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I  

I .  INTRODUCTION 

A. Histor ical  Review 

I .  Theory 

The shel l  model with spin-orbi t  coupl ing was postulated to explain 

the "magic number" propert ies of certai^ nuclei ,  These nuclei  exhibi t  

the same t ight ly bound structure that was f i rst  not iced in the atomic 

structure of the noble gases. This model has had success in predict

ing the ground state spins, pari t ies, and nuclear magnetic moments of  

a large number of  nuclei  with Z ( the number of  protons) or N ( the 

number of  neutrons) near 2, 8, 20, 28, 50, 82, and 126; the "magic 

n u m b e r s "  o r  s h e l l  c l o s u r e s  ( 1 ,  2 ) ,  

The mass region with A~ 90 can be treated with an approach 

based on shel l  model considerat ions. As a reminder of what orbi tal  s 

are being f i l led for these nuclei ,  the tradit ional shel l  model order

ing of proton orbi tal  s taken from Mayer and Jensen (3),  Is shown 

In the f i rst  f igure. For addit ional reference, a port ion of the 

Chart of  the Nucl ides (4) showing this mass region is shown in 

Figure 2. 

The f i rst  theoret ical  calculat ion for this region was not done 

unt i l  1959, almost ten years after Introduct ion of the shel l  model,  

Bayman, Reiner,  and Shel ine (5) did a detai led spectroscopic calcula

t ion using f ini te-range, spin-dependent central  forces of the Yukawa 

90 
and Gaussian type for Zr.  Although moderately successful ,  this 

approach was di f f icul t  to apply to other nuclei  In this region. 
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In i960, Talml and Unna (6) did a calculat ion which could be 

88 
appl ied to a number of  nuclei  In this region. Considering ^gSr as 

an inert  core (al l  proton orbi tal  s f i l led through I f  ,  and al l  

neutrons orbl tals f i l led through '9g/2^'  nuclei  were considered with 

N = 50, and 39 ^ Z £ 43. The calculat ion assumed that the potent ial  

energy of the nucleus Is due to two-body effect ive interact ions between 

nucléons. The unknown matr ix elements of these interact ions, con

sidered to be the same for al l  nuclei  in which the same subshel ls are 

being f i l led, were determined from experimental data on other nuclei  

In this region. Configurat ion interact ions were accounted for in a 

s imi lar manner. The l imited success of  this calculat ion was due 

mainly to the paucity of experimental data avai lable at this t ime. 

A calculat ion by Kiss l inger and Sorensen (7) in I963 attempted 

to describe the A ~ 90 Isotopes usjng a quasi-part ic le-phonon coupl ing 

scheme. This treatment showed poor agreement with avai lable experimen

tal  data and Is not considered to be appl icable in this region oF the 

mass table. 

More recent calculat ions by Cohen, Macfar lane, and Soga (8) in 

1964, Bhatt  and Bal l  (9) In 1965, Auerbach and Talml (10) in 1965, and 

Vervier (11) in I966 fol low the general method of Talmi and Unna (6),  

88 90 
Al l  these calculat ions rely heavi ly on the use of 5r (or Zr as 

In the calculat ion by Bhatt  and Bal l )  as an inert  core. The level 

schemes for these two nuclei  are shown in Figure 3 (12-19).  The low 

density of levels and the large energy gap between the ground state 

and the f i rst  excited state can be used as evidence for part ial  closure 
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at the Z = 38 or Z = 40 subshel ls.  There have been recent direct 

measurements of  this closure using str ipping and pickup react ions. 

Picard and Bassani (20) have found the I f^yg ^*^3/2 (Figure I )  
QQ 

orbi tal  S to be 90% ful l  in Sr. Simi lar ly,  Gates (21) has found the 

2pjy2 orbi tal  to be 60% ful l  in ^^Zr. In addit ion, he showed that 

the proton shel l  c losure for Z = 40 improves as the number of  neutrons 

is increased from N = 50. 

From these considerat ions, i t  is expected that the ground state 

of ^gTc wi l l  be 9/2^, corresponding to the and (2pj^2)^ 

( Ig^yg) conf igurat ions of protons. A large number of  other posit ive 

pari ty states is also expected, due to the coupl ing of the protons in 

the Igigyg orbi tal  to spins ranging from 1/2 to 25/2 (22).  In the 

case of the spin and pari ty of the ground state should be 7/2^, 

corresponding to a ( ]conf igurat ion for the neutrons out

side the N = 50 closed shel l .  (Figure 1 is for protons. The ordering 

for neutrons is simi lar,  but the Zd^^^ orbi tal  l ies below the Ig^^^-) 

95 
As for Tc, a large number of  posit ive pari ty levels is expected. 

Clearly,  the use of ^^Sr (or al ternat ively,  ^^Zr) as an inert  

core and the effect ive interact ion approach is by no means an exact 

solut ion. However, the relat ive simpl ic i ty of this approach and the 

success i t  has had in predict ing level sequences seem to just i fy i ts 

use. A comparison between the various theoret ical  calculat ions and 

the experimental work described in this thesis is deferred to Sect ion IV. 

2. Experiment 

a. Decay of  ^^Ru Eggen and Pool (23) f i rst  produced ^^Ru in 
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1948 and showed i t  to have a half- l i fe of 1,65 + 0.05 hours. Since 

then, the decay of to levels In has been studied by several 

invest igators (24-26).  In addit ion, levels in have recent ly 

been invest igated by the ^^Mo(p,n)^^Tc react ion (27).  The results of 

these experiments, which are discussed in the fol lowing paragraphs, 

are summarized in Figure 4. 

In 1962, Riehs and Warhanek (24),  using Nal(TI) and anthracene 

scint i l lators, observed four gamma rays and a complex positron spectrum 

95 
in the decay of Ru. They placed the highest energy positron group 

(Eg w 1.33 MeV) as an al lowed transit ion to the ground state, deducing 

Qgg ÎW 2,35 MeV. Assuming a ground state spin and pari ty of 9/2* for 

^^Tc, they assigned a ground state spin and pari ty of 7/2* to ^^Ru. 

This does not agree with the shel l  model predict ion of 5/2*,  corres

ponding to the 51st neutron occupying a Id^^g orbi tal .  

The value 0,^^ « 2.35 is inconsistent with the later observat ion 

by Heuer (25) of  a moderately intense 2.33 MeV gamma ray. The K-shel l  

binding energy is 22 keV (28) for ruthenium and this makes the log 

( f t )  for feeding of the 2.33 MeV level in ^^Tc unphyslcal ly smal l .  

Using Ge(Li)  and SÎ(LI)  detectors, Heuer measured energies and inten

si t ies of 14 other gamma rays and determined the total  conversion 

coeff ic ient for the intense 336 keV t ransit ion to be 9.6 + 2 X 10 

from which he deduced Ml mult ipolar i ty (29).  On the bgsis of this 

mul t ipolar i ty,  he assigned a possible spin and pari ty of 7/2 to the 

336 keV level.  However, he did not measure the positron spectrum and 

the inconsistency between his data, the shel l  model predict ion, and the 
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data of Riehs and Warhanek remained, 

This inconsistency was resolved by the beta-gamma coincidence 

studies of Pinston, Monnand, and Moussa (26).  They reported the maximum 

energy beta group as feeding an excited state at 336 keV instead of 

the ground state. This makes an assignment of  5/2 possible For the 

ground state of and also increases to % 2.69 MeV, in agree

ment with shel l  model predict ions and the experiment of  Heuer. These 

96 
results have been conf irmed recent ly by Bal l  (30) in his Ru(p, d) 

work. 

In addit ion to their  beta decay work, Pinston ^  assigned 

twenty-one gamma rays to the decay of ^^Ru on the basis of Ge(Li)  

s ingles spectra apd Ge(Li)-Mal(Tl)  coincidence data. 

