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ABSTRACT

In this thesis, we developed a spatial-temporal mathematical model to capture fundamen-

tal aspects of MHC Class II mediated immune responses, which plays an essential role in

protecting the host from a broad range of pathogens. To capture its essential mechanisms,

we have considered terms that broadly describe intercellular communication, cell movement,

and effector function (activation or inhibition). By defining the pathogen based on the as-

sociated antigens±Pathogen Associated Molecular Patterns (PAMPs), a framework to model

phenotypic characteristics of pathogens is introduced. It includes the initial dose, distribution

at infection site, secretion rate of associated soluble antigens, replication rate of particulate

antigens, resistance of an antigen to be effectively processed by immune agents and capacity

of intracellular antigens.

The model can account for antigen recognition, an innate immune response, an adaptive

immune response, and the elimination of antigen and subsequent resolution of the immune

response against an acute infection or equilibrium of the immune response to the presence of

persistent antigen (chronic infection). The model is robust to variation in pathogen loads and

types. We demonstrate, using numerical simulations that the model can successfully respond

to broad classes of pathogens. Challenged by the in silico pathogens, our model mimics

different immunobiological scenarios: a highly skewed TH1 response is generated against some

virtual pathogens (e.g. those modeled after Mycobacterium tuberculosis, Leishmania major

etc.) and granuloma formation is observed, other virtual pathogens lead to an unskewed or

mixed response (e.g. such as Leishmania mexicana etc.) and some virtual pathogens lead

to a TH1 to TH2 switch (modeled after M. avium paratuberculosis), and a TH2 responses is

generated against sole extracellular pathogens (e.g. parasitic worms such as nippostrongylus
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etc.).

Based on the model, we propose testable predictions and hypothesis to explain the critical

immunobiological phenomena, such as TH1 and TH2 switch in mycobacteria infections.
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CHAPTER 1. Introduction

1.1 General biological background on the human immune system

The purpose of the immune system is to defend the host from diseases under continual

bombardment of microorganisms. The immune system is commonly visualized as a network

that involves different players interacting with each other. The actions executed by the immune

agents against foreign pathogens are defined as the immune responses. The immune system

can be categorized into a physical barrier, innate immune system and adaptive immune system,

according to the order of the line of defense. Each subsystem consists of certain immune agents

and generates corresponding responses.

Skin and mucous membranes (mucosal epithelia) form the physical barrier, as the first

defense line, which covers an area of approximately 400 m2 and commits to prevent physical

invasion [78]. Innate immunity serves as the next line of defense against the pathogens breach-

ing the physical barrier. It has two constituents: the complement system, composed of twenty

different proteins, and professional phagocytes (e.g., macrophages and neutrophils). During

innate immune responses, the system eliminates foreign invaders indiscriminately in a very effi-

cient way; in the meanwhile, cytokines (like chemokines) are released by phagocytes to recruit

and guide the responsive cells, such as T cells and antigen presenting cells, in reinforcing the

system.

In contrast to the innate immunity, the adaptive immune system is mediated by lympho-

cytes bearing highly diverse antigen-specific receptors, so that it can adapt to protect the

system against any foreign antigens. Activated by antigen presenting cells (APCs), lympho-

cytes proliferate and differentiate quickly. The mature antigen-specific lymphocytes regulate

the immune systems at both the infection site and lymphoid organs by releasing certain cy-
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tokines (such as IL-2, IL-4, etc. [78]). Not only can the adaptive immune response promote

pathogen elimination, it also generates memory lymphocytes and antibodies to offer a more

rapid and efficient response upon any reinfection.

The central concept of the adaptive immune system is antigen recognition and presentation.

T cells (also called T lymphocytes) and B-cells (also called B lymphocytes) are the manager

cells of the adaptive immune system; they manage the system to fight against the identified

pathogens in an efficient way. To identify the pathogens, T cells and B cells recognize antigens

using different molecules to recognize the associated antigens. B cells fulfill the recognition

of free antigens by B cell receptors related to the immunoglobulins (BCR). In contrast, T

cell receptors (TCR) only recognize antigens displayed on APCs’ surfaces, those peptides are

delivered to the cell surface by host-cell glycoproteins, the major histocompatibility complex

(MHC molecules). According to the structural and functional differences, the two classes

of MHC molecules are classified: MHC Class I and MHC Class II. MHC Class II binds to

peptides derived from proteins degraded in endocytic vesicles. In other words, MHC Class II

molecules function as billboards used to advertise what is happening outside of the cells. MHC

Class II is inspected by helper T cells, which are usually referred to as CD4+ T cells. CD4+

T cells are specialized in activating other immune effector cells, for example, they ”help” B

cells and macrophages. T cells, therefore, are crucial for both the humoral and cell-mediated

adaptive immunities. The functions of CD4+ T cells are related to all infectious diseases, such

as tuberculosis [78]. CD4+ T cells also play a central role in defending the host against viruses

and building up immunological memory [78]. Thus, deeper understandings of the mechanics

of the MHC Class II mediated immune responses are crucial in understanding how CD4+

T cells function in adaptive immune responses, such as the differentiation of CD4+ to the

subsets of TH1 and TH2 [32, 91, 113, 208]. Understanding of MHC Class II mediated immune

responses also offers opportunities to better understand the immunobiological phenomena, for

example, the switch of immune responses in M. avium paratuberculosis infections [65, 187,

200]. Furthermore, exploration of MHC Class II mediate immune responses also provides

new perspectives on designing vaccines for tuberculosis, or on designing treatments against
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infectious diseases, like AIDS [156, 157, 159, 170].

1.2 Abstract of MHC Class II mediated immune responses

MHC Class II mediated immune responses towards a pathogen are a complex adaptive

system that can be readily summarized conceptually through decomposition into the initiation,

effector function, regulation and resolution [78, 183, 204]. Once initiated, a successful immune

response must be used to balance the pro-inflammatory destructive actions of the immune

effector cells with the protection of organ function. This balance becomes particularly critical

when battling pathogens that manage to persist, despite the recognition by and stimulation

of the immune system (chronic infections). The immune response continues until the foreign

antigen is eliminated, contained, or tolerated; alternatively, the host may become overwhelmed.

Initial phagocyte activation leads to the accumulation of chemokines. Directed by the

gradient of chemokine, the attraction of immune cells can, in turn, induce the adaptive immune

response through the antigen presentation by APC and the activation of helper T cells (CD4+

T cells). Both dendritic cells (DCs) and B cells can act as APCs, even though they function in

different manners. For example, DCs transport between the infection sites and the lymphoid

organs (lymph nodes) as biological sensors. In contrast, as alternative APCs, B cells dwell

in the lymph nodes to detect the presence of antigens by immunoglobulins. Through the

recognition of foreign antigens, different immune functions can be combined with the single

mission of protecting the host. It is clear that helper T cells (CD4+ T cells) promote cell-

mediated immunity that is primarily defined by macrophage activation, and/or B cell response

that is characterized by high antibody production. Their helper functions are defined by

the CD4+ secreting cytokines. In the process, a third subset of T cells, regulatory T cells,

manage an alternative regulatory pathway to limit the immune response and avoid unlimited

inflammation during chronic infection.

Particularly, in the MHC Class II mediated immune responses, the means to T cell skewing

remain open to debate [203], with many theories proposed. These theories range from DC

subtypes [78] to stochastic-instructive mechanisms [78] to spatial influences [78] to some that
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propose that the CD4+ T cell function is determined primarily by the characteristics of the

antigen itself [205, 206]. Although the exact mechanisms of T cell skewing remains unknown,

the T cell effector response is still believed to be critically important in determining down-

stream immune functions. The cross-regulation of helper T cell differentiation further our

understanding of the dynamics of CD4+ T cell differentiation [52, 53, 54]. In summary, the

maturation of the adaptive immune response to any particular pathogen is subject to antigen

recognition via T cell-APCs interaction. This macrophage response is directed, in part, by T

cell effector functions and B cell-antibody dynamics.

1.3 Mathematical modeling on the immune system

1.3.1 Brief history

A large number of immunological discoveries on the course of infectious diseases have

emerged since the late 1960s. Fundamental results relate to the mechanisms of pathogen-

immune system interactions at different levels of considerations [78]. These results, followed

by newer immunological phenomena, stimulate the application of mathematical models to

study immune responses.

Early studies primarily focused on the idiotypic networks of B cells and their antibodies.

The work of Hege and Cole [70] described the dynamics of the number of antibodies with

respect to the population of plasma cells by differential equations. This study is considered

to be one of the first in the field of mathematical immunology. In 1970, Jilek [84, 85, 86, 87]

proposed the first series of probabilistic models to study the interaction of antigens with B

cells and the subsequent clonal formation by the Monte-Carlo method. Clonal selection and

humoral immunity against both monovalent and multivalent antigens were studied by Bell

[14, 15, 16, 17] using a discrete predator-prey model in the 1970s. In 1975, some efforts

[24] were devoted to modeling the humoral immune reaction to study the heterogeneity of

immunocompetent cell populations as functions of antibody affinity and time. Motivated

by Jerne [79, 80], Richter [168] and Hoffmann [74] original models of immune systems from

the point of view of the network in 1975. In 1977, Waltman [199] incorporated the concept
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of threshold switching of B-lymphocytes in the model. At the same time, De Lisi published

several papers [36, 37, 38, 39, 40] on the mechanisms of tumor growth in an organism resembling

in essence of Bell’s original model. Marchuk [115], in 1975, constructed a nonlinear delay

differential equations model to study infectious disease by including the damage of target

organs, instead of solely humoral immunity. Early partial differential equation models and

pioneering works on optimal control problems in immune responses were studied by Perelson

[153, 154]. Modeling immune responses in terms of catastrophe theory, on the other hand, is

suggested and systematically formulated by Merrill [127, 128].

Along with the discovery and further understanding of T cells, the mathematical modeling

of immune systems significantly increased, especially in the 1980s. Large numbers of models

were proposed to study immunoregulation, the dynamics of idiotypic immune networks, the

spatial organization of immune processes, and immune responses against infectious diseases

[111, 114, 132, 145, 155, 157]. Since the beginning of the 1990s, more sophisticated mathemat-

ical models were presented; this diversity in models has been rising significantly.

Two complementary conceptions exist: the clonal theory of Brunet [25] and the network

theory of Jerne [79]. Particularly, clonal theory visualizes the immune system as a set of large

numbers of independent clones of particles interacting with antigens selectively. Based on

these two conceptions, in the last 20 years, people have used discrete models, or agent-based

models, on the basis of cellular automata, probabilistic models, ordinary differential equations,

differential algebraic equations, delay differential equations, integro-differential equations and

partial differential equations. These models are used to reveal the mechanism of immune

system mathematically.

Considering that the primary goal of the immune system is the defense of the host against

infections, the mathematical modeling of immune responses during infectious disease and the

study of the mechanisms of viral and bacterial infections became the focus of the attention of

both theoretical and experimental immunology in the last few decades. Besides the already

mentioned difficulty of understanding the switch of TH1 and TH2 immunity during infections

caused by mycobacteria, modeling immune responses during infectious disease faces many
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conceptual difficulties [41, 62, 91, 102, 113, 151, 204, 208]. Nevertheless, many important works

of modeling immune responses against certain type of pathogens have made significant progress

since the 1980s, these include: the temporal dynamics of the immune system against HIV

infections [143, 144, 156, 158]; the immune response against hepatitis B studied by [116, 152],

against influenza as modeled by [22], against bacterial infections modeled by [93] and against

parasitic infections by [1, 71]. Furthermore, granuloma formation and macrophage dynamics

in tuberculosis were studied by [120, 149] and [119, 201], where the capacity of antigens in the

infected immune cells was studied. Meanwhile, functions and cross-regulations of helper T cells

were studied by computational models [12, 52] and analyzed systematically in [52, 53, 54]. The

activation of B cells and its interaction with antibody dynamics were studied by [96, 154, 179].

The variable dynamics of vaccinations for infectious diseases were studied by [182]. Other

mechanisms of immune responses in different contexts are studied by many authors such as

[55, 61, 97, 117, 145] and [159, 157] (with the references therein).

1.3.2 Modeling principles and methodologies

As discussed previously, understanding the adaptive immunity is the key to revealing the

mechanism of an immune response against all infectious diseases and certain types of cancer.

More study on the dynamics of MHC Class II mediated immune response is key to understand-

ing adaptive immunity. Our goal is to build a mathematical model identifying a minimal set of

key immune factors that would recapitulate the pattern of MHC Class II mediated immunity

to diverse pathogens, and use the model to provide testable hypotheses that could explaine im-

munobiological phenomena. To institute a simplistic model, we begin with the hypothesis that

immune regulations are chemical threshold dependent [190] and the following four principles

[90, 190, 207]:

1) The system is not reactive to the self via clonal deletion of self-reactive T and B cells,

2) The antigen load drives the immune activation through threshold functions,

3) The activation of T cells only happens in the confines of the secondary lymph nodes,

and
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4) The TH1 v.s. TH2 bifurcation is determined by the defined characteristics of the antigen

that determines APC function.

Essential factors include: antigens (particulate, soluble, intracellular), immune cells, chemokines,

and cytokines. The model consists of a system of partial differential equations used to model

the behavior of most of the immune cells, antigens and chemicals; ODEs are used to model B

cells, as we assume that they primarily dwell in the lymph nodes; and typical delay terms are

used to model the proliferation of the helper T cells.

The MHC Class II mediated immune response follows a pattern of engagement with a

foreign antigen: recognition, initiation, effector response, and resolution or converge to a new

equilibrium.

The antigens to which the immune system responds are highly variable and determined

by the type of pathogen that infects the host. However, in our desire to conceptually define

the immune response in broad terms, we, in turn, have to define the pathogens and associated

antigens broadly, with either soluble or insoluble antigens that exist either extracellularly or

intracellularly. We have, therefore, introduced a generic intracellular antigen and a soluble

antigen as variations to the particulate antigen (the insoluble antigen). In the model, soluble

and particulate antigens, as well as secondary signals (such as pathogen associated molecular

patterns or PAMPs), diffuse from the pathogen source. Intracellular antigens are then created

as a result of the failure of processing/killing the engulfed antigens in the macrophages. The

abundance of responsive neutrophils enables their rapid deployment and the early domination

of the infection site, where they quickly reduce the amount of particulate antigen and establish

an initial gradient of chemokine [141]. This provides a site of initiation for both innate im-

munity via neutrophils and macrophages and the opportunity to link to the adaptive immune

response via APCs. Dendritic cells, one type of APCs in our model, uptake a variety of antigen

information and activate upon antigen recognition, undergoes maturation, and migrates away

from the chemokine source to the lymph nodes. In contrast, soluble antigens bypass the innate

immune response, diffuse to the secondary lymphoid organ through the lymph and are directly

recognized as foreign substances via the interaction with an antigen-specific B cell.
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For simplicity, we model that antigen specific CD4+ T cells activated through the innate

immunity link via dendritic cells (DCs with particulate antigen peptide presented) are biased

towards a TH1 type immune response. In contrast once B cells are directly activated by the

recognition of antigen, they activate CD4+ T cells biased towards becoming TH2 cells; so do

the dendritic cells matured through recognizing immune complexes [18, 64]. Activated CD4+

T cells, in turn, become sensitive to the chemokine gradient and migrate to the pathogen

source [103, 125], they also fulfill their duty to promote B cell activation in the lymph nodes

through co-stimulatory receptors [78, 183]. B cells, once activated, remain in the secondary

lymphoid organ as either short-lived plasma B cells, the antibody producer, or as long-lived

memory B cells [49]. Additionally, the present model mimics scenarios that the T cells provide

cross-regulation during ongoing T cell activation [6, 20, 78].

Classically activated macrophages process additional particulate antigens and limit neutrophil-

induced damage by blocking further neutrophil recruitment [7, 67]. Activated macrophages

are less reckless than neutrophils, but they contribute to the pro-inflammatory environment

that can damage the host in the long-run. To limit the damage, regulatory T cells are re-

cruited to the site of the infection, where they produce inhibitory cytokines that can block the

activation of macrophages and limit macrophage-induced tissue damage [6, 20]. Alternative

activated macrophages increase the amount of intracellular antigens as a result of the decrease

in immune efficiency, which leads to state transition of the immune system.

The boundary of our symmetric simulation area Ω serves as a surrogate for the lymph

nodes. The fundamental equation governing the cell motion in either lymph or blood is the

Keller-Segel equations [95]:




∂tρ + div(χρ(∇c)ρ) = div(Dρ∇ρ) + R(ρ, c)

∂tc− div(Dc∇c) = g(ρ, c)
(1.1)

where ρ(x, t) and c(x, t) are density of organisms and concentration of chemoattractant re-

spectively, and (x, t) ∈ Ω × [0,∞). In the model, reaction functions R(ρ, c) and g(ρ, c) are

employed to model regulation and interactions among immune agents and antigens. Boundary

condition will be specified for each immune agent according to its own functional mechanism
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in the lymph nodes. Chemicals (proteins), including cytokines, antigens and antibodies, are

modeled based on reaction-diffusion equations with the appropriate boundary conditions. To

mimic a realistic mechanism of immune cells motion in vivo, the highly reticulated random

structure of microvasculature must be taken into account. The concept of homogenization is

therefore applied to estimate the diffusion and chemotaxis coefficients in the model [191, 193].

The numerical scheme [108] is designed to conduct the in silico experiments of the model.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 is a detailed description of the MHC Class

II mediated immune response model in tissue. In Chapter 3, we briefly discuss the numerical

strategy used to solve the model proposed in Chapter 2. In Chapter 4, we conduct a series of

numerical experiments to test our model: we justify the biological necessities of regulatory T

cells, DCs, B cells and antibodies in the model, explore various phenotypic immune responses

against different pathogens, and challenge the immune system by a typical in silico pathogen–

Mycobacterium avium subspecies paratuberculosis (Map) to study the switch between TH1-

mediated and TH2-mediated immune responses. In Chapter Five, we extend the discussion

and summarize the model.

This thesis is primarily based on the published paper [190] and manuscripts under prepa-

ration: [90, 108, 207].
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CHAPTER 2. The mathematical model

In this chapter, we will discuss our mathematical model of MHC Class mediated immune

responses in details. All the state variables, with their biological meanings together, involved

in the model are found in Table 2.1.

Table 2.1 State variables of the model

Biological Meaning
A particulate antigens± PAMPs
As soluble antigens
Ap intracellular antigens
IC immune complexes
TH1 effector TH1 cells
TH2 effector TH2 cells
Treg regulatory T cells
DE immature dendritic cells (DCs)
DA mature DCs presenting particulate antigens± PAMPs
DF mature DCs presenting immune complexes
Ba activated B cells
Bp plasma B cells
MR resting macrophages
MA generic activated macrophages
N neutrophils
ND apoptotic neutrophils
CM cytokine secreted by activated macrophages engulfing apopotic neutrophils
CT1 TH1 cell-released cytokine
CT2 TH2 cell-released cytokine
CTreg regulatory T cell-released cytokine
CH generic chemokine
F generic antibody

Due to the large number of parameters, establishing consistent notation can be challenging.

