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Abstract

Motivation: Identification of structural variants (SVs) in sequence data results in a large number of

false positive calls using existing software, which overburdens subsequent validation.

Results: Simulations using RAPTR-SV and other, similar algorithms for SV detection revealed that

RAPTR-SV had superior sensitivity and precision, as it recovered 66.4% of simulated tandem

duplications with a precision of 99.2%. When compared with calls made by Delly and LUMPY on

available datasets from the 1000 genomes project, RAPTR-SV showed superior sensitivity for

tandem duplications, as it identified 2-fold more duplications than Delly, while making �85% fewer

duplication predictions.

Availability and implementation: RAPTR-SV is written in Java and uses new features in the

collections framework in the latest release of the Java version 8 language specifications. A com-

piled version of the software, instructions for usage and test results files are available on the

GitHub repository page: https://github.com/njdbickhart/RAPTR-SV.

Contact: derek.bickhart@ars.usda.gov

1 Introduction

Among one of the larger classes of heritable genetic mutations,

structural variants (SVs) are difficult to detect within data derived

from current high throughput sequencing technologies. SVs have

been implicated as the causative agents of several phenotypes in ani-

mal species such as color-sidedness in cattle (Durkin et al., 2012)

and peacomb in chickens (Wright et al., 2009); however, their

reliable detection from next-generation sequencing data requires

cutting-edge computational algorithms and extensive molecular

validation. Much of the need for validation stems from the high false

discovery rates (FDRs) of several popular SV callers, several of

which have been shown to have a FDR of 90% (Mills et al., 2011).

Additionally, the exact nucleotide breakpoints of SV events are

difficult to detect from sequence data using existing methods. Many

algorithms, such as read depth-based copy number variation (CNV)

detection (Alkan et al., 2009), attempt to improve SV detection pre-

cision by lowering the resolution of detection; however, this pre-

vents reliable breakpoint estimation.

Higher resolution SV breakpoint detection has recently been the

subject of extensive research within the genomics community. Much

work has been done to utilize short-read library construction tech-

niques, such as paired-end read libraries, to infer the exact
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breakpoints of SVs in the genome as was implemented in the pro-

gram PEMER (Korbel et al., 2009). One such algorithm, imple-

mented in the program PINDEL, splits reads into smaller

constituents prior to realignment to the reference genome to find the

precise breakpoints of smaller events (Ye et al., 2009). These two

techniques were shown to contribute the highest quality SV predic-

tions in the recent human 1000 genomes project (Mills et al., 2011).

Still, these methods are highly prone to false positive SV call predic-

tions due to chimeric read fragments and repetitive sequence mis-

alignment. We expand on these methods by combining their

predictions to generate highly confident SV calls, which can be fil-

tered at runtime for improved accuracy. Such a strategy can be con-

sidered a ‘hybrid’ of the split read and paired-end algorithms, and

has previously been implemented in software such as Delly (Rausch

et al., 2012) and Lumpy-SV (Layer et al., 2014). We have also de-

signed our tool to be used on non-model organism reference assem-

blies by taking into account the uncertain nature of gap regions in

our runtime filters. We call our method RAPTR-SV which embodies

a combination of read pair (RP) and split-read (SR) methodologies.

2 System and methods

2.1 Simulated dataset
Test data were derived from simulated reads based on sequence

from cattle chromosome 29, extracted from the UMD3.1 reference

assembly (Zimin et al., 2009). In order to create simulation data, 50

replicates of chromosome 29 were generated with simulated, homo-

zygous, tandem duplications and deletions inserted into the chromo-

some at random. The maximum number of SVs per replicate was set

to 50 non-overlapping events. Fifty sets of simulated reads were gen-

erated using wgsim (https://github.com/lh3/wgsim) for each simu-

lated chromosome. Wgsim was run with the INDEL rate set to 0%

and all other settings at the default (500 bp insert size with a 50 bp

standard deviation in insert length). The equivalent of 10� average

sequence coverage of the chromosome was generated using wgsim

within each simulation. The average sizes of tandem duplications

and deletions were �2305 and 2281 bp, respectively. The largest

simulated deletion was 42 782 bp in size, whereas the largest tandem

duplicate was 33 201 bp. All programs and analyses were run on a

linux blade server with 24 threads and 100 GB of RAM.

