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INTRODUCTION 

A basic concept in biology is that all living organisms are made up 

of cells and cell products. As more is learned about the cytology of 

organisms it is increasingly apparent that two basically different kinds 

of organisms exist, those with "prokaryotic" cells and those with 

"eukaryotic" cells (Stanier and Van Niel, 1962). The differences between 

these kinds of organisms are considered so significant that a number of 

systematists are proposing that we should revise our views about basic 

evolutionary affinities and consider merging the animal and plant kingdoms 

into a single kingdom, the "Eukaryota", with the exception of the bacteria 

and blue-green algae which would constitute the "Prokaryota". The 

differences between the cells of prokaryotic and eukaryotic organisms 

are not as much expressed in cellular function as in differences in 

morphological organization of the cell machinery. For example, most of 

the organelles of eukaryotic cells are bounded by membranes which act as 

selective barriers between these organelles and the rest of the protoplast. 

Membrane defined nuclei, mitochondria, plastids and dictyosomes are not 

found in the prokaryotic cell. The genetic material is divided by mitosis 

in the eukaryotic cell. In the prokaryotic cell the mechanism of division 

is not understood but is certainly quite different from mitosis. 

Until recently, cytologists using the light microscope have been 
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limited to a resolution of about 0.2 |i. Recently, the electron microscope 

has increased the limit of resolution to better than 1 Thus, the 

electron microscope has a great potential in the study of prokaryotic 

organisms where most of the species have very small cells. 

Recent improvements in fixation techniques (Kellenberger, Ryfcer and 

Sechaud, 1958; Luft, 1956; Holt and Hicks, 196I; Pankratz and Bowen, 1963) 

and embedding techniques (Luft, 1961) have made it practical to use 

electron microscopy in obtaining a better understanding of the morphology 

of the blue-green algal cell. 

The group of organisms called the blue-green algae or Cyanophyta is a 

diversified group of relatively "simple" organisms which is considered to 

be comparable, in certain respects, with bacteria. Even though members of 

this group have world-wide distribution, relatively little work has been 

done on them, especially at the electron microscope level. 

For this reason, I decided to undertake a comparative morphological 

study of one of the more common orders in the blue-greens, the Nostocales. 

Preliminary observations on a wide variety of material immediately pointed 

out the fact that these "simple" organisms were complex and contained 

many unusual and unreported inclusions. Because of the absence of 

typical higher plant and animal cellular organelles a basic under

standing of the internal organization of these organisms was considered 

essential. It is the purpose of this present work, therefore, to 
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report on the morphological diversity and complexity in the ïïostocales 

and to point out areas for future study. This work may have a bearing 

on taxonomj'-j phylogenetic relationships and a more complete understanding 

of basic biological organization. 



LimATUEE REVIEW 

General Features of the Order 

The Nostocales is an order of filamentous blue-green algae which is 

characterized by no true branching and by the ability of its members to 

form short filaments called hoimogonia each of which can develop into a 

new filament (Desikachary, 1959; Fritsch, 1945). Hormogonia form when cell 

death or other me ems create local weaknesses in a filament. Vegetative 

cells as well as hormogonia may be motile moving by a gliding process. 

The cells of a given species are much alike except that some species form 

akinetes (spores) and heterocysts (thick-walled cells of unknown function). 

Cell Wall 

The cell wall in the blue-green algae, following the terminology of 

Ris and Singh (1961), is composed of two portions: an outer gelatineous 

element, the sheath, which may be of considerable thickness; and, an 

inner, relatively rigid, complex layer immediately outside of the plasma 

membrane. 

The sheath may appear either stratified or homogeneous under the 

light microscope and it can vary in color depending on the pigments 

present. Yellow or brown colors are due to the pignents fuscorhodin and 

fascocholin respectively (Kylin, 19^3)• When the sheath is red or 

violet the pigment gleocapsin is present. The chemical nature of these 
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pigments is uncertain (Kylin, 19^3), Calcium and magnesium pectates 

have also been found in the sheath (Smith, 1950; Desikachary, 1959). 

A lïumber of extracellular products are known to be produced by 

blue-green algae (Fogg, 1962). An auxin-like hormone has been isolated 

from Anabaena cylindrica and Eostoc punctiforme produces inhibitor and 

extracellular enzymes. Calothrix brevissima produces large amounts of 

aspartic acid, glutamic acid and alanine while Anabaena and Microcystis 

produce toxic compounds which appear to be cylic peptides. Nitrogen 

fixation and the release of nitrogeneous compounds have been observed 

mainly in three genera Anabaena, Cylindrospermum and Uostoc. No members 

of the Oscillatoriaceae have been shown to fix nitrogen. However, one 

species of the Chroococcales, the unicellular order of blue-green algae, 

Chloroglea fritschii has this capacity. 

Gorham (1962} has intensively investigated toxic compounds of some 

strains of Microcystis aeruginosa and Anabaena flos-aquae. Microcystis 

produces a fast-death factor which is a cylic polypeptide. Anabaena 

produces a very-fast-death factor of unknown structure. Occasionally, 

blooms of such organisms have killed large numbers of both wild and 

domestic animals. 

In electron microscope studies the sheath may appear layered and 

contain fibrillar structures as shown by a number of workers (Hopwood 

and Glauert, I96O; Ris and Singh, I96I; Chapman and Salton, I962; 
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Levchenko, 1962; Frank, Lefort and Martin, 1962a; Pankratz and Bowen, 

1965). The thickness, number and density of the layers in the sheath 

appear to vary with the species and environmental conditions (Pritsch, 

19^5). The denser areas may be composed of long fibers 5 to 10 m|i in 

thickness (Levchenko, I962). Frey-Wyssling and Stecher (1954) describe 

cellulose fibers of 3OO m|i diameter and indeterminate length in the sheath 

of Wostoc sp. Metzner (1955)> however, claims there is no good evidence 

for the existence of cellulose in blue-green algae. 

The inner layer of the cell wall contains cellulose according to 

Kylin. (19^3) hut Metzner (1955) does not support this contention. 

Regularly arranged pores in the longitudinal walls of Oscillatoria have 

been observed (Kolkwitz, I89','; Philips, 1904) with the light microscope. 

A number of electron microscope studies have described the structure 

of the inner layer of the cell wall (Drews and Niklowitz, 1956; Niklowitz 

and Drews, 1956; Shinke and Ueda, 1956; Drews and Wiklowitz, 1957; Niklowitz 

and Drews, 1957; Fuhs, 1958; Hopwood and Glauert, 1960; Hagedorn, 196I; 

Ris and Singh, 196I; Chapman and 8alton, 1962; Frank, Lefort and Martin, 

1962a; Hall and Glaus, 1962; Levchenko, 1962; Echlin, 1963; Pankratz 

and Bowen, 1963; "Wildon and Mercer, 1963a). Unfortunately a variety of 

terminologies have been used to describe the wall components. The 

terminology of Ris and Singh (1961) will be used. The inner layer of 

the cell wall consists of two components, an outer membrane and an inner 
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investment immediately outside the plasma membrane. In electron micro

graphs the inner investment is separated from the plasma membrane by a 

clear space about 8 to 10 mn wide and generally ranges from 10 to 20 mn 

or more in thickness depending on the species. Shinke and Ueda (1956) 

and Ris and Singh (1961) found the inner investment of Oscillatoria 

princeps to be about 0.2 n thick and to be perforated by pores varying 

from 30 to 60 mn in diameter. 

The outer membrane has roughly the thickness of a unit membrane. 

It generally has small undulations which in some species may bé very 

pronounced and project some distance into the sheath (Echlin, I965). 

Pores in the inner investment have been described by early electron 

microscopists using shadowing techniques (Drawert and Metzner, 1956; 

Drawert and Metzner, 1958). In CylindrospermUm, Microcoleus and 

Oscillatoria borneti the pores are between 15 and 19 m|i in diameter and 

are located in the longitudinal walls over and on either side of the 

junction of the crosswalls. In Oscillatoria limosa the 13 mp pores were 

scattered over the entire wall. Pankratz and Bowen (1963) observed pores 

in sectioned material of Symploca muscorum which were about 10 m|i in 

diameter and spaced 18 mji apart in two rows, one on each side of the 

intersection of a crosswall with the longitudinal wall. 

Some interesting comparisons have been made between the cell wall 

components of the blue-green algae and bacteria. The cell wall is 
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interpreted as being the inner layer of the cell wall of the blue-green 

algae and the cell wall (not the capsular material) of the bacteria. 

Drews and Meyer {l96k) have isolated the components of the cell wall of 

2 blue-green algae Anacystis nidulans and Phormidium uncinatum and com

pared these to the cell wall components of Escherichia coli, a gram-negative 

bacterium. Compounds found in common were glucosamine, muramic acid, 

diaminopimelic acid, glutamic acid, alanine, aspartic acid, serine, 

threonine, leucine, lysine and glycine. Anacystis nidulans contained 

galactosamine which was not present in Esherichia coli. Similar results 

were arrived at by Frank, Lefort and Martin (1962b) in a comparison between 

the cell walls of Phormidium uncinatum and Esherichia coli. 

Experiments by Frank, Lefort and Martin (1962a) suggest that the 

characteristic mucopolymer exists between the plasma membrane and the 

inner investment in Phormidium uncinatum and that it is removed by lysozyme. 

Crespi, Mandeville and Katz (1962) produced naked protoplasts from 

several blue-green algae using lysozyme. These workers found that lysis 

was accompanied by a release of biliproteins from the cells. 

Stanier (1962) has called attention to the fact that maramic acid and 

diaminopimelic acid have only been found in bacterial and blue-green 

algal cell walls suggesting taxonomic relationships between the bacteria 

and the blue-green algae. 
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Vegetative Cells 

Light microscopists have long argued about the organization of the 

green peripheral protoplasm of the blue-green algal cell, Hegler (19OI) 

believed it contained many small chromatophores but Philips (l904) 

described one large peripheral chromatophore per cell. Geitler (I958) 

used high resolution light microscopy to show a peripheral lamellar 

system in Chroococcus. 

The pigments found in the cell are chlorophyll a, several 

xanthophylls, and at least four different carotenes, one of which, 

flavicin, is apparently unique to the blue-greens (Fogg, 1956). Either 

phycoerythrin (red) or phycocyanin (blue) or both occur in a given 

species and contribute to its characteristic color. They are proteinaceous, 

water soluble pigments which probably do not occur in other organisms 

with the exception of phycoerthrin which may be very similar to the red 

pigment, also called phycoerthrin, found in the Rhodophyceae (Pritsch, 

19^5). These proteinaceous pigments are destroyed by high light 

(Desikachary, 1959). 

Calvin and Lynch (l952) and Shatkin (1960) have isolated intra

cellular particles by ultracentrifugation, which contain the chlorophyll 

and carotenes. Calvin and Lynch considered the particles to be analogous 

to entire grana of chloroplasts of higher plants while Shatkin considered 

them to be flattened vesicles resulting from the disruption of 
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intracellular membranes. 

A large nimber of investigators have used the electron microscope to 

investigate the cytology of the blue-green algae. One unfortunate result 

of these works is that a variety of terminologies have been used by 

different investigators. In an attempt to avoid farther confusion in 

this area the terminology of Pankratz and Bowen (1963) will be adopted. 

Blue-green algae cells are enclosed by a plasma membrane of unit 

membrane appearance and dimensions (ca. 7 mp, thick). The protoplasts 

contain varying numbers of lamellar elements which Menke (1961) has 

called thylakoids. The thylakoid consists of a flattened closed sac 

of varying diameters within the range of several microns. The adjacent 

unit membranes of a single thylakoid may be appressed to each other to 

form a myelin-like figure or the sac may be more or less expanded and 

thus exhibit an intrathylakoidal space (Drawert and Metzner, 1958; 

Hopwood and Glauert, 1960; Lefort, 1960b; Ris and Sin^, I961). Chapman 

and Salton (1962) have described membrane elements in the central part 

of cells of Nostoc muscorum which are darker in appearance than the 

thylakoids in the peripheral cytoplasm. 

The arrangement of the thylakoids in the cells of various species 

ranges from a regular, concentric pattern in Oscillatoria chalybea to a 

randomly distributed pattern characteristic of Uostoc muscorum (Menke, 

1961). 
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The thylakoids may originate from the subdividing of a group of 

thylakoids by an ingrowing crosswall or through an elaboration of the 

plasma membrane (Bowen and Pankratz, 19^3). Echlin {iSëk) has described 

an intra-cytoplasmic membranous inclusion in the cells of Anacystis 

nidulans» It resembles the bacterial me so some. He coined the term 

"lamellasome" to describe these inclusions. 

A number of different kinds of grantilar inclusions axe found in blue-

green algae cells. Cyanophycean granules are generally located in the 

peripheral part of the cell. They are reported to contain a nitrogenous 

substance (Fritsch, 1951), which is high in arginine content (Fogg, 1951). 

Smith (1950) suggests they are probably proteinaceous. Fuhs (1958) 

obtained a positive reaction for phospholipids in the cyanophycean 

granules and because the granules stain with Janus green and reduce 

tetrazolium salts, Drews and Mklowitz (1956, 1957) considered them to 

be "mitochondrial equivalents". These same workers associated the 

cyanophycean granules seen in the light microscope with inclusions they 

called "structured granules" seen by electron microscopy. These are 

large, dense granules ranging up to 0.5 ̂  in diameter and show an irregular 

internal pattern of dense and less dense regions after osmium fixation. 

They are indistinct and apparently poorly preserved after potassium 

permanganate fixation (Pankratz and Bowen, 19^3)• Ris and Singh (1961) 

considered similar bodies in Oscillatoria to be a type of membrane 
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differentiation distinct from that of the thylaioids. Pankratz and Bowen 

(1965) failed to find a membranous component in the structured granules. 

Carbohydrate deposits occur in the pigmented part of the cell. 

They are believed to be between glycogen and starch in chemical composi

tion (Fritsch, 19^5)» Electron microscope studies, after osmium fixation, 

reveal elongate granules of medium electron density about 30 mn in diameter 

which are most abundant between the thylakoids (Pankratz and Bowen, I963). 

These granules are occasionally preserved with potassium permanganate 

fixation and have been called alpha-granules (cn granules) by Pankratz 

and Bowen (1963)= Fuhs (1963) and Giesy (1964) have shown that these 

structures are removed by diastase digestion and are probably polygluco-

side in nature. Giesy (1964) has further shown that in media with a 

high nitrogen content in which rapid growth occurs few a granules accumu

late. With low nitrogen in the culture media these granules accumulated 

in large numbers. 

Menke (1961) reported what appears to be a crystal of fibrillar or 

tubular array in the cells of Oscillatoria chalybea after potassium 

permanganate fixation which was located near the crosswall between 

thylakoids. It appears much like the very elongate CC granules in 

micrographs of Oscillatoria chalybea by Giesy (1964). 

