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I. INTRODUCTION AND REVIEW OF LITERATURE 

A stochastic process is a process which proceeds in 

time governed by probabilistic laws; it is a collection of 

random variables {x^} where the index t is a member of a 

given set {t}, and represents a characteristic under 

study. Often t symbolizes time and {t} is taken to be the 

nonnegative integers {0,1/2,...}. The unit involved can be 

any predetermined time interval which determines when the 

random variable X^ is to be measured or observed. This in

terval can be of any length, e.g., one minute, three days, 

etc. A stochastic process of this structure is often re

ferred to as a time series. For example {X^,X^,X2,...] can 

be thought of as the collection of queue lengths in a queuing 

system measured at different points in time tQ,t^, t2,.... 

Note that X^ might be a vector; indeed so might t, when 

it does not denote time; however we restrict attention to 

the scalar case. The possible values or materializations 

of the random variables X^, which will be frequently re

ferred to as the "state space", need not be finite or even 

countable. An example of a continuum of possible outcomes 

is when the X^ are normally distributed. Note that the index 

t also might assume a continuum of values. In any case the 

collection {t} will be referred to as the "time domain". 
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Throughout the following chapters, this thesis will 

consider a time domain [tg,t^/Lgf•••/•••} where 

tj.^2 = tp+At , At > 0 

being the time unit. At these times the system will be in 

one of a finite number N of mutually exclusive and exhaustive 

categories or states, i.e., e {1,2,A specific 

example of the general situation just outlined, in addition 

to the queuing exanç>le above, is an inventory system whose 

level is reviewed only at discrete equally spaced intervals 

of time, e.g., each week. 

In order to be able to obtain useful analytic results 

about the system, an assunçjtion regarding the joint distri

bution of XQ,X^,X^, ... is necessary. A widely used assump

tion which leads to tractable analytic manipulation is that 

the stochastic process has the Markovian property. A 

stochastic process {x^} with countable time domain {0,1, 

2,...} and finite state space {0,1,2,...,#} is called a 

Markov chain if? 

^^^t+l~-^^0~^0'***'^t-l~"^t-l'^t~^-^ ~ ̂  

(1.1) 

for t;={0,1,2,...} and every sequence mQ,mj^, .. .,m^ ^th 

elanents in {l,2, In other words, the Markovian 

property signifies that the conditional probability of 
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the system (or X^) being in any future state given a par

ticular past state history and the present state does not 

depend functionally on the past state history. The con

ditional probabilities mentioned above are called one-step 

transition probabilities. They are referred to as stationary 

if 

for all t=0,l,2,... and all i,j e {1,2,...,N} and are then 

conveniently represented a square matrix called the tran

sition probability matrix P: 

1 2  ••.J ... N  

(1.2) 

usually represented by In such a stationary situation 

the set of all the one-step transition probabilities is 

1 P11P12 ••• Pij ••• Pin 

^ ̂ 21^22 • * * ^2 j • • * ^2N 

P - [Pij] - ̂  PilPi2 ^ij PiN (1.3) 

^Nl%2 *** •** ^NN 

The N rows and columns correspond to the N states the system 
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can occupy. The elements in row i, i=l,2,...,N are the 

probabilities of one-step transition to state j, j=l,2, 

conditioning on being in state i, and thus 

0 < p^j < 1 for all i,j=l,2,...,N 

and 

N 
2 p.. = 1 for all i=l/2/.../N . (1.4) 
j=l 

Markov chains were first introduced by Markov in 1907. 

In the 1930's, Kolmogrov extended the mathematical theory to 

include the case of chains with an infinite number of states, 

i.e., infinite "state domain". By 1950 it was well recog

nized that the Markov chain principle provides a mathanatical 

model with much potential for applications. The mathematical 

analysis of Markovian systems and their applications to 

physical as well as social sciences is a subject in itself 

about which several books have been written. Exaiiç)les of 

specific applications are found in Derman and Lieberman 

(1967) on joint replacement and stocking problems, in Klein 

(1966) on production scheduling and control and maintenance-

replacement decision problems, and in Herniter and Magee 

(1961) on customer behavior and marketing policies. 

Howard and Derman introduced Markov decision processes 

which involve repetitive decision making in a Markov chain 
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environment. In that context, Hor^ard (1960) has introduced 

the notion of rettirns or rewards in a Markov chain setting. 

Corresponding to the transition matrix P, he considers a 

matrix R of transition rewards: 

1 2 

^ ̂ 11^12 ••• 

^ ̂ 21^22 **• 

R = [Zij] = i ^ii^i2 **• 

^ ̂N1^N2 * *• 

which specifies a return r^^j for a system transition from 

state i to state j. 

In the case of a finite horizon Markovian process 

(finite time domain {t} or mrnber of stages), the expected 

value of the system (expected total reward) can be calcu

lated if we know both the transition probability matrix P 

and the associated reward matrix R. In this context, Howard 

(1960) introduced a recurrence relation for the expected 

total reward in the next n transitions, v^(n), given that 

the system is currently in state i: 
•> 

J 

r. 

^2j • 

N 

r. IN 

. r 2N 

^iN 

^Nj • •NN 

(1.5) 
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n 
V. (n) = 2 p. .[r. .+v. (n-1)] , i=l,2/...,N 
1 j=l J 

n=l,2,3,... (1.6) 

In the infinite horizon case, a discount factor p may be in

troduced in order to be able to deal with finite total re

wards. The discount factor [3, 0 < p < 1, will discount the 

reward received at the h+1— transition by to bring it 

down to present worth. It is still relevant, in the infinite 

horizon case, to consider finite horizons as stepping stones, 

but the recurrence relations (Equation 1.6) are changed 

slightly to allow for the discount factor p : 

n 
v-(n) = 2 p. .[r. . + 6 v. (n-1) ] , i=l,2, ...,N 

j_l •'•J J-J J 

ir=l,2,.,... (1.7) 

The discount factor p can be interpreted in two different 

but related ways. First it has the psychological meaning 

that a reward received immediately has a greater intrinsic 

value than the same reward received at a future date (which 

suggests that the same reward received in the infinite 

future has no value). The other interpretation arises from 

the engineering economist's point of view, who would con

sider the discount factor as the present worth factor 

(l+i)~^, where i is the effective interest rate for the 

period of time between two successive transitions. In this 

context one may then appropriately spe^ of the present 
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worth of the sum of all future expected rewards. 

Decision making was introduced into the multistage 

Markovian models by permitting a choice among several tran

sition and reward matrices. In other words, the decision 

maker is confronted with choices whenever he is in state 

i, each of these choices leading to its corresponding 

1 X N vector of transition probabilities and a corresponding 

1 X N vector of transition rewards. Without loss of gen

erality it will be assumed in this thesis that = K not 

dependent on i. Note that, in this context of decision 

alternatives, a vector of transition rewards from state i 

to state j under decision ks (1,2, should be thought 

of as a vector of "net" rewards taking into account the cost 

of moving from i to j under k. In the above decision making 

context, the details of a one-step transition may be de

scribed "by the following diagram (Diagram 1). 

At this point it may be appropriate to define the 

matrix 

N 

//= K.N (1.8) 



si / 2/ # * e f N 

X Si 

optimally 
chosen 
decision 

action 

system reward r ij 

Transition and reward 

system 

00 

Diagram 1. Non-Bayesian optimal Markov decision process 
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as a generalized stochastic matrix since the word stochastic 

matrix will be reserved for an (N X N) square matrix. Also 

the corresponding (K.N X N) reward matrix will be called the 

generalized reward matrix,,^. 

Adopting a (stationary policy) in a Markovian decision 

process is to decide on which alternative action k to choose 

in state i. Howard (1960) has contributed to this problem by 

developing a procedure (the policy iteration method), to de

termine choices that maximize total expected reward. The 

method applies in particular to tbe discounted infinite hor

izon case. An alternate solution method, licked to standard 

dynamic programming approaches, Blackwell (1962, 1965), is 

based on the recursion system 

k N k 
v-(n) = raax[q. + 6 2 p.. v - (n-1) ] i=l,2, ...,N (1.9) 
^ k ^ i=l J 

where 

i Pij ^j 

is the expected immediate one-step reward and v^(n) 

denotes the maximum total e^qpected reward obtainable in n 

stages when starting in state i. In this context Howard 

(1950) has demonstrated the existence of a stationary optimal 

policy for the infinite horizon problem. 

In most of the writing mentioned so far, the transition 
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matrix P (without alternatives) or ,^{with alternatives) is 

assumed to be known with certainty. This assumption may not 

be justified, especially when dealing with a new syston. 