2.2 Real datasets and benchmarking
Data were derived from two sources: (1) the NA12878 BAM files

released by the 1000 genomes project and (2) fastq files from an

Angus bull sequenced to 20� coverage. The first dataset (1) repre-

sents an excellent ‘truth’ dataset with which to assess the accuracy

of the program on real, validated data provided by the research com-

munity. The second dataset (2) provides a contrast by demonstrating

the application of our method to a non-model organism’s raw data.

Binary alignment map (BAM) files for NA12878 were downloaded

from the NCBI mirror of the human 1000 genomes FTP site (ftp://

ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/

20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam). This

alignment file contained reads originally used in the first Genome

Analysis Toolkit publication (DePristo et al., 2011), so this dataset

is both highly validated and serves as an excellent test case of data

derived from an older Illumina chemistry and older read alignment

algorithms. Summary statistical tests run on the BAM index files

showed that the total fold coverage of the dataset was �90� distrib-

uted among eight separate read groups. True positive variant loca-

tions were downloaded from the ‘golden standard SV sets’ from the

human 1000 genomes SV paper (Mills et al., 2011; Supplementary

Table S5). We note that the coordinates for these variants and the

BAM file are on the hg18 human reference genome, and to avoid

issues with coordinate liftover we did not convert the coordinates to

the hg19 assembly. In order to provide a non-model organism test

dataset, we used 20� coverage sequence data derived from an

Angus bull. Reads that did not pass the chastity filter were removed

from the dataset, and the 30 terminal ends of each read were

trimmed by up to two bases if the bases were flagged as poor quality

(ascii character: ‘!’; phred value: 0). Dataset comparisons were per-

formed by using custom Perl scripts and through the use of the

BedTools software suite (Quinlan and Hall, 2010). Simulation re-

sults, results from the Angus bull dataset and the custom scripts

used to process the data can be obtained from a subfolder of our

GitHub repository: https://github.com/njdbickhart/RAPTR-SV/tree/

master/test.

2.3 Read alignment and pre-processing
RAPTR-SV can be used to identify SVs within BWA-aligned,

SAMPE BAM files with or without read groups. Two features of the

BWA aligner that make it amenable for use with RAPTR-SV are

that it lists unmapped reads in the alignment file, and the fact that it

outputs soft-clipped alignments. Both of these types of data entries

are used to populate potential split read sites for the subsequent clus-

tering algorithm. The detection of SVs from paired-end and SR read

alignments benefits from the identification of all potential RP align-

ment locations and orientations. To identify these locations, we

wrap the MrsFAST short-read alignment tool version 2.0.5.4

(Hach et al., 2010) in our ‘preprocess’ pipeline. MrsFAST

identifies all read alignment positions in the reference genome in a

cache-oblivious fashion (Hach et al., 2010). This has the unintended

side-effect of increasing alignment time and alignment file size if re-

peats are not properly masked in the reference genome, so we

used RepeatMasker (http://www.repeatmasker.org/) on the

UMD3.1 cattle reference assembly (Zimin et al., 2009) and hg18 to

mask highly repetitive sequence. We downloaded a version of the

hg18, human reference genome from the UCSC genome browser

(http://hgdownload.soe.ucsc.edu/downloads.html). Average read

alignment lengths (Arp) and alignment length standard deviations (rrp)

for each read group ID were estimated from the alignment of 10 000

sampled reads from that ID using the RAPTR-SV ‘preprocess’ mode.

3 Algorithm

3.1 Paired-end discordancy analysis
Our software uses an expanded algorithm for paired end discord-

ancy first used by Hormozdiari et al. in their publication of the soft-

ware, VariationHunter-CR (Hormozdiari et al., 2009). Let Fl and Fr

be the leftmost and rightmost map coordinates of the first read, re-

spectively, and let Sl and Sr be the map coordinates of the second

read. The orientation of the read is based on the 50 to 30 directional-

ity of the read compared with the reference genome, with a ‘þ’ indi-

cating the same directionality and a ‘�’ indicating reverse

directionality. Now define the orientation of the sequential reads as

O, where O is comprised of the following set: {þþ, þ�, �þ, ��}.

