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INTRODUCTION 

The stability of fat in a sausage product was most 

definitely a secondary concern when compared to the sensory 

qualities of the sausage for most of the history of sausage 

production. With the increasing economical pressure on sausage 

production/ however, the use of relatively inexpensive fat trim 

types and the stabilization of that fat during thermal 

processing has become increasingly critical. The improvement 

of fat stability can be attempted in one of two primary ways. 

One way is by altering the process of sausage production and 

the other is by altering the formula of the sausage being 

produced. 

One of the most successful processing methods of improving 

fat stability also defines a specific class of sausage 

products. This class is the finely chopped or comminuted 

sausage products often referred to as "emulsion" products. An 

emulsion is defined by Becher (1965) as a two phase system in 

which a discontinuous phase is distributed within a continuous 

phase. In meat emulsion products, such as frankfurters or 

bologna, the discontinuous phase is composed of fat, while 

protein and water constitute the continuous phase (Schut, 

1976). In traditional meat emulsion theory, salt-soluble meat 

proteins, predominantly actin and myosin, form an interfacial 

film barrier around the lipid, stabilizing the lipid within 

the water environment (Visser, 1980). 
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The mechanical process of emulsion formation consists of 

chopping meat tissue for a specified period of time in the 

presence of salt. Unfortunately, if the mechanical action is 

insufficient for adequate protein extraction (Hamm, 1970), if 

overchopping of the meat batter takes place (Hansen, 1960), or 

if improper temperatures are reached during chopping (Walstra, 

1984), fat stability may not be achieved. 

A product's formula may be altered in several ways to 

improve the fat stability of a product. Obvious ingredients 

affecting emulsification of meat products include salt content 

and trim type. Lowering the quantity of fat trim relative to 

lean trim also obviously decreases the quantity of fat 

requiring stabilization. If, on the other hand, trim 

containing a high content of collagen is used, fat stability 

may be decreased (Acton et al., 1981). 

Non-meat ingredients, other than salt, may be included in 

a sausage formula to promote fat stabilization. Several 

proteins, including cottonseed, sesame, rapeseed, soybean, 

and caseinate possess fat or water binding ability in sausage 

products (Vananuvat and Kinsella, 1975; Caldironi and Ockerman, 

1982; Choi et al., 1983; Rivero de Padua, 1983). 

One method of fat stabilization, developed relatively 

recently, promotes the process of fat stabilization through 

emulsification with a non-meat ingredient. This method 

involves the formation of a sodium caseinate, water and fat 
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batter (Brouwer et al., 1976; Jongsma, 1982; Visser, 1983a,b). 

This stabilized fat batter can then be added to a sausage 

product resulting in improvement of the sausage's fat 

stability. 

Although popular in Europe, where stabilized fat has 

enabled sausage makers to increase the heat treatment their 

product undergoes, the use of stabilized fat has not had an 

impact in the United States. There are two key reasons for 

this. First of all, in the U.S. sausages are not thermally 

processed to particularly high temperatures. Secondly, and 

more importantly, in the U.S. the key mixture component, sodium 

caseinate, is only permitted in non-specific loaf products 

(U.S.D.A., 1973). As a result, the large quantity emulsion-

type products manufactured in the U.S., including bologna and 

frankfurters, are not permitted by law to contain the 

caseinate stabilized fat mixtures. 

Tlie use of stabilized fat mixtures in meat products offers 

several potential advantages to U.S. meat processors. As 

previously mentioned, salt-soluble protein is used to stabilize 

fat in a meat emulsion. By adding already stabilized fat, 

lower quantities of salt-soluble protein are needed. This 

would enable a decrease in the relative quantity of 

salt-soluble protein in the system. The use of a stabilized 

fat source would also enable the fat and lean meat sources to 

be produced by preblending. Preblending, the chopping of lean 
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meat with salt and nitrite prior to sausage production, enables 

the determination of the precise proximate composition of the 

lean prior to product formation. Preblending can also improve 

the water and fat binding properties of the lean source 

(LaBudde and Selfridge, 1982). Preblending the fat souce would 

complement a lean trim preblend resulting in total product 

composition control. Stabilization of the fat meat may also 

enable the use of "novel" fat sources in meat products. Two 

such fat sources include cooked-off lard (currently a waste 

product) or vegetable oil (for a low saturated fat sausage). 

From a strictly theoretical point of view, production of 

stabilized fat mixtures permits the study of non-meat protein 

in a system closely approximating the protein, water and fat 

composition of a food product. 

The research presented in this dissertation had three 

primary goals. The first was to produce a soy protein 

stabilized fat mixture exhibiting stability equal to that seen 

in caseinate stabilized fat mixtures. The second goal was to 

compare a traditional method of measuring protein functionality 

(emulsion capacity) with the fat mixture method of measuring 

protein functionality. The final goal was to compare the 

effects of soy and caseinate fat mixtures when used as a fat 

source in sausage production. It was hoped that the research 

performed in order to achieve the project's goals might 

improve the understanding of factors involved in the 

stabilization of fat in conventional meat products. 
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REVIEW OF LITERATURE 

Mechanism of Fat Stabilization 

It makes very little difference in a sausage product how 

the fat is stabilized, as long as it is indeed stabilized. 

Whether a product's fat source is stabilized through a process 

or a formula change, as discussed in the introduction, fat 

stabilization must occur by one of three mechanisms. In the 

first mechanism, the fat is stabilized in a highly viscous 

matrix which simply inhibits movement of the fat. Flocculation 

of the fat particles is thereby prevented. The key feature of 

this mechanism is that the medium in which the fat is suspended 

is an unorganized matrix. Another mechanism, called gelation, 

prevents fat movement by trapping the fat particles in a three 

dimensional matrix formed through specific protein to protein 

interaction. In the third mechanism, emulsification, fat is 

stabilized by dispersion. Depending upon the environment, the 

rate of fat aggregation in the emulsion will vary. In an 

emulsion, the stability of the emulsion is a function of the 

frequency of collision of droplets in the discontinuous phase 

material. In traditional meat emulsion theory, muscle proteins 

improve the stability of the meat item by lessening interfacial 

tension at the lipid and water interface. The following review 

will examine the properties of isolated soy protein and sodium 

caseinate. Since the majority of research on the fat 

stabilization of meat products has been related to 
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emulsification, emulsification will be initially discussed. 

Emulsification 

Becher (1965) presented a more comprehensive definition of 

an emulsion than the one presented in the introduction. Becher 

described as emulsion as an "heterogeneous system, consisting 

of at least one immiscible liquid dispersed in another, in the 

form of droplets, whose diameters, in general, exceed 0.1 

micron. Such systems possess a minimal stability which may be 

accentuated by such additives as surface active agents, finely 

divided solids, etc." 

Emulsions in food products are usually one of two types, 

water-in-oil, such as margarine and butter, or oil-in-water, 

such as ice cream, salad dressing and cheese. In either case, 

small droplets of the discontinuous phase are dispersed in the 

continuous phase. The two phases in an emulsion, by 

definition, repulse each other and attract the like phase, 

resulting eventually, in aggregation of each phase into 

distinct layers (Petrcwski, 1979; Friberg and El-Nokaly, 1983). 

In order to increase the stability of the emulsion,- agents 

which exhibit attraction to both phases are often added to the 

emulsion. These agents function by aligning hydrophobic 

segments of their structure toward the lipid phase and 

hydrophillic segments into the water phase (Becher, 1965; 

Friberg and El-Nokaly, 1983). Numerous classes of emulsifying 

agents exist. One class consists of mono- and diglycerides. 
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Another consists of gums, and carbohydrate hydrocolloids, 

including alginates, carrageenans, and pectin. A third major 

class of emulsifiers, and the class of interest in this study, 

are proteins. 

McWatters and Cherry (1981) decribe three processes 

involved in stabilizing emulsions. These are: (1) reduction 

of interfacial tension, (2) formation of a rigid interfacial 

film, and (3) accumulation of electrical charges. In the first 

process, lipid molecules in the interior of the lipid droplet 

orient their carbon chains in a symmetrical manner. In the 

water phase, polar orientation occurs. At the surface, where 

uncovered lipid contacts the water surface, neither orientation 

can interact. The emulsifying agent or surfactant orients 

non-polar areas (groups of non-polar amino acids in proteins) 

toward the lipid droplet. Polar areas (peptide groups 

consisting of charged amino acids) orient toward the water 

surface. Thus, the surfactant added forms a connection 

interacting with the polar and non-polar surfaces removing the 

surface tension which otherwise would exist between the lipid 

and aqueous phases. Many surface-acting agents tend to 

self-interact, filling in the entire interfacial area, forming 

an interfacial film (Stutz et al., 1973). If a protein is the 

surfactant, it is difficult to distinguish surface tension 

reduction from gelation stabilization. Film formation appears 

to be the primary method of maintaining emulsion stability 



8 

(Stutz et al., 1973). The reason for the stabilizing effect of 

accumulated electrostatic charges was explained by Petrowski 

(1979). He indicated that charges accumulated in lipid 

droplets tend to repulse like charges in other lipid droplets 

thus inhibiting lipid droplet flocculation. 

Several methods are used to measure the ability of a 

surfactant to form emulsions. The most commonly used measure of 

surfactant activity is emulsion capacity (EC) (Kinsella, 1975). 