95 
Recently,  Kim et (27) have studied the levels of Tc through 

95 
the Mo(p, n) react ion. I f  only s-,  p-,  and d-wave protons contr i 

bute to compound nucleus formation, residual states in ^^Tc with spins 

ranging from 1/2 to 15/2 could be populated. Since the select ion rules 

for react ions di f fer from those of beta decay, the sequence of f inal  

states Is not the same. 

b.  The decay of ^^^Tc Very l i t t le experimental data exists 

for the decay of '^^Tc to excited states of "^^Ru. In 1963, Kienle, 

103 
Wien, Zahn, and Weckermann (3I)  obtained Tc by a second subl imation 

from the f ission products of uranium. The decay of '^^Tc was Invest i

gated using scint i l lat ion counters and coincidence methods. They 

found two beta groups at energies of 2.0 MeV and 2.2 MeV fol lowed by 

gamma rays of 350, 215, and 135 keV. From their  data, they proposed 
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a Q-value of 2.35 + 0.10 MeV corresponding to levels at 135 and 350 

keV, with no al lowed beta feeding of the ground state. 

In 1964, Brandi,  Engelmann, Hepp, Kluge, Krehbiel ,  and Meyer-

Berkhaut (32) used the '^^Ru(y,n) react ion to f ind a short- l ived 

isomeric state in '^\u. A 212 keV gamma ray was observed to decay 

wi th half- l i fe 1.7 + 0.3 mi 11i seconds. Th i  s energy agrees wi th one 

of the gamma rays reported by Kienle £t ,  but the coincident I 35 

keV t ransit ion observed in the earl ier work to fol low the 215 keV 

gamma was not seen. A s imi lar experiment by GabsdiI  (33) in 1968 showed 

this gamma ray to have an energy of 209 + 0.5 keV, and again no 135 keV 

gamma ray was seen in coincidence with i t  0.1 Ig^g).  

Besides these decay studies, Diehl,  Cohen, and Moyer (34) have 

studied the levels of through l i ie react ion '^Ru(d, t ) '^ \u and 

have assigned a ground state spin and pari ty of 5/2^ to "^^Ru. They 

reported another f i f teen levels for which they assigned spins and 

pari  t ies. 

A second react ion experiment which gives information about the 

levels of '^^Ru is the "^^Ru(d.p) '^^Ru work of Nclen, Fortune, Kienle, 

and Morr ison (35).  Tl^e level '  seen in this work were also seen in 

the (d,t)  work of Diehl et  aj_.,  and the spin and pari ty assignments 

are the same in most cases. However, a number of  levels were seen 

in the (d,t)  work that were not seen in the (d.p) experiment.  In 

general,  di f ferent select ion rules apply to these two experiments. The 

(d,p) work excites the part ic le states, whi le the (d,t)  work tests 

the hole states. The react ion experiments, as wel l  as the beta decay 
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work of Kienle j  are summarized in Figure 5. 

B. Purpose of Invest igat ion 

An accurate determinat ion of the level structure of a nucleus 

requires that the nucleus be studied by both react ion processes and 

spontaneous decay of neighboring nucl ides. Unt i l  recent ly,  very l i t t le 

react ion work was avai lable to compare with theory or decay data. The 

new react ion data has made i t  necessary to restudy many nucl ides by the 

decay mechanism. 

The nucl ides in the A ~ 90 region are of part icular interest.  

95 
The present work on Ru invest igates some specif ic quest ions which 

arose from the work of  Pinston £t (26).  First ,  there were a number 

of  weak gamma rays in the singles spectrum which could not be placed 

in the decay scheme. The use of beta branching rat ios and gamma-ray 

branching to determine spins and pari t ies requires the placement of  as 

many t ransit ions as possible. In addit ion, the spectrum observed 

by Pinston jet aj^.  was too complex to be resolved by their  Ge (L i  )-Nal (T1 )  

coincidence experiment.  Ge(Li)-Ge(Li)  coincidence data should be a 

s ignif icant improvement. 

93 93 
Another isotope of interest in this mass region is Ru, Ru 

93 
decays by electron capture and positron emission to levels in Tc, 

a 50 neutron nucleus, with a reported half- l i fe of 50 seconds ( U ,  2 8 ) .  

Gamma rays which decayed with this half- l i fe were seen in an experiment 

with natural  ruthenium. However, using a sample enriched to 98% in 

96 
Ru, no gamma rays with a 50 second half- l i fe were seen. This impl ies 
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that must decay almost ent irely to the ground state of ^^Tc. 

The 50 second act iv i ty seen in the i rradiat ion of natural  ruthen 

iurn was due to the decay of ^^^Tc. The small  number of  levels and 

transit ions seen by Kienle £t aj_. (31) compared to the number of  

levels reported in the react ion work of  Diehl ej t  (34) makes a 

restudy of the '^^Tc decay an interest ing project.  The avai labi l i ty 

of high resolut ion and high eff ic iency Ge(Li)  detectors should be a 

s ignif icant improvement over the Nai(Tl)  work of Kienle e_t £j_. Since 

10 3 88 
Ru has 6 protons and 9 neutrons outside the Sr core, the level 

structure can not be expected to be described accurately by the cal

culat ions discussed in Sect ion I . ,  A, 
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I I .  DECAY OF 

9 5  
Information on tha propert ies of levels in Tc can be obtained 

by studying the positron decay of  99 minute ^^Ru. The ground state of 

^^Tc has been assigned a spin and pari ty of 9/2^ in agreement with the 

shel l  model predict ion (Figure 1) (26).  In addit ion, a 1/2 isomeric 

state has been ident i f ied at 38.9 keV (36) and 7/2^ level at 337 keV 

(25) (Figure 4).  However, no other spin and pari ty assignments have 

been made. This makes a detai led comparison with various theoret ical  

treatments (6, 8-11) di f f icul t .  This chapter discusses the use of a 

Ge(Li)  detector in a Compton suppression system and Ge(Li)-Ge(Li)  

coincidence spectrometers to obtain new information about the decay 

of  ^^Ru to S^Tc. 

A. Source Preparat ion 

Sources of radioact ive ^^Ru were produced by the ^^Ru(y,n)^^Ru 

react ion using the 70 MeV Electron Synchrotron at Iowa State Universi ty.  

The method used to produce intense sources is i l lustrated in Figure 6. 

The electron beam is directed into the target material ,  producing in

tense bremsstrahlung as i t  Is stopped. The spread of the beam perpen

dicular to the plane of the drawing is roughly one mi l l imeter.  A 

detai led descript ion has been publ ished previously (37-39).  

A 2.4 gram natural  ruthenium metal target was used in these experi

ments. Natural  ruthenium is 5.51% ^^Ru with 1.87% ^^Ru, 12.72% ^^Ru, 

12.62% ' °°Ru, 17.07% '° ' ru,  31.61% '°^Ru, and 18.58% '° \u.  These 

isotopes give r ise to a number of  act iv i t ies when the natural  ruthenium 
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target is i rradiated. Among these background act iv i t ies are the 2.7 

hour ^^Tc, 52 minute and 4.8 hour 53 minute ^^Ru, 20 hour 

^^Tc, 14 minute '^ 'tc ,  40 day '^^Ru, 4 minute "^^Tc, and 50 second 

'^^Tc. However, none of these have a half- l i fe close to the 99 

95 
minute half- l i fe of Ru and are easi ly dist inguished from i  t .  The 

metal target was bombarded for 30 minutes and al lowed to cool 16 minutes 

whi le the sample was being transported from the synchrotron to a count

ing laboratory in the physics bui lding. This procedure reduced the 

amount of  short- l ived act iv i ty present in the sample. 

B. Instrumentat ion 

1. Gamma-ray s ingles measurements 

A 23 cc Ge(Li)  detector was used for energy and intensity measure

ments. This detector had a resolut ion better than 3.5 keV FWHM and a 

peak-to-Compton of 9-1 at 1.332 MeV. To enhance weak peaks in the 

gamma-ray spectrum, the Ge(Li)  detector was part ial ly surrounded by 

a Nai(Tl)  scint i l lator operated in ant icoincidence. The scint i l lator 

consisted of two 12.7 cent imeter diameter by 7-6 cent imeter long cyl in

ders with hemicyl indrical  s lots machined in the front faces to match 

the end cap of the Ge(Li)  detector cryostat as shown in Figure 7-

This detector was operated in a Compton suppress ion mode of the type 

previously described by Orphan and Rasmussen (40) and Simmons (41).  