A RP (P) would therefore include information from all five data

points: P¼ {(Fl, Fr), (Sl, Sr), O}. The insert length (L) of RP (P), is

equivalent to the distance from the closest read coordinate of the

first read to the closest read coordinate of the second read based on

their orientation. Concordant reads are reads that do not deviate sig-

nificantly in insert length (L) or default read orientation (þ�)
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after alignment. Discordant RPs is defined as the set of P that has

one or more of the following characteristics (Fig. 1a):

1. L� (Arpþ3rrp)

2. L� (Arp�3rrp)

3. O¼ (þþ or ��)

4. O¼ (�þ)

RPs that fall under criteria 1 or 2 are indicative of deletions and

insertions relative to the reference assembly, respectively. Pairs that

possess a þþ or � orientation and meeting criterion three indicate

the edges of inversions of sequence relative to the reference. Finally,

pairs with an ‘everted’ orientation as in criterion four indicate re-

gions where there may be a tandem duplication. Figure 1a demon-

strates examples of these criteria and their implications for variant

detection. Complex SVs can be detected as a result of deviations of

several criteria by a single P (e.g. L>Arpþ3rrp and O¼þþ). To

identify variants with confidence, we group discordant RPs with

overlapping coordinates into sets (G). Sensitivity in variant identifi-

cation is achieved by grouping RPs only when they directly overlap

in map coordinates for their reads (Fl, Fr, Sl, Sr) and only when the

union of the map coordinates of both P do not expand beyond the

insert length (i.e. P1| P2<Arp) as shown in Figure 1b.

3.2 SR creation and alignment
In addition to discordant read analysis, we incorporate a method

known as ‘SR’ to identify SV break points (Ye et al., 2009). SR ana-

lysis of all reads present in a large dataset is a computationally pro-

hibitive action since it effectively quadruples the amount of time

dedicated to read alignment. To reduce the complexity of the ana-

lysis, we adopted a method used by Karakoc et al. which selects only

one-end anchored (OEA) RPs to pre-select reads for targeted SR

analysis (Karakoc et al., 2012). We have expanded this algorithm by

identifying targets from extensive soft-clipping of reads where one

read still maps unambiguously to the reference genome. We define

extensive soft-clipping as reads that have >25% of their bases iden-

tified as being soft-clipped near the 50 or 30 terminal ends of the

read.

To perform the SR analysis, we divide the unmapped read into

two separate half-reads (V1 and V2) of equal size and we use

MrsFast alignment (Hach et al., 2010) to place the half-reads on the

reference genome assembly. The division point of the soft-clipped or

unmapped read is one half of the original read length in all cases. SR

alignments will fall into two categories based on the location of the

variant relative to the location, where the SRs were split. The first

category is a balanced (B) split read, where both V1 and V2 align to

the reference genome. The second category consists of unbalanced

(U) SRs, where only one read (V1 or V2) map to the reference.

Balanced SRs indicate that the variant breakpoints exist exactly at

the division point of the read; whereas, unbalanced reads indicate

that the SR breakpoint did not span the exact variant breakpoints

(Fig. 1c). Sets of SRs (H) that predict the same variant are created by

grouping B and U reads that cover the same breakpoint location.

These sets are then combined with prior discordant read sets (G)

such that the coordinates of the breakpoints predicted in H are con-

sistent with the SV call made by the set of G. Additionally, any set

of H that is not contained within a set of G is still retained by our al-

gorithm as a valid set for analysis, and vice versa for any set of G

that does not contain an internal set of H. This inclusive algorithm

represents a contrast to other hybrid signal detection strategies, such

as those found in Delly (Rausch et al., 2012). The combination of

H and G sets (HG) comprise candidate SV calls.

3.3 Weighted set cover and filtration
Because MrsFAST alignment identifies all potential alignments for

each P, it is necessary to find the best, minimal set of read align-

ments that form a set of HG. Any P that is shared by more than one

set of HG should, realistically, be found only in one of those sets. To

accomplish this, we use a modification of the set weight cover algo-

rithm. Any P that is not currently assigned to a single set of HG is

considered to be ‘uncovered’. Given a collection of sets of discordant

RPs and SRs, V¼ {HG1, HG2 . . . HGn}, the set weight cover algo-

rithm attempts to find the set that uses the most uncovered elements

in a greedy fashion at each iteration (Vazirani, 2001). To account

for the bias that may result from the incorporation of sets that arise

from repetitive region alignments, we do not use the number of un-

covered elements to prioritize set generation under the set weight

cover. Instead, we use Hormozdiari et al.’s phred-based probability

(PBP) estimate, which gives the probability that read alignments

originate from alignment mismatches rather than their true map

locations. Given a series of k mismatches, represented by the set

Fig. 1. Visual representation of the algorithm. Key criteria for discordant RP

identification (a) consist primarily of read orientation and length deviations.