The Bayesian approach attempts to circumvent this assumption, 

and considers a set of generalized stochastic matrices {^}f 

finite or infinite, rather than a single matrix,^ The 

Bayesian decision maker starts with prior (raw) knowledge 

about, which matrix.^' £ governs the system. This 

prior knowledge is described by a "prior" distribution (a 

preliminary probability distribution function "hC^H over 

the set • The prior distribution function may be dis

crete or continuous, depending on the set The de

cision maker updates or improves his knowledge about the 

prior distribution with each transition, as he observes the 

successive random variables X^. This improved knowledge is 

quantified by a "posterior" distribution that replaces the 

original prior. Since the outcomes are actually generated 

according to the matrix»^^, it is likely that the decision 

maker's updated posterior distribution hC^ X^, k) will place 

more probability mass near^^!^. Hopefully after a reasonably 

large number of transitions n*, there will be probability 

mass near unity near^^ and the optimal decision will be iden

tical to the optimal decisions used by the decision maker who 

knows.^^. In particular, the adopted policy will become sta

tionary, in the sense that alternatives chosen in given states 
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will be the same for all n > n*. Related problems in the • 

firming of information have been treated from several 

points of view; for exan^le in Savage (1954), Blackwell and 

Dubins (1962)/ Doob (1953), and Rose (1971). Thu details 

of a one-step transition in the Bayes case may. be described 

by the follo\d.ng diagram (Diagram 2). 

Recent applications of Bayesian decision theory to 

Markov chains include studies, done at the Massachusetts 

institute of Technology by Silver (1963) on chains with 

uncertain transition probabilities. Gonzales-Zubita and 

Miller (1965) uses mainly experimental and heuristic ap

proaches to the problem and relies upon simulation rather 

than analysis. 

Martin (1967) also considered the matter of selection 

of prior distribution functions, for the unknown matrix of 

transition. Related to the notion of natural conjugacy he 

discussed the idea of a family of distributions closed under 

consecutive sampling, i.e., a family such that the decision 

maker's revision of the prior will produce a posterior which 

belongs to a given family of distributions. 

The problem of choosing a sequence of policies which 

maximizes the total expected discounted reward over an in

finite period of time, was formulated by Martin (1967) in 

terms of a set of functional equations, once again linked 

to dynamic programming. The uniqueness and existence of 



X =i 

i»j sl/2/* » * , N  
1csX/2/ •••/K 
/ *1/2/ •••/ÏJ 

Bayesian 
optimal 
decision 

k(X^)_k^ 

action 

^ 

transitions by 

prior review 

reward r 

system 

starting prior over } 

Diagram 2. A Bayesian Markov decision process 
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solutions of such equations were discussed/ together with a 

successive approximation method, converging monotonically 

to solution. The above functional relations mentioned may 

be summarized as follows. 

V. (h) = max + p 2 p^. (h)v . (T^. (h) ) j 
^ l<kg( ̂  j=l J 

i=l/ 2,.. ./N 

0 < p <1 (1.10) 

where 

pj.(h) = 2 of. hC^ 

' IfK ' 

is the marginal prior expectation h is the current 

distribution c 

posterior and 

qj(h) = 2 pf.(h) rj. 
i j=l 

distribution over the states, (h) is the corresponding 

V N , 
^ k=l,2,...,K, 

i—1/2, . a ./N 

denote the mean one-step transition reward when the system 

is in state i and alternative 3c is used. 

Generally both the transition matrix ̂^and the reward 

matrix ,_^can be considered random. Wolf (1970) considered 

the case where the .^matrix is known with certainty and the 

reward matrix follow a prior probability distribution. In 

particular he considered the rewards to be random/ distributed 
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in accordance with a distribution belonging to a given 

class, and prior as well as posterior distributions per

tain to this class. An upper and lower bound for the max

imum total expected reward were developed as well as a 

method for finding an optimum policy. 

This thesis considers a Markov decision process with 

alternative actions and uncertain transition probabilities. 

The system undergoing the above process is assumed to have a 

finite state space .vf^which consists of N states, with K 

alternative actions available to the decision maker in each 

state, and an infinite operating time domain. A system re

view (sampling) takes place at fixed points in time t^,t^, 

...,tn,... with a prespecified constant time interval 

At = t^^^ - t^, n=0,l,2,... where n denotes the nth.sampling 

stage. A discounted reward structure is in effect with the 

V 
nth reward r\j, collected immediately after the nth transi

tion occurs between states i and j under alternate k, dis

counted by a discount factor p, 0 < p < 1, is the dis

count rate. 

The system is assumed to be governed by a generalized 

stochastic (K.Nx N) matrix , a member of a finite set 

of L generalized stochastic matrices {j. The decision 

maker's uncertainty is introduced a prior probability 

distribution over the set j, reflecting his guess about 

the probabilities: Pr{ .^ = / =1,2, ...,L. 



15 

A primary concern of this thesis is the convergence 

of the posterior distribution to a degenerate probability 

distribution with probability mass one at the matrix , 

and the effect of this convergence on the system's total 

discounted reward. 

The approach adopted is to analyze a related "mixed" 

random walk, whose step sizes are functions of the transi

tion probabilities of the set ^ ̂  ], and whose partial sums 

uniquely determine the posterior develojxnent, The ran

dom walk passes through two regions, the first related to a 

certain "state-nonstationary" phase of the policy, the sec

ond related to a certain "state-stationary" phase. 

Chapter II is concerned with the task of bounding the prob

ability that the posterior maintains at least a certain conver

gence rate, assuming state-stationarity. The idea is to wed the 

moment-generating function approach for large deviations, ex

plored for example by Bahadur and Rao (1960) and Chanda (1972), 

to the matrix-iteration expression for the moment-generating 

functions of a cumulative sum of scalar functions of Markov 

chain transitions, as it appears in Montroll (1947). 

Based on (Zhapter II, Chapter III develops an upper bound 

for the rate of posterior convergence, with a certain as-

sunption made about the process which insures a state-

stationary phase for the related random walk. The procedure 

is to use the results of Dubins and Savage (1965a) to follow 
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the early course of the posterior in the state-nonststionary 

phase, then the results of Chapter II to follow the eventual 

state-stationary course. In section B, the random walk 

formulation is developed for the general case (N,K/L), 

followed in sections C and D Ijy the development of an upper 

bound for the convergence rate, in the special case 

(N- 2, K= 2, L= 2) . 

Let ̂ 2 ̂ s Bayesian decision-maker with a prior as

signing some weight to , the actual generalized matrix 

governing the evolution of the process, and let be 

a decision maker who knows and acts optimally accord

ingly, Chapter IV discussed the almost-sure relative near-

equality for large p of the total discounted rewards earned 

by and Two further assunç)tions are made here, the 

first of which essentially concerns independence from p of 

the state-stationary phase of the process. 

Chapter V summarizes the results developed in the pre

vious chapters and suggests possible considerations for 

future studies. 
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II. LARGE DEVIATIONS FOR MARKOV CHAINS 

A. Introduction 

This chapter explores the large deviations of cumula

tive sums of scalar functions of transitions of Markov 

chains. The term "large deviations" is used here in the 

sense that it is used for exâirtple in Bahadur and Rao (1960) 

or in Chanda (1972). The general approach will be to wed the 

moment-generating function approach explored by the above 

two authors to the matrix-iteration expression for the 

moment-generating functions of cumulative sums of scalar 

functions of Markov chain transitions, as it appears for 

exairç)le in Montroll (1947). 

B, Primitive Matrices 

A nonnegative square matrix 

[Dij] 5 

^11 ^12 

^21 ̂ 22 

as 

^2s 

^sl ̂ s2 ••• ^ss 

(2.1) 

is such that b^j > 0 for all i, j=l,2, ...,s. An important property 

of nonnegative square matrices is demonstrated by the theorem of 

Perron and Forbenius (Cox and Miller,•1965), which states 

that a nonnegative square • matrix has a maximal nonnegative 
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characteristic value which is not exceeded in absolute value 

by any other characteristic value, and corresponding to 

which there is a nonnegative characteristic vector. 

A nonnegative irreducible matrix is one that cannot by 

suitable permutations applied to both rows and columns, be 

put into the form 

BII O 

®21 ®22 

(2 .2)  

where the B22 are square matrices. 

Some properties of a nonnegative irreducible matrix 

are as follows : has a simple real positive characteristic 

root 7^2 with the following properties; 

(1) Corresponding to there is a positive right characteristic 

vector X, i.e., there exists a vector X> 0 such that: 

= XjX (2.3) 

(2) If y is any other characteristic root of en 

(2.4) 

(3) ̂ 2 is simple root of the determinantal equation 

I X I  =  0  

(4) X, < max(2 b. .) , X, < max(Z b. .), i.e. 
J- n -i 4 4 1 J J 1 

(2.5) 
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X-, < min [max (2 b. .) , max (2 b..)] (2.6) 
i j j i 

(5) The facts stated tinder (1) also apply to a positive left 

characteristic vector, as can easily be verified as follows : 

consider a nonnegative irreducible matrix,.^, with maximal 

characteristic root then Sâ is also nonnegative irreducible 

and has the same maximal characteristic root X^* as implied 

by Equation 2.5. Hence according to (1) there exists a vec

tor X > 0, such that 

X = X^X , (2.7) 

i.e., a vector X' such that 

X'^= X^X' . (2.8) 

A nonnegative irreducible primitive (i.e., primitive) 

matrix is a nonnegative irreducible matrix such that X^ is 

the only root of modulus jX^j. It can be shown, Gantmacher 

(1950) that, alternatively, a primitive matrix is a non-

negative matrix one of whose powers is a positive matrix. 