Emulsion capacity is defined as "the volume of oil that can be 

emulsified by a surfactant before inversion or collapse 

occurs." The method used to measure EC was originated by Swift 

et al. (1961). In this method, oil is added continuously to a 

protein/water dispersion. The total volume of oil added 

relative to protein at the point of breakage, then, is the 

EC. Originally, a visual decrease in viscosity was used to 

determine the breakpoint. Crenwelge et al. (1974) objectively 

measured breakpoint by the sudden drop of amperage in the 

blender due to the viscosity decrease of the solution at the 

breakpoint. Another objective measure, a drop in electrical 

conductivity at breakpoint caused by fat release, was 

developed by Webb et al. (1970). The most recent variation in 

endpoint determination is the color change when an emulsion 

formed with Oil-Red-0 dyed oil breaks, releasing bright red oil 

to the surface (Marshall et al. 1975). Although variations of 

the Swift et al. (1951) analysis remain the most popular, other 

methods of measuring EC have been developed. Each method 
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is based on slightly different characteristics such as a lower 

blender speed, (1750 RPM vs 13000 RPM), initial oil content 

(Hegarty et al. 1953; Carpenter and Saffle, 1964) etc. 

Several non-protein factors affect the amount of oil 

emulsified using the EC test. The pH and ionic environment 

of the protein solution affects the ability of the protein 

to solubilize and be available for interface formation. 

Kamat et al. (1978) indicated that near the isoelectric point, 

a protein will have its greatest EC value because the protein 

adsorption and elasticity at the oil/water interface is 

greatest. Crenwelge et al. (1974) found, however, that pH 7.0 

results in greater EC in meat proteins than the isoelectric 

point. 

Final temperature at emulsion breakpoint appears to have a 

great effect on EC. Swift et al. (1961) and Carpenter and 

Saffle (1964) found high negative correlations between 

temperature rise and. EC = 

The effect of fat or oil addition rate on EC is not clear. 

Swift et al. (1951) found a high correlation between increased 

EC with increased rate of oil addition. They hypothesized that 

the increase occurred because the protein layer formation was 

nearly instantaneous and the greater the oil flow, the greater 

the amount of oil emulsified prior to the onset of protein 

denaturation. Carpenter and Saffle (1954), on the other hand, 

found no difference when oil was added at rates from 0.21 to 
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1.56 ml oil per second and suggested that only overloading of 

the system or temperature differences due to excess duration of 

addition should affect the EC. 

Increased mixing speed has been clearly demonstrated to 

decrease EC. Carpenter and Saffle (1964) found that a nearly 

perfect negative correlation existed between blender speed and 

EC in a range of blender speeds between 9000 and 21000 RPM 

when EC was tested using meat proteins. 

The effect of oil or fat type on EC was studied by 

Christian and Saffle (1967). Little difference between 

different oils and fats was found with the exception of a 

decrease in EC when castor oil and linseed oil were used. 

Methods other than EC exist for estimating protein 

functionality in emulsions. One such method is emulsion 

stability. Emulsion stability refers to the ability of an 

emulsion to undergo stress (usually heating) and remain 

unchanged (Hermansson, 1979). Several model system methods of 

measuring emulsion stability exist. The most frequently used 

stability measure consists of simply centrifuging a heated 

emulsion and then measuring the percent of emulsified layer 

remaining (Inklaar and Fortuin, 1969; Yasumatsu et al., 1972). 

Stability was measured by Carpenter and Saffle (1964) by 

cooking an oil/protein emulsion in a Paley bottle, adding hot 

water and centrifuging the bottle to measure fat release. 
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Another measure of emulsion stability was developed by Titus et 

al. (1958). An emulsion was formed and the water content of a 

5 ml aliquot from the bottom of the emulsion was immediately 

measured. Twenty-four hours later another 5 ml aliquot was 

measured. An unstable emulsion showed increases in moisture in 

the bottom of the tube as the emulsion broke down and water and 

fat were released. The use of high speed blenders and a 30 

minute delay were modifications suggested by Aoki et al. 

(1981). Trumbetas et al. (1976) used pulsed nuclear magnetic 

resonance to measure compositional changes in various layers of 

the emulsions. 

A different approach to emulsion stability in dilute 

solutions was developed by Pearce and Kinsella (1978). They 

reasoned that the ability of a protein to emulsify is related 

to the amount of interfacial area coated by the protein. In a 

dilute solution, a relationship between interfacial area and 

turbidity exists. By measuring turbidity at 500 nm, an 

estimation of the protein's ability to form a layer at the 

lipid-water interface is obtained. This method seems to 

be gaining popularity currently (Hiratsuki et al., 1984; 

Nakamura et ai., 1984). 

One major problem exists with all of the previous 

analyses: they are all model system analyses. A model system 

is an evaluation of a functional property in a system that does 

not necessarily mimic the steps and ingredients of an actual 

food preparation (Pour-El, 1981). Model systems are used to 
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carefully examine a small number of factors with few 

interfering factors being present; they offer the advantages 

of simplicity, speed and relatively low cost. Unfortunately, 

their simplicity causes the results obtained to be of 

questionable value for estimating food protein functionality. 

Tsai et al. (1972) and Puski (1976) raised serious questions 

concerning the value of model system analysis. An example of 

this was seen by Saffle (1968) who indicated that model system 

emulsions containing 80% fat may be formed by less than 1% 

salt-soluble protein. In meat emulsions, however, a minimum of 

9-10% total protein was required to emulsify a maximum of 

35-40% fat. 

Measurement of meat emulsion stability is done basically 

in one way. The emulsions are heated, and water and fat 

released during heating are collected. The most commonly used 

measure of emulsion stability was developed by Townsend et al. 

(1968). Emulsions, after being heated in plastic tubes were 

then decanted into 15 ml centrifuge tubes and centrifuged; the 

amounts of liquid, fat and gel-water, proteinaceous solids 

released were then measured. In the 18 years since its 

development, the original method has remained essentially 

unaltered. Earlier stability methodologies were developed by 

Meyer et al. (1954), Rongey (1955) and Saffle (1958). Of the 

three, the Rongey (1965) method still retains some popularity. 

The main feature of the Rongey method is the use of a glass 

centrifuge tube developed by Wierbicki et al. (1957) for 
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measurement of water holding capacity. The glass tube consists 

of a large top glass tube (2.5-3.8 cm diameter) connected to a 

small graduated bottom tube (1.0-1.3 cm diameter). The top and 

bottom tubes are separated from each other with a coarse, 

fritted disk. Emulsion is stuffed into the top tube and the 

assemblage is cooked. Following cooking, the tube is 

centrifuged and water, oil and solids released are collected 

in the smaller graduated tube and are directly measured. 

Gelation 

Another possible mechanism of fat stabilization by protein 

is the trapping or binding of fat in a protein gel matrix. 

According to Kinsella (1976), a protein gel is a "three 

dimensional matrix of intertwined, partially associated 

polypeptides, in which water is entrapped". A more specific 

description was offered by Schmidt et al. (1981) who defined 

gelation as "a protein aggregation phenomenon in which 

attractive and repulsive forces are so well balanced that a 

well-ordered tertiary network or matrix is formed". Ts/o key 

features of both definitions are apparent. First, a three-

dimensional structure is formed. Second, protein and water (in 

the case of a protein gel) are required. Ferry (1948) 

described two steps necessary to form a protein gel. First, 

the native protein must be denatured or dissociated by some 

mechanism to expose potential bonding locations. Second, 

reaggregation of the protein, forming inter- rather than intra­
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molecular bonds, must occur. 

The basic property which defines the structure and 

characteristics of the gel in question is the amount and type 

of crosslinking involved in the protein matrix formation. Four 

common types of bonding (covalent, hydrogen, hydrophobic and 

electrostatic bonding) are involved in gel formation (Schmidt 

et al., 1981). The four bonding types and their relative 

strengths are seen in Table 1. 

In irreversible gels, covalent disulfide bonding functions 

to interconnect protein strands forming the basic gel structure. 

Non-covalent hydrogen, electrostatic and hydrophobic bonds 

function to stabilize the formed gel matrix. Covalent peptide 

bonding contributes little to any protein gel formation because 

chemicals needed to break peptide bonding will destroy the 

protein's primary structure. Irreversible gels are generally 

formed when a protein is treated with extreme heat, chemical or 

ionic treatment causing the breakage of intramolecular 

disulfide bonds. Once the severe treatment is removed, the 

protein refolds in a different manner than its native 

conformation. Random reassociation of sulfide residues results 

in an increased amount of intermolecular disulfide bonding 

(Schmidt et al., 1981). 

Ifhen non-covalent hydrogen bonding predominates, gel 

reversibility upon heating is possible (Stainsby, 1977). 

Hydrogen bonding is less firmly structured than covalent 



Table 1. The four common methods of protein bonding. 

Bonding Type Strength Method of Disruption 

A. Covalent bonding 
Disulfide bonding 80-90 kcal/mole disulfide reducing 

agents (including 
mercaptoethanol, 
sodium sulfite) 

B. Non-covalent bonding 
1. Electrostatic 

interactions 

2. Hydrophobic 
Interactions 

10-20 kcal/mole ionic agents 

1-3 Kcal/mole urea 

3. Hydrogen bonding 2-10 kcal/mole urea 
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bonding. This permits more space for water entrapment. As 

seen in Table 1, hydrogen bonds individually are relatively 

weak, but are so numerous as to significantly contribute to 

product stability. Addition of moderate heat can disrupt the 

hydrogen bonding, but removal of the heat allows reformation of 

the bonds. This is the basis of thermal reversibility. 

Hydrophobic bonding can contribute to either reversible or 

irreversible gel formation. The key factor determining the 

formation of hydrophobic bonds is the initial denaturation of 

the protein's quaternary structure (Hermansson, 1978a). This 

denaturation exposes hydrophobic pockets allowing interaction 

upon renaturation. 

Ionic bonding functions primarily to bind solvent to 

protein and thus may be critical to water stability, but not 

structural stability in gels (Chou and Morr, 1979). 

Several factors affect gel formation. These include 

protein concentration.- non-protein components, pH, ionic or 

reducing agents, and heat treatment. Specific factors 

affecting gel formation in isolated soy protein and sodium 

caseinate mixtures will be discussed later. 