Deletions (a.1) can be identified by RPs that align to the reference genome

further apart than expected, whereas insertions (a.2) are pairs that align far

closer than expected. Small inversions (a.3) are identified by RPs that have

the same orientation for both mates and tandem duplications (a.4) are identi-

fied by RPs that have everted mate orientations. Evidence for a single event

can be grouped into sets of ‘G’ (b) by stringently ensuring that overlapping

discordant RPs with the same orientation (designated by dashed lines) are

placed in the same set. Split reads (c) can be quickly assigned to a set of ‘H’

by looking for complete (balanced) and one-end unmapped (unbalanced)

alignments of split pairs. Balanced events (B) denote the exact breakpoints of

a deletion; however, unbalanced events (U) are the most likely outcome of

our split read alignment strategy and can still be used to refine event

breakpoints
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MM¼ {n1, n2 . . . nk}, in a read, the PBP is determined from the fol-

lowing equation (Hormozdiari et al., 2009):

PBPðMMÞ ¼
Y

i

1

1000
þ 10�

phredðni Þ
10 � 1

1000
� 10�

phredðni Þ
10

� �

If a read alignment has no mismatches, PBP¼1. The sum of PBP

estimates from uncovered discordant RPs, and the anchors of SR

pairs are used to select the first set in each iteration of the set weight

cover algorithm. Unbalanced split read PBPs are currently not used

in the weight estimation as such alignments have a high probability

of being categorized as false positive calls without additional sup-

porting reads. After grouping the reads into their appropriate sets,

each set should constitute a unique variant call.

We incorporate four additional filters to reduce the likelihood of

false positive calls. First, we remove any sets from HG that contain

support only from unbalanced (U) split reads. Such calls likely result

from chimeric read fragments or from alignments to repetitive re-

gions of the genome. Additionally, we allow the user to define a

threshold for the number of raw supporting reads that is necessary

to call a set. Calls that have only one read supporting them are indis-

tinguishable from chimeric read fragments generated during

sequencing library creation, so the default setting of RAPTR-SV is

to filter sets that have only one supporting read. We also include a

filter that removes discordant RPs that span gaps in the assembly

during the program runtime. Assembly gaps often coincide with

highly repetitive regions of the genome that were difficult to resolve

during reference genome assembly. Although discordant reads that

span such gaps could denote actual variants, the uncertainty of refer-

ence genome structure in these regions confounds subsequent valid-

ation. This gap filtration utility is packaged as a separate application

programmer interface (API) in our BedUtils library (https://github.-

com/njdbickhart/BedUtils). Finally, we also allow the user to set a

threshold for the minimum summed PBP value for a retained set.

This filter serves to eliminate many spurious alignments that result

from repetitive region alignments as being reported as discordant

read sets. RAPTR-SV defaults to a minimum of one summed PBP

value for a set to be considered valid for further analysis; however,

the user is encouraged to increase this threshold depending on the

fold coverage of their input dataset.

4 Discussion

4.1 Performance and runtime statistics
To take advantage of multiple core systems, we have incorporated

into RAPTR-SV several functional programming tools included in

the latest jdk version 8 release. This enables us to use both ‘divide

and conquer’ and ‘map reduce’ frameworks for some of the more

computationally intensive sections of the algorithm. We have

included a compatibility release of RAPTR-SV that will run on the

jdk version 7; however, it does not currently possess the same

threading potential as the main release. The average runtime for a

50 megabase (Mb) chromosome with 10� coverage was �15 min

on a single thread, excluding prior BWA alignment time. This time

and resource estimate includes both the ‘preprocess’ and ‘cluster’

modes of the program. Memory usage was �1 GB, on average, per

thread. In order to profile resource usage for more common test case

usages in ‘cluster’ mode, we sampled reads from a 1000 genomes

reference dataset (NA12878; for further details see methods). Test

conditions included combinations of a large chromosome (human

chr1; 247 Mb), a small chromosome (human chr22; �50 Mb), 90�
coverage and 10� coverage. We found that CPU usage scaled based

on the number of potential variant sets discovered during the ‘pre-

processing’ step (see additional file: performance_statistics.xlsx).