C. (2x2) Primitive Matrices 

Consider a primitive matrix M 

A B 
M = 

C D 
(2.9) 
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In view of the characterization of primivity at the end 

of the last section, there can be at most one zero among the 

numbers A, B, C and D, and both B and C must be positive. 

The characteristic roots of the matrix M are obtained 

by solving the determinantal equation 

where I is the identity matrix of size 2 and X is a scalar. 

Equation 2.10 is equivalent to 

jM - XlJ = 0 (2.10) 

(A-X) B 
0 

C (D-X) 

(A-X) (D-X) - BC = 0 

X^ - X(A+D) + (AD-BC) 0 / (2.11) 

a second degree equation in X, which has a solution 

2 

(A4-D) 4- Jl? + 2AD + - 4AD 4- 4BC 
2 

2 (2.12) 

and similarly 
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. _ (A+D) 
^2 -

- JiA-D)^ + 4BC (2.13) 

where Xg are the characteristic roots of the matrix M. 

Now let X = and Y = (71^72) ̂  the corresponding 

normalized right characteristic vectors for Xg respec

tively. The elements of the characteristic vector X are 

determined by the solution of the following set of equations 

A B "^1 V 

C D 

•
 

II 

^2_ 

(2.14) 

or equivalently 

Ax^ + BXg = Xx^ 

Cx^ + DXg = Xj^X2 

(2.15) 

(2.16) 

together with the normalizing condition 

2 2 
x£ + Xg = 1 (2.17) 

Using Equations 2.15, 2.17 we get 

(Xi — A) 

*2 ^ *1 B 
(2.18) 

and 
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2 2 ^1 ~ ̂  
Xi + ( g ) = 1 

4 --2 
B 

- A)' 

X, = B 

JbP- + - A)' 

and consequently 

X. = B 

+ (Xj ~ A) 2 

X-i — A 

(2.19) 

(X^ ~ A) 

Jb^ + (X^ - A) 

(2.20) 

By the same procedure used above the elements y^, y g of the 

other characteristic vector Y are determined by the solution 

of the set of equations 

(2.21) 

A B v 
= X2 

C D 
/2. J2_ 

or equivalently 
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Ay^ + By^ = ^2^1 (2.22) 

Cyi + By^ = ^2^2 (2.23) 

together with the normalizing condition 

yj + y2 = 1 . (2.24) 

The solution of Equations 2.23 and 2.24 gives 

(Xg -

Jc^ + (^2 - D)2 

and 

(2.25) 

y, = . (2.26) 

Jc^ + (Xg - D)2 

Hence the two characteristic roots are 

= (^D) 4. V(a-D,LWBÇ (2.27) 

+ 4BC (2.28) 

and the corresponding normalized right characteristic vectors 

are 
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X - ( 2B 

JA:B^ + [(D-À) + 7(A-D)2 + 4BC]2 

(D-A) + V(A-D)^ + 4BC j 

+ [(D-A) + 7(A-D)2 + 4BC]2 

(2.29) 

Y = { (A-D) - V(A-D) ̂ 4- 4BC 

^AC^ + [ (A-D) - J(a-D)2 + 4BC]2 

2C 

+ E (A-D) - /(A-D) 2 + 4BC]^ 

} (2.30) 

If now one defines 

V = 
Xi Yi 

Xg ^2 
(2.31) 

Then V can be shown to have an inverse W hy noting that V 

has a positive determinant under the assumptions considered 

about the matrix M at the beginning of Section C of this 

chapter together with the values of X, Y in Equations 2.29, 

2.30. Then one can write 

M • V = VA 

and 

M = V A V -1 

= V A w (2.32) 
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where 

A = 
0 X 

0 

2 

D. A Theorem Concerning A Special Family 

of (2x2) Primitive Matrices 

Consider the stochastic matrix M(0) 

M(0) = 

e. 

(1-02) 

(i-e^) 

(2.33) 

where 0 < 6^ < 1 and ©j^/ @2 not both zero. Consider 

also the matrix family M(t), 

M(t) = 

®1® 
at 

(1—©j^) e 
bt 

(l-©2)e^ ©2e^^ 

/ 0 < t < + œ 

(2.34) 

where a, b/ c and d are arbitrary real numbers. 

Theorem 2.1: Let X^Ct) be the dominant characteristic root 

for M(t) and let v = (Tr^,Tr^) be the stationary probabilities 

vector for M(0). Let also 

m = Trj^-[a-©^+ b(l-©^)] + [0(1-82) - (2.35) 
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If 

m < Q < max[a,b, C/d] (2.36) 

then there is a T such that 

1) < 1 at t=T; (2.37) 

2) ^[e ° at t=T . (2.38) 

Proof 

(1) The stochastic matrix M(0) has a stationary prob

ability vector TT, with elements determined by the solution 

of the set of equations: 

-^[1 - M(0)] = 0 

: 

1—@2 — (1—©j) 

— (1—@2) ( 1—02 ) 

= 0 

^1 • (^-®l) - ̂ 2 * (I-G2) ~ 0 (2.39) 

-TT (1-0- ) + IT . (1_© ) = 0 (2.40) 

together with the conditions 
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•n*! + ir2 = 1 / (2.41) 

' ̂2 ^ ° * (2.42) 

Using Equations 2.39 and the conditions 2.41 and 2.42 one 

obtains 

(l-e.) (1-0,) 
TT = (Tr^,?r^) = E (1_G^ ) + (l_e^) ' (l-e^) + (l-Gg)] • (2.43) 

Now, in view of Equation 2.27, the dominant characteristic 

root of the matrix M(t) is given by 

Xi(t) = 2^— ' 

+ / [——5—2— 

(2.44) 

With reference to Equation 2.44 

e-0\(t) = ^ 

, A e(a-Q)t_Q (d-Q)t . 
+ J ^ ] + (1-e^) (i-e2)e[ (b-o)+(c-0) ]'t 

(2.45) 

One can note the following properties of the quantity 
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a) (t) I is the dominant root of a stochastic 
t=0 

matrix, and hence is equal to unity. 

This may be seen as well by direct 

substitution in Equation 2.45 

b) e~^^j^(t) is easily shown to be differentiable 

on the interval [.0,<») ; in fact, with 

reference to Equation 2.45 

^[e-Q^.\ (t)] 

= [e^Ca-Q) . e(a-0)t+g^(d_Q) e^^-Q^^]/2 

+ (l-Qi)(l-e2)e[(b-0)+(c-0)]"t} 

©T ( a-Q) e (^ (d_Q) e ^ 
. [-^ 0-^ ] 

+ (l_ei)(l_e2)[(b_Q)+(c-Q)] . . 

(2.46) 
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[e~^^ (t) ] has a negative derivative at t = 0 

since Equation 2.46 reduces to 

= [Gj^la-Q) 4-e^(d-Q)]/2 

1 9 -1/2 
+ "21 " ®2^ /4 + (1—Q^) (l-©2^ } 

0-1 (a—Q) — ©« (d—Q) 
. ] 

+ (1-8]^) (l-Bg) [ (b-Q)+(c-Q) ]} 

= [©j^(a-Q) +G2(d-Q)]/2 + 2[ (l-©^)+(l-©2) J 

. { [©2 (a—Q) — ©2 (d—Q) ] 

+ 2(1-©^)(l-Qg)[(b-Q)+(c-Q)]] 

~ (1-©^) + (1-©2)^'^®1®1^^~®2^'^^^^^ (1-©I) (I-G2) 

+ d62(i-©]^) ] -Q[e^(i-©2)+e2(i-©i)+2(i-e^Xi-e2) ]} 

= m - Q (2.47) 

which is a negative quantity in view of condition 2.36 . 

It is also noted that e"^X^ (t) tends to ™ as fc 

goes to infinity under inequality 2.36, in view of 
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Equation 2.45, 

And now one can conclude: 

i) e~®^^(t) is continuous, so by a), c) and d), 

there is a "first" T > 0 with 

e-OTx^(T) = 1 . (2.48) 

ii) eT^^X^tt) is continuous on [0,TJ and hence 

achieves its infimum, 

inf [e**®^, (t)] at some T/ 0<T<T . (2.49) 
[0/T] 

iii) <1 (2.50) 

by reference to i), ii), a) and c) above so that 

iv) 0 < T < T . 

