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Using variance components to estimate power
in a hierarchically nested sampling design

Improving monitoring of larval Devils Hole pupfish
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Abstract We used variance components to assess
allocation of sampling effort in a hierarchically nested
sampling design for ongoing monitoring of early life
history stages of the federally endangered Devils Hole
pupfish (DHP) (Cyprinodon diabolis). Sampling
design for larval DHP included surveys (5 days each
spring 2007-2009), events, and plots. Each survey
was comprised of three counting events, where DHP
larvae on nine plots were counted plot by plot. Statistical
analysis of larval abundance included three components:
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(1) evaluation of power from various sample size com-
binations, (2) comparison of power in fixed and random
plot designs, and (3) assessment of yearly differ-
ences in the power of the survey. Results indicated
that increasing the sample size at the lowest level
of sampling represented the most realistic option
to increase the survey’s power, fixed plot designs
had greater power than random plot designs, and the
power of the larval survey varied by year. This study
provides an example of how monitoring efforts may
benefit from coupling variance components estimation
with power analysis to assess sampling design.

Keywords Devils hole - Power analysis - Nested
sampling design - Variance components - Pupfish

Introduction

Diversity of freshwater fishes is at risk in North America
(Ricciardi and Rasmussen 1999) with an estimated 39%
of freshwater and diadromous fishes considered endan-
gered, threatened, or vulnerable (Jelks et al. 2008). The
imperiled status of many freshwater fish species makes
understanding population trends imperative to success-
ful conservation. Monitoring populations can help pri-
oritize management actions, thereby promoting efficient
use of conservation funds (Nichols and Williams 2006).
For monitoring to be useful in detecting population
trends, the survey design must have high statistical
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power. Statistical power in population monitoring rep-
resents the probability of detecting a real change in
population abundance. Survey designs with low statis-
tical power have a high probability of failing to detect
population change and are likely to mislead managers
by falsely concluding a population is stable (Peterman
1990; Taylor and Gerrodette 1993; Legg and Nagy
2006). Incorporating estimates of statistical power is
therefore essential when choosing an appropriate sam-
pling design structure (Legg and Nagy 2006; Field et al.
2007), which in turn affects monitoring schemes.
Trends in fish populations are difficult to detect due
to high spatial and temporal variability in population
abundance (Silliman 1946; Gibbs et al. 1998; Sammons
and Bettoli 1998), so statistical power in surveys of fish
populations tends to be low compared to power in
surveys for other organisms (Gibbs et al. 1998). For
instance, Cyr et al. (1992) estimated that about half of
the surveys that focused sampling on the early life
history stages of fish had less than 80% power to detect
a one order of magnitude change in the abundance of
larvae. Low power in surveys for larval fish is regretta-
ble because mortality rate of larval fishes is often high in
comparison to mortality at later life history stages, thus
larval fish abundance may be an important indicator of
year class strength (Diana 1995; Sammons and Bettoli
1998). One technique for increasing power is to conduct
surveys at fixed locations if the spatial distribution of
the population is predictable between surveys (e.g.,
Quist et al. 2006). However, surveys with fixed sites are
less capable of detecting spatial patterns than surveys
with random sites located throughout the survey area.
The Devils Hole pupfish (DHP) (Cyprinodon diab-
olis) is thought to inhabit the smallest habitat of any
vertebrate species (Moyle 1976). It is endemic to Devils
Hole, a small limestone cavern located in southwestern
Nevada. In the late 1990s, the adult DHP population
declined for unknown reasons, reaching a low of just 38
individuals (April 2006 and April 2007). Although pop-
ulation records for adult DHP date back to 1972, very
little is known about its early life history stages.
Gustafson and Deacon (1997) and Lyons (2005) studied
the relationship between microhabitat characteristics
and abundance of DHP larvae. Although both studies
provided insight as to the distribution of larval DHP,
neither was able to detect meaningful relationships be-
tween habitat characteristics and abundance. Conse-
quently, surveys for larval DHP began in 2005 to
monitor long-term trends in the abundance of larval fish
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with the hopes that the data would help elucidate mech-
anisms associated with recruitment.