There was a linear trend when larger datasets were considered, sug-

gesting that the initial input stage of the ‘cluster’ algorithm took a

larger proportion of runtime for smaller datasets. Memory usage

was difficult to predict as we suspect that the Java virtual machine’s

(JVM’s) garbage collection algorithm acted responsively to our

larger data tests and did not need to act to recover memory in our

smaller tests. Our largest trial (247 Mb chromosome; single thread;

90� coverage) utilized 14 GB of RAM at peak usage. The smallest

trial dataset (50 Mb chromosome; single thread; 10� coverage) used

5 GB at peak.

To limit the memory overhead incurred by analyzing supporting

reads, RAPTR-SV has been designed to allow the user to specify

how many supporting RPs for each set are held in memory prior to

spilling to disk. Program runtime should theoretically scale well

with additional processor cores given sufficient memory overhead

and suitable raid-storage. We have included several command line

options to allow the user to scale the program’s resource consump-

tion against its potential performance profile. We present an ex-

ample workflow in Figure 2 that shows the necessary prerequisite

files and the two modes of operation of the main program. The ‘pre-

process’ mode generates the necessary metadata files from input

BAM files, whereas the ‘cluster’ mode generates discordant read sets

and makes the final SV calls. There is the potential to use an alterna-

tive preprocessing step, such as Samblaster (https://github.com/

GregoryFaust/samblaster), to generate preliminary data to be used

in the RAPTR-SV ‘cluster’ mode; however, the RAPTR-SV ‘prepro-

cess’ mode is not dependent on BWA-MEM alignment annotation

and can be used on a wide variety of ‘legacy’ BWA alignment anno-

tations. In tests using the NA12878 dataset, we found that

Samblaster recovered 14-fold fewer discordant RPs than did the

RAPTR-SV ‘preprocess’ mode, likely due to the former’s reliance on

BWA-MEM annotations in the BAM files (test script:

associateDiscordantReadsSamDivet.pl). We would like to reiterate

that the NA12878 dataset was aligned with the BWA ALN algo-

rithm, so such a discrepancy in detection between the two algo-

rithms may not apply to datasets aligned with BWA-MEM.

4.2 Simulations and comparison to existing tools
To finely tune the detection of SVs, we created simulated SVs using

the current cattle reference assembly sequence from the smallest cat-

tle chromosome, chromosome 29. Simulated SVs were limited to de-

letions and tandem duplications to provide direct comparisons to

predictions made by the Delly/Duppy SV detection suite version

0.0.9 (Rausch et al., 2012) and Lumpy-SV version 0.2.6 (Layer

et al., 2014). Simulations were repeated 50 times, with an average of

42 SVs (21.23 deletions and 20.84 tandem duplications) per simu-

lated dataset. Reads were aligned with BWA version 0.6.2-r126

prior to being used by all three detection programs. Delly and

Duppy were run with default settings, Lumpy-SV was run with the

recommended settings (https://github.com/arq5x/lumpy-sv/blob/

master/README.rst), and the RAPTR-SV preprocess mode was run

on 15 threads with an initial read sample size limit of 100 000 reads.

Delly/Duppy can improve the accuracy of SV breakpoint detection

by utilizing a reference genome fasta file to align split reads within

identified SV candidates. We provided the original reference genome

sequence for chromosome 29 to Delly/Duppy to improve their pre-

dictions. Similarly, Lumpy-SV can utilize SR mappings from other

software to improve prediction, so we used the split_unmapped_to_-

fasta.pl Perl script included in the Lumpy-SV package to select
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putative split read candidates, and realigned these reads using BWA-

SW to generate SR alignments. We tested several minimum weight

(mw) settings from Lumpy-SV, and found that the recommended

mw value of 4 provided good sensitivity without sacrificing preci-

sion (data not shown). Output from the RAPTR-SV preprocess

mode was used in the RAPTR-SV cluster mode with a raw read filter

of 2 and a Probability-based Phred filter of 4.0. These filters effect-

ively eliminated all call sets that had fewer than two supporting

reads and poor read mapping scores (due to ambiguous read align-

ments). RAPTR-SV identified insertions were first merged into non-

redundant sets and then combined with RAPTR-SV tandem duplica-

tion calls prior to comparisons with Delly/Duppy. Several soft-

clipped bases from BWA alignments caused the strict set generation

criteria of RAPTR-SV to identify the same smaller insertions mul-

tiple times, which necessitated this merger. Given that the simula-

tion tracks the locations of the randomly generated SVs, we were

able to estimate average precision and sensitivity values for each

method (Table 1). Precision was calculated by dividing the average

number of true positive calls by the average number of calls made by

the program. Sensitivity was estimated by dividing the average num-

ber of true positive calls by the average number of simulated SVs in

the dataset.