Spherical osmiophilic granules ranging in diameter from 30 to 90 m^ 

are also found between the thylakoids. Pankratz and Bowen (1963) have 
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called these beta-granules (p granules). Shatkin (i960) suggests that 

they are storage products. Poorly preserved by potassium permanganate 

fixation, they are considered to be lipoidal and comparable to the 

osmiophilic droplets reported by many workers in chloroplasts of higher 

plants (Pankratz and Bowen, 196$). Fuhs (1958) has suggested that 

granules of similar appearance in Oscillatoria amoena may be composed of 

polypho sphate s. 

Structures which are "vacuole-like" are found in some blue-green 

algae (Niklowitz and Drews, 1957; Jensen and Bowen, 196I; Hall and Claus, 

1962; Pankratz and Bowen, 19^3; Wildon and Mercer, 1963a). These structures 

are generally located in the peripheral cytoplasm. They are up to 2 [i 

in diameter, frequently contain small dense granules and are not membrane 

limited. In every case these structures were described in material fixed 

with potassium permanganate and similar structures have not been described 

in osmium-fixed material. 

Bowen and Pankratz (1963) reported the presence of cylindrical 

bodies in Symploca muscorum. These non-membranous inclusions are composed 

of two concentric cylindrical zones of greater density and are found 

either singly or in clusters near the walls. These bodies range from 

100 to l4o mp. in total diameter and up to 1 p in length. Similar 

structures have not been reported in any other species. 

Polyphosphate bodies have been reported by light microscopists in 
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many blue-green algae (Spearing, 1937). They occur in all areas of the 

cell and can be made to increase in size and concentration by incubating 

the cells in the light in culture media to which dipotassium hydrogen 

phosphate has been added (Talpasayi, 1965). They are stained with 

toluidin blue (Keck and Stich, 1957) or lead nitrate-sulphite (Talpasayi, 

1963) and can be removed by incubation for 6 hours in cold 10 percent 

trichloroacetic acid. Tewari and Krishnan (1959) observed that poly

phosphates of molecular weight 69O to 1090 gave a weak metachromatic 

reaction while those of molecular weight 3,^00 to 20,000 gave a strong 

reaction. Polyphosphate particles, isolated from Anabaena cylindrica 

showed the characteristic red fluorescense of ribonucleic acid under 

ultraviolet light when stained with buffered acridine-orange (Talpasayl, 

1963). Mature spores do not stain for polyphosphates which Talpasayl 

(1963) suggests could be due to a lower molecular weight of the poly

phosphates. Polyphosphate inclusions have been called volutin and 

metachromatic bodies by various authors (Kuhl, I962). Electron micro

scope studies have not demonstrated inclusions that could clearly be 

identified with polyphosphate bodies. 

In Stigonema hexagonal crystals of unknown composition up to 5*8 H 

in diameter have been observed in the light microscope (Spearing, 1937)» 

Small crystals have been observed in Dactylococcopsis and gypsin 

crystals have been observed in Symploca muscorum (Fritsch, 19^5)* 

Oscillatoria growing in water rich in sulphides has been reported to 
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contain droplets of sulfur (Pritsch, 19^5)* 

Over the years much debate has centered around the nuclear area. 

Chodat (1896) first reported that the blue-green algae lack a true 

nucleus. A number of workers including Spearing (l957) indicate that 

certain species such as Oscillatoria sp. have a nuclear membrane. Other 

workers (Fischer, 1905; Geitler, 1922) claim the central area is not a 

nucleus but an area filled with reserve material or mitochondria. The 

presence of chromosomes and a mitotic division process have been claimed 

by Hegler (1901). Other workers including Wagner (l903) claim cell 

division is amitotic. 

Poljansky and Petruschewsky (1929) first used the Feulgen stain on 

blue-greens and obtained a positive reaction in the central region of 

the cell. Some species such as Oscillatoria princeps are Feulgen nega

tive (Shinke and Ueda, 1956). More recent work has shown that Feulgen 

positive chromatin is present in the central area of the cell. Cassel 

and Hutchinson (1954) using light microscopy describe three general 

arrangements of the chromatin: (l) loose, sometimes granular, net-like, 

(2) rod-like, oriented parallel to the longitudinal axis of the cell in 

groups, and (3) a very much condensed organization of various shapes. 

These differences in the distribution are apparently dependent upon the 

particular species. The presence of a mitotic division process and 

chromosomes was denied by these workers. Some workers describe 
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nucleoli-like bodies in the nuclear area (Gailliemend, I906; Spearing, 

1927). 

Biswas (1956) isolated the deoxyribonucleic acid from M'ostoc 

muscorum and found two different kinds differing in base composition, 

metabolic activity and solubility in acid. Biswas (1957) using cyto-

chemical techniques arrived at the conclusion that the deoxyribonucleic 

acid is bound to a structural protein which is high in tyrosin and arginine. 

He also subjected cells to digestion with pepsin and trypsin. He found 

that pepsin, after 20 hours, completely removed the protein from the 

peripheral cytoplasm but not from the central area. Trypsin in phosphate 

buffer digested the proteins from the central area. Biswas (1961) 

analyzed the nucleoproteins of Hostoc muscorum and concluded that they 

were similar to those found in other organisms. 

After osmium tetroxide fixation the nucleoplasm of blue-green algae, 

in electronmicrographs, appears as small areas of low density containing 

fibers 2 to 5 m|ji wide (Ris and Singh, I961). In Anabaena cylindrica 

such an area of low density is located in the central part of the cell 

and corresponds to the Feulgen positive area observed with the light 

microscope (Hopwood and GlBuert, 1960). No nuclear envelope has been 

observed and there is no sharp dividing line between nucleoplasm and 

cytoplasm (Ris and Sin^, I961), 
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Electron microscope studies reveal polygonal profiles in the central 

area of the cell which are of medium electron density after osmitim 

tetroxide fixation (Lefort, i960a, 1960b; Costerton, I96); Ris and Singh, 

I96I; Jensen and Bowen, I961). These "polyhedral bodies" vary in size 

up to 0.5 n in diameter and always appear in contact with the fibrous 

component of the nucleoplasm. In profile they are regularly surrounded 

by an electron-dense line about 3 mn wide with a 5 clear space 

between the line and the body itself (Pankratz and Bowen, 1963). They 

are preserved with osmium tetroxide, potassium permanganate and formalin-

osmium tetroxide fixation (Pankratz and Bowen, 1963). Costerton (196b) 

suggested they are protein bodies. He observed clear areas in the central 

region of cells which had been hydrolyzed for 10 minutes at 600C in IN 

hydrochloric acid. 

Ribosomes are described by all workers who have used osmium tetroxide 

fixation. These dense granules are 10 to I5 mp, in diameter and are 

scattered throughout the cells but they are most numerous in the 

nucleoplasmic area adjacent to the fibrillar component (Pankratz and 

Bowen, 1963). They are not preserved by potassium permanganate fixation. 

Fuhs (1963) has demonstrated that similar granules are removed by ribo-

nuclease in Oscillatoria amoena and Pseudanabaena catenata. 

Jensen and Bowen (1961) reported lamellar bodies in the cells of 

Nostoc pruniforme. They were located in the central area of the cell in 
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association with the nucleoplasm and the polyhedral bodies. They were 

about 630 m|i long and about 100 mji wide. Their profiles showed a very 

regular periodicity of straight; parallel striations normal to the long 

axis and spaced about 20 mji apart. 

Plasmodesm-like structures have been observed in the crosswalls of 

adjacent cells (Panlcratz and Bowen, 196$; Wildon and Mercer, 1963a). 

They are about 17 m|i wide and extend from the plasma membrane of one 

cell to the plasma membrane of the adjacent cell. Wildon and Mercer 

(1963a) claim only the outer electron-dense component of the plasma 

membrane enters into the pore in the crosswall. The inner electron-

dense layer of this unit membrane being uninterrupted. 

Spearing (1961) attempted to use a number of vital stains to elucidate 

the nature of the cytoplasmic components of the blue-green cell. He 

concluded that no reliable information could be obtained with any of his 

procedures and appropriately included in the title of his long paper, 

"...Vital staining—a study in the production of artifacts". 

A virus which causes the lysis of blue-green algal cells has recently 

been discovered (Safferman and Morris, 1963; Schneider, Diener and 

Safferman, 1964; Safferman and Morris, 1964). It was isolated from 

sewage and tested against 78 different algae of which 11 proved succeptable 

including species of Lyngbya, Plectonema and Fhormidium. This phycovirus 

resembles a bacteriophage in that it contains deoxyribonucleic acid, 
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has a polyhederal head about 66 m(i in diameter and a short tail about 

16 mil long. 

AMnetes 

Spores (akinetes) are formed by all of the îîostocales except the 

Oscillatoriaceae (Desikachary, 1959)• Akinetes are generally large cells 

with thick walls and have accumulated food reserves mainly in the form of 

cyanophycean granules (Fritsch, 1945). In mature spores there are no 

photosyfchetic pigments, gas vacuoles or polyphosphate granules (Desikachary, 

1959)» Akinetes frequently develop in close proximity to heterocysts and 

are assumed to be one means of tiding the algae over unfavorable periods 

(Pritsch, 19^5)-

Wildon and Mercer (1965b) have described the ultrastructure of 

alcinetes in Anabaena cylindrica. They are similar to a vegetative cell 

except that they are much enlarged, have an extra layer of cell envelope 

and possess a different kind of granule. 

Heterocysts 

Heterocysts are differentiated cells produced by many members of 

the Hostocales. These special cells are easily distinguished from other 

cells by their thick walls and by the generally homogeneous and pale 

yellowish contents. They may be located in the middle of a filament 

(intercalary heterocysts) or at the end of a filament (terminal 
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heterocyst). The cross wall separating a heterocyst from adjacent cells 

appears to be pierced ivith a pore when this area is observed under the 

light microscope (Fritsch, 19̂ 5)» 

The wall of the heterocyst is usually thick and two distinct layers 

can be seen; (l) an outer broad wall, especially thick near the pore and 

(2) an inner thin wall. The inner wall contains cellulose according to 

Geitler (1921} and Bharadwaja (l933)« Fritsch (l95l), however, does 

not support this view. A prominent granule, the polar granule, of 

uncertain composition is frequently observed in the cytoplasm in the pore 

(Desikachary, 1959)* 

Heterocysts appear to develop from recently divided vegetative cells 

(Fritsch, 1951) • The characteristic thick outer wall is laid down and 

the cytoplasm becomes homogeneous in appearance losing its green colore 

In the Rivulariaceae, however, the heterocysts remain green for long 

periods of time (Fritsch, 1951)» Fogg (1944, 194-9) showed that heterocyst 

formation was inhibited by increasing the nitrogeneous compound or 

compounds in the culture media. Similarly decreasing nitrogen content 

of the media increased the number of heterocysts. Fogg (1944) analyzed 

the combined nitrogen of blue-green algal cells and found an inverse 

relationship between abundance of heterocysts and the average amount of 

nitrogen per cell. He suggested that a relationship exists between 

heterocysts and nitrogen fixation. Other workers consider heterocysts 
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as providing places where the filament may fragment (Desikachary, 1959). 

However, Rivularia and a number of other genera possess only terminal 

heterocystso In these forms hormogonia are formed by the disintegration 

of a vegetative cell (Desikachary, 1959). 

Fritsch (l95l) has proposed that heterocysts produce diffusible 

enzymes which influence growth and differentiation. A number of workers 

report they have observed heterocysts germinating and suggest that 

heterocysts are vestigial reproductive bodies which normally cannot 

function but on occasion revert and give rise to a new trichôme (Geitler, 

192I; Desikachary^ 1946; Fogg, 19^9; Lazaroff and Vishniac, 196$). 

However, most species which form heterocysts also form akinetes (Fritsch, 

1945). 

Wildon and Mercer ('1965b) have used the electron microscope to 

investigate the heterocysts of Anabaena sp., Anabaena cylindrica, 

Fischerella muscicola, Nostoc sp. and Eostoc muscorum. Heterocyst 

development starts from a vegetative cell with the first indication of 

development being an increase in cell size. The outer wall is layed 

down next and the inner wall becomes thicker, especially at the pore 

region. The pore does not penetrate the crosswall of the adjacent cell. 

However, plasmodesm-like structures were found in this crosswall. 

Bodies identified as the polar granules of the light microscopists were 

occasionally found in the cytoplasm within the pore. These workers 
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reported that ribosome-like granules became widely scattered and other 

granular inclusions became fewer and finally disappeared as the heterocyst 

developed. The lamaellar elements finally branch. In detached heterocysts 

the cell contents degenerate and such heterocysts lose their cytoplasm. 

Chapman and Salton (l9&) have also described branched lamaellar elements 

in the heterocysts of Anabaena cylindrica. 

Gas Vacuoles 

Depending upon the growth conditions the cytoplasm of many species 

of blue-green algae may contain small irregular structures which resemble 

air bubbles under the light microscope. These "gas vacuoles" (Kelbahn, 

1895) or "pseudo-vacuoles" (Lemmermann, I910) have been found in species 

of Microcystis, Aphanizomenon, Anabaena, Calothrix, Gleotrichia, Hostoc, 

Lyngbya, Anabaenopsis and Oscillâtoria (Fogg, 19^1)» They are of 

sporatic occurrence in many species but are especially prominent in the 

planktonic algae causing "water blooms" in lakes and streams and are 

occasionally found in mud inhabiting forms (Fogg, 19^1). Seldom larger 

than 2 |i, they appear red under high power of the light microscope and 

do not exhibit birefringence (Molisch, 1903). Gas vacuoles disappear 

after treatment with boiling water, strong acids, alkalies, detergents, 

pressure and organic solvents such as chloroform, acetone and phenol 

(Fogg, 19^1)• KLebahn (1925) applied pressure to cells by driving a cork 

into a bottle filled with the algae and water. When the gas vacuoles are 
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destroyed the algae sink to the bottom, of the container. Klebahn (1929) 

has shown that gas vacuoles contain a gas and after isolating and analyzing 

it he came to the conclusion that it was nitrogen. Fogg (l94l) suggests 

the gas may be an amine. 

Most workers support the theory that gas vacuoles enable the algae to 

float (Fogg, 19^1; Fritsch, 19^5)» Kolkmtz (1928) suggested that the 

gas is formed by fermentation under anaerobic conditions and based his 

hypothesis upon observations of a bacterium, Sarcina ventriculi, which 

possessed gas vacuoles and had been collected from mud at the bottom of 

a pond. Lemmermann (19IO) suggested the gas vacuoles may screen out 

strong light. 

In electron microscope investigations a variety of structures have 

been identified as gas vacuoles: electron-transparent regions (Sun, 

1961, Wildon and Mercer, 1963a); intrathylakoidal spaces (Hopwood and 

Glauert, 1961) and structured granules (Costerton, I960). 
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METHODS AM) MA.TERIALS 

Collections of Algae 

Blue-green algae were collected from a number of local sources as 

well as obtained from permanently maintained culture collections. Some 

collections made in the field were fixed immediately. Other collections 

were generally placed in gallon containers, brought to the laboratory 

and then fixed, cultured or both. 