In the equations that follow, we have used α for replication or proliferation, β for secretion, δ
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for regulation or modeling associated parameter, γ for activation, λ for uptake (process), µ for

death/decay, ε for threshold parameters, χ for chemotaxis rate, and D for diffusion rate. 1{··· }

is indicator function. The parameter subscripts are chosen to indicate which variable is affected

by the parameter, so µN affects population of neutrophil. When more than one variable can

affect another variable via the same mechanism, or when greater clarification is desired, the

subscript X|Y indicates variable X is affected via the action of Y . For example, λA|N and

λA|MA are the uptake rates of particulate antigen± PAMPs by neutrophil and macrophage,

respectively. As convention, the boundary of domain, which is the lymph node in our model,

is denoted by ∂Ω.

2.1 Pathogens and antigens

The immune system has developed specific Pattern Recognition Receptors (PRRs) to detect

a broad range of ligands, termed Pathogen Associated Molecular Patterns (PAMPS), found on

infectious agents [197]. For our broad model, a pathogen is defined as extracellular particulate

antigen±PAMPs that is taken up by immune agents and become intracellular antigen, which

may or may not secrete soluble antigen.

2.1.1 Particulate antigens

The immune system can recognize the pathogens through associated antigens±PMAPs by

PRRs. PRRs are found on cells throughout the immune system but are best described on

cells of the innate immune system, including neutrophils, macrophages and dendritic cells [3].

PAMPs include bacterial flagellin, lipopolysaccharide (LPS), bacterial DNA sequences, and

double stranded RNA.

The immune system we model is a simplified version triggered only by particulate antigen

(e.g. ovalbumin) and PAMP molecules (e.g. LPS). We assume that the particulate antigen

and PAMP molecules share similar dynamics, degrading and replicating at the same constant

rate µA and αA respectively, diffusing at roughly the same rate DA, as justified by the Stokes-

Einstein equation [68], and consumed largely through the indiscriminate process of pinocytosis
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by macrophages, neutrophils, and immature dendritic cells. Henceforth we treat both molecules

as one substance, denoted by A, that satisfies the following reaction-diffusion equation, along

with initial and boundary conditions.




∂A

∂t
=

diffusion︷ ︸︸ ︷
DA∆A−

pinocytosis by phagocytes or neutralized / opsonized by antibodies︷ ︸︸ ︷
A

(
λA|MRMR + λA|MAMA + λA|NN + λA|DEDE + λA|F F

)

+ αAA︸︷︷︸
replication

+
(
κA|Ap

+
MA · ρAp|MA

δAp + Ap

(
µMA + µMA|Ap

))
Ap

︸ ︷︷ ︸
from intracellular antigens

− µAA︸︷︷︸
degradation

A(x, 0) = A0,
∂A

∂n
(·, t)

∣∣∣
∂Ω

= 0.

(2.1)

In the equation (A.1), λA|MR, λA|MA, λA|N and λA|DE are the rates of antigen±PAMPs up-

take through pinocytosis/phagocytosis by resting macrophages (MR), activated macrophages

(MA), neutrophils (N) and immature dendritic cells (DE). λA|F is the opsonizing/neutralizing

rate of particulate antigen±PAMPs by antibodies. Macrophages engulf the antigen and must

process it to achieve a successful immune response; however the probability of success is vari-

able with respect to different pathogens. If the effort of processing an antigen fails, the antigen

will become to an intracellular antigens and therefore not be processed by any other immune

agents. Some intracellular antigens are released by the macrophage naturally in the rate of

κA|Ap
, which is assumed to be a constant for any particular pathogen based on the assump-

tion that the cellular structure of macrophage is homogeneous compared with the immune

system’s scale (this number is set to be very small in simulation). Alternatively, intracellular

antigens are released due to death of macrophages. In equation (A.1), ρAp|MA denotes the ca-

pacity of macrophage to hold particulate antigens, which is one of the pathogen characteristics

depending on pathogen’s pathological and structural attributes.

The initial input of particulate antigens is modeled by a function A0(x), which depends on

the specific pattern of initial infections.

2.1.2 Intracellular antigens

To measure the success rate that macrophages processing antigen, the concept of immune ef-

ficiency [188] is needed and is denoted by the generic parameter peff
Ap|A(IC, CT2) in the model.
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Once engulfed by activated macrophages, for any specific type of pathogen, the associated

particulate antigens have probability 1 − peff
Ap|A(IC, CT2) to survive in the form of intracel-

lular antigen inside the macrophages. So, peff
Ap|A = 1 is corresponding to an acute infection,

while peff
Ap|A < 1 is for chronic infections. The immune efficiency peff

Ap|A(IC, CT2), which is

macrophage-status dependent, is defined later by (2.10).

As a result of high affinity, the motion of intracellular antigen is dominated by the movement

of the macrophage as we assume that their own motility is negligible compared with the scale of

the macrophages’ movement so that the diffusion and chemotaxis rate of intracellular antigen

are as same as macrophage’s. The third term in equation (2.2) models the production of

intracellular antigens following a typical logistic manner due to the volume effect of their

host [119, 201], which leads to the necessity to model capacity ρAp|MA and it is assumed

to be a constant for any particular pathogens [4]. Furthermore, once alternative activation

of macrophage is triggered, the replication ability of intracellular antigens will be changed

[62, 118], and to capture this the growth rate of intracellular antigen is modeled on the basis

of an indicator function in (2.3). The amount of TH2 type cytokines or immune complexes

overwhelming certain threshold is considered as signal to initiate alternative activation [62],

and positive modeling parameter nAp is used to model the subsequent effect of alternative

activation of activate macrophage on the self replication of intracellular antigens.

Intracellular antigens decay in the rate of µAp . All of the containing intracellular antigens

are released once the host activate macrophage is dead either due to natural death or bursting

caused by overcrowding of intracellular antigens. Combining these factor, (2.4) is employed to

model the lost of intracellular antigens in the system.




∂Ap

∂t
=

effective diffusion︷ ︸︸ ︷
DAp∆Ap −

effective transport︷ ︸︸ ︷
∇(χAp(Ap∇CH))+

self replication︷ ︸︸ ︷
αAp(CT2, IC)Ap

(
1− Ap

MA · ρAp|MA + 1

)

+ (1− peff
Ap|A)(λA|MAA ·MA)1{

Ap<MA·ρAp|MA

}
︸ ︷︷ ︸
unsuccessful processing and turn to intracellular antigens

− f(µAp ,MA, κAp|A, Ap)︸ ︷︷ ︸
lost of intracellular antigen

Ap(x, 0) = 0,
∂Ap

∂n
(·, t)

∣∣∣
∂Ω

= 0

(2.2)
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where
∫
Ω u(x, t)dx is the total amount of u in Ω, growth and lost rate are modeled as

αAp(CT2, IC) = αAp ·
(

1+(nAp −1)1{{ ∫
Ω CT2(x,t)dx>εMA|TH2

}
∪
{ ∫

Ω IC(x,t)dx>θIC

}}
)

(2.3)

where αAp is a positive constant, and

f(µAp ,MA, κAp|A) := µAp + κA|Ap
+ MA

(
due to natural death︷ ︸︸ ︷
µMA

ρAp|MAAp

δAp + Ap
+

due to bursting︷ ︸︸ ︷
ρAp|MA

µMA|Ap
Ap

δAp + Ap

)
. (2.4)

2.1.3 Soluble antigens and immune complexes

In general, when compared with particulate or insoluble antigens, soluble antigens trigger

immune responses mediated mainly by antibodies and B cells [78]. In our model, secreted

by pathogens whose amount is modeled by total population of particulate antigens and intra-

cellular antigens, soluble antigens rapidly diffuse in the lymph and tissues and quickly reach

the lymph nodes. Soluble antigens are not recognized either by the receptors on professional

phagocyte or by dendritic cells directly (unless they form immune complexes through binding

with antibodies) [78]. However, they are readily recognized by B cell receptors (BCRs) and

specific antibodies. Once recognizing free soluble antigens, antibodies bind soluble antigens to

form stable immune complexes for the purpose of neutralization or opsonization. The immune

complexes diffuse similarly to antibodies and soluble antigens in the tissues, and they are either

processed by professional phagocytes to promote chemokines or carried by immature DCs to

present MHC Class II to the lymphocytes, such as effector T cells or B cells, in the lymph

nodes.

PDEs (2.5) and (2.6) are used to model soluble antigens As and immune complexes IC.




∂As

∂t
=

diffusion︷ ︸︸ ︷
DAs∆As−

degradation︷ ︸︸ ︷
µAsAs +

secreted from pathogens︷ ︸︸ ︷
βAs|AA + βAs|Ap

Ap−

neutralized/opsonized

by antibodies

︷ ︸︸ ︷
λAs|F AsF

As(·, 0) = 0,
∂As

∂n
(·, t)

∣∣∣
∂Ω

= 0.

(2.5)
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∂IC

∂t
=

diffusion︷ ︸︸ ︷
DIC∆IC −

degradation︷ ︸︸ ︷
µICIC −

processed by professional phagocytes or immature DC︷ ︸︸ ︷
(λIC|MAMA + λIC|DEDE + λIC|NN) · IC

+ (λAs|F As + λA|F A)F︸ ︷︷ ︸
formed through binding antibodies

IC(·, 0) = 0,
∂IC

∂n
(·, t)

∣∣∣
∂Ω

= 0.

(2.6)

As we model the lymph node by the boundary of the domain, for simplicity, the bound-

ary condition for antigens and immune complexes are set to satisfy the Neumann boundary

condition for balancing flow. The dynamics of the different antigens within the model are

summarized in figure 2.1.

Figure 2.1 Schematic of the dynamics of antigens.

Finally, as a summary, we hypothesize that pathogen characteristics can be used to iden-

tify certain pathogens and mimic and approximate their behaviors, and we define pathogen

characteristics in our model as following:
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Definition 2.1.1. (Pathogen characteristics) The generic parameters: self replication rate αA

(or αAp), secretion rate of soluble antigen by pathogen βAs|A (or αAs|Ap
), survivability during

immune responses 1 − peff
Ap|A (complementary to immune efficiency), capacity of intracellu-

lar antigens in activated macrophage ρAp|MA; and initial infection dose, are called pathogen

characteristics.

2.2 Professional Phagocytes

Two types of professional phagocytes are studied in our model: neutrophils, denoted by

N , are the major component during innate immunity, and macrophages, denoted by MR and

MA, are the major professional phagocyte for adaptive immunity, particularly, the MHC Class

II mediated immune responses.

2.2.1 Neutrophil

Neutrophils, denoted by N , constitute 40% ∼ 70% of the white blood cells in the blood

stream [19]. They respond early to threats against the host by detecting changes in the vascular

endothelium induced by tissue damage and/or infection [78]. Neutrophils, and other immune

cells, initially approach the source of antigen through the microvascular system that extends

into the tissue. Once activated by changes in the vascular endothelium, neutrophils exit the

microvasculature and move through the tissue by sensing molecules, or chemokines, produced

by damaged or infected tissue [7, 78]. This process, termed chemotaxis, plays a significant role

in immune cell motion in our model [171].

Neutrophil’s movement is governed by Stokes equation in blood vessels and the consid-

erably slower processes of diffusion and chemotaxis in the tissue [34, 83]. We account for

movement through the microvasculature using the concept of homogenization [30, 191, 193].

For simplicity, we assume that the microvasculature tubules form a random reticulated struc-

ture, densely distributed everywhere and with arbitrary direction (as shown in figure 2.2).

With these assumptions, homogenization is applied to the mix of microvasculature and ex-

travasculature tissue to obtain an effective diffusion/chemotaxis process, where the diffusion
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coefficient DN or chemotaxis coefficient χN of neutrophils, for example, is substantially larger

than diffusion/chemotaxis coefficients measured in vitro [133]. Hereafter, the motion of most

immune cells in the tissue is justified as effective diffusion or effective chemotaxis.

The movement of most immune cells are similar to neutrophils and therefore, we are going

to use Keller-Segel equations [95] coupling with reaction functions to model the mechanism of

immune cell during infection and immune response. Their diffusion and chemotaxis coefficients

must be interpreted as effective one thereafter.

Figure 2.2 Schematic diagram of neutrophil movement in microvascularized

tissue. This figure is from the published article [190].

One of the main tasks of neutrophils is to deliver a potent mix of noxious chemicals to

the presumed location of the invading pathogens. The delivery is achieved through a process

called degranulation, which culminates in the death of the neutrophil [7, 141]. It should not be

surprising that such a lethal arsenal is highly regulated, mostly to ensure that the chemicals

are released near pathogens. It would be wasteful, not to mention dangerous, to release the

chemicals in the absence of pathogen. In our model, we use the successful scavenging of partic-

ulate antigens±PAMPs and immune complexes as an indication of the presence of pathogen,

so antigen or immune complex uptake at rate λA|N or λIC|N is immediately followed by neu-

trophil death by degranulation. If neutrophils do not encounter particulate antigens±PAMPs

or immune complexes after leaving the microsvasculature, they die through a constitutive pro-
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cess of apoptosis at rate µN , a programmed cell death that is much cleaner and less destructive

to surrounding tissue [78].

Degranulation of neutrophils, no matter how targeted, is nevertheless destructive to sur-

rounding host tissue, so there is heavy incentive to reduce the number of neutrophils as soon

as possible. The presence of apoptotic neutrophils, represented by ND in our model, serves

as an early indication of the successful clearance of pathogen [7, 141]. Apoptotic cells are

cleared through phagocytosis at rate λND|MA by activated macrophages MA. Upon phago-

cytosing apoptotic neutrophils, activated macrophages hasten to limit the damage of future

degranulation by producing a chemokine CM (see equation (A.9)) that stops the influx of

fresh neutrophils into the model area [7, 23], implemented as a on/off boundary condition

thresholded at level εN .

Because we assume a high density of microvasculature everywhere in the tissue, we assume

the initial concentration of neutrophils is positive constant N0 throughout the simulation do-

main, though initially there are no apoptotic neutrophils. Neutrophils are known to release

many self-regulating molecules [44, 150, 202]. Since chemokine CH is predominately produced

by neutrophils early in infection (see equation (A.9)), we therefore use CH levels to auto-

regulate these cells and introduce the self-regulation term δN |CHCH ·N in (A.2), involving the

generic chemokine CH (more details are in section 2.6.2).




∂N

∂t
=

effective chemotaxis︷ ︸︸ ︷
DN∆N −

effective chemotaxis︷ ︸︸ ︷
∇(χN (N · ∇CH))−

degranulation/apoptosis/auto-regulation︷ ︸︸ ︷(
λN |AA + λN |ICIC + µN + δN |CHCH

)
·N

∂ND

∂t
= DND∆ND︸ ︷︷ ︸

diffusion

+ µNN︸ ︷︷ ︸
transfer from N

−λND|MAND ·MA︸ ︷︷ ︸
phagocytosis by macrophages

−µNDND︸ ︷︷ ︸
decay

,

N(·, t)
∣∣∣
∂Ω

= N0 · 1{
CM≤εN

},
∂ND

∂n

∣∣∣
∂Ω

= 0, N(x, 0) = N0, ND(x, 0) = 0.

(2.7)

In [205, 206], the authors have proposed a postulate that connects the immune responses

and antigen’s phenotypic features. Furthermore, based on the approach we used to model the

regulation of neutrophils recruitment in the tissues, we hypothesize that the activation and

deactivation mechanism of immune agents are also chemical threshold dependent [190]:

Hypothesis 2.2.1. The regulation mechanism of activation and deactivation of immune agents
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are chemical threshold dependent.

The activation or deactivation of immune agents in our model will be approached by char-

acteristic functions of level sets for certain chemicals in the following sections.

2.2.2 Macrophage

Macrophages are scavengers that clear antigen/PAMP from the site of infection in a highly

regulated operation. Regulation is achieved by careful management of the switch of different

macrophages states.

Like all of the other immune cells in our model, macrophages are attracted to the source

of antigen/PAMP by chemotaxis along a chemokine gradient established by neutrophils. In

our model, resting macrophages patrol the tissue through effective diffusion, existing at some

steady state level MR0, representing the balance of macrophage recruitment and death in the

tissues at rate µMR [62, 78].

The activation of macrophages is a process involving many different signals that can lead to

different functional outcomes. Innate activation, classical activation, humoral activation and

alternative activation are included in our model to capture a broad response from macrophages.

The mechanism is summarized as following:

(i) Innate activation is simply the result that once recognized by PRRs, microbial stimuli

will induce production of pro-inflammatory cytokines. The resting macrophage is therefore

consequently activated [62, 112, 183]

(ii) Classical macrophage activation is mediated by a stimulus such as IFN-γ from effec-

tor TH1 cells. The activation status of resting macrophage (or a macrophage activated only

through PRR) is dramatically enhanced [8, 78, 112, 183].

(iii) Humoral macrophage activation is mediated by antibody (F ) or complement receptors.

These anti-inflammatory signals are secreted during high antibody levels the result of which is

that the macrophage undergoes a downregulation [62].

(iv) Alternative activation is mediated by TH2 type cytokines such as IL-4 or IL-13, and

alternative activation will enhance the capacity for pinocytosis and endocytosis, and thus can
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inhibit macrophage-mediated killing of pathogens [62, 118, 131]. In other word, not only the

efficiency for activation of macrophage becomes lower but also the survival rate of pathogens

becomes higher.

(v) In addition, macrophages are activated or de-activated under a competition between

effector and regulatory T cells with their corresponding secreted cytokines [196]. Therefore,

regulatory T cells play a deactivation role in our model by cytokine secretion.

Thus, in our model, processing the cytokine amount from effector T cells (e.g. IL2, IFN-

γ, IL4 etc.) along with information on particulate antigen±PAMP levels in tissues [201],

macrophages are activated at a rate (function) γMR(CT1, CT2, CTreg, A, F ). Knowing little

about how these cytokine signals are actually interpreted, we model the comprehensive activa-

tion rate (function) of macrophage by following indicator functions with threshold mechanism

included:

Cr =

down-regulated by regulatory T cells︷ ︸︸ ︷{∫

Ω
CTreg(x, t)dx < ε1MA|Treg

+ ε2MA|Treg

∫

Ω
A(x, t)dx

}
, (2.8a)

C1 =

classical activation through IFN-γ etc.︷ ︸︸ ︷{∫

Ω
CT1(x, t)dx > ε1MA|TH1 + ε2MA|TH1

∫

Ω
A(x, t)dx

}
, (2.8b)

C2 =

alternative activation︷ ︸︸ ︷{∫

Ω
CT2(x, t)dx > εMA|TH2

}
, CF =

humoral activation︷ ︸︸ ︷{∫

Ω
F (x, t)dx > θF

}
, (2.8c)

so that the activation rate, as a functions based on chemical threshold [190], is

γMR(x, t) := γMR(CT1, CT2, CTreg, A, F ) = γMA|MR · 1Cr∩
(
CF∪C1∪C2

) (2.9)

which attempts to approach macrophage activation such that the activation occurs when in-

flammatory signal CT1 dominates antigen±PAMPs (set defined as (2.8b)) [190], or, either TH2

type cytokines or antibodies overcome certain threshold (sets defined as (2.8c)), and antigens,

in turn, dominate suppressive signal CTreg (set defined as (2.8a)).