The gamma rays were col l imated by a 1.8 cent imeter aperture in a 5-) 

cent imeter thick lead shield. Coincident signals in the Ge(Li)  detector 

and ei ther Nal(Tl)  scint i l lator were interpreted as Compton scatter ing 
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events, and the corresponding pulse from the Ge(Li)  detector was not 

recorded. I f  a gamma ray deposited al l  of  i ts energy In the Ge(Li)  

detector,  the pulse was ampl i f ied and recorded in a 4096-channe] 

pulse height analyzer.  In this way the peak-to-Compton rat io could 

be improved by a factor of 2 or 3-

A block diagram of the electronics for this detector arrangement 

is shown in Figure 8. Double delay l ine pulse shaping and cross-over 

t iming were used in the two Na|(Tl)  channels, with both of the t iming 

single channel analyzers operated in the discr iminator mode. Leading 

edge t iming was used in the Ge(Li)  channel.  Pulses from the preamp 

were ampli f ied by a commercial  "act ive f i l ter" ampli f ier for which 

t ime constants and pole/zero cancel lat ion were adjusted to maximize 

the energy resolut ion. 

The relat ive detect ion eff ic iency of this system as a funct ion 

of gamma-ray energy is shown in Figure 9« The relat ive eff ic iency 

of the detector system for a peak in the cal ibrat ion spectrum is given 

by: 

,  .  relat ive area in spectrum 
relat.ve aff .cency = relat ive intensity '  

The relat ive area is the peak area divided by the area of the most 

intense peak in the spectrum, and the relat ive intensity is the known 

gamma-ray branching for the peak of interest divided by the known 

226 
branching of the most intense peak. This was measured using Ra 

as a source, for which accurate energies and intensit ies are known (42) 

The gain and zero sett ings of the ampli f ier-analyzer system were 
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adjusted so gamma rays with energies between 100 and 2400 keV could 

be studied. A typical spectrum taken with this detector system is 

shown in Figure 10. Gamma rays which belong to the decay of '  Ru 

are label led by tho'r  energy !:o the nearest keV, Prominent gamma 

rays which belong to other act iv i t ies produced in the bombardmr^nt or 

natural  ruthenium are I  fuel led by both 'heir  energy anrl  or igin. The 

assignment of  gamma rays is discussed in Sect ion I I . ,  C. Sample 

decay curves are also shown there. 

2. Gamma-ray coincidence measurements 

95 
The decay of Ru is too complex to be adequately resolved by 

the Ge(Li)-NaI(T1 ) coincidence measurements reported by Pinston et al .  

(26).  The recent development of  large Ge(Li)  detectors has made 

Ge(Li)-Ge(Li)  coincidence measurements feasible. In ihis experiment,  

pulses in a 65 cc Go(Li) detector (3.5 keV FWHM resolution at 1.332 

MeV) was used to gate the signals in a 25 cc Ge(Li)  detector (3.4 keV 

FWHM resolut ion at 1-332 MeV). These detectors were posit ioned at 90 

degrees relat ive to one another to minimize the number of  511-5' '  keV 

coincidences. The block diagram for this detector arrangement is shown 

in Figure 11. The preamp signal from both detectors was spl i t  and 

sent through l inear ampli f iers for energy analysis,  and through double 

delay l ine ampli f iers for t iming purposes. Cross-over t iming was used 

in both channels with a result ing resolving t ime of 75 nanoseconds. 

In the gat ing channel,  a broad window (approximately 50 keV) was set 

by the t iming single channel analyzer on the spectral  region of interest.  

Narrow windows (approximately 5 keV wide) were then set with the single 
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channel analyzers on the spectral  peak to be used as the gat ing signal 

and on a f lat  port ion of the background near this peak. Pulses in 

the other Ge(Li)  detector coincident with ei ther of these signals were 

routed into separate halves of the mult ichannel analyzer memory. 

This detector system was used to record coincidences with the 

QÇ 
336, 627, 105],  and 1096 keV gamma rays from the decay of  Ru. In 

each case, the sample was i rradiated for 30 minutes and then counted 

for several hours. 

C. Data Analysi  s 

The i rradiated ruthenium sample was studied with the Compton 

suppression system described earl ier.  A sequence of seven 40 minute 

95 
counts was taken over a period of 6 hours to fol low the 99 minute Ru 

act iv i ty.  Peak posit ions and areas were calculated by the computer 

codes PEAKFIND and SKLN avai lable at this laboratory. '  The f i rst  of 

these is a peak search and f i t t ing program which f inds peaks and then 

f i ts a Gaussian funct ion with a low-energy exponential  ta i l  and a 

quadrat ic background to the data by performing a least-squares f i t .  

As many as nine peaks can be f i t  into a mult iplet in this way. The 

program SKLN is a peak f i t t ing program which f i ts a high-energy tai l  

in addit ion to the low-energy tai l  and Gaussian of PEAKFIND. The 

input parameters to SKLN al low the f i t  of addit ional peaks into 

'pEAKFIND and SKLN, Instruct ions for users, Mimeo. Ames, Iowa, 
Iowa State Universi ty of Science and Technology. A complete descrip
t ion of the f i t t ing programs is presented in reference (43).  
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mult iplets and the f i t t ing of single peaks which were sometimes missed 

by the automatic peak search program. The data analysis was performed 

in three steps. First ,  plots of the spectrum to be analyzed were 

obtained. Then, using these plots, est imates of the FWHM and the 

energy slope and intercept were given to PEAKFIND as in i t ia l  parameters. 

This step was repeated several t imes unt i l  good f i ts were obtained for 

the strong peaks by changing the in i t ia l  est imates for the FWHM and 

skewness. Final ly,  those peaks not f i t  correct ly by PEAKFIND were f i t  

by SKLN using the appropriate parameters from good f i ts by PEAKFIND. 

Both programs gave precise values for the peak centroids, areas, ful l -

widths at half-maximum, and the tai l ing parameters. In addit ion, 

these programs gave est imates of the errors in these quanti t ies which 

could be used as a measure of the "goodness of the f i t . "  Samples of  

f i ts using SKLN are shown in Figures 12 and 13. The f i rst  f igure 

is a f i t  of the t r iplet at 880 keV 54 minutes after i rradiat ion, and 

the second f igure is the same region 3^5 minutes after i rradiat ion. 

The two peaks at 890 keV were f i t  using the parameters ( ful l -width 

at half-maximum and skewness) given by PEAKFIND for the 871 keV ^^"Vc 

peak. 

To simpl i fy the decay scheme analysis,  energy values for the promin

ent peaks were determined to + 0.1 keV. The 23 cc Ge(Li)  detector was 

used in an ungated mode to count known cal ibrat ion sources and then 

known cal ibrat ion sources with the i rradiated ruthenium. The spectrum 

was divided into " low" (100-1500 keV) and "high" (600-2500 keV) energy 

1 33 
regions to simpl i fy the analysis.  For the low-energy region, 8a, 
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and ^^Na were used as calibration sources (44). For the 

high-energy region, '^'^"^Ag, ^^Co, and ^^^Ra were used as calibration 

sources (44). 

The energy-versus-channel number relation was f i t  by assuming 

a l inear relationship and measuring deviations over the two regions 

from the accumulation with calibration sources only. The energy of 

a gamma ray with cent roid in channel C can then be written: 

E(C) = mC + b + A(C), 

where m and b are the slope and intercept constants which best f i t  

the straight l ine and A(C) is the measured non-l inearity. For this 

experiment, i t  was found that the l inear constants could be chosen 

so the non-l inearity over each region was less than .06 keV and 

could be neglected. 

Using the combined calibration and irradiated ruthenium accumula

t ions, peak centroids were determined using PEAKFIND. From this data, 

95 energies of the prominent peaks in the decay of Ru were determined 

to + 0.1 keV relative to the calibration source photopeaks. The 

energies of the less intense gamma rays were then determined from the 

95 irradiated ruthenium data, using the prominent Ru gamma rays as the 

calibration l ines. The uncertainties in the energies of these weaker 

transit ions is typically + 0.2 keV, although several have uncertainties 

as 1arge as + 0.5 keV. 

The intensit ies of the ^^Ru gamma rays were calculated by dividing 

the peak area by the relative eff iciency taken from Figure 9 for the 

Compton suppression system. Since the relative eff iciency curves are 
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accurate to + 5% and the area of most peaks has a relative error 

of approximate]y + 2%, the error in the intensit ies of prominent peaks 

should be less than + 10%. The error in the intensity of weaker peaks 

may be somewhat greater, depending on the counting statist ics. 

