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Abstract

An interesting prediction problem involving degradation of materials exposed to outdoor
environments (weathering) is the estimation of the distribution of future cumulative degrada-
tion using small- to moderate-size degradation data sets. This distribution, which is assumed
to arise as a result of the uncertainty/variability in the weather, can be expressed mathemat-
ically as the distribution of the sum of a periodic dependent time series, and is approximately
normal by the Central Limit Theorem. The estimation of this distribution is thus equiva-
lent to estimating the mean and the variance of the distribution. In this paper, we propose
a block-bootstrap-based approach for the estimation and a novel technique to estimate the
variance of the distribution. An example involving the degradation of a solar reflector mate-
rial is provided. We also present the results of a simulation study to show the efficacy of the
proposed estimators. A procedure for constructing an approximate confidence interval for the
probability of failure is also given.
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1 Introduction

Reliability of products or materials exposed continuously to the outdoor environment is of
great interest to, for example, the manufacturers of paints and coatings. One major problem
in this area is to predict the amount of cumulative degradation of a particular paint or coating
formulation that will occur in r years under a variable environment, with the assumption of a
deterministic degradation behavior if the actual environmental conditions were known or fixed
(as, for example, in a laboratory). An answer to the prediction problem is provided by the
distribution of cumulative degradation in r years, where the distribution arises as a result of
the uncertainty/variability in the environment (we assume the variability in the environment
dominates the material or unit-to-unit variability, as is true in some applications). Such a
distribution can be used, for example, to estimate the probability of failure of the material
in r years, where failure is defined as the event in which the cumulative degradation exceeds
some prespecified level.

One approach to estimate the future degradation distribution of cumulative degradation
is by means of parametric modeling of the degradation data, which can be either observed or
computed using a physical/chemical model of degradation and weather data. The degradation
data are in the form of a time series of daily accumulated amount of degradation. One such
approach is discussed in Chan and Meeker (2001). However, a nonparametric approach to
estimate the distribution may be more desirable due to its flexibility. Because it does not
require finding adequate parametric time series models to fit the observations, it is often able
to handle more complicated types of data.

This paper presents a block-bootstrap-based method to estimate the distribution of cumu-
lative degradation in r years, using a time series consisting of daily degradation observations.
Such a time series exhibits not only correlation from day to day, but also periodicity as a result
of seasonality in the daily weather. Therefore, the method must be able to handle periodic
dependent data. Despite the volume of literature on the use of block bootstrap for time series
data, we know of no work that deals with periodic dependent data.

As discussed in Section 2.1 below, the distribution of cumulative degradation is approxi-
mately normal/Gaussian. Because of this, the block bootstrap method essentially estimates
the mean and the variance of the distribution. We investigate the statistical properties of the
bootstrap estimators of the mean and the variance in Section 4. Based on these results and
the periodic structure of the time series, we develop a new and improved estimator of the vari-
ance by making use of multiple bootstrap variance estimators. In Section 5, we describe the
algorithm for finding the estimator and provide the details behind its formulation. In Section
6, we present the results of a simulation study to show the efficacy of the proposed estimator.
We also describe, in Section 7, a construction scheme for an approximate confidence interval
for the probability of failure, along with the results of a simulation study to determine the
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coverage probabilities. An advantage of our approach is that the results and the methodology
developed here are applicable to nonstationary periodic time series data without any specific
parametric model assumptions. Furthermore, because of the linearity of the sums, the esti-
mators and confidence intervals proposed here can be computed without any data resampling,
and hence, are not computationally demanding.

We conclude this section with a brief literature review. There is a fairly large amount of
work on block bootstrap methods applicable to correlated data. Block bootstrap methods for
time series data have been introduced by Hall (1985), Carlstein (1986), Künsch (1989), Liu and
Singh (1992), Politis and Romano (1992, 1994), among others. Review and general overview of
the block bootstrap can be found in Leger et al. (1992), in Chapter 8 of Davison and Hinckley
(1999), and in Bühlmann (2002). Park et al. (1999) and (2001) discuss threshold bootstrap
and threshold jackknife, which provide other approaches to resampling serially correlated data.
For a book-length treatment of the different bootstrap methods for dependent data, see Lahiri
(2003). Recent work (including physical and chemical studies) related to the degradation of
organic coatings under weathering conditions can be found in Bauer and Martin (1999, 2002).

2 Background

2.1 Distribution of Cumulative Degradation in r Years

Let Wi denote the degradation accumulated in day i. Due to the seasonal changes in the
intensity of the weathering agents such as temperature and ultraviolet radiation, the time
series of daily degradation Wi exhibits a periodicity of ρ = 365 days, ignoring leap years for
simplicity. The problem of estimating the cumulative degradation in r years is equivalent to
estimating the distribution of

∑rρ
i=1 Wi, i.e., estimating the distribution of the sum of periodic

dependent time series in r periods. By the Central Limit Theorem for dependent processes,∑rρ
i=1 Wi has approximately a normal distribution when r is large. Therefore, estimating the

distribution of the sum essentially reduces to estimating two parameters, namely the mean
E(

∑rρ
i=1 Wi) and the variance Var(

∑rρ
i=1 Wi).

