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Abstract 14 

The application of best management practices is a long-term conservation effort in Midwest U.S. 15 

croplands, and many farmers have adopted structural conservation practices (SCPs) to reduce soil 16 

erosion and surface water runoff, such as terraces and grassed waterways. Despite that, the geographic 17 

distribution of these practices is barely known in the region, and mapping initiatives are required to 18 

develop timely and spatially explicit inventories of SCP areas. This study presents the first mapping of 19 

SCPs in the agricultural areas over 12 Midwest U.S. states. Semantic segmentation model (adapted U-20 

Net) and National Agriculture Imagery Program 2018-2019 data were used to map the SCP areas at 2-m 21 

spatial resolution (490.2 billion pixels). In general, mapping results achieved 78.2% overall accuracy 22 

across 20 counties. Our results indicate that 52% of SCP areas are distributed over Iowa (26%), Illinois 23 

(15%) and Nebraska (11%). In contrast, the states with lowest SCP areas are Michigan and North 24 

Dakota, with less than 4% of SCP areas. Since the SCP extent is also dependent on the number of 25 

cropland areas per state, the percentage of SCP per cropland area was calculated. Specifically, the 26 

average percentage of SCP area per cropland is ~1.19%, ranging from 0.8 (e.g., North Dakota and south 27 

Minnesota) to 5.5% (e.g., northeast Kansas and southwest Iowa). Interestingly, results also illustrate that 28 

regions with high soil erosion rates present the largest percentage of SCP areas in croplands as well, 29 

indicating conservation efforts by farmers. While this preliminary analysis shows some limitations in the 30 

mapping quality (mislabel, non-accurate location or discontinuity of SCP areas), the framework has a 31 

potential for operational conservation monitoring. The development of such mapping has positive 32 
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implications for conservation programs, and this geospatial inventory is an easily accessible information 33 

for large-area evaluation of conservation practices across Midwest U.S. croplands. 34 

Keywords: Conservation, terraces, grassed waterways, semantic segmentation, U-net model. 35 

1. Introduction 36 

Agricultural conservation practices are widely recognized across the world (Friedrich et al., 2012; 37 

Jat et al., 2013; Kassam et al., 2009; 2019), and the adoption of alternative production methods in farm 38 

practices and land management (e.g., no-tillage farming, extensive crop rotations, and biomass mulch 39 

soil cover) becomes relevant to maintain soil structure and crop productivity (Triplett et al., 2008; 40 

Tscharntke et al., 2012). In the United States, farmers in the Midwest region have implemented 41 

conservation practices that benefit both agricultural production and environmental protection (Hobbs et 42 

al., 2007; Knowler and Bradshaw, 2007; Kassam et al., 2009; Floress et al., 2018). Despite the efforts to 43 

minimize nutrient loss and soil erosion (Carpenter et al., 1998; Schoumans et al., 2014), agricultural non-44 

point source pollution remains a major concern for water quality in the United States (Stoddard et al., 45 

2016). Sediment transport and nutrient export from crop fields lead to degradation of water quality in 46 

freshwater systems by increasing algal growth and turbidity levels (Kröger et al., 2013). The Gulf of 47 

Mexico “Dead Zone” is one example of the ecological impact caused by nutrient-laden water from the 48 

Mississippi River reaching the coastal waters (Rabalais et al., 2002; Diaz and Rosenberg, 2008; Dale et 49 

al., 2010). As a result, the U.S. Environmental Protection Agency established a goal of 45% reduction of 50 

nutrient loads (nitrogen and phosphorus) to surface waters along the Mississippi basin (Dale et al., 2010). 51 

In these efforts, USDA Natural Resources Conservation Service has provided financial and technical 52 

assistance for adopting best management practices (BMPs) at farm-level.  53 

Agricultural BMPs are a set of guidelines, practices, and structural controls designed to preserve 54 

soil and water resources in agricultural fields. Some examples of structural conservation practices (SCPs) 55 

are i) grassed waterways, ii) contour buffer strips, iii) terraces, iv) filter strips, v) riparian buffers, and 56 

others. These practices are typically implemented in the most sensitive areas (e.g., highly erodible lands), 57 

and each of them has a specific role in the agricultural landscape. For instance, terraces are earthen 58 

ridges around a hillside that prevent soil erosion on steep slopes (Tarolli et al., 2014), while grassed 59 

waterways are natural or constructed vegetated channels that control surface runoff, erosion, and nutrient 60 
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loss in the drainage pathways (Fiener and Auerswald, 2003). Recent studies have quantified the benefits 61 

of these BMPs in cropland areas (Zhang and Zhang, 2011; Reimer et al., 2012; Liu et al., 2013; Liu et al., 62 

2017). Kröger et al. (2012) reviewed BMP effectiveness in row-crop agriculture over the Lower Mississippi 63 

Alluvial Valley and they demonstrated that nine BMPs provide a significant reduction of nutrient loss 64 

(range: 15 - 100%), such as total nitrogen and phosphorus. Similarly, Panagopoulos et al. (2011) showed 65 

that filter strips reduce the delivery of total phosphorus (up to 50%) in the surface water of a Western 66 

Greece catchment. In a modeling approach, Haas et al. (2017) showed that buffer strips reduce nitrate 67 

loads reduction (up to 10%) in the catchment of the river Treene, Given the relevance of conservation 68 

techniques (Liu et al., 2017; Xiong et al., 2018), conservation agencies and research organizations are 69 

promoting local networks and access to information to increase the engagement of farmers towards 70 

sustainable practices (Baumgart-Getz et al., 2012), such as North Central Region Water Network 71 

(https://northcentralwater.org/) and Iowa Learning Farms (https://www.iowalearningfarms.org/). 72 

In this perspective, the accurate mapping of structural conservation practices becomes crucial for 73 

the spatial overview of current practices and its function in the agricultural landscape. Recently, the 74 

Agricultural Conservation Planning Framework (ACPF) was implemented to provide meaningful 75 

conservation plans at the watershed level (Tomer et al., 2015; Lewandowski et al., 2020). The framework 76 

incorporates geospatial data to identify vulnerable areas and recommend conservation options. However, 77 

existing practices are not considered in this framework, and the watershed plan often targets areas with 78 

already implemented BMPs. Rundhaug et al. (2018) compared the existing and potential ACPF practices 79 

in three Iowa watersheds, and they emphasized the importance of BMP mapping as support in the 80 

development of conservation scenarios. Regarding the soil erosion modeling, Panagos et al. (2015) 81 

highlighted that conservation practices are typically neglected in the soil erosion risk modeling because 82 

they are difficult to assess and quantify for large areas. Conceptually, assuming no conservation or 83 

constant values, significant uncertainties may be introduced in the erosion estimates, especially in 84 

agricultural areas. These examples show the benefits of geospatial information of conservation practices 85 

for environmental analysis, but mapping initiatives are barely presented in the literature. In this context, 86 

