
Derivation and Implementation of the Gradient of the R−7 Dispersion
Interaction in the Effective Fragment Potential Method
Emilie B Guidez, Peng Xu, and Mark S. Gordon*

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

*S Supporting Information

ABSTRACT: The dispersion interaction energy may be
expressed as a sum over R−n terms, with n ≥ 6. Most
implementations of the dispersion interaction in model
potentials are terminated at n = 6. Those implementations
that do include higher order contributions commonly only
include even power terms, despite the fact that odd power
terms can be important. Because the effective fragment potential (EFP) method contains no empirically fitted parameters,
the EFP method provides a useful vehicle for examining the importance of the leading R−7 odd power term in the dispersion
expansion. To fully evaluate the importance of the R−7 contribution to the dispersion energy, it is important to have analytic
energy first derivatives for all terms. In the present work, the gradients of the term E7 ∼ R−7 are derived analytically, implemented
in the GAMESS software package, and evaluated relative to other terms in the dispersion expansion and relative to the total EFP
interaction energy. Periodic boundary conditions in the minimum image convention are also implemented. A more accurate
dispersion energy contribution can now be obtained during molecular dynamics simulations.

■ INTRODUCTION

Dispersion derives from the intermolecular forces that arise
from the interaction of induced multipoles between atoms and
molecules.1 The dispersion interaction between two molecular
species can be expressed as2
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The E6 term arises from the interaction between induced
dipoles. The origin of the E7 term is the interaction between
induced dipoles and induced quadrupoles. The E8 term comes
from induced quadrupole-induced quadrupole interactions and
from induced dipole-induced octopole interactions, and so on.
E6 is the leading term and a wide variety of methods have
been developed to calculate it, with various approximations,
including the use of fitted parameters. For instance, the
dispersion energy is often included in an ad hoc manner in
DFT calculations using parametrized atomic pairwise inter-
actions.3−6 Parameter-free methods have been developed by
Tkatchenko7−9 and Becke.10 In addition, several methods have
been developed to calculate the contribution of the dispersion
energy to the free energy of solvation.11−16 Odd order terms in
eq 1 average to zero in freely rotating systems and are often
neglected. Higher order contributions are often neglected since it
is usually assumed that they are much smaller than the leading
term. However, this is not necessarily the case.17

The E7 contribution to the dispersion energy is highly
dependent on the orientation of the interacting molecules.
It is often neglected since it averages to zero in freely rotating
systems (assuming all orientations have equal weights). However,
E7 values can be non-negligible at a given orientation.18 For

instance, E7 represents over 50% of the E6 value for the water and
ammonia dimers at their equilibrium geometry.18 Another
important point is that contrary to E6 which is always negative,
E7 can be either positive or negative depending on the relative
orientation of the interacting molecules.18 As a result, E7 cannot
be estimated from E6. It is reasonable to expect that systems in
which the rotational motion is hindered in some way (e.g., very
viscous systems) or in which the rotational motions are inherently
slow (e.g., large molecules of interest in biology or materials
science) may have a significant E7 contribution to the dispersion
energy. It is important to analyze and understand the interactions
between molecules in such systems in order to accurately model
their properties.
One method that has been used successfully to describe

solvents quantum mechanically is the effective fragment
potential (EFP) method.19,20 With this method, rigid solvent
molecules are modeled with a potential and the interaction
between them is decomposed into five terms: Coulomb,
polarization, exchange repulsion, charge transfer and dispersion:

= + + + +E E E E E Ecoul pol exrep ct disp (2)

An advantage of the EFP method is that all of the terms,
including dispersion, are derived from first-principles and
contain no empirically fitted parameters. Consequently,
interpretations of the relative importance of various terms
in the interaction energy do not rely on such parameters.
All energy terms and their gradients have been derived and
implemented in the GAMESS21,22 software package.17,23−26
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The EFP method is available in other electronic structure
packages as well.27,28 For the dispersion term, the E6
contribution to the energy and gradients have been derived
and implemented.17 The E8 term is currently approximated as
1/3E6. The E7 energy term was implemented by Xu et al.18

It should be emphasized that the dispersion energy in the EFP
method (and many of the methods mentioned above) only
considers pairwise interactions. It is worth mentioning that
many-body effects may be important29,30 and methods to
include them are under active development.31−34

In this paper, the E7 gradient is derived and tested. In the
methods section, the expression for the E6 energy term and
gradient are summarized,17 and the gradient of the E7 energy
term is derived. The computational details are given next,
followed by a comparison between numerical and analytic
gradients for a few test cases. A geometry optimization and a
molecular dynamics simulation using the minimum image
convention are also performed.