Additionally, during humoral or alternative activation, the amount of immune complex or

TH2 type cytokines (e.g. IL− 4 and IL− 13) usually stays large [62, 78, 118]. For simplicity,

in our model, we therefore utilize the local amount of immune complexes and TH2 cytokines
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as easily-observable marks to model the subsequent effect of humoral or alternative activation

on immune efficiency (see section 2.1.2). Upon activation status, the immune efficiency of

macrophage peff
Ap|A(IC, CT2) is defined as:

peff
Ap|A(IC, CT2) :=

(
1− δ · 1{

{∫Ω IC(x,t)dx>θIC}∪{
∫
Ω CT2(x,t)dx>εMA|TH2}

})
peff

Ap|A (2.10)

where the model-specified constant peff
Ap|A and parameter δ ∈ (0, 1] are used to mimic alternative

activation.

Upon activation, macrophages lose access to the microvasculature and are thus less mo-

bile (diffusion rate DMA < DMR), but are voracious consumers of antigen/PAMP (λA|MA >

λA|MR), and acquire additional skills, including the ability to phagocytize apoptotic neutrophils

at rate λND|MA (see equation (A.2) and references[7, 8, 23]) and produce chemokine at rate

βCH|MA (see equation (A.9) and reference [149]). The macrophage’s mechanism is highlighted

in the figure 2.3.

Figure 2.3 Schematic diagram of macrophage response.

Taking into account the natural death of macrophage and its burst due to growth of intra-
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cellular antigens, the modeling equations of macrophage are summarized below:




∂MR

∂t
=

effective diffusion︷ ︸︸ ︷
DMR∆MR −

effective chemotaxis︷ ︸︸ ︷
∇(χMR(MR · ∇CH))−

natural death︷ ︸︸ ︷
µMRMR −

innate activation︷ ︸︸ ︷
λMR|AA ·MR

−
activation︷ ︸︸ ︷

γMR(CT1, CT2, CTreg, A, F ) ·MR,

∂MA

∂t
= DMA∆MA︸ ︷︷ ︸

effective diffusion

−∇(χMA(MA · ∇CH))︸ ︷︷ ︸
effective chemotaxis

− µMAMA︸ ︷︷ ︸
degradation

+λMR|AA ·MR︸ ︷︷ ︸
innate activation

+ γMR(CT1, CT2, CTreg, A, F ) ·MR︸ ︷︷ ︸
activation

−
(µMA|Ap

Ap

δAp + Ap

)
MA

︸ ︷︷ ︸
burst due to Ap

,

MR(·, t)
∣∣∣
∂Ω

= MR0,
∂MA

∂n

∣∣∣
∂Ω

= 0, MR(x, 0) = MR0, MA(x, 0) = 0.

(2.11)

where activation rate γMR(CT1, CT2, CTreg, A, F ) is defined as above in (A.8).

2.3 Dendritic cells

Some time after the innate immune response launches at the infection site, evidence of the

infection reaches the lymph nodes via antigen presenting cells (APCs). The adaptive immune

response is a carefully orchestrated affair that detects the pathogen with greater sensitivity

and, deflecting unwanted damage to the host, directs the inflammatory response more precisely

at the pathogen. We consider dendritic cells to be the main antigen presenting cells (APCs),

with two phases: immature and mature [101].

Immature dendritic cells, DE in equation (A.3), migrate toward the site of infection follow-

ing the chemokine gradient established by neutrophils and, later, activated macrophages. They

uptake antigens±PAMPs or immune complexes [103, 183], contributing to the processing terms

in equation (A.1) and (2.6). Simultaneously, immature dendritic cells undergo antigen±PAMPs

or immune complex-induced activation to become mature dendritic cells in a constant rate of

γ1
DE or γ2

DE , following the activation, they degrade the engulfed antigen±PAMP or immune

complex and present corresponding MHC Class II peptide or antigen bond or immune com-

plexes on their surfaces to fulfill their messenger duty in the lymph node [78, 103]. According

to different types of peptide presented on the surface, mature dendritic cells may be categorized

into different generic subsets [18]. In our model (A.3), based on the assumption of a single
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phenotype of presented peptide on the DC’s surface, we use DA, mature dendritic cell with

particulate antigen, and DF , mature dendritic cell with immune complex, to approach the

differentiation of mature DC. Mature dendritic cells reverse responsiveness to the chemokine

gradient and migrate away from the infection site toward the lymph nodes, where they present

the MHC Class II to specific lymphocytes. We therefore model the movements of dendritic

cells by coupled transport terms in (A.3).

Dendritic cells also experience natural death in the rate of µDE , µDA and µDF , and effec-

tive diffusion with diffusion coefficient DDE , DDA or DDF . The model equation of DC are

summarized as below:




∂DE

∂t
=

effective diffusion︷ ︸︸ ︷
DDE∆DE −

effective chemotaxis︷ ︸︸ ︷
∇(χDE(DE · ∇CH))−

natural death︷ ︸︸ ︷
µDEDE −

uptake antigens/immune complexes︷ ︸︸ ︷
DE ·

(
γ1

DEA + γ2
DEIC

)

∂DA

∂t
= DDA∆DA +∇(χDA(DA · ∇CH))− µDADA + γ1

DEDE ·A
∂DF

∂t
= DDF ∆DF +∇(χDF (DF · ∇CH))− µDF DF + γ2

DEDE · IC

DE(·, t)
∣∣∣
∂Ω

= DE0,
∂DA

∂n

∣∣∣
∂Ω

=
∂DF

∂n

∣∣∣
∂Ω

= 0,

DE(x, 0) = DE0 · 1{x∈∂Ω} , DA(x, 0) = DF (x, 0) = 0.

(2.12)

For simplicity, we assume that pathogens rarely damage the bone marrow directly during

the MHC Class II mediated immune responses in our model, so that immature DCs in the

lymph node have a constant supply from hemopoietic bone marrow progenitor cells. In (A.3),

DE0 is therefore set as a positive constant, which can also be relaxed and adjusted to mimic

other type of pathogens that invades the bone marrow.

A schematic diagram of DCs’ behavior and interactions with macrophages and effector T

cells are sketched in figure 2.4.

2.4 B cells

This iteration of the model does not distinguish between non-specific and antigen-specific

B (or T) cells. Therefore any B cell that encounters antigen in the lymph node will become



24

Figure 2.4 Schematic of interactions of DC with other immune agents in
immune system in the model. This figure is from the published
article [190].

licensed to activate. Once licensed they will act as APCs to present antigen in the context

of MHC Class II to effector T cells and become either memory B cells or antibody producing

plasma B cells [78, 183]. The licensing, activation, proliferation and function of B cells are

primarily limited to the lymph nodes [78, 183, 198] so that in our system the dynamics of B

cells occurs primarily in the boundary of the domain.

Crosslinking of B cell receptors (BCRs) is a licensing signal and a consequence of the

abundance of the antigens and enables the B cell to become activated, which is dependent

upon its interaction with T cells [183]. Though the main source of antigen for interaction with

BCRs, in our model, is soluble antigen, particulate antigens can be presented to the B cells in

the lymph node as well [18]. Regardless of the source, the amount for either type of antigen

needs to exceed a threshold for B cell licensing and is described as threshold functions.

Once the threshold is reached and the B cells are licensed, effector T cell’s help is needed

for full activation. For simplicity we have modeled that T cells can be directly activated by
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licensed B cells through cell-cell contact and this activation leads to a TH2 response. We

also account for the fact that previously activated effector T cells in the lymph nodes can

contact licensed B cells and promote antibody production via IFN-γ (TH1 responses). During

the immune response, the number of activated B cells and plasma B cell produced antibodies

varies according to the phenotype of immune response. For simplicity, we assume that there is

always a constant supply of follicular or memory B cells, whose amount is denoted by constant

parameter Bm, circulating in the lymph nodes and being activated by direct encountering with

the soluble antigens or immune complexes.

Figure 2.5 Schematic diagram of activation of B cells.

A sufficient amount of antigens presented in the lymph node leads to the rapid proliferation

of activated B cells [183], and is approached by replication rate G(As, A, DA, DF, IC) in (2.13).

Besides natural death, the activated B cells commit to career choice that they differentiate into

plasma B cells with a certain rate [26, 27]. To approximate the function of plasma B cells, we

model their net effect as a homogeneously distributed antibody-source (ref (2.22)). Our model

is biased to short term antibody production and short lived plasma cells and we do not have a
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term for long-lived bone marrow resident plasma B cells that produce antibodies for extended

periods of time [26, 27]. The mechanisms of B cell activation as described in the model are

summarized in schematic diagram in figure 2.5.

As a summary, by defining the replication rate as

G(As, A,DA, DF, IC) =
As + A + pB|DE(DA + DF )ρDE + IC

δBa + (As + A + pB|DE(DA + DF )ρDE + IC)

∣∣∣∣
∂Ω

, (2.13)

and the sets of activation as

UX =
{
X(·, t)|∂Ω > θBa|X

}
, for X ∈ {As, IC, A}, (2.14a)

UDA,DF =
{

ρDE ·
(
DA(·, t) + DF (·, t))|∂Ω > θBa|DA,DF

}
. (2.14b)

the activated B cells in the model are governed by:





dBa

dt
=

TH2 promotion due to exposure of TH2 cells to free antigens, immune complexes,︷ ︸︸ ︷
γBa|TH2 · TH2(·, t)

(
As(·, t)1UAs

+ IC(·, t)1UIC
+ A(·, t)1UA

+ pB|DEρDE · · ·
and DC-bond antigens︷ ︸︸ ︷(

(DA + DF )(·, t)) · 1UDA,DF

) ∣∣∣
∂Ω

+

co-stimulation of näıve B cells by︷ ︸︸ ︷
γBa|TH1 · TH1(·, t)

(
A(·, t)1UA

+ · · ·
other effector T cells︷ ︸︸ ︷

pB|DEρDE

(
(DA + · · ·+ DF )(·, t))1UDA,DF

) ∣∣∣
∂Ω
−

decay and career choice︷ ︸︸ ︷
(µBa + αBp|Ba

) ·Ba

+

activation from memory B cells︷ ︸︸ ︷
γBm|As,IC ·Bm

(
IC(·, t) + As(·, t)

) ∣∣∣
∂Ω

+

proliferation︷ ︸︸ ︷
αBaBaG(As, A, DA, DF, IC)

Ba(0) = 0,

(2.15)

The parameter ρDE in (2.15), (2.13) and (2.14b) is the average number of antigen bonds

on the surface of mature DCs, and model specific parameter pB|DE stands for the fraction of

available antigen bonds among the total on mature DCs to activate näıver B cells in the lymph

node. Modeling equation for plasma B cells is




dBp

dt
=

differentiated from

activated B cells

︷ ︸︸ ︷
αBp|Ba

·Ba −
natural death︷ ︸︸ ︷

µBpBp

Bp(0) = 0

⇒ Bp(t) = αBp|Ba
e−µBp t

∫ t

0
eµBpsBa(s)ds (2.16)
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2.5 Effector T cells and regulatory T cells

It is well known that CD4+ T cells (or called helper T cells, in this model we call it effector

T cells) orchestrate the adaptive immune response [78, 183]. Peptides are presented to CD4+

T cells in the context of MHC Class II so that näıve T cells are activated and differentiate into

at least two different subsets of effector T cell: TH1 and TH2 cells, defined by the cytokines

they produce. Though the mechanisms leading to TH1 and TH2 cell dichotomy are still far

from clear, current knowledge provides information for modeling the behavior of effector T

cells based on known functions and interactions.

Once activated by APCs, the common function of all these effector T cell subsets is to

reduce antigen load by either supporting macrophage activation through pro-inflammatory

signals or supporting B cell production of antibody in the absence of pro-inflammatory signals

[203]. In our model, we approach this mechanism as TH1 cells mainly activate macrophages

while TH2 cells are specialized for the task of stimulating B cells to produce certain classes of

antibodies. In contrast, the regulatory T cells [63] function to reduce inflammation.

2.5.1 Effector T cells, their subsets and activation

Näıve T cells continuously recirculate between the vasculature and lymph nodes, where

they interact with APCs and scan surface expressed MHC Class II or peptide complexes. If a

peptide or MHC Class II matches the T cell receptor there is the opportunity for activation [78].

In our model, all APCs with antigen are themselves ”activated” either through the recognition

of particulate antigen±PAMP if a DC or through the recognition of their cognate antigen if

a B cell. We thus assume that if a T cell contacts an antigen loaded APC the T cell will

become activated with certain threshold conditions satisfied (ref. equation (2.20) and (2.21)).

T cell activation is limited by the amount of antigen and only modulated by regulatory T cells,

which downregulate the ability of näıve T cells to become activated. Activated T cells, in turn,

migrate to the site of infection via the microvasculature. We simplify the model by assuming

that näıve T cells reside in the lymph node (the boundary) until they are activated by contact

with APCs.
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It is clear that TH1 − TH2 phenotypes are acquired upon antigen induced differentiation

of näıve T cells [32, 78]. However, definitive factors directing TH2 development have not been

conclusively demonstrated [91, 113, 208]. There have been many ideas put forward, such as

results indicating that MHC Class II that interacts strongly with TCR favor promotion of TH1

phenotype while weak binding favors priming for TH2 phenotype [161]. Clearly the cytokine

milieu during T cell activation has a significant effect on the ultimate T cell phenotype although

identifying an initial source of TH2 cytokines has been particularly inconsistent. Newer theories

suggest spatial relationships during cellular division as an important factor determining TH1

and TH2 polarization [137, 139]. These inconsistencies make designing a biologically consistent

model of TH1 v.s. TH2 differentiation difficult, although it is the central theme during the

generation of an antigen specific immune response. As TH2 cells largely support the B cell

response, we propose that if a B cell captures its cognate antigen via an antigen specific receptor

that it becomes activated (over some threshold) and, in turn, drives any responding antigen

specific T cells to become TH2 cells. This conceptually simple solution can be supported by

results from several lines of investigation: for example, the results in [13, 164, 165] reveal that

the disruption of T cell-B cell interaction via loss of SAP signaling leads preferentially to a

loss of TH2 T cells much more significantly than any loss of a TH1 response; in addition, it has

recently been shown that B cells are required to generate TH2 cells after infection Leishmania

mexicana or nippostrongylus [110]. Collectively, these types of results suggest modeling a flow

of information from B cells to T cells is consistent with the immune response towards some

infections. Furthermore, in our model the TH2 dependent antibodies function to reduce the

soluble antigen providing an efficient feedback response and maintaining the central role that

the level of antigen in the lymph node plays in determining the immune response [2].

More generally, in the proposed model, as long as antigens reach the lymph node in the

absence of a classically activated mature DC then T cells develop into TH2 cells by default or B

cells activate them to commit to TH2 cells [13] while DCs with information about particulate

antigen±PAMPs are inclined to promote TH1 responses [18, 113]. Furthermore, signaling

by TCRs involves a sufficient activation signal [78]. To model this, indicator functions with
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respect to the thresholds are applied: once the population of APCs overcomes some threshold,

the activation is exerted (refer to (2.20)). Activation of effector T cells is known to be time-

lapse as the receptor engagement requires certain time period [183]. The effect of time-lapse

activation of T cells is modeled by incorporating delay terms in (2.20) where τ0 is the necessary

time period to fulfill the activation.

Furthermore, in our model, it is assumed that the MHC Class II on the surface of APCs

(either DCs or B cells) is fully occupied with the appropriate peptide and therefore the acti-

vation of effector T cells is directly proportional to the amount of mature APCs in the lymph

nodes.

Once activated, the effector T cells in our model have no cytotoxic activities, but divide

rapidly, secrete cytokines and migrate to the source of infection as determined by the infection-

associated chemokine gradient (cell movement is governed by both diffusion and chemotaxis).

The T cells continue to secrete cytokines (discussed in section 2.6.2) to upregulate the immune

response, via either macrophage activation [58, 78] or B cell-released antibodies [78, 183].

2.5.2 Regulatory T cells

Recently, a subpopulation of T cells that play a significant role in limiting the pro-inflammatory

immune response has been discovered. The mechanisms by which these cells, called regulatory

T cells, exert their suppressory/regulatory activities is not completely understood, but it may

be mediated by both immunosuppressive cytokines, such as TGF-β and IL-10, as well as direct

cell-to-cell contact with T effector cells [82, 175, 196].

Less is known about the origins of regulatory T cells, and there may be several different

sources depending upon the specific immune response [82, 97, 98, 192, 196]. In our model,

they begin life as effector T cells in the lymph node that become activated by signals from

the infection site [192]. We assume the activation signal for regulatory T cell commitment

originates with the activated effector T cell population itself, which proliferates and secretes

positive growth signals, like IL-2 [94, 98], that promote regulatory T cell differentiation and

survival [63]. However, immune suppression is only warranted when immune inflammation
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exceeds the perceived threat level. The severity of the threat is proportionally related to

the total amount of various antigens. To summarize these considerations, we assume that

the development of regulatory T cells in the lymph node depends on a threshold mechanism

modeled by level sets incorporating the amount of cytokines released by effector T cells and

the amount of surrounding antigens in the lymph nodes(refer to equation (A.6) and (2.19)).

Generally, activated regulatory T cells are generated and then migrate to the infection site

when cytokine from effector T cells is high and antigen load is low. Cytokines produced by

regulatory T cells (section 2.6.2) affect macrophages as discussed in section 2.2.2.

As a summary, in our model:

1. Regulatory T cells suppress primed effector T cells through direct cell contact at a constant

rate, and this contributes to effector T cells becoming unresponsive;

2. Regulatory T cells suppress the immune response by secreting undefined negative signals,

which we discuss in section 2.6.2 and denote by CTreg;

3. Regulatory T cells undergo chemotaxis and diffusion in a manner similar to previously

discussed effector T cells. Therefore, the governing equation of regulatory T cell is therefore

set up as:




∂Treg

∂t
=

effective diffusion︷ ︸︸ ︷
DTreg∆Treg −

effective chemotaxis︷ ︸︸ ︷
∇(χTreg(Treg · ∇CH))−

natural death︷ ︸︸ ︷
µTregTreg

Treg(x, 0) = 0

Treg(·, t)
∣∣∣
∂Ω

= γTreg(CT1, CT2)
(
(TH1(·, t) + TH2(·, t))

∣∣∣
∂Ω

)
, (2.17)

where the activation function γTreg(CT1, CT2) is modeled by

γTreg(CT1, CT2) = γTreg · 1{U1∪U2} (2.18)

where the level sets U1 and U2 are defined as

U1 =
{

CT1(·, t)∣∣
∂Ω

> ε1Treg
+ ε2Treg

(
A(·, t) + ρDEDA(·, t))∣∣

∂Ω

}
, (2.19a)

U2 =
{

CT2(·, t)∣∣
∂Ω

> ε1Treg
+ ε2Treg

(
As(·, t) + ρDEDF (·, t) + IC(·, t))∣∣

∂Ω

}
. (2.19b)
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2.5.3 Regulation of effector TH1 and TH2 cells

Both TH1 and TH2 cells secrete a large number of cytokines [189]. As phenotypic markers,

interleukin-2 (IL-2), and interferon-γ (IFN-γ) are secreted by TH1 while interleukins 4 and 13

(IL-4 and IL-13) are secreted by TH2 [78].

