101 29 1cgu-3-GJB 84
10 1bdo-1-AS 80 30 1cgu-4-GJB 104
11 1bds 43 31 1chbe-1-DOMAK 103
12 1bet-1-DOMAK 107 32 1chkb-2-AUTO.1 95
13 1bncb-1-AS 114 33 1cksc-1-AUTO.1 78
14 1bncb-3-AS 51 34 1clc-1-AS.1 102
15 1bncb-4-AS 118 35 1coi-1-AS 29
16 1bovb-1-DOMAK 69 36 1comc-1-DOMAK 119
17 1bpha-1-DOMAK 21 37 1crn 46
18 1brse-1-DOMAK 86 38 1csei 63
19 1bsdb-1-DOMAK 107 39 1ctf-1-DOMAK 68
20 1cbh 36 40 1cthb-1-DOMAK 79
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Table B.2 List of 44 target proteins

used in the initial study. The given list of proteins, consisting of a total of 6635 residues, were
used in the initial study. The list below is a continuation of Table B.1 and lists the remaining
44 proteins. The protein names and the number of residues in each protein are given.

List of target proteins (continuation of table B.1)
No. Protein name Num. of residues No. Protein name Num. of residues
41 1ctm-2-DOMAK 60 63 1gal-2-AS 116
42 1ctn-1-AS.1 109 64 1gcmc-1-AUTO.1 33
43 1ctn-3-AS.1 73 65 1gky-2-AS 50
44 1daab-1-AS 119 66 1gln-2-AS 116
45 1dar-3-AS 37 67 1gln-3-AS 48
46 1delb-2-AUTO.1 119 68 1gln-4-AS 98
47 1dfnb-1-DOMAK 30 69 1gmpb-1-DOMAK 96
48 1dih-2-AS 110 70 1gnd-2-JAC 97
49 1dsbb-2-AUTO.1 64 71 1gog-3-AS.1 98
50 1dynb-1-AUTO.1 113 72 1gp2a-1-AUTO.1 28
51 1ecl-4-AS 117 73 1grj-1-AS 74
52 1edmc-1-AUTO.1 39 74 1grj-2-AS 77
53 1edn-1-AS 21 75 1hcgb-1-AS 51
54 1eft-3-DOMAK 95 76 1hcra-1-DOMAK 52
55 1efud-2-AUTO.1 89 77 1hip 85
56 1euu-2-JAC 100 78 1hiws-1-AS 103
57 1fc2c 44 79 1hmy-2-AS 98
58 1fdx 53 80 1hnf-1 101
59 1fjmb-2-AS 111 81 1hnf-2 78
60 1fkf 107 82 1hplb2 111
61 1fuqb-3-AUTO.1 66 83 hslb2 102
62 1fxia 96 84 1htrp 43
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APPENDIX C. List of target proteins used in the final study

Table C.1 A List of the first set of 120 proteins

. The list of 415 proteins shown in Tables C.1, C.2, C.3 and C.4, were used to generate profile
features for all the proteins used in the final study. The list had to be separated into four tables
in order to fit the page. The first set of 120 proteins are listed below. The remaining protein
names are given in subsequent tables.