Measurement of Product Physical Structure 

Following gel formation, using an appropriate combination 

of protein in solvent (8-20% protein) and gel forming 
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treatment (heating, ionic adjustment, etc.), or emulsion 

formation using an appropriate stabilizing agent, some 

measurement of structural formation can be made. Two classes 

of systems can be used to measure a protein gel's physical 

characteristics. One system is a model system which can be 

used to measure a mixture of two or three components. The 

other system is a food system containing the protein in 

question and several other components, simulating the actual 

conditions of protein usage. 

Some "model system" type analyses of physical structure 

consist of measuring product structure by simply pushing some 

type of probe through the product. Several means of doing this 

have been developed. Rey and Labuza (1981) used an Instron 

probe to rupture the surface of the gel. Labuza and Busk 

(1979) studied the water absorbed from the product by capillary 

extrusion. 

A more common method of estimating product structural 

formation is through the use of rotational viscometry. 

Hermansson (1975), Kermansson (1978b) and Shimada and 

Matsushita (1981a) utilized the Haake Rotoviscometer in 

measuring viscosity. According to Kinsella (1976), however, 

the most common method of measuring structure development is 

through the use of a Brookfield viscometer. Ehnincer and Pratt 
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(1974) used a Brookfield viscometer vith conventional 

disk-shaped spindles. The lack of flow properties exhibited by 

most products (including most gels), however, has dictated the 

use of T-spindles and a helipath stand attachments to the 

Brookfield viscometer (Circle et al., 1964; Catsimpoolas and 

Meyer, 1970; Catsimpoolas and Meyer, 1971a; Catsimpoolas and 

Meyer, 1971b; Fleming and Sosluski, 1975; Tung, 1978; Voutsinas 

et al., 1983). If the T-spindle is slowly lowered into the 

product, a circular pathway is cut through the gel with new 

product always being measured. 

In the more complex "food system", the individual 

component contribution to the structure of the system is not 

always clear. The purpose of the system, however, is generally 

to estimate the final texture of the product. As with the 

model system analysis, several methods of measuring product 

structure exist. 

Raw products," which have net yet stiffened during thermal 

processing, can be measured in the same manner as the model 

system, by measuring the product's propensity to exhibit flow 

behavior. As with gel measurements, one method to measure flow 

is through the use of rotational viscometry (Zayas, 1985). 

Most sausage batters, however, are not completely homogeneous 

mixtures and do not produce a consistent enough response during 

viscometry. An improvement over viscometry for sausage 

batters is a measure of the force needed to extrude the 
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product. Bourne (1978) described extrusion as a very effective 

method of estimating the structural quality of a material which 

can flow. Surge and Acton (1984) used fine or capillary 

extrusion of a product. Hermansson (1975) and Seman et al. 

(1980) measured extrusion using a coarse probe. 

Solid products, such as most cooked meat products, present 

an entirely different problem. In cooked meat products, the 

ability to flow is severely restricted by the heat-set myosin 

gel. Several types of measurements are available, however, for 

solid meat products. Initially developed to measure meat 

tenderness, shear devices such as the single blade 

Warner-Bratzler and multiple blade Kramer shears have been used 

for sausage texture measurement (Lauck, 1975; Andersson, 1975; 

Fox et al., 1983; Sofos, 1983; Brady and Huneck, 1985). 

Compression of the product is a more common type of product 

structural analysis (Bourne, 1978; Seman et al., 1980). 

A method using double compression of the meat sample simulates 

initial chewing of the product. From the measured force curves, 

estimates of the product's hardness, cohesiveness, springiness, 

gumminess and chewiness can be derived. The original method was 

developed using the General Foods Texturometer (Brennan et al., 

1970). More recently, however, an attachment to the Instron 

Universal Testing System has replaced the Texturometer. The 

Instron Universal Testing System's separation of the crosshead 

drive and compression cell from the calibration electronics 
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results in improved accuracy and precision of measurement over 

the earlier machine. 

Structure and Function of Soy Protein and Sodium Caseinate 

Both isolated soy protein and sodium caseinate are 

proteins (long chains of amino acids linked by amide bonds). 

In order to understand the mechanism of stabilization of the 

fat mixtures, some understanding of the structural and 

functional characteristics of each protein is necessary. 

Soy protein structure 

Soy proteins for food use are found in three principal 

forms (Wolf, 1977). The first, soy flour, contains 40-

70% protein. The flours are formed by dehulling the whole 

soybeans or by dehulling and then defatting soybeans with hexane. 

By treating defatted flour with alcohol, acid or moist heat, a 

protein concentrate containing a minimum of 70% protein is 

forined. By extracting flour with dilute alkali at a pK of 7 to 

9 followed by centrifugation and pH adjustment to pH 4.5, a 

protein curd is recovered. By combining the protein curd with 

sodium hydroxide and spray drying, a sodium soy proteinate or 

isolate is formed. A soy isolate must have a minimum protein 

content of 90%. A typical soy isolate has a proximate 

composition of 96% protein, 0.1% fat, 0.1% fiber, 3.5% ash, and 

0.3% carbohydrate (Kinsella, 1979). 
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Fat stabilization requires the protein to function in 

either gelation or emulsification. To function as a gelling 

agent/ several bond sites, unstable to denaturation but able 

to reassociate must exist. As an emulsifier, the soy protein 

must possess regions within the protein structure which express 

a hydrophilic nature and regions which express a hydrophobic 

nature. 

The majority of soy proteins are globular in nature. 

Above the isoelectric point of pH 4.5, the proteins are soluble 

in water in the absence of salts. Ultracentrifugation of the 

water soluble globulins separates the proteins into four 

classes (Wolf and Briggs, 1959). One protein group is the 2S 

proteins which comprises 22% of the total proteins and consists 

of trypsin inhibitors, cytochrome C and other proteins (Wolf, 

1972). The highest molecular weight protein fraction is the 

15S protein which composes 11% of the total protein. The 15S 

protein may result from aggregation of the 1IS protein fraction 

(Lis et al., 1965). 

The two remaining protein fractions, the 7S and 1IS 

proteins, constitute 68% of the total water soluble proteins. 

These proteins are called the soybean storage proteins. This 

indicates that these proteins are synthesized and produced 

within the seed, then stored until needed to supply amino acids 
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for the germinating seedling (Larkins, 1981). The IS and IIS 

proteins are considered to contribute most of the soy protein's 

functionality through their ability to undergo association and 

dissociation reactions (Wolf, 1970). The 7S fraction contains 

hemagglutinins, lipoxygenase, and the 7S globulin called 

g-conglycinin (Christopher et al., 1970). The IIS fraction is 

a single protein called glycinin (Wolf, 1970). 

Structural details of both the IS and IIS globulins of soy 

protein have been difficult to determine because of the 

variability of breakdown products and the number of subunits 

composing each protein. 3-Conglycinin was initially believed 

to be composed of 9 subunits (Koshiyama, 1970). Thanh and 

Shibasaki (1978a) developed a different structural scheme based 

on a g-conglycinin which is composed of six isomeric forms each 

different because of their relative composition of a-, g-, and 

a*- polypeptide subunits. The subunit structures of these 

trimsrs are a '  52(31 — ) , a B  2(B2—) ,  a a ' S  V - d-3— J ,  a a S  ( w 4 — ) ,  a a  ' a  '  ( B  

5-), and aaa(B6) (Thanh and Shibasaki, 1978a). The g-subunits 

have lower contents of the amino acids glutamate, proline, 

lysine and arginine and higher contents of the hydrophobic 

amino acids valine, alanine, leucine, tyrosine, and 

phenylalanine. Trimers Bl and B2 would possess greater 

hydrophobicity than B3 and B4 vhich would in turn be more 

hydrophobic than B5 and B6. The B1-B6 proteins possess a 
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circular structure, which at neutral pH and low salt 

concentration associates or dimerizes to form a double circle, 

9S, protein (Figure 1). 

Although Wolf (1970) indicated that disulfide linkage was 

a common property of 7S and IIS proteins, the effect of 

disulfide bonding in the 7S protein appears to be, at best, 

minimal. This is because only two cystine sites exist per 

molecule (Wolf, 1972). Hoshi et al. (1982) indicated that 

disulfide links did occur between a and a' subunits initiating 

aggregation, but that 6 subunits did not form disulfide 

linkages with a or ct ' subunits. 

The lis globulin, glycinin, has been easier than B-

conglycinin to characterize. As early as 1957, Catsimpoolas 

et al. (1967) had hypothesized that 1IS protein was composed of 

at least 12 subunits. Only 8 subunits, four acidic (Al, A2, 

A3, A4) and four basic (Bl, B2, 33, B4), have been isolated 

(Kitamura et al., 1975). The subunits are linked by disulfide 

bonds in the following manner: Al and A2 to B3, A3 to Bl and 

B2, and A4 to B4. Badley et al. (1975) described the structure 

of the lis molecule as two similar monomers each consisting of 

3 acidic and 3 basic subunits (Figure 2). 

Chemically, the acidic subunits are larger in structure 

having molecular weights of 37,000 to 42,000, while basic 

subunits possess molecular weights of 19,000 to 20,000. In 
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Refolding  ̂ Trimerization 
a, o', P — A • O 

Polypeptides 4S Monomers 

Low Salt 

pH 7 

9S Hexamers 7S Trimers 

Figure 1. Formation of 7S and 9S proteins from alpha, 
alpha prime and beta subunits (from Thanh and 
Shibasaki, 1978a) 



Figure 2. Subunit arrangement in IIS soy protein 
(from Badley et al., 1975) 
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addition./ acidic subunits contain relatively more aspartate and 

glutamate residues while basic subunits tend toward a more 

hydrophobic nature with larger quantities of leucine, valine 

and alanine (Moreira et al., 1979). Further research by Hoshi 

and Yamauchi (1983) more clearly defined the effect of 

disulfide bonds in IIS formation. Without disulfide reducing 

agents, the 1IS globulin remained essentially unchanged with 

some A4 release. Addition of disulfide reducing agents 

resulted in separate banding on polyacrylamide gels of A4, 

A1-A3 and B1-B4 bands. It appears that at least six disulfide 

bonds attach basic and acidic subunits (Catsimpoolas et al., 

1969; Badley et al., 1975). Other bonds involved in IIS 

formation are hydrophobic, electrostatic and hydrogen bonds 

(Wolf and Tamura, 1969). 