We found that RAPTR-SV had better predictive power than

Delly, Duppy and Lumpy-SV in our simulation dataset. RAPTR-SV

had an improved sensitivity for detecting deletions relative to Delly

(37.1 and 34.9% sensitivity, respectively) and Lumpy-SV (31.1%

sensitivity). Additionally, RAPTR-SV identified the same deletion

events with an improved precision compared with Delly (29.4 and

23.7% precision, respectively), mostly as a property of making

fewer total calls than Delly (RAPTR-SV average calls per simula-

tion: 26.77; Delly: 31.3). When the standard deviation of call sets

was taken into account, Delly had a wider distribution of total calls

per simulation (r¼42.1) than did RAPTR-SV (r¼5.1), which indi-

cates that the total number of calls made by Delly varied greatly per

dataset. In contrast, Lumpy-SV had nearly double the precision than

both Delly and RAPTR-SV in our deletion call simulation, suggest-

ing that it was far more conservative than the other SV callers.

Comparisons of tandem duplications and insertions revealed that

RAPTR-SV had an improved sensitivity (66.4%) and precision

(99.3%) when compared with Duppy (sensitivity: 62.8%; precision:

69.1%). Lumpy-SV showed a slightly higher precision (100%);

however, it was less sensitive than RAPTR-SV (56.1% versus

66.4%, respectively). Although RAPTR-SV missed an average of

44.6% of the simulated tandem duplications, nearly every insertion

and tandem duplication call made by the program was a true posi-

tive event. We applied a post-hoc filter to Delly/Duppy SV calls to

see if there was an improvement to algorithm performance similar

to that achieved by our use of runtime filters in RAPTR-SV. To mir-

ror the runtime filters of RAPTR-SV, we removed all Delly/Duppy

calls that had fewer than 2 supporting reads and had a cumulative

PBP score of less than 4.0. Although this post-hoc filter greatly

increased the precision of Delly and Duppy (100 and 99.3%, re-

spectively), it also decreased the sensitivity of both programs (19.6

and 58.3%, respectively). This filter was not applied to Lumpy-SV,

as its duplication calls already had a near perfect precision.

Several key differences between the algorithms contribute to the

variation in precision and sensitivity among Delly/Duppy, Lumpy-

SV and RAPTR-SV. The first, and perhaps foremost, difference is in

the alignment stage of split reads. BWA provides a ‘best hit’ align-

ment that does not report all possible read mapping locations.

Table 1. Performance of Delly/Duppy and RAPTR-SV on fifty simu-

lated SV datasets

Program True positivesi Total callsi Precis (%)t Sens (%)b

DELLY 7.41 (2.2) 31.29 (42.1) 23.7 34.9

DUPPY 13.08 (4.1) 18.92 (40.3) 69.1 62.8

LUMPY DELS 6.60 (2.6) 14.72 (5.3) 44.8 31.1

LUMPY DUPS 11.70 (3.5) 11.70 (3.5) 100 56.1

RAPTR-SV DELS 7.88 (2.4) 26.77 (5.1) 29.4 37.1

RAPTR-SV TAND 13.84 (3.8) 13.94 (3.7) 99.3 66.4

iNumbers indicate the average count of calls from 50 simulations. Standard

deviation in parenthesis. Bold highlighting indicates the best performance in

the category. tPrecision (Precis) is defined as the average number of true posi-

tives divided by the average number of total calls made by the program.
bSensitivity (Sens) is defined as the average number of true positives divided

by the average number of actual variants in the simulations. The average

number of deletions per simulation was 21.23 and the average number of du-

plications was 20.84.