Figure 2.6 Schematic diagram of the dynamics of T cells. Details are in-

cluded according to discussion in section 2.5.1-2.5.3.

It is known that activated TH1 and TH2 cells are cross-suppressive via their cytokines. For

example, IFN-γ suppresses proliferation of TH2 cells [46, 56, 78, 183], while IL-4 suppresses the

proliferation of TH1 cells [47, 48, 78, 135, 136, 162, 183]. This cross-regulation of TH1 and TH2

cells is also studied by [52, 53, 54]. In summary, once a cytokine profile is established, a sys-

tematic feedback will be established. The terms −δTH2|TH1CT1 ·TH2 and −δTH1|TH2CT2 ·TH1

in model equation (2.20) represent the suppression of TH1 and TH2 cells by corresponding

cytokines at certain rates. As discussed in section 2.5.2, regulatory T cells suppress the ef-

fector T cells through a direct cell-cell contact, so that the terms −δTH1|Treg
TH1 · Treg and

−δTH2|Treg
TH2 · Treg in (2.20) accounts for possible contact-mediated suppression, where reg-

ulatory T cells directly abrogate effector T cell function, effectively removing such cells from



32

the infection site.

The complete schematic of T cell mechanism is highlighted in figure 2.6.

2.5.4 Recruitment and initial distribution of effector and regulatory T cells

The boundary and initial conditions for subsets of T cells are summarized in equations

(2.20) and (2.17). Here, the role of the boundary as lymph node is pertinent, and there are no

effector T cells until mature APCs start presenting antigen to the näıve T cells in the lymph

nodes (boundary), but as long as APCs are mature with antigen or MHC Class II in the lymph

node, and the population threshold condition is satisfied and enough time has elapsed, effector

T cells appear on the boundary at certain rate per APC.

In a summary, effector T cells are modeled by the following PDEs:




∂TH1
∂t

=

effective diffusion︷ ︸︸ ︷
DTH1∆TH1 −

effective chemotaxis︷ ︸︸ ︷
∇ · (χTH1(TH1 · ∇CH))−

down-regulated by

contact with Treg︷ ︸︸ ︷
δTH1|Treg

TH1 · Treg

−
crossregulation︷ ︸︸ ︷

δTH1|TH2CT2 · TH1−
natural death︷ ︸︸ ︷
µTH1TH1

∂TH2
∂t

=

effective diffusion︷ ︸︸ ︷
DTH2∆TH2 −

effective chemotaxis︷ ︸︸ ︷
∇ · (χTH2(TH2 · ∇CH))−δTH2|Treg

TH2 · Treg

−
crossregulation︷ ︸︸ ︷

δTH2|TH1CT1 · TH2−
natural death︷ ︸︸ ︷
µTH2TH2

TH1(·, t)
∣∣∣
∂Ω

= γTH1|DADA(·, t− τ0)|∂Ω ·K(DA, θTH1)︸ ︷︷ ︸
activation by mature DC with particulate antigen

+ γTH1|DF K(DF, θTH1) · · ·︸ ︷︷ ︸
activation by mature

DF (·, t− τ0)|∂Ω︸ ︷︷ ︸
DC with soluble antigen

TH2(·, t)
∣∣∣
∂Ω

= γTH2|Ba
Ba(t− τ0) ·K(Ba, θTH2)︸ ︷︷ ︸

activation by APCs that collects antigens

different from particulate antigen (e.g. B cells)

+ γTH2|DF K(DF, θTH2) · · ·︸ ︷︷ ︸
activation by mature

DF (·, t− τ0)|∂Ω︸ ︷︷ ︸
DC with soluble antigen

TH1(x, 0) = 0, TH2(x, 0) = 0,

(2.20)
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where the activation rate (function) of effector T cells K(x, y, z) is defined as

K(x, y) = 1{
x(·,t−τ0)|∂Ω>y

}. (2.21)

2.6 Chemicals

2.6.1 Antibody

There are various types of antibodies with significantly different functions and structures

(e.g. IgG1, IgG2, IgE, IgM, IgA etc.). To avoid complexity, we use a generic antibody to

capture the diverse but essentially similar effects of different types of antibodies. As a relatively

small molecule, once produced by plasma B cells, antibodies diffuse very fast in the tissue up

to homogenization [30, 191, 193]. Once encountering their corresponding antigens, antibodies

bind them and effectively neutralize them. One aspect of this binding is that immune complexes

are generated which may be processed by professional phagocytes. In our model we reconcile

the fact that different antibody isotypes have different functions as immune complexes when

in contact with phagocytes.

In the model we found that when antibodies are at a low level they reflect the activation

of B cells predominantly from TH1 cells and antibody levels reached relatively high levels only

when a TH2 response is generated. Therefore immune complexes generated under a threshold

antibody titer promote classical macrophage activation and DC maturation with subsequent

TH1 skewing. If immune complexes are generated over the threshold they promote alternative

macrophage activation, and DCs that acquire immune complexes above the threshold will

recycle the immune complex to their surface for B cell recognition once within the lymph

node and perpetuate a TH2 response.The dynamics of antibody is therefore governed by the

following reaction diffusion equations, where Bp is defined in (2.16):





∂F

∂t
=

diffusion︷ ︸︸ ︷
DF ∆F −

de-function when

forming immune complex

︷ ︸︸ ︷
(λF |AA + λF |As

As) · F −
decay︷︸︸︷
µF F +

secreted by

plasma B cells

︷ ︸︸ ︷
βF |Bp

Bp

F (·, 0) = 0,
∂F

∂n
(·, t)

∣∣∣
∂Ω

= 0.

(2.22)
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2.6.2 Chemicals messengers by professional phagocytes: chemokines

Chemokines are released by many different types of cells and serve to direct the movement

of innate and adaptive immune cells [171, 198]. Although there are many chemokines employed

by the immune system, we utilize a single, generic chemokine to drive all forms of chemotaxis

in our simple model. In our model, chemotaxis of most immune cells is determined by the

concentration gradient of a generic chemokine CH, produced by neutrophils at rate βi
CH|N

and activated macrophages at rate βi
CH|MA (i = 1, 2), in response to encounters of these cells

with particulate antigen±PAMP [23, 178] or immune complex [183].

This inflammatory chemokine functions as a chemoattractant for neutrophils and other

effector immune cells to the site of infection. The chemokine also decays at rate µCH and

diffuses through the tissue with coefficient DCH . The initial chemokine gradient is established

by the rapid arrival of neutrophils to the infection site through effective diffusion via the

microvasculature. The governing equation is therefore set as:





∂CH

∂t
=

in accordance to particulate antigens︷ ︸︸ ︷
(β1

CH|MAMA + β1
CH|NN)A +

in accordance to immune complex︷ ︸︸ ︷
(β2

CH|MAMA + β2
CH|NN)IC

−
decay︷ ︸︸ ︷

µCHCH +

diffusion︷ ︸︸ ︷
DCH∆CH,

∂CH

∂n

∣∣∣
∂Ω

= 0, CH(x, 0) = 0.

(2.23)

2.6.3 Chemical messengers by T cells and macrophages: cytokines

Cytokines are a family of proteins, peptides or glycoproteins that are used for intercellular

communication. They are secreted by specific immune cells and carry local information of

secretion cells, and have effects on other cells in distance. They are important in both innate

and adaptive immune responses. Cytokines are characterized by considerable abundant in that

many appear to share similar functions [78].

In our model, to avoid ambiguity and complexity of the roles of cytokines, we simplify the

system with only four major cytokine categories: those produced by effector T cells, such as

IL-2 and IFN-γ by TH1 cells, denoted by CT1 that promotes activations of regulatory T cells
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and macrophages (refer to (2.8b)), or such as IL-4, IL-5 and IL-13 by TH2 cells, denoted by

CT2 that promotes activation of B cells and production of antibodies or induce alternative

activation (refer to sections 2.4 and 2.2.2); cytokines produced by regulatory T cells, such as

IL-10 and TGF-β, denoted by CTreg that regulates the pro-inflammatory immune responses

by blocking activation of macrophages (refer to (2.8a)); and cytokines produced by activated

macrophages upon engulfing apoptotic neutrophils, such as IL-1 and TNF-α [8] and denoted

by CM in the model which is used to limit the recruitment of neutrophils (refer to equation

(A.2)). Cytokines diffuse in the tissue through microvasculature rapidly and decay in certain

rates.

The modeling equation of all cytokines are a group of reaction diffusion equations with

Neumann boundary condition imposed to capture balance flow in the lymph nodes, and they

are summarized as below:




∂CM

∂t
=

secreted by MA when engulfing ND︷ ︸︸ ︷
βCMND ·MA −

decay︷ ︸︸ ︷
µCMCM +

diffusion︷ ︸︸ ︷
DCM∆CM,

∂CT1
∂t

=

secreted by TH1︷ ︸︸ ︷
βCT1TH1 −

decay︷ ︸︸ ︷
µCT1CT1+

diffusion︷ ︸︸ ︷
DCT1∆CT1,

∂CT2
∂t

=

secreted by TH2︷ ︸︸ ︷
βCT2TH2 −

decay︷ ︸︸ ︷
µCT2CT2+

diffusion︷ ︸︸ ︷
DCT2∆CT2,

∂CTreg

∂t
=

secreted by Treg︷ ︸︸ ︷
βCTregTreg −

decay︷ ︸︸ ︷
µCTregCTreg +

diffusion︷ ︸︸ ︷
DCTreg∆CTreg,

∂CT1
∂n

∣∣∣
∂Ω

=
∂CT2

∂n

∣∣∣
∂Ω

=
∂CTreg

∂n

∣∣∣
∂Ω

=
∂CM

∂n

∣∣∣
∂Ω

= 0,

CTreg(x, 0) = CT1(x, 0) = CT2(x, 0) = CM(x, 0) = 0.

(2.24)
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CHAPTER 3. Numerical scheme to the model

The fundamental equation of our model is the Keller-Segel equation [95] modeling chemo-

taxis 



∂tρ + div(χρ · ∇cρ) = div(Dρ∇ρ) + R(ρ, c)

∂tc− div(Dc∇c) = g(ρ, c),
(3.1)

while equations (A.1)-(2.6), (2.22)-(A.10) are reaction diffusion equations for various antigens,

chemokine, and cytokines. The equations involving the dynamics of immune cells, (A.2),

(A.7), (A.3), (2.17) and (2.20), are Keller-Segel type equations where the convection term

div(χρ(∇c)ρ) contributes to the chemoattraction effect.

In this section, we briefly discuss a numerical scheme developed to approach a general

version of Keller-Segel equation




∂tρ + div(χρ(c, |∇c|)∇c · ρ) = div(Dρ(c, |∇c|)∇ρ) + R(ρ, c)

∂tc− div(Dc(c, |∇c|)∇c) = g(ρ, c)
, (3.2)

in which the chemotaxis coefficient χρ and diffusion coefficient Dρ, Dc are dependent on

(c, |∇c|), the concentration and the magnitude of its gradient. The numerical scheme de-

veloped for (3.2) can easily be adapted to (3.1) with constant coefficients in our model.

Numerical computation of chemotaxis equations is a nontrivial mathematical task. Differ-

ent numerical approaches to simulate equations (3.1) or similar systems have been proposed in

[29, 50, 51, 108, 121, 176]. Two issues must be addressed for the numerical simulation of this

model: resolution and computing time. Implicit scheme are applied to guarantee unconditional

stability of reaction diffusion equations. The time step size is therefore determined solely by

the C.F.L. condition for convection-diffusion equations.
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3.1 Numerical approach to chemicals c

The equations governing the concentration or antigens and chemicals are reaction-diffusion

equations, for which we apply the conservative difference scheme to approximate.

Consider the second equation of (3.2) in 1-dimension,

∂c

∂t
=

∂

∂x

(
Dc(c, |cx|) ∂c

∂x

)
+ g(ρ, c), (3.3)

where the diffusion coefficient Dc(c, |cx|) is assumed to be smooth and positive in general (it

is assumed to be a constant in our immune model). Let {xi} be a uniform partition, xi = i∆x

and xi+ 1
2

= (i + 1
2)∆x. Let cn

i denote the numerical approximation of c(x, t) at the point

(xi, tn). Equation (3.3) can be discretized by

cn+1
i − cn

i

∆t
− 1

∆x2

[
θ∆+(Γi− 1

2
∆−cn+1

i ) + (1− θ)∆+(Γi− 1
2
∆−cn

i )
]

= g(ρn
i , cn

i ) (3.4)

where ∆+ai = ai+1 − ai, ∆−ai = ai − ai−1, cn
i ≈ c(xi, tn), θ = 1

2 or 1, and

Γi− 1
2

= D

(
cn
i−1 + cn

i

2
,
∣∣c

n
i − cn

i−1

∆x

∣∣, pDc

)
. (3.5)

Multi dimensional extension of scheme (3.4) on a cartesian grid is straightforward. With the

data appropriately stored, conjugate gradient methods can be applied to solve c. In practice,

the fully implicit scheme (θ = 1) is used.

3.2 Numerical approach to population of cells ρ

The first equation in (3.2)

∂tρ + div(χρ(c, |∇c|)∇c · ρ) = div(Dρ(c, |∇c|)∇ρ) + R(ρ, c), (3.6)

which is governing the cell density ρ (in the model, most immune cells like professional phago-

cytes, DCs and T cells, and chemotaxis and diffusion coefficients are assumed to be constant

particularly), is a nonlinear convection-diffusion equation. We use the finite volume MUSCL

scheme [105] and an operator splitting to solve (3.6).
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(3.6) can be approximated by the following two equations during a time step, for t ∈ [0, ∆t],




ρ̃t + div(χρ(c, |∇c|)∇cρ̃) = 0,

ρ̃(X, 0) = ρ(X, tn);
(3.7)

for t ∈ [0,∆t], 



ρt = div(Dρ(c, |∇c|)∇ρ) + R(ρ, c)

∂ρ

∂~n

∣∣∣
∂Ω

= 0 , and ρ(X, 0) = ρ̃(X,∆t).
(3.8)

Partitioning the domain uniformly as before, we approximate (3.7) by the MUSCL scheme

which is discussed below, and approximate (3.8) by the difference scheme (3.4).

Consider equation (3.7) in 1-dimension (we use ρ instead of ρ̃ for convenience)

∂ρ

∂t
+

∂

∂x
f(ρ) = 0, f(ρ) = χρ(c, |cx|)cxρ, (3.9)

where χρ(c, |cx|) is assumed to be smooth and nonnegative. Integrating over
(
xi− 1

2
, xi+ 1

2

)
, we

have
d

dt

[
1

∆x

∫ x
i+1

2

x
i− 1

2

ρdx

]
= − 1

∆x

[
f(ρ(xi+ 1

2
, t))− f(ρ(xi− 1

2
, t))

]
. (3.10)

We may compute the chemotaxis coefficient χρ(c, |cx|) as discussed previously. The above

equation can be approximated by a semi-discrete conservative scheme

d

dt
ρ̄i = − 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
), (3.11)

where ρ̄i approximates the cell average of ρ in (xi− 1
2
, xi+ 1

2
) and f̂i+ 1

2
is the numerical flux

approximating f(ρ(xi+ 1
2
, t)). The MUSCL scheme first reconstructs a piecewise linear function

ρ̂ out of {ρ̄i}, such that

ρ̂(x) = ρ̄i + Si(x− xi), for x ∈ (xi− 1
2
, xi+ 1

2
), for all i,

where

Si =





sign(∆+ρ̄i)min
( |∆+ρ̄i|

∆x , |∆
−ρ̄i|
∆x

)
, if ∆+ρ̄i∆−ρ̄i > 0,

0, otherwise,
(3.12)
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and operators ∆± are defined as before. Then we use the Lax-Friedrich flux (see e.g. [181]) to

define

f̂i+ 1
2

= χρ

(ci+1 + ci

2
,
|ci+1 − ci|

∆x

)ci+1 − ci

∆x

1
2

(
ρ̂i+ 1

2
− + ρ̂i+ 1

2
+

)
+

α

2
(ρ̂i+ 1

2
− − ρ̂i+ 1

2
+),

where ρ̂i+ 1
2
− = ρ̂

(
xi+ 1

2
− )

, α is the maximum convection speed, i.e α = sup
x

∣∣χρ(c, |∇c|)∇c
∣∣ at

the time level tn. The time is discretized by the forward Euler method (or by the improved

Euler method).

Equation (3.8) can be solved as in the previous subsection. The time step size ∆t for

solving (3.2) or (3.1) is determined by the CFL condition for the hyperbolic part, such that

α
∆t

∆x
< 1. (3.13)

The extension of (3.11) to 2-dimension is through a dimension-by-dimension formulation,

see [99]. We partition the numerical domain by a uniform rectangular mesh with mesh size

∆x × ∆x, and the cell Dij is centered at xij = (xi, yj) = (i∆x, j∆x). As before, denote the

approximate cell average of ρ on the cell centered at xij at the time tn by ρ̄n
ij ≈

1
|Dij |

∫

Dij

ρdx.

The extension of (3.11) to 2-dimension can be written as

d

dt
ρ̄i,j = −∆t

∆x

(
(ĝi+ 1

2
,j − ĝi− 1

2
,j) + (ˆ̂hi,j+ 1

2
− ˆ̂

hi,j− 1
2
)
)
, (3.14)

where

ĝi+ 1
2
,j =

ci+1,j − ci,j

∆x
χρ

(ci+1,j − ci,j

∆x
,
ci+1,j + ci,j

2

)1
2
(ρ̂i+ 1

2
−,j + ρ̂i+ 1

2
+,j)

+
α

2
(ρ̂i+ 1

2
−,j − ρ̂i+ 1

2
+,j),

ˆ̂
hi,j+ 1

2
=

ci,j+1 − ci,j

∆x
χρ

(ci,j+1 − ci,j

∆x
,
ci,j+1 + ci,j

2

)1
2
(ˆ̂ρi,j+ 1

2
− + ˆ̂ρi,j+ 1

2
+)

+
β

2
(ˆ̂ρi,j+ 1

2
− − ˆ̂ρi,j+ 1

2
+),

(3.15)

α and β are the maximum convection speed along x− and y− directions respectively, ρ̂ denotes

the (MUSCL) reconstructed piecewise linear polynomial of one variable defined along each

horizontal grid lines as discussed above, ˆ̂ρ denotes the reconstructed piecewise linear polynomial

of one variable defined along each vertical grid lines, ρ̂i+ 1
2
−,j = ρ̂(xi+ 1

2
,j−). Similarly, Forward

Euler or improved Euler time stepping is used to obtain a fully discretized explicit scheme.
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Staggered central scheme (the NT scheme [142]) doesn’t use any numerical flux function and

has higher resolution for piecewise linear reconstruction.