A sample of each collection will be deposited in the herbarium at 

The Academy of Natural Sciences of Philadelphia. Details about collections 

made locally can be found on the herbarium sheets. 

Following is a list, by families, of the blue-green algae examined 

and used in this study and their sources. 

Family Oscillatoreaceae 

Oscillâtoria princeps Vaucher ex Gomont. Collected from Lake 

Ahquabi, Indianola, Iowa, July 6, 1964; Oct. 10, 1964. ISU Jensen 1. 

Family Wostocales 

Anabaena spiroides var. crassa Lemmermann. Collected from Des Moines 

River, Sept. 6, I963; Storm Lake, Iowa, Aug, 26, 1964; Lake Ahquabi, 

Indianola, Iowa, Oct. 10, 1964. ISU Jensen 2. 

Anabaena sp. Collected from Lake Laverne, Ames, Iowa, Sept. 10, 

1964. ISU Jensen 
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Aphanlzcmenon flos-aguae (L. ) Ralfs. Collected from a farm pond 

near Nevada, Iowa, July 21, 1964; Lake Ahquabi, Indianola, Iowa, 

Oct. 10, 1964; Lake Okoboji, Milford, Iowa, Oct. 28. 1964= ISU 

Jensen 4. 

Cylindrospermum sp. Collected from Ledges State Park, Boone, Iowa. 

Sept. l4, 1965. ISU Jensen 5-

Uostoc calcicola Brebisson ex Born, et Plala. Indiana University 

Culture B382. ISU Jensen 6. 

Ebstoc carneum Ag. ex Born, et Flah. Collected from Lake Okoboji, 

Milford, Iowa, I961. ISU Jensen 7. 

Uostoc coeruleum Lyngbye ex Born, et Flah. Collected from a ditch 

near Council Bluffs, Iowa, July 1, 1964. ISU Jensen l4. 

Nostoc commune Vaucher ex Born, et Flah. Indiana University Culture 

584. ISU Jensen 8. 

Nostoc ellipsosporum (Besm.) Rabenh. ex Born, et Flah. Indiana 

University Culture B$8$. ISU Jensen 9» 

Nostoc linckia (Roth) Bornet ex Born, et Flah. Collected from Silver 

Lake, Milford, Iowa, Aug. 1963. ISU Jensen I6. 

Nostoc muscorum Ag. ex Born, et Flah. Indiana University Culture 

486. ISU Jensen 10. 

Nostoc muscorum Ag. ex Born, et Flah. Collected from Big Wall Lake, 

Dows, Iowa, Aug. 11, 1964. ISU Jensen I5. 
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Nostoc nmscorum Ag. ex Born, et Flah. Franklyn Ott University of 

Texas Culture 079. ISU Jensen 1?. 

lostoc pruniforme Ag. ex Born, et Flah. Collected from Lake Okoboji, 

Milford, Iowa, June i960. ISU Jensen 11. 

Hostoc pruniforme Ag. ex Born, et Flah. Indiana University Culture 

L'b756. ISU Jensen 12. 

Nostoc punctiforme (Kutz.) Hariot. Indiana University Culture 

ISU Jensen I3. 

Family Scytonemataceae 

Flectonema boryanum Gomont. Kaiser Research Foundation M-9.2.1. 

ISU Jensen 18. 

Family Rivulariaceae 

Calothrix crustacea Thuret. Kaiser Research Foundation M-I3.I.I. 

ISU Jensen 19. 

Calothrix parietina Thuret ex Born, et Flah. Kaiser Research 

Foundation M-I3.I.I. ISU Jensen 22. 

1 
Gleotrichia pisum Thuret ex Born, et Flah. Collected from Little 

Wall Lake, Jewell, Iowa, Sept. 10, I963; Aug. 26, 1964; Oct. 6, 1964. 

ISU Jensen 20. 

Gleotrichia pisum Thuret ex Born, et Flah. Collected from Clear Lake, 

Clear Lake, Iowa, Aug. 11, 1964. ISU Jensen 21. 

^Gleotrichia echinulata the most common species of Gleotrichia in 
this area was not studied because another student was working with it. 
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Ciilture Technique 

Media used were Chu 10 with soil extract with and without 2 percent 

agar (Chu, 19^), soil extract agar (Starr, 1900 ), soil water medium 

(Starr, i960) and Lazaroff media I and II both with and without 2 percent 

agar (Lazaroff and Vishniac, 1962). Cultures were generally maintained 

at 21°C under 500 foot-candles of illumination for 1 to 2 weeks and then 

transferred to $0-100 foot-candles of illumination. Some cultures were 

kept at 500 foot-candles of illumination for long periods of time. A 12 

hour alternating light and dark period was used. 

Pressure Treatment 

Algae with gas vacuoles were exposed to 100 lb. p.s.i. in a piston 

device (Figure 60). The bore was filled with algae suspended in the water 

in which they were collected and pressure was applied by pushing down 

suddenly on the piston, A sample was fixed immediately and the remaining 

algae were allowed to stand at room temperature. These latter samples 

were checked periodically to observe the reformation of the gas vacuoles. 

Recovering cells were fixed after 9 hours and 2k hours. Controls were 

fixed at the beginning of the experiment and from a container containing 

a similar amount of algae standing at room temperature at each of the 

above times. 

The experiment was repeated twice using Aphanizomenon flos-aquae 

and once using Anabaena sp. 
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Uostoc pruniforme (iSU-Jll) Inoculation Experiment 

Cells of Wostoc pruniforme (iSU-Jll) were broken up in a Mickle 

disintegrator. Material was checked periodically in the light microscope 

and grinding continued until few whole cells remained. This material was 

then centrifuged to remove the glass beads and whole cells. The 

supernatant was then filtered through a I.3 |i millipore filter. Cultures 

of Nostoc calcicola, Mostoc muscorum (IBU-JIO), Nostoc commune, Nostoc 

ellipsosporum, Hostoc punctiforme and Nostoc pruniforme (ISU-J12) four 

days old were inoculated with one drop of the filtrate. The algae were 

grown at to 4$0 foot-candles of illumination in Laaaroff I liquid 

medium except Nostoc pruniforme (ISU-J12) which was grown in soil water 

medium. All cultures were fixed in osmium tetroxide after 27 days and 

examined. Untreated controls were fixed for each of the cultures. 

Electron Microscopy 

Material was fixed in four ways, details of each procedure are 

given in Appendix A. Most material was fixed in 1 percent osmium tetroxide 

buffered with veronal acetate as described by Kellenberger, Ryter and 

Sechaud (1958) and modified by Pankratz and Bowen (1963). Three percent 

gluteraldehyde (Sabatini, Bensch and Barrnett, I965) both with and without 

post osmification (Pankratz and Bowen, I963) and k percent potassium 

permanganate (Luft, 195^; Mollenhauer, 1959) were also used. 
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Dehydration was routinely accomplished in increasing concentrations 

of ethanol (see Appendix A). Epon was used as the embedding medium 

(Luft, 1961; see Appendix A). 

Some of the material of each collection, while soaking in 100 

percent Epon at room temperature, was placed on a slide and pressed out 

under a cover slip. The slide was then incubated in the 6o°C oven for 

2k hours making the mount permement and available for future reference. 

Sections were cut with a DuPont diamond knife on an LKB ultra-

microtome. The sections, 4o to 90 thick, were picked up on clean k)0 

mesh copper grids. Aqueous uranyl acetate (Watson, 1958a), lead salts 

(Millonig, 196I; Karnovsky, 196I; Watson, 1958b) and methanol uranyl 

acetate (stempak and Ward, 1964) were used to stain the sections. 

Specimens were observed using an RCA EMU-5F electron microscope 

operated at 50 KV using a 30 to 40 p objective aperature. The micrographs 

were taken at machine magnifications of 2,000 to 24,000 X on Kodak 

contrast plates. Development was carried out in Kodak; D-I9 developer for 

3 to 4 minutes. Negatives were routinely enlarged 2.8 to 4.2 times on 

Kodak F-3, F-4 or F-5 Kodabromide paper. 

Enzyme Digestion 

After fixation in gluteraldehyde for 1 hour (Appendix A, Schedule II ) 

cells were placed in a number of changes of O.IM phosphate buffer pH 7«2 



over a 15 hour period. This fixation was followed by 3 changes of 5 

minutes each in O.OIN hydrochloric acid and incubation at 37°C for 11 

hours in a O.3 percent solution of pepsin (Worthington 2X crystallized) 

in O.OIN hydrochloric acid. ' Material was removed after 30 minutes, 1 

hour, 2 hours, 4 hours and 11 hours. Control material was placed in 

O.OIE hydrochloric acid with another control being left in the O.IM 

phosphate buffer. When material was removed from the enzyme solution or 

the O.OIH hydrochloric acid it was rinsed in 3 changes of 5 minutes each 

with the O.IM phosphate buffer. The material was stored overnight at 

4°C and post-fixed in osmium tetroxide for 3 hours (Appendix A, Schedule l). 

Grids bearing sections of cells fixed in 3 percent gluteraldehyde for 

12 hours (Appendix A, Schedule II) with no post-osmification were digested 

in a 0.3 percent solution of pepsin (Worthington 2X crystallized) in O.OIN 

hydrochloric acid for periods of time up to 24 hours. Controls were placed 

in O.OIN hydrochloric acid without the enzyme for the same time periods. 

Some grids bearing sections of cells fixed in 3 percent gluteraldehyde 

for 12 hours (Appendix A, Schedule II) with no post-osmification were 

digested in a 0.1 percent aqueous solution of ribonuclease (Worthington 

5X crystallized) at pH 6.8 (Jensen, 19^2) for varying periods of time up 

to 2k- hours. Grids with comparable sections were placed in distilled 

water, in which the pH had been adjusted to 6.8, for the same time periods 

and served as controls. 
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OBSERVATIONS AND DISCUSSION 

General Observations and Discussion 

The usual components of t# "blue-green algal cell reported in the 

literature (Lefort, 1960a; Ris and Singh, I96I; Pankratz and Bowen, I965) 

were present in all collections studied with only a few exceptions 

(Figure l). The normal components include structured granules, a granules, 

P granules, thylakoids, ribosomes, polyhederal bodies and nucleoplasm 

(Figures 1, 12, I3, 15 and 18), Observations were made on material fixed 

for 3 hours with osmium tetroxide unless otherwise indicated. 

Cell Wall 

In general the wall structure of the blue-green algae studied was in 

accord with the observations cf several other workers (Ris and Singh, 

1961 ; Pankratz and Bowen, I963). The cell wall is composed of an outer 

sheath and a bipartite inner layer consisting of an outer membrane and an 

inner investment immediately outside the plasma membrane (Ris and Singh, 

1961). 

The sheaths of many of the blue-green algae examined contain fibers 

4 to 5 in diameter and of undetermined length (Figures 1, 32, 4-3, 57 

and 73)' Structure in the sheath of Nostoc carneutn was more apparent in 

electron micrographs of material fixed with gluteraldehyde-osmium 

tetroxide (Appendix A, Schedule II ) or by osmium tetroxide (Appendix A, 



Figure 1. A chart showing the structures present in the blue-green 
algae examined. 
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Schedule l) when this latter fixation was followed hy rapid dehydration 

consisting of a quick rinse in 50 percent ethanol after fixation and then 

by immediate immersion in 100 percent ethanol. Both methods revealed 

fibrillar layers 0.2 to 0.7 thick, each layer separated from the next 

by an osmiophilic layer about 0.1 p, thick (Figures 3 and It-). This 

organization of the sheath was only occasionally observed in material 

fixed in osmium tetroxide and dehydrated in the usual manner. 

The layering present in the sheath of Nostoc carneum suggests that 

sheath material is laid down in a cyclic manner. One type of sheath 

component may be produced for a period followed by the deposition of a 

new component for a shorter period, resulting in the alternate layering 

observed. An alternative hypothesis is that the sheath is chemically 

homogeneous throughout but that the layering represents differential rates 

of sheath deposition which in turn results in differences in density. 

The outer membrane, very close to or touching the inner investment, 

is from 8 to l4 mjj. wide and has the tripartite appearance of a unit 

membrane (Figures 8, l6 and 25). However, unlike the usual unit membranes 

it is generally poorly preserved after potassium permanganate fixation 

(Figures 9 and l4). Previous workers have made similar observations 

(Ris and Singh, I96L; Pankratz and Bowen, 196$). In most forms the 

outer membrane exhibits wave-like undulations (Figures 8, 18 and 25). 

Echlin (1963) has observed that in Anacystis nidulans these undulations 
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may be quite pronounced and project 50 mji into the sheath. 

In addition to the regular undulations in the outer membrane, 

scattered long projections were observed in Uostoc pruniforme (lSU-<J12), 

Uostoc muscorum (iSU-Jl?), Anabaena spiroides, Anabaena sp., and 

Aphanizomenon flos-aquae. These "papillae" are from 30 to 45 m|i wide and 

30 to 150 mp long (Figures 5, 6, 7, 44, and 6l). In Anabaena spiroides 

the papillae consist of a short stalk and head which appears to have 

internal structure (Figure 7)* The longer, 150 mji, papillae in 

Aphanizomenon flos-aquae are circular in profile, about 45 mn in diameter 

and contain a dense axial element, about 7 mn in diameter (Figures 6 and 

6l). 

It is interesting to speculate on the possible function of these 

papillae. They were present in large numbers on cells of Aphanizomenon 

flos-a^aae. On occasion some cells of Nostoe pruniforme (ISU-J12) 

possessed them in large number but other cells in the same culture had 

few or none present. Colonies of Aphanizomenon flos-aquae exhibit 

movement in which filaments in one part of the colony move in one direction 

while those in another part of the colony are moving in the opposite 

direction. After a period of time this movement is reversed. It is 

possible that these projections have a role in the movement of the 

trichome within the sheath. The occasional appearance of large numbers of 

these projections in Nostoc pruniforme (ISU-J12) could be associated with 



56 

îiormogonia formation. When these projections are observed in large 

nimbers on a particular tri chôme it may have been in the motile stage 

TShen fixed and when few or none of these papillae are observed the trichome 

may be in the non-motile form in a colony. In Oscillatoria princeps 

no projections were observed despite the fact that filaments moved in a 

gliding manner. This was the only species of Oscillatoria investigated 

and pores were observed while no pores were observed in any of the other 

blue-greens studied. Bodd (i960) has suggested that movement in the 

Oscillatoria may be due to the secretion of sheath material which moves the 

trichome out of the sheath. Pankratz and Bowen (1965) have discussed the 

possible role of pores in producing the sheath material. 