D. Results 

1. Energies and intensit ies 

Peak areas of the seven 40 minute runs were plotted on semi-log 

graph paper as a function of t ime to determine which gamma rays from 

95 the natural ruthenium sample belonged to the 99 minute Ru decay. 

The decay curves for the intense 336 keV and the weak 889 keV transi

t ions are shown in Figure ]k. The decay curves for the other transi

t ions are similar and are not shown. None of the competing activit ies 

have half- l ives within + 40 minutes of the ^^Ru activity, so al l  

gamma rays which decayed with a half- l i fe of 99 + 10 minutes were 

assigned to the ^^Ru decay. 

The energies and intensit ies (converted to absolute intensit ies 

as wil l  be explained in Subsection 3.) obtained using techniques des

cribed in the last section are shown in Table 1. The energies l isted 

for this work are the mean of several determinations. The intensit ies 

reported by Pinston et a]_. (26) are also given for comparison. The 

energy  ag reement  be tween  P ins ton  e t  a j_ .  and  t h i s  exper imen t  i s  +  0 . 5  

keV, or better, in al l  cases. 

2. Coincidence data 

The spectra which resulted from gating on the 336, 6 2 7 ,  1051, and 
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Table 1. Gamma rays from the decay of 

Transit ion Energy 
Number (keV) Intensity Intensity 

1 290.32  +  0 .1  3.9 + 0.4 3.5 

2 301.00  +  0 .1 2.3 + 0 .2  1 .8  

3 336.42 + 0.1 70.0 + 7 70.5  

4 551.59  ±  0 .1  1 .6  +  0 .2  1.7 

5 591.43 ± 0.1 1.2  +  0 .1  1.0 

6 626.82  +  0 .1  18 .0  +  2  14.0 

7 652.79  ±  0 .1 1.0  +  0 .1  0.7 

8 735.0 + 0.3  0.44 + 0.04 b 

9 748.49 + 0.1 1.6 + 0.2 b 

10 806.25  ±  0 .1  4.2 + 0.4 2.9 

11 818.96 + 0.3  0 .56  +  0 .06  b 

12 842.12 + 0.1 1.2  +  0 .1  0.8 

13 888.69  +  0 .2  1.7 +0.2 b 

14 990.12  +  0 .3  0 .61  +  0 .06  b 

15 1010.55  + 0.3 0.68  +  0 .07  b 

16 1050.68  +  0 .1 2.5  +  0 .2  1.5 

17 1064.47 +0.2 0.70 + 0.07 b 

18 1096.75  ±  0 .1 22.0 + 2 15.0 

19 1120.10  +  0 .2  0 .85  +  0 .08  0.55 

^The intensit ies of Pinston e^ (26) have been normalized to 
this experiment at 336 keV. 

^Not seen. 
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TabLe 1. (Continued) 

T rans i  tion Energy 
Number (keV) 1ntens i  ty Intensity^ 

20 1158.36  +  0 .1 1.4 + 0 . 1  1 .1  

21 1178.69  +  0 .  1 5.3 +0.5 3.4 

22 1261.68 + 0.3 0.32 + 0 .03  b 

23 1339.75 ± 0.3 0.25 + 0.02 b 

24 1351.70 + 0.5 0.44 +0.04 b 

25 1354.70 + 0 . 5  0.72 + 0 .07  1 .1  

26 1410.97 + 0 . 3  2.4 +0.2 1 .8  

27 1433.47 + 0.3 0.57 + 0 .06  b 

28 1459.16 + 0.2 2.2 + 0.2 1.6 

29 1541.64 + 0.3^ 0.22 + 0.02 b 

30 1562.23  +  0.3^ 0.15 + 0.02 b 

31 1785.36 + 0.3 0.58 + 0.06 0.8 

32 1931.09 + 0.3^ 0.33 + 0.03  b 

33 1988.03  + 0.3 0.70  +  0 .07  1 .1  

34 2046.98 + 0 . 3  0.33 + 0.03 b 

35 2251.99 + 0.3 0.35 + 0.03 0.6 

36 2324.54 + 0.2 1.4 +0.1 1.5 

' 'Not placed in the decay scheme. 
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1097 keV gamma rays are shown in Figures 15, 16, 17, and 18. For each 

of the coincidence experiments, the background spectrum was subtracted 

from the coincidence spectrum to yield the true coincident events. 

Ten counts have been added to each channel to display the negative 

f luctuations in the semi-log plots. 

The results of the Ge(Li)-Ge(Li) coincidence experiments are 

summarized in Table 2. Those transit ions indicated with an S were 

seen strongly in coincidence. This means they were enhanced in the 

coincidence spectrum compared to their relative intensity in the 

ungated singles spectrum. These gamma rays are probably involved in 

a direct cascade with the gating transit ion. Those transit ions indi

cated with a W were seen weakly in coincidence. They are probably 

members of a cascade with several branches. 

In Figure 15, a 336 keV gamma ray appears in the 336 keV gated 

spectrum. This can be explained by noting that the 336 keV transi

t ion is located on the sharply r ising portion of the Compton edge of 

the 511 keV annihi lat ion peak. The background window had to be posi

t ioned on this r ising background, and hence could not account for al l  

the background counts seen in the 336 keV gating channel. This explana

t ion also accounts for the other transit ions identif ied as background 

l ines in Table 2, Al l  the levels which these gamma rays depopulate 

95 95 95 are fed directly by the positron decay from Ru, Tc, and Tc. 

3. Decay scheme 

95 The decay scheme of Ru was constructed using the energy and 
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Table 2. Summary of coincidence spectra 

Energy of 
coincident 
gamma ray 

(keV) Energy of gating gamma rays (keV) 

336 627 1051 1097 

290 S w 

301 S s  

336 B w 

552 S 

591 S s  

627 B w 

653 W 

748 W 

765^ B 

806 w S 

842 s  

X
3 

0
0
 

B 

889 s 

1051 W 

1064 S 

1097 S 

1120 S 

1158 W S 

1352 s  

1355 S 

1411 S 

1459 W s  

1988 S 

W — weak strong 
3 95 

From the decay of To. 

^From the decay of ^\c. 

B — background or chance 



39 

intensity measurements of the present experiment along with the Ge(Li)-

Ge(Li) coincidence data. Table 3 l ists the energy sums which are 

relevant to the construction of the decay scheme. In the case where 

there was no coincidence data, or when the coincidence data was incon

clusive, the energy sums were used to place the gamma rays in cascade. 

The result ing decay scheme is shown in Figure 19. 

The placement of al l  levels except those at 990, 1049, 2251 keV 

was verif ied by the coincidence data. The two levels at 990 and 1049 

keV are dotted in as tentative because they are placed on the basis 

of only one energy sum. The level at 2252 keV is more definite be

cause of the ground state transit ion depopulating this level. 

According to the work of Pinston et aj_. (26), the ground state of 

^^Tc is not fed by the beta decay of ^^Ru. The relative intensit ies 

discussed in Section I I . ,  B. can then be converted into absolute in

tensit ies by requiring the sum of the intensit ies of transit ions feed

ing the ground and isomeric states to be equal to 100%. The total 

positron plus electron capture branching ratios can be calculated 

from the imbalance of electromagnetic transit ions into and out of 

each level. Log(ft) values were then calculated using these branching 

ratios and the nomogram from reference (28). The levels in Figure 19 

are labelled with the per cent decay and the log(ft) values. 