3.3 Numerical Test

In this section, the scheme is tested by both 1-dimensional and 2-dimensional examples.

3.3.1 1-dimensional Keller-Segel equation

The numerical domain is set to be [−2, 2], then we employ uniform partition with nx = 200

meshes and nx = 400 meshes and ∆x =
4

nx
. The initial condition is set to be

c(x, 0) = 0, ρ(x, 0) =





10 |x| < 1

0 else
. (3.16)

We set g(ρ, c) = βρ− αc and R(ρ, c) = 0. The Neumann boundary conditions

∂ρ

∂n

∣∣∣
∂Ω

=
∂c

∂n

∣∣∣
∂Ω

= 0

are applied in the numerical experiments. Numerically, we test following groups of coefficients:

χρ = 1, Dρ = 0, Dc = 1, β = 1, α = 1; (3.17)

χρ = 1, Dρ = 0.5, Dc = 2, β = 3, α = 0.5 (3.18)

To check the L1 stability for scheme, we use numerical integral to check the total mass of

ρ on the numerical domain [−2, 2]. Positivity is well preserved as well.

Table 3.1 L1 norm of population ρ (1D)

Mesh Coefficients L1 at t = 0 L1 at t = 0.6 L1 at t = 1.5 L1 at t = 2.5
200 (3.17) 20.0002 20.0002 20.0002 20.0002
400 (3.18) 20.0002 20.0002 20.0002 20.0002

3.3.2 2-dimensional Keller-Segel equation

For 2-dimensional simulation, we first remark that in [31], the authors conjectured that

the solution of Keller-Segel equation (3.1) has two possible features, which are related to the

chemotactic collapse and blowing up of ρ:
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Figure 3.1 400 meshes, coefficients (3.17) are applied. Population ρ and
velocity ∇c are presented at time t = 0.13, 0.48, 1.0 from top to
bottom respectively.

• the solution ρ cannot form the blowing up profile, δ function, if the total population in

Ω is less than a critical number cΩ

• the solution ρ forms δ function singularity if the total population in Ω overwhelms the

critical number

Recent studies [72, 73, 81, 140] show the existence of radially symmetric solutions for

simplified system, which blows up in the center of the domain in finite time if the average

of mass is greater than some critical number, i.e. ρ0 =
1
|Ω|

∫

Ω
ρ0dx >

8π

χ
. According to our

numerical simulations, we would like to stress that for original Keller-Segel equation (3.1), if

the system is dominated by convection, i.e. r = sup |χ|
inf |D| >> 1, then the solution will blow up
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Figure 3.2 400 meshes, coefficients (3.18) are applied Population ρ and veloc-
ity ∇c are presented at time t = 0.3, 0.5, 2.5 from top to bottom
respectively.

any way as long as ρ0 > 0.

The initial condition used for experiments to verify the above conclusion is :

c(x, y, 0) = 0, ρ1(x, y, 0) =





10, x2 + y2 ≤ 1

0, otherwise
(3.19)

and the corresponding numerical domain is [−2, 2]× [−2, 2], while we uniformly partition this

domain by nx× ny = 80× 80. Two groups of constant coefficients used for simulation are:

χρ = 1, Dρ = 0.05, Dc = 1, β = 1, α = 1; (3.20)

χρ = 1, Dρ = 1.5, Dc = 1, β = 1, α = 1 (3.21)

where we let g(ρ, c) = βρ− αc and R(ρ, c) = 0 in (3.6) as before.
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We also remark that in [50, 121], the authors observe that the solution may aggregate

toward boundary rather than the center of the domain given specific boundary condition or

nonsymmetric initial condition. To show that our schemes can capture this phenomena well

and agree with those results, we use a bias Gaussian initial condition

c(x, y, 0) = 0, ρ2(x, y, 0) =
ρ0

2πT
exp

(
− (x− x0)2 + (y − y0)2

2T

)
(3.22)

where ρ0 = 10π , T = 5× 10−3 and (x0, y0) = (0.1, 0.1), and the domain is [−1
2 , 1

2 ]× [−1
2 , 1

2 ].

Figure 3.3 80 meshes, coefficients (3.20) are applied. Population ρ is com-
puted subject to the initial condition (3.19). ρ is presented at
time t = 0.25, 0.45, 0.9, 1.5 from left top to right bottom respec-
tively. Chemotactic collapse happens in the last picture.
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Figure 3.4 80 meshes, coefficients (3.21) are applied. Population ρ is com-

puted subject to the initial condition (3.19). ρ is presented at

time t = 0.6, 1.5, 2.5, 3.0 from left top to right bottom respec-

tively. The density is under control.
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Figure 3.5 80 meshes, coefficient (3.21) are used for simulation. The

initial condition used is (3.22). ρ is presented at time

t = 0.045, 0.055, 0.065, 0.085 from left top to right bottom respec-

tively. Nonsymmetric initial condition contributes to boundary

blowing up which agrees with results in [121].
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CHAPTER 4. Numerical experiments

Using the numerical scheme discussed in chapter 3, we examine the model by conducting

a series of numerical experiments.

In section 4.1, we show the necessity of including regulatory T cells and DCs to recapitulate

the immune stages of initiation, effector response, and resolution or equilibration. In section

4.2, we use a two-dimensional simulation to demonstrate how our TH1 subsystem forms a

persistent granuloma in response to chronic infection, whereas in the acute case the granuloma

is diminished and finally eliminated. In section 4.3, we study the role of B cells and antibodies

in the complete model and demonstrate that they are indispensable terms to capture a precise

MHC Class II mediated responses. In section 4.4, we demonstrate that the immune response

of the complete model can become highly skewed towards a TH1 or TH2 immune response, as

well as deliver a mixed response depending upon the characteristics of the in silico pathogen.

These results illustrate that the model is robust and can reflect appropriate MHC Class II

responses to different pathogens. Finally, in section 4.5, we study the switch of subtypes of

immune response during infections of Mycobacterium avium subspecies paratuberculosis (Map)

in cattle based on our model and the philosophical postulate of Zinkernagel [205].

In the simulation, the experimental domain for all simulations in the one-dimensional case

is the interval [−2, 2], and a rectangle [−2, 2]× [−2, 2] in 2-dimensional case. For simplicity, we

set that infection appears in the tissue at a radially symmetric origin with radius r such that

A(x, 0) = A0(r) = A0 · 1{|x|≤r} (4.1)

where constant A0 ≥ 0 is the initial load of particulate antigen±PAMPs. The amount of intra-

cellular antigen and soluble antigen are naturally equal to zero at the beginning of infection.

In the following experiments, we will study the local average of different immune agents at the
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infection site, which is defined as

Ulocal(t) =
1
|Ω0|

∫

Ω0

U(x, t)dx (4.2)

where Ω0 ⊂ Ω is the local infection site in tissues and defined by

Ω0 = {x ∈ Rn : |x| ≤ r0} (n = 1, 2) (4.3)

where U represents variables in the model. Also, we investigate the temporal dynamics of

immune agents in the lymph node, which is the boundary value of variables in the model.

4.1 Necessity of regulatory T cells and DCs

4.1.1 Study on TH1 subsystem

One of our main objectives is to identify a minimal set of cells, chemical messengers,

and interactions to recapitulate a functional immune system. A guiding principle is that the

immune system should be robust yet tolerant of persistent infections. Furthermore, hosts

should incur minimal damage, as measured by levels of inflammatory cells and cytokines, from

persistent infections. It is well known that both macrophages and effector T cells play primary

roles in an effective TH1 immunity [78], thus we focus our interest on exploring the roles of the

dendritic cells and regulatory T cells in this section.

For simplicity, we focus on TH1 subsystem and temporarily exclude TH2 cell, B cell, anti-

body, intracellular antigen, soluble antigen and relevant cytokines from equations (A.1)–(A.10).

Furthermore, the three subsets of DCs, DE, DA, and DF , reduce to only subsets of imma-

ture and mature DCs. Instead of assuming the ability of self-replication in (A.1). we set the

particulate antigen±PAMP appears at the origin in a radially symmetric region with radius r

and is produced at the rate g(x, t):

g(x, t) =





g0e
−g1t, |x| < r

0, otherwise
(4.4)

where both g0 and g1 are non-negative constants. We distinguish chronic and acute antigen

exposures by the value of g1. If g1 = 0 the particulate antigen±PAMP source is persistent,
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as might be the case for a resistant, replicating pathogen; otherwise, if g1 > 0 the source of

antigen is transient, representing an acute infection. The subsystem is listed in the appendix

A for convenience.

For the simulations in section 4.1 and 4.2, the number of meshes to partition the domain

is always set as n = 40 for either one dimensional or two dimensional experiments.

In our first experiment, we deliver persistent antigen in the center of the one-dimensional

domain by letting g1 = 0, g0 = 8 (units), and r = 0.8 in equation (4.4). Under this scenario, we

investigate the temporal dynamics of the local average mass of macrophages (both resting and

active), T cells (both effector TH1 and regulatory), neutrophils and particulate antigen±PAMP.

In Figure 4.1, we plot the local average mass of neutrophils, macrophages, and T cells

(both effector TH1 and regulatory) as well as antigen load over time for the TH1 subsystem

and various further reduced models. Also, the tan dash-dot lines in the figure represent the

immune response under the full model during an acute infection where g1 = 10 and other

conditions are as in the persistent antigen case. The complete TH1 subsystem under persistent

infection (red lines) demonstrates an early and short burst of neutrophil activity at the infection

site. By 10 days after antigen delivery, there are effectively no neutrophils left. The next cell

type to dominate the infection site are the macrophages, which arrive before T cells and

peak five days after antigen delivery. T cell numbers peak at seven days. The cell arrival

sequences agrees with that observed during in vivo granuloma formation [180]. Macrophages,

T cells, and antigen load reach new steady state levels, also consistent with stable granuloma

formation. The modeled granuloma is dominated by macrophages, which outnumber T cells by

about 10:1, in agreement with in vivo observations [19, 141]. The newly equilibrated immune

response controls antigen load 120 times lower than steady state conditions in the absence of an

immune response. This outcome contrasts with acute infection, where the system approaches

the initial, resting state a few days after antigen levels draw nigh zero. T cells are the slowest

to disappear, likely a consequence of our failure to include an active T cell downregulation

mechanism after the antigen threat has vanished.

To test the role of regulatory T cells, we remove them from the TH1 subsystem. The dashed
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Figure 4.1 Plots X(1) to X(4) characterize the dynamics of the local mass
for neutrophils, macrophages and T cells (both effector TH1 cells
and regulatory T cells) at the infection site in a TH1 immunity
during a virtual chronic infection. Inserted plots in X(1) and
X(3) are highlights of peak time for neutrophils and T cells. The
pathogen is defined in (4.4). This figure is from the published
article [190].

green lines of Figure 4.1 display the results. Early macrophage recruitment and behavior is

similar to the full model, but instead of approaching a new equilibrium, macrophage numbers

increase over time. Even after 150 days, the macrophage count is still increasing (see inset

plot of X(2)). This increase continues despite very low antigen loads, less than 10% of the

starting conditions. The plot of antigen load over time shows that antigen clearance is efficient

early in infection, but becomes increasingly inefficient, requiring more and more macrophages,

as antigen levels drop. As expected, the total number of T cells at the infection site is lower

because regulatory T cells are not included.

We next test the role of dendritic cells in the TH1 subsystem. We eliminate the terms for

dendritic cells and set the boundary value of effector T cells proportional to the product of

total antigen mass and total macrophage mass. We justify this boundary condition by noting
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that the more antigen and the more phagocytes available to transport the antigen to the lymph

nodes, the more effector T cells will be primed and recruited. The results of this reduced model

are shown as blue solid lines in Figure 4.1. The most important consequence of this change

is the timing of macrophage and T cell recruitment to the site of infection. These two cell

types now arrive simultaneously, in disagreement with the known temporal order for immune

cell recruitment to granuloma [180]. The role of dendritic cells to transport antigen to the

lymph nodes is a critical part of T cell recruitment, but takes time and necessarily delays T

cell arrival at the infection site. Failure to capture this delay, as we have done explicitly with

dendritic cells, can lead to unrealistic behavior and structure at the granuloma. Moreover, the

total amount of T cells is only 2% of the macrophages when they approach equilibrium, which

is lower than previously described biological system [19, 141].

With these three experiments, we conclude our modeled immune system constitutes a

minimal set of immune factors that recapitulate a robust immune response, giving the dynamic

behavior of both acute and chronic infections in TH1 immunity.

4.1.2 Study on complete system

Using an artificially designed pathogen, we study the necessity of DCs and regulatory T

cells for the complete model in this section. The virtual pathogen is designed to replicate and

secrete antigen with the characteristics indicates in table 4.1:

Table 4.1 Characteristics of test pathogen

A0 αA αAp βAs|A βAs|Ap
peff

Ap|A δ ρAp|MA nAp

104 0/ day 2/day 0.1/ day 0.1/ day 98% 0.12 50 / cell 1

In figure 4.2, by comparing the immune responses of a normal immune system and sys-

tem without regulatory T cells up to 12 days, we notice that without regulatory T cells, the

macrophage undergoes an unlimited activation even the particulate antigens has been elimi-

nated from tissues after 5 days (figure 4.2 a(3)). As consequences of defect of regulatory T cells,

the system lost the ability to inhibit the activation of macrophages and downregulation effector

T cells. Without regulatory T cells: (1) activation of macrophage by TH1 is much stronger
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Figure 4.2 Normal immune system and system without regulatory T cells
response to the pathogen described in table 4.1.

than normal system (figure 4.2 a(4)) in the sense of amount of activated macrophages; (2)

as a result of cross regulation, the amount of TH1 activated macrophages is decreasing after

elimination of particulate antigens, however, macrophages are reactivated by TH2 cells after

8 days (figure 4.2 a(1) and a(3)). The increase of the amount of intracellular antigens and

subsequent rebuilt of particulate and soluble antigens in tissue (figure 4.2 a(2) and a(3)) is

the result of a possible alternative activation of macrophage. Without regulatory T cells, the

immune system will spontaneously induce another cycle of infections which harms the body.

It concludes that regulatory T cell is necessary for a stable and self-protective MHC class II

immunity.

Based on the simulations, we hypothesize that regulatory T cells may assist immune system

to response against infection by intracellular pathogens through the following mechanism:

on one hand, regulatory T cells suppress TH2 cell’s population by direct cell contact and

therefore diminish the possibility of TH2 cell induced alternative activation of macrophages,
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and this results to a successful control of population of intracellular antigen through limiting

the potential elevation of their replication rates; on the other hand, in our proposed model,

regulatory T cells may deactivate the macrophages once the ratio of effector T cell cytokines

and free antigens overcomes certain threshold and thus the room to contain intracellular antigen

decreases, as a result, the total population of intracellular antigen will be limited and reduced.

In the absence of regulatory T cells, we hypothesize that during the infection of intracellular

pathogens an alternative activation of macrophage caused by TH2 response may arrive earlier

than the possible alternative activation in a TH1 response, and therefore may lead to a poor

immune response.

Figure 4.3 Normal immune system and system without DCs response to the
pathogen described in table 4.1.

By eliminating the DCs from immune system, we observe that: (1) the timing of the immune

response is disordered so that the peak in effector T cells much earlier than the activated

macrophage in contrast to the normal system; (2) the amount of both TH1 and TH2 cells in

the tissues is much less than the normal system, which results to a deficiency of antibodies; (3)
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without cooperation of antibodies, the time for a broad elimination of particulate antigens in

tissue is elongated. We therefore conclude that DCs is crucial for an efficient and stable MHC

class II immunity.

4.2 Simulation of formation of granuloma

Granuloma formation is an outcome of a well-regulated immune response. In this section,

we explore the distribution of cell types in TH1-subset of the full model (excluding B cells, an-

tibody, TH2 associated immune agents) within the infection site during both chronic and acute

infections. We also introduce nonsymmetric source functions for particulate antigen±PAMP

and observe that granulomas form at the appropriate, now non-central location. For symmetric

case, the initial antigen load is set to be

A(x, 0) =





8, |x|2 < 0.64

0, otherwise
(4.5)

and the simulation results are shown in figure 4.4 and 4.5.

Figure 4.4 Plots l(1) to l(6) show the process of formation of the granuloma
for an acute infection. The red curves represent the level sets of
macrophage while the blue curves represent the level sets of total
number of T cells. This figure is from the published article [190].



54

Figure 4.5 Plots o(1) to o(6) show the process of formation of the granuloma

for chronic infection. This figure is from the published article

[190].

A granuloma has the basic structure of macrophages surrounded by lymphocytes [78], T

cells in our TH1 subsystem. Figures 4.4 and 4.5 focus on distribution of immune cells responding

to acute and chronic infection, respectively. In figure 4.4, a nascent granuloma-like structure

appears during the early responses, but it quickly dissipates once antigen levels decay to zero.

The disruption of structure by t = 10 is not merely a consequence of departing immune cells,

since the density of macrophages and T cells is still high at this time.

In figure 4.5, the granuloma structure is stable. In fact, the size of the granuloma is stable

from about the first time unit, although T cells will be increasing in number for several time

units to come. A stable structure of macrophages and T cells is achieved by about t = 10.

Finally, we prescribe a non-symmetric source for particulate antigen±PAMP

g(x, t) =





ki x ∈ Ωi ⊂ Ω

0 otherwise,
(4.6)
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where ki = 2i for i = 1, 2, 3; and Ωi are the small disks in the tissue Ω such that

Ω1 = B(x1
0, r2) = B((1,−1), 0.25),

Ω2 = B(x2
0, r2) = B((−2, 2), 0.25),

Ω3 = B(x3
0, r3) = B((0, 0), 0.25).

(4.7)

Notice that granuloma is gradually formed in the neighborhoods of infection sites Ω3 and Ω2

(refer to p(3) and p(4) in figure 4.6).

Figure 4.6 Plots p(1) to p(4) show the process of formation of the granu-

loma for a chronic infection with non-symmetric initial value of

antigens in the infectious tissue. Green circles highlight of granu-

loma regions. The pathogen is defined in (4.6)-(4.7). This figure

is from the published article [190].

4.3 Necessity of B cell and antibody

For the simulation in this section and section 4.4, we partition experimental domain Ω =

[−2, 2] into n = 100 subintervals.