It is therefore possible that at least two methods of producing 

movement are present in the blue-greens, one involving papillae and 

another involving pores and the secretion of mucilage. 

The inner investment is generally less than I5 mp thick but actual 

thickness in mature walls depends on the species (Figure l). The inner 

investment is poorly preserved by potassium permanganate fixation and is 

separated from the plasma membrane by a 30 to 60 m|a electron transparent 

space in all the species studied (Figures l^i-, 15, I8, 25 and 61). The 

wall of Oscillatoria princeps, however, was unusually thick, with an 

inner investment averaging 400 m^ wide (Figures 8 and 9). In this species 

there are pits containing cytoplasm projecting almost through the thick 
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investment. However, a thin layer of inner investment, at least 7 mp 

thick, was always observed at the distal end of the pit. The pits are 

from 80 to 120 m|i in diameter, roughly circular in cross section and 

range up to k)0 m|i deep (Figures 8, 9, 10 and 11). The pits are arranged 

in rows parallel and perpendicular to the crosswalls with an occasional 

pit displaced (Figures 10 and 11). The distance between centers of pits 

in these rows ranges between 200 and 200 m|i. The electron-density of 

the inner investment is lowest in the immediate vicinity of the pits 

(Figure 10). 

Shinke and Ueda (195^) and Ris and Singh (1961) described the wall 

structure of Oscillatoria princeps and both groups interpreted the pits 

in the inner investment as pores. Examination of their published micro

graphs reveals much plasmolysis and consequent withdrawal of protoplasm 

from the interior of the pits. The plasmolysis and the fact that the^ 

majority of their sections were made in planes more or less oblique to 

the longitudinal cell walls may account for their observations. 

Rows of fine pores were observed adjacent to the crosswalls in the 

inner investment of Oscillatoria princeps but not in any of the other 

blue-greens studied. The rows are double, each pore is about 15 m|i in 

diameter and the pores are spaced about l4 to 28 mp. apart (Figures 8 and 

11). Previous reports of pores have been made by Drawert and Metzner 

(1956, 1958) in Cylindrospermum, Microcoleus and Oscillatoria and by 
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Pankratz and Bowen (1965) in Symploca muscorum. 

The cell walls of gram-negative bacteria appear to have the same 

morphological organization as the cell walls of the blue-green algae. 

In these bacteria the cell wall consists of an outer membrane and a 

mucopolymer layer immediately outside of the plasma membrane (Claus and 

Roth, 1964). The mucopolymer is a macromolecule composed of muramic 

acid, glucoseamine, alanine, glutamic acid and diaminopimelic acid 

(stent, 1963). Lysozyme removes this mucopolymer layer in bacteria 

producing a spheroplast in the case of gram-negative bacteria (Stent, 

1965). The mucopolymer layer in blue-green algae can also be removed by 

lysozyme (Crespi, Mandivelle and Katz, 1962). Based on the observation 

that the mucopolymer layer of the gram-negative bacterial wall is poorly 

preserved by osmium fixation (for a recent discussion of this problem 

see Claus and Roth, 1964) Frank, Lefort and Martin (1962a) concluded 

that this component of the blue-green algal cell would also be poorly 

preserved. However, it is entirely possible that the inner investment 

of blue-green algal wall may contain the mucopolymer and that its rela

tively good preservation after osmium fixation is due to other components 

not present in the mucopolymer layer of the bacterial wall. The 

production of spheroplasts by lysozyme in blue-green algae would seem 

unlikely if the relatively thick inner investment remained intact. 
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Thylakoids, Membranes and Membrane-like Inclusions 

The plasma membrane of all the species examined is, as previously-

reported (Lefort, 1960b}, a unit membrane 8 m|i thick and consists of two 

outer electron-dense layers and a middle electron transparent layer 

(Figure 19). An infolding of the plasma membrane was occasionally 

observed in some cells of Nostoc calcicola, Hostoc commune and Nostoc 

piinctiforme, particularly in older cultures (Figures 12 and I5). These 

usually appeared as continuities between the plasma membrane and the 

thylakoidal membranes as described in Symploca muscorum by Pankratz and 

Bowen (1963}» Similar but much more elaborate membrane complexes were 

observed in cells of Uostoc coeruleum, Apahnizomenon flos-aguae and 

Anabaena spiroides (Figures T and 37)# Complexes of this sort ranging up 

to 200 m|i in diameter were especially frequent in Mostoc coeruleum. 

Although actual connection to the plasma membrane was not demonstrable 

in every section, the fact that these structures were always located near 

the plasma membrane and that several sets of serial sections showed such 

connection, strongly suggests that these are elaborations of the plasma 

membrane. 

These structures resemble the lamellasomes described by Echlin (ipA) 

in Anacystis nidulans and as he pointed out they are similar to the bac

terial mesosomes which are found primarily in the gram-positive bacteria. 

Bacterial mesosomes were considered reductive sites by Woutera !and Leene 
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(1964). Cole (1964) has proposed that mesosomes may have a role in the 

partition of the replicated DM during bacterial cell division. The 

fact that they are regularly found in only a few species of blue-green 

algae argues against their having the latter function in this group. 

Photosynthetic lamellar units, the thylakoids, topologically consist

ing of separate closed membranous sacs, were found in all cells studied. 

Depending both upon the species and the conditions of culture, the 

thylakoids exhibited considerable variation in morphology (Figure l). 

One variation involved the degree of flattening of the individual thylakoids. 

At one extreme, flattening is so complete that the appressed unit membranes 

formed a "myelin-like" configuration where in cross-section the adjacent 

electron-dense layers of the two unit membranes appear to fuse into a 

single wider electron-dense zone (Figures 19, 20 and $1). More commonly, 

the thylakoidal membranes are not tightly appressed. Although these 

elements are very flattened, a small electron-transparent intrathylakoidal 

zone is visible (Figures 12, 18 and $l). In some of the cells of certain 

species this zone in some thylakoids may be more or less expanded forming 

fairly large intrathylakoidal vesicles as described by Pankratz and 

Bowen (1963)(Figures 5 and 44). Examples of this whole range of 

thylakoidal flattening may occasionally be found in the same cell 

(Figure 44). It seems likely that these variations are dependent 

on the physiological state of the cells. 
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ThylaJtoids in cells of Aphanizomenon flos-aquae are characteristi

cally tremendously expanded. In this species one. half or more of the 

cell volume regularly consists of transparent intrathylakoidal space, 

giving the cells a highly vacuolate appearance (Figures 6l and 62). 

Flattened thylakoids "were rarely observed. Similar but less extreme 

thylakoidal expansion was observed in some cells of Gleotrichia pisum 

(ISU-J20), Gleotrichia pisum (lSU-J2l) and Anabaena spiroides (Figures 

50, 56 and 47) but other cells in the same colonies had flattened thyla

koids. It seems likely that this extreme dialation of thylakoids may be 

related to the planktonic habit. However, Qscillatoria princeps (Figure 

8) and Microcystis sp. (Bowen^) may be planktonic and do not show such 

thylakoidal expansion. 

In all species studied thylakoids tended to be independent of each 

other unlike other algae and higher plants. An exception to this was 

noted in Calothrix parietina where in several cells a stacked arrangement 

was observed (Figure 20). Although this is considered to be an abnormal 

situation it does show that unlike the lamellar grana of higher plants a 

distinct interthylakoidal space of about 3 mn persists. This observa

tion suggests a basic difference in the outer and inner protein layers of 

1 Bowen, C. C. Department of Botany, Iowa State University, Ames, Iowa. 
Cytology of blue-green algae. Personal Communication. I965. 
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the thylàkoid membranes, perhaps due to particles of some sort on the 

outer surface of the membrane which physically prevent them from coming 

into direct contact with each other. One observes the consequent myelin-

like organization of adjacent thylakoids. 

In old cultures of Hostoc commane and Nostoc calcicola the thylakoids 

became contorted and fold out producing a branched appearance which can 

be very regular (Figures l4 and 19). This arrangement has been observed 

in Wostoc spp. by Menke (I96I) and Wildon and Mercer (1963a), as well as 

Symploca muscorum recovering from high-light-induced chlorosis (Bowen and 

Pankratz, 190). 

Thylakoids assume elaborate patterns in some stages of heterocyst 

differentiation in Anabaena spiroides and Nostoc linckia (Figures 21, 22, 

23 and 24). Studies of heterocysts carried out by Chapman and 8alton 

(1962) in Anabaena cylindrica and by Wildon and Mercer (1963b) in 

Anabaena sp., Anabaena cylindrica, Fischerella muscicola, Kostoc sp. 

and Nostoc muscoum failed to show such patterns. However, it is possible 

that heterocyst development proceeds differently in different species. 

Hundreds of heterocysts were observed in the several species of Nostoc 

examined but the unusual thylakoidal morphology was observed only in 

heterocysts of Mostoc linckia. 

Centrally located inclusions presenting a roughly circular profile 

varying from 200 to 400 mji in diameter and surrounded by a unit membrane 



k3 

and containing moderately osmiophilic material were observed in a number 

of the blue-greens examined (Figures 13, 1^ and 15). Similar structures 

in Microcystis sp. are formed by the expansion of the end of a thylakoid 

and have been called intrathylakoidal granules (Bowen^). The inclusions 

observed in this study have not been observed in connection to the 

thylakoids, but are considered to be identical. This kind of inclusion, 

although not described by the authors, can be seen in published micro

graphs of Uostoc muscorum by Chapman and Salton (1962). 

The intrathylakoidal granule is an electron-dense crystalline material 

in Nostoc muscorum (ISU-JI7), Nostoc ellipsosporum and Nostoc muscorum 

(ISU-JIO) (Figures 16 and 17). The crystals are needle-shaped and vary 

in dimension from 5 to 15 m(i wide and up to mp. long. Unlike the 

intrathylakoidal granules which tend to be centrally located these 

crystalline inclusions generally are located peripherally. The number of 

intrathylakoidal inclusions per cell was quite variable but a few profiles 

of these were observed in every cell. 

Unusual stacks of "membrane-like" structures were observed in 

Cylindrospermum sp. They ranged from 0.3 to 0.7 M- in their longest 

dimension and each consist of about 20 "membranes" lying parallel to one 

Bowen, C. C. Department of Botany, Iowa State University, Ames, 
Iowa. Cytology of blue-green algae. Personal Communication. 1965. 
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another but separated by a space of about 6 mn (Figure 25). Each 

individual "membrane" was about 8.5 mp. thick and had the tripartite 

appearance of a unit membrane. Only four of these previously unreported 

inclusions were observed in the hundreds of cells studied. 

While these "membranes" resemble those of the thylakoids they are 

not as electron-dense. Unlike thylakoids each individual "membrane" 

in these unusual, inclusions does not form a more or less flattened 

closed vesicle but rather forms a simple disc with the "membrane" 

apparently terminating at the disc's edge. These were not observed in 

potassium permanganate fixed Gylindrospermum sp. cells from the same 

collection. The low frequency of their occurrence, however, could 

account for their not being seen. 

Unusual "spherical membrane" systems were observed in all vegetative 

cells and heterocysts of Hostoc linckia with up to $0 such structures 

observed in a section of a single cell (Figures 26 and 27). They are 

from 0.2 to 0.6 p. in diameter, and must consist of at least 3 long 

but relatively narrow membranous sheets each about 9 thick and 

resembling a unit membrane. Topologically these long thin "membranes" 

must be wound in three dimensions around a common center to result in a 

spherical inclusion. The "membranes" appear to fuse to one another in 

many instances but the individual "membranes" are about 10 m|i apart and 

appear to branch (Figure 27). Wo "membranes" extend into the central 
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area of the sphere which is about 0.1 to 0.3 H in diameter. However, 

a granules, p granules and ribosomes are found in this zone. In a number 

of cases the spherical membrane systems appear to be fused to each other 

in which case the membranes of the outer partial spheres appear to end 

at the surface of the inner sphere (Figure 27). 

Unusual "scroll-like membrane systems" were observed in heterocysts 

of Gleotrichia pisum (ISU-J20) (Figures 28 and 29). These were 0.4 to 

0.9 # in diameter and up to 2 |i in length. In cross section these bodies 

were seen to be composed of an unbranched tripartite membrane 11.5 m|J. 

thick arranged in a spiral with 5 to 15 turns. The membranes are about 

150 m|i apart and like the previously described spherical membrane systems 

do not extend into the central zone, about 0.5 M- in diameter, where Oi 

granules, p granules, ribosomes and even occasional thylakoids occur. 

When these inclusions are sectioned longitudinally (Figure 29), it is 

apparent that the general shape is cylindrical with one membrane per 

inclusion arranged as in a scroll. The individual membranes are 

striking in appearance and quite different from membranes previously 

described because of the prominent and precisely defined central electron-

transparent zone 5«5 wide. The adjacent electron-dense zones or 

layers of the membrane are asymmetrical with the zone oriented to the 

outside of the inclusion 3«5 mh in width and the inner zone 2.5 mn wide. 

At the membrane "edges" at the ends of the cylinder and at the inner 
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and outer ends of the "scroll" the membranes simply terminate and there 

is no continuity of connection between the two electron dense zones of a 

single membrane. Eibosome-like particles, l6 m|_i in diameter, are regularly 

arranged between the membranes and appear to be in close contact with the 

innermost electron dense zone of the membrane (Figure 28). A number of 

these bodies are located in each heterocyst and up to 8 have been observed 

in a single section of one heterocyst. Observation of these heterocysts 

with the light microscope reveals light elongate areas scattered through

out the still green heterocysts. Perhaps these areas correspond to 

scroll-like membranous bodies because similar areas were not observed in 

vegetative cells. 

These unusual "membrane" systems are unique in that biological 

membranes, in general, have no ends or edges. The blue-green algae are 

a very ancient group of organisms and it is possible that these variations 

in cytology have evolved slowly and with great diversity. It is equally 

possible that some of these unusual membranes are evidences of infections 

by a virus, a symbiont or a commensal. There is really no evidence 

one way or the other and work involving cross infection techniques, 

enzymatic digestion and speration and chemical analysis of these 

components needs to be carried out. 
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Crystalloids 

Regions showing a high order of periodic structure with several 

different patterns of organization were observed with varying regularity 

in some species of blue-green algae (Figure l). They were located in 

the central part of the cell in some species and in the peripheral cyto

plasm in others but were always interthylakoidal. Those found in the 

central part of the cell were generally elongate in profile and were 

associated with the nucleoplasm and polyhederal bodies. Crystalloids 

found in the peripheral cytoplasm tended to be rectangular in profile. 

In general all crystalloids stained densely with uranyl acetate after 

osmium fixation. Preservation ranged from indifferent to poor with 

potassium permanganate fixation. 

The crystalloids termed "lamellar bodies" by Jensen and Bowen (1961) 

were again found in Nostoc pruniforme (iSU-Jll). This was the same 

material studied previously and had been maintained in culture at Iowa 

State University for over 4 years. Very similar structures were found in 

Nostoc carneum but not in any other Hostoc spp. including Nostoc 

pruniforme (ISU-J12). They were present in about 1 out of every 10 cells 

which were sectioned medially. 