Fig. 2. RAPTR-SV workflow and prerequisites. To generate the necessary

metadata, RAPTR-SV requires the user to provide a repeat-masked reference

genome fasta file, the location of all assembly gaps (in bed file format) and a

BAM file aligned with BWA. The first step of the workflow is the ‘preprocess’

stage, where RAPTR-SV scans the alignments for one-end anchors, soft-

clipped reads and discordant read pairs. These variant reads are stored in

three metadata files containing the read anchors, split reads and discordant

reads, respectively. The user then uses the ‘cluster’ mode of RAPTR-SV to

process these metadata. First, all metadata are read and assigned to sets. The

sets are then refined using a set weight cover algorithm, with the remaining

set data sorted into deletion, insertion and tandem duplication calls
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Although this method works very well at reducing the number of po-

tential discordant reads to be analyzed, it unfortunately discards

true positive discordant reads that may map to multiple locations in

the genome. MrsFAST, in contrast, outputs all discordant read loca-

tions, thereby allowing the RAPTR-SV algorithm the liberty of clus-

tering SRs into predicted SVs. The subsequent set weight cover

algorithm then selects for SV calls those that have the best support

and removes alternative mappings for reads that have already been

used to construct previous SV calls. Another key difference between

the algorithms is how SRs are prepared and used. Delly reduces the

complexity of SR analysis by searching for OEAs near SV intervals

predicted by discordant paired-end reads. Although this is an effi-

cient strategy for breakpoint detection, there is the potential for

Delly to miss SVs for which the only evidence is from SRs. RAPTR-

SV calculates SR estimates separately from discordant reads, thereby

allowing the program to identify SVs, which do not have evidence

from discordant RPs. Lumpy-SV does not include a split read align-

ment algorithm and instead relies on other software to create split

read mappings for SV detection. The method used to generate

Lumpy-SV split read alignments in this simulation was similar to the

general algorithm used by RATPR-SV; however, each split read was

assigned a single mapping location by BWA-SW and is therefore sub-

ject to the same limitations that are discussed earlier. We would like to

note that it is also possible to submit RATPR-SV calls to Lumpy-SV

for use in multiple-calling comparisons with other SV detection tools.

4.3 Identification of variants within a sequenced

individual from the 1000 genomes project
Sequence data derived from PCR-based library creation methods

used in Illumina technologies can often contain several contamin-

ants that confound the accurate detection of SVs. To test our soft-

ware against such a dataset, we downloaded the aligned reads from

one of the CEU trio individuals (NA12878) that served as a gold

standard for variant discovery. We used the hg18 reference assembly

for all subsequent alignments including the Delly/Duppy split read

prediction, and RAPTR-SV and Lumpy-SV split read alignment

stages. As with the simulation, Delly/Duppy and Lumpy-SV were

run with default/recommended settings. Specifically, Lumpy-SV was

run with an mw value of 4 and the split read alignments were gener-

ated by the split_unmapped_to_fasta.pl script with the BWA-SW

pipeline. RAPTR-SV was run with a raw read filter of 5 and a Prob-

based Phred filter of 6.0 for deletions and 2.0 for tandem duplica-

tions and insertions. Delly/Duppy did not appear to distinguish be-

tween the 16 read groups of the BAM; however, RAPTR-SV

calculated separate average and standard deviation values for RP in-

sert lengths for each library. The BAM alignments were derived

from two separate libraries (Solexa-18483 and Solexa-18484),

which RAPTR-SV predicted had average read insert sizes of 380 and

407 bp with standard deviations of 40 and 43 bp, respectively.

Delly and Duppy predicted several large deletions and duplications

that extended over 10 Mb in size. The largest of these variants was

246 Mb in size, which accounted for nearly all of the bases on human

chromosome one. The largest events were predicted on the first human

chromosome by both programs, with nearly the entirety of the

chromosome predicted to be both duplicated and deleted by Duppy

and Delly, respectively. Interestingly, the largest duplication

(246 735 634 bp) and deletion (241 158 955bp) predictions on

chromosome one had breakpoints that were not near any annotated re-

petitive elements or assembly gaps, which indicates that large chimeric

reads rather than misaligned RPs contributed to these false positive

calls. Similarly, Lumpy-SV predicted a large deletion (150047 106 bp)

and a large duplication (239 646 682 bp) on chromosome one that did

not intersect with known gap or repeat regions. RAPTR-SV did not de-

tect such large variants primarily due to the fact that such events often

cross assembly gaps and are filtered prior to SV calling. RAPTR-SV

also uses an event size filter to ensure that extremely large events can

be appropriately removed from final SV datasets.