Of the 36 gamma rays observed, those at 1542, 15^2, and 1931 keV 

were not placed in the decay scheme. Since they were not seen in 

coincidence with either the 336 or 627 keV gammas, they are probably 

direct transit ions to either the ground or isomeric states. 
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Table 3. Energy sums 

Level Transit ion Number (Table 1) 
Energy or Level Energy Energy Sum 

626.8 

927.8 

1178.6 

1433.2 

1676.3 

1691.3 

1747.0 

1785.2 

1978.5 

2086.0 

2251.9 

) + 3 

13 +  (38.9)  

2 + 6 

5 + 3 

2 1  

12 + 3 

4 + 6 

27 

10  +  6  

18 + 3 

23 + 3 

9 + (927.8) 

25 + 3 

17 +  6  

26  + 3 

11 +  (927 .8 )  

19  +  6  

20 + 6 

8 + 15 + (38.9) 

31 

24 + 6 

16 +  (927 .8 )  

34 + (38.9) 

28 + 6 

7 + (1433.2) 

35 

22 + 14 

33 + 3  

36 

626.74  

927.59 

927.82  

927.85 

1178.69  

1178.54 

1178 .41 

1433.47 

1433.07 

1433.17 

1676.17 

1676.29  

1691.12 

I69 I .28  

1747.39 

1746.76 

1746.92 

1785.18  

1785.45 

1785.36 

1978.52 

1978.48 

2085.88 

2085.98  

2085.99 

2251.99 

2251.80  

2324.45 

2324.54 

+ 0.14 

+  0 . 2 2  

+ 0.14 

+ 0.14 

+  0 . 1  

+ 0.14 

+ 0.14 

+ 0 .3  

+ 0.14 

+ 0.14 

+ 0 .3  

+ 0.14 

+ 0 .5  

±  0 . 2  

+  0 .3  

+  0 .3  

+  0 . 2  

+ 0.14 

+ 0.4 

+ 0 .3  

+  0 .5  

+ 0.14 

+ 0 .3  

+ 0 .22  

+ 0.14 

+ 0 .3  

+ 0.42 

+ 0 .3  

+  0 . 2  
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First forbidden decays in this mass range have log(ft) s 8 (28); 

so the beta decay branches with log(ft) ^ 7 are assumed to be al lowed 

transit ions. Since = 5/2^ for the ground state of al lowed 

beta decay can populate posit ive parity states with J = 3/2, 5/2, or 

7/2. Because only Ml, El, and E2 gamma rays should have observable 

intensity, a direct transit ion to the 9/2^ ground state el iminates the 

3/2"*" possibi l i ty. Similarly, the presence of a gamma ray feeding the 

1/2 level excludes the 5/2^ and 7/2^ assignments. 

The Ml mwl t ipolarity (25) of the transit ion to the 9/2"*" ground 

state indicated = 7/2^ for the 336 keV level. The next level at 

627 keV has an al lowed log(ft) value and feeds the 336 keV level with 

a moderately intense transit ion. The level could be a 5/2^ or 7/2^. 

However, i ts intensity to the ground state is only 1/5 that of the 336 

keV level, and i t  is probably a 5/2"^. This assignment also agrees with 

neighboring odd-2 nuclei ^^Nb (45, 46, 47) and ^^Tc (48). The 927 

keV level decays to 5/2^\ 7/2^, and 1/2 states, so = 5/2 or 3/2* 

assignments are possible. The uncertainty in the net gamma feeding is 

too large to determine a conclusive log(ft), however the strong gamma 

feeding from higher energy posit ive parity states in competit ion with 

transit ions to lower states suggests El mult ipolarity and the choice 

of 5/2'. Probable spin and parity assignments proposed for the levels 

above 928 keV are based on the general arguments given above. Where 

both 5/2* and 7/2* are possible, the more probable value, as determined 

by the relative intensit ies of the transit ions feeding the low-lying 

states, is l isted f irst. 
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Before leaving this section, a comment should be made about the 

levels at 928 and 1049 keV. The beta branching fractions to these 

levels were determined from the differences of small numbers. There

fore, the uncertainties are too large to yield accurate log(ft) values, 

so the type beta decay cannot be assigned. The tentative assignments 

given these levels is based almost entirely on the spins and parit ies 

of levels which they feed, 

4. Pi scussion 

The decay scheme shown in Figure 19 generally agrees with the one 

proposed by Pinston ^ (26) (Figure 4). The earl ier decay scheme 

had no gamma rays feeding the 1/2 level. Three of the f i f teen new 

gamma rays seen in this experiment are identif ied as transit ions to this 

level: the 204?, 1011, and 889 keV transit ions. Their existence helps 

determine the probable spins and parit ies of levels at 2086, 1049, and 

928 keV. The 1085 keV level de-excit ing through a 749-336 keV cascade 

proposed by Pinston £t £l_. has been el iminated because the intensity 

of the 749 keV gamma ray in the spectrum gated by the 336 keV transit ion 

was too small to have i t  feeding the 336 keV level. Instead, the 749 

keV transit ion is placed as de-excit ing the I676 keV level through 

the 749-591-336 keV cascade. On the basis of i ts intensity in the 

coincidence spectrum gated by the 627 keV transit ion, the I I58 keV 

gamma ray has been moved from 2086-928 to 1785-627. The present work 

places new levels at 990, 1094, I676, and I69I  keV. 

Kim et£j_. (27) reported levels at 651, 67O, 96O, IO87, 1213, 
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1281, 1332, 1415, 1618, and 1636 keV in addit ion to the levels seen 

in this experiment. They reported no levels with an energy greater 

than 1650 keV and they did not see levels at 990 and 1049 keV. The 

existence of a level at 67O keV once again raises the question of a 

possible 336-336 keV coincidence. However, the gamma-ray singles data 

shows no evidence of a 672 keV gamma. Again, since different selection 

rules apply to reaction and decay experiments, al l  of the levels should 

not be seen in both experiments. 
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I I I .  DECAY OF '°^TC 

The recent reaction work of Diehl e^ (34) and Nolen e^ aj[. 

(35) has shown to have a large number of levels not seen in the 

decay work of KienJe et aj_. (31). The levels which Kienle e^ al. 

103 
reported to be fed by the beta decay of Tc at I  35 and 350 keV have 

been assigned spins and parit ies (3/2^, 5/2^) and (5/2^) respectively 

by Diehl et _aj_. (both assignments are tentative). Since many other 

posit ive parity levels with J = 3/2, 5/2, and 7/2 were seen in the reac

t ion studies, one would expect a more complex ^^^Tc beta decay than has 

been reported. 

The work of Brandi e_t aj_. (32) and Gabsdil (33) indicates that 

the~2I0 keV transit ion which they see decay with a half- l i fe of 1.7 + 

0.3 mil l iseconds is not in coincidence with a 135 keV gamma ray. This 

implies that this 210 keV gamma ray is not the same as the 215 keV 

gamma ray which Kienle e^ £l_. place as feeding a 135 keV level. I f  

the level at 210 keV seen by Diehl et £]_. is the isomeric level of 

Brandi et a_l_. and Gabsdil,  the spin and parity assignment of 7/2^ 

is inconsistent with the 5/2^ assignment for the ground state since 

a 210 keV Ml or E2 transit ion would not have a mil l isecond l i fet ime. 

This chapter discusses the use of Ge(Li) detectors, both singly 

and in coincidence spectrometers, to resolve the inconsistencies pointed 

out above. 

A. Source Preparation 

Sources of radioactive "^^Tc were produced by the '^'^Ru(y,p) "^^Tc 
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reaction using the same irradiation faci l i ty described in Section I I .  

However, the 50 second ^^^Tc activity had to be counted as soon as 

possible after irradiation. Following irradiation, the samples were 

placed into a pneumatic tube which connects the synchrotron with a 

counting room in the reactor building 1/5 mile away. The t ime elapsed 

from the end of the irradiation period unti l  the counting was begun 

was typically 50 seconds, or one ^^^Tc half- l i fe. 

Two types of samples were used in this experiment. Init ial studies 

were done with the 2.4 gram natural ruthenium metal target used in the 

^^Ru study. For this experiment, the target was divided into three 

smaller samples so that successive runs could be taken without the 

buildup of longer l ived activit ies. Although several gamma rays were 

seen to have a half- l i fe of 50 seconds, the complexity of the spectrum 

due to other activit ies (Figure 10) made the data analysis very diff i-

93 cult. In addit ion, the possible production of the 50 second Ru (4) 

activity through the ^^Ru(y,3n) reaction made an unambiguous assignment 

to "^^Tc Impossible. 

The second sample used was 125.3 mil l igrams of powdered ruthenium 

metal enriched to 98.2% in "^^Ru (principal contaminants; "^^Ru —1.3%, 

^'^'r u —0.3%, "^^Ru — 0.1%, ^^Ru--O.I%) borrowed from Oak Ridge National 

Laboratory. This sample was encapsulated in an aluminum can and irradi

ated in the same way as the natural ruthenium samples. I t  was then 

placed in a polyethylene transfer rabbit and sent to the reactor as 

described above. To minimize delays and loss of the powdered sample, 

the sample was left in the aluminum can and in the transfer rabbit 
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during counting. 