Iowa BMP Mapping Project (IBMP) is a unique initiative that offers a detailed spatial database about 87 

vegetative/structural practices across Iowa watersheds (ISU, 2016). The mapping framework includes the 88 
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visual interpretation of National Agriculture Imagery Program (NAIP) aerial imagery (2007-2010) and 89 

LiDAR-derived products. While a comprehensive inventory is a valuable data resource (Lam et al., 2011; 90 

Rundhaug et al., 2018), the product generation is dependent on manual classification performed by 91 

multiple GIS specialists/interns and takes multiple years for completion. This limitation reinforces the 92 

demand for a timely and reliable framework for SCP mapping which will support the evaluation of other 93 

U.S. states.  94 

This study evaluates the preliminary results of structural conservation practices (SCP) mapping 95 

across Midwest U.S. croplands. The framework includes the classification of SCP areas using high-96 

resolution NAIP aerial imagery (2018 – 2019 and semantic segmentation U-Net algorithm). The 97 

classification was performed over ~490.2 billion pixels at 2-m resolution, and the computational strategies 98 

for efficient implementation were detailed in this study. The results of SCP areas were reported by state, 99 

and then, normalized by cropland area for further evaluation of its spatial distribution. In addition, we 100 

investigated the relationship of high\low occurrence of SCPs with landscape characteristics, such as soil 101 

properties and topographic-related variables. Note that agricultural BMPs represent a variety of 102 

conservation practices (cover crops, nutrient management, crop rotations and tillage practices), and this 103 

study is only focused on structural practices, such as terraces and grassed waterways. These preliminary 104 

results are promising, and the potential implications and challenges were discussed in the Section 4.  105 

 106 

2. Material and methods 107 

The proposed framework applies publicly available imagery (NAIP) and semantic segmentation 108 

U-Net method to generate a SCP/non-SCP mask in agricultural areas. The U-Net is a deep learning 109 

model that explores spatial-spectral features for image classification and further details are presented in 110 

the section 2.3.1. The procedures are shown in Fig. 1 and broadly described as: 1) NAIP pre-processing; 111 

2) model training; 3) SCP classification and 4) validation and spatial analysis. These steps are detailed in 112 

the following sub-sections. 113 

 114 
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 115 

Fig. 1. Framework for structural conservation practices (SCP) mapping using deep learning model. 116 
 117 
 118 

2.1. Study area 119 

The study area includes one of the major cropland areas in the world: Midwest United States. A 120 

total of 12 states were selected for this analysis, and they represent the most grain productive region of 121 

the United States (Table S1). For example, Iowa is a leader of U.S. corn production (68.5 million tons of 122 

corn) with approximately 87,500 farms (Iowa Corn, 2019). The region presents mostly a hot-summer 123 

humid climate and cold winters, and commercially and environmentally relevant U.S. rivers are crossing 124 

the region such as Mississippi and Missouri rivers. While cropland areas are the most predominant land 125 

cover, the natural landscape consists of prairie and savanna, forests, and wetland areas. The terrain 126 

landscape is typically flat or moderately rolling hills such as in southwest Wisconsin or western Iowa. The 127 

frequency of corn/soybean areas illustrates the importance of selected states for national crop production 128 

(Fig. 2), and consequently, the conservation efforts are highly expected in this region. 129 

 130 
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 131 

Fig. 2. Location of Midwest U.S. states (study area). The crop frequency of corn\soybean is colored from 132 
dark blue (1 year) to light yellow (10 years) in the 2010-2019 period. Source: 133 
https://nassgeodata.gmu.edu/CropScape/. 134 

 135 

2.2. Data 136 

2.2.1. High-resolution aerial imagery 137 

National Agriculture Imagery Program (NAIP) is a comprehensive program administered by the 138 

USDA's Farm Service Agency (FSA) that acquires high-resolution aerial imagery across the United 139 

States. The NAIP imagery are mostly collected during the agricultural growing season (leaf-on) and have 140 

the appropriate resolution for a variety of land cover and environmental studies (Basu et al., 2015; Peter 141 

et al., 2018; Martins et al., 2020). Beginning in 2003, NAIP projects were developed on a 5-year cycle to 142 

collect images at natural color (RGB) using film cameras. Recently, NAIP imagery are acquired by digital 143 

sensors with four spectral bands (blue, green, red and near-infrared), 8-bit of radiometric resolution and 144 

spatial resolution of 1-m. The clear-sky images are collected on different flight dates during late summer 145 

and early fall and provided for public as orthorectified imagery for each U.S. county. The dataset is 146 

available by USDA Natural Resources Conservation Service at Geospatial Data Gateway (Direct 147 

download: https://nrcs.app.box.com/v/naip). 148 
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 In this study, false-color NAIP imagery were obtained for entire Midwest U.S in 2018 and 2019. A 149 

total of 1,054 county-based image were delivered in MrSID compressed format, resulting in ~1.98 TB of 150 

data. For the pre-processing step (Fig. 1), these images were decoded to GeoTiff format and then 151 

resampled from full 1-m resolution to 2-m resolution using nearest neighbor method. This resampling 152 

reduces the storage needs and keeps sufficient resolution for our analysis. After that, the entire dataset 153 

was re-projected to USA Contiguous Albers Conic Equal Area (ESRI:102003). Note that this study does 154 

not perform a temporal analysis because older NAIP images present different number of bands and 155 

image quality compared to recent data. Also, we did not use the LiDAR-derived product as input variable 156 

because they are not available at high spatial resolution (< 2 m) for all states. Moreover, state-based 157 

LiDAR products are often distinct in terms of pre-processing steps, vertical error, project’s year, spatial 158 

extent, and final quality. The uncertainties of different data sources and its coverage restrict the model 159 

application for entire Midwest, so then, we decided to only use false-color NAIP images. Additional 160 

discussion of current limitations is presented in Section 4.4. 161 

 162 

2.2.2. Reference samples for model training 163 

The development of large training datasets is one of the major challenges for deep learning 164 

applications. The training of semantic segmentation methods, such as U-Net model (Section 2.3.1), 165 

requires fully labeled image patches, and this study exploits the Iowa BMP dataset to generate these 166 

training samples (Fig. S1). As described, the Iowa BMP project has been funded by multiple institutions 167 

and produced a BMP inventory in geodatabases for the 2007-2010 timeframe. The Iowa-BMP is focused 168 

on a baseline of conservation practices, such as terraces, WASCOB, grassed waterways, strip cropping 169 

and contour buffer strips. The project developed a protocol for visual interpretation of BMP areas using 170 

optical image and LiDAR-derived products, and later, the quality assessment is performed by trained 171 

