PHYSICAL REVIEW E 68, 016212 (2003

Critical behavior in an atomistic model for a bistable surface reaction:
CO oxidation with rapid CO diffusion
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We analyze critical behavior associated with the loss of bistability for an atomistic model for CO oxidation
on surfaces in the limit of infinite diffusion of CO. The model includes infinite nearest-neighbor repulsions
between adsorbed immobile O. We use a “hybrid” treatment incorporating a lattice-gas description of the O
adlayer, but tracking just the number of adsorbed @@ich are randomly distributed on non-O sjte§he
critical exponents obtained from a finite-size-scaling analysid Bri site surfaces with periodic boundary
conditions show that the “hybrid” reaction model belongs to the mean-field universality class, despite strong
spatial correlations in the O adlayer. We also quantify finite-size effects in the global bifurcation diagram,
revealing a significant shift of the bistable region with decreasing system size. Our study elucidates fluctuation
effects observed in experiments of CO oxidation on the nanoscale facets of metal-field emitter tips.
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[. INTRODUCTION On surfaces, strong interactions between adsorbed par-
ticles may lead to islanding or superlattice ordering in the
Many studies of catalytic surface reactions in recent yeargdlayer[14]. These effects, in addition to limited mobility of
have focused on bridging the “materials gap” between tra-Some adspecies, can generate strong spatial correlations in
ditional ultrahigh vacuum surface science analyses on exX€actant adlayers. While conventional MF formulations can-
tended single-crystal substrates and industrial catalysis typRot treat these effects, they may be accurately described by
cally involving nanoscale supported metal clusters The  atomistic lattice-gagLG) models[15,16. Furthermore, for

question of how to appropriately model catalytic reactions ig€actions in nanoscale systems, such as the facets of a FET,

by no means trivial due to the very different length and time'Vhich contain only a few hundred to a few thousand adsorp-
scales involved. tion sites, LG modeling is an ideal tool to analyze the role of

On themesoscalebehavior of catalytic reactions on ex- both spatial correlations and fluctuatiofS-7]. A basic

tended single-crystal substrates is well understood. Rapiguestionis whether fluqtugtion effects in LG modeling differ
diffusion of some adspecies ensures efficient local mixin qualitatively from predictions of MF treatments. To address

L : : his i , in thi r, we naturally f n analyzin
facilitating application of mean-fieldVF) rate equations to > lssue S paper, we hatura’ly Tocls on anayzing

: i . . . critical behaviornear a bifurcation point where fluctuations
effectively describe hysteresis and bifurcation behay/&yy are amplified P

and MF reaction-diffusion equations to describe pattern for- Specifically, we will consider LG models for CO oxida-
mation on the scale of several micrdi@d. On thenanoscale tion, which incorporate the appropriate Langmuir-
catalytic reactions have been studied on supported metglinshelwood mechanisntreversible adsorption of CO at
nanoclusters using conventional techniqyds], on the  single empty sites, irreversible dissociative adsorption of O
nanofacets of metal field emitter igSET's) with field elec-  at suitable pairs of empty sites, reaction of adjacent adsorbed
tron(ion) microscopy[6,7], and on single-crystal surfaces CO and Q. The earliest treatment of this type was the classic
with scanning tunneling microscop$]. However, here fluc-  Ziff-Gulari-Barshad(ZGB) model[17], which ignored diffu-
tuations may generate new effects not predicted by determirsion and desorption of adsorbed CO, implementgda®-
istic MF rate or reaction-diffusion equations. Fluctuation-sorption on nearest-neighbdNN) empty sites, and ne-
induced transitions between the two states of a bistablglected all adsorbate interactions. We modify this model to
system may occur for reactions on FET’s or supported metahclude desorption and rapid diffusion of adsorbed CO, and a
clusters[6,7,9, and bifurcation behavior can be modified, refined treatment of Qadsorption reflecting strong interac-
e.g., shifting bistable regions and cusp points. The generalons between neighboring adsorbed [6,18,19—all of
topic of fluctuation effects in finite bistable reaction systemswhich are important features in the reaction.
has been explored extensively at the MF level using master Some key aspects of the behavior in these CO oxidation
equations, stochastic rate equations, or associated Fokkemnodels for infinite systems are independent of their finer
Planck equation§10-13. details [16], as we now describe. Fdow CO mobility
[16,17, there is a discontinuous transition from a reactive
state (with low CO coveraggto an inactive or near-CO-
*Present address: Institut rfuTheoretische Physik, Physik- poisoned statéwith high CO coverageupon increasing CO
Department der TU Muchen, James-Franck St., D-85747 Garch-partial pressure, provided the CO desorption rate is small.
ing, Germany. Metastability and hysteresis are weak. The discontinu-
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ous transition disappears at a “critical point” upon increas-ditions. Below, (gag and (ad9 denote gas and adsorbed

ing CO desorption. Forhigh (or infinite) CO mobility states, respectively.