Soy protein functionality 

To be able to form a gel structure, a protein must have 

the ability for protein to protein interaction. The previous 

discussion of the 7S and IIS proteins indicated the presence of 

charged amino acids,- hydrophobic amino acids and sulfur 

containing amino acids, all of which provide potential sites 

for protein to protein interaction. 

To form a gel structure, native soy protein must first be 

denatured to expose bonding sites. Several specific protein 

dénaturants exist including alcohol, which denatures 

hydrophobic areas; urea, which denatures hydrogen bonds; and 
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mercaptoethanol, cysteine, and sodium sulfite, which denature 

disulfide bonds. General denaturing agents include alkali, 

changes in pH or salt concentration and detergents. For food 

use, however, the most important dénaturant of soy protein is 

heat. 

When isolated soy protein is heated for 10 to 30 minutes 

at 70-80°C, gelation occurs (Furukawa et al., 1979; German et 

al., 1982). When soy is included in a food stuff, the 

phenomenon of gelation is a critical contributor to textural 

development. The steps which occur in soy gelation are shown 

in figure 3. In step A, a sol phase consisting of a soy 

protein dispersion in water is formed. In the sol phase, the 

soy protein is hydrated by water, but denaturation is at a 

minimum (Kinsella, 1976). Step B involves an irreversible heat 

transformation of the sol to a progel state. The progel 

formation is characterized by the denaturation of the native 

soy intramolecular bonds. Denaturation is defined as a major 

change from the native structure without alteration of the 

amino acid structure (Tanford, 1958). With added heat, soy 

intramolecular hydrogen, disulfide and hydrophobic bonds are 

denatured (Shibasaki et al., 1969). This results in the 

unfolding of the quaternary structure of soy protein and 

release of the 2S, 7S, IIS, and 15S protein subunits together 

with the exposure of internal subunit structure (Wolf, 1972). 

The progel (labelled C) is an intermediate form identified by 
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Figure 3. Heat gelation mechanism of soy protein isolate 
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an increase in viscosity of the sol prior to cooling and gel 

formation (Circle et al., 1964; Catsimpoolas and Meyer, 1971b). 

The increased viscosity characteristic of the progel is the 

result of hydrophobic interactions between protein subunits. 

These hydrophobic interactions are favored at high temperatures 

(Scheraga, 1963). 

In step D, cooling of the progel allows an orderly 

reformation of hydrogen, ionic and covalent bonding patterns 

resulting in gel formation. The relative importance of the 

three types of bonding is unknown. Low concentrations of 

disulfide bond reducing agents decrease the gel hardness of 

heat-induced gels (Furukawa and Ohta, 1982). Hydrogen bonding, 

promoted by low temperatures, would also be a potential method 

of gel formation (Catsimpoolas and Meyer, 1971a). The gel to 

progel reversibility due to heating and cooling shown in steps 

D and E tends to support the value of hydrogen bonding as the 

primary bonding source for soy gel formation (Tombs, 1969). 

Prolonged excessive heat, however, results in metasol formation 

(step F)- The metasol formation was characterized by Wolf 

(1970) as the aggregation of the 1IS protein to form an 80-100S 

aggregate which continues to increase in size until 

precipitation occurs. 

A further understanding of metasol formation is not 

critical since metasol formation should not be possible during 

fat mixture production. Gel formation is likely, however, and 

to examine how heat induces gel formation in soy protein, the 
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first step is to determine how heat affects individual soy 

proteins. Prior to 1982, the only reported gelation study 

utilizing IS protein vas by Umeya et al. (1980). These authors 

measured an increase in hardness in 7S protein after heating 

and cooling. Measuring aromatic amino acids in 7S soy protein, 

Yamagishi et al. (1982) found few alterations in the quaternary 

structure after heating at 100°C. Phenylalanine residues were 

slightly more exposed, but not as much as when hydrogen bonds 

were disrupted. Tryptophan residues, on the other hand, 

appeared to locate even more into the interior of the molecule. 

Overall, heat did not have a major effect on the structure of 

isolated 75 protein. 

At low protein concentrations (0.5%), IIS protein, when 

heated, became turbid and dissociated into acidic and basic 

subunits (Hashizume and Watanabe, 1979). At higher protein 

concentrations (5%), Mori et al. (1981) saw IIS aggregation 

followed by gelation. They concluded that protein 

concentration determined whether disaggregation or gelation 

occurred. Yamagishi et al. (1981) used a sulfhydryl blocker 

and still observed aggregation upon heating. When hydrogen and 

ionic bonding were inhibited, the aggregation seen was believed 

to occur by one of two mechanisms. Either hydrophobic bonding 

occurred or buried sulfhydryl groups were exposed which then 

became reactive. Nakamura et al. (1984) indicated that soluble 

aggregates of IIS protein, not precipitates, formed the 
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self-supporting gel. 

In general, evidence indicates that little activity occurs 

in 7S proteins when heated, but IIS exhibits gelation behavior. 

Care must be taken, however, in relating individual protein 

behavior to soy gelation in general. Several interactions 

between subunits during heating are known. S-Subunits of the 

7S protein and isolated 118 polypeptides were seen to 

spontaneously aggregate causing gelation at temperatures above 

90'C through hydrophobic bonding (Wolf and Tamura, 1969). When 

complete 7S and 1IS proteins were heated for 30 minutes at 

100°C, however, no aggregation occurred (Damodaran and 

Kinsella, 1982; German et al., 1982). The lack of aggregation 

was attributed to a stabilizing effect of 7S protein which 

prevented IIS self-aggregation. The specific type of 

interaction was elucidated by Damodaran and Kinsella (1982) to 

be electrostatic in nature. They found that adjustment of the 

the ionic strength to 0.5 M NaCl, resulted in the breakage of 

the soluble 1IS (basic subunit) and 7S complexes, permitting 

basic subunit aggregation. Yamagishi et al, (1983) found that 

disulfide bonding occurred between basic 1 IS subunits and the 

%-subunit of 7S protein. This interaction reportedly resulted 

in protein aggregation. Yamagishi et al. (1983) also found 

a,a', 7S interaction with the acidic subunit of 1IS protein. 

Utsumi et al. (1982) confirmed the B-basic subunit interaction, 

but found no contribution of act' subunits. They did find. 
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however, that the gelation mechanism of soy protein appeared to 

be a combination of basic to basic 1IS subunit interaction via 

disulfide bonding and IIS basic subunit and 6-7S subunit 

interaction via electrostatic bonding. 

A gelation mechanism is well characterized during the 

heating of soy proteins. Schmidt et al. (1981) indicated that 

in systems where soy concentrates were utilized to stabilize 

fat, the mechanism of stabilization was by entrapment of fat 

particles followed by heat setting or gelation. One important 

feature seen in the previous study which is usually not seen in 

gelation studies was the presence of lipid material. The 

addition of fat results in a problem in interpreting results 

when the protein in question exhibits gelation and 

emulsification behavior. An early study by Catsimpoolas and 

Meyer (1971b) indicated that lower fatty acid chain length, 

increased lipid saturation, phospholipids and cholesterol 

tended to increase the soy/water/fat mixture viscosity. Kamat 

et al. (1978) indicated denaturation was required as an initial 

step to permit soy protein to lipid interaction. Shimada and 

Matsushita (1981b) also demonstrated an increase in product 

viscosity following the introduction of lipid into a water/soy 

protein mixture. Miura and Yamauchi (1983) explained this 

increase in viscosity in mixtures containing phospholipids. 

They felt a protein-phospholipid interaction increased the 

effective particle size resulting in increased intermolecular 
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entanglements. It is obvious, is that if a protein to lipid 

interaction results in the same textural increase as a protein 

to protein interaction, the measurement of that textural 

increase is a questionable method of measuring gelation. 

Soy protein functionality is not necessarily limited to 

its ability to form a gel. It is also able to specifically 

interact with fat. The method of this interaction is unclear. 

The fat may be trapped in the protein network during protein 

gelation resulting in fat binding. Fat may also be emulsified 

•with protein associating between the outer layer of fat 

droplets and the aqueous exterior. Regardless of the method of 

fat stabilization, however, fat stabilization occurring in 

studies incorporating soy protein is generally referred to as 

emulsification. Several methods of estimating emulsion 

characteristics have already been discussed. 

Emulsion capacity and stability are the two tests most 

frequently used to estimate the ability of soy to emulsify fat. 

Using Supro 520, isolated soy protein, with an unadjusted pH of 

6.88, Hutton and Campbell (1977) determined soy protein to have 

an emulsion capacity of 0.59 g of oil per g of protein on a 

dry weight basis. Added salt resulted in a general decrease in 

emulsified oil. The inhibitory effect of salt was greater at 

low temperature than at higher temperature (Ehninger and Pratt, 

1974). Aoki et al. (1981) measured the emulsion stability of 

isolated soy protein as a function of pK and protein 
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solubility. They found that as protein solubility increased, 

stability also increased. Stability was shown to be minimal at 

a pH of 4.5 (isoelectric point), but rose substantially at pH 

7.0. Results of Franzen and Kinsella (1975) and Volkert and 

Klein (1978) agreed with these findings, but Kamat et al. 