■ METHODS

Expression for the EFP Dispersion Energies. Localized
molecular orbitals (LMOs) play a central role in the formula-
tion of the dispersion, exchange-repulsion, charge transfer and
polarization terms in the EFP method. LMOs are mathemati-
cally equivalent to the canonical molecular orbitals (CMOs)
but provide a more intuitive description of chemical bond-
ing. In addition, the EFP energy contributions are expressed
as truncated series which converge faster and yield more
accurate results when using the LMO formulation.18,35,36

For the dispersion interaction, it is the LMO dynamic
(frequency dependent) polarizabilities that are used in the
formulation. The total dispersion energy between EFP
fragments can be written in a form similar to eq 1 where
the dispersion energy between two fragments is summed
over all LMO pairs, one on each fragment. Within the EFP
method, the E6,0 dispersion term (the 0 subscript indicates
that no damping is included) between two molecules A and B
can be expressed as17
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Indices A and B label the EFP fragments or molecules, k and
j label the localized molecular orbitals37 of fragments A and B
respectively. The Greek letters α, β, γ, and δ label the x, y, or
z axis. T corresponds to the second order electrostatic tensor,
which can be expressed as (in atomic units):
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Rkj is the distance between the LMO centroids k and j. In this
expression, Rα and Rβ represent the x, y or z component of Rkj.
For instance, Rx= xk − xj. α

l(iω) represents the dynamic
dipole−dipole polarizability tensor in the imaginary frequency
regime for LMO l. It is obtained by performing a transforma-
tion of the canonical molecular orbitals (CMOs) in the
expression of the molecular dynamic dipole−dipole polar-
izability to LMOs. The molecular dynamic dipole−dipole
polarizabiliy is obtained by solving the time-dependent
Hartree−Fock equations.17,38 Eq 3 gives the full anisotropic

E6 dispersion energy and can be simplified to the isotropic
form:17
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, where α̅

(iω) represents the trace of the polarizability tensor. Eq 5 can
be integrated using a 12-point Gauss-Legendre quadrature
formula to give the following:17
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Wi and ti are the Gauss−Legendre weighting factor and
abscissa, respectively. E6,0 must be multiplied by a damping
function to avoid poor behavior near Rkj = 0.1 The damping
function used in the EFP method is based on the
intermolecular overlap.39 For the E6,0 term, the damping
function is39
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In eq 7, Skj is the overlap between the LMOs k and j.
Henceforth, the convention for the expression of the dipole−
dipole contribution to the dispersion energy is

=E f E6 6 6,0 (8)

In eq 8, f6 is the damping function given in eq 7. A similar
convention will be used for the higher order terms in the
dispersion expansion, eq 1.
Xu et al. derived the expression for the value of the E7

interaction energy between two EFP fragments:18
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Tγσκ
kj is the third order electrostatic tensor given by
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Al represents the dynamic dipole−quadrupole polarizability
expanded at the centroid of LMO l. Briefly, the molecular
dipole−quadrupole polarizability at the center of mass is first
obtained from the solution of the time-dependent Hartree−
Fock equations.40 Then, the dipole−quadrupole polarizability
contribution from each LMO is obtained by transformation of
the canonical orbitals to LMOs followed by a shift to the LMO
centroid.18 This shifting procedure is necessary since unlike
the dipole−dipole dynamic polarizabilities, dynamic dipole−
quadrupole polarizabilities are origin-dependent.18 All other terms
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in eq 9 are defined in the same way as the terms in eq 3. The
integral in eq 9 can be evaluated using the 12-point Gauss−
Legendre quadrature formula as in eq 6:
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The multiplicative damping function f 7 for the E7 term is
derived similarly to f6:
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Note that E7 in eq 9 is anisotropic; the isotropic approxi-
mation will result in a zero E7 dispersion energy.
Gradients of the E6 and E7 Terms. The derivation of the