[16,18], this discontinuous transition is replaced by bistabil- (i) CO(ga9 adsorbs onto single empty sites at the matg

ity (corresponding to strong hysteresis observed in experiper site, and desorbs at the rateCO(adg hops to nearby

ment3, so the system can exist either in a stable reactivé€mpty sites, and here we consider only the regime of infi-

state or in a stable inactive state. The region of the bistabilitylitely mobile CQads. We also neglect interactions between

terminates at the critical cusp bifurcation point upon increas©0O(@ds and other CQadg and Qads, so the distribution of

ing CO desorption. CO(_ads) on sites not occupied _by(@d_s) is random. Thus, it
For either low or high mobility, fluctuation amplitudes Suffices to adopt a “hybrid” simulation procedufés, 25,

increase dramatically upon approaching thenequilibrium) where we ftr‘l"llclk ohly the t(()jtal nl_Jm_ber Olf (Pﬁ(ﬂsa_but.t;ngor- f
critical point, analogous to behavior near the critical point inPorate a full lattice-gas description of the distribution o

equilibrium systems. However, precise determination OP(?icij)Sb( a9 adsorbs dissociatively at the impingement rate
critical behavior is nontrivial. Despite the apparent analogy. 2\9 y ping

between equilibrium and nonequilibrium behavior, a com-Po, PET site. To account for very strong NN(&i3-O(ads

plete correspondence is not possible due to the absence of @Ulsions, we invoke an “eight-site rulg26,27 wherein

free energy and the lack of detailed balance in nonequilib©2(gas adsorbs only at diagonal NN empty sites, provided
rium systems. Nevertheless, recent LG studies of nonequilipghat the additional six sites adjacent to these are not occupied
rium critical behavior successfully employed some key conby O(ads. Also, Oads is immobile, cannot desorb, and thus
cepts and techniques from equilibrium studjesiversality ~Never occupies adjacent sites of the lattice.

classes, finite-size scalif§S9] [20—24. Of particular sig- (iii ) Adjacent pairs of CQad9 and Qiads react at the rate
nificance is a study by Tomend Dickman[20], which K to form COy(gas, which desorbs immediately.

showed that critical behavior in a ZGB-type model for CO  As in previous studies, we spko+ po,=k=1 and con-
oxidation withimmobileadsorbed CQand O, but including  sider system behavior as a function@f pco with po,=1

CO desorption, was described by the Ising universality class.- p . For our analysis, we define the coverage of adsorbed
However, typ|§:ally hop rates for diffusing CO are many or- gpecies of the typd=CO (O) as 6;=N,/L2, whereN; is
ders of magnitude greater than other relevant réf@ozsad- the number of the adsorbed C@) particles. The time-
sorption, desorption, and reactjpiso of more practical rel- averaged steady-state coverages are denotéd by
evance is the determination of critical behavior ffapid (or To place this study in a broader context, one could con-
infinite) CO diffusion. Above we noted the development of siger a LG model for CO oxidation, which differs from the
MF-type bistability with increasing CO mobility16,18.  hyprid model only through incorporation of a finite CO hop
This might suggest MRrather than Isingcritical behavior.  rate h, Such a model is characterized by a diffusion length,
However, a careful analysis of fluctuation behavior near ther ..~ nY'2 for largeh. Thus, our hybrid treatment leRy;
critical point is needed to confirm this speculation. —» at the outsetand in certain analysesubsequentlyets
Thus, in the present work, we analyze critical behavior in__, ) Therefore, the hybrid model always treats the re-
a “hybrid” LG model for CO oxidation, which treats directly gime wherel < R -
behavior in the limit of infinite CO mobility. In Sec. II, we The key quantity considered in our analysis is a reduced
describe this model and the associated coverage distributioR$sion of the steady-state distributi®iNco,Ng), describ-
(or histogramy which adopt a bimodal form in the bistable ing the joint probability of havingNeo CO(ad$ and No

region. The latter are characterized in terms of a Landau-typé(ads) on the surfacé28]. In terms ofP(Nco,No), average
effective potential or free energy, facilitating a precise finite—coverages can be written as ’ ’

size scaling analysis. In Sec. Ill, we report our results for
critical exponents, which assume MF values despite strong
spatial correlations in the O adlayer, and also analyze the (6= 2 6;P(Nco,No). (1)
finite-size shifts of the global bifurcation diagrams. In Sec. Neo-No