While estimating statistical power is fairly straightfor-
ward for simple survey designs, estimating power in
complex designs requires more sophisticated techniques
(Urquhart and Kincaid 1999; Larsen et al. 2001). Sur-
veys for larval DHP are hierarchically nested and include
samples, subsamples, and sub-subsamples. Decompos-
ing these sources of survey variation into variance com-
ponents can help determine the relative contribution of
factors to overall variation in the survey (Lewis 1978;
Matthews 1990; Morrissey et al. 1992; Kincaid et al.
2003). Increasing the sample size at levels of sampling
with high variance will result in a survey design focused
on minimizing variation, thereby maximizing the sur-
vey’s power to detect changes in the population
(Morrissey et al. 1992; Larsen et al. 2001). As a general
rule, increasing the number of samples will result in a
greater increase in power than increasing the number of
subsamples or sub-subsamples (Urquhart and Kincaid
1999). However, increasing the number of samples is
usually more cumbersome and costly than increasing
subsamples. In this study, we estimated variance compo-
nents for all levels of sampling in DHP larval surveys to
determine how altering sample size in a hierarchically
nested design affected statistical power. Then, we discuss
these findings as they relate to modifications of the long-
term monitoring scheme for the DHP. Other studies have
combined variance components estimation with power
analysis to quantitatively assess sampling designs.

Methods
Study area

Devils Hole is located in an open fault zone adjacent
to Ash Meadows National Wildlife Refuge, an oasis in
the Amargosa Desert in Nye County, Nevada. A fis-
sure formed by tectonic activity, Devils Hole is part of
a network of subterranean carbonate formations that
transport water to springs in Ash Meadows. The depth
of Devils Hole remains unknown, though divers have
explored down to a depth of 133 m without seeing the
bottom (Riggs and Deacon 2004). The DHP is the
only aquatic vertebrate species living in Devils Hole.
Pupfish habitat in Devils Hole can be divided into two
separate strata: the “shallow shelf,” a boulder face
approximately 2x5.5 m in area submersed under



Environ Monit Assess (2013) 185:405-414

407

0.2—0.7 m of water, and the “deep pool,” or the deeper
waters of the cavern where pupfish inhabit the upper
25 m. Except for a few extremely rare occasions,
pupfish larvae have been observed exclusively on the
shallow shelf (Gustafson and Deacon 1997), suggest-
ing that pupfish recruitment is highly dependent on
habitat conditions associated with the shallow shelf. In
addition, primary production and invertebrate biomass
are greatest on the shallow shelf (Riggs and Deacon
2004). While water temperature, pH, and conductivity
remain fairly constant in the deep pool at 32-33°C,
7.1-7.5, and 820 uS/cm, respectively (Shepard et al.
2000), the shallow shelf is more dynamic and experi-
ences greater fluctuations of temperature (32—34.5°C)
and dissolved oxygen (2-8 mg/l; Gustafson 1997;
Shepard et al. 2000; Lyons 2005). In addition, the
Devils Hole spawning shelf experiences large magni-
tude disturbances from earthquakes and flood events
(Lyons 2005), though the influence of disturbance
events on the DHP population remains unknown.

Survey design

Sampling effort in surveys for larval DHP was nested
and included surveys (conducted every other week),

Fig. 1 Sampling design structure for surveys of larval Devils
Hole pupfish. Left photograph Devils Hole spawning shelf with
placement of fixed plots represented by numbers. Upper left

counting events (conducted three times within a sur-
vey with 1 h in between each event), and plots (nine
observational units in an event). Larval surveys were
conducted by biologists from the National Park Ser-
vice, U.S. Fish and Wildlife Service, and Nevada
Department of Wildlife. Plots used in this study were
30x14.5 cm quadrants constructed from three pieces
of white polyvinylchloride (PVC) piping which had
been laterally bisected (Fig. 1). The three pieces of
PVC were lashed together by monofilament fishing
line. Bead spacers were placed on the fishing line to
maintain a 6-mm gap between the PVC halves. Gaps
allowed larvae to emerge from the sediment and settle
on the plot. The white background contrasted with the
darker substrate, thereby making small larvae more
visible and easy to detect on plots. Nine plots were
placed at fixed locations (Lyons 2005) on the floor of
the shelf a few hours before dusk to avoid disturbing
larvae during the survey (Fig. 1). Since DHP larvae
typically emerge from the sediment at night (Lyons
2005), surveys commenced 3 h after sunset. Observers
illuminated each plot with a headlamp and counted all
larvae present on the plot for 1 min. After observers
finished counting larvae on the nine plots (i.e., after
one counting event), observers waited until 1 h after

corner a photograph of the sampling apparatus. Right diagram
hierarchically nested structure of the sampling design
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the commencement of the first counting event, and
once again counted the number of larvae present on
the nine plots. This process was repeated once more
for a total of three counting events, each with nine
plots. Since the shallow shelf was small in area
(approximately 3x6 m), the plots sampled 3% of
the habitat available for DHP larvae.