(1978) postulated that functional capability should be maximal 

at the isoelectric point. Flint and Johnson (1981) measuring 

oil-water interfacial film formation noted film formation from 

pH 1.0 to 6.5, but detection of film formation beyond a pH of 

7.4 was impossible. 

An elaborate examination of the functional capabilities of 

soy protein isolate during heating was performed by Voutsinas 

et al. (1983), who measured protein surface hydrophobicity 

using the fluorometric method of Kato and Nakai (1980). 

Protein hydrophobicity, protein solubility, fat binding 

capacity, emulsion stability, and emulsion activity index were 

compared. At a pK of 5.5, increasing the duration of heating 

was detrimental to protein solubility, emulsion stability and 

fat binding capacity when salt was included. Emulsion activity 

index remained unchanged and surface hydrophobicity increased. 

All characteristics measured except surface hydrophobicity 

increased to a great extent when the pH was increased from 5.5 

to 7.2. 

In order for classical emulsion formation to occur, the 

protein must absorb at the oil/water interface thus reducing 
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interfacial tension. Keshavarz and Nakai (1979) using soy 

protein isolate found that interfacial tension did decrease 

with increasing levels of protein hydrophobicity. 

As with gelation, individual soy protein isolate subunits 

demonstrate differences in their ability to emulsify fat. The 

7S globulin clearly exhibits greater emulsifying properties 

than lis globulins (Saio and Watanabe, 1978; Aoki et al., 1981? 

Yamauchi et al., 1982). Aoki et al. (1981) noted that when 

individual soy proteins were isolated, the emulsifying 

properties of 7S globulin exhibited little sensitivity to heat 

while lis globulin retained heat sensitivity. (This agrees 

well with the effects of heat on soy proteins discussed 

earlier.) Kamat et al. (1978) indicated that as was the case 

for gelation, the native protein had to be denatured before it 

would function properly as an emulsifier. 

Caseinate structure 

Milk proteins in the forms of caseins and caseinates are 

commonly used for the production of numerous food products 

including coffee whiteners,- instant breakfasts,- powdered 

toppings, etc. (Muller, 1971). For use in meat products, 

government regulations prohibit the use of caseinates in any 

but non-specific loaf-type products (U.S.D.A., 1973). The 

primary reason given for this regulation is the superior 

functional properties of caseinate. Caseinate usage would 

permit the use of either poor quality meat or the adulteration 
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of the meat product with high levels of water. 

The manufacture of caseinate begins with pasteurization 

and cream removal from whole milk. The casein fraction of the 

milk is then precipitated by acidifying the skim milk to a pH 

of 4.5 (Kinsella, 1984). This is commonly accomplished using 

HCl, but may also result from acid production by fermentative 

bacteria. The acid precipitate is then neutralized to a pH of 

6.7 by treatment with any one of a number of alkali compounds 

including NaOH, KOH, Ca(0H)2,and NH4OH (Muller, 1971). This 

treatment also enables the formerly insoluble casein protein to 

become a soluble caseinate. The resultant solution is then 

spray or roller dried to form a dry caseinate salt. The high 

viscosity of caseinate solutions requires an initial low total 

solids content to allow passage through the drier. This 

results in high drying costs and contributes to high product 

costs for caseinate salts. At this point, if the caseinate is 

to be used in a food product, sterilization occurs. 

Whole caseinate consists of a number of subunit proteins. 

One group, called the a-s protein group, consists of a Ca++-

sensitive protein group and constitutes 50-55% of the protein 

in casein (Bloomfield and Mead, 1974). B-Casein is less 

Ca++-sensitive and constitutes 30-35% of native casein (Morr, 

1979a). A third group, the r-caseins, accounts for 5% of the 

casein protein. (Several of the Y-caseins resemble portions 

of the S-casein chains and may actually be subunits of 
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6-casein.) The final casein subgroup, <-casein, constitutes 

15% of the total casein protein. c-Caseins are not Ca++ 

sensitive and act as the protein component which allows the 

assembly of the casein micelle when Ca++ is present (Bloomfield 

and Mead, 1974). 

Caseinate functionality 

Caseinate demonstrates effective functionality as an 

emulsifying agent. Measuring the emulsifying activity index of 

sodium caseinate, Pearce and Kinsella (1978) rated caseinate as 

a protein containing moderate emulsifying activity, lower than 

succinylated yeast, but twice as functional as isolated soy 

protein. Several factors affect this emulsification ability. 

InKlaar and Fortuin (1959) dissolved 5 g of caseinate in 90 ml 

of water, and after adding 50 ml of oil, measured several 

emulsion characteristics. Although the nitrogen solubility of 

caseinate was high (97.8^), the emulsion was unstable with 

release of 54.5% of the oil used. An earlier study by Pearson 

et al. (1965) examined the effect of salt type, ionic strength 

and pH on emulsion capacity and stability- Potassium caseinate 

proved to be an effective emulsifier. Mita et al. (1973) using 

benzene in water stabilized by caseinate found a pH dependent 

decrease in interfacial tension with the lowest tension at pH 

5.0. In addition, the size the benzene globules formed was pK 

dependent, with minimum size occurring at a pH of 7.0 or above. 

Lower protein concentrations increased the relative emulsifying 
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capacity of the protein. This agreed with Sabharwal and 

Vakaleris (1972) who found maximum emulsion capacity at the 

lowest concentration of caseinate. 

In food products, caseinates function to stabilize 

emulsions by stabilizing the oil-water interface in the 

classical manner described earlier (Phillips, 1981). Surface 

polypeptide chains also self-associate at the interface 

resulting in the formation of a protein film (Welsby et al., 

1982). In addition, the entire product increases in viscosity, 

decreasing the ability of fat globules to coalesce (Welsby et 

al., 1982). When caseinate emulsion instability occurred, 

aqueous release was seen. 

The molecular events involved in caseinate emulsification 

are well characterized. Caseinate consists of a non-uniform 

distribution of hydrophilic and hydrophobic residues 

(Bloomfield and Mead, 1974), which results in a ready 

capability to locate at the oil and water interface. In 

addition, sodium caseinate is highly soluble enabling 

distribution in the aqueous phase (Morr, 1979b). 

The individual subunits of caseinate predispose the 

caseinate protein to a great deal of hydrophobic interaction. 

The major subunit of casein, a-s casein, consists of three 

predominantly hydrophobic regions located in amino acids 1-42, 

90-113, and 132-199 (Mercier et al., 1973). The section 42-89 

contains seven phosphorylated serine residues forming a small, 

but extremely hydrophilic, area (Srunner, 1977). The 
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hydrophobic regions are not buried when the a_s casein is found 

in the monomeric form. Once the casein micelle is disrupted, 

Ono et al. (1974a) estimated that 80% of the hydrophobic 

tyrosine and tryptophan residues are exposed to the solvent. 

Studies of the secondary structure by Ono et al. (1974b) 

indicated an unordered form predominated over a-helix and 

g-pleated sheet structure eight to one to one, respectively. 

This indicates that bonding in the a-s casein is predominantly 

through weak hydrophobic interaction (Jones, 1954). No 

disulfide bonding is possible in a-s casein because the 

necessary sulfide loci are lacking. The protein should thus 

easily be denatured, allowing maximum lipid interaction. 

Recently, the effect of specific segments of the a-s casein 

fraction in emulsification was investigated. Using limited 

hydrolysis, Shimizu et al. (1983) found that removal of the 

hydrophobic N-terminal segment (1-23 residues) reduced the 

ability of a-s casein to emulsify oil. Removal of the 

C-terminal hydrophobic segment, however, did not reduce a-s 

casein's ability to emulsify fat. 

6-Casein contains a charged N-terminal area (amino acid 

residues 1-42) and a highly hydrophobic remainder 

(Ribadeau-Dumas et al., 1972). The hydrophobic area contains 

an even distribution of proline residues preventing a-helix 

structure. Arima et al. (1979) indicated that although 6 

-casein possesses a nearly total random coil structure, it does 
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form a tight hydrophobically bound structure when heated. 

The remaining primary casein is c-casein. Unlike the a-s 

and g-caseins, K-casein has the potential to form one disulfide 

bond between cysteine residues (Jolies et al., 1972). 

Swaisgood and Brunner (1963) suspected the formation of 

disulfide bridging on the basis of measurements of the 

dispersion of c-casein in solution after addition of 

mercaptoethanol. Unlike a-s caseins, K-casein contains only 

one phosphoryl serine residue. The primary hydrophilic area in 

K-casein is a carbohydrate moiety attached to the 131 threonine 

amino acid residue (Brunner, 1977). As in the other caseins, a 

high content of distributed proline residues (11.8%) prevents 

the formation of a consistent ordered structure (Mercier et al., 

1973). 

In summary, the amphipathic nature of all major casein 

protein subunits together with a lack of ordered structure and 

covalent bonding sites should favor lipid-water interface 

formation. In addition, the lack of disulfide linkage sites 

should lessen the need for a great deal of protein denaturation 

in order to promote protein functionality. 

Along with emulsification ability, casein possesses the 

ability to form a gel structure. The primary method of forming 

a gel with casein is to expose the casein to calcium 

concentrations of 0.4-0.6% (Welsby et al., 1982). Two possible 

mechanisms for this gelation have been suggested. Calcium may 
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interact covalently between phosphoserine residues on adjacent 

caseins or increased hydrophobic bonding may occur due to 

steric control by phosphorus-calcium molecular alignment. 

Casein will also gel when exposed to the enzyme rennin. 

Once again, two theories for gelation exist. Tsugo and 

Yamauchi (1956) found breakage of ot-s proteins into a-si and 

G-s2 fragments using rennin. This was believed to reduce 

casein solubility and result in the formation of a 

gel-precipitate. Wake (1959) proposed that c-casein is 

attacked by rennin, breaking off the carbohydrate portion, 

forming para-c-casein which prohibits proper solubilization 

resulting in gel-precipitate formation. 