To appropriately respond to a pathogen that secrets large amounts of soluble antigen,

antibodies and B cells are required [78]. Here we focus our interest on justifying the roles of
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B cells and antibodies during the TH2 response in our model. In numerical experiments to

justify the functions of B cell and antibody, we define an intracellular pathogen that leads to

a chronic infection by setting the following characteristics, whose definitions are discussed in

section 2.1 in chapter 2:

Table 4.2 Characteristics of test pathogen

A0 αA αAp βAs|A βAs|Ap
peff

Ap|A δ ρAp|MA nAp

103 0/ day 2/day 0.5/ day 0.5/ day 98% 0.12 50 / cell 1

In the context of the in silico pathogens that we test in the series of numerical experi-

ments described here the pathogen defined by the characteristics in Table 4.2 replicates mildly,

secretes certain amount of soluble antigens, has a low survival probability and can reach rel-

atively high numbers within an infected cell. We expect the characteristics of this type of

pathogen to trigger a mixed TH1 and TH2 response as result of the soluble antigen and the

survival rate.

In both figures 4.7 and 4.8, the solid lines represent the results for normal system, the dash

lines represent the results for a system with defect on activating B cells and the dot red lines

represent results for a system with defect on producing antibodies. The results demonstrate a

requirement for B cells and antibodies for an appropriate immune response.

The plot a(1) in figure 4.7, demonstrates that: (i) in the absence of activated B cells,

TH2 cells are not activated; (ii) in the absence of antibodies, the activation of TH2 cells is

dramatically weakened and delayed, and they demonstrate an abbreviated response which

fails to be maintained even in the presence of large amounts of soluble antigens (figure 4.7

a(2)). Therefore, in our model antibodies are important for generating and maintaining a TH2

response. Plot a(2) in figure 4.7 illustrates that: in the absence of either B cells or antibody,

the system is not able to respond to the soluble antigen. Under these conditions particulate

antigens are hard to be eliminated completely from tissue, as they are no longer removed as

immune complexes (figure 4.7 a(3)). Likewise, without B cells or antibodies, the populations

of mature DCs and activated macrophages reach an equilibrium at lower levels during the 3

weeks infection than normal system (figure 4.7 a(5) and 4.8 b(2)).
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Figure 4.7 Immune model infected by the pathogen described by character-

istics in table 4.2. Plot a(1) to a(6) characterize the dynamics

of the local average (refer to (4.2)) for effector T cells, antigens,

macrophage and antibody for the pathogen defined in table 4.2.

The inserted plots in a(1) are dynamics of the effector T cells in

small scales.
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Figure 4.8 Immune model infected by the pathogen described by character-

istics in table 4.2. Plot b(1) to b(3) characterize the dynamics of

the level of B cells and activated B cell in the lymph nodes, and

the local average for different chemicals in tissues. The inserts in

b(1)-b(3) picture in small scale.

The plots b(1) and b(2) in figure 4.8, which demonstrate the level of activated B cells

and mature DC in the lymph node, further illustrate that a TH2 response is not activated

or fails to function in the absence of B cells and antibodies, respectively. Furthermore, the

plot b(3) reflects the dynamics of corresponding cytokines at the infection site. Deletion of

B cells or antibodies both leads to altered development of regulatory T cells. Additionally,

through observing a(1), a(4), and a(5), the numerical experiments show that by introducing

large number of immune complexes in the system, the B cells and antibodies can constantly
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support a stable TH1 response and/or promote an even stronger TH2 response, and therefore

may contribute to the increase of the amount of intracellular antigen with this model pathogen

by alternative activations. In our model antibodies and B cells limit the amount of particulate

antigens and soluble antigens and promote a regulatory T cell response with lower levels of

activated macrophages and mature DCs in tissue at equilibrium, as both types of antigens are

processed as immune complexes during 3 weeks infection.

We conclude that B cells and antibody are necessary for our model system to generate an

appropriate immune response to soluble antigens, and the effect of B cells and antibody on

TH1 responses are similar.

4.4 Complete immune response to various pathogens

In this section, we determine if the proposed model can respond appropriately to a variety

of in silico pathogens. We model four different artificially defined pathogen ”types”. The

first is the intracellular pathogen modeled in Table 4.2, that has a mix of TH1 − TH2 type

antigens. The second has high amounts of particulate, TH1 associated antigens and is killed

with relatively high efficiency and should generate a skewed TH1 response. The third secretes

high amounts of soluble antigen and is not an intracellular pathogen and should generate a

skewed TH2 response. For completeness, we challenge the model with a pathogen that should

have the characteristics of an acute infection. And finally, numerical simulation of formation

of granuloma is presented. The results of these numerical experiments examine the robustness

of the model to challenge with a wide array of in silico pathogens.

4.4.1 Mixed TH1− TH2 responses in 3 weeks infection

The numerical experiments to demonstrate the models response to a mixed TH1 − TH2

response have been shown in the section 4.3 in figures 4.7, 4.8 (solid lines) and 4.9. For

this artificially-defined pathogen there are four identifiable phases, the details of the models

response in the experiment are summarized as follows:

phase 1 (up to 3 days): the innate response recognizes particulate antigen giving rise to
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chemokine peak that is derived from neutrophils and activated macrophages. The activated

macrophages accumulate in tissues in about t = 3 days (figure 4.7 a(5)); this is closely followed

by early period of TH1 cell recruitment by chemokines after their activation by mature DCs

(inserts in figure 4.7 a(1) and figure 4.8 b(2)). This phase is driven by the presence of particulate

antigen±PAMP and corresponding responses by neutrophils and macrophages.

phase 2 (3 days to 10 days): with the up-regulation of TH1 cells the amount of activated

macrophages increases significantly (figure 4.7 a(5) and inserted plot in a(1), insert plot in

figure 4.8 b(3)) for about 7 days. During this same period, the amount of particulate antigen

in the tissue keeps decreasing, as it is processed by DCs (insert in figure 4.8 b(2)). However, as

a consequence of constantly increase of activated macrophages in tissue, surviving intracellular

antigen ultimately increases the amount of soluble antigen in the tissue (figure 4.7 a(2) and

a(4)). The load of particulate antigen in the tissue also experience a balance during this period

(figure 4.7 a(3)). This phase is mediated by the continuously recruitment of mature DCs, TH1

cells and activated macrophages. It is noted that during this phase, TH2 cells and associated

immunity are developed (insert plots in figure 4.7 a(1), figure 4.8 b(1) and b(2)).

phase 3 (10 days to 15 days): TH2 immunity is fully developed and a mixed type of

immune responses is observed. Classical and alternative activation of macrophage coexist in

the system (figure 4.7 a(5) and figure 4.8 b(3)). The amount of activated macrophage and

intracellular antigen reaches its maximum at about the 15th day (figure 4.7 a(4) and a(5)).

As the amount of antigen reaches its highest point the TH1 response reaches a maximal level

with mature DCs and activated macrophages reaching their peaks during this phase (figure 4.7

a(5) and insert plot in figure 4.8 b(2)). Populations of TH2 cells and B cells then experience a

dramatic growth after the 11th day and a concomitant increase in antibodies (figure 4.7 a(1),

a(6) and figure 4.8 b(1)). This phase is driven by the accumulation of large amounts of soluble

antigens (figure 4.7 a(2)) in the presence of an established TH1 response.
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Figure 4.9 Spatial distribution of of immune agents in the mixed TH1−TH2

response to the pathogen defined in Table 4.2 at time t = 20

days. Notice that few neutrophils remain in the tissue, and

the macrophage, chemokine, antibody are uniformly distributed.

Distributions of effector T cells are caused by mixing effect of

diffusion, continuously recruitment and cross-regulation.

phase 4 (after 15 days): this last phase is dominated by a TH2 response that is the result

of increasing soluble antigens, leading to a dramatic dynamics in activated B cells (figure 4.8

b(1)), and the further activation of TH2 cells (figure 4.7 a(1)). The number of TH2 cells

increases as TH1 cells are subsequently suppressed (figure 4.7 a(1)) due to the cross-regulation

with TH2 cells. Similar dynamics occurs to the associated cytokines (figure 4.8 b(3)). Anti-

inflammatory cytokines from regulatory T cells increases over this time as a combining result of

the generation of a TH2 response and start of the elimination of soluble antigen from the system

with its conversion to immune complexes (insert in figure 4.8 b(3)). This leads to a decrease

in the amount of activated macrophages, and results in the gradual decline of the average load

of intracellular antigens at the infection site (figure 4.7 a(4) and a(5)). The average loads
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of soluble and particulate antigens in the tissue (at the infection site) are controlled by the

function of large amount of antibodies (figure 4.7 a(2), a(3) and a(6)). Therefore, with the

appearance of antibodies, the immune system responds to the infection by moving towards an

equilibrium dominated by an anti-inflammatory response, since persisting intracellular antigen

is always able to secrete soluble antigen.

The above numerical results validate that the proposed model is able to generate a mixed

TH1 − TH2 response [78, 183, 195]. It is noted that there are few neutrophils staying in

the tissue as the system approaches its immunobiological equilibrium. Furthermore, spatial

distribution of the immune agents in figure 4.9 implies that the mixed TH1 − TH2 response

that results from this artificially defined pathogen does not support granuloma formation at

equilibrium, as the activated macrophages, antibodies and chemokines are homogeneously

distributed. Comparing figure 4.10 and figure 4.11 infer that antibodies, particularly, the TH2

associated antibody (such as IgG2), function to stabilize the immune response to this tested in

silico pathogen, in contrast to an organized granuloma (see section 4.2 and subsection below)

in TH1 immunity.

4.4.2 Skewed TH1 responses

In figure 4.10 and 4.11, the simulation reflects the model’s response against an artificial

pathogen that secretes only small amounts of soluble antigen and therefore should induce a

skewed TH1 response. This in silico pathogen are described by characteristics listed in Table

4.3.

Table 4.3 Test pathogens’ characteristics (figure 4.10) and 4.11

A0 αA αAp βAs|A βAs|Ap
peff

Ap|A δ ρAp|MA nAp

1× 104 0/ day 6/day 10−3/ day 10−3/ day 98% 0.12 100 / cell 2
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Figure 4.10 Immune model infected by the pathogen defined in Table 4.3.

Plot e(1), e(2), e(4) and e(5) are the temporal dynamics of local

average of effector T cells, antigens, activated macrophages and

chemicals; e(3) and e(6) are the level of mature APCs (including

DCs and activated B cells) in the lymph node.

The numerical experiments illustrate that a skewed TH1 response emerges in tissue within
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20 days with significantly larger numbers of TH1 cells and their associated cytokines (figure

4.10 e(1), e(5))). In this iteration of experiment, macrophages undergo innate activation up

to the 3rd day and the amount of activated macrophages decrease in the tissue as a result

of elimination of most of the particulate antigens (figure 4.10 e(2) and e(4)). Dendritic cells

promote the activation of effector T cells in the lymph node thoroughly after the 5th day

(figure 4.10 e(3)), following which, the classical activation of macrophage by TH1 cells is com-

pletely triggered. The amount of intracellular antigens increases rapidly along the continuously

activation of macrophages. As a result of intracellular antigen increasing, an increase of par-

ticulate antigens in tissue is observed (figure 4.10 e(2)). Under the cooperation of activation

macrophage and TH1 antibodies, the level of particulate antigens in tissues is controlled after

its second peak since the initial infection (figure 4.10 e(2) and e(6)). Primarily activated by

mature DC with immune complexes, there are some activated B cells in the lymph node with

a corresponding amount of TH1 associated antibody present in the tissue (figure 4.10 e(6)).

Figure 4.11 Immune model infected by the pathogen defined in Table 4.3.

The plots are the spatial distribution of immune cells capturing

granuloma information as the system approaching to equilib-

rium (t = 20 days).

In addition, an observable granuolma structure is formed when the immune system ap-

proaches equilibrium (figure 4.10 e(2) and e(4), 4.11). At the infection site in tissues, activated

macrophages are surrounded by effector T cells, and the level of effector T cells in lymph nodes
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is high. These results are broadly consistent with the immunobiological facts of a typical TH1

response against pathogens such as Mycobacterium [109, 195]. These results demonstrate that

the model can generate a skewed TH1 response that stabilizes the immune system with the

formation of a granuloma in response to some persistent pathogens.

4.4.3 Skewed TH2 responses

Some pathogens, such as parasitic worms, do not replicate in the host but secrete relatively

large amounts of soluble antigen that induce a dominant TH2 response. This type of pathogen

is often large and professional phagocytes or APCs are not able to engulf them or efficiently

kill them through other means. Also there may not necessarily be large numbers of these types

of pathogens within the host. The corresponding characteristics for such an artificially defined

pathogen is listed in the Table 4.4. In addition, we assume that this type of pathogens can not

be engulfed or processed by immune agents such as professional phagocyte or antibody, and

the spatial movement of these pathogens are small comparing with immune agents.

Table 4.4 Test pathogens’ characteristics (figure 4.12)

A0 αA αAp βAs|A βAs|Ap
peff

Ap|A δ ρAp|MA nAp

1× 104 0/ day 0/day 6/ day 6/ day 0% 0.12 NA 2

Besides the features described in table 4.4, our pathogen will not be eliminated by any

professional phagocyte or antibody. Results of numerical experiments in figure 4.12 reflect

several features of a skewed TH2 response. A large number of TH2 cells are generated (figure

4.12 f(1)) with corresponding high concentrations of TH2 cytokines (figure 4.12 f(5)) and a large

amount of antibodies (figure 4.12 f(4)). For this iteration of experiment, the persistent existing

pathogen keeps secreting large amount of soluble antigens, following by successful initiation

of TH2 response at the 4th day, a very efficient clearing of soluble antigen by antibody (figure

4.12 f(2) and f(4)) is observed.
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Figure 4.12 Immune model infected by the pathogen defined in Table 4.4.

Plot f(1), f(2), f(4) and f(5) are the temporal dynamics of local

average of the effector T cells, antigens, antibodies, and chemi-

cals; f(3) and f(6) are the value of mature APCs (including DCs

and activated B cells) in the lymph nodes.

Once produced by activated B cells, the amount of antibody stays on a stable level for long
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time and leads to the inhibition of soluble antigen spreading in tissue after the 12th day (figure

4.12 f(2) and f(4)). There are some low levels of TH1 cells that are activated by the mature DCs

associated with immune complexes and their chemokines (figure 4.12 f(1), f(3) and f(5)). There

is a dramatic increase in the amount of activated B cells and a gradual decrease because of

the persistence of the producer of soluble antigens (figure 4.12 f(6)). These results are broadly

consistent with the pathology of parasitic worms, such as Nippostrongylus [109, 110, 195], and

demonstrate the capability of the model to mimic a TH2 response against certain pathogens.

4.4.4 Complete system responses to acute infection

For the purpose of completeness, an acute infection with an intracellular pathogen is studied

to validate that the model is robust to a wide range of artificial pathogens. To define a pathogen

inducing an acute response mediated by both TH1 and TH2 subsystems, the characteristics

listed in Table 4.5 are used. This type of antigen has a zero survival probability, in other words

the immune system can readily clear the antigen successfully. The virtual pathogen used to

mimic an acute infection has certain secretion rate of soluble antigens.

Table 4.5 Test pathogens’ characteristics (figure 4.13)

A0 αA αAp βAs|A βAs|Ap
peff

Ap|A δ ρAp|MA nAp

1× 104 0/ day 2/day 0.1/ day 0.1/ day 100% 0.12 NA 2

From the numerical experiment, we can observe that once recognized by the immune

system, particulate antigens are quickly cleared by a relatively small number of activated

macrophages (and neutrophils also), and the small amount of soluble antigens are gradually

cleared by mixed types of antibodies (figure 4.13 t(1)-t(2) and t(2)-t(4), respectively). Starting

from the 6th day, the populations of activated macrophages in the tissue and matured APCs

(including dendritic cells and activated B cells) in lymph nodes decrease exponentially along

the successfully elimination of particulate antigens and soluble antigens (figure 4.13 t(1), t(3)

and t(6)). TH1 immunity dominates the early period of immune response to focus on cleaning

the particulate antigens, and starting after the 3rd day TH2 immunity quickly dominates the
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immune response to clean the soluble antigens by further promoting antibody productions

(figure 4.13 t(5)). Secreted by activated B cells, possible mixed types of antibodies (both TH1

and TH2 type) stay in the tissue to protect the body after the cycle of immune response (figure

4.13 t(4)).

Figure 4.13 Immune model infected by the pathogen defined by table 4.5.
Plot t(1), t(2), t(4) and t(5) are temporal dynamics of local
average of activated macrophages, antigens, antibodies and T
cell cytokines at the infection site. t(3) and (6) are the mature
DC and activated B cell’s dynamics in lymph nodes. Insert in
t(2) is the local average amount of particulate antigens at the
infection site.

Although different pathogen characteristics would undoubtedly contribute to different phe-

notypic immune responses during an acute infection, the numerical experiment in figure 4.13
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clearly demonstrates the essential phenomena that antigen is quickly cleared by a correspond-

ing immune response and system tends towards a resting state gradually.

By the series of numerical experiments above, we therefore validate that the proposed com-

plete model can mimic MHC Class II mediated immune responses against diverse pathogens.

4.5 Study on Mycobacterium avium subspecies paratuberculosis infection

As we have already discussed in the introduction, motivated by Zinkernagel’s famous pos-

tulate that the immune response is determined by the dynamics of antigen load [205], the

model we proposed in chapter 2 assumes that characteristics of antigen inherently determine

the phenotype of immune response and the characteristics of antigen include amount, spatial

distribution, motility, replication rate, secretion rate, survivability and capacity. We attempt

to use our model to generate specific hypothesis that can be evaluated by experiments. In this

section, we are going to study and recapitulate the phenomena in complex immunity associated

with Johne’s disease based on our model.

Johne’s disease, which is first described by Johne and Frothingham [88], is the clinical

outcome of a chronic and progressive infection with Mycobacterium avium subspecies paratu-

berculosis (Map) in cattle. This infection is characterized by initial TH1 mediated immune

control, which then switches to TH2 mediated immunity, and concomitant loss of control of

the infection [169]. It is complicated and usually difficult to reproduce experimentally due to an

extended post-infection interval of up to 2− 3 years before clinical signs may appear. Existing

data about both the organism and the host response have been determined by in vitro studies,

and large amount of the analysis of the immune response during experimental and natural in-

fection provide a rough schematic picture of progression of infection of Map. During the early

stage of infections, granulomas are very difficult to locate, which reflects a very low pathogen

burden. Like M. tuberculosis, and M. bovis, Map persists within monocytes and macrophages

through interference with phagosomal trafficking. Map resides, actually hides, in a phagosomal

compartment that does not acidify and retains markers of early maturation stages [76, 100],

and may promote secretion of anti-inflammatory cytokines, which is the regulatory T cell se-
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creted cytokine in our model [200]. However, experimental facts in vitro, demonstrate that

induction of classic activation of macrophages leads to significant Map killing [75], and suggest

that there is sufficient local cell-mediated responses during the early period post-infection in

vivo to maintain classic macrophage activation that limits Map proliferation. This is supported

by strong proliferation and production of IFN−γ from lymphocytes harvested from early Map

infected cattle in response to Map antigens [129].

Figure 4.14 Schematic of immunity switch of Johne’s disease.