The only competing activity which was hard to distinguish from $0 

103 25 28 second Tc was the 60 second Na activity produced in the A13p) 

reaction. This isotope has recently been studied by Jones, Becker, 

McDonald, and Polett i  (49) and the gamma rays associated with this 

decay are known. 

B. Instrumentation 

1. Gamma-ray singles measurements 

Several Ge(Li) detectors were used for energy and intensity measure

ments. For the Init ial studies with the natural ruthenium samples, 

a 60 cc Ge(Li) detector with 3-1 keV FWHM resolution at 1.332 MeV was 

used. During data accumulations, pulses from the detector's preampli

f ier were amplif ied by a commercial "active f i l ter" amplif ier and re

corded in a 4096-channel pulse height analyzer. Pulse shaping t ime 

constants and pole-zero cancellation were adjusted to maximize the reso

lution. 

This same detector arrangement was used on the init ial studies 

of the enriched sample. Since the Ge(Li) detector is sensit ive to 

charged part icles of al l  types, a 1/4 inch lucite beta absorber was 

placed between the sample and detector to reduce the beta background. 

However, because of the large number of closely spaced doublets, a 

6 cc Ge(Li) detector with 2.5 keV FWHM resolution at 1.332 MeV was used 

for f inal energy and intensity measurements. The relative eff iciency 

of this detector as a function of energy is shown in Figure 20. This 

was measured using ^^^Ba and ^^^Ra as sources (as was explained in 
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Section I I .),  for which accurate energies and intensit ies are known. 

From the init ial studies with the 60 cc detector, i t  was deter

mined that there were no transit ions with an energy greater than 1200 keV 

which could be assigned to the 50 second '^^Tc decay. Thus the gain 

and zero sett ings of the amplif ier-analyzer system were adjusted so 

gamma rays with energies between 10 and 1200 keV could be studied. 

A typical spectrum taken with the 6 cc detector is shown in Figures 21 

103 and 22. Gamma rays which have been assigned to t l ie Tc decay are 

labelled by their energy to the nearest keV. Those gamma rays which 

belong to activit ies from contaminants or the aluminum can are labelled 

by both their energy and origin. The assignment of the gamma rays is 

explained in Section I I I . ,  C. 

2. Gamma-ray coincidence measurements 

The number of closely spaced doublets in the decay of ^^^Tc re

quires a study with a Ge(Li)-Ge(Li) coincidence spectrometer. The same 

electronics were used in this experiment as described in Section I I . ,  B. 

and as shown in Figure 11. There were two changes made for this coin

cidence experiment. First, a 48.4 cc Ge(Li) detector with 3.1 keV 

resolution FWHM at 1.332 MeV was used as the gating detector and a 

40 cc Ge(Li) detector with 2.9 keV resolution was used to record the 

coincidence spectrum. The second change was the addit ion of two more 

single channel analyzers in the gating circuit. This al lowed the 

simultaneous recording of coincidences with three peaks and a background 

by routing the quadrants of the analyzer. As described In Section I I . ,  

B., narrow windows (approximately 5 keV wide) were set on the peaks of 
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interest and a f lat port ion of the background near these peaks. The 

spectrum from the gating detector and the placement of these windows is 

shown in Figure 23. 

Coincident spectra were recorded for the 136, 17^, 210, 346, and 

563 keV gamma rays from the decay of '^^Tc. For the f irst three transi

t ions, the sample was irradiated for three minutes and coincidence 

data taken for two minutes. This cycle was repeated eight t imes. For 

the 3^6 and 563 keV transit ions, the same cycle was repeated only three 

t imes. A single background spectrum was recorded for the 136, 174, 

and 210 keV gamma rays, since the background is nearly the same for 

these three transit ions (Figure 23). Individual backgrounds were re

corded for the 346 and 563 keV gamma rays by sett ing two of the single 

channel analyzers on f lat portions of the background near the respec

t ive peaks. 

To maximize the counting rate, the two Ge(Li) detectors were 

placed as close together as possible, and no lead was placed between 

the detectors. A spurious peak in each coincidence and background 

spectrum was produced by the Compton scattering from one detector into 

the other of the intense 511 keV annihi lat ion radiation from the posi

tron decay of the irradiated aluminum can. I f ,  for example, the Compton 

scattered photon has an energy of 136 keV, a coincident peak at 511-136 

keV wil l  appear in the coincidence spectrum gated by the 136 keV signals. 

This peak wil l  be broader than the normal spectral peaks because the 

gating detector wil l  signal a coincidence for Compton scattered photons 

of energy 136 + 2.5 keV due to the f inite width of the window. 
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C. Data Analys i  s 

Both the natural ruthenium sample and the enriched sample were 

studied with the Ge(Li) detectors described earl ier. Two types of 

studies were done to determine which gamma rays belonged to the 50 

second '^^Tc decay. Using the 60 cc detector, samples which had been 

irradiated for 2 minutes were counted for 40 seconds into al l  4096 

channels of the analyzer memory. These data were then read onto magnetic 

tape, a process which takes 32.4 seconds for the entire 4096 channels. 

This cycle was repeated four more t imes using the analyzer's autocycle 

mode and then the sample was irradiated again. Six samples were 

irradiated and counted in this way, giving a total of 30 data sets. 

These 30 data sets were reduced to 5 by adding the corresponding data 

sets of each irradiation together. The output of a 60 cycle pulsar was 

used to determine the analyzer l ivetime for each of the data sets by 

feeding this output into the test input of the detector's preamplif ier 

and integrating the area of the result ing peak in the singles spectrum. 

Both the natural ruthenium sample and the enriched sample were studied 

in this way. 

To el iminate the 32 seconds required for each readout of the 

analyzer memory, a second set of experiments was done with the enriched 

sample. Following a 4 minute irradiation, successive 1 minute accumu

lations were stored in each quadrant of the analyzer memory by hand-

switching the memory location. This process was repeated for a total 

of four irradiations. The f irst and third 1 minute accumulations (corres

ponding to quadrants 1 and 3 of the analyzer memory) are shown in Figure 
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24. The peaks label led wi th energy only have a 50 second hal f - l i fe and 

103 
have been assigned to the decay of  Tc.  A s imi lar  exper iment was 

done wi th 2 minute i r radiat ions and 40 second accumulat ions.  Decay 

curves from this data are shown in Sect ion I I I . ,  D..  

Peak posi t ions and areas for  the two studies descr ibed above were 

calculated using the computer codes descr ibed in Sect ion I I . ,  C. In 

addi t ion,  accurate energies and re lat ive intensi t ies were determined 

57 22 133 
as discussed in that  sect ion.  In th is case, Co, Na, Ba, and 

226 
Ra were used for  the energy cal ibrat ion (44).  

D. Resul ts 

1.  Energies and Î n tens i t ies 

Peak areas (corrected for  di f ferences in analyzer l ivet ime) were 

p lot ted on semi- log graph paper as a funct ion of  t ime for  each of  the 

peaks seen in the studies ment ioned above. The decay curves for  the 

doublet  at  346 keV are shown in Figure 25 and the decay curves for  the 

weaker 389 and 774 peaks are shown in Figure 26. The decay curves for  

the other t ransi t ions are s imi lar  and are not shown. 

The energies and re lat ive intensi t ies obtained using techniques 

descr ibed previously are l is ted in Table 4.  The gamma rays at  75, 216, 

351, 365, and 427 keV were too weak in the s ingles spectrum (Figures 

21 and 22) to be analyzed. They were enhanced in the coincidence spec

trum and were assigned energies by using the prominent peaks in the 

coincidence spectrum as a cal ibrat ion.  Simi lar ly,  the peaks at  172, 487, 

555, and 638 keV are weak members of  mult ip lets which could not be re

solved in the singles data but appeared enhanced in the coincidence 
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Table 4.  Gamma rays f rom the decay of  '^^Tc 

Transi t ion Energy Relat ive 
Number (keV) Intensi ty 

1 74.84 + 0.3^ <1 

2 136.00 + 0,1 100 

3 172.00 + 0.5 1.2 + 0 . 5  

4 174.20 + 0.1 17 + 2 

5 210.25 + 0.1 58 + 6 

6 216,40 + 0.5^ <1 

7 269.63 + 0.3 3.0 + 0.5 

8 287.22 + 0.3 3.3 + 0.5 

9 343.28 +0.3 20 + 2 

JO 346.18 + 0.1 8 8 + 8  

1 ]  351.23 + 0.5® <1 

12 364.87 + 0.5® <1 

13 388.48 + 0.3 1 3 + 2  

14 401.43 + 0.3^ 4.0 + 0.8 

15 402.97 + 0 . 3  12 + 1 

16 426.70 + 0.5® <1 

17 487.25 ± 0,5^ 

18 500.80 +0.3 12 + 1 

^Weak, seen only in coincidence spectrum. 