Iowa-DNR staff before data release. Therefore, this dataset is reference source for a variety of 172 

environmental assessment, and the complete set of BMPs is available at watershed-level through the 173 

project’s website (https://www.gis.iastate.edu/gisf/projects/conservation-practices). Further information is 174 

also provided in the project handbook (ISU-IBMP, 2017). Among these BMPs, this study investigates two 175 

relevant structural conservation practices (SCPs): grassed waterways and terraces. These practices are 176 

https://www.gis.iastate.edu/gisf/projects/conservation-practices
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the most abundant in the Iowa inventory (> 90% of areas in BMP project), and they are typically observed 177 

within cropland boundaries. Here, it should be emphasized that these practices are visually identified in 178 

the images, but they are difficult to separate using optical data due to similar spectral response and 179 

shape in some cases (even by human interpretation). So, binary classification (SCP/non-SCP) is 180 

appropriate for this study, and this limitation is further discussed in Section 4.4. For this training dataset, 181 

SCP polygons were firstly converted to raster files, creating a binary label (SCP: 1, non-SCP: 0). All these 182 

labeled patches are stored with corresponding false-color images from NAIP 2010 data, as used in the 183 

Iowa BMP project. The next step was the random selection of 500,000 pair samples (image + label), 184 

where 90% of these samples have SCP areas and the other 10% of samples have non-SCP areas, such 185 

as grassland, building, road and forest targets. This combination of SCP and non-SCP patches gives a 186 

comprehensive dataset (size: 122 GB) for model training, and this dataset is publicly available at 187 

https://doi.org/10.5281/zenodo.3762370. 188 

2.3. Methodology 189 

2.3.1. Semantic segmentation with deep learning 190 

Recently, fully convolutional network became a prominent deep learning architecture for semantic 191 

segmentation tasks (Long et al., 2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017; Jégou et 192 

al., 2017). These architectures are well-established in remote sensing applications and have been used 193 

to map land cover (Stoian et al., 2019), forest degradation (Wagner et al., 2020), building (Xu et al., 2017) 194 

and roads (Zhang et al., 2017). A detailed review of different studies is described in Ma et al. (2019). In 195 

this research, an adapted U-Net network was used to perform a binary segmentation of a 196 

vegetative/structural SCP areas. Briefly, U-Net is a deep fully convolutional network that was originally 197 

designed for semantic segmentation of biomedical images (Ronneberger et al., 2015). This model 198 

presents the advantage of 2D feature extraction to explore spatial-contextual information compared to 199 

standard pixel-based methods (e.g., random forest and support vector machine). The U-Net has an 200 

encoder-decoder architecture where (i) the encoder part extracts spatial features from the input image 201 

and (ii) decoder constructs the segmentation map from the encoded features. By following Wagner et al. 202 

(2020), we adapted the U-Net architecture with three-band input image and additional convolutional block 203 

to explore deeper features of our large training dataset. Furthermore, we added batch normalization and 204 

https://doi.org/10.5281/zenodo.3762370
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dropout layers to prevent overfitting in each block. In general, our network contains five blocks with two 205 

convolutional (3 x 3) layers followed by ReLU activation function and max pooling (2 x 2) in the encoder 206 

part. In the decoder part, a sequence of upsampling and convolutional layers reconstructs the dimension 207 

of input patch until the end of network. Finally, the last layer has convolutional layer (1 x 1) with sigmoid 208 

activation function and generates the confidence map with the same dimension of input. The SCP label is 209 

attributed to pixels with output layer values higher than 0.5. 210 

The adapter U-Net model was trained with 500,000 image patches. The first 90% of the dataset is 211 

used for training (450,000 patches), while the last 10% is used for validation (37,500 patches) and testing 212 

(12,500 patches). For network training, a custom data generator was designed to feed the model (batch-213 

by-batch) because there is not enough memory to load all the 500,000 samples at the same time. We 214 

used the Adam optimizer (learning rate = 0.001) and the binary cross-entropy as loss function, which is 215 

most appropriate for this segmentation task. The number of epochs was set as 100 (batch size of 32) 216 

since the improvement did not exceed 0.002 of accuracy after 80 epochs. This model was trained in the 217 

ISU HPC Pronto cluster with Intel Xeon Silver 4114 CPU @ 2.20GHz, and GPU NVIDIA Tesla v100 218 

32GB. Note that this adapted U-Net architecture has 31,099,429 trainable parameters, and large GPU 219 

memory is needed for this application. The total training takes up to 13 days (~10,850 secs per epoch). 220 

The training, validation, and testing accuracies were similar (0.983, 0.974, 0.975, respectively), which 221 

indicates small or no overfitting during the training. All these experiments are conducted with Python's 222 

high-level package Keras (TensorFlow backend) in Python environmental and its open-source libraries, 223 

such as GDAL, NumPy, and Scikit-image.  224 

 225 
2.3.2. SCP classification and post-processing 226 

This product generation demands computational resources for fast processing of large volume of 227 

high-resolution data across the Midwest region; more specifically, this study classified ~490.2 billion 228 

pixels. In this research, we performed all the classification process in the High-Performance Computing 229 

(HPC) Condo cluster at Iowa State University. There are relevant aspects for the efficient processing of 230 

these high-resolution images. The county-based images are large files (range: 300 MB to 17 GB) and 231 

imposes a high load on the nodes with intense read/write of files and memory limitations for multi-232 

processing jobs. To solve that, the first step was the subdivision of original image in 18 small parts, and 233 



10 
 

then, perform the parallel processing of these small image files. This step takes advantage of multiple 234 

cores in HPC nodes and we run dozens of image parts simultaneously using 15 nodes. Another part of 235 

patch-based classification is the sliding window process. One of the main advantages of FCNs is the 236 