List of proteins - set 1 of 4
1 1aazb-1-domak 1bncb-4-as 1clc-2-as.1 1dik-1-as.1 1fdt-1-as
2 1acx 1bovb-1-domak 1clc-3-as.1 1dik-2-as.1 1fdx
3 1ahb-2-gjb 1bpha-1-domak 1coi-1-as 1dik-4-as.1 1find-1-auto.1
4 1alkb-1-as 1bsdb-1-domak 1colb-1-domak 1din-1-as 1find-2-auto.1
5 1aorb-1-as 1cbg-1-as 1cpcl-1-domak 1dlc-1-as.1 1fkf
6 1aorb-3-as 1cbh 1cpn-1-domak 1dlc-3-as.1 1fnd
7 1aozb-1-as 1cc5 1cqa-1-auto.1 1dnpb-1-auto.1 1fua-1-auto.1
8 1aozb-2-as 1cdlg-1-domak 1crn 1dnpb-2-auto.1 1fuqb-1-auto.1
9 1aozb-3-as 1cdta 1csei 1dpgb-1-auto.1 1fuqb-3-auto.1
10 1atpi-1-domak 1cei-1-gjb 1cthb-1-domak 1dsbb-2-auto.1 1fxia
11 1avhb-3-as 1celb-1-auto.1 1ctm-2-domak 1dts-1-auto.1 1gal-2-as
12 1avhb-4-as 1cem-1-gjb 1ctn-1-as.1 1dupa-1-as 1gal-3-as
13 1ayab-1-gjb 1ceo-2-auto.1 1ctn-3-as.1 1dynb-1-auto.1 1gcb-2-as
14 1azu 1cewi-1-domak 1ctu-1-auto.1 1eca 1gcmc-1-auto.1
15 1bam-1-as 1cfb-1-as 1ctu-2-auto.1 1eceb-1-auto.1 1gd1o
16 1bbpa 1cfr-1-gjb 1cxsa-4-auto.1 1ecpf-1-auto.1 1gdj
17 1bcx-1-domak 1cgu-2-gjb 1cyx-1-auto.1 1edd-1-domak 1gep-3-as
18 1bdo-1-as 1cgu-3-gjb 1daab-1-as 1ese-1-auto.1 1ghsb-1-gjb
19 1bet-1-domak 1cgu-4-gjb 1daab-2-as 1etu 1gln-2-as
20 1bfg-1-domak 1chbe-1-domak 1dar-3-as 1euu-2-jac 1gln-3-as
21 1bmv1 1chd-1-as 1delb-2-auto.1 1fbab-1-domak 1gln-4-as
22 1bmv2 1chkb-2-auto.1 1dfji-1-auto.1 1fbl-1-as 1gmpb-1-domak
23 1bncb-1-as 1cksc-1-auto.1 1dfnb-1-domak 1fc2c 1gnd-2-jac
24 1bncb-3-as 1clc-1-as.1 1dih-2-as 1fdlh 1gog-1-as.1
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Table C.2 A list of the second set of 120 target proteins

are given below. The remaining protein names are in subsequent tables.

List of proteins - set 2 of 4
1 1gog-3-as.1 1hup-1-as.1 1lbu-1-as 1ndh-1-as 1pkyc-3-auto.1
2 1gp1a 1hvq-1-auto.1 1lbu-2-as 1ndh-2-as 1pnt-1-as
3 1gp2a-1-auto.1 1hxn-1-as 1lehb-3-as 1nfp-1-as 1poc-1-domak
4 1gp2g-2-as 1hyp-1-domak 1lib-1-domak 1nga-2-as.1 1powb-1-domak
5 1gpmd-4-as 1ignb-2-gjb 1lki-1-as 1nlkl-1-domak 1powb-2-domak
6 1gpmd-5-as 1il8a 1lmb3 1nox-1-gjb 1powb-3-domak
7 1grj-1-as 1ilk-1-as 1lpe-1-domak 1nozb-2-auto.1 1powb-4-domak
8 1grj-2-as 1ilk-2-as 1masb-1-auto.1 1oacb-2-as.1 1ppi-2-as
9 1gtmc-2-auto.1 1inp-2-as.1 1mcti-1-auto.1 1oacb-3-as.1 1ppt
10 1gtqb-1-auto.1 1irk-1-as 1mdaj-1-gjb 1oacb-4-as.1 1ptr-1-auto.1
11 1gym-1-auto.1 1irk-2-as 1mdam-1-domak 1onrb-1-auto.1 1ptx-1-as
12 1han-1-auto.1 1isab-1-gjb 1mdta-1-as 1otgc-1-as 1pyp
13 1han-2-auto.1 1isab-2-gjb 1mdta-2-as 1ovb-1-gjb 1pyta-1-as
14 1hcgb-1-as 1isub-1-domak 1mdta-3-as 1ovoa 1qbb-2-auto.1
15 1hcra-1-domak 1jud-1-gjb 1mjc-1-domak 1oyc-1-as 1qbb-3-auto.1
16 1hiws-1-as 1kinb-1-auto.1 1mla-2-as.1 1paz 1qbb-4-auto.1
17 1hjrd-1-auto.1 1knb-1-as 1mns-2-as 1pbp-2-domak 1qrdb-1-auto.1
18 1hmpb-1-auto.1 1kte-1-as 1mof-1-as 1pbwb-1-as 1r092
19 1hnf-1-as 1ktq-1-auto.1 1mrrb-1-domak 1pda-2-as 1rbp
20 1hnf-2-as 1kuh-1-as 1mspb-1-as 1pda-3-as 1rec-1-domak
21 1hplb-1-as 1l58 1nal4-1-auto.1 1pdnc-2-as 1rec-2-domak
22 1hplb-2-as 1lap 1nar-1-domak 1pdo-1-gjb 1regy-1-auto.1
23 1hslb-2-domak 1latb-1-auto.1 1nbac-1-as 1pht-1-auto.1 1reqc-1-as
24 1htrp-1-as 1lba-1-domak 1ncg-1-auto.2 1pii-2-domak 1reqc-2-as
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Table C.3 A list of the third set of 120 target proteins

are given below. The remaining protein names are in the next table.