^Not p laced in decay scheme. 

^Weak member of  s ingles mult ip let  enhanced in coincidence spectrum. 
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Table 4.  (Continued) 

Transi t ion Energy Relat ive 
Number (keV) intensi ty 

19 555.30 + 0.5^ 

20 562.80 + 0.1 4o + 4 

21 637.81 + 0.5^ 

22 661.01 +0.3 3.7 + 0.4 

23 768.81 + 0.5 2.7 + 0.4 

24 774.44 + 0 . 5  2.8 + 0.4 

25 804.31 + 0.3 1.7 + 0.3 

26 902.19 + 0.3^ 4.1 + 0.6 

27 905.11 +0.3 2 . 0  + 0 . 3  

28 937.65 + 0.3 2.6 + 0.5 
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spectra.  An intensi ty was assigned to the 172 keV peak by requir ing 

SKLN to f i t  a component at  that  energy to the ~ 174 keV peak in the 

s ingles spectrum. Peak parameters (FWHM and skewness) were taken to be 

226 
the same as for  the 182 keV peak of  Ra in the cal ibrat ion run. A 

comparison of  the SKLN f i ts  with and wi thout a 172 keV peak is  shown in 

Figure Tj .  The s l ight  improvement of  the 174 keV peak by the inclusion 

of  th is component is  not suf f ic ient  evidence for  i ts  existence. However,  

the 174 keV coincidence spectrum shows the 172 keV t ransi t ion (Figure 

30) in coincidence wi th the 174 keV gamma ray and just i f ies including i t  

in the decay scheme. 

2.  Coincidence data 

The ungated spectrum from the coincidence detector is  shown in 

Figure 28, and the resul t ing coincident spectra are shown in Figures 

29, 30, 31, and 32. The background spectrum for  the I36,  174, and 210 

keV gamma rays is  shown in Figure 33. No gamma rays were seen in coin

cidence wi th the 563 keV gamma ray and th is spectrum is not shown. 

The stat ist ics in these coincidence exper iments are poor.  This 

ÎS due part ia l ly  to the low intensi ty,  short- l ived sources, and par

t ia l ly  to the nature of  the Ge(Li)-Ge(Li)  coincidence exper iment.  

However,  because of  the clean spectrum and sharp peaks which resul t ,  

coincident gamma rays can easi ly be ident i f ied by comparison wi th the 

ungated spectrum (Figure 28).  

The resul ts of  the Ge(Li)-Ge(Li)  coincidence measurements shown 

in Figures 29-32 are summarized in Table 5-
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Table 5.  Coincidences observed in the decay of  '^^Tc 

Energy of  gat ing 
gamma ray (keV) Coincident gamma-ray energy (keV) 

136.0 136®, 210, 270, 365, 427, 555, 638, 769, 804 

174.2 136®, 172, 388, 487 

210.3 136, 287, 351 

346.2 216 

562.8 None 

®See explanat ion In text .  

3.  Decay scheme 

The decay scheme for  '^^Tc was constructed using the energy,  in

tensi ty,  and Ge(Li)-Ge(Li)  coincidence resul ts of  th is exper iment and 

the react ion data reported by Diehl  £t  £l_.  (34).  The most intense 

t ransi t ion at  136 keV was placed as a ground state t ransi t ion from the 

136 keV level  in agreement wi th the level  at  133 keV reported by Diehl  

et  a l .  

The 346 keV gamma ray is  the next most intense gamma ray in the 

spectrum and is  also placed as a ground state t ransi t ion from the level  

at  346 keV. This level  agrees wi th the level  at  343 keV reported by 

Diehl  et  The t ransi t ion at  210 keV can be placed as de-exci t ing the 

level  at  346 keV through the 210-136 keV cascade or i t  can be placed as 

a ground state t ransi t ion from the 210 keV level  reported by Diehl  

e^ a_[.  The existence of  a level  at  210 keV al lows the placement of  the 



70 

136 keV gamma ray as de-exci t ing the 346 keV level  through a 136-210 

keV cascade, in addi t ion to i ts  placement as a ground state t ransi t ion.  

However,  the 136 keV t ransi t ion is almost twice as intense as the 210 

keV t ransi t ion In the s ingles spectrum (Figure 21).  Since there are 

no other intense gamma rays in coincidence wi th ei ther the 136 or  210 

keV t ransi t ion,  i t  is not possible to est imate how much of  the intensi ty 

of  the 136 and 210 keV gamma rays is  due to ground state t ransi t ions 

from these respect ive levels.  I t  is  certain that  the 136 keV and 210 

keV ground state t ransi t ions are occurr ing from the other t ransi t ions 

which appear in their  respect ive coincidence spectra.  

The remaining intense t ransi t ion at  563 keV is  also placed as a 

ground state t ransi t ion.  A 563 keV level  was not reported by Diehl  

et  aj_, ,  but  no gamma rays were seen in the 563 keV coincidence spectrum 

which indicates i t  is probably a ground state t ransi t ion.  This Is ver i 

f ied further by the 216-346, 210-351, and 136-427 keV coincidences. 

The levels at  4o6, 497, 661, 69I, and 905 keV are ver i f ied by the 

coincidence data of  th is exper iment.  They correspond to the levels 

at  402, 497, 658, 693, and 902 keV seen in the (d, t )  work of  Diehl  

e^ aj^. .  In addi t ion to the level  at  563, levels at  501, 774, and 940 

keV are establ ished by the coincidence data and are not seen in the reac

t ion exper iments.  

To account for  the gamma rays wi th energy 343, 403, and 938 keV, 

a level  at  2.7 keV is  postulated. The energy sums for  these gamma rays 

feeding th is level  agree wi th in exper imental  error to energies of  known 

levels.  
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The decay scheme which resul ts from the above arguments is  shown 

in Figure 3^.  The react ion exper iments of  Diehl  et  aj_.  (34) and Nolen 

£t  (35) are included as indicated by the key. Aster isks denote the 

two possible placements of  the 136 and 210 keV t ransi t ions.  

4.  Piscussion 

The decay scheme shown in Figure 34 includes 24 gamma rays which 

had not been previously assigned to the decay of  '^^Tc by Kienle ^  al.  

(31).  The levels which could be populated by beta decay and which are 

ident i f ied in th is exper iment agree very wel l  wi th the (d, t )  react ion 

work of  Diehl  et  a_[.  (34).  Al l  the posi t ive par i ty levels wi th 3/2 g 

J ^  7/2 reported by Diehl  e^ f l -  are seen in th is exper iment.  The 7/2* 

level  at  240 keV reported by Nolen £t  (35) is  not seen in th is exper

iment or  in the work of  Diehl  £t  This is  not unreasonable s ince 

the '^^Ru(d,p) '^^Ru exper iment would be expected to exci te di f ferent 

states than the '^^Ru(d,t)^^^Ru react ion.  The (d, t )  react ion and th is 

exper iment should see the same levels s ince both exper iments are related 

to a neutron hole in the product nucleus. 

The apparent beta feeding of  levels wi th spins 5/2 and 7/2 impl ies 

that  the ground state of  "^^Tc should be a 5/2* or a 7/2* level ,  in 

+ Q7 QQ 
contrast  to the 9/2 quantum numbers for  the ground state of  '  '  '  

^^' t c .  The level  at  4o6 keV has a net 15% re lat ive intensi ty imbalance 

in the gamma rays into and out of  th is level .  I f  th is level  is  3/2* as 

tentat ively assigned by Diehl  £t  ,  this would el iminate the possibi l 

i ty  of  j "  = 7/2* or 9/2* for  the parent nucleus. The level  at  136 keV 

a lso has a tentat ive spin and par i ty of  3/2*,  but the existence of  two 



Figure 3^.  Decay scheme for  Tc.  The numbering of  the t ransi t ions corresponds to 
their  order in Table k.  The coincidence resul ts are shown by dots,  at  the 
start  of  an arrow to label  a gat ing t ransi t ion and at  the t ip to indicate 
an enhanced 1i  ne 
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possible placements of  the 136 keV gamma ray does not a l low the calcu

lat ion of  the intensi ty imbalance out of  the 136 keV level .  