“dense” prediction where all pixels are labeled in the output patch, and this reduces the redundancy in the 237 

classification. However, SCPs are typically long and continuous areas, and some overlap is needed to 238 

maintain the spatial-contextual features on the border and between adjacent patches. We adopted stride 239 

of 192 pixels between input patches (in other words, overlap area equal to 64 pixels) to balance running 240 

time and quality of results. Finally, the entire Midwest U.S. is classified in five days (processing time: ~14 241 

min per 100 km2 of image), generating 1.39 TB of mapping results. After that, a post-processing step is 242 

implemented for the final product, including the filter of non-cropland areas and noise areas. The cropland 243 

data layer (CDL) from USDA was used to filter the non-cropland areas. The cropland mask was created 244 

with corn or soybean areas occurring at least 5 times between 2010 and 2019 (see areas in Fig. 2 with 245 

frequency ≥ 5). Since noise and isolated pixels are likely expected at 2-m classification, and we filtered 246 

out small areas (up to 20 pixels). Finally, we aggregated all tiles to produce a binary mask (SCP/non-247 

SCP) per county. 248 

 249 

2.4. Accuracy assessment 250 

For classification assessment, we developed a reference dataset using stratified random 251 

sampling design (Cochran, 2007). Briefly, a total of 9,270 reference samples were labeled in 20 Midwest 252 

counties (Fig. S2). In the first step, 250 blocks of 2 x 2 km dimension were randomly created for each 253 

county, and then, we choose 50 blocks with high presence of SCP areas as possible. This block-based 254 

stratification allows the consideration of spatial variability of SCP areas compared to simple random 255 

sampling, which increases the probability of SCP samples in this reference dataset. In the second step, 256 

we created five random points for each block and these samples were labeled as either SCP or non-SCP 257 

pixels by visual interpretation of high-resolution imagery from NAIP data and ArcGIS image online 258 

service. After this step, additional samples were included to match the number of SCP and non-SCP 259 

samples per block. When a particular block does not present any SCP on cropland area, this previous 260 

step is skipped, and only randomly selected points were labeled. An example of block-based sampling of 261 
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SCP and non-SCP pixels is illustrated in Fig. S2. By using 9,270 reference samples, the confusion matrix 262 

was calculated in this per-pixel accuracy assessment, including other metrics such as overall accuracy 263 

(OA), producer's accuracy (PA), user's accuracy (UA) and F-1 score (Congalton  et al., 1991; Strahler et 264 

al., 2006). 265 

 266 

Accuracy = 
TP + TN

TP+ TN + FP + FN
 

(1) 

Recall = 
TP

TP+ FN
 

 

(2) 

Precision = 
TP

TP+ FP
 

 
 

(3) 

F1-score = 2 x 
Precision x Recall

Precision + Recall
 

 

(4) 

 

  
Where, true positive (TP) and true negative (TN) represent the samples that were correctly 267 

classified as SCP and non-SCP, respectively. In turn, the false positive (FP) samples are those pixels 268 

mistakenly classified as SCP, while the false negative (FN) samples are those pixels mistakenly classified 269 

as non-SCP areas. The F1-score uses a harmonic average of the precision and recall metrics, ranging 270 

from 0 to 100. Precision is the proportion of classified samples that in fact belong to this class and it is 271 

similar to user’s accuracy (1 – commission error). Recall is the proportion of reference samples that were 272 

classified as SCP locations and it is similar to producer’s accuracy (1 – omission error). 273 

 274 

2.5. Spatial analysis and ancillary products 275 

The spatial analysis includes the discussion of SCP distribution, spatial autocorrelation (Global 276 

Moran’s I test), and Local Indicators of Spatial Association analysis. The SCP areas were calculated per 277 

grid with regular size (10 x 10 km), and then, Anselin Local Morans I analysis was performed. 278 

Furthermore, the adoption of conservation practices is potentially affected by a variety of factors such as 279 

soil and terrain properties (Knowler and Bradshaw, 2007), and the association between SCP and some 280 

variables was evaluated in the high and low clusters of SCP extent. The used variables are described as 281 

follows: 282 
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Topographic-related features: The 30-m elevation product from Shuttle Radar Topography Mission 283 

(SRTM) was used to calculate the topographic-related features, such as slope and topographic wetness 284 

index (TWI). The index calculation is described by TWI = ln(As tan(𝛽)⁄ ), where As is the upslope 285 

contributing area, and β is the local slope (Quinn et al., 1995). The SRTM 30-m images were acquired in 286 

the web interface (SRTM Tile Downloader, https://dwtkns.com/srtm30m/) for Global Change Master 287 

Directory dataset (https://gcmd.nasa.gov). While 30-m SRTM DEM has inherent uncertainties, the data 288 

source is well-established in the literature and was used to derive averaged values of slope and TWI 289 

within 10 x 10 km grid. 290 

Soil-related features: Saturated hydraulic conductivity (µm/s), bulk density (g/cm³), and soil organic matter 291 

(kg/m²) were used in this study. These products were distributed by SoilWeb portal 292 

(https://casoilresource.lawr.ucdavis.edu/) from California Soil Resource Lab at UC Davis, and they were 293 

derived by aggregating USDA-NCSS soil survey data (SSURGO back-filled with STATSGO where 294 

SSURGO is not available) within 800m² grid cells. 295 

Soil erosion rate: Global Soil Erosion 2012 (tons/ha/yr) and K-factor maps from Borrelli et al. (2017) were 296 

used in this study. This 25 km resolution product is a re-sampled version of the original soil erosion map 297 

derived from RUSLE-based Global Soil Erosion Modelling platform. The product is available at European 298 

Soil Data Centre (https://esdac.jrc.ec.europa.eu/content/global-soil-erosion) (Panagos et al., 2012), and 299 

more details of soil erosion mapping are found in Borrelli et al. (2017). 300 

All these variables were re-projected to Albers Conic Equal Area projection and filtered by 301 

cropland mask, and the average values of these variables were calculated for each 10 x 10 km grid. 302 

 303 

3. Results 304 

3.1. Classification performance and error sources 305 

This section presents the results of accuracy assessment and examples of SCP mapping using 306 

semantic segmentation approach. The confusion matrix is presented in Table 1, and the overall accuracy 307 

and F1-score of the SCP mapping are 78.2% and 68.5%, respectively. This validation shows large 308 

number of false negatives (1927) and low recall of 53.3% which suggest the underestimation of areas in 309 

https://dwtkns.com/srtm30m/
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this mapping with high omission error. In turn, the precision of 95.9% and small false positives samples 310 

suggest a low commission error. The visual inspection shows some positive aspects of 2-m product (Fig. 311 