The crystalloids in Nostoc pruniforme (ISU-Jll) were from 0.1 to 1 p. 

long and about I50 mp wide (Jensen and Bowen, I961). The electron-dense 

striations, at right angles to the longitudinal axis were k mn across 
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and spaced 15 to 30 mji apart (Figures 30 and 53)» In some material 

finer lines of the inclusion parallel to the long axis were observed 

between the striations (Figure 30). These lines were 2.8 m|i wide and 

5.6 m|i apart. The crystalloids were observed quite regularly with their 

ends in contact with polyhederal bodies (Figures 30 and 33). 

In Uostoc carneum the crystalloids were from 0.5 to 1 |i long and 

were 90 to iGo mji wide (Figures 31 and 3^). Like the crystalloids of 

Eostoc pruniforme (iSU-Jll) one or both ends of the crystalloids were 

often seen to be in contact with polyhederal bodies. These crystalloids 

thou^ similar in appearance to those in Nostoc pruniforme (ISU-Jll) 

had striations about 4 m|j. wide at right angles to the long axis, which 

were spaced from 10 to 15 mji apart (Figure 31) • Finer lines, between 

the striations and parallel to the long axis, were observed in some 

cases (Figure 31)» These lines 2 m|i wide were spaced about 3 apart. 

Variation in spacing in these crystalloids depends on how close 

the section plane is to the crystalloid axis. However, the difference 

in spacing between Nostoc pruniforme (ISU-Jll) and Nostoc carneum appears 

to be a valid difference. 

In Nostoc pruniforme (ISU-Jll) poorly defined organized areas, 

about 1 n across and roughly square in profile, were occasionally observed 

in the central part of the cell (Figure 35)» Striations about 3 nin wide 

and spaced about 20 mp. apart with similar striations crossing these at an 
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angle were observed within the organized area. 

Crystalloids in the peripheral cytoplasm were observed in Nostoc 

linckia, Nostoc coeruleum and Gleotrichia pisiun (ISU-J20). 

In Uostoc linckia the crystalloids, roughly square in profile, 

varied from TO to 800 mji in their longest dimension although one was 

observed as large as 1 by 2 ji. They were seen in about 1 out of every 

10 sections of cells examined which suggests that they were present in 

most cells. The crystalloids in profile exhibited electron-dense 

parallel striations 4 mn wide which were spaced 6 mp. on centers (Figures 

27 and 36). In some cases the crystalloid appeared compound and seemed 

to consist of several smaller crystalloids each with its parallel 

striations at a different angle (Figure 56). 

Crystalloids in ITostoc coeruleum were quite variable in size with 

the smallest being about 400 by WO mp. in profile and the largest TOO 

by 800 m|i in profile. They were observed in about 1 out of every 10 

sections of cells. Although somewhat variable in appearance, in profile 

these always exhibited dense striations 4 m|i wide spaced about 9 mp on 

centers. In some of these crystalloids the only striations were parallel, 

in others one set of parallel striations was crossed by a similar set of 

striations (Figures 37, 3^, 39, 67 and 68). 

In Gleotrichia pisum (ISU-J20) crystalloids of varied appearance 

were observed. Roughly square profiles with dense parallel striations, 
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4 mu wide, spaced about 6 mp apart on centers were and most frequently-

observed (Figure 4o). In some similar profiles striations were not 

clearly evident. Profiles about 500 by 700 mn were observed twice with 

a crosshatched appearance consisting of two sets of 7 mn electron dense 

parallel lines spaced 10 mn apart on centers which intersect with each 

other at right angles (Figure 4l). 

In general these crystalloids in Gleotrichia pisum (ISU-J20) were 

difficult to identify in the electron microscope because on the fluores

cent screen they were about the same size and had the same general 

density as polyhedral bodies. It was necessary to take micrographs to 

ascertain if one were observing a polyhedral body or a crystalloid. 

Because polyhedral bodies are found in large numbers in cells it is 

certain that crystalloids in this species were of more frequent occurrence 

than the 1 cell in 20 in which they were actually detected in the sections. 

It is of interest to compare the crystalloids observed in these 

blue-green algae with similar structures seen in other cells (Figure 2). 

The crystals described by Schnepf and Gezelius (1959) are similar 

in appearance and have about the same lattice spacing as the peripheral 

crystals reported here in Uostoc linckia and Nostoc coeruleum. The 

protein crystals described by Eoth and Porter (1964) are also similar in 

appearance and lattice spacing to the compound crystalloids observed in 

Uostoc coeruleum except that in the latter there is no surrounding 



Figure 2. A chart showing the location, composition and periodic 
spacing of some biological crystals. 



AUTHOR ORQAKISM OR TISSUE 

Gezelius (1959) 
Schnepf (1964) 

Tandler and Shipkey 
(1964) 
Roth and Porter (1964) 

Thornton and Thimann 
(1964) 

Dictyostelium 
Lathraea 

Warthin's tumor 

Aedes aegypti L. 

Avena sativa 

Acer rubrum 

Cronshaw (1964) 

Pujita (1964) 

Crawley (1964) 

Eucalyptus 
camaldulensis 

Avena sativa 

Rat 

Acetabularia 

Stuart, Fogh and Plager PL cells infected 
(i960) with virus 
Dales and Franklin L cells infected 
(1962) with virus 
Strunk (1959) Midge 

LOCATION COMPOSITION SPACING 

Cytoplasm Unknown 
Cytoplasm of leaf Unknown 
parenchyma cells 

Vesicle in cytoplasm Unknown 

Vesicle in cytoplasm Protein 
of oocyte 

Vesicles in cytoplasm Unknown 
of coleoptile cells 

Vesicles in cytoplasm Unknown 
of phloem parenchyma 
cells 

Vesicles in cytoplasm Unknown 
of cultured cells 

Vesicles in cytoplasm Unknown 
of coleoptile cells 

Mitochondria in thy- Unknown 
roid follicular cells 

Vacuole 

9 inp. 
7 mp. 

6 to 9 mn 

11 mn 

12 to 16 mjj. 

20 mp. 

16. 6 m^i 

15 mia 

10 mu 

Polymerized 3- 20 to W mji 
sub. deriva
tive of indole 

Cytoplasm 

Cytoplasm 

Golgi of midgut 
gland cells 

Virus 

Virus 

Protein 

17 mji, dense 
granules 
16 to 25 m(j. 
dense granules 
9 mjji dense 
granules 



AUTHOR ORGANISM OR TISSUE 

Engelbrecht and Esau 
(1963) 
Hannay and Fitz-James 
(1955) 
Schwartz and Zinder 
(1965) 

Beet infected with 
beet yellows virus 

Bacillus 
thurengiensis 

Escherichia coli 

Figure 2 (Continued) 

LOCATION COMPOSITION . SPACING 

Chloroplast Virus? 7 znp. 

Cytoplasm Protein 35 mii 

Cytoplasm of cells Virus 17 mn dense 
infected with granules 
bacteriophage f2 
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membrane. The crosshatched crystals observed In Gleotrichia pi sum 

(ISU-J20) are identical in appearance and lattice spacing to those 

observed by Tandler and Shipkey (1964) except the latter are membrane 

limited. 

The crystalloids in Gleotrichia pisum (lSU-J20) with parallel 

striations, although not membrane limited, are similar in appearance but 

with a different spacing than crystals observed in vesicles by Cronshaw 

{196k) and Thornton and Thimann (1964). Thornton and Thimann (1964) 

suggest the crystals they observed may be involved in the phototropic 

response while Cronshaw (1964) postulates that such membrane limited 

crystals are storage organelles, lysosomes, and contain hydrolytic 

enzymes since lysosomes of rat liver cells contained similar crystals 

(DeDuve, I960). 

Viruses are known to form intracellular crystalline aggregates, 

however these generally appear in profile as a series of dense granules 

each about 10 percent smaller thain the virus particle itself. In most 

cases the spacing is about 20 mp, on centers (Stuart, Fogh and Plager, 

I96O; Dales and Franklin, 1962). All crystals which appear granular, 

however, are not viruses. Strunk (l959) reported a protein crystal rich 

in iron from the Golgi of the midgut gland of a midge which was composed 

of 6 mil granules spaced 9 mn apart. The eye spot of Euglena is also 

composed of 100 to $00 mn granules which are tightly packed in a hexagonal 
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pattern giving the appearance of a crystal (Wolken, 1956). Engelbrecht 

and Esau (1963) observed a crosshatched crystal with a 7 mp, spacing in 

chloroplasts of beets infected with beet yellows virus. These resemble 

the crystalloids observed in Nostoc coeruleum as well as the crosshatched 

crystalloid in Gleotrichia pi sum (ISU-J20). 

Sections of cells of Escherichia coli infected with the bacteriophage 

T2 do not exhibit crystalloid arrays but infected cells show an increase 

in the number of 2 m|i fibers observed in the nucleoplasm of uninfected 

cells. The phage heads only become visible later (Kellenberger, Eyter 

and Sechaud, 1958). However, more recently Schwartz and Zinder (1965) 

have described a crystalline array composed of dense granules spaced 1? mp. 

apart in Escherichia coli cells 50 minutes after infection with the MA 

containing bacteriophage f2. 

Preliminary efforts to infect cultures of Nostoc calcicola, Nostoc 

muscorum (ISU-JIO), Nostoc commune, Uostoc ellipsosporum, Eostoc puncti-

forme and Eostoc pruniforme (ISU-J12) in which crystalloids were not 

observed with the crystalloid found in ITostoc pruniforme (iSU-Jll) were 

unsuccessful. 

The composition and function of these inclusions will have to be 

solved using separation techniques followed by chemical analysis or by 

new methods in cytochemical analysis at the electron microscope level. 
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Filaments 

Five different types of unusual filamentous elements were observed 

in the cytoplasm of Nostoc pruniforme (ISU-JI2}, Eostoc priiniforme 

(iSU-Jll), Cylindrospermum sp., Uostoc mascorum (ISU-JI5) and Gleotrichia 

pi sum (ISU-J21) respectively. 

In Fostoc muscorum CISU-JI5) the filaments were in packets roughly 

parallel to one another and profiles of such packets ranged up to 0.4 |i 

across (Figure 4$). These fil^ents were about 0.5 |i long and 7 mp, in 

diameter and were located in the interthylakoidal spaces of the cell, 

generally near the cell wall. Observed in about 1 out of every 20 

sections of cells examined, these seemed to be more common in older 

cultures. 

Filaments about 5 to 7 mp in diameter and of undetermined length 

were observed in bundles in Cylindrospermum sp. (Figures 48 and 49). 

Profiles of some filament-bundles covered areas as large as 2 by 0.4 p 

but most were smaller. 

In Nostoc pruniforme (ISU-JI2) an unusual arrangement of filaments in 

association with a plate-like membranous structure was regularly observed 

(Figures 44, 45^ 46 and 47). The plates were always located close to 

the crosswall and usually parallel to it. Roughly circular, about 1.2 [i 

in diameter and 19 mn thick, these plates in cross section appeared to 

consist of 3 layers, 2 outer electron-dense layers about 7 iHM. thick and 
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an inner more electron-transparent layer about 5 m(i thick (Figure 4^). 

Filaments about l4 mp. in diameter and from to mp in length project 

out from the plate at right angles. In cross section these filaments are 

spaced 7 mn apart in a repeating hexagonal pattern with an occasional 

filament missing (Figures 4$ and 4?). Each filamentous element appears 

to have an electron-transparent inner core about 7 m^ in diameter which 

is surrounded by an electron-dense layer 5*5 mu thick. With potassium 

permanganate fixation only the plate is preserved (Figure 46). The plate 

and filament arrangement was observed in almost every cell when the section 

was cut in a median longitudinal plane. 

Unusual arrays of filaments in Gleotrichia pisum (ISU-J21) more or 

less completely fill certain interthylakoidal regions which range in 

size to over 1 n in length (Figures 50, 51 and 52). In longitudinal 

section groups of parallel filaments l4o to 26o mp. across are seen within 

each large complex. The filament groups are separated by a thin layer 

of ribosome containing cytoplasm about 20 mp, across (Figures 50 and 51)* 

Five to 15 groups of filaments are seen in each profile of a large 

inclusion. The individual filaments, are arranged roughly in rows in 

each group, were 8.4 mp in diameter and consist of a dense outer layer 

2.8 mjjL across and a lighter 2.8 mp. central portion (Figure 52). A 

central dark strand 1.5 mp in diameter is observed in the center of 

filaments cut in cross section (Figure 52). These inclusions were 
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observed in about 1 out of every 10 sections of cells examined. Even 

more regularly spaced filaments of quite different appearance are 

frequently found in association with the former filaments. These 15 mu 

diameter filaments are quite electron dense, spaced about l^- mp. apart on 

centers and arranged in a repeating hexagonal pattern (Figures 50 and 52). 

Such aggregates typically occupy areas about 0.1 |a. to 0.5 n across in 

profile. 

Occasionally sections of Fostoc muscorum (ISU-J15) and Eostoc 

pruniforme (iSU-Jll) show roughly circular profiles of tubular-like 

systems up to 0.4 p. in diameter (Figures.53; 5^ and 55). They consist 

of electron-transparent elongate elements 7 m^ in diameter and are 

separated from one another by common 7 mp electron dense walls. The 

individual elements are arranged in 3 dimensional whorled and convoluted 

patterns. Recently Gunning (1965) has described similar structures in 

the chloroplasts of Avena sativa. He calls them "stromacenters" and 

believes they are aggregates of fibers 8.5 mp. in diameter and of 

undetermined length, 

ITo filamentous components have been previously described in 

prokaryotic cells except for the bacterial flagella. However, in 

eukaryotic cells microtubular filaments l4 to 25 mp. in diameter have 

been observed in connection with the mitotic apparatus and in the 

cytoplasm between divisions (Ledbetter and Porter, I963; De-The, 1964). 
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A variety of functions have been suggested for these filaments some of 

which are chromosome movement, involvement in cytoplasmic streaming and 

cell movement, deposition of cell wall materials and maintenance of cell 

shape (Ledbetter and Porter, I965; De-The, 1964). Filamentous material 

with a diameter of about 7 mji has been reported in the cytoplasm of 

mononuclear phagocytes (DePetris, Karlsbad and Pernis, I962), 

The function of filaments seen in blue-green algae which similarly 

range from 5 to I5 mfi in diameter is not clear. How fundamental are the 

differences both between the varied filamentous structures seen in blue-

green algae and between these and similar structures in higher cells? 