I t  appears that  there is a weak 136 keV t ransi t ion in both the 

136 and 174 keV gated spectra which cannot be accounted for  ent i re ly 

by the background (Figures 29, 30, and 33).  Since a 75 keV gamma ray 

appears in coincidence wi th the 136 keV t ransi t ion,  some of  the 136-75-

136 keV cascade could be expected. I t  is  also possible that  there is  

a 38 keV t ransi t ion from the 174 to the 136 keV level  which would al low 

a 172-38-136 keV cascade to take place, s ince a gate on the 174 keV 

t ransi t ion would also gate on the 172 keV gamma ray of  th is c losely 

spaced doublet .  However,  the appearance of  th is weak 136 keV coincidence 

can also be explained as incomplete background subtract ion,  as was done 

in Sect ion I I . ,  D..  The background window is  again set  on a lower por

t ion of  the Compton background than ei ther the 136 or  174 keV peaks 

(Figure 23).  In ei ther case the exper imental  resul ts are not af fected. 

I t  was ment ioned ear l ier  that  a gamma ray of  energy ~ 210 keV 

and hal f - l i fe 1.7 mi l l iseconds (32, 33) is  ident i f ied with an isomeric 

state in '^^Ru. Since Diehl  aj^.  (34) have ident i f ied a 11/2 level  

at  235 keV, a possible explanat ion is  that  the 235 keV level  decays 

v ia an M2 t ransi t ion to the 210 keV (spin and par i ty 7/2*)  which decays 

prompt ly to the ground state.  The Weisskopf est imate of  the hal f - l i fe 

for a 20 keV M2 t ransi t ion is approximately 10 ^ seconds (28).  This 

good agreement wi th exper iment can be expected, s ince the 11/2 level  

should be a rather pure s ingle part ic le state (Figure 1).  
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IV.  CONCLUSIONS 

A. Decay of  Ru 

The energy level  structure of  ^^Tc deduced f rom th is exper iment 

is  s imi lar  to that of  neighbor ing odd-A even-N nuclei  (28).  A compari

son wi th two of  the other technet ium isotopes is  shown in Figure 35 

(20,  50).  The 1/2 isomeric state is  common in these nucl ides corres

ponding to the (19^/2)^(^^1/2 '^ even) conf igurat ions wi th the g 

protons coupled to zero spin.  A pair  of  negat ive par i ty states wi th 

J = 3/2 and 5/2 usual ly are found at  about 1 MeV exci tat ion,  corres

ponding to the 9^/2 protons being coupled to J = 2.  The 927 keV level  

in ^^Ru is  tentat ively ident i f ied as 5/2 ,  but the 3/2 state has not 

been found. On the basis of  i ts  decay to the 1/2 level ,  the state 

at  1049 keV could be the missing 3/2 state,  s ince the uncertainty in 

the log(f t )  value could make i t  consistent wi th f i rst  forbidden beta 

decay (spin change of  1 and change of  par i ty) .  

A large number of  posi t ive par i ty levels also occur in these nuclei ,  

corresponding to (2Pj/2^^( '99/2) ' "  ^^^1/2) '  ̂9/2^"^^^ proton conf igura

t ions (m odd).  The posi t ive par i ty level  sequence 9/2^,  7/2^,  5/2* is  

common, wi th the spacing decreasing as Z or  N increases. The number 

of  posi t ive par i ty states which can occur for  an arbi t rary number of  

protons in the g^yg orbi ta l  is  related to the senior i ty quantum number.  

The 9^/2 orbi ta l  is  of  part icular theoret ical  interest  s ince J = 9/2 

is  the lowest J value for  which the senior i ty might not be a good quantum 

number (6) .  One of  the nice features of  the ef fect ive interact ion 
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calculat ions ment ioned in Sect ion I . ,  A. is  that  the posi t ive par i ty 

levels are almost pure senior i ty conf igurat ions (6).  

The ef fect ive interact ion calculat ions of  Vervier (11) using 

88 90 
Sr as the inert core and Bhatt and Ball  (9)  using Zr as the inert 

core are compared wi th the resul ts of  th is exper iment in Figure 36. 

Both calculat ions did not include the negative parity states, but these 

could easi ly be included and their absence should not be considered in 

an evaluat ion of  the theory.  The low spin sequence ( j  < 9/2) for  the 

f i rst  few exci ted states is consistent wi th th is exper iment,  but  the 

energy spacings are too large. Since agreement between these theor ies 

93 
and exper imental  resul ts are better for  N = 50 nuclei ,  for  example Tc 

91 
(45, 46, 20) and Nb (51),  the neutrons may have a more complex con-

2 
f igurat ion than .  Another possibi l i ty  is  that the posi t ive par i ty 

states are not as pure senior i ty conf igurat ions as thought by Talmi 

and Unna (6) .  

A future study of  the levels of  ^^Tc might include ^^Ru(d, ^He),  

^^Ru(t ,Q:) ,  and ^^Mo(^He, d) react ion studies which could assign def in i te 

9 3 
spins and par i t ies to levels already known. The Nb(a,  2n y)  react ion 

could exci te the higher spin states which are not seen in the radio

act ive decay work due to the beta decay select ion rules.  Future theoret i 

cal  work might consider the contr ibut ion of  the extra neutrons and the 

possibi l i ty  of  mixed senior i ty conf igurat ions.  

103 
B. Decay of  Tc 

The elementary s ingle part ic le shel l  model predicts = 7/2^ 

for  the ground state of  '^^Ru corresponding to a 
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comigurat ion of  the neutrons outside the closed N = 50 core.  However,  

the exper imental  value of  5/2^ corresponding to a neutron hole in the 

2d^y2 orbi ta l  indicates the conf igurat ion is probably (1 

This can be accounted for  by inciudl iv]  pair ing ef fects in the elementa 

model.  Most of  the levels are probably an admixture of  several  conf ig

urat ions of  the type ( Ig  (n + m = 9) and the problem is 

hard to t reat  in the simple shel l  model p icture.  The low ly ing 11/2 

level  (Figure 33) is  character ist ic of  the odd neutron nuclei  in th is 

region (34) and corresponds to a s ingle part ic le exci tat ion into the 

lh i j /2 orbi ta l  (Figure 1) of  the odd neutron. 

The ground state spin and par i ty of  ^^^Tc is  probably 5/2^ or 7/2* ' '  

f rom the spin and par i ty of  the levels fed in beta decay. The apparent 

+ + 
feeding of  the tentat ive 3/2 levels seems to favor the 5/2 assign

ment,  For comparison, '^^Rh is thought to have spin and par i ty 1/1^ 

(k ,  28) ,  whi le ^^^Rh is  thought to have spin and par i ty 5/2^ (4,  28).  

I t  may be that  the "^^Tc ground state is  ei ther the 7/2"^ or  5/2^ of  the 

2 3 5 
(2P1/2) (19^/2) ;  (IgUyg) conf igurat ions character ist ic of  nuclei  in 

th is region. These levels seem to approach 0 keV exci tat ion as the 

number of  neutrons is  increased (28).  In the deformed model,  a déforma 

t ion,  e,  between -0.1 and -0.2 can give ei ther a 7/2^ or a S/2^ (28) 

corresponding to the 7/2 [413] or  5/2 [422] Ni lsson states.  In any 

case, the '^^Tc ground state is  not a 9/2* as the other technet ium 

isotopes are (28),  

Future studies on the decay o f  ^^^Tc should remeasure the beta 

spectrum to see i f  beta feeding to the '^^Ru ground and 210 keV states 
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can be seen. The short  hal f - l i fe makes beta-ray spectroscopic measure

ments d i f f icul t .  From these decay studies,  i t  might be possible to 

determine the intensi ty of  the ground state t ransi t ions from the 210 

and 136 keV levels.  

In addi t ion,  a ^^^Ru(d, p) react ion exper iment could f ix  the spin 

and par i ty of  the '^^Tc ground state.  I t  would also give informat ion 

about other levels in ^^^Tc which could be used for  theoret ical  compari

sons in th is mass region. 
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