If a large amount of data were available (i.e., many seasonal periods), then estimating the
two parameters would be straightforward. Suppose, for simplicity, we have data for m periods
in the form of a time series, where m is some large positive integer. Let {W1,W2, . . . ,Wmρ}
denote the observed time series. (In this paper, we make a distinction between observed daily
degradation, represented by Wi, and future daily degradation, denoted by Wi, even though the
two random variables have the same distribution.) In the context of degradation, the time series
represents daily observations of degradation for m years. Let Tk =

∑kρ
i=(k−1)ρ+1Wi be the sum

for the kth period, i.e., total amount of degradation accumulated in the kth year. If m is large,
then one straightforward way to estimate the mean E(

∑rρ
i=1 Wi) and variance Var(

∑rρ
i=1 Wi)
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is by simply using the sample mean and sample variance of T1, T2, . . . , Tm, (i.e.,
∑m

k=1 Tk/m

and
∑m

k=1(Tk−T )2/(m−1)) multiplied by r, assuming independence of T1, T2, . . . , Tm up to a
negligible error (which can be assumed here). For example, to estimate the mean and variance
of the distribution of cumulative degradation in one year, use the sample mean and sample
variance of annual degradation data.

However, long series of observations or realizations in reliability studies are rare, and this
is especially true of degradation observations. For example, at this point there is less than ten
years’ worth of daily degradation data that have been observed or computed indirectly using
a model and weather data for paints and coatings exposed to the outdoor environment. For
small- to moderate-size data sets, i.e., for m not large, the sample variance does not provide
a good estimate of the variance because of its large sampling variability. As such, a different
method would have to be used to estimate this quantity with greater precision. In Section 5,
we propose a method based on block bootstrap that provides a more precise estimate of the
variance.

2.2 Properties of Periodic Dependent Time Series

Before describing the block bootstrap approach, we first make a formal definition of Wi and
give a real-world example.

Let Z and N denote the set of all integers and the set of positive integers, respectively. Let
{Wi : i ∈ Z} be a time series of random variables with the following properties:

1. Wi is periodic with period ρ ∈ N, so that

Wi
d= Wi+ρ for all i,

where d= denotes equality in distribution.

2. Wi is δ-dependent, i.e., Wi and Wi+j are independent if |j| > δ > 0.

3. Nonnegative covariance between any two Wi’s, i.e., Cov(Wi,Wi+j) ≥ 0 for |j| ≤ δ.

4. δ is much smaller than period ρ, i.e., δ ¿ ρ.

Our interest is in estimating the distribution of
∑rρ

i=1 Wi, where r ∈ N.

2.3 Example

Predicted Daily Degradation of Solar Reflector Material at Boulder, CO from
November 1995 to August 2000

An example of a time series with the above-mentioned properties is the predicted daily
degradation (PDD) of solar reflector material. Solar reflector materials degrade over time from
continuous exposure to weather elements such as ultraviolet (UV) radiation. The degradation
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is characterized by loss in performance, where performance is measured in terms of percentage
of light reflected from the surface of the material. The predicted daily degradation (degradation
accumulated within a 24-hour period) of such materials exposed to the outdoor environment
is computed by integrating the degradation rate model of the material with respect to time
using actual weather data; the instantaneous degradation rate depends on weather variables
temperature, UV radiation, and humidity. See Chan and Meeker (2001) for more details. The
development and parameter estimation of the degradation rate model and the data for the
solar reflector material are given in Jorgensen et al. (1996).

Figure 1 shows the PDD of a solar reflector material called ECP-300A corresponding to the
weather at Boulder, Colorado from November 1995 to August 2000. The period in this case
is ρ = 365, ignoring leap years for simplicity. Because the daily degradation is induced by the
outdoor weather and it is reasonable to assume noncorrelation in the weather patterns between
any two different days that are far apart (say, 10 days), the δ-dependence condition is satisfied.
The assumption is also supported by autocorrelation analysis of the daily degradation data.
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Figure 1: Predicted daily degradation in Boulder, CO. from November 1995 to August 2000 for a

solar reflector material.

Using Wi to denote the daily degradation for day i, a problem of interest to reliability
statisticians and engineers is the estimation of the distribution of cumulative degradation of
the solar reflector material in r years,

∑365r
i=1 Wi.
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3 Block Bootstrap with Periodic Data

The basic idea is to partition the period into small time intervals, and divide the periodic
data into blocks that correspond temporally to each of the intervals. Independent sampling
with replacement from the blocks from each interval is then used to form a new time series
of bootstrap data. For example, in the context of degradation of materials subjected to
weathering, the year consisting of 365 days is partitioned into intervals of, say, 10 days, so
that the days from January 1 through January 10 will form the first interval, January 11
through January 20 the second interval and so on (the last interval will consist of only 5 days).
The time series data of daily degradation observations are broken up into blocks that fit the
corresponding intervals. Thus, a data set of length 5 years starting from January 1 of the first
year through December 31 of the fifth year will result in 5 blocks of observations for each of the
intervals. A block-bootstrapped time series of length, say three years, is formed by sampling
three times with replacement from the 5 blocks for each of the intervals in chronological
order so that the sampled blocks, when placed end-to-end, will form three years of continuous
bootstrapped observations.

The following discussion describes the idea within a mathematical framework. For ease of
presentation, we choose a different notation for the observed realization of Wi, which we denote
as Wi, to distinguish it from Wi whose cumulative-sum distribution we wish to estimate. Let
W1,W2, . . . ,Wmρ be the observed time series of length m × ρ, i.e., consisting of m periods,
where

Wi,Wρ+i,W2ρ+i, . . .
d= Wi

and are independent, because of the δ-dependence condition. If the length of the observed
time series is not a multiple of period ρ, then the blocking scheme outlined below will still
apply with a minor modification. This will be described at the end of the outlined scheme.