If the filaments in blue-green algae functioned in the equational 

division of the nucleoplasm, movement, wall deposition or maintenance 

of cell shape one would expect them to be generally present in all cells 

of blue-green algae. The position of the unusual plate-filament 

arrangement in Nostoc pruniforme (ISU-J12) at the crosswalls of adjacent 

cells suggests that they may have a function in cell division. However, 

other species do not possess such structures. Nostoc pruniforme 

(ISU-JI2) grows fair in soil water media and grows poorly or not at all 

in other media tried. It is possible that the plate-filament arrange

ment is some sort of intracellular parasite. 
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Other Inclusions 

In 1 out of every 100 cells of Ebstoc muscorum (ISU-JI5) examined, 

the intrathylakoidal spaces contained a cluster of 10 or more spheres 

(Figure k2). Each sphere is about 20 m^ in diameter with an outer 5 mp. 

dense layer. 

Rosette-like inclusions 85 to 90 mja in diameter were observed in 

Gleotrichia pisum (ISU-J20) (Figure 56). In sections through the centers 

of these inclusions they appear in profile to be composed of a round 

central 50 m|i element surrounded by 5 round less electron-dense 30 m|a 

elements (Figure 56). These structures are interpreted as being 

aggregates of eight, probably similar, spherical elements, one being in 

the center and seven packed around it. The individual spheres closely 

resemble the spherical inclusions just described in Nostoc muscorum 

(I8U-JI5). The relative electron-dense appearance of the center sphere 

may simply be due to the fact that superimposed on it are profiles of 

the spheres above and below it in the section. These rosette-like 

elements appear to be present in all cells with at least a few being 

observed in every intrathylakoidal space. Careful study of cells of 

Gleotrichia pisum (ISU-JSO) in a collection made in August, 19^4, from 

Little Wall Lake, did not reveal these inclusions. However, in collections 

made in September, I963, and October, 1964, from the same area these 

inclusions were observed in large numbers. 
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In Nostoc carneum granular areas of medium electron-density and with 

a suggestion of about a 17 my periodicity were observed in the peripheral 

cytoplasm between the thylakoids (Figure 52). In profile these areas 

covered areas up to 0.5 by 1 |a. 

Spherical bodies from 0.7 to 1 fi in diameter with at least two 

different components were regularly observed in cells of Gleotrichia 

pisum (lSU-J2l) (Figure 57)» In profiles of these medium electron-dense, 

slightly granular, inclusions less dense circular areas up to 28o m|i in 

diameter can be seen. These lighter regions appear to be filled with 

highly convoluted filamentous elements, about 15 mp. in diameter. These 

interthylakoidal bodies are present in about 1 out of every 5 sections of 

cells examined. 

It is possible that the rosettes in Gleotrichia pi sum (lSU-J20) 

and the spherical structures in Nostoc muscormti (ISU-JI5) represent viral 

inclusions. Rosettes are in the size range reported for intracellular 

bacteriophage heads (50 x 70 mfi) (Kellenberger, Eyter and Sechaud, 1958) 

while the spherical inclusions in Nostoc muscorum (ISU-JI5) are somewhat 

smaller. 

The frequency of occurrence of the granular areas in Uostoc carneum 

and the spherical inclusion in Gleotrichia pi sum (ISU-J21) suggests they 

may be storage products. The large granules observed in Gleotrichia pisum 

(ISU-J21) should serve as a reminder to cytologists that one cannot 
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assume that the largest granules, visible in blue-green algae cells with 

the light microscope, always represent the cyanophycean granules. 

Gas Vacuoles 

In control cells of Aphanizomenon flos-aquae, gas vacuoles are visible 

in the light microscope (Figure 58), In electron micrographs of fixed 

material, ordered parallel arrays of electron-transparent cylindrical 

vesicles are visible in interthylakoidal regions of the cells (Figure 61). 

Individual vesicles are from 0.1 to 1 ̂  in length and about 75 in 

diameter, have conical ends, and are bounded by a membrane which appears 

in profile as a single electron-dense line 2 m|j, wide (Figures 6l and 63). 

Cells of Aphani2omenon flos-aquae that are examined shortly after 

being subjected to pressure have a 28 percent smaller volume than they 

have prior to treatment (Figure 59)» In these cells no gas vacuoles are 

visible under the light microscope (Figure 59)* After pressure was 

applied the colonies sank to the bottom of the container and changed from 

light green to dark green. The arrays of electron-transparent vesicles 

seen in electron micrographs of control material are conspicuously absent 

in cells fixed immediately after pressure treatment (Figures 62 and 6h), 

Instead, many short membranous elements, each 6 mp. wide and 200 m|i or 

more in length and resembling a unit membrane, are seen in the regions 

of the treated cells where vesicles appeared in control cells (Figures 
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62 and 6k), 

Gas vacuoles are visible in the light microscope after 9 hours of 

recovery and are extensive after 24 hours of recovery from pressure 

treatment. Electron micrographs of cells allowed to recover for 9 hours 

show some scattered electron-transparent vesicles in the locality of the 

6 m|i elements. Cells allowed to recover for 2k hours show fairly 

extensive arrays of such vesicles (Figure 65). Control material from 

each time period possess the electron-transparent vesicles. 

Cells of Nostoc coeruleum and Nostoc pruniforme (iSU-Jll) which have 

gas vacuoles present when examined in the light microscope also have the 

scattered electron-transparent vesicles when examined "with the electron 

microscope (Figures 39, 67 and 68). Cells of these two species which 

do not have gas vacuoles in the light microscope also do not possess 

the electron-transparent areas when examined with the electron microscope 

(Figure I5). Unlike usual membranes the membranes of the gas vacuoles 

are not preserved by potassixim permanganate fixation (Figures $8 and 66). 

From these observations it is concluded that the aggregates of 

electron-transparent vesicles observed in electron micrographs represent 

the gas vacuoles observed by light microscopists (Bowen and Jensen, I965). 

It is further concluded that each vesicle, a "gas vesicle", can somehow 

collect a gas and prevent its diffusion into the cytoplasm and that these 

gas vesicles can reversibly collapse and expand. The membranes making up 
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the gas vesicles (about 2 m|a thick) have a smaller thickness than any 

membrane reported in biological material to date. 

1 
Recently, Stanier has shown that similar vesicles are present in 

Pelodictyon (a green bacterim) and Thiodictyon elegans (a purple sulfur 

bacterium). These organisms also possess gas vacuoles when examined with 

the light microscope. 

Enzyme Digestion 

In preliminary efforts to characterize some of the components of 

ïïostoc pruniforme (iSU-JU) cells were treated with several enzymes. 

In material that was fixed in gluteraldehyde (Appendix A, Schedule II), 

sectioned and digested with, pepsin for 24 hours the only cell components 

showing significant change were the structured granules (Figure 69). 

In the absence of osmium tetroxide fixation the centers of structured 

granules in control cells appear poorly preserved and suggest poor 

infiltration of the embedment, although they show some relatively 

electron-dense peripheral regions (Figure 70). The structured appearance 

of these granules after osmium tetroxide fixation was not evident after 

gluteraldehyde fixation. In sections treated with pepsin structured 

Stanier, Germaine. Department of Bacteriology, University of 
California, Berkeley, California. Discussions on the cytology of bacteria. 
Personal Communication. I965. 
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granules did not show the electron-density observed in controls. It 

is difficult to know how much weight must be given to the fact that other 

structures in the cell such as polyhedral bodies were not affected by 

this pepsin treatment. The protein components of most of the cell may 

well have been protected from enzyme attack by the surrounding epoxy 

embedment. The structured granules on the other hand, appear poorly 

infiltrated and hence exposed to enzyme attack. This may account for the 

fact that preliminary attempts to treat these cells with ribonuclease 

did not result in removal of ribosomes. Fuhs (1963) reported that 

material fixed in formaldehyde, embedded in epoxy resin, sectioned 

and then exposed to enzymes was not digested. However, Giesy (1964) 

succeeded in removing the a granules in material which was fixed in osmium 

tetroxide and embedded in an Araldite-Epon mixture. He treated sections 

with hydrogen peroxide, hydrochloric acid and pepsin which resulted in 

removal of the a granules. 

In material fixed for 1 hour in gluteraldehyde and then digested 

in pepsin before embedding the structured granules were essentially 

removed after 4 hours of digestion except for small, relatively electron-

transparent remnants (Figure 72). In control material, treated with O.OIN 

hydrochloric acid but without the enzyme, the structured granules were also 

much affected. Some relatively electron-dense fragments and a fibrous 

residue can still be seen (Figure 7l). Tissue which remained in O.IM 
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phosphate buffer at pH 7.2 for 4 hours showed relatively well preserved 

structured granules (Figure 75)» 

These results suggest that structured granules probably contain a 

proteinaceous component as proposed by other workers (Smith, 1950; 

Fritsch, 1951; Fogg, 1951). Interpretation of results of proteolytic 

digestion of cells before embedment is equivocal; however, it seems 

worthy of note that the crystalloids and tubular systems were apparently 

unaffected by either the dilute hydrochloric acid or pepsin (Figure 72), 

suggesting that these structures are not primarily proteinaceous. 

General Discussion 

On the basis of results presented in this study it is of interest 

to speculate on the relationship between bacteria and the blue-green 

algae. The blue-greens and bacteria both have a prokaryotic cellular 

organization. The typical organelles of higher plants are absent and 

the nuclear material is not set off from the rest of the cytoplasm by 

membranes. Gas vacuoles found in both groups are aggregates of similarly 

organized gas vesicles. Diaminopimelic acid is present in the cell wall 

of both groups. The morphology of the cell wall in the gram-negative 

bacteria and blue-greens is also similar. One major difference is the 

fact that the photosythetic pigments of bacteria are bacteriochlorophyll 

whereas the blue-green algae have chlorophyll a as do higher plants. 
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In all studies of 'blue-green algae to date in which cellular 

organization is clearly discernible the protoplasm has been shown to 

contain polyhedral bodies associated with the nucleoplasm. No similar 

structures have been observed in any bacteria. These bodies appear to be 

a consistent inclusion within the cells of filamentous forms while their 

presence has been shown in coccoid forms so far investigated. It would 

therefore be of utmost significance to know whether polyhedral bodies 

exist in the remaining groups of blue-green algae not yet studied with 

the electron microscope. 

A variety of previously unreported inclusions of unknown function 

have been observed, many unique to a single species or collection. 

What is their significance? It has been suggested that some of the 

complex membranous, filamentous and crystalline inclusions may represent 

viral commensals. If this is the case they are quite different from 

previously described viruses or commensals. Unfortunately crude attempts 

to infect related blue-greens with such elements were unsuccessful, but 

this should be pursued further. On the other hand, the blue-green algae 

species studied are members of a very ancient group. In eons of time each 

species may have slowly evolved along a different line to the extent 

that these inclusions may represent real "organelles", some of which may 

no longer be functional. 
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The range of organisms containing microt-ubiiles has been extended 

to the blue-green algae. The presence of these filamentous structures 

in the cytoplasm of blue-green algae is of considerable interest. 

Although they are of the same general dimensions as the bacterial 

flagellum, comparable structures have not been observed in the cytoplasm 

of bacteria. 

Several of the "membrane" systems observed here should be of great 

interest to those who have attempted to make models of biological membrane 

organization. The membrane of the gas vesicle (2 mp.) is much thinner 

•than any previously reported membrane and, unlike other biological 

subcellular membranes, does not have a tripartite appearance. Is this 

membrane composed of a single layer of lippidal molecules? When the 

gas vesicle is collapsed the two appressed membranes have the appearance 

and dimensions of a single unit membrane. Perhaps further investigation 

of these membrane systems will suggest modifications of the classical 

Danielli generalized model of the unit membrane. What configuration of 

molecules results in the impermeability of these thin membranes to a gas 

and the consequent retention of this gas? What is the gas contained in 

the gas vesicles and how is it evolved? How do these membrane systems 

originate and are they initially derived from other membrane systems of 

the cell? These are some of the intriguing questions opened up by the 

study of the gas vacuoles. 
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In several cases branchings and endings of membrane profiles were 

observed. Fusion and subsequent breakage of membranes must be directly-

connected to the phenomena of pinocytosis. formation of vesicles from 

Golgi, discharge of materials through the cell membrane and the develop

ment of thylakoids in chloroplasts. However, these phenomena have never 

been observed probably because they occur very rapidly much like the 

fusion and breakage of soap films. It is possible that the membrane 

systems in the blue-green algae, where branching and ends of membranes 

are seen, are very different than the typical unit membrane. Certainly 

no branching or breaks have been observed in the membranes of the 

thylakoids or the plasma membrane in this group of organisms. Perhaps 

the most interesting and potentially informative observation made here 

has been the wide range and variation of membrane organization in the 

blue-green algal cell. In general, the membrane systems of prokaryotic 

cells have been considered to be very simple and membrane-limited organelles 

almost non-existent. 

The fact that two collections were quite different under the electron 

microscope yet each keyed out to "Uostoc pruniforme" is just one of 

several observations suggesting the potential value of electron microscopy 

in taxonomic studies of the blue-green algae. 
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SUMMARY 

1. A number of species of blue-green algae in the order Nostocales 

were studied by means of electron microscopy. Most of the collections 

were fixed in osmium tetroxide and embedded in Epon. The sections were 

stained with lead salts or uranyl acetate. 

2. The cell wall consists of a sheath and an inner complex layer 

consisting of an outer membrane and an inner investment located immediately 

outside the plasma membrane. The outer membrane forms papillae in 

Aphanizomenon flos-aquae, Anabaena spiroides, Anabaena sp., Uostoc 

pruniforme (ISU-J12) and Hostoc muscorum (ISU-JI?)* The possible function 

of these structures in producing movement is discussed. 

3. The inner investment of Oscillatoria princeps was unusually thick, 

0.4 n, with pits of cytoplasm projecting into the layer. Pores at an 

angle through the inner investment over the crosswalls were also present. 

The possibility that the inner investment of blue-green algae is 

equivalent to the mucoplymer layer in the gram-negative bacteria is 

discussed. 

4. The plasma membrane, a unit membrane, was observed to form 

invaginations in Uostoc calcicola, Uostoc commune and Nostoc punctiforme. 

Lamellasome-like structures were observed in Nostoc coeruleum, Aphanizomepon 

flos-aquae and Anabaena spiroides. 

5o The cells examined contained the usual inclusions reported 
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for the blue-green algae. These inclusions are thylakoids, a granules, 

P granules, structured granules, ribosomes, polyhedral bodies and 

nucleoplasm. However, a number of new inclusions are described. 

6. Variation in thylakoid morphology is described. In some species 

the end of a thylakoid expands to form an intrathylakoidal granule which 

may be composed of a material which is of medium electron-density or 

needle-shaped crystals. 

7- Stacks of "membrane-like" structures were observed in Cylindror 

spermum sp. They consist of about 20 "membranes" lying parallel to one 

another but separated by a space of about 6o mjj,. 