IV, we compare our results with traditional MF behavior, and
discuss more general models for CO oxidation with finite CO
mobility. We also note that many aspects of fluctuation be-

havior studied here are accessible in experiments on FET's. P(NCO)=E P(Nco,Ng),
However, FET'’s involve multiple facets which are not iso- No

lated, but rather “weakly” coupled by CO diffusion, and this
impacts size-scaling behavitsee Appendix B S

Further, one can consider reduced distributions such as

o that

(6co)= 2 OcoP(Nco). 2
II. HYBRID REACTION MODEL Nco

AND COVERAGE DISTRIBUTIONS . .
When the parameter(d) correspond to the bistable region

We now describe the “hybrid” lattice-gas model for CO (for a givenlL), the distributionsP(N¢g,Ng) and P(Nco)
oxidation[6,18,24 employed for this study. We use square are bimodal, with the two peaks corresponding to the reac-
lattices ofL X L adsorption sites with periodic boundary con- tive and inactive statef28]. To recover this behavior in
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* d=0.051, p=0.413 due to the lack of a free energy. It is apparent that we need an
0.005 ——d=0.0525, p=0.4155 . i il 1
— d=0.0533, p=0.41675 optimum strategy to analyze noisy data for probability dis-
0.004- tributions such a$(Ncp) (for variousL) to precisely dis-
ep cern the subtle transition from a bimodal to monomodal
. 0.003 F . form. To this end, it will be convenient to introduce an ef-
@8 4 fective potential(mimicking a thermodynamic free eneigy
& 0.0024 7 “ defined by[11-13,2§
A _
0.001 ¢L(0co)=—L"?Inp (bco), (€)
0.000 . : ; . wherep| (6co) =L?P(Nco) is normalized under integration
0.4 05 0.6 0.7 0.8 : ;
@) ® over continuous coverage variab-o as L—o. Also,
co & (0c0) has a “weak”L dependence, but converges to a
0.0060 well-defined limiting form asL—o. From Eq. (3),
: d=0.051, p=0.413 pL(0co) =exd —L2¢ (6c0)] adopts a Boltzmann-like form,
B — d=0.0525; p=0.4155 d so clearly the effective potentiab, has a double-well form
’ — 4005 PRAIEES in the bistable regime, the minima corresponding to the
o6l stable statefl12,28 (see, Sec. lll A for more detajls
)
O
% 0.0015 IIl. FINITE-SIZE-SCALING RESULTS
A. Finite-size shift in the critical point and the shift
0.0000-
exponenta
-0.0015+ Our goal here is to determine the behaviot.as~ of the
0.4 05 06 0.7 0.8 coordinateg(p,(L),d.(L)) of the cusp point in thefco,d)
(b) 0.0 plane. It is expected that the shift of the critical point due to

finite system sizes has a scaling fof80]
FIG. 1. (a) Probability distribution for the CO coverage in the

hybrid reaction model with. = 30; (b) the corresponding effective de(L) —dg(oe)~L7*
potential.
and
simulation data, one must analyze time series for the cover- N
ages for sufficiently long times that the system can make Pc(L) = pe()~L "7, 4

many noise-induced transitions between these states. In de- ) )

scribing the behavior of the reaction model, it is helpful to@SL—%, where is the shift exponent. Most commonly,

draw analogy with equilibrium magnetic systems. Roughlyr =1/v, wherev is the correlation exponef80]. For the 2D

speaking, the CO desorption ratés a temperature-like vari- 1Sing model, »=1. Tomeand Dickman[20] show that\

able, andpco is an external field-like variable. For infinite =1 for the (zero CO mobility ZGB model modified to in-

(large systems, bistabilitfor hysteresisoccurs for a range corporate CO desorption, and conclude that the nonequilib-

of p values wherd<d,, the critical value of the CO desorp- "um reactive-inactive transition belongs to the Ising univer-

tion rate, and disappears whe-d,. Correspondingly, for ~Sality class. - .