The block bootstrap scheme consists of the following steps:

1. Partition the period into J intervals, each of length l. If ρ is not divisible by l, let every
interval, except for the last one, be of size l. For simplicity, however, we will assume that
J × l = ρ.
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2. Let Y ∗
1 , Y ∗

2 , . . . , Y ∗
J be random variables defined as

Y ∗
1 ∼ Unif





l∑

i=1

Wi,

ρ+l∑

i=ρ+1

Wi, . . . ,

(m−1)ρ+l∑

i=(m−1)ρ+1

Wi



 ,

Y ∗
2 ∼ Unif





2l∑

i=l+1

Wi,

ρ+2l∑

i=ρ+l+1

Wi, . . . ,

(m−1)ρ+2l∑

i=(m−1)ρ+l+1

Wi



 ,

...
...

Y ∗
J ∼ Unif





ρ∑

i=(J−1)l+1

Wi,

2ρ∑

i=ρ+(J−1)l+1

Wi, . . . ,

mρ∑

i=(m−1)ρ+(J−1)l+1

Wi



 ,

where Y ∼ Unif{ξ1, ξ2, . . . , ξn} implies sampling such that Pr(Y = ξi) = 1/n, i.e., the
distribution of Y puts probability masses uniformly among its finite set of values. In the
context of block bootstrap, the outcomes of random variables Y ∗

1 , Y ∗
2 , . . . , Y ∗

J could be
obtained as follows: resample with replacement from the set of blocks of length l in the
observed time series that matches the partitioned interval within the period, and sum the
elements in the sampled block. For example, the blocks {W1,W2, . . . ,Wl}, {Wρ+1,Wρ+2,

. . . ,Wρ+l}, . . . , {W(m−1)ρ+1,W(m−1)ρ+2, . . . ,W(m−1)ρ+l} from the observed time series
correspond to the first interval of length l within the period. One block from this set of
m blocks is selected at random and its elements summed up, yielding an outcome of Y ∗

1 .
This is done in the same way for the sets of blocks corresponding to the other intervals.

3. Use the distribution of
∑rJ

j=1 Y ∗
j to estimate the distribution of

∑rρ
i=1 Wi, where the Y ∗

j ’s
are independent and

Y ∗
J+j , Y

∗
2J+j , Y

∗
3J+j , . . .

d= Y ∗
j , 1 ≤ j ≤ J. (1)

If the length of the observed time series is not a multiple of ρ, most, if not, all of the Wi’s
within the incomplete period can still be incorporated into the appropriate blocking variables
Y ∗

j as defined in step 2 above, with the consequence that some of the blocking variables
Y ∗

j (corresponding to the lower end of the period) may have one fewer element from which
to resample in comparison with the other Y ∗

j ’s. This does not affect in any way the block
bootstrap procedure.

For simplicity of presentation and mathematical convenience, we will focus only on time se-
ries observations with length of exact multiples of the period ρ, i.e., on {Wi : i = 1, 2, . . . ,mρ}.
For practical estimation, m will have to be at least 4. For m smaller than 4, parametric models
requiring strong assumptions on the joint distribution of Wi will have to be used.
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4 Block Bootstrap Estimators of Mean and Vari-

ance

As mentioned in Section 2.1, the distribution of the sum of a periodic dependent time series
is approximately normal. Using the block bootstrap approach with a specified block length l

to estimate the distribution, the distribution of the bootstrapped sum is also approximately
normal, by the Central Limit Theorem. That is, when r is large,

rJ∑

j=1

Y ∗
j

·∼ N
(
r E(

J∑

j=1

Y ∗
j ), r Var(

J∑

j=1

Y ∗
j )

)
, (2)

because of the independence of Y ∗
j for all j. Here

∑J
j=1 Y ∗

j represents the bootstrapped sum
for one period, and note that Y ∗

j and J have implicit dependence on block length l.
Because of the normality of both the actual and the bootstrapped distributions, the

block bootstrap approach essentially estimates the mean, E(
∑rρ

i=1 Wi), and the variance,
Var(

∑rρ
i=1 Wi), using the estimators rE(

∑J
j=1 Y ∗

j ) and rVar(
∑J

j=1 Y ∗
j ). Without loss of gener-

ality, we can ignore the factor r in the estimators, and will do so for the rest of discussion in
this paper.

Insofar as estimating the distribution of
∑rρ

i=1 Wi using the block bootstrap approach, the
questions of interest regarding the two estimators

• E(
∑J

j=1 Y ∗
j )

• Var(
∑J

j=1 Y ∗
j )

are how good these estimators are, and how they vary with the choice of l. The answers will
be given in the next two sections.

Note that although these two bootstrap estimators can be obtained from generating boot-
strap samples, an easier way is to compute them directly from the data. This is possible
because the estimators are the mean and variance of a sum of independent random variables
Y ∗

j with simple discrete distributions. The expressions for these two estimators are given in
the Appendix.

4.1 Bootstrap Estimator of the Mean

For a data set consisting of exactly m periods of observations, the block bootstrap estimator
of the mean of the sum for one period, E(

∑J
j=1 Y ∗

j ), remains the same for any choice of block
length l ≥ 1. This is because the expectation is a linear operator and therefore is not affected
by the way a sum is partitioned.

The properties of the estimator E(
∑J

j=1 Y ∗
j ) are as follows:

1. It is an unbiased estimator of E(
∑ρ

i=1 Wi).
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2. It is equal to (1/m)
∑m

k=1 Tk, the sample mean of the periodic sums, where, as defined
in Section 2.1, Tk =

∑kρ
i=(k−1)ρ+1Wi is the sum of the observations within period k.