E6 gradient is briefly mentioned, followed by a more detailed
derivation of the E7 gradient. First the gradient expressions with
respect to an arbitrary variable are presented. EFP fragments
are rigid, so only the translational and rotational degrees of
freedom need to be considered. A detailed derivation of both
translational and rotational gradients is presented. Lastly, for
the conservation of energy during molecular dynamics (MD)
simulations, switching functions and their derivatives are
implemented.
The general expression for the E6 gradient is
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damping function can be written as
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The general expression of the gradient of the E7 term is
given by

∂
∂

=
∂
∂

+
∂
∂

E
q

f

q
E f

E

q
7

A

7

A
7,0 7

7,0

A (15)

The derivative of the undamped energy E7,0 is given by
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The derivatives of the dynamic dipole−dipole polarizability
and dipole−quadrupole polarizability involving LMOs of
fragment B with respect to the motion of fragment A are 0:
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Since EFP fragments are rigid, the only degrees of freedom
that need to be considered for the gradients are translation and
rotation which are now described.

Translational Motion of A. In order to calculate the
translational derivatives of E6, the derivatives of the distances Rkj
and the derivatives of the overlap integrals Skj with respect to the
translation of fragment A along the x, y and z axes (denoted xA,
yA, zA) are required. The derivative of the distance Rkj with
respect to the translation of molecule A along the x axis is

∂
∂

=
−R

x

x x

R

( )kj k j

jkA (18)

In eq 18, xk − xj is the distance between the x coordinates
of the LMO centroids k and j. Since the fragments are rigid,
the derivatives of the overlap integrals Skj can be obtained
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from the derivatives of the atomic integrals Sμν and they are
given by24
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In eq 19, the subscripts μ and ν label atomic orbitals, while
the subscripts k and j label the LMOs. The c coefficients are the
LMO coefficients and the functions ψ are the atomic basis
functions, and are summed over all of the atoms a in frag-
ment A. The translational derivatives of all of the polarizabi-
lity tensors are zero since the polarizability does not change
upon translation of the fragment. Therefore, only the
translational derivatives of the T tensors are needed in order
to determine the translational derivative of E7. The translational
derivatives of the nth-order T tensor are related to the
(n + 1)th-order tensors. The derivative of the second-order
T tensor with respect to the translation of fragment A along the
x axis is

δ δ δ

∂
∂

= ∇ ∇ ∇

= −
− + +

αβ
β α

α β αβ α β β α

T

x R

R R R R R R R

R

1

15 3 ( )

kj

x
kj

x kj x x x

kj

A

2

7
(20)

Similar expressions can be derived for
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Similarly, the derivatives of the third-order T tensor are the

fourth-order T tensors:
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Information.
The forces of B acting on A and the forces of A acting on B

must cancel each other:
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Therefore, one only needs to calculate the x, y, and z
components of the forces on A induced by B, which are
given by
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EDisp is the sum of the E6, E7, and E8 energies described
above. Note that the E8 term is included as (1/3) of E6.

17

Rotational Motion of A. The rotational derivative of the E6
dispersion energy given in eq 13 involves the derivatives of Rkj
with respect to the rotation of molecule A around the x, y and
z axes noted θx, θy, θz. For θx, the rotational derivative is
given by24
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In eq 24, yCOM
A and zCOM

A are the y and z coordinates of the
center of mass of fragment A, respectively. Similar expressions

for
θ

∂
∂

Rkj

yA
and

θ

∂
∂

Rkj

zA
are given in the Supporting Information. The

rotational derivatives of the overlap integrals are24
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As before, the subscripts μ and ν label atomic orbitals, while
the subscripts k and j label the localized molecular orbitals.
a represents the atoms in fragment A and ψ represents the
atomic basis functions. The rotational derivatives of the LMO
coefficients c are given in ref.24 Similar expressions can be

obtained for
θ
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.The rotational derivatives of E6 can be

obtained by substituting eq 24 and eq 25 in eq 13 and eq 14.
In order to obtain the rotational derivatives of E7,0, one needs

the rotational derivatives of the second and third order T tensors
as well as the rotational derivatives of the dynamic dipole−dipole
and dipole−quadrupole polarizabilities. The rotation of fragment
A around its center of mass can be expressed in terms of the
rotation of all of the LMOs of A. The rotation of the electrostatic
tensor around the x axis can be expressed as a function of
translations in the y−z plane. The rotational derivatives of the
electrostatic tensors T are then related to the translational
derivatives. For the rotation of the second and third order
electrostatic tensors involving LMOs k in fragment A and j in
fragment B:
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(27)