8. Unusual "spherical membrane" systems were observed in vegetative 

cells and heterocysts of Nostoc linckia. They consist of at least 5 

long but relatively narrow membranous sheets each about 9 ni|_i thick and 

resembling a unit membrane. These long thin membranes are wound in 

three dimensions around a common center resulting in a spherical inclusion. 

9" Unusual "scroll-like membrane systems" were observed in heterocysts 

of Gleotrichia pisum (ISU-J20). These bodies, about 0.4 to 0.9 p. in 

diameter and 2 ̂  in length, are composed of a tripartite membrane 11.5 mn 

thick arranged as in a scroll with 5 to 13 turns. 

10. Elongate crystalloids, in profile, associated with the 

nucleoplasm were observed in Nostoc carneum and Uostoc pruniforme 

(iSU-Jll). Although they had the same overall appearance the striations 
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at right angles to the long axis were spaced 10 to I5 m|i apart in 

lostoc carneum and 15 to 30 m|i apart in Nostoc pruniforme (iSU-JU). 

11. Crystalloids which are roughly square in profile were observed 

in Nostoc linckia, Nostoc coeruleum and Gleotrichia pisum (I8U-J20). 

These crystalloids are compared to similar crystals observed in other 

cells. The possibility that some of the crystalloids are viruses is 

discussed. 

12. Five different types of unusual filamentous elements were observed 

in CTostoc pruniforme (I8U-J12), Clyndrospermum sp., Nostoc muscorum 

(I8U-JI5); Gleotrichia pi sum (lSU-<I2l) and Nostoc pruniforme (ISU-JI2) 

respectively. Comparison of these 5 to 15 mp. filaments to filaments 

found in other cells is made. 

13. In Nostoc muscorum (ISU-JI5) clusters of small spherical inclu

sions about 30 m|a in diameter were observed in vacuole-like intra-

thylakoidal spaces. Rosette-like elements were observed in intra-

thylakoidal spaces of Gleotrichia pisum (ISU-J20). They consist of a 

central 30 mp. sphere which is probably surrounded by 7 similar spheres. 

14. Granular areas of medium electron density with a suggestion of 

17 mn periodicity were observed in the peripherial cytoplasm between 

the thylakoids in Nostoc carneum. 

15. Spherical bodies from 0.7 to 1 ̂ in diameter with at least two 

different components were regularly observed in cells of Gleotrichia 
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pisum (ISU-J21). These bodies are of medium electron-density and contain 

less dense spherical inclusions filled with highly convoluted fila

mentous elements. 

16. Fran experiments using pressure to destroy the gas vacuoles 

it is concluded that the gas vacuole observed in the light microscope 

is an aggregate of gas vesicles which can collect a gas and prevent its 

diffusion into the cytoplasm. The gas vesicles can reversibly collapse 

and expand. The biological significance of these membranes and other 

membrane systems observed in this study is discussed. 

17. Preliminary enzyme digestion experiments indicate that 

structured granules have a proteinaceous component. 
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APPEIIDIX A: FHATION, DEHÏDRA.TIOII, AND EMBEDDING SCHEDULES 

Schedule I. Osmj-um fixation. 

A. Three hours at room temperature in one percent osmium tetroxide 

in Michaelis buffer modified from Kellenberger, Ryter and 

Sechaud (1958) and Pankratz and Bowen (1963) as follows: 

1. 5 cc of Michaelis buffer (a. below) 

7 cc of O.IN hydrochloric acid 

13 cc of distilled water 

0.25 cc of a IM calcium chloride solution 

pH = 6.1 to 6.2 

2. Dilute (1) above 1:1 with 2 percent osmium tetroxide 

3. Add 0.1 ml of 1 percent Bacto-tryptone solution (b. below) 

per ml of fixative 

a. Michaelis buffer 

1.94 grams of sodium acetate (NaCgH^O^.^H^O) 

2.94 grams of sodium veronal (Barbital) 

3.4 grams of sodium chloride 

add water to 100 cc and store in refrigerator 

b. Bacto-tryptone solution 

1 gram of Bacto-tryptone 

0.5 grams of sodium chloride 

add water to 100 cc 
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Dehydration and embedding modified from Luft (1961) as follows: 

1. 5 minutes each in 50, 70 and 95 percent ethanol at room 

temperature 

2. 3 changes of 5 minutes each in 100 percent ethanol at room 

temperature . 

3. 5 changes of 5 minutes each in propylene oxide at room 

temperature 

15f 30 smd 4-5 minutes in 1:5, 1:1 and $:1 mixtures of Epon 

(with accelerator) to proplyene oxide respectively at room 

temperature 

5» 100 percent Epon (with accelerator) 12 hours at room 

temperature in specimen vials and swirl on a slow rotating 

mixer 

6. Place in shallow open aluminum boats 

7. Polymerize by placing specimens at 35°C for 12 hours, k'f'O 

for 12 hours and 60°C for 3 to 5 days 

Epon mixture (Luft, 196l) 

1. Mixture A 

62 cc of Epon 812 

100 cc of Dodecenyl succinic anhydride (DDSA) 

2. Mixture B 

100 cc of Epon 812 
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89 cc of Wadic Methyl Anhydride (MA.) 

3. Add 3 parts of A to 2 parts of B 

4. Add 0.2 ml of DMP-30 per 10 ml of Epon mixture and mix 

thoroughly 

Schedule II. Gluteraldehyde fixation with and without post-fixation in 

osmium tetroxide 

A. One to 12 hours at 4°C in phosphate buffered gluteraldehyde 

(Sabatini, Bensch and Barrnett, 1963) as follows: 

1. Phosphate buffer 

O.IM use 13 ml 

O.IM EagHPOj^ use 37 ml 

pH = 7.2 to 7.4 

2. Dilute buffer (l.) with 25 percent gluteraldehyde to obtain 

fixing solution of 3 percent gluteraldehyde 

3. After fixation rinse 3x5 minutes in phosphate buffer (l.) 

if no post fix is used dehydrate and embed according to 

Schedule I-B 

4. Rinse 5 minutes in Michaelis buffer (Schedule I-A-l) and then 

post fix in osmium tetroxide for 3 hours at room temperature 

(Schedule I-A) 

5. Dehydrate and embed according to Schedule I-B 
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Schedule III. Potassium permanganate 

A. Five minutes at room temperature in unbuffered potassium 

permanganate (Luft, 1956; MoUenhauer, 1959) as follows: 

1. Fix in 4 percent aqueous potassium permangaiiate 

2. Rinse thoroughly in several changes of 50 percent ethanol 

until solution is no longer colored 

5. Continue dehydration and embed according to Schedule I-B 
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APPEBIDIX B: EXPLMATION OF FIGURES 

Key to all Labels 

A - a granules 

B - p granules 

C - Crystalloid 

CW - Crosswall 

F - Filaments 

GV - Gas vesicle 

I - Inner investment 

IT - Intrathylakoidal space 

IG - Intrathylakoidal granule 

L - Lamellasome 

L¥ - Longitudinal wall 

N - Nucleoplasm 

OM - Outer membrane 

P - Papillae 

PB - Polyhedral bodies 

PG - Polar granule 

PI - Pits 

PL - Plate 

ÏM - Plasma membrane 
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PO - Pores 

R - Ribosomes 

RO - Rosettes 

S - Sheath 

SB - Spherical bodies 

SI - Spherical inclusions 

SG - Structured granules 

T - Tubular systems 

TH - Ihylakoids 



Figure J. Sheath. (S) structure in Nostoc carnevun after osmiim 
tetroxide fixation followed by rapid dehydration. 
Fibrillar layers are separated by osmiophilic layers 
(arrow). Stained with aqueous uranyl acetate. 
Approximately X̂ 6,000o 

Figure 4. Sheath (s) structure in Uostoc carneum after gluteralde-
hyde-osmium fixation. Fibrillar layers are separated by 
osmiophilic layers (arrows). Stained with aqueous uranyl 
acetate. Approximately Xl4,000. 





Figure 5. 

Figure 6. 

Figure 7« 

Portions of 2 cells of liostoc niuscoruBi (ISU-JIT) showing a 
papilla (p), an intrathylaicoidal granule (iG) and a large 
intrathylakoidal space (IT). Osmium tetroxide fixation 
and stained with methanol uranyl acetate. Approximately 
X72,000. ' 

Enlargement of a papilla on Aphanizomenon flos-aquae 
showing the outer membrane (OM) forming the outer boundary 
of the papilla and a dense axial element (arrow). 
Figure 6a is a similar papilla cut in cross section which 
also shows the surrounding outer membrane (OM) and the 
dense central axial element (arrow). Osmium tetroxide 
fixation and stained with methanol uranyl acetate. 
Approximately X120,000. 

Papilla (P) on Anabaena spiroides showing an internal 
organization. A lamellasome (l) and a p granule (b) are 
also shown. Osmium tetroxide fixation and stained with 
lead hydroxide. Approximately X100,000. 
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Figure 8, Cell wall of Oscillatoria princeps showing pits (Pl) 
projecting into the inner investment (l), the outer 
membrane (QM) with undulations and pores (PO) through 
the inner investment over the crosswall (CW). The thyla-
koids cth) in this species are partially expanded. Osmium 
tetroxide fixation and stained with aqueous uranyl acetate. 
Approximately XT2;000e 

Figure 9« Cell wall of Oscillatoria princeps showing poor fixation 
of inner investment (l) and outer membrane (OM) after 
potassium permanganate fixation. Pits (Pl) containing 
cytoplasm are shown projecting into the inner investment. 
Approximately XT2,000. 
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Figure 10. Tangential section through the inner investment (l) of 
Oscillatoria princeps showing rows of pits (Pl) in cross 
section. The inner investment (l) immediately surrounding 
the pits is of lower electron deaaity (arrow) than the rest 
of the inner investment. Osmium tetroxide fixation and 
stained with aqueous uranyl acetate. Approximately X72,000. 

Figure 11. Section cut at an angle throu^ the inner investment (l) 
of Oscillatoria princeps showing rows of pores (PO) over 
a crosswall and a row of pits (Pl). Osmium tetroxide 
fixation and stained with aqueous uranyl acetate. 
Approximately XT2,000. 





Figure 12. Cell of Nostoc commune shomng structured granule (SG), 
3 granules (b), polyhedral body (pb)> thylakoids (th) 
which are slightly expanded and an infolding of the plasma 
membrane (arrow). Potassium permanganate fixation. 
Approximately X51,000. 

! 
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Figure 13• Cell of Nostoc calcioola from an old culture showing 
polyhedral body (PB), inirathylakoidal granules (iG), 
thylakoids (TH) which appear to be "branched" and an 
infolding of the plasma membrane (arrow). Potassium 
permanganate fixation. Approximately X50,000. 





Figure l4. Portion of a cell of Uostoc calcicola showing poor 
fixation of the outer membrane and inner investment by 
potassium permanganate (arrow). An intrathylakoidal 
granule (ig) and a thylakoid (th) which has folded out 
are also shown. Approximately XT2,000. 





Figure I5. Cell of Nostoc pruniforme (iSU-Jll) showing outer membrane 
(OM), inner investment (l), structiired granule (SG), P 
granules (b), thylakoids (TH) which are somewhat expanded, 
intrathylakoidal granules (ig), numerous ribosomes (r) and 
polyhedral bodies (pb) associated with the nucleoplasm 
(n). Osmium tetroxide fixation and stained with lead 
hydroxide. Approximately X72,000. 
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Figure l6. Portion of a cell of Uostoc nruscorum (iSU-Jl?) in 
which the intrathylakoidal granule (IG) is a crystalline 
material. The unit membrane nature of the outer membrane 
is also apparent (OM). Osmium tetroxide fixation and 
stained with methanol uranyl acetate. Approximately 
X72,000. 

Figure 1?. Portion of a cell of Nostoc ellipsosporum in which the 
intrathylakoidal granule (IG) is a crystalline material. 
Osmium tetroxide fixation and stained with lead hydroxide. 
Approximately X72,000. 





Figure l8. Cell of Ijostoc punctiforme in the process of division 
showing ingrowing crosswall (CW), outer membrane (OM) 
with wave like undulations, inner investment (l), 
structured granules (SG), P granules (b), thylakoids 
(TH) with a small intrathylakoidal space and a polyhedral 
body (PB) associated with the nucleoplasm (n). Osmium 
tetroxide fixation and stained with lead hydroxide. 
Approximately X50,000. 
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Figure 19. Portion of a cell of Nostoc calcicola showing unit membrane 
nature of the plasma membrane (ïM). Some thylakoid s (ini) 
exhibit a myelin configuration and some have "branched" in 
a very regular manner. Potassium permanganate fixation. 
Approximately X72,000. 

Figure 20. Portion of a cell of Calothrix parietina in which the 
thylakoids (TH) are arranged in stacks. The inner 
protein layers of the thylakoid membrane are in contact 
producing a myelin configuration but the outer protein 
layers remain separated by a small space (arrow). 
Osmium tetroxide fixation and stained with aqueous 
uranyl acetate. Approximately X72,000. 
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Figure 21. Heterocyst of Anabàéria spirbidés containing polar granule 
(PG) and showing elaborate tnyiatoid (TH) pattern. Osmium 
tetroxide fixation and stained with lead hydroxide. 
Approximately X28,000. 
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Figure 22. Cross section through elaborate thylakqid (th) pattern 
in the pore region of a heterocyst of Anabaena spiroides» 
Osmium tetroxide fixation and post stained vrith aqueous 
uranyl acetate. Approximately X50,000. 
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Figure 2^. Section through the pore region of a heterocyst of 
Anabaena spiroides showing a polar granule (PG) and an 
elaborate thylakoid (TH) arrangement. Osmium tetroxide 
fixation and stained with aqueous uranyl acetate. 
Approximately X72,000, 
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Figure 2^. Cross section through pore region of a heterocyst of 
Nostoc linckià'^show^pg elaborate thylakoid (TH) arrange
ment, Osmitun tetroxide fixation and stained -with lead 
hydroxide. Approximately X50,000. 
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Figure 2$. Portion of a cell of Cylindrospentiuin sp. containing a 
stack of membrane-like structiires (arrow). The outer 
membrane (OM) appears as a unit membrane with wave 
like undulations. The inner investment (l) is immediately 
outside the plasma membrane (PM). Osmium tetroxide 
fixation and stained with aqueous uranyl acetate. 
Approximately X70,000. 