Thus, in our application T1, T2, . . . , Tm represent the annual cumulative degradation for
m years, and the estimator is identical to the average of these m values.

3. Its variance is approximately equal to (1/m)Var(
∑ρ

i=1 Wi), the true variance divided by
the number of periods of the time series data.

These properties are proved in the Appendix.

4.2 Bootstrap Estimator of the Variance

Unlike the estimator of the mean E(
∑J

j=1 Y ∗
j ), the variance estimator Var(

∑J
j=1 Y ∗

j ) is strongly
affected by the choice of block length l. This raises the question of how to choose l so that
the estimator gives a “good” estimate of Var(

∑ρ
i=1 Wi). It turns out that the estimator

Var(
∑J

j=1 Y ∗
j ) is biased regardless of the block length l. As in the case of a stationary time

series, as the block length l increases, the bias of the bootstrap variance estimator decreases
while its sampling variability increases. Thus, there exists an optimal value of the block length
that minimizes the mean square error asymptotically. The problem of choosing this optimal
block size empirically is, however, difficult. The existing methods, like the Hall, Horowitz and
Jing (1995) method, based on subsampling, do not work here because of the nonstationarity
of the time series and also because of the relatively small number of complete data periods
or cycles available. This prompted us to consider an alternative method of estimating the
variance for periodic time series data that is less sensitive to the choice of the block length. In
the next section, we present an alternative method of estimating the variance Var(

∑ρ
i=1 Wi).

The resulting estimator is approximately unbiased and approximately consistent.

5 Block-Length Regression Estimator of the Vari-

ance

5.1 Motivation

We first show why the estimator Var(
∑J

j=1 Y ∗
j ) is biased. For this purpose and also for reference

later on, we introduce the variables

Yj =
min(jl,ρ)∑

i=(j−1)l+1

Wi, j = 1, 2, . . . , J,

where J = dρ/le is the smallest integer not less than ρ/l. Thus, Yj is the sum of the time series
over interval j. Note that if l ≥ δ, where δ refers to the δ-dependence as defined in Section
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2.2, Yj and Yk are independent whenever |j − k| > 1. The index for Yj can be extended to all
positive integers by imposing the periodic property

YkJ+j
d= Yj 1 ≤ j ≤ J, k ∈ N.

Note that Y ∗
j is obtained by an equiprobable sampling of the realizations of the random variable

Yj .
In the Appendix, we show that E[Var(

∑J
j=1 Y ∗

j )] = (1− 1/m)
∑J

j=1 Var(Yj). Now because∑J
j=1 Var(Yj) is equal to Var(

∑ρ
i=1 Wi) minus some positive correlation terms (except when

J = 1, in which case the two quantities are equal), Var(
∑J

j=1 Y ∗
j ) is also a biased estimator of

Var(
∑ρ

i=1 Wi).
To present our proposed method to obtain an estimate of the variance Var(

∑ρ
i=1 Wi) that

is approximately unbiased and approximately consistent, we first give a result.

Result 1 Under the conditions for Wi given in Section 2.2,

Var(
ρ∑

i=1

Wi)−
J∑

j=1

Var(Yj) = 2
J−1∑

j=1

jl∑

i=jl−δ+1

δ∑

k=jl−i+1

Cov(Wi,Wi+k) (3)

for J > 1 and δ ≤ l ≤ ρ/2. Assuming that the average of the covariance terms in the
sum on the right-hand side is approximately the same for all l over some range [l1, l2] where
δ ≤ l1 < l2 ≤ ρ/2, then

Var(
ρ∑

i=1

Wi)−
J∑

j=1

Var(Yj)
·∝ (ρ/l)− 1

over that range.

Proof Given in the Appendix. ¤
The right side of Equation 3 in Result 1 expresses the sum of covariance terms between

pairs of variables across independent non-overlapping blocks, constrained by the δ-dependence
condition. The assumption that the average of the covariance terms is approximately the
same over some range of block length l greater than δ is reasonable for actual data on intuitive
grounds.

Based on Result 1 and the fact that E[Var(
∑J

j=1 Y ∗
j )] = (1 − 1/m)

∑J
j=1 Var(Yj), we

conclude that for l in the range for which the assumption in Result 1 is true,

E


Var(

J∑

j=1

Y ∗
j )


 ≈ (1− 1

m
)

[
Var(

ρ∑

i=1

Wi)− c(
ρ

l
− 1)

]

≈ (1− 1
m

)Var(
ρ∑

i=1

Wi)− c(1− 1
m

)(
ρ

l
− 1), (4)
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where c is some constant. The estimator of the variance can therefore be rewritten as

Var(
J∑

j=1

Y ∗
j ) ≈ (1− 1

m
)Var(

ρ∑

i=1

Wi)− c(1− 1
m

)(
ρ

l
− 1) + εm(l), (5)

where εm(l) is an error term that depends on both the amount of data (reflected in m, the
number of periods of observation) and the block length l, and has mean 0.

Equation 5 shows that the block bootstrap estimator of the variance is approximately a lin-
ear function of ρ/l−1 plus a zero-mean error term, with an intercept at (1−1/m)Var(

∑ρ
i=1 Wi).

This suggests that one can estimate (1− 1/m)Var(
∑ρ

i=1 Wi) by fitting a simple linear regres-
sion of the form Var(

∑J
j=1 Y ∗

j ) = β̂0 + β̂1(ρ/l − 1), where ρ/l − 1 is the independent variable;
[m/(m − 1)]β̂0 would provide an approximately unbiased estimator of Var(

∑ρ
i=1 Wi). The

estimator is also approximately consistent because Var(
∑J

j=1 Y ∗
j )/

∑J
j=1 Var(Yj)

p→ 1 as the
length of data m →∞. We shall call the estimator the block-length regression (BLR) estimator
of the variance.