A critical aspect concerning gelation in casein protein is 

the lack of a thermal effect. The high heat stability of 

casein is generally attributed to its lack of ordered structure 

and to its lack of disulfide bond formation (McKenzie, 1967). 

Tovler et al, (1981) did not find a, decrease in viscosity after 

addition of disulfide reducing agents in casein solutions. 

Hayes et al. (1968) using calcium caseinate, described gel 

formation during heating. His gels formed at temperatures of 

50-60°C., but reliquified upon cooling. In addition, in order 

to permit gelation, the addition of divalent cations was 

required. In general, gelation of casein proteins due to 

thermal effects is negligible in most food applications 

(Hermansson, 1975). 
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Use of Non-meat Proteins in Meat Products 

Several non-meat food protein sources have been examined 

for use in meat products. The reasons for this are numerous. 

Some proteins such as soy and whey have previously been 

incorporated in meat products (Gallimore, 1975), but are being 

re-examined with a view to improve cost and supply factors. 

Other proteins including plasma protein, wheat gluten, corn 

gluten and cottonseed protein are being examined as new sources 

of high quality proteins which are currently underutilized 

(Siegel et al., 1979; Deshpande et al., 1983). 

Initially added as filler proteins, non-meat proteins are 

also added to contribute functional characteristics to meat 

products (Rakosky, 1970). Functional characteristics most 

commonly contributed by non-meat proteins include fat 

emulsification, water and fat binding, and textural 

improvement. Siegel et al. (1979) studied the ability of 

wheat gluten, egg white, plasma, soy isolate, dried skim milk, 

corn gluten and sodium caseinate to bind meat chunks by forming 

gels. They found meat binding ability and gel forming 

ability in these proteins, but through differing mechanisms. 

Numerous studies have examined the emulsifying characteristics 

of non-meat proteins. Caldironi and Ockerman (1982) studied 

the emulsion characteristics of blood globin and plasma 

proteins and found superior functionality in plasma protein, 

but poor globin functionality. Ozimek and Poznanski (1981) 
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discovered an advantage in emulsion characteristics when 

textured milk protein was used to replace meat protein. 

Non-meat .proteins have had a long history as meat analogs. 

In 1866, J. Kellogg developed meat analogs made of nuts 

(Kinsella, 1983). The use of soy protein in analogs was not 

possible until Boyer (1954) developed a method to produce soy 

fibers which were suitable for human consumption. Meat analog 

sales in 1969 were estimated to be $10 million (Wolf and 

Cowan, 1975), and future markets for meat analogs appear 

assured as a result of nutritional concerns about meat 

products. 

Soy protein has, however, been used to a greater extent 

for its functional properties as a meat product additive 

than as a meat analog. The first widespread application of 

soy protein in meat products was as a binder and extender in 

ground beef. The major impetus behind the use of soy in ground 

beef was a USDA ruling in February, 1971, permitting up to 30% 

soy extender in ground beef for the government school lunch 

program (Wolford, 1973). In March 1973, Red Owl Supermarkets 

introduced a 75% ground beef, 25% hydrated soy protein in 50 of 

its 400 retail stores (Horan, 1974). At a cost savings of 20 

cents per pound, the extended beef was quickly accepted by the 

consumer and other supermarket chains. In early 1974, 30-40% 

of all supermarkets were carrying the soy-beef product 

(Gallimore, 1976). More than 30% of all ground beef was 
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purchased in the form of the soy-beef blend at its peak sales 

period. Gallimore (1976) indicated that the sales of the blend 

decreased to 21% of all ground beef by March 1974 and 10% by 

November 1975. Gallimore suggested that a decrease in beef 

prices lessened the appeal of the soy-beef blend, but 

recommended it as a method of stretching beef during periods of 

tight supply. At this time, the soy-beef blend is 

predominantly used in the school lunch program and the 

hospital/nursing home segment of the food service industry. 

In ground beef products, when soy protein vas used to 

replace meat proteins, several physical changes occurred in the 

characteristics of the resultant patties. McWatters (1977) saw 

improvement in water retention and protein contents using soy 

protein, but levels above 5% replacement adversely affected 

color and texture of the products. Andersson (1975) found a 

great decrease in patty firmness with 6, 12 or 24 % added 

isolated soy protein= It appears that the decrease in 

product texture was an important negative factor in the 

acceptance of soy extenders, but that the key factor was the 

"beany", or "green" off flavors found in soy protein blend 

products (Rackis et al., 1975). 

A secondary use of soy protein, aside from simply to extend 

ground beef, is its use to contribute functionally to the meat 

product. This functional contribution includes emulsification 

and gelation improvement. As early as 1955, Rock et al. (1955) 
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demonstrated improved stability in marginally stable meat 

emulsions when soy protein isolate was added. Rakosky (1970) 

indicated that incorporation of soy isolate was a good method 

to improve appearance, texture and taste of comminuted meat 

products at a low cost. Several other authors have indicated 

improved texture resulted when soy protein was added to 

comminuted meat products (Hermansson, 1975; Sofos and Allen, 

1977). But other reports indicate a decrease in textural 

firmness (Hermansson, 1975; Lauck, 1975; Comer and Dempster, 

1981), flavor (Smith et al., 1973; Sofos, et al., 1977; Hand 

et al., 1983; Keeton et al., 1983) and color (Smith et al., 

1973) when soy protein was added to comminuted meat products. 

Overall, the most obvious advantages to the use of soy protein 

in meat products appears to be its versatility and low cost, 

and the most obvious disadvantages are a decrease in firmness 

and a decrease in product flavor. 

Several nutritional questions have arisen with increased 

addition of soy protein in the diet. Historically, the 

trypsin inhibitor activity of raw soybeans has been a concern. 

The trypsin inhibitor activity of several soy-added products 

was studied by Von Stratum and Rudrum (1979). They found no 

increase in trypsin inhibitor activity in soy-added sausages, 

minced meat or meat stews. A second potential nutritional 

problem with soy protein is lowered protein value or PER 

(protein efficiency ratio) values and amino acid scores seen 
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when soy is compared to animal protein. Cichon et al. (1980) 

found a decrease in PER in soy isolates or combinations of meat 

and soy isolates. The limiting amino acids are the sulfur 

containing amino acids. However, the lower sulfur amino acid 

content in soy protein is not considered a major problem in 

humans because of their relative lack of hair production 

(Young et al., 1979). The major concern about the use of soy 

in meat is the potential decrease in mineral absorption from 

the product due to the presence of phytic acid. Erdman 

(1979) indicated that the phytic acid in soy resulted in a 

lowered absorption of several minerals including zinc, iron, 

calcium, magnesium and phosphorous. Other authors including 

Welch and VanCampen (1975), Von Stratum and Rudrum (1979) 

and Young and Janghorbani (1981) indicated that most 

minerals in soy protein are readily available, so that 

combinations with meat should not alter mineral availability 

tc any great extent. 

It is obvious that non-meat proteins added to meat 

products result in assorted physical and functional changes. 

It is likely that the meat and non-meat proteins interact in 

some manner. Recently, a few researchers have begun to examine 

the molecular interactions between soy and meat proteins. Peng 

et al. (1982a) reported that IIS soy protein interacted with 

myosin when temperatures of 85 to 100°C were reached. The 

primary interaction found was between IIS and the myosin heavy 
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chain subunit. In a second study, Peng et al. (1982b) 

confirmed a myosin-llS interaction, but found little 

interaction between native muscle protein and 1IS soy 

protein. Using electron microscopy, Haga and Ohashi (1984) 

found that the cold insoluble soy fraction (IIS protein) 

formed networks with myosin B prior to heating. At 

temperatures of 70 to 100°C, a myosin gel supported by a 

surrounding soy gel appeared to form. Lin and Ito (1985) 

found that myosin B and soy protein resulted in a loss of 

extensibility compared to myosin B alone. They believed 

myosin B bound to actin in the myosin B complex simply by 

mixing with no heating. It appears that the potential for an 

interaction between muscle protein and IIS soy protein exists, 

but the conditions necessary for this interaction, and the 

effect of the interaction on texture, are not clear. 

Unlike the use of the assorted soy proteins, the use of 

sodium caseinate in meat products has a much more limited 

history. The main reason for this is Federal Meat and Poultry 

Inspection regulations (U.S.D.A., 1973) which prohibits the use 

in the United States of caseinate in any product other than 

non-specific loaf products. Caseinate in Europe, is the 

primary non-meat protein used to stabilize fat emulsions. 

A relatively small number of studies has examined the 

functionality of sodium caseinate added directly to a meat mix. 

Caseinate when added to meat emulsions was shown by Comer and 
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Dempster (1981) to result in greater raw product stability than 

any of 12 other proteins including lean beef chuck and soy 

isolate. In the same study, however, a decrease in texture 

(gel breaking strength) was seen compared to all other 

proteins. Hermansson (1975) found no gelation possible using 

caseinate, and found that extrusion of meatballs produced with 

4% caseinate required less force compared to isolated soy 

protein and whey protein concentrate. No increase in product 

strength occurred with heating of a caseinate solution. Siegel 

et al. (1979) and Terrell et al. (1982) were unable to achieve 

binding of meat pieces through the use of caseinate. 

Stabilized Fat Mixtures 

Although the formation of gels or measurable meat protein 

binding has not been demonstrated when heated, caseinate has 

found popularity in meat products as a fat stabilizer. One 

method of stabilizing fat using caseinate was developed in 

Holland by DMV, Inc. Methods for the production of stabilized 

fat emulsions using caseinate have been developed for several 

specific products including canned meats, liver sausages, 

minced meat, etc. (Hoogenkamp, 1979; Hoogenkamp, 1985). 