Hence, in view of iv), ii) and b), 

v) ^[e~^^j^(t)] =0 at t = T (2.51) 

E. The Moment Generating Function 

for the (2x2) Case 

Consider a two-state Markov chain on two states 1 and 

2 with primitive transition matrix 
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M(0) = 
01 ^"®1 

^-®2 ®2 
, 0<9^, * 

©1/02 not ijoth zero 

(2.52) 

Suppose that the initial state of the Markov chain is 

io(=l or 2) 

Consider a random walk with partial s tons 

n 
(2.53) 

defined on the Markov chain, with the v'th step is the 

real number a # y or 6 depending on whether the v ' th 

transition of the Markov chain is 1 ̂  1, 1 2, 2 1 or 

2 _> 2. 

It is verified by direct confutation that the moment 

generating function of _ is given by 

4a(t) = lQ[M(t)]^J ; t real (2.54) 

where 1^ is a 1x2 vector with unity at i^ and zero else

where, where J is a 2x1 vector of one's and where the 

matrix M(t) is given by 

M(t) = 

®1® 
at (l-ei)e^^ 

(l-02)eT^ Gge&t 

(2.55) 
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Such expressions for the moment-generating functions of 

Markov chain-related random walks seem to have appeared 

first in Montroll (1947). 

Since M(0) is primitive by assumption, so will be 

M(t), and one may apply the facts deduced in Section C to 

write M(t) in the form 

where W(t), A(t) and V(t) are, respectively, the matrices 

W, A and V of Section C, with the substitutions 

M(t) = V(t) A(t) W(t) (2.56) 

A 
at 

B = (1-9^)6^^ 

C = (1-02)6^^ 

D ôt (2.57) 

Since W(t) = V(t) ^ it follows, in view of Equations 

2.54 and 2.56, that 

i{)jj(t) = IQ V(t) [ A (t)]^ W(t) J (2.58) 

which may be written in the form 

n r ^2(t) 
A(t) . [X^(t)f . {1+ • ô(t)} (2.59) 
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where Xgft), A(t) and 5 (t) are analytic in t, 

X2(t)/X2(t) is less than one for all t and is uniformly 

bounded away from one in any finite t interval, and where 

Xj^(t) is given by the expression 

[— 2~^ ] + (l_9^)(l-e2).e(Wt . (2.60) 

F. Lower Bound for the Probability 

of a Large Deviation 

Consider the random walk of Section E, with the four 

possible steps denoted by a, b, c and d rather than by c, 

p, y and b. Denote the corresponding partial sums by 

rather than by,_9^. 
iO/^ lO/Il 

We are interested in the excess probability 

> n.Q} (2.61) 

for some real number Q. 

If we now equate a to (a-Q), to (b-Q) / etc., this 

excess probability may be written in terms of the random 

walk of Section E as 

,n i = dFjj(x) (2.62) 

x=o 
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where F (x) is the cdf of . Suppose now that 
n IQ' 

in < Q < inax(a,b/C/d) (2.63) 

where 

^[ (1-6]^)+(l-Gg) ](l-Gi)b] 

* (2.64) 

Then in view of the theorem of Section D, there exists a 

real number T, 0 < t < + »/ such that 

(1) Xi/T) < 1 (2.65) 

(2) = 0 (2.66) 

where ̂ ^(t) is the function (2.60), with a-Q substituted for 

a, b-Q for [i/ etc./ i.e., the function (2.45) of Section D. 

Using this t, define a new cdf G^(x) by 

dGjj(x) = exp (Tx) dF^ (x) /t{i^ (n;) , (2.67) 

where as defined in Section E, ^^(t) is the moment-generat

ing function of,^. ^ ^ - nQ. Then in analogy to 
iQ/n 

the development in Bahadur and Rao (1960) and Chanda (1972), 
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= J dF^(x)/4^(T) 

XPO 

= J exp ( -Tx) dG^ (x) 

x=o 

= J exp(-Tx)dG^(x) 

x=0 

= J exp(-T^/iï y)dG^(^ y) 

y^o 

00 00 

= e 

0 V=o 

-Gj^(O) + J G^(JnY)d.Y 
y=0 

= e-'^lG^iJEy) _ G^(0) ]dy 

y=o 

> j e~'^'^[Gj^(^^y) -G^(0) ]dy 

y=e 
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> Jîk . [G^ijne) -G^(0)] . 

Y=e 

= [G^(JnE) -G^(0)] ' - (2.68) 

Thus 

-Pr{y^ ̂ ^>nQ]/^^(t) >G^(Jne) -G^(0) . (2.69) 

In order to obtain the lower bound we seek/ it remains 

for us to examine ̂ y^) and G^ijne) - Gjj(O). 

We first examine il'jjC'c) : As defined earlier ̂ ^(t) is 

the moment-generating function of the partial „ for 
o' 

the random walk with steps 

a = a-Q 

P = b-Q 

y = c-Q 

Ô = d-Q , (2.70) 

based on the Markov chain with transition matrix M(0), 

starting in state i^. Hence, in view of the calculations 

of Section E, and in particular Equation 2.59/ 

Tl)jj('c) = ACrl-EX^Cr)]^. [1 + p (t:)^»ô (t) ] (2.71) 

where 
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p(T) = X 2(^1:) Al ('!:) < 1 

Moreover, in view of property (1), Equation 2.65, of T; 

given earlier in this section, 

< 1 . 

We next examine G^(Jne) - (0), again in analogy with 

the work of Bahadur and Rao (1960) and Chanda (1972). Recall 

the definition of G^(x) in Equation 2.67. The moment-generat

ing function corresponding to G^(x) is 

so that the moment-generating function e^(t) corresponding 

to the cdf Gjj(Vnx) is 

30 

Sjj(t) = e3cp(tx) . exp(Tx) • dF^(x)/i|)^(T;) 

= i!»jj(t+T:)/t{ijj('T;) (2.72) 

(2.73) 

and in view of Equation 2.71 

Ai'z+t/Jn) X- i'z+t/Jn) n 

n 
|-1+ ( p (T+t/Jn) ) 6 i'z+t/Jn) J 

l+(p (t) )^&('c) 
(2.74) 
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Now since /\(t) and &(t) are continuous, and p(t) is less 

than one for all t and is uniformly bounded away from one 

in any finite neighborhood of T, one may write 

(T+t/vAi) n 
®n<^' = [ ] • 1n'^' ' <2.75) 

I 

where as n increases, 

Tl^(t) _+ 1 (2.76) 

for any value of t. 

As for the first factor of the expression, since X^(t)is 

analytic one may expand X^Ct) around t=T/ obtaining 

r- t t2 
+-t/Jn) = + — • XJCt) + O^^t) 

ijn 

(2.77) 

where n • Q^(t) tends to zero as n increases for all t. 

But, in view of property (2), Equation 2.56, given 

earlier in this section. 

Xj^('r) = 0 

so that 

(T + t/Jn) T^ • X'I (T) 
XlW = ^ + -iri- + 
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and as n increases. 

X^ (T + t/^) n -
[ exp[t^)j^(T)/2\^(T)] (2.79) 

Now if we assume that X'£(Tr) > 0, then the right-hand 

side is the moment generating function of the normal dis

tribution with mean zero and variance (t) /X^ (i:) • 

So in view of Equation 2.75, 2.76 and 2.79, e^^ft) 

tends with n to the moment-generating function of the 

normal N[Oy (i;) (i;) ], which iir^lies that 

G^ijrix) ^ ffi[x • cr(T)] (2.80) 

where 

oiT) = (T:) A'£ (T) 

One now has all the ingredients needed. Combining 

Equation 2.54 and 2.68 we have 

1 no} 

> • [1+ (p('c)) "&(e)] 

[Gjj((s/n£) — G^(0) ] / (2.81) 

and using Equation 2.80 and the fact that p(t) < 1, 
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e -Pr^.y^ > no] 

lim ^ > A(T^) • [S(ea(T:)) - ffi(O)] 
[Xl(T)]* 

= B(e) . (2.82) 

In other words, 

> nO}/[X^(T)f 

eventually is not below B(e), or 

+ In Pr[.J/^ ^ > nQ] - n In X^(T) 

eventually is not below B(e), or, for any e, there is a 

n(&) such that 

y In Pr{.^ > nQ] > X^Cr) - e for all n>n(8) 

(2.83) 

G. Upper Bound for the Probability 

of a Large Deviation 

An upper bound analogous to the lower bound derived 

above is readily established as well, again arguing in 

analogy to Bahadur and Rao (1960) and Chanda (1972) : 

> no} = Pr|5^ a 0} 
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= Pr{5^^ > 0} 

= Pr{e > 1} 

-7* 
.T 

< E[e ° ] 

= . (2.84) 

The inequality follows from the fact that the es^ectation 

of a nonnegative random variable X equals the area of the 

region U in the plane determined by 

F^(x) < y < 1 and X > 0 , 

whereas Pr{x > l} equals the area of the subregion of Q. 
determined by F^(l) < y < 1 and 0 < x < 1. 