Previous studies assessing temporal trends in DHP
larval populations have shown larval abundance to be
greatest in spring (Gustafson 1997). Similarly, although
spawning occurred 10 months out of the year, data
from 2007 to 2009 surveys show larval abundance
was greatest in early April, after which larval abun-
dance declined until early autumn when another,
albeit lesser, increase in larval abundance occurred.
Five dates in mid-March to mid-May were used in
our analysis (Fig. 2), because the large amount of
variation in larval abundance between different
seasons would have obscured comparison of pop-
ulation trends between years. We chose to analyze
abundance data from spring sampling dates only
because variation in larval abundance was greatest
and power was lowest during this season. As such,
estimates of statistical power from spring sampling
dates would be most conservative when larval
abundance estimates were compared within the same
season across years.

Statistical analysis
All statistical analyses were conducted in SAS® version
9.2 ® (SAS Institute Inc., Cary, NC). Larval abundance

was estimated from the mean number of larvae
detected per plot during each survey. We analyzed

Fig. 2 Estimates of average 1.5

In-transformed larval abundance because prelimi-
nary inspection of the data suggested that the
variance among plots within an event was not
constant, and that events and surveys had multiplicative
effects on the larval count. Values of 0 were replaced by
0.5 before In-transformation. Evaluation of residuals
showed that the log-transformation was reasonable and
that relationships between means and variances were not
sufficiently high to justify use of a Poisson distribution.
The model describing In-transformed abundance
includes year (6) and plot (5) as fixed effects; and
surveys (b), events (c), and plots (e) as random effects:

Ypwis(@) = #+ 0a B, + by(a) + Cus(a))

+ €p(u(s(a))) (1)

where parameters are distinguished based on year (a),
survey (s), event (v), and plot (p). The survey variance
component represents short-term temporal variability,
the event variance component is a larger-scale replicate
of spatial variability, and the plot variance components
represents small-scale spatial variability. Plots were trea-
ted in two different ways, corresponding to two different
survey designs. If the same plot locations were used
each survey (the fixed plot design), then plot effects
were considered as fixed effects. The error variance
was then the variance associated with each measure-
ment. If new plot locations were used each survey (the
random plot design), then plot effects (3,) were deleted
from the model; the error variance then included spatial
variability.

Variance components associated with each random
effect were estimated by equating observed and expected

larval density from mid-
March to mid-May from
2007 to 2009. Average
larval density was estimated
as the average number of
larvae occurring on plots
during each survey

1.0

Natural log of average number
of larvae per plot

= 2007
= = 2008
=== 2009
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mean squares using PROC MIXED in SAS 9.2 (Littell et
al. 2002). Equating observed and expected mean squares
is a method of moments estimation procedure and does
not require assumption of normality (Searle et al. 1992).
Estimated variance components were then used to assess
the effect of sample size on the variability in the mean
observation (Snedecor and Cochran 1980) in the follow-
ing equation:

2 2
o o o
2 p
o, =—"+——+ (2)
ng g Xn,  ngXn,Xn,

where 7 is the sample mean, 7 is the sample size, and o°
is the variance component for the level of sampling
indicated by the subscript.

Estimating power requires four pieces of informa-
tion: (1) an estimate of variance, (2) the specified
effect size, (3) the desired level of significance («),
and (4) the sample size. Variance of the mean was
estimated using the variance components equation
(Eq. 2). Effect size was the hypothetical difference in
In-transformed larval abundance between 2 years. For
example, an effect size of In(1.2) would estimate pow-
er to detect a 20% increase in abundance while an
effect size of In(0.8) would be used to detect a 20%
decrease. The effect size and estimate of variance were
used to calculate the noncentrality parameter from a
t-distribution with degrees of freedom equal to two
times the number of surveys minus two. Alpha was set
to 0.05 for all analyses, and the sample size varied
depending on the analysis. It is important to note that
this method assesses hypothetical changes in larval
abundance from year to year; it is ill advised to use
this method to retrospectively estimate power with
observed trends (Thomas 1997). Furthermore, we used
a linear model to describe larval counts because of its
relatively simple structure, which facilitates incorpo-
ration of multiple levels of sampling. Variance com-
ponents were estimated separately for all 3 years
(2007-2009) as well as for all years pooled together
to compare annual variability. For each year, estimates
of variance were used to calculate the power of the
sampling design used from 2007 to 2009 (i.e., the
power of five surveys, three events, and nine random
plots). In addition, the number of plots, events, and
surveys were manipulated to compare estimates of
power resulting from various sampling design struc-
tures. Lastly, power from surveys with fixed plots and
random plots were estimated by estimating variance

components from models with (fixed plot) and without
(random plot) “plot” as a fixed effect. Variance of the
mean observation was then estimated separately for
fixed- and random-plot designs using their respective
estimates of the plot variance component (Eq. 2).