Numerous factors affect the fat mixture made using 

caseinate. The specific type of fat, the location on the 

animal where the fat originated, the temperature of water used, 

the duration of chopping, the fat/protein/water ratio and the 
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manufacturing method affect stability (Brouwer et al., 1976; 

Visser, 1980; Jongsma, 1982; Visser, 1983a). Several of the 

factors have been well defined. Others, including 

manufacturing method and temperature of water used have been 

reasonably well characterized. Most of the data have, however, 

been developed by the industry. 

Two non-industrial experiments dealing with the use of 

caseinate stabilized fat mixtures have recently been published. 

In one. Hand et al. (1983) formed a fat batter which was 

chunked and used in mortadella sausage. The caseinate fat 

mixture was found to have high weight loss, reportedly lost as 

encapsulated fat. In addition, sausage with this product added 

was rated much worse than a conventional product in cohesion, 

flavor and overall palatability. Zayas (1985) produced 

emulsified meat products using caseinate stabilized fat 

mixture. He determined that pre-cmulsified fat made using 

caseinate contained smaller fat droplets which were much more 

stable to centrifugation than fat stabilized using soy isolate. 

Frankfurters produced using pre-emulsified fat exhibited 

greater viscosity and water holding capacity. In the finished 

product, yield was improved by 6-7%, but compression indicated 

a lower textural development. In most cases, sensory analysis 

of frankfurters was similar between products with or without 

fat mixtures. The only exception was tenderness, where 

products made with added emulsion were preferred. 
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Little data are available concerning the use of isolated 

soy protein in a stabilized fat mixture. Soy protein 

concentates in either 1/4/7 or 1/10/15 protein/water/fat ratio 

were produced by Schmidt et al. (1982). The 1/4/7 product 

developed much greater stability to pasteurization or 

sterilization than did product with lower levels or no soy 

protein concentrate. They concluded that soy protein 

concentrate surrounds tiny fat and moisture droplets, then 

stabilizes them as a result of heat induced gelation. 

As described earlier with caseinate, Hand et al. (1983) 

produced mortadella sausage with fat mixtures stabilized using 

isolated soy protein. Less total weight loss was seen using 

soy protein than caseinate, but losses were predominantly in 

the form of free liquid oil. Products incorporating soy fat 

mixtures performed significantly worse in cohesion, flavor and 

overall palatability than did mortadella produced using pork 

backfat chunks-

Functionality of Meat Proteins 

The primary interest in this study rests with the 

functionality of the two non-meat proteins, sodium caseinate 

and isolated soy protein. Addition of these proteins to a meat 

system, however, means that the functionality of the meat 

P^Q^sin becomes intertwined with that of the non—meat proteins. 

As mentioned in the introduction, emulsion-type sausages 

are noted for their improved fat stability. Several steps are 
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involved in the formation of the emulsion matrix of an 

emulsified meat product. First, the muscle protein is 

extracted in a salt and water solution. Maximum extraction vas 

seen by Gillett et al. (1977) when a salt concentation of 9% 

was used. Hansen (1960) reported that after extraction, 

myosin and actomyosin concentrated at the fat globule surface. 

This lowered the interfacial tension at the oil/water interface 

resulting in improved emulsion stability. 

While the myosin and actomyosin proteins are being 

extracted, the chopping process also serves to decrease fat 

particle size. A reduction in fat particle size both aids in 

the ease of distribution of the fat particles and decreases the 

relative protein coat to fat ratio. If overchopping takes 

place, the available protein will be extended over an excessive 

fat surface area resulting in a less stable protein coat and a 

less stable emulsion. 

Microscopic examination of meat emulsions originally led 

researchers to the conclusion that fat particles were indeed 

covered by a protein coat (Helmer and Saffle, 1963; Borchert et 

al., 1967). Jones and Mandigo (1982) showed microscopic 

evidence of a protein coated fat globule. The stability of the 

protein layer was dependent upon chopping temperature. The 

warmer the chopping temperature, the greater the degree of 

rupture in the protein coating. Other authors, however, have 

criticized the emulsion theory of fat stabilization. Hamm 
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(1970) believed that fat is mechanically embedded in a protein 

matrix. Van Den Oord and Visser (1973) indicated that fat 

comminution typically performed is not sufficient for actual 

emulsion formation. Schut (1976) granted that a meat emulsion 

is not a "true" emulsion, but kinetically functioned in a 

manner similar to traditional emulsions. Recently, Katsaras 

and Stenzel (1984) and Schmidt et al. (1982) detected, using 

elecron microscopy, not only protein film coated fat globules, 

but also fat globules which contained no distinct protein coat. 

Results of a limiated amount of research have indicated 

that the heavy meromyosin subfragment S-1 is the primary 

portion of myosin contiributing to fat emulsification (Kato and 

Nakai, 1980; Borjedo, 1983). Since surface hydrophobic regions 

are common in this region, minimal protein denaturation is 

required for film formation. 

Meat provides one of the most obvious examples of protein 

gelation. Thermal gelation of muscle proteins induces the 

stiffening of the sausage matrix during processing. Schweid 

and Toledo (1981) determined that at 33-36®C, insolubilization 

or gelation of meat proteins begins. Hermansson (1986) 

indicated that with myosin, processing conditions may result in 

different types of gelation. 

The mechanism of meat protein gelation has been studied 

extensively. Yasui and Ishioroshi (1980) determined myosin 

and actin to be the primary proteins involved in meat gelation. 
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Samejima et al. (1982), using purified myosin and actin 

together with troponin and tropomyosin, clearly demonstrated 

that the two regulatory proteins had no influence on gelation. 

The exact effects of actin and myosin are less clear. 

Samejima et al. (1969) indicated myosin was capable of 

self-association or gelation. Several authors have indicated 

that myosin is the key binding protein in meat sausages 

(Nakayama and Sato, 1971; Hegarty et al. 1963; Galluzzo and 

Regenstein, 1978). 

Actin is known to self-associate forming linear gels 

(Oosawa et al., 1959; Maclean-Fletcher and Pollard, 1980). A 

study by Fukazawa et al. (1961) indicated that in a model 

system, actin would not self-associate. Actin has been 

demonstrated to potentiate the gel formation of myosin 

resulting in increased gel strength, but in order for actin to 

be effective, fibrous or F-actin is required. Yasui et al. 

(1982) indicated that maximum gel strength was formed in a 

system containing 80% myosin and 20% F-actin. 

Samejima et al. (1985) presented evidence supporting a 

two phase gelation mechanism. In the first phase, the head 

region of the myosin molecule began gelling due to sulfhydryl 

bonding of the S-1 region with F-actin (Ishioroshi et al., 

1980). This phase takes place at 20-25°C. At 50-70*C 

hydrophobic and hydrogen bonding due to denaturation and 

bonding contributions of the light meromyosin rod regions 

increase gel rigidity (Foegeding, 1983). 
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Until recent years, meat emulsion theory has predominated 

as the main method of fat stabilization in emulsified meat. 

Recently, however, emphasis has been shifting from 

emulsification to a "fat trapping" system. In this system, 

classical emulsification of a sort may contribute to stability 

of the product prior to thermal processing (Jones, 1984). 

During thermal processing, the aforementioned gelling of the 

meat proteins takes place, permanently trapping the fat 

pockets within the gel matrix (Ziegler and Acton, 1984; Comer 

et al., 1986). 
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EXPERIMENTAL PROCEDURE 

Fat Mixture Production 

Fat mixtures were produced by decreasing fat particle 

size to the point where the fat could be intimately associated 

with added protein and water. The key to the stability of the 

fat mixtures was the optimization of ingredient ratios and 

physical treatment of the mixture. To this end, the 

experimental procedure for part one of this experiment 

consisted of a series of minor ingredient and procedural 

changes designed to identify the optimum fat mixture process. 

Mixtures of protein, water and backfat or oil were 

produced during this research. During the initial process of 

developing protein stabilized fat mixtures, the protein source 

(sodium caseinate or isolated soy protein) was mixed with water 

and pork backfat in the ratios presented. The protein/water/ 

fat numerical ratios were based on component weight. 

Backfat used for the production of fat mixtures was 

obtained from the Iowa State University Meat Laboratory. Four 

and one tenth kg batches of fat mixture were produced using a 

Hobart model 84141D Laboratory bowl chopper which had two key 

modifications. First of all, an additional pair of blades was 

added to the original pair, increasing the chopping potential 

of the bowl chopper. Even more importantly, a steam heating 

ring around the bowl was added which permitted direct 

apTDlication of steam to the exterior surface of the bowl. In 
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combination with heated water, mixture temperatures of up 

to 60®C were possible. At lower temperatures, steam heating 

was used to maintain the specific temperatures required during 

the chopping cycle of the caseinate and soy stabilized fat 

mixture production (Tables 2 and 3). 

A 1/8/8 (protein/water/fat) caseinate stabilized fat 

mixture was incorporated as a control with which to compare the 

soy stabilized fat mixture. The ingredients used to produce a 

1/8/8 caseinate stabilized fat mixture are presented in Table 

4. This ratio was derived from the work of various scientists 

at DMV (Brouwer et al., 1976; Jongsma, 1982; Visser, 1983a,b). 

The main experimental effort with caseinate was performed to 

optimize the production characteristics (chopping duration, 

chopping temperature) needed to produce the most stable fat 

mixture in the modified lab chopper. The combination of 

factors studied to produce caseinate stabilized fat mixtures is 

seen in Table 5. 

Little information was available as a starting point for 

fat mixture formation using isolated soy protein. A 1/8/8 fat 

mixture using the same manufacturing methods used for the 

caseinate was used as the starting point. Table 6 presents the 

formulas used to produce 1/8/8, 1/5/5, 1/4/4, 1/5/4, 1/6/4, and 

the 1/4.5/4 fat mixtures manufactured during this study. In 

addition, Table 7 lists the production factors studied during 

the development of soy stabilized fat mixtures. 