5.2 Algorithm for finding the BLR estimator

Our proposed method to obtain an approximately unbiased and approximately consistent
estimator of Var(

∑ρ
i=1 Wi) can be summarized as follows:

1. Obtain the block bootstrap estimator Var(
∑J

j=1 Y ∗
j ) for block lengths of, say, l = δ, δ +

1, . . . , 3δ, or for a range of block lengths for which the assumption in Result 1 is satisfied.

2. Fit a simple linear regression with [m/(m−1)]Var(
∑J

j=1 Y ∗
j ) as the response and (ρ/l−1)

as the independent variable, over the range of l.

3. The regression estimate of the intercept β̂0 provides an estimate of Var(
∑ρ

i=1 Wi), and
hence β̂0 is our proposed BLR variance estimator.

5.3 Example

As an illustration, we will use the data for daily degradation of solar reflector material at
Boulder, Colorado described in Example 2.3.

Table 1 provides the values of the bootstrap mean estimator E(
∑J

j=1 Y ∗
j ) and the bootstrap

variance estimator Var(
∑J

j=1 Y ∗
j ) as a function of block length l (up to l = 30) based on the

solar reflector daily degradation data described in Example 2.3. The amount of data is m ≈ 5
because the length of the time series is close to 5 years. The values of E(

∑J
j=1 Y ∗

j ) are
approximately constant across the block sizes; they would all be the same if the length of
data were exactly 5 years. The estimate of E(

∑ρ
i=1 Wi), the mean of the distribution of the

total cumulative degradation for one year, based on our block-bootstrap approach is, therefore,
about 9.056.
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The values of the bootstrap variance estimator Var(
∑J

j=1 Y ∗
j ) are calculated for block

lengths l = 1, 2, 3, . . . , 60 (so that J = 365, 183, 122, . . . , 6), and are plotted in Figure 2. The
first 30 values are given in Table 1. Figure 2 shows that Var(

∑J
j=1 Y ∗

j ) increases rapidly with
block size l and then levels off. This is due to the fact that the larger the block length l, the
fewer the (positive) covariance terms being excluded in the estimate of the one-year variance,
and hence the increase. The variability of Var(

∑J
j=1 Y ∗

j ) also increases with l, as seen by the
greater fluctuations in the block lengths l > 30.
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Figure 2: Plot of the one-year variance estimate Var(
∑J

j=1 Y ∗
j ) versus block size l for daily degrada-

tion of solar reflector material at Boulder CO. The dashed line corresponds to the fitted regression

model.

Following the algorithm outlined in Section 5.2, we fit a simple linear regression to the
data points (5

4Var(
∑J

j=1 Y ∗
j ), (365/l)− 1), and used the estimated value of the intercept as an

estimate of the variance of the sum of cumulative degradation for one year. The dependence
structure of daily degradation is assumed to have a lag of at most 10 days, i.e., the δ-dependence
is such that δ = 10. This is reasonable because presumably the weather on any one day will not
affect the outcome of the weather at the same location ten days later, and this independence
carries over to daily degradation because the weather is responsible for degradation. The range
of block lengths used in the regression is from l = 10 through 40. The estimate of the variance
of the sum of cumulative degradation for one year Var(

∑365
i=1 Wi) using the BLR estimator is

0.174. Other choices of range of block lengths yield estimates of the variance that differ by at
most a few percent; for example, the range l = 10, . . . , 60 gives 0.178, and even the full range
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Table 1: Block bootstrap estimates of the mean E(
∑J

j=1 Y ∗
j ) and the variance Var(

∑J
j=1 Y ∗

j ) as a

function of block size for daily degradation of solar reflector material at Boulder CO.
Block Size Mean Variance

1 9.0560 0.0548
2 9.0560 0.0783
3 9.0558 0.1023
4 9.0560 0.1047
5 9.0560 0.1086
6 9.0559 0.1107
7 9.0566 0.1264
8 9.0558 0.1331
9 9.0562 0.1402
10 9.0559 0.1446
11 9.0572 0.1329
12 9.0547 0.1300
13 9.0563 0.1271
14 9.0552 0.1520
15 9.0549 0.1367
16 9.0554 0.1159
17 9.0567 0.1582
18 9.0562 0.1258
19 9.0728 0.1402
20 9.0559 0.1212
21 9.0565 0.1435
22 9.0542 0.1368
23 9.0613 0.1455
24 9.0541 0.1206
25 9.0658 0.1389
26 9.0563 0.1223
27 9.0484 0.1263
28 9.0728 0.1494
29 9.0620 0.1483
30 9.0541 0.1343
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l = 1, . . . , 60 gives 0.177.
The dashed line in Figure 2 corresponds to the fitted values of the variance from the simple

linear regression. The fitted values for l = 1, 2, . . . , 9 are extrapolations from the regression
estimates.

6 Simulation Study

This section uses simulation to check the properties of our bootstrap-based estimators. In par-
ticular we compare the efficiency of our proposed BLR estimator of the variance of cumulative
degradation with the sample variance based on annual cumulative degradation. The model
used to generate simulated data is the time series model developed by Chan and Meeker (2001)
to fit the predicted daily degradation data for the solar reflector material.