3). In the Figs. 3a and 3b, we observed the successful classification of terraces and grassed waterways in 312 

different context. For instance, we observed the performance in both vegetated and fallow areas with 313 

correct label (Fig. 3b versus 3e) and even in the transition areas. It is worth emphasizing that urban and 314 

forest pixels were filtered out by cropland mask, but we did not observe a systematic error in the raw 315 

product, and they are typically classified as non-SCP pixels as expected. Another example of SCP 316 

mapping illustrates the performance of our results (Fig. S3). In this example, the terrace locations are 317 

consistent with contours in hillshade map, and different shapes and dimension of terraces are well-318 

represented.  319 

Table 1. Confusion matrix of SCP mapping across 20 counties. 320 

All states Overall accuracy: 78.2 %; F1-score: 68.5% 
 Reference  

Recall (%) Precision (%) 
Classified Non-SCP SCP Total 

Non-SCP 5048 (TN) 1927 (FN)  6975 53.3 95.9 

SCP 94 (FP) 2201 (TP) 2295   

Total 5142 4128 9270     

 321 
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 322 

Fig. 3. Classification of structural conservation practices (SCP) in different contexts (a-e). First row: NAIP 323 
natural color image. Second row: SCP mapping (black). 324 

 325 

While this overall accuracy can be claimed as satisfactory for this general analysis, the farm-level 326 

analysis is potentially affected by omission/commission errors. Fig. S4 shows some limitations of this 327 

mapping. For example, the discontinuity of SCP area is one of the most common omission errors, where 328 

the grassed waterway is partially mapped, or terraces are missed (Fig S4a). In fact, as suggested in the 329 

confusion matrix, the omission of SCP area is the main error source in this mapping and can lead to 330 

certain underestimation of SCP areas. In another way, the commission error is also observed in the 331 

regions where the crop surfaces are visually complex and quite heterogeneous. We observed that wetter 332 

areas present erroneous mislabels of SCPs in the crop field. Such errors are expected as the model 333 

performance is dependent on clear distinction of spatial pattern between SCP and non-SCP targets. In 334 

the same context, it should be emphasized that irrigated areas are not common practices across Iowa, 335 
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which makes it poorly represented in the training samples. As consequence, we found a critical confusion 336 

of SCP areas in the central pivot irrigation areas where the pivot wheel path or edges of irrigated areas 337 

are confused as conservation practice (Fig. S4b). Lastly, the flooding farmlands present complex water 338 

paths, and some errors were observed in North Dakota and Wisconsin. Despite these aspects, this 339 

preliminary analysis shows sufficient quality for overview analysis of SCP distribution across the U.S. 340 

Midwest. 341 

 342 

3.2. SCP distribution in the Midwest U.S. 343 

Fig. 4 shows the absolute SCP areas per state and the number of funded terraces and grassed 344 

waterways by NRCS conservation programs between 2005 and 2019. In general, a total of 6,642 km2 345 

was classified as SCP areas in the cropland across the entire region. We observed that 52% of SCP 346 

areas are distributed over Iowa (26%), Illinois (15%) and Nebraska (11%). The states with lowest SCP 347 

areas are the North Dakota and Michigan, with 4% of total. The largest SCP areas and practice counts 348 

are both observed in Iowa, which might indicate the importance of these programs towards achieving 349 

conservation goals. Interestingly, we observed several terraces across Kansas but there are no records 350 

of NRCS funding for this practice during 2015-2019 period. The small SCP areas in North Dakota and 351 

Michigan also agrees with low number of NRCS records for terrace/grassed waterways projects. This 352 

overview of classified SCP and NRCS records is relevant to discuss the effectiveness of cost-share 353 

programs.  354 

Regarding the spatial distribution, the evaluation of SCPs requires the normalization by cropland 355 

areas. For this reason, we calculated the percentage of SCPs per cropland area, and spatial distribution 356 

of % SCP is shown in Fig. 5a. In addition, Local Moran’s I cluster map and cropland mask are presented 357 

in Fig. 5b and Fig. 5c, respectively. The map shows the grids with higher than 10% of cropland within 10 x 358 

10 km. Overall, the values range from 0 to 8% of SCP in croplands and the spatial distribution indicates 359 

large variability of % of SCP and different conservation efforts across the states. For example, the largest 360 

extent is clearly observed in the western and eastern Iowa, while north central Iowa, also known as Des 361 

Moines Lobe due to its post-glacial landscape, has low SCP areas (< 1%). Interestingly, Ohio shows 362 

more than 1% in the middle of state, but the rest of state has lower than 0.8% of SCP in croplands. 363 
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Southern Minnesota, Michigan and North Dakota represent the areas with lowest % of SCP. In turn, 364 

Illinois shows similar distribution of % SCP percentage across state. By visual inspection, we observed 365 

that classified SCPs in northeastern Kansas are mainly terraces, which highlights the conservation needs 366 

in this region. In addition, the cluster and outlier analysis is also illustrated in the same Fig. 5. The Global 367 

Moran’s I shows a spatial autocorrelation of % SCP values (clustered, p-value < 0.05) and clustering 368 

results demonstrate that high-high clusters occur in large extent over Iowa, Kansas and Nebraska. As a 369 

hotspot region, the gridded SCP areas present high similarity with their neighbors, and average SCP 370 

percentage of 2.65% (± 0.73) is observed in the high-high cluster. In contrast, North Dakota, Minnesota 371 

and Michigan present most areas of low-low clusters, which indicate fewer efforts (or no need) in the SCP 372 

implementation. 373 

 374 

Fig. 4. (a) Comparison of structural conservation practices (SCP) areas among the U.S. states. (b) 375 
Numbers of grassed waterway and terrace practices funded by Natural Resources Conservation Service 376 
(NRCS) in 2015-2019 period. Source: https://www.nrcs.usda.gov/Internet/NRCS_RCA/reports/, (e.g., 377 
“cp_ia.html” for Iowa). U.S. state abbreviations: Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Michigan 378 
(MI), Minnesota (MN), Missouri (MO), Nebraska (NE), North Dakota (ND), Ohio (OH), South Dakota (SD), 379 
Wisconsin (WI). 380 

 381 

https://www.nrcs.usda.gov/Internet/NRCS_RCA/reports/
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 382 

Fig. 5. (a) Spatial distribution of structural conservation practices (SCP) in terms of percentage within 383 
agricultural areas across Midwest U.S. region. (b) Results of cluster and outlier analysis (Anselin Local 384 
Moran’s I) at 5% significance level. (c) Cropland mask. Note that average % of SCPs is calculated within 385 
10 x 10 km grid area, and only grids with more than 10% of cropland mask are used in this map. U.S. 386 
state abbreviations: Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Michigan (MI), Minnesota (MN), 387 
Missouri (MO), Nebraska (NE), North Dakota (ND), Ohio (OH), South Dakota (SD), Wisconsin (WI). 388 