List of proteins - set 3 of 4
1 1rhgc-1-domak 1svb-1-as 1vcab-1-auto.1 2bopa-1-domak 2ltnb
2 1rie-1-gjb 1svb-2-as 1vcab-2-auto.1 2cab 2mev4
3 1ris-1-domak 1tabi-1-domak 1vhh-1-as 2ccya 2mltb-1-gjb
4 1rlds-1-domak 1taq-2-as 1vhrb-2-auto.1 2cmd-2-gjb 2mtac-1-as
5 1rlr-1-jac 1tcba-1-as 1vid-1-jac 2dkb-2-as 2nadb-2-as.1
6 1rlr-2-jac 1tcra-2-gjb 1vmob-1-as 2dln-1-as 2npx-3-as.1
7 1rsy-1-as 1tfr-1-gjb 1vpt-1-jac 2dln-3-as 2or1l
8 1rvvz-1-auto.1 1thtb-1-auto.1 1wapv-1-auto.1 2dnja-1-as 2paba
9 1s01 1thx-1-auto.1 1wfbb-1-auto.1 2ebn-1-as 2pgd-1-auto.1
10 1scud-1-as 1tie-1-domak 1wsya 2fox 2pgd-2-auto.1
11 1scue-2-as 1tif-1-as 1wsyb 2gbp 2phh
12 1scue-3-as 1tiic-1-gjb 1yptb-1-auto.1 2gcr 2polb-1-as
13 1seib-1-auto.1 1tml-1-as 1yrna-2-as 2glsa 2reb-1-domak
14 1sesa-2-as 1tnfa 1znbb-1-as 2gn5 2rspa
15 1sfe-1-as 1tplb-3-as 2aat 2gsq-2-as 2scpb-1-domak
16 1sfe-2-as 1trb-2-as 2abk-2-as 2hft-1-as 2sns
17 1sftb-2-as 1trh-1-as 2admb-1-auto.1 2hft-2-as 2sodb
18 1sh1 1trkb-1-as 2admb-2-auto.1 2hhmb-1-domak 2spt-1-domak
19 1smpi-1-as 1trkb-3-as 2afnc-1-auto.1 2hhmb-2-domak 2spt-2-domak
20 1spbp-1-as 1tsp-1-as 2afnc-2-auto.1 2hipb-1-domak 2stv
21 1sra-1-as 1tssb-2-domak 2alp 2hmza 2tgi-1-domak
22 1srja-1-domak 1ubq 2asr-1-domak 2hpr-1-domak 2tmdb-3-as
23 1stfi-1-domak 1udh-1-auto.1 2bat-1-gjb 2i1b 2tmvp
24 1stme-1-auto.1 1umub-1-as 2bltb-2-auto.1 2ltna 2trt-1-auto.1
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Table C.4 List of final set of 55 target proteins.

List of proteins - set 4 of 4
1 3ait 3tima 7icd
2 3blm 4bp2 821p-1-domak
3 3cd4 4gr1 8adh
4 3chy-1-domak 4pfk 9apia
5 3cln 4rhv1 9apib
6 3cox-1-as.1 4rhv3 9insb
7 3cox-2-as.1 4rhv4 9pap
8 3ecab-1-as 4rxn
9 3ecab-2-as 4sdha
10 3gapa 4sgbi
11 3hmga 4ts1a
12 3hmgb 4xiaa
13 3icb 5cytr
14 3inkd-1-domak 5er2e
15 3mddb-1-as 5ldh
16 3mddb-2-as 5lyz
17 3mddb-3-as 6cpa
18 3pgk-2-as 6cpp
19 3pgm 6cts
20 3pmgb-1-as 6dfr
21 3pmgb-2-as 6hir
22 3pmgb-3-as 6rlxd-1-domak
23 3pmgb-4-as 6tmne
24 3rnt 7cata
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APPENDIX D. Definitions of secondary structure accuracy measures

All of the discussions below are under the assumption that α-helix is the positive class

and β-sheet and coil are the negative classes, where the results are combined for these lat-

ter two classes. Similar arguments can be made by considering the other two classes as the

positive class. The quantities defined below were used for calculating the post-test odds in

Section 2.1.7.1 on page 36 .

Four quantities are used to calculate the accuracy measures. They are defined as follows:

1. True-Positive (TP): If an amino acid residue belongs to one of three secondary structure

classes, say α-helix and is classified as α-helix, then the result is a True-Positive.