Similar expressions can be obtained to describe the rota-
tion of the tensor around the y and z axes (cf., Supporting
Information).
The rotational derivatives of the polarizability tensors are

obtained by taking the limits of the differences between
the rotated tensors and the original tensor in Cartesian
coordinates.26 For the dynamic dipole−dipole polarizabilities of
fragment A (LMO superscripts omitted):26
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A more detailed derivation is given in the Supporting
Information along with the derivatives of the dipole−
quadrupole polarizability tensor which are obtained in a similar
way. The derivative of f 7given in eq 17 only necessitates the
rotational derivatives of the overlap given in eq 25 and in the
Supporting Information.
The total torques must also be zero, so that24,26,36
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(31)

In eq 31, τθx
B(A) represents the x component of the torque

on fragment B about the center of mass of B applied by
fragment A. τθx

A(B) represents the x component of the torque on
fragment A about the center of mass of A exerted by fragment B
(the x component of the rotational derivative of the total
dispersion energy). Fx

A(B) is the x component of the force
applied by B on the center of mass of A. xCOM

A − xCOM
B

represents the x component of the distance between the
centers of mass of fragment A and fragment B. Similar
definitions are given for the y and z components. The rotational
derivatives only need to be calculated for one fragment in each
fragment pair. The torques for the other fragment can be
evaluated using eq 31.
Switching Function. Periodic boundary conditions using

the minimum image convention41 have been implemented for
EFP and the distance between the centers of mass is chosen as
the distance between molecules.42 The implementation of a
switching function allows the interaction between two frag-
ments to smoothly go to zero as the distance between them
increases inside a box, thereby conserving energy during mole-
cular dynamics (MD) simulations.43 The switching function
can be chosen, for example, as a fifth order polynomial.26 The
dispersion interaction energy between two fragments EDisp is
scaled by the switching function S:26

=E E SS Disp (32)

The derivative of the energy ES with respect to the transla-
tion of fragment A is given by26

∂
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= ∂
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+
∂
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E
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x

E

x
SS

Disp
Disp

A A A (33)

Similar expressions can be derived for the y and z
components. Since the rotational derivatives of the switching
function are zero, the rotational derivative of ES with respect to
the rotation of A around the x axis is given by26

θ θ
∂
∂

=
∂
∂

E E
SS

x

Disp

xA A (34)

Again, similar expressions can be derived for the rotational
derivative around the y and z axes.

■ COMPUTATIONAL DETAILS
All calculations have been performed with the quantum
chemistry software GAMESS.21,22 All EFP2 potentials were
generated at the RHF/6-311++G(2df,2p) level of theory. The
gradient implementation was tested for the parallel displaced
benzene dimer,44 the water trimer,45 and the ethene-ethyne
complex (Figure 1).44 For all three systems, the analytic and
numerical gradients were compared. The systems in Figure 1
were reoptimized using the EFP2 method (labeled structure 1)
and at the MP2/6-311++G(2df,2p) level of theory. The
quadratic approximation was used for the optimization46

and the gradient convergence was set to 0.0001 Hartree/Bohr.
Another optimization was performed without the E7 contri-
bution to the dispersion energy (labeled structure 2). The two
structures were compared for all 3 systems as well as the E6
and E7 contributions to the EFP energy. The water trimer is
discussed below and the benzene dimer and ethene-ethyne
complex are discussed in the Supporting Information.
A molecular dynamics (MD) simulation was performed
for a system of 64 water molecules in the NVE ensemble.
This simulation was performed on 4 Intel x5460 CPUs
(3.16 GHz). Periodic boundary conditions (PBC) were
enforced. The MD integrations of translations and rotations
of the fragments were performed using the velocity and
quaternion Verlet algorithm.47,48 The MD time step was
set to 0.1 fs. The length of the box was set to 12.42 Å,
in order to obtain a density of 1000 kg/m3. The distance
cutoffs for the switching function were set to ra = 4.97 Å and
rb = 6.21 Å.