 389 

3.3. Relationship between SCP and other variables 390 

The evaluation of soil and topographic variables in the areas with SCPs supports the 391 

understanding of motivations to adopt these practices. Fig. 6 shows the histogram of six soil/topographic 392 

variables obtained over high-high and low-low cluster areas of SCPs (%). From Anselin Local Moran’s I 393 

analysis, high-high clusters represent the grids with high % of SCP where its neighbors also present high 394 

values, while low-low clusters are the same idea but low % of SCP values. In general, high-high clusters 395 

of % SCP are observed in slope (average = 1.58%), TWI (4.45) and Ksat (6.68 µm/s) compared to low-396 

low clusters with slope of 0.75%, TWI of 5.07 and Ksat of 19.8 µm/s. Also, there are slight differences in 397 

the k-factor, bulk density and SOM values between high-high and low-low clusters. While these results 398 

suggest some relationship of these soil/topographic variables with SCP area, it should be highlighted that 399 
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spatial correlation analysis of these variables and % SCP shows no statistical significance using all grids. 400 

Thus, as might be expected, these variables are only part of the motivation for SCP implementation and 401 

other factors are also important on the SCP adoption, such as governmental regulations, farm profitability, 402 

knowledge, tools and management. Also, this mapping is only focused on vegetative/structural practices, 403 

but there are many practices that are able to be implemented in regions with potential erosion problems 404 

as well.  405 

 406 

Fig. 6. Histograms of the soil and elevation-related properties within high-high and low-low clusters of 407 
SCPs. (a) slope, (b) topographic wetness index, (c) saturated hydraulic conductivity, (d) soil erodibility 408 
factor (e) bulk density, and (f) soil organic matter. The brief description of these variables is described in 409 
Section 2.5. The mapping areas of high-high and low-low clusters is presented in the Fig. 5. 410 
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 411 

When one compares the spatial pattern of potential soil erosion and % SCP values in Fig. 7, the 412 

conservation efforts by farmers in high soil risk areas are evident. The histogram also shows the higher 413 

erosion values (average: 8.82 tons/ha/year) in the high-high cluster of SCP areas compared to low-low 414 

cluster (average: 3.34 tons/ha/year). Since this result highlights the spatial overlap of high erosion and 415 

high SCP areas, an interesting observation should be made in this result. The soil erosion modeling 416 

indicates the potential erosion according to climate-topographic conditions of the region, disregarding 417 

conservation practice implementation. In contrast, the classified SCP areas illustrates the action of 418 

farmers by adopting vegetative/structural practices to minimize the erosion impacts. Thus, the real 419 

erosion rate is likely different and needs to incorporate spatially explicit information about conservation 420 

practices. Another insight on this result is the assessment of counties with conservation needs (↑ soil 421 

erosion, ↓ SCP areas), such as Cedar/Nebraska, Crawford/ Iowa, Shelby/Iowa, and Seward/Nebraska. 422 

 423 

Fig. 7. Spatial distribution of soil erosion rates and its distribution within high-high/low-low clusters of 424 
SCPs. (a) Soil erosion 2012 map from Borrelli et al. (2017), (b) Spatial distribution of % SCP in 425 
agricultural areas as presented in Fig. 5, (c) Histogram of soil erosion values within high-high and low-low 426 
clusters of SCPs. U.S. state abbreviations: Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Michigan 427 
(MI), Minnesota (MN), Missouri (MO), Nebraska (NE), North Dakota (ND), Ohio (OH), South Dakota (SD), 428 
Wisconsin (WI). 429 

 430 
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4. Discussion 431 

4.1. Mapping of structural conservation practices 432 

This study performed the first automated mapping of SCP areas in Midwest U.S. croplands using 433 

NAIP aerial imagery (2018-2019). So far, there is no study that provides a spatially explicit mapping of 434 

these practices for the entire region, and the results give insights about conservation efforts from 435 

landowners. The results shown in Fig. 3 and S3 illustrate the suitability of adapted U-Net algorithm, and 436 

the mapping achieved the overall accuracy of 78.2% across 20 counties (Table 1). In general, the results 437 

reveal a large difference in SCP occurrence across Midwest states (Fig. 4), and spatial distribution shows 438 

some patterns in the SCP extent (Fig. 5). For instance, our findings illustrate that southwest Iowa, 439 

northeast Kansas and east Nebraska present the highest percentage of SCPs per cropland areas, while 440 

central Iowa (Des Moines Lobe) presents an intense agricultural area with low percentage of SCP areas 441 

(< 1% of SCP in cropland). Further, we observed that Illinois presents near-similar magnitude of SCP 442 

areas. In the visual inspection, we observed that some regions have a high number of terraces in the 443 

croplands such as Kansas. In contrast, the grassed waterways were vastly classified in the Iowa and 444 

Illinois. Historically, terraces and grasslands are well-recognized for reducing runoff and sediment delivery 445 

from agricultural areas (Fiener and Auerswald, 2003; Tarolli et al., 2014), and this final product allowed 446 

the quantification of these two practices across these states. 447 

Regarding the spatial pattern (Fig. 5), the results show slight differences between soil and 448 

topographic-related variables between high-high and low-low cluster of SCP areas, such as slope and 449 

saturated hydraulic conductivity (Fig. 6). These results suggest that regional landscape characteristics 450 

and risk perceptions can potentially influence on the farmer actions. Several studies have performed 451 

meta-analysis to understand the motivations and barriers for farmer’s adoption of BMPs (Prokopy et al., 452 

2008; Jackson-Smith et al., 2010; Baumgart-Getz et al., 2012). The local network, conservation adoption 453 

by neighbors, and geophysical characteristics of the land (soil properties, slope) are listed as potential 454 

factors (see review in Liu et al. (2018)). Likewise, Baumgart-Getz et al. (2012) showed that access to 455 

information, financial capacity, and being connected to agency or watershed groups have impact on 456 

farmer motivation. In this topic, the evaluation of existing practices and social surveys might support the 457 

understanding of farmer needs and attitudes in support to conservation practices. 458 
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 459 
4.2. Implications for conservation programs 460 

As part of U.S. Farm Bill support, conservation programs have broadly encouraged farmers to 461 

adopt BMPs (Reimer, 2015) through directives as Environmental Quality Incentives Program, and 462 

Conservation Stewardship Program. These financial and technical assistance programs have become an 463 

essential mechanism for promoting conservation among farmers and rural landowners (Reimer and 464 