finite (smal) systems,P(Neo,Ng) should exhibit a transi- ~ Our procedure to locate the criticabr cusp point (for

tion from bimodal to monomodal distribution aty(L), eachL) mvolve; analys_ls of 5|muI§t|on data f_or the effective

which, in general, depends dn In Fig. 1a), we show this potential(3), which we fit by adopting a quartic Landau-type

behavior forP(Ngg) for L=30: two peaks are evident for form[31]

d=0.051 andd=0.0525[below d.(L)=0.0531], but only 5 4

one peak ford=0.0533[aboved,(L)]. The value ofpcg is bL(0co)~ap+a160cot 8(50co)”+as(56co)”,  (5)

chosen to be at the “midpoint” of the bistable regiffor B s . .

d<d.(L)] so that the distribution®(No) is near symmet- wShe_re 60co=co~ 6o, and the “symmetric” coverage

ric. However, unlike in the magnetic systems, there is no?coiS determined by requiring vanishing of the cubic term in

explicit symmetry so that one can easily identify the “mid- the expansion ofs (6cc). The parametedg, and also the

point” of the bistable or bimodal region, and the distribution coefficientsa; depend ord andpco (as well as orL). One

is generally asymmetric even at the midpoint. natural way to define the critical poitip.(L),d.(L)] for
Clearly, a challenge in our study of the criticality of CO finite L is to requirea;=a,=0.

oxidation is the need to locate the critical point in the two- More specifically, our procedurgor eachL) includes the

dimensional(2D) (p,d)-parameter space. Further, this mustfollowing steps.

be done for varioud in our finite-size-scaling analyses. (a) For a givend value (and some selectaal), from the

Also, computationally efficient histogram reweighting meth- probability distribution(2), we obtain the effective potential

ods, applicable for equilibrium systemi29], do not apply (3) and fit to the quartic fornt5) to obtain 030 anda; .
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TABLE |. Critical exponents obtained from finite-size-scaling
0.060 1 analysis. Uncertaintiest 0.03.
0.059
0.058- L Y B
o 0.057 8 0.98 0.51
O 0.056 16 0.99 0.50
0.055 ] 32 1.01 0.49
64 1.00 0.49
0.054 4
0.053
0000 0003 0006 0009 0012 0015 B. Critical exponents 8 and y
(a) 1° Denotingt=(d—d,), a physical quantity, (e.g., suit-
able order parameters, fluctuation amplitydémat exhibits
0.422 algebraic singularity in infinite systems, i.&,,~t™ ", satis-
0.421 fies the following FSS form:
0.420 -
K ~LPo(tLY), 6
o] L LU (L) (®)

o8 04181 with f(x)~x"* for x>1, and where is an exponent mea-
0.417 1 suring the rounding of the singularity due to finite-size ef-
0.416 fects. Standard FSS hypothesis predittsl/v; however, for
0.415 MF critical behavior, it can be shown that=D/2 [33],
0.4141 whereD is the dimensionality of the system. Nonetheless,

. . . . . for D=2, both the Isingwherer=1) and the MF behavior
0000 0003 0006 0009 0012 0015 give #=1. Therefore, we have whenr-0,
(b) 1/L ,
x1=L*(020) —(bca)®)~L” (7
FIG. 2. (@) d. and (b) p. vs 1L2 for L=8-128 with linear fit
corresponding to.=2. and
M =(|6co—(bco)))~L 7, tS)

(b) Repeat(a) for different pcg to obtaina;(pco,d) ver-
suspco- Determine thepco value wherea;(pco,d)=0 and  \where y=1 and 8=1/2 for the MF criticality, andy=3/2
denote it bypgh. Record the corresponding value fay as  and 8= 1/8 for the Ising criticality in two dimensions.
as{d). We have performed extensive simulations to determine

(c) Repeat(a) and (b) for variousd to find wherea5Yd) M_ and y, for different system sized,=8,16 .. .. Then,
=0. Then, withd=d.(L), steps(a) and (b) give pco  Uutilizing values for pairs of sizet,; andL,, the critical

=p.(L) whena;(pco,de(L))=0. exponents in the limid—d. (or t—0) are estimated from
Our approach here is similar to that used by Orkoulas,

Fisher, and Panagiotopoul§32] in a recent study of criti- INnM_ —InM_,

cality in equilibrium fluid systems. Other systematic ap- B= InL,—InL;

proaches of locating “equistability” or “symmetry” loci in a

two-parameter plane are also considered in that work. The

equistability-type conditiona;(pgh,d)=0 gives approxi- y= _
mately an equal-height two-peak distribution®Ngg). In InL,—InL;
Appendix A, we discuss alternative prescriptions gf, .