Results

Estimating power for different sample size combina-
tions illustrated how increasing the number of samples
(i.e., surveys) had the greatest influence on statistical
power (Fig. 3). This result was expected, because
increasing the number of samples decreases the con-
tribution from every variance component (Eq. 2). A
more surprising finding, however, was that the sub-
sample (i.e., event) contributed negligibly to the over-
all variation in the mean observation. In fact, the
estimated variance component for events in 2008 and
2009 was negative. As such, increasing the number of
events had virtually the same effect as increasing the
number of plots. To test whether negative variance
components estimates could be attributed to the esti-
mation procedure, we re-estimated variance compo-
nents in SAS using restricted maximum likelihood and
type I sums of squares (i.e., proc mixed method = reml
and proc varcomp method = typel in SAS, respectively).
Variance components for event were negative using proc
varcomp and zero using proc mixed method = reml;
thus, we feel confident that the negative variance esti-
mate was not a result of the estimation procedure. For
years when variance components were estimated to be
negative (e.g., 2008, 2009, grouped years), the restricted
maximum likelihood method tended to provide lower
estimates of variance components for positive variance
components relative to the equating observed and
expected mean squares. Nevertheless, power estimates
from the from the two estimation procedures differed by
less than 0.001 for survey design consisting of five
surveys, three events, and nine random plots.

Surveys with fixed plots had slightly higher statis-
tical power than surveys with random plots, although
the difference in power between the two designs de-
creased as the total number of plots increased (Fig. 4).
The higher power of the fixed plot design was due to
fixed plot variance component being roughly 24% less
than the random plot variance component. Estimates
of larval density varied each year, with the greatest
densities of larval DHP occurring in 2007 and the
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Fig. 3 Statistical power to
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Fig. 4 Comparison of power from sampling designs with fixed
plots and random plots. Power was calculated from pooled
estimates of variance in spring 2007-2009 from sampling
designs with five surveys and three events
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lowest in 2008. Likewise, statistical power in the
larval survey varied each year; the survey had its
lowest power in 2007 and its highest power in 2008
(Table 1). The power to detect a decrease was always
greater than the power to detect an increase of the
same magnitude because the effect size was In-
transformed. Variance component estimates from all
3 years of data showed that the survey design with five
surveys, three events, and nine random plots had low
power to detect a 20% increase (1—/3=0.30) or
decrease (0.40) in population abundance, however,
power to detect a 50% increase (0.80) or decrease
(0.99) was relatively high.

Discussion

Other fish monitoring studies have assessed variance
partitioning at spatial and temporal scales in hierarchi-
cally nested survey designs. Gray et al. (2009) found
that variability in abundance of ten fish species in
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Table 1 Variance components and their associated estimates of statistical power in hierarchically nested surveys of Devils Hole pupfish

(DHP) larvae

Plot effect Total ()% Survey Event Plot Power 50% Power 50%
variance variance variance variance decrease increase
2007 Random 0.571 0.878 0.084 0.005 0.482 0.927 0.570
2008 Random 0.241 0.522 0.001 -0.015 0.255 1.000* 1.000*
2009 Random 0.335 0.631 0.059 —-0.004 0.280 0.985 0.726
All years Random 0.380 0.680 0.048 —-0.007 0.339 0.993 0.781
2007 Fixed 0.357 0.655 0.084 0.005 0.268 0.943 0.600
2008 Fixed 0.182 0.447 0.001 -0.015 0.196 1.000 1.000
2009 Fixed 0.299 0.590 0.059 —0.004 0.244 0.987 0.734
All years Fixed 0.301 0.593 0.048 —-0.007 0.260 0.995 0.800

Values were attained from In-transformed abundance estimates of DHP larvae from mid-March to mid-May. Power was estimates from
sampling designs with five surveys, three events, and nine plots. Power estimates calculated from variance components estimated using
restricted maximum likelihood (a method which constrains variance components to be greater than or equal to zero) did not differ from
power estimates from the ANOVA method by more than 0.001 (not shown)