■ RESULTS AND DISCUSSION
Comparison between Analytic and Numerical Gra-

dients. The analytic and numerical gradients are compared in
Table 1 for [H2O]3, the benzene dimer, and the ethene−ethyne
complex (Figure 1). The forces and torques shown in Table 1
correspond to those exerted on one molecule in the system.
They are calculated using the EFP2 method, which includes the
electrostatic, exchange repulsion, polarization, charge transfer
and dispersion energies. The numerical and analytic gradients
are in excellent agreement with each other, with errors smaller
than 10−7 Hartree/Bohr.

Optimization of the Water Trimer. The geometric
parameters of structure 1 (optimized with the E7 contribution
to the EFP dispersion energy included), structure 2 (optimized
without the E7 contribution to the EFP dispersion energy),
the MP2/6-311++G(2df,2p) optimized trimer, and the structure
optimized at the RHF/6-31G(d,p) level of theory45 are
compared in Table 2. The RHF/6-31G(d,p) optimized trimer
and atom labels are shown in Figure 2. Overall, the structures
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obtained at the different levels of theory are very similar, and
only one of them is shown in Figure 2. The distance between
oxygen atoms is increased by 0.03−0.05 Å when E7 is included
in the dispersion energy. The angles between the three oxygen
atoms are very similar as well. Structure 1 is more similar to
the MP2 optimized structure than structure 2, which does
not include E7. In order to determine the percentage of
each energy contribution to the total energy, the sum of the
absolute values of each contribution is calculated in the
following manner:

= | | + | |

+ | | + | | + | | + | | + | |E E E

sum electrostatic exchange repulsion

polarization charge transfer6 7 8
(35)

The calculated values of “sum” for structures 1 and 2 are
given in Table 3. The percentage of the electrostatic energy
contribution is then given by

| | | | + | |

+ | | + | | + | | + | | + | | ×E E E

electrostatic /( electrostatic exchange repulsion

polarization charge transfer ) 1006 7 8

(36)

The other energy contributions are calculated in a similar
manner and given in Table 3.
The percentage contribution of the dispersion energy to the

total EFP energy given by

| | + | | + | | | | + | |

+ | | + | | + | | + | | + | | ×

E E E

E E E

( )/( electrostatic exchange repulsion

polarization charge transfer ) 100
6 7 8

6 7 8

Calculated in this way, the dispersion energy represents
10% of the total EFP energy. The E7 term only represents

Figure 1. (A) Benzene dimer, (B) H2O trimer, and (C) ethene−ethyne complex.

Table 1. Comparison of the Analytic and Numerical Gradients in Hartree/Bohr of the Benzene Dimer, Water Trimer and
Ethene−Ethyne Complex

forces torques

system gradient method x y z θx θy θz

[C6H6]2 analytic 0.0116568 0.0070467 0.0000083 0.0000047 −0.0000298 0.0181966
numerical 0.0116568 0.0070467 0.0000083 0.0000047 −0.0000298 0.0181967

[H2O]3 analytic −0.0001583 0.0015390 0.0010996 −0.0024685 −0.0003729 −0.0006280
numerical −0.0001583 0.0015390 0.0010996 −0.0024684 −0.0003729 −0.0006281

[C2H4]−[C2H2] analytic 0.0218447 −0.0347514 0.0576795 −0.0000232 0.0001384 0.0001074
numerical 0.0218447 −0.0347514 0.0576795 −0.0000232 0.0001384 0.0001074

Table 2. Geometrical Structures for the Water Trimer System Optimized at Different Levels of Theory

structure 1 structure 2 RHF/6-31G(d,p) MP2/6-311++G(2df,2p)

O1−O4 distance (Å) 2.82 2.78 2.87 2.80
O4−O7 distance (Å) 2.80 2.75 2.88 2.81
O1−O7 distance (Å) 2.81 2.78 2.87 2.81
O1−O4−O7 angle (deg) 60.08 60.12 59.94 59.98
O1−O7−O4 angle (deg) 60.41 60.29 59.77 59.88

Figure 2. Water trimer optimized at the RHF/6-31G(d,p) level.