The model corresponding to Boulder, Colorado yields an annual cumulative degradation
that has approximately a normal distribution with a mean of 9.054 and a variance of 0.2073.
We considered three cases of data length: m = 5, 10, 20 years. For each case, 2000 time
series were generated from the model. For each time series, we calculated the estimate of the
mean, the estimate of variance (using our proposed method) and the sample variance for the
cumulative degradation in one year, obtaining 2000 values of each of the three statistics for
each m. The range of block lengths used in computing the BLR variance estimate was between
10 and 40, inclusive. The mean and variance of each statistic were computed and are presented
in Table 2.

Table 2: Results of 2000 simulations from model based on Boulder data
Bootstrap Estimator of E(

∑365
i=1 Wi) BLR Estimator of Var(

∑365
i=1 Wi) Sample Variance

m Mean Variance Mean Variance Mean Variance

5 9.051 0.04409 0.2054 0.003847 0.2074 0.02234
10 9.055 0.02007 0.2073 0.001755 0.2096 0.01025
20 9.055 0.01049 0.2069 0.000818 0.2081 0.00460

True value = 9.054 True value = 0.2073 True value = 0.2073

The table shows the following:

• The means of the three estimators are close to the true values being estimated. In partic-
ular, the mean of our proposed BLR estimator of the variance is close to the true variance
(0.2073) in each case, validating the approximate unbiasedness of our proposed estima-
tor. Also the means of the BLR variance estimator are no larger than the true value,
i.e., biased low, a typical characteristic of bootstrap variance estimation for positively
correlated data.
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• The variances of the estimators decrease with m, the number of years’ worth of data, as
expected. Based on the simulations, the variance of the BLR variance estimator appears
to decrease with a factor of approximately 1/m.

• The variance of the estimator of the mean E(
∑J

j=1 Y ∗
j ) is approximately equal to the

true variance (0.2073) divided by the length of data m in years, as predicted by theory.

• Comparing the variance of the proposed BLR estimator of the variance with that of the
sample variance, we see that the BLR estimator is much more efficient than the sample
variance, with a relative efficiency (the variance ratio between two estimators) of close
to 6 in each case.

The results of the simulation provide strong support for the block bootstrap approach to
estimating the distribution of cumulative degradation. In particular, the efficiency of the BLR
variance estimator translates to a more precise estimate of the variance.

As a further illustration, we present the results of another simulation study based on the
model for daily degradation of solar reflector material in Fort Peck, Montana in Table 3. As
in the previous study, 2000 simulations were generated for each m = 5, 10, 20. The true mean
and variance of the cumulative degradation for one year are 6.018 and 0.1634. The relative
efficiency of our BLR estimator of the variance with respect to the sample variance is about 4
in each case.

Table 3: Results of 2000 simulations from model based on Ft. Peck data
Bootstrap Estimator of E(

∑365
i=1 Wi) BLR Estimator of Var(

∑365
i=1 Wi) Sample Variance

m Mean Variance Mean Variance Mean Variance

5 6.021 0.03382 0.1618 0.003184 0.1641 0.01376
10 6.017 0.01617 0.1620 0.001444 0.1649 0.00579
20 6.014 0.00803 0.1611 0.000684 0.1638 0.00273

True value = 6.018 True value = 0.1634 True value = 0.1634

7 Approximate Confidence Interval for Probability

of Failure

Failure is defined as the event in which the cumulative degradation reaches a specified failure
level. In other words, failure is said to occur when

∑rρ
i=1 Wi > Df , where Df is the failure

level. In applications such as reliability related to degradation of materials or products, the
probability of failure in r years of such materials would be a quantity of interest.

Because the distribution of the cumulative degradation of materials subject to outdoor
weathering in r years is approximately normal, the uncertainty in the exact values of the mean
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and the variance of the normal distribution (which stems from the uncertainty/variability in
the weather) is responsible for the uncertainty in the probability of failure. Therefore, if a
confidence interval for the mean and a good estimate of the variance can be obtained, we can
also construct a confidence interval for the probability of failure.

The estimator E(
∑J

j=1 Y ∗
j ) of the mean level of cumulative degradation in a year is es-

sentially the sum of a large number of (correlated) random variables (see Result 4), and so
by the Central Limit Theorem, it has approximately a normal distribution. The mean of this
distribution is E(

∑ρ
i=1 Wi), and the variance is approximately (1/m)Var(

∑ρ
i=1 Wi) (see Result

2). Because we can get a reasonable estimate of the variance using our proposed approach, we
can therefore construct an approximate confidence interval for E(

∑ρ
i=1 Wi).

The formula for an approximate 100(1−α)% confidence interval for E(
∑rρ

i=1 Wi), the mean
of the cumulative degradation in r years, is given by

rE(
J∑

j=1

Y ∗
j )± zα/2

√√√√r2

m
Var(

ρ∑

i=1

Wi),

where Var(
∑ρ

i=1 Wi) is unknown. The BLR variance estimator provides a good estimate of
this unknown variance.

The formula for the confidence interval for the probability of failure Pr(
∑rρ

i=1 Wi > Df ) is
given by [

1− Φ

(
Df − lb√

rVar(
∑ρ

i=1 Wi)

)
, 1− Φ

(
Df − ub√

rVar(
∑ρ

i=1 Wi)

)]
, (6)

where lb and ub are the lower and upper bounds of the 100(1 − α)% confidence interval for
E(

∑rρ
i=1 Wi). As in the previous confidence interval formula, the BLR estimate of the variance

can be used to replace the unknown variance Var(
∑ρ

i=1 Wi).
To assess the accuracy of the confidence interval for the probability of failure, we made use

of the 2000 simulated time series for each of the three different data lengths m = 5, 10, 20 years
from the model for Boulder, Colorado discussed in the last section. For each simulated time
series, we computed the confidence interval using Equation 6 for the probability of failure in
5 years based on the failure level at Df = 46. The coverage probability (the probability that
the confidence interval constructed from a specified procedure will capture the quantity being
estimated, which in this case is the probability of failure) of the confidence interval for the
true probability of failure in 5 years (which is 0.2367) was computed for each of the different
combinations of confidence level and data length. The results are given in Table 4.