Hence using Equation 2.71 of the previous section, one 

finds that 

- < a(t) * [l + p(t)^ • ô(t)] / (2.85) 

or 

[Xl(T)]* 

lira < aM , (2.86) 
[\l(T)]° 
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or for any e there is a nfs) such that 

^ In Pr[.'/^ > nQj < inXj^(T) + e / n> n(e) . (2.87) 

H. The Main Theorem 

We recapitulate the development of this chapter in one 

theorem: ' 

Theorem 2.2: Consider a two-state Markov chain with 

transition matrix (Equation 2.52). Consider a random walk 

(n, ) defined on this Markov chain which starts at 
o' 

state i^ and takes steps a, b, c or d depending on which 

of the four possible transitions occurs. Let Q be a real 

number satisfying Equation 2.63 and define the function 

X^(t) as in Equation 2.60. Then there is a positive number 

T/ X^Cr) < If with the following property. 

If (n:) >0, then, given t, there exists n(e) such 

that, for all n>n(t). In XJ^(T7) - e < J Pr{ ̂  ̂ >nQ} < 

In (T) + e. 

In view of known analogues of Equation 2.58 for general 

primitive Markov kernels, for example in Harris (1964), and 

Debreu and Herstein (1957), we expect general versions of 

this theorem to hold as well. 
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III. ALMOST-SURE POSTERIOR CONVERGENCE AND ITS RATE 

A. Introduction 

This chapter explores the rate of almost-sure conver

gence of the posterior distribution when the decision maker 

uses a Bayes strategy based on a prior that puts some weight 

on the true state of nature The two main assumptions 

are (1) that is positive and (2) that there is a "prior" 

interval about unity where the Bayes strategy is state-

stationary. Certain other assumptions also are made, but 

are verified for a certain low-dimensional case in sections 

C, D, and F, 

The general idea is to follow the early course of the 

posterior by means of a result of Dubins and Savage (1965a), 

and to then follow its eventual "state-stationary course" 

by means of the material of Chapter II. 

B. Setting of the Problem In the (NXKXL)-Case 

The model will involve: 

1. A finite state space with N states 1,2,...,N. 

2. A finite number of actions [1,2/...,K} available 

for the decision maker in each state. 

3. A prior knowledge about the transition matrix used 

by the process, in the form of a finite set of 

(N.KXN) generalized stochastic matrices 

. . . . . .^-k,... together with a prior 
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probability distribution {-q^, fy*, 

.T]j^}/ with the matrix in fact governing the 

process. This may be represented as follows 

Ty = Prob[ ̂  

/ 

^2 

and S % == 1. 
all/ / 

4. A (N.KXN) reward matrix^^ 

The decision maker observes the process every time unit 

^0,1,2,...j, makes his decisions and collects rewards. This 

can be represented by a decision tree, with part of it shown 

in Diagram 3. 

Let us define 

= The state of the system at time t (or at the 

beginning of period number t+1) 

e {1,2, 

t £ {0/l/2/«.a^ # 

k^ = Decision taken at time t or at the beginning of 

period number t+1 

k^ £ {1,2, 

t  £  { 0 , 1 , 2 , «  



45 

stage (n) 

stage (n-1) 

stage (1) 

stage (0) 

A decision and reward nodes 
O chance nodes 
-H»-decision made 
—». state materialized 

k, , 
reward r„ " „ are collected immediately after the transition 

Xjj 2 — hîO/1^2/ « «»fn 

Diagram 3. Part of the decision tree for n stages 
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After n periods of times we will have a system state 

history 

= {xq,XJ^,X2/.. ./X^} 

The likelihood of that state history will depend on^ 

and we obtain 

kg k^ k^ 

(XQ,XJ^,X2 = /Pxq,X^ '/Px^^xg * * V^^^t'^'t+l 

K 1 
... ,p/-^ X (3.1) 

/ *n-l'*n 

where 

is the probability that the system is in state x^^^ time 

t+1/ given that ̂  underlies the process, and that the sys

tem is in state x^ and alternative k^ is chosen at time t. 

Let us also define the transition count matrix 
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^11 ®12 

^21 ̂ 22 

1 1 
%2 

k k 
^21 22 

_k k 
^ ̂2 

nfi 11^2 

r,K „K 
°m ̂ 2 

ij 

n: IN 

n; 
2N 

„1 
^N 

n. IN 

n: IN 

^k 
^N 

n. K IN 

n K 2N 

„K 
^N 

action 1 is taken 

action k is taken 

action K is taken 

(3.2) 
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where 

V 
= the nwnber of transitions observed from state i 

to state j when alternative k is chosen in 

state i. 

Note that 

K N N -
Z 2 2 n. . = n . 
k=l j=l i=l 

After the decision maker observes the process for n periods 

of time, he should be able to adjust his prior knowledge ac

cording to the resulting state history, " ' "^n^ ' 

The resulting posterior knowledge is quantified by a new 

probability distribution {T]£/ T]^/ . T)£} • 

The object of this chapter is the study of the rate of 

convergence of this posterior distribution to {0,0,...,0, 

...,1,...,0} where unity occurs at position/*. 

The (posterior) probability distribution f\2" " ' 

is given by 

V = ^2 J V^' 

(3.3) 

and in particular. 
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+ • « . + T[̂  ̂ S^Xg/Xj^/X2/ • • • + • • • 

+ q^z^Xg/X^^Xg, ..., x^X^) ] 

'V<;PX°,X^ •• V'Px°'J,X„'/tni(lPK°,x^ ••• 

]c 3c 

+ — +  V  ' / P x %  •  • • /^Ci'V ̂ • • • 

, J^O 
^L L XQ,x^ '"L x^_2,x^ 

0 _ n-1 j-j ... (3.4) 

(^) "" ] + ... 
s-Q/^l *n-l'*n 

,p -p 
+ T] [.fc) • . • (fe) ]+...+ Tl * + 

y" 7P /p 
Xq/XI *n-l'*n 

^0 _ ^n-1 

+ (%) ••• (%) ]] ••• (3-5) 

^ *0'*1 ^ ^-l'*n 
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3c 
where we have assumed > 0/ all and for example 

Now let us look at the quantity 

]c 3c 3c 

k 

/ "'""ij/k ""/P'ij 

r V /P 
T] exp[ 2 n. . In(^) ] ... (3.6) 

V 
where, as defined above# n^^ is the number of transitions 

from state i to state j under alternative k. 

The e:q)onent of the quantity (2.6) can be viewed as 

1 
where the joint distribution of the Z is such that the a 

conditional distribution of any^Z^, given all previous Z's, 

is one of the K.N distributions given in Table 1. 
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Table 1. The set 

Distribution 
Name 

Domain of 
Distribution 

Probabilities 

AI 

/̂ ll 

/P / 1 

IN ~ /^IN 

I I Z 

/Ï 

k 
Ml 

1 • : 

/P ̂  _ K 

/P ^ K 

/Fm 
/P ̂  _ K 

/P ^ K *pK 
/^NN 
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By the above explanation and in reference to Table 1, 

the quantity 

n 
2 yZ 

can be looked at as the sum of n steps of a "mixed" random 

walk featuring a set of (K.N) conditional distributions 

governing the steps of the walk : 

$ (3.7) 

(N.K) X 1 

involving probabilities taken from and step sizes taken 

from the following matrixj^ 



53 

1 

2 

N 

1 

2 

= : 

N 

1 

2 

N 

1 al 
/*11 /®12 /®1N 

/®21 /®22 /^2N 

• / ij • 

/%L /^2 
... 

I 

gk ak 
/®11 /®12 ... a^ /®1N 

gk a^ 
/^21 /^22 

ak 

a^ /®2N 

/^ij • 

k k 
/% /®N2 

ak 
/®NN 

: 

gK K 
/^ll /®12 /®1N 

aK gK 
®21 22 

aK 
/ 2N 

Xj I 

K K 
/%1 /%2 

a^ /®NN 

1 

k 

K 

... (3.8) 

The conditional expectation of^Z^# given that it is 

k " 
governed by the conditional distribution / is : 

^ ... (3.9) 
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and can be shown to be negative, and so also the expecta

tion of the sm 

The proof will be left to the next section when the 

special case (It=2, K=2, L =2), is considered. 

Equation 3.5 may now be written as 

V* 
n n n 

T]j^»e3^j( 2 *exp( 2 ^Z^) + . • . •"i"T]j^.e2i^( 2 
cc— 1 cc— 1 cc— 1 

(3.10) 

It can be shown that each of the sums 

n 
2 yZ , (3.11) 
i=l ^ 

V/ other than /% will tend to (-«>) as n tends to o®/ and thus 

lim T]'* H- 1 
n_+ » ' 

t 
: 

lim x\*. -+ 0 , V / other than/*. (3.12) 
n-j. 00 ' 

This will also be considered below in tbe above special case. 
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C. Posterior Convergence; The Special 

Case (N,K,L) = (2,2,2) 

Consider without loss of generality the special case 

with *=2, i.e., when the state space consists only of the 

two states 3_ and 2j with K=2, i.e., where there are two al

ternative actions in each state, and with 1^2, i.e., where 

there are only two generalized stochastic matrices to be 

considered, /( and with corresponding prior distribution 

t], d-t]). 