In Fig. 2, we plot as a function of lLf the finite-size
critical valuesp.(L) andd.(L) obtained using the procedure
described above. Values ofi,= 0.54642), 0.53122),
82?2233: o%ﬁ_%é%ﬁ?fo?nf:pfs, %g}gif(f%é,?’fslp‘?,ei?izv)ély, C. Finite-size shift in global bifurcation diagrams
are fit very well by Eq(4) with A =2, and yield estimates of Rather than just identifying the cusp poim,(d.), a glo-
d.=0.0526 anch.=0.4132 forL—~. TheA=2 resultisin  bal bifurcation diagram maps out the region of bistability
clear contrast to that of Tomand Dickman[20] for immo-  p_(d)<p=pco<p-(d), for eachd<d,, wherep_(d) and
bile adsorbates. It agrees with the prediction of a MF popup, (d)—p., asd—d, (from below. The finite-size shift of
lation model, as discussed further below. This suggests thalhe cusp point coordinates shown in Fig. 2 implies a finite-
our “hybrid” CO oxidation model for infinite CO mobility  size shift of the entire bifurcation diagram, a feature that we
exhibits MF behavior. However, one should also check othewill quantify here. First, we provide a more detailed charac-
critical exponents. terization of behavior ap. . For fixedd<d., the bimodal

|n XLl_ In XL2

(©)

Table | shows the results calculated from E®), usingL,
=L,/2=L. Note that the values obtained fB( y) lie close
to 0.5(1.0), which is consistent with MF behavior.
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0415} N 0.0304 — L=8
I T L=16
i 0.025-
0410+ .
I 0.020-
8 "3
& I ® 0.015
0.405 |- 8 pt
I L=32 ] 0.010
*x  L=16 1
0.4001 + L=8 i 0.005
: ' ‘ : ‘ 0.000 . - R — .
0.048 0.050 0052 0054 0.056 0058 0.060 0.2 0.4 0.6 0.8 1.0
d
®CO

FIG. 3. Bifurcation diagrams showing the bistable region in the
hybrid reaction model for various. FIG. 4. Probability distribution for the CO coverage when
=0.053 andpco=0.410 for varioud..

probability distributionp, (6-c) becomes increasingly asym- ) , -
metric as one approaches the boundaries of the bistable rélZ€ Systems. This effect is reflected in Fig. 4 where the
gion, one of the two maxima disappearing at. Corre- size-induced evolution of the reduced probability distribution

spondingly, the effective potentiab, (6co) also becomes IS Shown at a fixed pointd=0.053pco=0.410) in param-

more asymmetric, one of the two wells disappearing at eter space, exhibiting a transition from the bistable state for

Thus, the following efficient procedure to determine can L=28 tothe stable reactive state with the Iower CcO coverage

be developed based on our quartic {85 to &, (6 )_* for L=32. It should be noted that there exist previous de-
First. we note that as one crosses out of thceobistable rdailed studies of finite-size shifts in bifurcation diagrams for

gion, there is a transition from three local extrerfrwo  PiStable systems, but only at the MF ley&D].

minima and one maximato one local extremunga mini-

mum) in ¢ (6c0). Correspondingly, there is a transition IV. CONCLUSIONS AND DISCUSSION
;rglrjna;tirc\)rrtlae real roots to one real root of the cubic polynomial We have studied criticality in a “hybrid” lattice-gas