It is apparent that the approximate confidence interval construction gives a slightly lower
(i.e., anticonservative) confidence level than nominal in every case. Also as the size of data
reflected in m increases from 5 years to 10 years, the coverage probabilities improve. There
appears to be no significant change from m = 10 years to m = 20.
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Table 4: Coverage Probabilities using 2000 Simulations

Confidence Level

m 95% 90% 80%

5 0.930 0.870 0.781
10 0.945 0.894 0.789
20 0.944 0.891 0.787

8 Concluding Remarks

In this paper we introduce a block-bootstrap approach to estimate the cumulative degradation
of materials subjected to outdoor weathering. We also propose a method to obtain an approx-
imately unbiased and approximately consistent estimator (which we call the BLR estimator)
of the variance of the cumulative degradation distribution, and we have shown that it is more
efficient than the sample variance for small to moderate-size data sets. Two advantages of
the method over traditional block bootstrap procedures are that generating bootstrap samples
from data is not required, and that the optimal block length l does not have to be determined.
Although the method proposed in the paper was motivated by the degradation of materials ex-
posed to outdoor weathering, other problems involving estimating the distribution of the sum
of periodic dependent time series satisfying the conditions listed in Section 2.2 are amenable
to the proposed methodology.

The block-bootstrap approach and the method to estimate the variance of the cumula-
tive degradation proposed in this paper suggest a number of interesting problems for further
research. Some of these are:

1. Determine the theoretically best bounds of block length l to obtain the most efficient BLR
estimator of the variance using our proposed procedure, assuming that the assumptions
in Result 1 are met. In the paper, we used the range of l between 10 and 40, and
found that, at least for the degradation of solar reflector material, the range of l is not
a major issue because changing the range does not alter the results by much. However,
simulations suggest that the classic trade-off between the variance and the bias of the
estimator comes into play when the range of l is varied. Minimization of mean square
error (MSE) of the estimator for different bounds of l may be called for.

2. An understanding of how the error term εm(l) in Equation 5 varies with data size m and
block length l will help determine the properties of this error term, such as its variance.

3. The block bootstrap variance estimator Var(
∑J

j=1 Y ∗
j ) increases with block length l, as

shown in Figure 2. Hence, by the generalized Gauss-Markov theorem, the generalized
least squares method yields a better estimate of the variance than the proposed BLR
variance estimator. Implementing the generalized least squares, however, requires knowl-
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edge of the covariance structure of the error term εm(l). The challenge here is to estimate
the covariance matrix of εm(l).

4. Our method assumes a trend-free periodic dependent time series. For other applications
where there is a trend or drift, our method would require some modifications.
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9 Appendix

Proof of Result 1
For simplicity of exposition, let Jl = ρ. We first note that

Var(
ρ∑

i=1

Wi) =
ρ∑

i=1

Var(Wi) + 2
ρ−1∑

i=1

ρ−i∑

k=1

Cov(Wi,Wi+k).

As for the sum of the other variance,

J∑

j=1

Var(Yj) =
J∑

j=1

Var




jl∑

(j−1)l+1

Wi




=
J∑

j=1




jl∑

i=(j−1)l+1

Var(Wi) + 2
∑

(j−1)l+1≤i<i′≤jl

Cov(Wi,Wi′)




=
ρ∑

i=1

Var(Wi) + 2
J∑

j=1

jl−1∑

i=(j−1)l+1

jl−i∑

k=1

Cov(Wi,Wi+k).

Thus, for J > 1

Var(
ρ∑

i=1

Wi)−
J∑

j=1

Var(Yj) = 2
ρ−1∑

i=1

ρ−i∑

k=1

Cov(Wi,Wi+k)− 2
J∑

j=1

jl−1∑

i=(j−1)l+1

jl−i∑

k=1

Cov(Wi,Wi+k)

= 2
J∑

j=1

jl−1∑

i=(j−1)l+1

ρ−i∑

k=1

Cov(Wi,Wi+k) + 2
J−1∑

j=1

ρ−i∑

k=1

Cov(Wjl,Wjl+k)

−2
J∑

j=1

jl−1∑

i=(j−1)l+1

jl−i∑

k=1

Cov(Wi,Wi+k)

= 2
J−1∑

j=1

jl∑

i=(j−1)l+1

ρ−i∑

k=jl−i+1

Cov(Wi,Wi+k).
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For the range of l where δ ≤ l ≤ ρ/2, the condition of δ-dependence implies that

Var(
ρ∑

i=1

Wi)−
J∑

j=1

Var(Yj) = 2
J−1∑

j=1

jl∑

i=jl−δ+1

δ∑

k=jl−i+1

Cov(Wi,Wi+k) (7)

= δ(δ + 1)(J − 1)Cov(Wi,Wi′)J

where Cov(Wi, Wi′)J is the average of the covariance terms in (7).
By the assumption that Cov(Wi,Wi′)J is approximately the same for all l in some range

[l1, l2] where δ ≤ l1 < l2 ≤ ρ/2, then within this range of l

Var(
ρ∑

i=1

Wi)−
J∑

j=1

Var(Yj) ≈ Cδ(δ + 1)(J − 1) = Cδ(δ + 1)(ρ/l − 1),

for some constant C, giving the desired result. ¤

Result 2 With data consisting of exactly m periods, the block bootstrap estimator of the mean
E(

∑J
j=1 Y ∗

j )

1. is an unbiased estimator of E(
∑ρ

i=1 Wi).