After removing events larger than 2 Mb from all three datasets,

we estimated the sensitivity rate of each program for known SVs in

NA12878 by requiring a reciprocal 50% overlap of the variant call

with the boundaries of the known variant site. Sensitivity was then

calculated as stated in the simulated dataset. Known variant sites

were obtained from the golden standard variant set for NA12878

provided by the Human 1000 genomes SV paper (Mills et al., 2011).

All three programs recovered the majority of the validated deletions

in NA12878 (Table 2). Delly and Lumpy-SV correctly predicted 44

and 58 more true positive, small deletions than RAPTR-SV, respect-

ively. A closer examination of the data revealed that RAPTR-SV had

identified 14 of these sites; however, the breakpoints of these events

could not be resolved due to noise in SR alignment in these regions.

If the stringency of the overlap conditions were reduced to a recipro-

cal 25% overlap between the SV call and the known site, RAPTR-

SV achieved a total sensitivity rate of 66.7% (data not shown),

matching Delly and Lumpy-SV. We noticed a discrepancy in the

sizes of known events and their sensitivity rate for each respective

program. Known deletion sites that were larger than the median of

the truth dataset (3441 bp) were predicted more frequently by

RAPTR-SV than by Delly and Lumpy-SV. All of the Delly and

Lumpy-SV exclusive deletion calls were below the median size,

which indicated that both programs have improved breakpoint pre-

cision at this lower size range than does RAPTR-SV. With respect to

duplications and insertions, RAPTR-SV correctly predicted twice

the number of true positive duplications than did Duppy, and

�30% more true positive duplications than Lumpy-SV. RAPTR-SV

was superior to Duppy and Lumpy-SV at predicting these events re-

gardless of SV size, though all three programs struggled to predict

smaller insertions and duplications. With sequencing datasets that

have high read insert variance and numerous potential chimeric

fragments, we therefore recommend using alignment-based INDEL

discovery methods for the identification of insertions of sequence

<50 bp in length. We have included a list of RAPTR-SV exclusive

SVs detected from this dataset that were previously validated as part

of the Mills et al. golden dataset. In all, 37 previously identified

events were identified exclusively by RAPTR-SV (see additional file:

RAPTR-SV.exclusive.NA12878.predictions.bed). We have also

included some initial comparisons from our use of RAPTR-SV and

Table 2. NA12878 SV call benchmarks

Program Filtered

callsi

Sensitivity

<mediant (%)

Sensitivity>

mediant (%)

Sensitivity

total (%)

DELLY 1 545 981 59.5 62.3 60.90

DUPPY 155 638 2.0 13.3 7.64

LUMPY DELS 958 275 65.4 60.7 63.0

LUMPY DUPS 2132 7.3 14.0 10.6

RAPTR-SV DELS 477 316 46.1 66.7 55.0

RAPTR-SV TAND 22 546 2.6 26.0 14.2

iAll SV calls >2 Mb in length were filtered from each respective dataset.

Bold highlighting indicates the best performance for the ‘Deletion’ and

‘Duplication’ categories. tThe median size of deletions and duplications in the

NA12878 truth set were determined to be 3441 and 5889 bp, respectively.

Sensitivity percentages indicate the number of truth set calls that had a 50%

reciprocal overlap with SV calls from the program.
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Delly on 20� coverage sequence data derived from an Angus bull

(see additional files: angus_venn.pdf and angus_test_table.xlsx).

This initial comparison showed high overlap of RAPTR-SV calls

with Delly (46.1% bp overlap of deletions) and Duppy (73.4% bp

overlap of duplications); however, the size of the Delly/Duppy pre-

diction dataset eclipsed that of RAPTR-SV (128 Mb versus 5.56 Mb,

respectively). Without experimental validation, it is impossible to

predict how many of these discovered variants are true positives;

however, the Delly/Duppy dataset predicted that 5% of the cattle

genome was variable, which is at least twice the size of previously

determined estimates of 1.07–2.45% (Bickhart et al., 2012; Liu

et al., 2010; Zhang et al., 2014).

5 Conclusions

We present RAPTR-SV as a precise, tunable and scalable method

for the detection of SVs using paired-end sequence data. Groups

that are sequencing non-model organisms will likely find the most

benefit from our algorithm, though we hope that the entire research

community will adopt the tool. Future development goals will be to

reduce the memory overhead of the program and to incorporate an

algorithm to detect both chromosome translocations as well as read

depth signal.
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