Table 3. EFP2 Energy Contributions (in kcal/mol) for the
Water Trimer Optimized with and without the E7
Contributiona

structure 1 structure 2

electrostatic energy (kcal/mol) −25.73 (45%) −27.29 (45%)
exchange−repulsion energy (kcal/mol) 18.49 (33%) 21.03 (35%)
polarization energy (kcal/mol) −5.17 (9%) −5.71 (9%)
E6 dispersion energy (kcal/mol) −3.42 (6%) −3.69(6%)
E7 dispersion energy (kcal/mol) 1.10 (2%) N/A
E8 dispersion energy (kcal/mol) −1.14 (2%) −1.23 (2%)
charge transfer energy (kcal/mol) −1.64 (3%) −1.80 (3%)
total EFP energy −17.52 −18.68
sum of the absolute values of each
energy contribution to the total EFP
energy (eq 35)

54.50 60.74

aThe values in parentheses are the percentage contributions of each
term to the total EFP interaction energy, as calculated in eq 36 for the
electrostatic energy.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b11042
J. Phys. Chem. A 2016, 120, 639−647

644

http://dx.doi.org/10.1021/acs.jpca.5b11042


2% of the EFP energy. The contribution of E7 to the dispersion

energy is computed with the formula: ×| |
| | + | | + | | 100E
E E E

7

6 7 8

Calculated in this way, the E7 dispersion term represents 20%
of the dispersion energy, which is not negligible. Note that E7,
unlike E6, can be either positive or negative. It can also be zero.
For instance, the E7 energy for the H2 dimer is zero since the
dynamic dipole−quadrupole polarizability of H2 is zero (the
inversion center of H2 is the same as the inversion center of
the LMO).18 Therefore, it is not just a simple matter of scaling
to account for the E7 contribution to the dispersion energy.
The ethyne-ethene complex and benzene dimer were also

optimized in a similar fashion and are discussed in the
supporting material. Overall, inclusion of the E7 dispersion
energy leads to geometries more similar to MP2 than when E7
is not included.
Molecular Dynamics Simulation of 64 Water Mole-

cules in the NVE Ensemble. The (H2O)64 system was first
equilibrated for 10 000 steps, followed by a production run of
15,000 steps. The total EFP energy (including electrostatics,
polarization, exchange−repulsion, charge transfer and dispersion)
is considered. The overlap-based damping correction is used for
the screening of the electrostatic interaction and a Gaussian
formula is used for the polarization screening.49 The total
energy and temperature of the 64-water molecules is plotted
as a function of time in Figure 3. Overall, the energy is well
conserved, fluctuating by 0.24 kcal/mol from the average value
of −478.83 kcal/mol. The temperature deviates by up to about
64 K from the average of 313 K. The E7/E6 ratio is 0.16, which
is not negligible.

■ CONCLUSIONS

The analytic gradients of the E7(R
‑7) term of the dispersion

energy, including the overlap-based damping function, were
derived and implemented in GAMESS. The expression for the
analytic derivative was tested on a few systems by comparing
the analytic and numerical gradients, which are in excellent
agreement with each other. A geometry optimization was
performed on a water trimer. The E7 term slightly affects the

optimized geometry as shown by the increased intermolecular
distances. The E7 term represents 2% of the EFP energy and
20% of the dispersion energy, which is not negligible. An MD
simulation was performed on 64 water molecules with periodic
boundary conditions in the NVE ensemble and the energy is
well conserved. The current implementation of the gradient of
the E7 dispersion term will allow more accurate geometries
during optimizations and MD simulations as well as more
accurate dispersion energies at a low additional computational
cost. This will be particularly useful for modeling slow-moving
systems such as proteins. While the implementation of the E7
contributions to the interaction energy and energy gradient
have been assessed using the EFP method, the implications
regarding the importance of the E7 term for intermolecular
interactions are general: The R−7 contribution to the dispersion
interaction energy should not be ignored.
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Figure 3. Total energy (in blue) and temperature (in red) of (H2O)64 as a function of the simulation time.
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