model for CO oxidation incorporating infinite diffusion of
deb, (0co)/dbco~ar+2a,80c0+ 4as( 30c0)3=0. adsorbed CO. The results for the critical exponents obtained
(100  from a finite-size-scaling analysis show that this model be-
longs to the mean-field universality class, despite the strong
This transition is conveniently signaled by a change in signspatial correlations in the O adlayer. This behavior is consis-
(from positive to negativeof the polynomial discriminant,  tent with observed bistability for the hybrid reaction model
1 3 o7 2 q1al® 27 in infinite system$18], and with the persistence of a double-
Doz — = et __ ! (11) well effective potential ag — oo (for d<<d.) [28]. This con-
3 ’ . . Y . .
2 16 2 16 trasts behavior for reaction models with immobile adsor-
. ) ) . bates, which exhibit Ising criticality, and where the double-
given thata,<0 in the bistable regiorfand a,>0). The  \ye| nature of the effective potential disappears.ase (for
increase in asymmetry ob (6co), as quantified bya,|,  g<d.). The above differences demonstrate the importance
causes the second term to grow and eventually dominate thg jncorporating(realistio rapid CO diffusion in modeling
first term in D3. Thus, specifically, our procedure for each co oxidation on surfaces.
d<d, is to determinea;(pco), and thusDs(pco). for sev- Furthermore, we see that the presence of rapid diffusion
eral values opco. Then, we estimatg.. from the require-  yajidates(at least qualitativelytraditional MF studiesusing
ment thatD3(pco=p-)=0. As an aside, we note that for master equations, Langevin-type rate equations, or Fokker-
the discussion in Sec. Il A, it was convenient to choose gpjank equationsof noise effects in nanoscale reaction sys-
‘symmetric” coverage that reduced (fco) to @ form  tems. Such studies based on MF master equations provide
where the cubic term was absent. However, for the currerdetailed insight into the effective potentiait least for single

analysis, this yields no computational advantage. The generghriable systems and reveal a system size dependence of
form of ¢ (6co) including a cubic term produces a quadratic the form[34]

term in Eq.(10). However, the edges of the bistable region

are still indicated by vanishing of the appropriate discrimi- DL (0co)=d°(0co)+L 2 (o) + - - . (12

nant for this more general cubic polynomial, although the

interpretation of this discriminant is less transparent than irForm (12) is consistent with finite-size scaling of for(d)

Eq. (12). with A=2. Furthermore, we reiterate that such studies have
In Fig. 3, we plot the calculated regions of bistability for been exploited to characterize analytically finite-size shifts in

L=8, 16, and 32. The striking size effect observed here is @he bifurcation diagrani10,12, producing results similar to

substantial expansion of the bistable region with decreasinthose presented in Sec. IIl C. Finally, we note that this result

L, showing the importance of the large fluctuations in small-is obtained in situations where boundary effects are mini-

a, 2

ay

a
ay

a,
ay

ai

ay
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mized(e.g., using periodic boundary conditionkor a real-
istic alternative scenario, see Appendix B.
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pressurepgg(d) inside the bistable regiop_<pco<=p-.
based on one specific criterion. This approximately corre-

For a more comprehensive understanding of the criticagponds to equal peak heightler d<d.) for P(Ncg). We

behavior in LG models for CO oxidation, it is natural to
explore behavior in a modified version of the model consid
ered here, which incorporates a finite CO hop rateAs

noted in Sec. Il, such a model is characterized by a diffusion™
Iength Rdif‘f

then monitor behavior ad—d;. It should be noted that
‘various nonequivalent criteria exist fquas(d) when d
dc(L), e.g., equal peak heights fé*(Nco) versus equal
~h¥2 for largeh. It is thus tempting to make an populations of the two stable states. Howeverlaso, all

analogy with equilibrium LG models with attractive interac- reasonable choices converge more rapidly than critical finite-

tions (or ferromagnetic Ising-type modglsvhere the inter-

size effects. For our analysis, the specific choice is not im-

action rangeR;, is variable. In such equilibrium models, one Portant, as one just needs some consistent recipe to approach
finds a crossover from Ising to MF critical behavior with the critical point from within the bistable region.
increasingR; [35]. Thus, one might expect a corresponding  We note that for bistable CO oxidation models with finite

crossover in reaction models with increasiRgg . Such a
correspondence is confirmed by an analysis using more re-
fined finite-size-scaling procedures, presented in detail else-
where[36]. See also Ref.37] for sample results for the case
h=2.

It is worth noting that using the Landau-type form of ef-
fective potential Eq(5) does not bias us toward MF results
even though the Landau free energy is the basis for MF
theories of phase transitions. Using the same approach, we
demonstrate Ising behavior for the reaction model with finite
(smal) CO diffusion[37]. Utility of this approach is further
demonstrated in the numerical study of equilibrium phase
transitions[see Eq.2.21) of Ref.[32]].