Onset of clinical disease correlates with a deterioration of cell-mediated immunity leaving

a dominant humoral immune response and high levels of circulating ineffectual anti-Map anti-

bodies [187]. This switch is highlighted in the schematic 4.14. The mechanism of this switch

has attracted much attention since it is related to the development of an immunological switch

in classical TB infection in human [187, 200], however, the immune variables that lead to this

switch are unknown. With limited knowledge on the mechanism, current theories focus on

potential immune dysregulation through an altered balance of immune activation v.s. immune

regulation and the subsequent switch of effective immunity. Recently, it is identified that Map

p34 protein is a B cell epitope that is recognized by antibodies from Map-infected cattle [147],

and, in addition, Map secretes multiple antigens that are recognized by antibodies from in-
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fected cattle with clinical syndromes [163]. These suggest that TH2 dominant epitopes and

Map secreted antigens may influence the development of the humoral response. The switch to

a humoral response is associated with progression of infected animals to multibacillary disease

with very high shedding of bacteria in the feces. The pathology of this stage of disease is char-

acterized by widespread TH2 driven granulomatous inflammation characterized by extensive

macrophages and lymphocytes infiltration into the mucosa of the intestine without clear or-

ganization. Lesional macrophages contain large numbers of intracellular bacilli. Macrophages

in granulomatous inflammatory foci typically lack markers of classic macrophage activation,

inducible nitric oxide synthase [77]. This suggests that these heavily infected macrophages

maintain a non- or alternatively-activated phenotype.

The initial infection dose of the in silico pathogen designed to mimic infection of Map

is as low as 8000 units. The pathogen have a 1% rate of survival in classically activated

macrophages, an approximate doubling time of 1.5 days, a certain amount of soluble se-

creted antigen at 1000 units/day/pathogen and a high carrying capacity within macrophages

of 300/macrophage. According to (2.2) and (2.10) within alternatively activated macrophages,

the in silico pathogen has doubling time and secretion rate of soluble antigen increased to 3

hours and 3000 units/day/pathogen respectively, and the rate of survival increased to 50%.

The infection site is numerically a small disk with diameter equal to 0.2 cm, where the pathogen

is homogenously distributed.

Local amount of intracellular particulate antigen in the tissue remains low and stable at

1 − 2 × 103 units for 2 years as shown in W(1) in figure 4.15. This stable level experiences a

thorough transition at 25-26 months post-infection with a 1000 fold increase in the pathogen

over about 2 months (W(1) in figure 4.15). The minor B cell response and small amounts

of antibody produced in phase 1 and 2 are related to the TH1 cell response that dominates

these phases (W(3) and W(4) in figure 4.15). A slowly increasing amount of soluble antigen

associated in the tissue is preserved at the infection site (W(2) in figure 4.15). In the absence

of a specific immune response against the soluble antigen it is limited by a natural half-life,

which we have modeled as much shorter than ”live” intracellular pathogen, and continuous
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Figure 4.15 Local average amount of intracellular antigens, soluble antigens
and antibodies at the infection site, and the amount of activated
B cells in the lymph node over time. The inserts of phase 1 to 3
are the same results plotted on the different scales to highlight
the dynamics of different phases of the infection.

processing and degradation by neighboring macrophages (W(2) in figure 4.15). Despite these

immune controls, soluble antigen levels accumulate over time ultimately reaching the lymph

node and promoting primary B cell activation as seen in phase 3 (W(4) in figure 4.15) resulting

in a transition to several fold higher amounts of antibody and TH2 cells that migrate to the

infection site (W(3) in figure 4.15 and W(6) in figure 4.16). Antibodies consume soluble antigen

and promote immune complex formation at the infection site (not shown) that is picked up

by dendritic cells, which traffic to the draining lymph node (W(2) in figure 4.15 and W(5) in

figure 4.16). Over the period of two months, the numbers of TH2 cells at the infection site

and the amount of immune complexes surpass a transition threshold and promote alternative

activation of macrophages at the site of infection leading to enhanced pathogen survival and

replication (W(1) in figure 4.15). A decline in the amount of particulate antigen during both
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phase 1 and 2 leads to a concomitant decline in local TH1 immunity that may contribute to

the transition (W(5) and W(6) in figure 4.16).

Figure 4.16 Local average population of DC associated with particulate anti-
gen or immune complex, effector T cells at the infection site.

Our model predicts four phases of the immune response towards infection of Map. Phase

1 is the resolution of the initial infection. Phase 2 is a quasi-static process characterized

by declining TH1 immunity and slow accumulation of soluble antigen. Most of the variables

have relatively low rates of change in this phase. Phase 3 includes the initiation of transition

from a TH1 dominated immune response to a TH2 response. Phase 3 is the result of soluble

antigen reaching threshold in the lymph node and subsequent primary B cell activation. In

our model this results in TH2 cell activation and antibody production with accompanying low

levels of TH1 immunity. None of these responses promote enhanced pathogen killing although
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both particulate and soluble antigens are controlled. This stage is a relatively low level mixed

response. The products of TH2 immunity would not be readily apparent as antibodies are not

in excess and they are effectively removing soluble antigen from the site of infection and antigen

load remains relatively low. Phase 4 is defined by alternative activation of the local macrophage

response that occurs at 26 months post-infection. At this stage antibody production and

TH2 immunity are parts of an ineffective feedback loop promoting alternative activation of

macrophages and continued pathogen replication. Ultimately large amounts of accompanying

soluble antigen promote a correspondingly large antibody response. Although not part of

our original model, one would hypothesize that these antibodies and/or immune-complexes

would significantly affect distant sites of infection leading to generalized inability to control

the infection and ultimately death of the host. Interestingly, in our model, regulatory T cell

function dramatically increased late in secondary to high levels of antigen interacting with the

immune system.

Our model recapitulates several observations consistent with the development of clinical

disease in cattle: 1) A slow decline in TH1 immunity, 2) rapid increase in antigen load at

end stage of disease, 3) a dramatic increase in antibody levels, 4) increase of regulatory type

T cell response accompanying the immune phenotype switch, 5) loss of organized granuloma

structure at the infection site at end stage of disease. All of the described phenomena are the

result of threshold dependent transitions and determined by the driving force of antigen load

in the draining lymph node and inherent immune skewing characteristics of the antigen.

It is therefore suggested by the numerical experiments that despite an initial TH1 response,

if the organism is not eliminated, continued immune activation by antigen that promotes

TH2 immunity eventually leads to immune effector response switch. Therefore, our model

proposes an alternative mechanism where antigen load drives the immune phenotype switch and

measured immune parameters during disease reflect a regulated immune response to antigen,

albeit ultimately ineffective.
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CHAPTER 5. Conclusion and discussion

Equipped with sophisticated tools, such as a highly efficient, convergent numerical scheme

and the concept of homogenization, we develop a spatial -temporal mathematical model to cap-

ture various fundamental aspects of the MHC Class II immunity to antigen (foreign pathogen).

System (A.1)∼(A.10) is a minimal model including only fundamental immune agents. The ne-

cessity of dendritic cells, regulatory T cells, B cells and antibodies for appropriate immune

regulation are verified in numerical experiments in Sections 4.1 and 4.3 in Chapter 4. These

results are consistent with our current understanding of their central roles in MHC Class II

mediated immunity. Furthermore, to achieve the goal of a dynamic self-regulated model of

immunity, motivated by Zinkernagel’s postulate [205], we introduce the concept of a minimally

defined pathogen.

The model is demonstrated to account for a series of consecutive immune responses: (1)

antigen recognition, (2) an innate immune response (neutrophils and macrophages), (3) an

adaptive immune response (effector T cells), and 4) the equilibrium of the immune response

to the presence of a persistent antigen (chronic infection) or the elimination of the antigen and

subsequent resolution of the immune response (acute infection).

Prior mathematical models of the immune system, such as classical works reviewed in

Section 1.3.1 in Chapter 1, focus on temporal population dynamics. In addition to den-

sity/population dynamics, we consider the spatial motilities of the immune agents as a crucial

factor. By the careful consideration of diffusion and chemotaxis (i.e., convection) rates based

upon homogenization, we are able to examine particular dynamics such as regulatory and

spatial-delay effects. Incorporating the spatial factor makes the arguments for some aspects of

the immune response considerably clearer. For example, the delay effect on the peak time of T
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cells is not a pure ’time delay function,’ but is affected by the spatial diffusion and the direction

switch of the maturing dendritic cells. The mathematical formulation of a switch of dendritic

cells from immature to mature phased upon contact with an antigen and an accompanying

change in the direction of cell movement; this is a sophisticated type of signal transduction.

One simple model of immune regulation suggests that the activation of an immune re-

sponse, or its subsequent down-regulation, is primarily managed by the number of antigens

that reach the secondary lymph node organs and the length of time that they remain there,

which is, in part, dependent upon the success rate of the immune response towards the anti-

gen [204, 205]. Therefore, in the model, all activation mechanisms for the various cell types

are simple uni-dimensional threshold functions. For example, as discussed in Section 2.2.1,

the presence of apoptotic neutrophils and activated macrophages signal the beginning of a

successful immune response, after which there is an increasing reliance on the macrophage,

rather than the neutrophil scavengers [141]. We use a simple threshold function that block

neutrophil recruitment when macrophage-produced cytokine CM exceeds a constant threshold

εN . Also, the different macrophage responses such as, innate activation, classical activation,

alternative/humoral activation and down-regulation are all considered and modeled by simple

threshold functions (section 2.2.2). The activation and differentiation of effector T cell and B

cell are also modeled by threshold function (Section 2.4 and 2.5 in Chapter 2).

Our current results do not model a specific type of regulatory T cell, or suggest what

T regulatory cell is most important, or responsible, for concrete disease. We do verify the

hypothesis that regulatory T cells are important to in controlling proinflammatory events and

maintaining an appropriate relationship between antigen load and the macrophage response,

even in our most minimal immune model.

Acute and chronic antigen exposures are the fundamental types of antigen delivery at in-

fection sites. Our model matches the immunological realities of these disparate conditions

reasonably well. By defining pathogen characteristics, our model also successfully recapitu-

lates various outcomes of the immune system once infected by broad class of pathogens. By

applying the model, using an appropriately designed in silico pathogen with certain pathogen
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characteristics, we are able to mimic the infection of Map in cattle and propose an alternative

explanation of switch of TH1 and TH2 subtypes in immune responses. In addition, the two

dimensional experiments successfully recapture the process of granuloma formation in a sole

TH1 subtype immunity.

Our current model is purposefully simplified and focused exclusively on MHC Class II

mediated immune responses in tissue. In this approach, some important immune factors are

excluded, such as, follicular DCs, memory T cells, and CD8+ T cells. Furthermore, we sim-

plify the process of the TH1 and TH2 dichotomy based solely on the characteristics of the

antigen. Although this is consistent with many studies, we are aware that there are both

secreted antigens that can promote TH1 responses and particulate antigens that can promote

TH2 responses [122, 138]. However, regardless of the actual physical properties of any antigen,

our model demonstrates how the amount of TH1 or TH2 antigens might influence the develop-

ment of the immune response and the long-term consequences of persistent antigen that may

be recognized as a TH1 or TH2 type antigen. The underlying principle that we have used to

simplify the immune system is to avoid specific agents and consider instead the fundamen-

tal functions of the immune response: 1) recognition of pathogens with different phenotypic

characteristics, 2) communication, 3) movement, 4) effector function (activation vs. inhibi-

tion), and 5) efficiency of eliminating the antigen. The proposed model that captures these

generalities is stable. Any additional factors or specifics of the immune response, which will

increase the granularity of the model, should fall into one of these five categories described

mathematically in our current model.
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APPENDIX A. Modeling equations for TH1 subsystem

The modeling equations for TH1 subsystem studied in sections 4.1.1 and 4.2 are listed

below:

Equation of particulate antigens:





∂A
∂t =

degradation︷ ︸︸ ︷
−µAA

pinocytosis by phagocytes︷ ︸︸ ︷
−A(λA|MRMR + λA|MAMA + λA|NN + λA|DEDE)

diffusion︷ ︸︸ ︷
+DA∆A

source︷ ︸︸ ︷
+g(x, t)

A(x, 0) = g(x, 0), A(·, t)|∂Ω = 0.

(A.1)

where g(x, t) is the source function.

Equation of neutrophils and apoptotic neutrophils:





∂N
∂t =

apoptosis︷ ︸︸ ︷
−µNN

uptake/degranulation︷ ︸︸ ︷
−λN |AA ·N

effective chemotaxis︷ ︸︸ ︷
−∇(χN (N · ∇CH))

self regulation︷ ︸︸ ︷
−δN |CHCH ·N

+DN∆N︸ ︷︷ ︸
effective diffusion

∂ND
∂t = µNN︸ ︷︷ ︸

transfer from N

−λND|MAND ·MA︸ ︷︷ ︸
phagocytosis by macrophages

−µNDND︸ ︷︷ ︸
decay

+DND∆ND︸ ︷︷ ︸
diffusion

,

N(·, t)|∂Ω =





N0 if CM ≤ εN

0 if CM > εN

, ∂ND
∂n |∂Ω = 0, N(x, 0) = N0, ND(x, 0) = 0.

(A.2)
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Equations of dendritic cells:





∂DE
∂t =

natural death︷ ︸︸ ︷
−µDEDE

activation︷ ︸︸ ︷
−γDE(A)DE ·A

effective diffusion︷ ︸︸ ︷
+DDE∆DE

effective chemotaxis︷ ︸︸ ︷
−∇(χDE(DE · ∇CH))

∂DA
∂t = −µDADA + γDE(A)DE ·A + DDA∆DA +∇(χDA(DA · ∇CH))

DE(·, t)|∂Ω = DE0,
∂DA
∂n |∂Ω = 0, DE(x, 0) =





0, x ∈ Ω

DE0, x ∈ ∂Ω
DA(x, 0) = 0.

(A.3)

where γDE(A) is the activation rate

γDE(A) =





γDE A > εDE

0 A ≤ εDE

(A.4)

Equation of T cells:





∂T
∂t =

natural death︷ ︸︸ ︷
−µT T

effective diffusion︷ ︸︸ ︷
+DT ∆T

effective chemotaxis︷ ︸︸ ︷
−∇(χT (T · ∇CH))

downregulation by contact with Treg︷ ︸︸ ︷
−δT |Treg

T · Treg

∂Treg

∂t =

natural death︷ ︸︸ ︷
−µTregTreg

effective diffusion︷ ︸︸ ︷
+DTreg∆Treg

effective chemotaxis︷ ︸︸ ︷
−∇(χTreg(Treg · ∇CH))

T (·, t)|∂Ω = γT |DADA|∂Ω, Treg(·, t)|∂Ω = γTreg(CT, A)T |∂Ω

T (x, 0) = 0, Treg(x, 0) = 0.

(A.5)

where the activation function of regulatory T cells is

γTreg(CT, A) =





γTregT, CT (·, t)
∣∣∣
∂Ω

> ε1Treg
+ ε2Treg

∫
Ω A(x, t)dx

0, otherwise
. (A.6)
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Equation of macrophages:





∂MR
∂t =

natural death︷ ︸︸ ︷
−µMRMR

activation︷ ︸︸ ︷
−γMR(CT,CTreg, A) ·MR

effective diffusion︷ ︸︸ ︷
+DMR∆MR

effective chemotaxis︷ ︸︸ ︷
−∇(χMR(MR · ∇CH)),

∂MA
∂t = −µMAMA︸ ︷︷ ︸

degradation

+γMR(CT, CTreg, A) ·MR︸ ︷︷ ︸
activation

+DMA∆MA︸ ︷︷ ︸
diffusion

−∇(χMA(MA · ∇CH))︸ ︷︷ ︸
effective chemotaxis

,

MR(·, t)|∂Ω = MR0,
∂MA
∂n |∂Ω = 0, MR(x, 0) = MR0, MA(x, 0) = 0.

(A.7)

where the activation rate is

γMR(CT, CTreg, A) =





γMR CT > ε1MA + ε2MAA,CTreg < ε3MA + ε4MAA

0 otherwise,
(A.8)

Equation of chemokines and cytokines:





∂CH
∂t = (βCH|MAMA + βCH|NN) ·A︸ ︷︷ ︸

secreted by N and MA

−µCHCH︸ ︷︷ ︸
degradation

+DCH∆CH︸ ︷︷ ︸
diffusion

,

∂CH
∂n |∂Ω = 0, CH(x, 0) = 0.

(A.9)





∂CT
∂t =

secreted by T︷ ︸︸ ︷
βCT T

natural death︷ ︸︸ ︷
−µCT CT

diffusion︷ ︸︸ ︷
+DCT ∆CT,

∂CM
∂t =

secreted by MA when engulfing ND︷ ︸︸ ︷
βCMND ·MA

natural death︷ ︸︸ ︷
−µCMCM

diffusion︷ ︸︸ ︷
+DCM∆CM,

∂CTreg

∂t =

secreted by regulatory T cells︷ ︸︸ ︷
βCTregTreg

natural death︷ ︸︸ ︷
−µCTregCTreg

diffusion︷ ︸︸ ︷
+DCTreg∆CTreg,

∂CT
∂n |∂Ω = ∂CTreg

∂n |∂Ω = ∂CM
∂n |∂Ω = 0, CTreg(x, 0) = CT (x, 0) = CM(x, ) = 0.

(A.10)
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APPENDIX B. Parameter estimate and discussion in the model

To simulate and study the proposed model, we must select values for all model parameters.

Unfortunately, there are few direct estimates of most parameters, and in vivo immunological

data may originate from multiple sources, for example mice or humans. We use whatever

data is available, regardless of source, but acknowledge that substantial differences among

species likely exist. Future calibration of model parameters against biological data will permit

investigation of these differences. For parameters with no information, we have proposed

what we think are reasonable values based on previously published immunological models and

expert opinion. For discussion, the parameters of the system (A.1) ∼(A.10) are categorized

into four groups: 1) initial conditions, 2) kinetic parameters, 3) model specific parameters, and

4) motility parameters.

Initial cell densities

Because we have used mathematical homogenization to model vascularized tissue, any

immune cell that normally flows through the blood stream exists at some initial level at the

modeled site of infection. Other cells, such as mature dendritic cells or antigen specific T

cells that are activated in response to the infection, and all cytokines, start at zero initial

concentration everywhere and are not listed in Table B.1.

There is data available on the abundance of immune cells in the blood. For simplicity, we

assume the initial concentrations in the simulation area are equivalent to the concentrations

in the blood. Neutrophils are the most abundant white blood cell in the vasculature, with

a reported 2.5 ∼ 7.5 × 109 cells per liter [19], so we choose the initial and boundary neu-

trophil concentration, N0, in this range. Approximately 6% of white blood cells in humans
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are monocytes. In the tissue, most of these monocytes mature into macrophages [78], leading

to MR0 ∼ 1 × 108/L [19]. A small fraction of monocytes become dendritic cells, with initial

density in lymph node at DE0 ∼ 1× 107/L [28].

It is estimated that in the resting stage B cells are 23% of the total 1 ∼ 5 × 109/L lym-

phocytes in adults [19]. The amount of memory B cells in the lymph node is estimated to be

1 ∼ 5× 103/L.