The decision maker's prior knowledge about the process 

is that there are two generalized matrices, |(, of which 

one will be used by the process. However our analysis pro

ceeds under the assumption that one of the two, sayII, 

underlies the process, which fact is denoted by =11, 

in accordance with previous notation. Finally we assume 

that the decision maker is a Bayesian, putting prior T] on 

TT 
11 

tt' 
21 

tt 
11 

tt 
21 

ir 
12 

tt 
22 

TT 
12 

IT 
22 

k=l 

(3.13) 

k = 2 

and prior l-q on 



56 

1 1 
Pll P12 

1 1 
P21 P22 

2 „2 
Pll P12 

2 2 
P2I ^22 

k=l 

(3.14) 

k=2 

Again, let the state history be - (x^/X^/X2/. • •/X^) 

and let 

1 „1 
^11 ^12 

1 _1 
^21 22 

2 2 
'^ll "12 

2 2 
^21 22 

(3.15) 

be the corresponding transition count matrix. Then the 

likelihood of the sample state history can be written 

n-.-, n Hi', 2 ^^22 ,Tr, _ Ai A2 xy)l)= "•-•('^22 

and 

^(X„-X^,X2 V^) ̂ 

and the posterior probabilities of /I and ^given the state 
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history „ are O/ n 

n' = 
n'J^(Xo/Xl'X2' ' • • 

2 V n^i 

2 -1. ^ 2 , n. . 
q- n ("7.) ̂  + (i-n)' n (pfj ̂  
i/j,k=l i,j,]c=l 

T] 4- d-T]) 
2 
n 

Pij. 
(->-) 

i,j/k=l TT: 
IJ 

2 Pij ij 
T) + (l-i])exp[ Z ln(^j—) ] 

n 
T] + (l-r])exp[ Z Z ] 

a=l 

(3.16) 

and 

d-T])' = 1-n' / (3.17) 

where, as before, the quantity 

n 

il 
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will be considered as the sum of n steps of a "mixed" ran

dom walk governed by four conditional distributions 

with probabilities provided by the four rows ofll, and 

domains (step-size domains) provided by the four rows of 

the step-size matrix 

in(^) 
TT 
11 

21 

V 
21 

"11 

IT 
11 

21 

tt 
21 

MM 
ir 
12 

22, In(^) In(^) 
tt-" 

22 

12, in(^) ln(-^) 
tt 
12 

22, ln(-^) In(-t^) 
TT. 

22 

"11 

'21 

'11 

2 
"21 

'22 

'12 

'22 

(3.18) 

Thus, recalling earlier notation (Equation 3.9), 

2  P i 1  
= % ln(-y4' -""7. 
j=l TT-^ J 

Ij 
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E[Z /Z £ Tj)?] 
a a ^ 

o ^2 
Po -i O 

= 2 In( ^ ) ' IT . . (3.19) 
j=l 2J 

It may now be observed that 

E[Z^/Z^ £ ij>^] , i,k=l,2 

3c 
is a continuous function of attains a maximum value 

equal to zero when = ^i' ̂nd is negative otherwise. 

In other words its maximum will occur when the matrices 

and H have identical elements. The above fact, related to 

likelihood maximization, may be proved as follows. Let 

tii = Eiz^/Za ^ *i] 

= • -^1 + ln(^) . -^2 

fil. _k . 
= '"il + 1=1^) • 

il ~ il 

(3.20) 

Then, for 0 < < 1, 
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."ti. i-'i] 
l-tr) - ( P) (3.21) 

aPu ' Pii i-Pii 

= 0 

: 

pJl -

jiJ = 0 at (3.22) 

and 

_ a 
(apj)2 dpk^ etpf^ 

tiê. -
"^11 Pii i-Pii 

Thus the R.H.S. of Equation 3.20 has a unique maximum 

ab p^^ = in the open interval 0<p^^<l, where in fact 

it is zero. Since, in addition. Equation 3.20 tends to - •» 

Ic for tending to zero or one, it follows that Equation 3.20 

is nonpositive in the corresponding closed interval, and 

zero only at p^^ = Kullback (1959) has studied general 
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versions of such information inequalities. Since the value 

jj,^ has this characteristic then the sum 

n 
Z Z 
a=l ^ 

has a nonpositive expectation and 

, n , 
n-{min[}j, . ]} < E[ Z Z ] < n*{max[u .]} • (3,24) 

i,k ^ a=l ^ i,k ^ 

D. Rate of Almost-Sure Convergence 

of the Posterior Distribution 

Consider the "mixed" random walk 

n 
S Z 
a=l " 

underlying the decision process that has i)een introduced in 

Section C. The evolution of this random walk involves not 

only its partial sums 

n 
2 Z 
a=l ^ 

on the real line, but also the states 1 and 2. Hence a 

more detailed description of the progress of the walk in 

the first n steps involves both the partial sum achieved, 

call it 
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^ • i 

and the current state, call it i^. This more detailed 

vector description ( i^) will be of use in this section. 

The purpose of this section is to show that the sum 

tends to (-») almost surely as n approaches », and hence 

that the posterior T]' tends to unity; in particular the 

rate of this convergence will be examined. Note that the 

'sum determines the posterior (Equation 3^16) and con

sequently the decision maker's choice among the available 

alternatives, as indicated in Equation 1.10. 

As indicated in Chapter 1/ it will now be assumed that 

there is a posterior neighborhood of unity, i.e., a neigh

borhood ,^:[t)^,1] for the posterior r\', where the Bayes 

policy is state stationary. This means that, whenever the 

posterior is in a particular decision k(l) is called for 

by the Bayes strategy when the process is in state 1, and 

a particular decision k(2) is called for by the Bayes 

strategy when the process is in state 2. In view of the 

correspondence between the partial sum and the posterior 

T]' (Equation 3.16) this assumption can be reformulated as 

follows: there is a value < 0 with the property that, 

given ( i^) with ̂  the next step materializes 

in accordance with one specific square transition matrix and 
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a corresponding conditional probability distribution. In 

other words, conditionally on any with , 

the probability of any event ^ involving the further vector 

states of the random walk may be computed as if the Markov 

chain underlying the walk were stationary (indeed as if 

were a stationary Markov process) , as long as ^ 

belongs to the event 

• (3-25) 

The (2 X 2) transition matrices associated with the 

stationary situation mentioned above are denoted by and 

Pg with corresponding posterior probabilities T]' and (1-T]') 

respectively where 

IT 
s 

and 

^s 

The corresponding step size matrix is 

TT .k(2) 
21 

v k(2) 
22 

(3.26) 

(3.27) 
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] E 

k(l) k(l) 
*11 U2 

k( 2 )  k (2 )  
^1 "22 

ln(-

-3c(l) 
?11 

V k(l) 
11 

) ln( 

Zn(^£) ln(^) 

(3.28) 

The main idea of the procedure adopted in this section 

is to exhibit a boundary coiiçjosed of three segments 

and with the property that stays below with 

probability near 1. This boundary leads directly to the 

main theorem of the chapter which states, essentially, that 

with probability near 1, TJ' approaches unity at an exponential 

rate determined by the "eventual" expected size of the 

steps Z^. 

The construction of the first part of the boundary (-é^) 

is based on a theoran of Dubins and Savage (1965a, 1965b) 

which is also applied in an article by Dubins and Freedman 

(1965). Following will be a restatement of the Dubins-

Savage theorem without proof and with appropriate changes 

in wording to suit the present exposition. 

Theorem 3.1: Let Z2^,Z2/• •. ,Z^, ..-/Z^^ be a real valued 

stochastic process. Let be the conditional expectation 

of given the past and the conditional variance of 

given the past. Suppose that for every a, is finite 

almost surely. (No assiniç>tion is needed about V^.) Let 
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a^/ ag be positive nimbers. Then the probability that, for 

all n, 

(Z^+Zgf •. .+Z^) < a^i- (iij+ii2^' • + @2 ̂^l''"^2^ * * 

^1^2 is greater than or equal to ,,^ ̂  . (3.29) 
±+aia2 

Using the notation of Section C of this chapter let 

^ = max [)i^} i=l/2;]c=l,2 (3.30) 
i,k 

be the maximum of the expectations of the conditional dis-

tributions i|)^. One may note that Equation 3.30 in^lies, 

viewing our random walk as the process of the theorem, that 

pi > max [fx } a=l,2,...,n;Vn . (3.31) 
a ® 

Let also 

V= max {var(Z ) jz e A , i=l,2;k=l,2 (3.32) 
i,k a a i 

be the maximtim of the variances of the conditional distri-

V 
butions Note also that Equation 3.32 inç)lies that 

V > max [v } 0=1/2,.. .,n;Vn . (3.33) 
~ a ° 

The inequality in Equation 3.29 then implies that 

Pr{ S 2 < + iK^I+ajV) ; all nj > . (3.34) 
cc—J- 1 2 



65 

Of special interest for us are choices for and a^ such 

that a^ is small enough that + agV is negative, and a^ is 

large enough so that 

l+a^a2 

is arbitrary large. 