 The variance component estimates in 2008 were very low and thus caused problems in estimating power for some sample size combinations

in 2008 (not shown)

southeast Australian lakes was greatest at the lowest
level of sampling (sites located 50—100 m apart) rela-
tive to larger spatial scales (1-20 km apart). Similarly,
variation in reef fish assemblages in northeastern New
Zealand was greatest between transects (tens of
meters) compared to sites (hundreds to thousands of
meters), locations (hundreds of kilometers), and years
(Anderson and Millar 2004). In a literature review of
39 studies of algal and macroinvertebrate abundance
in coastal habitats, variability in biomass was typically
greatest at small spatial scales (Fraschetti et al. 2005).
However, the relative magnitude of variability in
abundance of eight different taxa of benthic macro-
fauna in Botany Bay, Australia, was variable across
different spatial scales (Morrissey et al. 1992).

The decision of whether to use fixed or random
sites should depend on whether the goal of monitoring
is to assess spatial or temporal trends, as well as how
much variation in the data can be explained by site
location. If site location explains a substantial amount
of variation, fixed sites will result in greater power
than random sites (Urquhart and Kincaid 1999; Quist
et al. 2006). Conversely, trends from fixed sites may
not be representative of regional trends, even when
great care is taken with site selection (Stoddard et al.
1998). Urquhart and Kincaid (1999) assessed power in
various sampling designs that used both fixed and
random plots, such as designs with random site revis-
its, and discussed the advantages of various sampling

design strategies. Other studies comparing fixed and
random sites in aquatic ecosystems have found either
no difference in variation between fixed and random
sites (King et al. 1981), or lower variability for fixed
sites (Van der Meer 1997). In our study, although fixed
plots had 24% less variation than random plots, the
difference in power between fixed and random site
designs was small. However, differences in power
between fixed and random sites would be greater if
plots represented samples, not sub-subsamples. Due to
the small area of Devils Hole shallow shelf, detecting
spatial patterns of DHP larvae is of less interest than
detecting temporal changes in the larval population.
Although the fixed plot design has greater power than
the random plot design, the high power comes with the
price of an added assumption that abundance patterns
occurring on fixed plots are representative of the entire
spawning shelf. Using combinations of fixed and ran-
dom sites presents a practical solution if the goal of
larval monitoring is to relate larval abundance to micro-
habitat characteristics such as water depth, substrate
composition, dissolved oxygen concentration, or macro-
invertebrate abundance.

Surveys conducted from 2007 to 2009 had different
abundances as well as different estimates of power
(Table 1). Estimates of power in surveys for larval
DHP were high compared to surveys for other species
of larval fish (Cyr et al. 1992). The higher power for
surveys of DHP larvae was likely attributed to a
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relatively large proportion of habitat on the Devils
Hole shallow shelf being exposed to sampling.
Although power was relatively high compared to sur-
veys for other larval fishes, power to detect increases
or decreases less than 30% magnitude was still low.
One option to increase power in surveys is to increase
the type I error probability («). Increasing « is wise if
the population of interest is threatened by inaction
(Gryska et al. 1997; Daulwater et al. 2009) because a
greater o improves the survey’s ability to detect pop-
ulation trends at the cost of increasing the probability
of a false detection. Additionally, tests for negligible
trend can be used as a complement to traditional
hypothesis testing (Dixon and Pechmann 2005). With
this method, the alternative hypothesis tests whether
the 90% confidence interval falls within a specified
(by the researcher) interval around zero. As such, it is
possible for poorly estimated trends to be not signifi-
cantly different from zero and not significantly negli-
gible with the same level of confidence for both tests
(Dixon and Pechmann 2005).

The event variance component was estimated to be
negative by the mixed model used to estimate variance
components for the three levels of sampling in surveys
for DHP larvae. However, because variance is a squared
value, in theory it cannot be negative. Negative variance
components can occur if variation between samples is
lower than variation between subsamples. Numerous
interpretations of negative variance components exist,
and, as a consequence, there are multiple methods to
solve the “problem” of a negative variance component.
One perspective is that negative variance components
are impossible; therefore, they arise due to random
variation around zero. According to this perspective,
negative variance components should be set to zero,
effectively removing the source of variation from the
model (Thompson and Moore 1963; Fletcher and
Underwood 2002). Alternatively, restricted maximum
likelihood estimates of variance components, which by
definition cannot be negative, can be used instead of
observed and expected mean squares (Fletcher and
Underwood 2002). Yet another approach, which differs
from the two above-mentioned approaches because it
allows negative variance components to remain in the
model, is to view parameters from analysis of variance
as covariances rather than as variances (Smith and
Murray 1984). When all variance components are esti-
mated positive and data are balanced, restricted maxi-
mum likelihood method is equivalent to equating
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observed and expected mean squares (Littell et al.
2002). When variance components are estimated nega-
tive, the restricted maximum likelihood method produ-
ces biased estimates of other positive variance
components (Searle et al. 1992). We thought it was
reasonable to retain the negative variance component
in the model, because it realistically depicted patterns of
variation in larval abundance and allowed estimates of
variance components to remain non-biased. Specifical-
ly, if larvae were found on a certain plot, they might be
less likely to be found on other plots because of limited
space on the Devils Hole spawning shelf. Under such a
circumstance, the variation in the sum of larvae on all
plots (i.e., the variation of events) would be less than the
variation in the number of larvae on separate plots.