2. False-Positive (FP): When a sample in the negative class is classified as an α-helix in the

positive class, then the result is a False-Positive. The classification algorithm is said to

have poor Specificity if there are many False-Positive classifications.

3. False-Negative (FN): If a residue is classified as one of the other two negative classes

when it is in fact an α-helix, then it is a False-Negative. The classification algorithm is

said to have poor Sensitivity if there are many residues which are False-Negative

4. True-Negative (TN): If a residue belongs to a negative class and is correctly classified as

a negative class, then the result is said to be True-Negative.

These four values TP, TN, FP and FN are used to calculate several metrics such as Sen-

sitivity, Specificity etc., in order to determine the quality and reliability of our classification

results. These metrics in turn are used in calculating additional metrics discussed below. All

these metrics are used to discuss the results in later chapters, to determine the quality of our
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training models which clearly have an impact on the predictions. In our classification results,

the observed classes are the classes to which residues actually belong while the predicted classes

are assigned by the classification algorithm.

Table D.1 Sensitivity, Specificity and other metrics.

This table shows the confusion matrix summary values that are used to determine the relia-
bility of the predictions. These metrics are used to discuss the results of all classifications in
later chapters. All terms and abbreviations used in this table are formulated and discussed in
Section 2.1.7.

Observed
Positive Negative

Predicted
Positive TP FP (Type I error) → PPV
Negative FN (Type II error) TN → NPV

Sensitivity Specificity

Specificity

Specificity gives the proportion of samples that belong to the negative classes (β-sheet and

coil) that are identified correctly. If the Specificity is high, then it means that the algorithm is

better able to identify a sample as belonging to the negative class (β-sheet or coil) and vice

versa. These are called FP errors and are said to be Type I errors or α errors. Specificity is

calculated as:

Specificity =
TN

TN + FP
(D.1)

False Positive Rate

False Positive Rate (FPR) = 1 - Specificity; (FPR) is used to determine other summary

metrics. Here, a residue that does not belong to the positive class, is classified as positive;

since this is part of the learning process, this decision does not lead to the building of a good

model. We are dismissing a result that is important for classifying a residue as a negative
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class, and also misleading the learning process by classifying it as a positive class. We are

saying something is true when it is not. So, we need to minimize these errors.

FPR =
FP

FP + TN
(D.2)

Sensitivity

Sensitivity gives the proportion of samples that belong to the positive class (α-helix) that

are identified accurately. When the algorithm has good generalization, it is able to positively

identify the observed class of the residue of interest and is said to have high Sensitivity. If

the algorithm has poor Sensitivity, samples belonging to the positive class are classified as

belonging to one of the negative classes (β-sheet and coil). These are called FN errors and are

said to be Type II errors or β error with poor Sensitivity.

Sensitivity =
TP

TP + FN
(D.3)

False Negative Rate

False Negative Rate FNR = 1 - Sensitivity. FNR is used to determine other summary

metrics. Here, a residue that belongs to the positive class, is classified as a negative class;

since this is part of the learning process, it will negatively affect the model. We are dismissing

a result that is important for classifying correctly, and misleading the learning process, by

indicating that something is false when it is in fact true. So, we need to minimize these errors.

FNR can be defined as:

FNR =
FN

TP + FN
(D.4)

In order to have a good balance in our classification results, we want a good balance be-

tween Sensitivity and Specificity. They should not be too high or two low. An algorithm that

is able to achieve this will provide good generalization performance. A drawback to using

these measures is that they do not consider all four metrics TP, TN,FPandFN simultaneously
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in their calculations, which results in an unbalanced view of the quality of the results. Hence

we need better measures of accuracy and they are discussed below.

There are several statistics that help us to estimate the reliability of our classifications.

Sensitivity and Specificity are not strongly useful for this purpose. After obtaining the results,

we should be able to determine reliability measures using predicted values. It is useful to

look at our results with respect to each of these metrics in order to assure ourselves that we

have built a good model and have used representative data in the training and testing data

sets. This information could also help to determine whether existing models might benefit

from adjustments or improvements when we want to classify new sequences.