Prokopy, 2014). According to Resources Conservation Act report (RCA, 2020), Iowa NRCS programs 465 

have supported the adoption of 32,674 terraces and 38,877 grassed waterways between 2005 and 2019. 466 

Until now, this information is primarily available on historical records (tabular) or local\regional projects 467 

such as Iowa BMP project. Although formal conservation program records are useful for general insights 468 

(Fig. 4), they are typically limited in the monitoring of successful degree of SCP implementation. Jackson-469 

Smith et al. (2010) mentioned the need of efficient tracking system for monitoring the funded contracts 470 

after implementation of SCPs, which may help a better understanding of long-term consequences of 471 

these cost-share programs.  In this context, the quantitative assessment of SCP areas can have positive 472 

implications for these programs. For example, conservation program managers can use this geospatial 473 

inventory to follow-up the farmer’s actions and the consolidation of sponsored projects. In addition, these 474 

results are useful to advertise the positive environmental outcomes achieved by these programs. Another 475 

benefit is the evaluation of SCP distribution to support the decision of future projects. By understanding 476 

the location of current practices and conservation needs, new contracts and priority areas can be 477 

determined. In these efforts, the application of ACPF tool becomes essential to identify the preferential 478 

locations for certain practices (Tomer et al., 2013). However, Rundhaug (2018) showed at least 78% of 479 

potential grassed waterways from ACPF results were already implemented in three Iowa watersheds. 480 

This is a positive validation for ACPF method, but it also showed the importance of integration of existing 481 

practices to improve the watershed conservation plan prior to implementation of project. With long-term 482 

environmental goals, the combination of all these factors (conservation plan, financial incentives, 483 

information) can influence on farmers’ actions (Carlisle, 2016). 484 

Regarding the impacts on northern Gulf of Mexico zone, U.S. NRCS has supported different 485 

initiatives to reduce the nitrogen and phosphorus loads into surface waters of Mississippi River 486 

watershed, such as Mississippi River Basin Healthy Watersheds Initiative. The regional and local efforts 487 
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have improved the water quality in some sub-watersheds of Mississippi River watershed (McLellan et al., 488 

2015; Garcia et al., 2016; Leh et al., 2018), but others have increased the nutrient yields and the previous 489 

goal of Gulf of Mexico hypoxic zone  (5-yr average areal extent < 5,000 km2) was extended to the year 490 

2035 (Rabalais and Turner, 2019). While some studies and technical reports have shown the benefits of 491 

SCPs based on field experiments and simulations (Yuan et al., 2002; Fiener and Auerwald, 2005; 492 

Dermisis et al., 2010; Iowa NRS, 2019), the conservation impact is often difficult to quantify in large 493 

watersheds. Tomer and Locker (2011) stated that Conservation Effects Assessment Project (CEAP) 494 

faced the problem of validating the impact of conservation in the water quality because large agricultural 495 

watersheds include a mix of practices and it is difficult to isolate the effect of individual actions. In 496 

addition, the cost effectiveness of a given practice is dependent on several factors, such as terrain 497 

condition, soil type, cropping systems, field location (adjacent to streams), and combination of other 498 

practices (Czapar et al., 2005; Zhou et al., 2009). These aspects show that only SCP mapping does not 499 

explain the trade-off between existing practices and environmental outcomes, and further research is 500 

needed on cost-effective targeting of conservation investments to understand the real impact of such 501 

practices in different crop fields (Maresch et al., 2008; Rabotyagov et al., 2014). 502 

 503 

4.3. Implications for soil erosion and runoff modeling  504 

The structural conservation practices are directly related to efforts on soil erosion control and 505 

reduction of nutrient loss from agricultural lands (Xiong et al., 2018), and this mapping allows further 506 

discussion of soil-related issues. In general, our results show that most counties with high erosion-prone 507 

areas have large extent of SCP areas (Fig. 7), suggesting the conservation efforts have paid off with 508 

implementation by farmers. Previous studies that have shown high soil erosion rates in the Midwest U.S. 509 

region (Doetterl et al., 2012; Borrelli et al., 2017; Tan et al., 2020) but they have poorly considered 510 

conservation practice P factor into soil erosion estimates (Xiong et al., 2018). As discussed by Panagos 511 

et al. (2015) and Sartori et al. (2019), P-factor is one of the most uncertain and difficult pieces of 512 

information to access. Naipal et al. (2015) recognized the importance of P-factor in local variation of soil 513 

erosion but they did not consider the P-factor due to data limitation on a global scale. More recently, 514 

Xiong et al. (2019) stated that P-factor datasets are relevant to improve soil erosion modeling and 515 
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advanced image processing techniques should be considered to fill the knowledge gap for large-area 516 

projects. While additional processing is required to convert this mapping product into P-factor values 517 

(Wang et al., 2016), the proposed mapping of SCPs brings a new opportunity for further improvements of 518 

soil erosion maps and risk scenarios promoted by agricultural activities in the Midwest region.  The Daily 519 

Erosion Project (Gelder et al., 2017), a WEPP (Flanagan and Nearing, 1995) based erosion model, 520 

includes terraces to the extent that they subdivide a hillslope into distinct overland flow elements, 521 

however it neglects contour buffer strips as they are too small to be captured in the USDA CDL, and thus 522 

the ACPF database. In a similar context, accurate modeling of surface management practices as well as 523 

surface runoff volumes and peak runoff rates influences erosion and entrainment of pollutants, which 524 

enables modeling of the load reduction goals of a pollutant to meet water quality standards. Thus, field-525 

level analysis of SCPs can potentially improve the runoff estimates as they consider the practices 526 

affecting this process (Lee et al., 2010). This study has no intention to explore these modeling aspects, 527 

but this discussion illustrates potential benefits and applications of the SCP product. 528 

 529 
4.4. Advantages and limitations of this framework 530 

As discussed in other studies (Garcia-Garcia et al., 2018; Guo et al., 2018), the successful 531 

application of semantic segmentation methods requires significant computational resources. The 532 

implemented U-Net model has a deeper architecture and large input size (256 x 256 pixels), and the 533 

training process took 13 days with large GPU memory (32 GB). Users/developers should be aware of 534 

these requirements when they decide to implement semantic segmentation method. In addition, the ability 535 

to quantify SCP areas using a regional-scale algorithm is also a challenge, and a more general model is 536 

required. The high number of SCP areas across Iowa introduces the variability of SCP conditions 537 