Given such values for 82 and a^ (i.e., a^ "small 

enough" and a^ "large enough"), the linear expression 

aj^ + n(jï + atgV) provides us with the portion of our 

boundary, as is shown in Diagram 4. 

The following remarks may be made concerning 

is by itself a possible boundary providing a rate-of-

convergence upper bound arbitrarily near jï for which 

in turn provides an exponential rate-of-convergence upper 

bound for T] '. However we choose to utilize only to 

take us through the "nonstationary" region of our random 

walk, relying on the further construction of the boundary 

portion .5^ to provide us with a sharper r at e-of - convergence 

upper bound. 

For the construction of the next part _^we 

consider the maximimum step size a*, which must be positive, 

kfs) 
of the four "stationary" steps a^j discussed earlier in 

this section (Equation 3.28): 

PÏ1" pM" pM" , 
a* - max{ln(^^)), ln(^(i) )/ ^^^^(2)^^ * ^^.35) 

11 12 21 22 
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We then fix on some large number My to be specified later on^ 

and extend the linear boundary segment to the highest 

point that (1) is at least Ma* below the level and 

(2) has an integer abscissa, see Diagram 4. The abscissa 

of the point 0^, the sarrç>ling state n^, is then given by 

the equation 

^ - Ma* - a^ 
Hg = [ ] + 1 (3.36) 

? + agV 

where [ ] denotes "largest integer less than". 

The point 0^^ : [n^, a^ + n^CP+a^V) ] actually is the 

"right" end point of the boundary segment as well as 

the "left" end point of the boundary segment The 

"right" end point of the segment will be located at the 

point 

0£ : [n^ + M/ + iig* (l-i-+a2V) + Ma*] , (3.37) 

which according to the value of n^ in Equation 3.36 will be 

in the stationary region, i.e., below or at the level 

With the above locations of 0^, 0^*, the boundary portion 

of ̂  will be a line segment O^-O^* with positive slope 

a* defined by the Equation 3.35. One may further notice 

that a random walk proceeding only by steps of magnitudes 

a^j^^ which starts at 0^ cannot reach the point 0^* unless 

it proceeds exclusively by M steps of size a*. 
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^ = ao+n-m 

n +M 

range of nonstationary 
policy 

: slope a 

range of stationary 
policy 

supplementary \ 
boundary 

Diagram 4. The boundary 
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As for the third segment let m be defined as in 

Equation 2.35 with the following identifications: 

(1) 6^ 

(1-62) 

(1—©2^ 

e. 

41" 
TT' 
.k(l) 
12 

TT .k(2) k(2) 
21 TT 22 

(3.38) 

(2) The step sizes a, b, c and d are replaced by the 

elements of the matrix of Equation 3.28. 

In other words let m be defined by 

m = 

]k(l) 

[1-4'"] 

12 

U 2 )  

• IT 
.k(2) 
21 

k(2) 

+ Lln(-^)] • ̂ ^^'3 
IT 
.k(2) 
22 

(3.39) 

The third boundary segment is another linear seg

ment, defined as follows in terms of m s it starts at 0^* 

and extends downward with a negative slope m = itH-s. This 

segment of the boundary may be looked at as a portion of a 
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line given by the following equation: 

= a^ 4- n . m (3.40) 

as demonstrated in Diagram 4. One would notice that, with 

reference to the coordinates of the point 0^* given in Equa

tion 3.37 together with the equation of the line in. 3.40, 

the value of a^ is given by: 

a^ - a^^ + n^fpfagVl + Ma* - (n^+M) • m (3.41) 

which is greater than a^. It is clear that this "modi

fied" boundary described by Equation 3.40 will also be 

an upper bound for with probability near 1 if is 

so. 

We are now ready to estimate the probability that no 

partial sum exceeds the boundary ^ 

composed of the successive linear segments and 

•-^3* 

Let .5/^ be a possible value of at n-n^, given 

that .^ has not exceeded in the previous n^ steps. 

Consider now the conditioning event that ( 3^, i^) = 

(3^,ig) at n= n^, i.e., being at the point 0^, s:l,2,..., 

with coordinates (n^, while the process is in state 

ig, ig:l,2. In keeping with remarks made earlier in this 

section, the probability that, during its progress beyond 

(n^, V^), .,9^ never exceeds may be confuted or 



71 

bounded as if the stationary matrix (Equation 3.26) under

lies the walk/ with transition-dependent step sizes given 

by Equation 3.28. Under this sittpler model the material 

of Chapter II can be brought to bear, and we may claim, for 

n > n^/ that there exists a p < 1 such that 

(n-n_) 
at n = n j < p . (3.42) 

Since the above is an excess probability for the sup

plementary boundary segment L- starting at (n ,.,5^) and falling 
s s s 

off with slope in, and since is below it follows 

that for n > n^, also 

Pr{v^ exceeds ̂  i^) = ( .^,ig) 

(n-nj 
at n = n ] < p . (3.43) 

But now was so constructed that, for n - n^ < M, 

the left hand side of Equation 3.42 is in fact zero. Hence 

Pr[.5^ exceeds -9^ - for some n > n^j 

at a " 

< 0+0+...4-p^+ + p^^ + . . . 4- p ® 
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n-n +1 n-n„+2 
+ p +p + 

00 (n-n ) 
Z p 

(n-ng)=M 

M 

Xn^ (3-44) 

Putting this bound together with the facts deduced earlier 

for aiid conditioning on the process starting at the sure 

initial vector state (O/i^) we find: 

Pr[ does not exceed for any n] 

= 2 Pr| 3C. does not exceed for any n < n„ ° 1 y - s 

— ~ ( at n = n^] • 

Pr[ does not exceed for any n > n^j 

Sf does not exceed for any n < n and n JL — s 

= ( ̂ ,ig) ai n = n^} . (3.45) 

Now the Markovian nature of ( i^) allows us to write the 

following: 

Pr[ does not exceed for any n > n^j 

SC does not exceed for any n < n^ and n X •* — s 
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at a = "si 

1 exceeds -9^ - for some n > n^ 

(^,y = at n = n^} 

M 

> [1 - (3-46) 

in view of 3.44. Then, in view of 3.45, 3.46, 

Pr{3^ does not exceed for any n] 

> ^2 PrfSC does not exceed for any n < n 
- (S^,±J ^ ° 1 ^ - s 

s s 

.M 

âSâ ( at . [1 - (3.47) 

P« 
=  [ 1  -  ̂  ]  .  P r [ d o e s  n o t  e x c e e d  f o r  any 

n < nj 

P* 
> [1 - ^ ] . Pr{j9^ does not exceed for any n] 

- - ^1^2 
^ [1 - ÛZFT] - Crr^j = 1 - 6 . (3.48) 

'1"2 

Equation 3.48 implies that the partial sum .tends to 
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- oo as n tends to with probability at least (1 - 6). 

By appropriatly choosing the values of M, a^ and ag, the 

quantity (l-ô) can be macte as close to one as we please. 

With reference to the "modified" botindary given 

by Equation 3.40 and illustrated in Diagram 4, a convenient 

summary of all the above can be provided by the following 

theorem: 

Theorem 3.2: Given e and 6, there exists an A(e,ô) 

such that 

Pr{.'>^ < n(m+e) + A(e,ô), all nj >1-5 . (3.49) 

In fact A { e , b )  is just the quantity a^ of Equation 3.41 for 

a^ and M choosen sufficiently large. 

Corollary 3.1: Suppose T] > 0 ; given s and 6 there exists 

B(G,ô) such that 

Pr[l-T];;^ < B(e,6) (e"Ve)^, all n} > 1-Ô . (3.50) 

The corollary follows from the theorem and relation 

3.16 between the posterior T)^ and the partial sum 
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IV. POLICY CONVERGENCE 

This chapter considers a sense in which the Bayesian 

decision maker's total infinite-horizon reward nearly equals 

the total reward of the decision maker who known the true 

state of nature, in a sense much like that usually asso

ciated with one and two-armed bandit problems. The plan 

here is to combine our knowledge regarding the behavior of 

the posterior distribution with facts concerning the re

currence of the situation in which two decision makers find 

themselves in the same process state. These last facts 

come from the following lemma. 