Positive Predictive Value PPV

This statistic gives the proportion of secondary structures that are correctly classified as

being in the positive class (α-helix). A high PPV means that only in rare cases will a positive

class be classified as being a β-sheet or a coil and that these results are highly reliable. The

metric PPV does not say anything about how often the algorithm is misclassifying a negative class

(β-sheet or a coil) in the positive class, which is clearly a limitation. In these cases we cannot

calculate the reliability of predictions for the negative classes. PPV is calculated as:

PPV =
TP

TP + FP
(D.5)

Negative Predictive Value NPV

This statistic gives the proportion of secondary structures that are correctly classified as

being in the negative class (β-sheet and coil). A high NPV means that the results for negative

classifications are highly reliable and only in rare cases, is a negative class being classified

in the positive class (α-helix. The NPV does not say anything about how often the algorithm

misclassifies a positive class as being a negative class,which is clearly a limitation. In these cases

we cannot calculate the reliability of predictions for the positive classes. NPV is calculated as:
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NPV =
TN

TN + FN
(D.6)

However, the PPV and NPV critically depend on the prevalence (% content) of the secondary

structures in the training model. If the occurrences of positive cases are rare, then negative

classifications are expected to be more reliable and more informative while the positive classi-

fications are expected to be less reliable and vice versa. But in our analysis of the results with

respect to amino acid residues, we find that some residues with lower occurrences are classi-

fied with higher accuracies and vice versa. There are some factors that need to be considered

in order to build a good model. The prevalence of the three secondary structures or the amino

acids in the training data sets, might be different from the proportions in which they occur

naturally. This situation might lead to misleading estimates of the predictive capabilities of

a given algorithm. In addition, the test samples must be representative of the samples used

for training, in order for these statistics to be useful metrics of the reliability of the classifica-

tions. If it is not possible to meet these requirements, then post-test probabilities, which are

discussed next, can give a better idea about the reliability of the classifications. The model

must be updated when newer, hitherto unrepresented proteins are included in the test sets,

in order to maintain generalization performance.

The predictive values discussed above are general measures of accuracy. The post-test

probability is a measure for classification of individual samples. These probabilities might

be useful to fine tune classification results such as correcting predictions at the ends of sec-

ondary structures, which are error prone and difficult to classify. If the pre-test probability

(of occurring in a secondary structure) of a sample in the test set, is the same as for similar

samples in the training model, then the post-test probability and pre-test probability will be

the, otherwise they will differ. So, there is a dependence on the prevalence of the secondary

structures in the training models and the reliability of the results. In order to obtain a reliable

estimate of PPV and NPV for any model, we can include the prevalence of the secondary

structures (in the training model) in our calculations. If this prevalence is different from the

value with which they occur naturally, then this difference can also be taken into account
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when calculating some of the metrics as discussed below.

Positive Predictive Value with Prevalence

Positive Predictive Value with Prevalence (PPVPrev) can be defined as:

PPVPrev =
(Sensitivity ∗ Prevalence)

(Sensitivity ∗ Prevalence) + ((1− Specificity) ∗ (1− Prevalence))
(D.7)

Negative Predictive Value with Prevalence

Negative Predictive Value with Prevalence (NPVPrev) can be defined as:

NPVPrev =
(Specificity) ∗ (1− Prevalence)

(Specificity ∗ (1− Prevalence)) + ((1− Sensitivity) ∗ Prevalence)
(D.8)

When there are a large numbers of false positives or false negatives, the Sensitivity and

Specificity values cannot be used reliably to determine the effectiveness of the algorithm.

The Likelihood Positive Ratio and Likelihood Negative Ratio are better measures since they

simultaneously consider all four basic metrics, TP, TN, FP and FN. The likelihood Ratio of

a test can help to estimate the post-test probabilities with the help of Pretest Odds. It can

give an estimate of how much the test result themselves can influence the odds of a sample

belonging to a positive or negative class. These types of estimates might help to determine

the quality of the predictions and may be used to fine tune the classification results or correct

errors that occur at the ends of secondary structures.

Likelihood Ratio Positive (LRP)

When a sample is classified as a member of a positive class, LRP (LR+ve) can give an

estimate of how much the odds of the sample being in the positive class has changed after the

test results are obtained. LRP is defined as:

LRP =
Sensitivity

1− Specificity
(D.9)
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Likelihood Ratio Negative (LRN)

Likelihood Negative Ratio (LRN): When a sample is classified as a member of the negative

class, LRN (LR-ve) can give an estimate of how much the odds of the sample being in the

negative class has changed after the test results are obtained. LRN is defined as:

LRN =
1− Sensitivity
Specificity

(D.10)

LRP and LRN can be combined with the prevalence of secondary structures, characteris-

tics of the training model and other information about the particular secondary structure to

determine the post-test odds of the particular structure belonging to a class. The reliability

of the classification results can be determined using these metrics. Initially, the pre-test odds,

which is the likelihood of a particular sample belonging to the positive class(prevalence),

prior to testing, is determined. This value, which can also be expressed as a probability, can

be adjusted depending on the nature of the training samples that are used for the building

the model.

The pre-test odds can be combined with LRP and LRN to obtain the post-test odds.
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