Finally, we recall that our study of finite-size effects on
fluctuations and critical behavior inXL site nanoscale re-
action systems was motivated by the experimental studies of
CO oxidation on metal FET'§6,7]. Such studies can probe
many aspects of the coverage distributions explored here
(e.g., variation of asymmetry upon scanning the bistable re-
gion, dependence on system size, scaling approaahing
However, in reality, such FET'’s consist of several nanoscale
facets of different orientations and reactivities for which the
reaction is at least weakly coupled by interfacet diffusion of
CO [6,7,38. Such coupling leads to additional finite-size
shifts in cusp points and bifurcation diagrams. Since these
could be as significant as the fluctuation-induced shifts dis-
cussed above, we provide some analysis of these effects in
Appendix B for a simple two-facet model. Our approach
here in locating the critical point of finite systems proves to
be quite effective even in situations where statistics of simu-
lations data is limitedcompared with what can be achieved
in equilibrium systemys The approach, therefore, can also be
used for experimental studies.
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APPENDIX A: DETERMINATION OF EQUISTABILITY
IN FINITE SYSTEMS
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FIG. 5. (a) Bifurcation diagrams showing two bistable regions
for the two-facet hybrid reaction model with=60; (b) dﬁ and(c)

pg vs 1L2 for the two-facet hybrid reaction model fok

In our determination of the critical point in Sec. Ill A for
systems with finite sizé&, we first locate an “equistability”

016212-6

=30-120. Solid squares are simulation results, while open squares
correspond to analytic results within the pair approximation.
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diffusion lengthRy , there is a different equistability crite- the entire system for large exhibits two bistable regions,
rion, based on stationarity of planar chemical wave separategionj corresponding to two stable states with very differ-
ing the two stable states in systems Witk Ry [16,39—-41.  ent 8 [see Fig. 8)].
At first glance, there is an apparent mismatch between the To determine the size-dependent critical poirm%,ﬁé)
tvgo c_ritelria. Ths criteorlion btiseg ?"!I StaftignoagF]}’f ‘:{f planarand (p2,d?) terminating bistability regions 1 and 2 in the
chemical wave depends on the details o imuseng., d) plane, we perform an analysis of tR¢N’) analo-
coverage dependencél6], while the criterion based on (Pco,d) plane, we p Y R COZ) 5

. e o ; gous to Sec. Il A. Figures(b, ¢) show results fopg andd;
equal-height distribution is insensitive to the details of CO 112 deicted by full Si 0 for L —
diffusion for L<Rg. However, the equistability based on vhs = feplce 3( u bsquares. 'mlt.aj.; : o; h_> o
the equal-height distribution criterion will depend on details e Inter acgt coupling becomes negligible, and the values
of CO diffusion whenL =Ry, and we expect the two cri- Pc(L) anddc(L) approach the single-facet valups andd,

teria to match whet.> Ry [16]. for the infinite L. However, we note the strong nonlinear
variation withL =2 for smaller sizes|. <60, and tha’pg(L)
APPENDIX B: TWO-FACET CO OXIDATION MODEL anddi(L) increase with increasinlg, both features contrast-

] ) ] ing the behavior in the single-facet case.

As in Ref.[38], we extend the hybrid reaction model to @ e claim that both these features are deterministic in ori-
system of two facets, labelga-=1,2, both of sizd. XL ad-  gin, reflecting theL dependence of the diffusive coupling.
sorption sites with periodic boundary conditions. These havernis | dependence dominates the fluctuation-mediated linear
the same reaction parameters, except for different OXyg€Bcaling with L2 observed for a broad range &fin the
sticking coefficients;sg and s, and are coupled by CO-  single-facet case. Support for this claim comes from the
diffusion. Assume that diffusive transfer of CO from facet analysis of the deterministic rate equations for facet cover-
to j occurs by hopping at microscopic rdtg;c,, of CO atthe  ages obtained in a Kirkwood-type pair approximation, but
edge of facet across a common boundary of lendthto  including coupling due to interfacet diffusidi38]. Results
empty edge sites on facptThen, the corresponding rate of are shown in Figs. ®, ¢ together with the exact behavior.
gain of fco from interfacet diffusion satisfiesl/dtéto(i  The variation ofp?(L) and d?(L) with L is qualitatively
—j)=hij0co(1— 00— 65), where the interfacet transport similar to the “exact” simulation results, the shift in absolute
rate hj; =hpnicro/L has an explicit. dependencg38]. When  values occurring because the pair approximation does not
5(13= 0.7, sé=1.0, andh,i.ro= 0.6, the bifurcation diagram of exactly recover the cusp point for infinite
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