Table B.1 Initial cell densities.

Name Cell Type Simulation Value Reference
(Estimated Range)

N0 neutrophil 2.5× 106 [19]
(2.5 ∼ 7.5× 106/mL)

DE0 immature dendritic cell 5× 104 [28]
(∼ 1× 104/mL )

MR0 resting macrophage 1.5× 105 [19]
(∼ 1× 102/mL)

Bm memory B cells 3 estimate
(1− 5/mL)

∼ comparable with

Kinetic parameters

The kinetic parameters are those that reflect the dynamics of the immune response during

the interactions of immune agents and foreign antigens. The kinetic parameters can be classified

into the following classes: death/decay rates (cells/chemicals), production or secretion rates,

replication or proliferation rates, activation or promotion rates, uptake or processing rates and

regulation rates.

Death rates of cells and decay rates of chemicals

Apparently one of the easier quantities to experimentally measure, there is abundant data

on the lifespan of immune cells as recorded in Table B.

Here, the evidence shows that neutrophils are short-lived [141], unlike macrophages, which

live for months [166]. Activated or mature immune cells tend to live shorter lives than their
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unactivated/immature cousins [103, 148, 149]. We model that the lifespan of different subsets

of helper T cells are similar [78, 120], and according to [134], it is estimated that 3% of T

cells are lost per day, so we estimate µTH1 ∼ µTH2 = − ln(1 − 0.03) ≈ 0.03/day. The half life

of neutrophils is reportedly 8 ∼ 24 hours [69, 124, 172], yielding the range of Table B. With

no information for regulatory T cells, we assume effector and regulatory T cells share similar

death rates. Once B cells are activated they fail to survive for a long time period, i.e. the half

life is only 3 days [11], unless there are abundant growth and survival factors present. In our

model, without the effect of affinity maturation or germinal center formation the half-life of

plasma B cells is set to be 4 weeks. The half life of antibody ranges from 7 to 24 days [106].

The other entities in the model are not living cells, and most have high decay rates typ-

ical of proteins. Particularly, the decay rate of TH2 cytokines is relatively larger than the

decay rate of TH1 cytokines [120]. Apoptotic neutrophils, however, are large objects, cleared

through phagocytosis by macrophages, not through decay, so we assign them a small decay

rate. Particulate antigen±PAMPs, soluble antigen and intracellular antigen, which are all pro-

teins, represent a pathogen that actively avoids its own decay, so we have also assigned them

small decay rates. Immune complexes usually have a stable structure so that we estimate their

decay rate to be relatively small.

Table B.2 Death rates of cells and decay rates of proteins (unit: /day)

Name Rate of death of · · · Simulation Value Reference
(Estimated Range)

µN neutrophil apoptosis 1 [69, 124, 172]
(0.69− 2.08)

µDE immature dendritic cell 0.25 [103]
(0.23− 0.35)

µDA mature DC with A 1.00 [103]
(0.69− 1.39)

µDF mature DC with IC 1.00 estimate
(∼ µDA)

µTH1 effector TH1 cell 0.33 [97, 134, 185]
(0.03− 0.333)
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Table B.2 (Continued)

Death rates of cells and decay rates of proteins (unit: /day)
µTH2 effector TH2 cell 0.33 [120]

(∼ µTH1)
µTreg regulatory T cell 0.33 [97]

(∼ µTH1)
µMR resting macrophage 0.0033 [148, 149]

(0.0033− 0.007)
µMA activated macrophage 0.4 [57, 148, 149]

(0.01− 0.4)
µMA|Ap

MA due to bursting 2 estimate
µBa activated B cell 0.23 [78, 117, 183]

(0.05− 0.23)
µBp plasma B cell 0.45 [117], estimate

(0.33− 0.5)
Rate of decay of · · ·

µND apoptotic neutrophil 10−4 estimate
µCH chemokine 10−3 [57]
µA particulate antigen±PAMPs ]

µAs soluble antigen ]

µAp intracellular antigen ]

µIC immune complexes 10−5 estimate
µCM activated macrophage cytokine 2 [8, 186]
µCT1 TH1 cytokine 2.16 [35, 60]

(2.16− 33.2)
µCT2 TH2 cytokine 3.7 [120], estimate

(3.7− 7.23)
µCTreg regulatory T cell cytokine 3.70 [201]

(3.6969− 7.23)

Production and secretion rates

There are data available on the rates of chemokine and cytokine production by immune

cells, however since the chemical messengers of our model perform the functions of multiple

biological molecules, our secretion rates, reported in Table B.3, can only approximate true

secretion rates.

In our model, there is only one generic chemokine secreted by neutrophils and activated

macrophages at distinct rates. Taken into account the opsonization of antibody, after engulf-

ing immune complexes, professional phagocyte secretes chemokine more rapidly than solely
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Table B.2 (Continued)

Death rates of cells and decay rates of proteins (unit: /day)
µF antibody 0.03 [106, 117]

(0.1− 0.043)
] pathogen dependent

engulfing particulate antigens. There are three cytokines CT1, CT2 and CTreg secreted by

effector TH1, TH2 cells and regulatory T cells respectively; and TH2 cytokines are secreted at

a relatively slower rate than the secretion rate of TH1 cytokines [120]. The secretion rate of

antibody is estimated mainly based on the information in [66, 160]. The secretion rate of sol-

uble antigen is pathogen dependent, for example, parasitic worms may secrete large amounts

of soluble antigen in short time period [78] while Mycobacterium, although not well described

in vivo, presumably secrete less at a slower rate.

Table B.3 Production and secretion rates (Unit: pg/(cell·day) and
pg/(cell·(pg/ml)·day) )

Symbol Rate of Secretion of . . . Simulation Value Reference
(Estimated Range)

βCT1 cytokine by effector TH1 cell 0.1 [59, 201]
(2.0× 10−4 − 0.1)

βCT2 cytokine by effector TH2 cell 0.09 [120]
(2.0× 10−4 − 9.12× 10−2)

βCTreg cytokine by regulatory T cell 0.06 [201], estimate
(∼ βCT1)

βCM cytokine by activated macrophage 3× 10−2 [8, 9], estimate
βF |Bp

antibody by plasma B cell 2-4 [43, 66, 117, 160]
(0.25− 12.5)

β1
CH|MA chemokine by MA with A 3× 10−6 [5]

(3× 10−5 − 15× 10−3)
β2

CH|MA chemokine by MA with IC 6× 10−7 estimate
β1

CH|N chemokine by N with A 3× 10−6 estimate
(∼ β1

CH|MA)
β2

CH|N chemokine by N with IC 6× 10−7 estimate
∼ β2

CH|MA

βAs|A soluble antigen by A ]

βAs|Ap
soluble antigen by Ap ]

] pathogen dependent
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Replication or proliferation rates

In our model, foreign antigen can replicate and mature B cells in the lymph node can

proliferate. Moreover, for simplicity, in contrast to how we model the generation of subsets of

effector T cells and mature dendritic cells, activated B cells experience intrinsic differentiation.

In this work, we model that particulate antigen does not replicate while intracellular antigen

replicates. The differentiation rate for plasma B cells in Table B.4 is estimated based on

[2, 26, 27, 117]. The proliferation rate of activated B cells is estimated in a similar way to our

estimate of the natural death rate above.

Table B.4 Replication and proliferation rates (Unit: /(cell· day))

Symbol Rate of replication Simulation Value Reference
(Estimated Range)

αA particulate antigen ]

αAp intracellular antigen ]

Rate of proliferation
αBp|Ba

plasma B cells 3 [117]
(2− 5)

αBa activated B cells 0.3 [2, 10, 33, 117]
(0.2− 1.44)

] pathogen dependent

Activation and promotion rates

The maturation of immature dendritic cells, activation of resting macrophages, and the

recruitment of regulatory T cells by activation in the lymph nodes, the activation/promotion

rate of effector T cells and B cells are estimated in our model. Subsets of mature dendritic

cells can activate effector helper T cells by presenting antigens at comparable rates [125]. The

activation rate of dendritic cells by immune complex is estimated based on the opsonization

effect of antibody. The rate of co-stimulation of B cells due to helper T cells is estimated

partially based on [117]. The parameters reported in the Table B.5 are considered as maximum

activation rates.
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Table B.5 Activation and promotion rates (Unit: /(cell·day) or /(cell·
pg/ml·day))

Symbol Activation/recruitment Simulation Value Reference
/stimulation rate of . . . (Estimated Range)

γMA|MR macrophage 0.025 estimate, [201]
(0.02− 0.4)

γTH1|DA effector TH1 cell by DA 2.5 estimate, [97]
γTH1|DF effector TH1 cell by DF 0.2 estimate
γTH2|Ba

effector TH2 cell by Ba 0.004 estimate, [117]
(0.004− 3)

γTH2|DF effector TH2 cell by DF 0.8 estiamte
(> γTH1|DF )

γTreg regulatory T cell recruitment 0.5 estimate
γ1

DE DC maturation recognizing A 4× 10−4 [190]
(1× 10−4 − 6.5× 10−3)

γ2
DE DC maturation recognizing IC 1× 10−4 estiamte

(∼ γ1
DE)

γBa|TH1 B cells by TH1 1× 10−6 estimate
γBa|TH2 B cells by TH2 7× 10−5 [117]

(7× 10−5 − 0.1)
γBm|As,IC memory B cells with antigens 3× 10−2 estimate

Uptake or processing rates

The processing (uptake / phagocytosis / pinocytosis) rates for particulate antigen±PAMP

in equation (A.1), vary by immune agents. Activated macrophages are three times more

efficient antigen processors than resting macrophages [167], but immature dendritic cells are

the most efficient antigen processors of all immune cells[173]. We expect, among all immune

cells, most particulate antigen±PAMP to be consumed by phagocytic cells, so the decay rate

µA is a lower bound on processing rates. These claims yield

λA|DE > λA|MA > λA|N > λA|MR. (B.1)

Concrete data suggests antigen processing rates for activated macrophage are in the range

10−7 ∼ 10−5 per second [57, 148, 149].

To estimate the processing rates of antibody listed in Table B.6, we use the facts that

antibody binds with antigen in an efficient way [183] and that the association rate of immune
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complexes with other immune agents (a type of processing rate) is relatively large [61, 78, 123].

Table B.6 Uptake or processing rates (Unit: /(cell·day) or /(pg/ml·day))

Symbol Uptake Rate of . . . Simulation Value Reference
(Estimated Range)

λA|MA A by activated macrophage 0.8× 10−4 [57, 148, 149]
λA|MR A by resting macrophage 0.25× 10−6 estimate, [167]
λA|N A by neutrophil 0.55× 10−6 estimate
λA|DE A by immature dendritic

cell
1.50× 10−4 estimate, [173]

λAs|F As by antibody 5× 10−4 [55, 61, 117, 123]
(5× 10−4 − 5× 10−2)

λA|F A by antibody 1× 10−4 estimate
∼ λAs|F

λIC|MA IC by activated
macrophage

1× 10−3 estimate

λIC|DE IC by immature dendritic
cell

2× 10−4 estimate

λIC|N IC by neutrophils 1.1× 10−5 estimate

Regulation rates

Very little is known about immune self-regulation, so the functions and parameters of

Table B.9 are our simple proposals. It is known that neutrophils invading the site of an infection

produce auto-inhibitory factors [150, 202]. Since neutrophils produce the vast majority of

infection site chemokine early in infection, we let the concentration of chemokine stand in for

all such factors. Then δN |CH is the rate of neutrophil degradation due to this feedback loop.

Besides the regulation of effector T cell by regulatory T cell through direct cell-cell contact

[190], cross regulation of TH1 and TH2 effector T cell development is included in our model.

In [52, 53, 54], effective reaction rate is used for the model, based on which cross-regulation

rate is estimated in our model.

Model specific parameters

The adaptive immune response functions through a variety of different regulatory mecha-

nisms. As a comprehensive approach to regulation we use a series of threshold functions for
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Table B.7 Regulation rates (Unit: /(cell·day))

Symbol Rate of . . . Simulation Reference
(Estimated range)

δN |CH auto-regulation of neutrophil 1.0× 10−5 estimate
δTH1|Treg

downregulation of effector TH1 cells 0.5× 10−4 estimate, [97]
δTH2|Treg

downregulation of effector TH2 cells 0.5× 10−4 estimate
(∼ δTH1|Treg

)
δTH1|TH2 crossregulation of effector TH2 cells 0.6× 10−4 estimate
δTH2|TH1 crossregulation of effector TH1 cells 0.6× 10−4 estimate

both immune agents and antigen load [206].

Most immune actions are tightly regulated such that they are promoted in certain envi-

ronments and blocked in others. Immune actions typically exist on a continuous scale, for

example phagocytosis can occur at a continuum of rates. Cytokines, other molecular signals,

and even cells in the environment are sensed via cell surface receptors, and processed via signal

transduction networks inside the cell to output the cellular activity level. One can think of

cells and their networks as functions that map environmental states to cellular actions. In

most cases, the explicit expressions of the functions are unknown. In our simple model, we

assume these functions are step functions that map the relevant environmental quantities to an

on/off state of activity. As a consequence, we specify two activity levels: maximal (on) and off.

We also assume that the space of environmental conditions can be simply partitioned between

those environments that turn activity on and those that turn it off. As discussed in chapter

2, immune activities that are modeled in this way are neutrophil recruitment, activation of

effector T cell, regulatory T cell recruitment, B cell activation, and macrophage activation.

To model different types of pathogens, as discussed in section 2.1, we use a limited number

of characteristics to capture how pathogens interact with the immune system. To establish

a chronic infection, the continuous presence of pathogens or associated antigens is necessary

and plays important role in triggering immune responses constantly. The pathogen dependent

generic term 1 − peff
Ap|A captures the probability (percentage) for an intracellular antigen to

remain or recruit during an ongoing immune response. If peff
Ap|A = 1 the immune response is

fully successful and it is considered as an acute infection, and peff
Ap|A < 1 for chronic infections.
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Table B.8 Threshold parameters (Unit: pg/ml or scalar)

Name Threshold for · · · Simulation range Reference
εN neutrophil recruitment (0.1− 1× 103) estimate
ε1Treg

regulatory T cell recruitment (0.3− 3) estimate
ε2Treg

(0.01− 0.1) estimate
ε1MA|TH1 classical macrophage activation (0.02− 3) estimate
ε2MA|TH1 (1.0× 10−3 − 0.1) estimate
ε1MA|Treg

downregulation of macrophage (0.1− 3) estimate
ε2MA|Treg

(−0.1− (−0.01)) estimate
εMA|TH2 alternative macrophage activation (0.1− 200) estimate
θIC alternative macrophage activation 1.0× 106 estimate
θF huomral/alternative activation 1.0× 106 estimate
θTH1 activation of TH1 (0.1− 10) estimate
θTH2 activation of TH2 (0.1− 100) estimate, [177]
θBa|As

activating B cell by soluble antigen (100− 5000) estimate
θBa|DA,DF activating B cell by antigen-bond on

DC
(1− 50) estimate

θBa|A activating B cell by particulate anti-
gens

(1− 500) estimate

θBa|IC activating B cell by immune com-
plexes

(1− 5000) estimate

Capacity and escaping probability are also pathogen dependent. Constant δ ∈ (0, 1] is an

artificial parameter modeled to capture how the alternative/humoral activation may influence

the immune responses ability to activate macrophages and eliminate the pathogen (refer to

section 2.1.2 and 2.2.2).

Motility parameters

The chemotaxis and diffusion rates for immune cells in Table B are larger than those

measured in vitro because the circulation of immune cells in the microvasculature, governed

by Stoke’s equation, has been approximated by effective chemotaxis and diffusion [30, 191, 193]

as discussed in section 2.2.1. Apoptotic neutrophils created in the extravascular tissue do not

re-enter the vascular space. They diffuse at real rate 10−4 µm2/min, substantially slower than

proteins like antigen/PAMP, chemokines and cytokines.

According to the similar cellular structures of subsets of effector T cells and mature DCs
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Table B.9 Model related parameters

Symbol Description Simulation range Reference
peff

Ap|A immune efficiency ]

ρAp|MA capacity of intracellular ]

antigen in MA

kA|Ap
escaping rate of intracellular antigen ]

nAp switch of alternative activation ]

δ effective alternative activation [0, 1]
parameter

δBa proliferation constant of (0.05− 5.0)× 106 estimate
activated B cells

ρDE MHC class II presented on the (5.0− 500)× 102/cell estiamte
surface of DC

τ0 time lag of activation of 12 hrs [78]
effector T cell

pB|DE fraction of available bond for [0, 1]
naive B cell

] pathogen dependent

[183], we set the effective motility coefficients of DF and TH2 similar to the chemotaxis rates of

DA and TH1, respectively. Soluble antigen, antibody and immune complex are small molecules

that diffuse relatively fast in comparison to other quantities [78].

Table B.10 Chemotaxis and Diffusion rates (Unit: cm2/(pg/ml·day),
cm2/day)

Name Chemotaxis coefficient of · · · Simulation Value Reference
(Estimated Range)

χDE immature dendritic cells 3.5× 10−3 estimate
χDA mature dendritic cells with A 5× 10−3 estimate
χDF mature dendritic cells with IC 5× 10−3 estimate
χTH1 effector TH1 cells 6.5× 10−3 estimate, [146]
χTH2 effector TH2 cells 6.5× 10−3 estimate
χTreg regulatory T cells 6.5× 10−3 estimate
χN neutrophils 8× 10−3 estimate, [57, 133]
χMR resting macrophages 2.5× 10−3 estimate
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Table B.10 (Continued)

χMA activated macrophages 3× 10−3 estimate, [104, 184, 194]
(0.16× 10−6 − 0.48)

χAp intracellular antigen 3× 10−3 estimate
(∼ χMA)

Diffusion coefficient of · · ·
DA particulate antigen±PAMPs ] estimate
DAp intracellular antigen 5× 10−2 estimate

(∼ DMA)
DAs soluble antigen ] estimate
DIC immune complex ] estimate
DCH chemokine 1 estimate, [57, 149]
DCT1 effector TH1 cell cytokine 1 estimate, [130]
DCT2 effector TH2 cell cytokine 1 estimate

(∼ DCT1)
DCTreg regulatory T cell cytokine 1 estimate

(∼ DCT1)
DF antibody 2 estimate
DDE immature dendritic cell 7× 10−2 estimate
DDA mature dendritic cell with A 7× 10−2 [125, 126]
DDF mature dendritic cell with IC 7× 10−2 estimate

(∼ DDF )
DTH1 effector TH1 cell 5× 10−2 [130]
DTH2 effector TH2 cell 5× 10−2 estimate

(∼ DTH1)
DTreg regulatory T cell 4× 10−2 estimate

(∼ DTH1)
DN neutrophil 0.8 estimate, [45]

(0.002− 0.8)
DND apoptotic neutrophil 1.0× 10−5 estimate
DMR resting macrophage 8× 10−2 estimate
DMA activated macrophage 5× 10−2 estimate, [57, 148]
] pathogen dependent
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