2. is equal to the sample mean for periodic sum (1/m)
∑m

k=1 Tk where, as defined in Section
2.1, Tk =

∑kρ
i=(k−1)ρ+1Wi is the sum of the observations within period k and the data

are of size m periods.

3. has variance that is approximately equal to (1/m)Var(
∑ρ

i=1 Wi), the true variance divided
by the length of data in periods.

Proof Without loss of generality, let Jl = ρ. Define Yjk =
∑(k−1)ρ+jl

i=(k−1)ρ+(j−1)l+1Wi, i.e., the
sum of the block of data corresponding to the jth interval and kth period. Then, as in Section
3, Y ∗

j , j = 1, . . . , J have independent discrete distributions such that

Y ∗
j ∼ Unif {Yj1, Yj2, . . . , Yjm}

1. First note that E(E(Y ∗
j )) = E((1/m)

∑m
k=1 Yjk) = (1/m)

∑m
k=1 E(Yjk) = (1/m)

∑m
k=1 E(Yj) =
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E(Yj) = E(
∑jl

i=(j−1)l+1 Wi) so that

E(E(
J∑

j=1

Y ∗
j )) =

J∑

j=1

E(E(Y ∗
j ))

=
J∑

j=1

E(
jl∑

i=(j−1)l+1

Wi)

= E(
J∑

j=1

jl∑

i=(j−1)l+1

Wi)

= E(
ρ∑

i=1

Wi)

since Jl = ρ.

2. By interchanging the summations in the third step,

E(
J∑

j=1

Y ∗
j ) =

J∑

j=1

E(Y ∗
j )

=
J∑

j=1

1
m

m∑

k=1

Yjk

=
1
m

m∑

k=1

J∑

j=1

Yjk

=
1
m

m∑

k=1

J∑

j=1

(k−1)ρ+jl∑

i=(k−1)ρ+(j−1)l+1

Wi

=
1
m

m∑

k=1

Tk.

3. The approximation on the 3rd line of the following set of equations is justified because
δ is much smaller than the period ρ and hence the small covariance between the sums of
two adjacent periods can be ignored. Also the equality on the 3rd line holds because of
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the periodicity of Wi.

Var(E(
J∑

j=1

Y ∗
j )) = Var(

J∑

j=1

E(Y ∗
j )) = Var(

J∑

j=1

1
m

m∑

k=1

Yjk)

= Var(
1
m

mρ∑

i=1

Wi) =
1

m2
Var(

mρ∑

i=1

Wi) =
1

m2
Var(

mρ∑

i=1

Wi)

≈ 1
m2

m∑

k=1

Var(
kρ∑

i=(k−1)ρ+1

Wi) =
1

m2

m∑

k=1

Var(
ρ∑

i=1

Wi)

=
1
m

Var(
ρ∑

i=1

Wi)

¤

Result 3 The block bootstrap variance estimator Var(
∑J

j=1 Y ∗
j ) is a biased estimator of Var(

∑ρ
i=1 Wi)

and of
∑J

j=1 Var(Yj). To be more precise, E[Var(
∑J

j=1 Y ∗
j )] = (1− 1/m)

∑J
j=1 Var(Yj) for all

m > 1.

Proof Since Y ∗
j ∼ Unif {Yj1, Yj2, . . . , Yjm}, we first note that

Var(Y ∗
j ) = E(Y ∗2

j )− [E(Y ∗
j )]2

=
1
m

m∑

k=1

Y 2
jk − (

1
m

m∑

k=1

Yjk)2

=
1
m

m∑

k=1

(Yjk − Y j·)2

where Y j· is the average over index k. Observing that Yj1, Yj2, . . . , Yjm are independent for J >

1 (because of the δ-dependence condition and that δ ¿ ρ) and identically distributed (Yjk is a
realization of Yj for all k), the last expression is essentially the same as the maximum likelihood
estimator of the variance using a random sample under normality, i.e., (1/n)

∑n
i=1(xi − x̄)2).

And it is well known that the mean of this estimator is biased, and is equal to E(
∑n

i=1(xi −
x̄)2/n) = ((n− 1)/n)σ2.

Therefore,

E(Var(Y ∗
j )) = (1− 1

m
)Var(Yj),

21



and it follows that

E(Var(
J∑

j=1

(Y ∗
j ))) =

J∑

j=1

E(Var(Y ∗
j ))

= (1− 1
m

)
J∑

j=1

Var(Yj).

¤

Result 4 The block bootstrap estimators of the mean and variance can be expressed in terms
of the data in the following way:

E(
J∑

j=1

Y ∗
j ) =

1
m

J∑

j=1

m∑

k=1

Yjk

Var(
J∑

j=1

Y ∗
j ) =

1
m

J∑

j=1

m∑

k=1

Y 2
jk −

1
m2

J∑

j=1

(
m∑

k=1

Yjk)2

where, as in Result 2, Yjk =
∑(k−1)ρ+jl

i=(k−1)ρ+(j−1)l+1Wi is the sum of the block of data corresponding
to the jth interval and kth period.

Proof The expression for the mean is derived in the proof in part two of Result 2. The
expression for the variance follows from the independence of Y ∗

j and the results given in the
proof of Result 3. ¤
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