Figure 26, Portion of a cell of Uostoc linckia containing spherical 
membrane systems. Three ends of the membranes (arrows) 
of one inclusion are shown. Within the inclusion a 
granules (A) are located. Osmium tetroxide fixation 
and stained with lead hydroxide. Approximately X120,000i 
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Figure 27. Portion of a cell of Hostoc linckia containing spherical 
membrane systems and a crystalloid (C), The "membranes" 
of the spherical membrane systems appear to branch and 
fuse (arrows). Osmium tetroxide fixation and stained 
with methanol uranyl acetate. Approximately X72,000. 
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Figure 28. Portion of a heterocyst of Gleotrichia pisum (lSU-J20) 
containing scroll-like membrane systems cut in cross 
section. The membrane ends (arrows) at the inner and 
outer zone of the scroll are evident and ribosome-like 
particles (r) can be seen between the membranes. Within 
the scroll-like membrane system a p granule (b), a 
thylakoid (TH) and numerous ribosomes (R) can be seen. 
Osmium tetroxide fixation and stained with methanol 
uranyl acetate. Approximately X73>000. 
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Figure 29. Portion of a heterocyst of Gleotrichia pisum (iSU-JSO) 
containing scroll-like membrane systems sectioned longi
tudinally. The edges of the membrane at the end of the 
cylinder are evident (arrows). Osmium tetroxide 
fixation and stained with methanol uranyl acetate. 
Approximately X73^000. 





Figure 30. Portion of a cell of Nostoc prunifoime (ISU-JU) contain
ing a crystalloid (C) associated with two polyhedral 
bodies (PB). Figure $0a is an enlargement of the crystal
loid (C) and shows the osmiophilic striations at right 
angles to the longitudinal axis and finer lines parallel 
to the long axis (arrows). Osmium tetroxide fixation and 
stained with lead hydroxide. Figure $0 approximately 
X72,000o Figure ^Oa approximately X120,000. 





Figure $1. Portion of a cell of Uostoc carneum containing a crystalloid 
(c). Numerous polyhedral "bodies (PB) can also be seen in 
association with the nucleoplasm (n). The thylakoids (th) 
are observed in a myelin-like configuration in places. 
Figure 31a is an enlargement of the crystalloid and shows 
the osmiophilic striations at right angles to the 
longitudinal axis and finer lines parallel to the long 
axis (arrows). Osmium tetroxide fixation and stained with 
aqueous uranyl acetate. Figure $1 approximately X72,000. 
Figure 31a approximately X120,000. 
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Figure 32» Portion of a cell of Uostoc carneum containing a granular 
area with an indication of periodicity (arrows). Osmio-
philic fibers are evident in the sheath (s). Osmim 
tetroxide fixation and stained with aqueous uranyl 
acetate. Approximately X72,000, 

Figure 33- Portion of a cell of Nostoc pruniforme (iSU-Jll) containing 
a crystalloid (C) associated with a polyhedral body (PB). 
Osmixm tetroxide fixation and stained with lead hydroxide. 
Approximately X72,000. 

Figure 3^* Portion of a cell of Mostoc carneum containing a crystalloid 
(C), a polyhedral body (PB) and a structured granule (SG). 
Osmium tetroxide fixation and stained with aqueous uranyl 
acetate. Approximately X72,000. 





Figure 35» Portion of the central part of a cell of Hostoc pnmiforme 

(iSU-Jll) containing a poorly defined organized area with 
crosshatched striations (arrows). Numerous polyhedral 
bodies (PB) surround the area. Osmium tetroxide fixation 
and stained with lead hydroxide. Approximately X72,000. 

Figure $6. Portion of a cell of Nostoc linckia containing a compound 
crystalloid which is apparently composed of several smaller 
crystalloids (C). Osmium tetroxide fixation and stained 
with methanol uranyl acetate. Approximately X72,000. 





Figure 37» Cell of Nostoe coeruleum containing a crystalloid (C) 
•with, crosshatched striation, 2 lamellasomes (L) and 
numerous gas vesicles (GV) cut in cross section. 
Osmium tetroxide fixation and stained with aqueous uranyl 
acetate. Approximately X72,000o 





Figure ^8. Portion of a cell of Nostoc coeruleum showing poor pre
servation of a crystalloid (C) and the gas vesicles (GV) 
after potassium permanganate fixation. Approximately 
X72,000. 

Figure 39» Portion of a cell of Ijostoc coeruleum containing a 
crystalloid (C) with parallel striations and numerous 
gas vesicles (GV). Osmium tetroxide fixation and stained 
with aqueous uranyl acetate. Approximately X72,000. 





Figure 4o. Portion of a cell of G-leotrichia pi sum (lSU-J20) 
containing a crystalloid (C) with parallel striations. 
A large intrathylakoidal space (IT) is also evident. 
Osmium tetroxide fixation and stained with aqueous 
uranyl acetate. Approximately X72,000. 

Figure 4l. Portion of a cell of Grleotrichia pi sum (lsu-j20) 
containing a crystalloid (C) with crosshatched striations. 
A structured granule (sg), a p granule (b) and large 
intrathylakoidal spaces (iT) are also evident. Osmium 
tetroxide fixation and stained with methanol uranyl 
acetate. Approximately X72,000. 
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Figure 42. Portion of a cell of Ifostoc muscorum (ISU-JI5) containing 
spherical inclusions (arrow), a structured granule (SG) 
and p granules (b). Osmium tetroxide fixation and stained 
with methanol uranyl acetate. Approximately X72,000. 

Figure Portion of a cell of Nostoc muscorum (ISU-JI5) containing 
a packet of filaments (F), large structured granules 
(SG), and p granules (b). Osmiophilic fibers in the 
sheath (s) are also evident. Osmium tetroxide fixation 
and stained with methanol uranyl acetate. Approximately 
X72,000. 
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Figure 4^1-. A section of part of two cells of Éostoc prunifoime 
(ISU-JI2) containing a plate (p) and filament (F) 
arrangement. The thylakoids (TH) can be seen in ' 
various degrees of expansion. A papilla (P) is also 
evident. Osmium tetroxide fixation and stained with 
aqueous ur.anyl acetate. Approximately X72,000. 



146 



Figure 4$. A section which is cut in a plane near the long axis of 
the plate (p) of the plate and filament (f) arrangement 
in Mostoc pruniforme (ISU-J12). Osmium tetroxide fixation 
and stained with aqueous uranyl acetate. Approximately 
X72,000, 

Figure 46. A section through the narrow axis of the plate of the 
plate-filament arrangement in Nostoc pruniforme (ISU-J12) 
showing the plate (P) and the lack of fixation of the 
filaments (arrow) after potassium permanganate fixation. 
Approximately X72,000. 





Figure 4?. Cross section of the filaments (?) of the plate-filament 
arrangement in Nostoc pruniforme (ISU-J12). Most of the 
filaments are arranged in a repeating hexagonal pattern. 
The outer electron-dense layer and the inner electron 
transparent zone is apparent in some of the filaments 
(arrows}. Osmium tetroxide fixation and stained with 
aqueous uranyl acetate. Approximately X92,000. 





Figure 48. Portion of a cell of Cylindrospermum sp. containing a 
buddle of filaments (F) eut in longitudinal section. 
Osmium tetroxide fixation and stained with aqueous 
uranyl acetate. Approximately X72,000. 

Figure h9> Portion of a cell of Cylindrospermum sp. containing a 
bundle of filaments (F) cut in cross section. Osmium 
tetroxide fixation and stained with aqueous uranyl 
acetate. Approximately X72,000. 





Figure 50. Portion of a cell of Gleotrichia pi sum (ISU-J21) 
containing filaments (?) cut longitudinally. The 
lighter staining groups of filaments are separated by 
a layer of ribosome containing cytoplasm (arrow). 
Darker staining more regularly spaced filaments (?) 
are evident above the large group of filaments. Large 
intrathylakoidal spaces (iT) are also evident. Osmium 
tetroxide fixation and stained with methanol uranyl 
acetate. Approximately X72,000. 
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Figure 51. Portion of a cell of Gleotrichia pi sum (ISU-J21) containing 
groups of filaments (F) cut in longitudinal section which 
are separated by a band of ribosome containing cytoplasm 
(arrow). Osmium tetroxide fixation and stained with methanol 
uranyl acetate. Approximately X72,000. 

Figure 52. Portion of a cell of Gelotrichia pisum (lSU-J2l) 
containing filaments (F) cut in Gross section. The 
more regular arrangement of the more osmiophilic filaments 
(F) on the right is evident. Figure 52a is an enlargement 
of the less dense filaments. The outer osmiophilic 
layer and a central dark strand can be seen in several 
of these filaments (arrows). Osmium tetroxide fixation 
and stained with methanol uranyl acetate. Figure 52 
approximately X72,000. Figure 52a approximately X120,000. 
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Figure 53* Portion of a cell of Nostoc pruniforme (iSU-Jll) containing 
tubular-like system (T). Osmium tetroxide fixation and 
stained with lead hydroxide. Approximately X72,000. 

Figure 3k» Portion of a cell of Nostoc muscorum (iSU-Jl?) containing 
tubular-like system (T). The tubes have been cut longi
tudinally. Osmium tetroxide fixation and stained with 
methanol uranyl acetate. Approximately XT2,000. 

Figure 5$. Portion of a cell of Nostoc muscorum (ISU-J15Î containing 
tubular-like system (T) sectioned in cross and longi
tudinal section. Osmium tetroxide fixation and stained 
with methanol uranyl acetate. Approximately X72,000. 
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Figure $6. Portion of a cell of Gleotrichia pisum (lSU-J20) containing 
rosette-like inclusions (RS) within the large intra-
thylakoidal spaces (IT). Figure 56a is an enlargement 
of one of the rosette-like inclusions showing a central 
sphere which is surrounded by 5 similar spheres. Osmium 
tetroxide fixation and stained with methanol uranyl 
acetate. Figure 56 approximately X72,000. Figure 56a 
approximately X120,000. 
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Figure 57* Portion of a cell of Gleotrichia pisirni (ISU-J21) 
containing large spherical bodies (SB) with less electron 
dense circular areas (arrow) which Qontain highly-
convoluted filamentous elements. A structured granule 
(SG), large intrathylakoidal spaces (iT) and osmiophilic 
fibers in the sheath are also evident. Osmium tetroxide 
fixation and stained with methanol uranjrl acetate. 
Approximately X72,000. 
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Figure $8. Photomicrograph of normal living filaments of 
Aphanizomenon flos-aquae. The highly refractile areas 
"Within the cells are the gas vacuoles (arrows). 
Approximately X2,500. 

Figure 59» Photomicrograph of living filaments of 
Aphanizomenon flos-aquae after the gas vacuoles have 
been destroyed by pressure. Note the absence of the 
highly refractile areas and the decrease in cell size. 
Approximately X2,500. 
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Figure 6o. Photograph of the brass-piston-O-ring and cylinder 
device used to ap^ly pressure to destroy the gas 
vacuoles. 

Figure 6l. Portion of two cell of Aphanizomenon flos-aquae contain
ing aggregates of gas vesicles (GV) which make up a gas 
vacuole. The gas vesicles are shown in cross and longi
tudinal section. Large intrathylakoidal spaces 
characteristic of this species are evident (IT). A long 
papilla formed by the outer membrane is also evident (p). 
Osmium tetroxide fixation and stained with methanol 
uranyl acetate. Approximately X72,000. 





Figure 62. Portion of a cell of Aphanizomenon flos-aquae fixed 
shortly after pressure treatment, showing collapsed gas 
vesicles (GV). The large intrathylakoidal spaces (IT) 
are also evident. Osmium tetroxide fixation and stained 
•with metheinol uranyl acetate. Approximately X72,000. 
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Figure 65. Portion of a cell of Aphanizomenon flos-aquae showing 
gas vesicles (GV) cut in cross section. A partially 
collapsed gas vesicle can also be seen (arrow). Osmiim 
tetroxide fixation and stained with methanol tiranyl 
acetate. Approximately XI44,000. 

Figure 64. Portion of a cell of Aphanizomenon flos-aquae showing "unit 
membrane nature of collapsed gas vesicles (GV) and the 
unit membrane nature of the thylakoid membrane (TH). 
Osmium tetroxide fixation and stained with methanol 
uranyl acetate. Approximately Xl44,000. 
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Figure 65. Cell of Aphatii zomenon flos-aquae fixed 2k hours after 
pressure treatment showing reexganded and collapsed 
gas vesicles (GV). Osmium tetroxide fixation and 
stained with methanol uranyl acetate. Approximately 
TJ2,000. 





Figure 66. Portion of 2 cells of Aphanizomenon flos-aquae showing 
lack of fixation of gas vesicles (GV) with potassium 
permanganate fixation. However, thylakoid membranes are 
preserved (TH). Approximately X72,000. 
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Figure 67. Cell of Kostoc coeruleum showing gas vesicles (GV) cut 
in cross section. The gas vesicles are arranged in a 
repeating hexagonal pattern. The entire aggregate of 
gas vesicles comprises a gas vacuole. A large crystalloid 
(c) is also present in the section. Osmium tetroxide 
fixation and stained vrLth methanol uranyl acetate. 
Approximat ely XT2,000. 
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Figure 68. Section of a cell of Hostoc coérulem showing gas 
vesicles (GV) of the gas vacuole cut mainly in longi
tudinal section. A crystalloid (c) ifrith crosshatched 
striations is also present. Osmium tetroxide fixation 
and stained with aqueous uranyl acetate. Approximately 
X72,000. 
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Figure 69. Portion of a cell of Nostoc pruniforme (ISU—Jll) 
fixed in gluteraldehyde, embedded in Epon, sectioned 
and digested 2k hours with pepsin. The structured 
granule (SG) is less dense. The polyhedral bodies (PB) 
and a crystalloid (C) are apparently unaffected. 
Stained with methanol uranyl acetate. Approximately 
X72,000. 





Figure 70. Cell of Hostoc pruniforme (iSU-Jll) fixed in 
gluteraldehyde; embedded in Epon, sectioned and placed 
in OeOlN hydrochloric acid for 2k hours. The structured 
granules (SG-) contain a dense component. Stained with 
methanol uranyl acetate. Approximately X52,000. 





Figure 71. Cell of Uostoc pruniforme (iSU-JU) fixed in 
gluteraldehyde, placed in O.OIN hydrochloric acid 
4 hours, post-fixed in osmium tetroxide and then embedded 
in Epon. Electron-dense fragments and a fiberous com
ponent of the structured granule (SG) can be seen. A 
crystalloid (c) is also present. Stained m-th methanol 
uranyl acetate. Approximately X52,000. 





Figure 72. Portion of a cell of Nostoc pruniforme (I8U-JII) fixed 
in gluteraldehyde, digested with pepsin for 4 hours, 
post-fixed in osmium tetroxide and then embedded in 
Epon. Structured granule (SG) is essentially removed 
except for a small remnant. A crystalloid (C) and a 
tubular-like system (T) are apparently unaffected. 
Stained with methanol uranyl acetate. Approximately 
X72,000. 
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Figure 75* Cell of Nostoc prunifoime (iSU-Jll) fixed in gluteralde-
hyde, left in phosphate buffer during the enzyme digestion 
experiment, post-fixed in osmium tetroxide and embedded 
in Epon. Structured granules (SG), a crystalloid (c) 
and a tubular-like system (T) are evident. Sheath 
structure (S) is also more evident after this fixation. 
Stained •with methanol uranyl acetate. Approximately 
X52,000. 
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