Conclusion

Although the results of the power analysis are easy to
interpret mathematically, using the findings of this
study to recommend an “optimal” sampling design is
more complex due to obstacles such as limited staff
time, financial constraints, and concerns with distur-
bance due to sampling. Year-to-year differences in

0.55
g —6—8—A= =8
6/5'6/§—~§;§—é)’§/1
0.50 - S
. — —
E s/ /3 27 1/1
: P
S 045+ , e 7
v
®
=040 2/
N 1
0.35 /
1
0.30 i i i
0 10 20 30 40

Number of plots

Fig. 5 Statistical power of different sampling design structures
to detect a 30% increase in Devils Hole pupfish larvae popula-
tion abundance. Symbols on the graph represent the number of
events in each survey; dotted line represents a constant sampling
effort of 30 plots partitioned differently among events (i.e., for
five plots and six events versus 30 plots and one event). The
line slopes gently upwards, indicating that maximizing the
number of plots per event will result in a survey design with
higher power. The number of surveys was held constant at five.
Symbols representing power of the previous (three events, nine
plots) and proposed (two events, 30 plots) sampling designs are
circled
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power due to dissimilarities in larval abundance fur-
ther complicate construction of the “optimal” survey
design for DHP larvae. Thus, developing a sampling
design to consistently yield a certain level of statistical
power was an unrealistic goal. Instead, we used the
results of our study to compare relative differences in
power from different combinations of sample sizes at
each level of sampling. While increasing the number
of surveys presented the best method to increase pow-
er, surveys are more demanding on resources and time.
In contrast, the finding that event contributed negligi-
bly and plot substantially to variation illustrates that
increasing the number of plots per event is a relatively
easy way to increase power in the sampling design
without increasing sampling effort considerably. How-
ever, since surveys for larval DHP sample a fairly
large proportion of larval DHP habitat, there is an
upper limit to the number of plots which can be placed
on the shallow shelf. If too many plots are placed on
the shelf, larvae could swim onto multiple plots during
one counting event, thus violating the assumption of
independence between plots. Hence, because the
results showed that the difference in power was min-
imal between surveys with three events and surveys
with two events, a sampling design that includes two
events, each with 30 plots is a practical alternative to
the previous design because there is little difference in
power and it requires less effort while still allowing for
plots to maintain independence (Fig. 5). Specifically, a
survey design with 30 plots and two events lasts ca.
1 h and 15 min, whereas a survey design with three
events and nine plots lasts ca. 2 h and 5 min. Impor-
tantly, increasing the number of plots and(or) events
will not substantially affect power to detect 30% (or
lower) increases or decreases in larval abundance.
Hence, if detecting fine-scale changes in larval abun-
dance is of interest (e.g., hypothesis testing), the num-
ber of surveys must be increased to attain reasonable
power. Because the sampling design of surveys for
larval DHP is still in an experimental phase, its structure
has been altered multiple times since 2005. Maximizing
statistical power to detect year to year differences in
larval density will help managers assess the influence
of earthquakes and flood events on survival of DHP
larvae. Furthermore, as data accumulate, year-to-year
variability can be estimated as a random effect, thus
allowing estimation of the survey’s power to detect
long-term trends. Hopefully, monitoring of DHP larvae
will continue far into the future and become a long-term

record of larval abundance that will accompany surveys
of adult DHP as well as current habitat monitoring
surveys. This holistic monitoring approach will provide
valuable insight as to the life history and habitat
requirements of the DHP, thus aiding managers
make decisions on where to focus future manage-
ment actions. Although the results of this study are
specific to Devils Hole, many other monitoring
efforts may benefit from coupling variance compo-
nents estimation with power analysis.
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