Lemma: Consider a Markov chain over a finite state space 

. 4^composed of N states, governed by a positive stochastic 

transition matrix. Consider as well a second process 

on the state space the process X^, such that (Assump-

tion A) < 

Pr{X^ = Y^ i.o} = 1 . (4.1) 

Proof 4.1: Let [puj] denote the transition matrix X^ and 

define 

c E min p. . . (4.2) 
i.j 

Let (yn^fl"^irH-2' ' ' ' ® point in the M-fold Cartesian 
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product ... . Then it is clear that 

(4.3) 

Hence, letting y, Y and X denote the vectors 

\H-M^ ' ̂^irri-l'\H-2' * ' * '^itH-M^ ^^irri-l'^irri-2' * ' *'^irri-M^ 

respectively, one finds 

Pr[X/Y} < Z Pr[X/y}.Pr[Y= y} < (1-s)^ . (4.4) 
y 

Hence 

"v: 1,2,...} 

i 1 ̂  V < M} < (1-e)" (4.5) 

in view of Equation 4.4. 

In other words, choosing M arbitrarily large, one 

concludes that 

= ° (4-6) 

or 

P'^CVv^'Vv'" ^ 
(4.7) 

Now let us define the events and 01 as follows m n 

^ = ^^nH-v " ̂nH-v" ^'2,...] (4.8) 

/ 
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and 

% = K = • (4-9) 

Then Equation 4.7 implies that 

00 00 00 

n A U ^ (4-10' 
itt=l nt=l v=l 

or equivalently 

Pr[ ̂  i.o.} =1 . (4.11) 

We now intend to show that, in a certain sense, a 

Bayesian decision-maker is as well-off in terms of total 

discounted rewards as a decision maker who knows the true 

state of nature, if the discount factor § is large. 

Consider then the special case of a Markov decision 

situation with two possible states of nature, involving 

two possible generalized transition matrices il and a 

certain discount factor |3, and a certain reward matrix 

Consider in this context a first decision-maker 

who knows that JI applies. In accordance with the work 

of Howard (1960), that decision maker will possess a sta

tionary optimal policy which specifies a certain action 

alternative k(i) whenever in state i. Accordingly the suc

cessive states that occupies when acting optimally will 
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be generated by a Markov chain with a square transition 

matrix ]. 

Consider as well a second decision maker occupy

ing successive states X^, who does not know that the true 

state of nature is / ( , but rather proceeds as a Bayesian 

optimizer using a sequential Bayes strategy with prior prob

abilities T] and (1-T]) on 11 and respectively with T] > 0. 

Suppose that the situation is such that the "state-

stationary assuir^tion" of Chapter III is satisfied. In 

other words suppose that there exists an interval [t]^,1] 

about unity with the property that the Bayes strategy is 

state-stationary for T]' e 

We note, since policy is in fact a Bayes policy 

for Ti=l, that the "state-stationary assumption" in fact 

implies that and will be operating under the same 

state-stationary policy whenever 's posterior T]' is in 

^ i.e., that, whenever T]' is in they both will be 

using the same policy k(i) and consequently will both be 

subject to state transitions in accordance with the 

stochastic matrix ]. 

Hence it follows from the work of Chapter III that, 

if )( > 0, then with probability 1, and eventually 

will operate under the same "state-stationary" policy k(i). 

At the same time, in view of the lemma at the beginning of 

this section, and will find themselves in the same 
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state infinity often with probability 1 under Assumption A. 

Hence, putting together the two claims of the last 

paragraph, we conclude that, with probability 1, there will 

be a finite time period (or number of sampling stages) n* 

with the following properties : 

1. The decision makers find themselves in 

the same process state at n*. 

2. From n* onward and follow the same "state-

stationary" policy k(i). 

These two properties of n* can be made to reflect the 

near-equivalence of the two strategies in several ways. 

For example, suppose for purposes of illustration that 

consists of only two states (i.e., N=2) and that there are 

two available alternative actions in each state (i.e., 

K-2). Consider a measure space whose elements are 

quadruple sequences 

CÛÎ *^1' ^1' ̂ 1* ^2' ̂ 2' ̂ 2' ̂ 2* ^3' ̂ 3' ̂ 3' ̂ 3* ••• 

(4.12) 

of ones and twos, with probability assigned to the usual 

corresponding O'-algebra of co-sets assuming independence 

among all sequence elements, with 

Pr[X^ = Ij = l-Pr[Xj^ = 2] = 

Pr[Y^ = 1} = l-Pr^Yg = 2] = 
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Pr[Zj^ = 1} = l-Pr[Z^ 

Pr{v^ = 1] = 1-Pr[v^ 

This measure space yields a measure space for pairs 

of state-histories arising under any policy pair, in par

ticular the optimum-policy pair for the two above-mentioned 

decision makers and 

In addition, this measure space of course gives cor

rect state-history probabilities for individual policies. 

For example consider the policy that recommends the 

second alternative in the first state and the first alter- . 

native in the second state. Then, assuming that the 

process starts in the first state, then 

= Pr{all CO leading to (1;2;1;...) under 

= Pr[all CÛ of the form (unspecified, 2,unspecified, 

unspecified; unspecified, unspecified, 1, unspecified; 

...)] (4.14) 

the summation of the probabilities of all co's with 

2 in the second location and 1 in the seventh location 

^ ̂ 12^L • 

= 2} = TT^ 
21 

2} = tP" 
21 

(4.13) 
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Asstime how that Assumption A applies for our meas

ure space Then the n* of page 79 exists with prob

ability 1. In other words there is an co-set of prob

ability one all of whose members possess an n*(co) sat

isfying properties 1 and 2 on page 79. But, 1 and 2 

iirply in .y^that the state and decision histories for 

and will coincide from n*(où) onward. In other words 

there will be a set of co ' s of probability 1 for which there 

is an n* (co) such that the transition rewards for and 

coincide from n* (co) onward. 

Now let us make the further assumption that the re

wards are bounded away from zero: 

0 < r < r^j < R , i,j,k:l,2 (4.15) 

where 

R = max r?. 
i,j/k ^ 

V 
r = min r. . 

i,j/k 

Then/ in view of the comments following Equation 4.14, 

with probability 1 there is an n* (co) sucih that 
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n*-l 

1-^1 (P) , icîo 
< ̂  (4.16) 

k=l 

where -^^((3) is the total discounted infinite horizon 

reward gained by 

Finally, if we assume that n* may be chosen inde

pendently of (3 for p in some interval (^^,1) near 1, we 

have that 

Pr{ lim = 0} = 1 (4.17) 
^-fl— ( p ) 
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V. SUMMARY AND SUGGESTIONS FOR FUTURE STUDY 

A. Problem Structure 

Considered is a system governed by a "mixed" Markov 

chain with uncertain transition probabilities. The system 

can be exclusively in one of a finite number of states, N, 

with the provision of a finite number K of possible alterna

tive actions in each state. An infinite operating time do

main is considered with a discount factor 0 < p < 1 such 

V 
that a reward r^^ received immediately after the nth transi

tion, is discounted by 

Two decision makers are considered; one is a Bayesian 

optimizer who considers a prior probability distribution 

over a finite set of generalized stochastic (K.NxN) matrices 

] which assigns some weight to the actual matrix 

governing the process; the other decision maker knows 

the matrix and acts optimally accordingly. 

B. Findings 

A summary of the finding, about the above-described 

system is given below: 

1. As the Bayesian decision maker proceeds in 

time, his posterior converges almost surely to a distribu

tion degenerate at provided the latter is positive. 

The topic of large deviations of Markov chains is introduced. 
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and the probability that, the posterior maintains, at least 

a certain exponential convergence rate in a certain "state-

stationary" region is thereby estimated. Based on this de

velopment, a boundary is constructed 

for a related "mixed" random walk which, under an additional 

assumption, provides a rate-of-convergence bound for the 

posterior. 

The detailed analysis is carried out just for the 

special case (N=2, K=2, L=2). 

2. The total discounted reward earned by the system 

under the supervision of a Bayesian decision-maker is almost 

surely, for p -+ 1-, relatively equal to that earned by an

other decision maker who knows and acts optimally ac

cordingly. 

C. Suggestions for Future Study 

The following are some suggestions for future studies. 

Some of these suggestions concern strengthening some of the 

assunç>tions made in this thesis; others concern extensions 

of this analysis which were not pursued due to time limita

tions . 

1. Development of tighter bounds for the posterior 

convergence in the "state-nonstationary" phase; possibly 

through a study of the large deviation principle. 

2- Study of the large deviation principle for Markov 
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chains under milder assxanption about the transition matrices 

involved. 

3. Confirming the assiinç)tion concerning the existence 

of a "state-stationary" phase. 

4. Study of the dependency on the discount factor p of 

the posterior development. 

5. Free Chapter IV of its several assumptions, possibly 

by changing the sense of €he near equality of the total re

wards to and ^2' 

y 
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