(orientation, size, and shapes) in the training dataset, and the results show that 500,000 samples give 538 

such generalization for this application. Conceptually, the mapping presented in this study assumes that 539 

spatial-spectral patterns of SCP areas are visually identifiable in the optical images. Once the model 540 

recognizes these patterns, we can classify the new areas using adequate spatial resolution. Following 541 

that, medium spatial resolution data such as Sentinel-2 MSI and Landsat-8 OLI are not suitable for this 542 

application but commercial satellites can be considered in other countries, such as PlanetScope from 543 

Planet Labs and WorldView-4 from DigitalGlobe. In the same context, large-area application of high 544 
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spatial resolution data often implies on high spatial detail and heterogenous landscape and our 545 

assumption of visual detection of SCP areas might not hold in some areas due to small difference of 546 

spatial-spectral features between cropland and SCP areas. Also, we observed that terraces and grassed 547 

waterways can be confused with other features. For instance, false-positive areas were observed in the 548 

irrigated systems, wetter areas, and cropland with non-homogeneous surface (Fig. S4). In contrast, false 549 

negative results showed that SCP areas were potentially underestimated in this product, which illustrated 550 

the importance of this preliminary assessment for further improvements of the methodology. Recognizing 551 

these limitations, our findings should be interpreted with caution at farm-level because we did not conduct 552 

a manual editing of this product, and the visual inspection is recommended when applied for specific 553 

farmland. 554 

In addition, this study presents a binary map of SCP areas for overview distribution in the entire 555 

region, but some researchers can be more interested in multi-class records. This semantic segmentation 556 

with three false-color bands does not allow accurate distinction of SCP types since the spectral/spatial 557 

features are quite similar in some cases, such as grassed terraces versus narrow waterways. Also, users 558 

should notice that other practices were eventually classified in this product, such as filter strips and 559 

riparian buffer zone. As mentioned, SCP classification requires high spatial resolution data for target 560 

identification, and the data availability imposes limitations for further improvements in this large-area 561 

application. For example, a potential improvement (not proven) in this classification is the addition of 562 

topographic variables such as hillshade. However, high-resolution elevation models are only available for 563 

some states, and they have different quality protocols, vertical accuracy and time of acquisition. These 564 

differences impede achieving reliable and comparable results among states, and our classification 565 

framework does not include these LiDAR-derived data to avoid potential bias in the overall analysis. 566 

Beyond that, improvements to the current study could be explored with the extension of this methodology 567 

by including new labeled samples from other states, evaluation of other deep learning methods, post-568 

processing with manual editing, and classification strategies for statewide projects with high-resolution 569 

LiDAR data. While this discussion highlights aspects to be improved, these preliminary results have 570 

shown a promising framework. 571 

 572 
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 573 
5. Conclusion 574 

This study presented the first mapping of structural conservation practice over Midwest United 575 

States croplands. These preliminary results indicated the potential of this framework for regional 576 

monitoring of SCP areas using the adapted U-Net model and NAIP imagery (2018-2019). In general, SCP 577 

mapping achieved 78.2% of overall accuracy, but false-negative results showed underestimation of SCP 578 

areas (recall: 53.3%). The results showed large variability in SCP occurrence among Midwest states, with 579 

high occurrence in Iowa, Kansas, Illinois and Nebraska. In contrast, Michigan, North Dakota, and 580 

Minnesota presented the lowest percentage of SCP in their croplands. Overall, we observed that clusters 581 

of SCP areas are associated with certain soil and terrain conditions: high-high clusters of SCPs were 582 

observed in the slope higher than 1.5 %, bulk density lower than 1.4 g/cm3, and Ksat lower than 7 µm/s. 583 

Our findings also showed the agreement in the spatial pattern of SCP areas and high erosion-prone 584 

areas, which documents farmer efforts towards soil conservation. Although preliminary analysis shows 585 

the applicability of this framework, the farm-level analysis requires some cautions since there are known 586 

source of errors such as discontinuity or mislabeling of SCP areas. We encourage further experiments 587 

with additional input sources such as terrain-derived information for local-scale mapping. Finally, a 588 

spatially explicit inventory of SCP areas is useful for a variety of scientific and policy applications such as 589 

(i) the understanding of farmer’s contribution for soil and water conservation, (ii) the improvement of soil 590 

erosion risk modeling by considering structural conservation practices, and (iii) the evaluation of priority 591 

areas by national programs. Considering the importance of soil and water conservation in agricultural 592 

areas, this framework using semantic segmentation model becomes a promising approach for further 593 

assessment of these practices in the Midwest U.S. croplands. 594 
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 848 

 849 

Table S1. Characteristics of selected U.S. states and NAIP data used in the study. 850 

States State area Cultivated area* Annual rainfall Elevation Slope NAIP imagery 

                   km2 mm m % Year Size (GB) 

Illinois (IL) 145,968 85,984 1071 191 1.10 2019 175.5 

Indiana (IN) 93,789 45,498 1171 229 1.50 2018 108.0 

Iowa (IA) 145,667 92,176 945 324 1.74 2019 134.4 

Kansas (KS) 213,184 25,293 746 585 1.30 2019 188.6 

Michigan (MI) 153,620 19,077 925 276 1.39 2018 172.0 

Minnesota (MN) 218,781 62,952 740 371 1.20 2019 240.1 

Missouri (MO) 180,431 32,733 1125 262 2.60 2018 190.1 
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Nebraska (NE) 200,365 58,572 623 795 1.75 2018 181.0 

North Dakota (ND) 183,135 27,697 500 556 1.31 2019 175.0 

Ohio (OH) 106,978 35,247 1096 283 2.60 2019 115.6 

South Dakota (SD) 199,718 42,139 534 665 1.84 2018 196.2 

Wisconsin (WI) 145,562 22,447 971 332 2.13 2018 107.2 

* Corn and soybean areas were observed during more than five years between 2010-2019 in the NASS CDL program. 851 
 852 

 853 

Fig. S1. Development of structural conservation practices (SCP) training dataset. The samples contain 854 
SCP (90%) and non-SCP (10%) patches obtained from Iowa BMP project. 855 

 856 

Fig. S2. Location of selected counties for validation procedure. Top-right: Distribution of 50 blocks across 857 
Taylor County, Iowa. Bottom-right: Examples of SCP/non-SCP samples for a specific block (green).  858 

 859 
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 860 

Fig. S3. Example of grassed waterways and terraces classification. First row: Grassed waterways 861 
(42.45°N, 91.56°W). Second row: Terraces (39.99°N, 96.41°W). The NAIP natural color images and local 862 

hillshade maps were illustrated in the right boxes. 863 
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Fig. S4. Examples of (a) omission and (b) commission problems in the classification results.  867 
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