Table 2. Fat mixture production methods when protein is added 
to fat 

Chopping Water 
Temperature 

( ° C )  
Temperature 

( ° C )  
Fat 

Treatment Steam 

26.6 26.6 21.1° C prechopped 
1.0 minute 

Initially 
to 26.6°C 

37.8 54.4 21.1°C prechopped 
1.0 minute 

Initially 
to 37.8°C 

43.3 77.1 21.1"C prechopped 
1.0 minute 

Initially 
to 43.3°C 
Intermit­
tently to 
maintain 

48.9 88.5 21.1*C prechopped 
1.0 minute 

Continuous­
ly to main­
tain 48.9°C 

60.0 90.7 21.1*C prechopped 
1.0 minute 

Continuous­
ly to main­
tain 60.0°C 
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Table 3. Fat mixture production methods vhen soy protein is 
added to water 

Chopping 
Temperature 

(°C) 

Water 
Temperature 

( ° C )  

Fat 
Temperature 

(°C) Steam 

25.7 

37.8 

43.3 

48.9 

6 0 . 0  

26.7 

6 0 . 0  

82.2 

90.6 

96.1 

4.4 Initially to 26.6°C 

4.4 Initially to 37.8°C 

4.4 Continuously 43.3°C 

4.4 Continuously to 
maintain 48.9°C 

4.4 Continuously to 
maintain 60.0°C 
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Table 4. Ingredients used to produce 1/8/8 caseinate 
stabilized fat mixture 

Ingredient Weight 
(g) 

Water 1814.4 

Pork Backfat 1814.4 

Sodium or Potassium Caseinate 225.8 

Sodium Chloride 57.8 

Sodium Nitrite 0.6 
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Table 5. Factors examined in order to optimize caseinate 
stabilized fat mixture stability 

Factor Variables 

Chopping Time a. 5. 0 minutes 
b. 7. 5 minutes 
c. 10. 0 minutes 
d. 12. 5 minutes 
e. 15. 0 minutes 

Chopping Temperature a. 26.6°C 
b. 37.8°C 
c. 43.3°C 
d. 48.9°C 
e. 60.0°C 

Caseinate Type a. EmHV-High Viscosity 
Sodium Caseinate 

b. PHV-Potassium 
Caseinate 
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Table 5. Ingredients used to produce soy stabilized 
fat mixtures^ 

Fat Sodium 
Mixture Water Backfat Protein Nitrite 

1/8/8 1814.4 1814.4 226.8 0.60 
1/4/4 1814.4 1814.4 453.6 0.64 
1/5/5 1814.4 1814.4 352.9 0.62 
1/4.5/4 1921.1 1707.7 426.9 0.63 
1/5/4 2016.0 1612.8 403.2 0.63 
1/5.5/4 2100.9 1527.9 382.0 0.63 
1/6/4 2177.3 1451.5 362.9 0.63 

^Quantities of ingredients are expressed as grams. 
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Table 7. Factors examined in order to optimize soy-
stabilized fat mixture stability 

Factor 

Chopping Time 

Chopping Temperature 

Soy Isolate Type 

Addition Media 

Timing of Water Addition 

Protein/Water/Fat Ratio 

Variable 

a. 5. 0 minutes 
b. 7. 5 minutes 
c. 10. 0 minutes 
d. 12. 5 minutes 
e. 15. 0 minutes 

a. 26. 6° C 
b. 37. 8° C 
c. 43. 3° C 
d. 48. 9° C 
e. 60.0°C 

a. Purina 620T, 500E 
b. Grain Processing 902 
c. Grain Processing 973 

a. Chopped Backfat 
b. Water 

a. Immediate addition to 
protein and fat mixture 

b. 60 second delay prior 
to addition 

a. 1/4/4 
b. 1/4.5/4 
c. 1/5/4 
d. 1/5/5 
e. 1/6/4 
f. 1/7/4 
g. 1/8/4 
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All caseinate and soy isolate fat mixtures which were 

designated "protein added to fat" were produced using the 

following manufacturing steps; 

1. Chunked pork backfat was ground to 12.7 mm using a 

Biro model 9032 grinder. 

2. Ground backfat was chopped in the Hobart modified 

model 84141D bowl chopper at 26.6'C until fat 

liquefaction (approximately two minutes). 

3. The appropriate protein was added to the liquified fat 

during chopping. 

4. Step 3 was followed either immediately or 60 seconds 

later by the addition of all but 100 g of the formula 

water. (The water temperature depended upon the 

factors under investigation.) 

5. Following water addition, the mixture was chopped for 

a specified period of time. 

6. Ninety seconds before the end of the chopping cycle, 

sodium nitrite dissolved in the remaining 100 g of 

water was added. 

7. In caseinate stabilized fat mixtures, the required 

amount of sodium chloride was added 30 seconds prior 

to the end of the chopping cycle. 

In some fat mixtures stabilized using isolated soy protein 

which were designated as "protein added to water" the following 

procedure was used: 
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1. The protein and water (less 100 g) were combined and 

chopped for two minutes. 

2. Ground backfat was added and the mixture was chopped 

for the required chopping time. 

3. A solution of sodium nitrite and the remaining 100 g 

of water was added 90 seconds prior to the completion 

of the chopping cycle. 

After chopping, the fat mixtures were put in grey trans­

port tubs, covered, and held in a 5®C cooler. Laboratory 

analysis was begun 18-24 hours after manufacture. Being 

extremely homogeneous, the mixtures required no further 

preparation prior to laboratory analysis. 

Sausage Production Using Fat Mixtures 

Caseinate control and soy isolate stabilized fat mixtures 

were produced as described above for subsequent addition to 

two of three product variations in which these fat mixtures 

functioned as the fat source. In the third variation, 50% fat 

pork trimmings were used as the fat source. Bologna and cotto 

salami were selected as the test products for several reasons. 

First, the effect of fat mixture on both an emulsified 

and a coarse textured product could be compared. Second, a 

relatively bland flavored product (bologna) could be compared 

with a relatively spicy product (cotto salami). Third, both 

products could be simultaneously processed in the smokehouse. 
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The formulas for the fat mixtures used in the sausage 

products were the 1/8/8 caseinate stabilized fat mixture (Table 

4) and the 1/4.5/4 soy stabilized fat mixture (Table 6). One 

4.9 kg fat mixture of each type was sufficient for a complete 

product replication. Three product replications were produced. 

The fat mixtures were produced 24 hours prior to sausage 

manufacture and held until manufacture in a -2.2°C cooler. 

Stabilized fat mixtures for use in cctto salami production 

were ground through a 3.12 mm grinder plate mounted in a Biro 

model 9032 grinder. 

Fifty percent fat pork trimmings were recovered from pigs 

slaughtered at the Iowa State Meat Laboratory. The pork 

trimmings were selected from the same pigs supplying the 

backfat for fat mixture production. The pork trim was blast 

frozen at -30°C and maintained frozen until used. 

The lean trim source, 90% lean beef trimmings, was 

obtained from a local meat purveyor. Lean trim vas blast 

frozen at -30°C and maintained frozen for at least two weeks 

prior to use. 

Twenty-four hours before product manufacture, all trim 

types were removed from the freezer and tempered to -2.2°C. 

The trim was then coarse ground through a 12.7 mm grinder plate 

mounted in a Biro model 9032 grinder. The lean and fat coarse 

ground trimmings were analyzed for fat content using the 

Katridg-Fak Anyl Ray. 
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The product formulations used for the bologna and cotto 

salami are shown in Tables 8 and 9. Bologna production began 

with the batching of ingredients for a 4.08 kg batch. The lean 

beef trim was placed in a Hobart laboraotry-sized chopper model 

84181D modified as previously indicated. In addition to the 

lean trim, the salt and half of the water (added as ice) were 

added to the chopper. The trim, salt and ice were chopped 

together until the temperature of the mixture reached 7.2°C. 

The fat source (50% fat pork trim or fat mixture), nitrite, 

seasonings and remaining ice were then added into the chopper 

bowl. The entire mix was chopped to a final temperature of 

14.4°C. 

Cotto salami was produced in a batch size of 4.54 kg. All 

ingredients were placed in a Leland model lOODA mixer and mixed 

for five minutes. After mixing, the cotto salami mixture was 

fine ground using one pass through a 3.18 mm grinder plate in a 

Biro model 9032 grinder. 

All meat batters (ground cotto salami and chopped bologna) 

were sampled for stability and texture analysis. The remaining 

batter was then stuffed into 50.8 mm by 609.6 mm fine prestuck 

fibrous casing using a hand operated sausage stuffer. After 

stuffing, the exterior surfaces of the casings were wiped and 

the sticks were individually weighed. The sausage sticks were 

labelled and hung on a smokehouse truck in a 2°C cooler. After 

all sausages of each replicate were completed, the sausages 
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Table 8. Formula used to produce bologna^ 

Ingredient Weight 
(g) 

Beef Trim (90% lean) 2041.2 

Pork Trim (50% lean) 2041.2 
or 

Fat Mixture 

Ice 607.8 

Sodium Chloride (without caseinate fat mix) 91.8 

Sodium Chloride (with caseinate fat mix) 61.2 

Kosher Bologna Seasoning (Heller's #531) 20.3 

Sodium Erythorbate 2.25 

Sodium Nitrite (without fat mix) 0.71 

Sodium Nitrite (with fat mix) 0.40 

^9 lb meat block 
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Table 9. Formula used to produce cotto salami^ 

Ingredient Weight 
(g) 

Beef Trim (90% Lean) 2270 

Pork Trim (50% Lean) 2270 
or 

Fat Mixture 

Ice 454 

Dried Skim Milk 154.2 

Sodium Chloride (without caseinate fat mix) 136.1 

Sodium Chloride (with caseinate fat mix) 102.0 

Ground Black Pepper 11.3 

Cracked Black Pepper 8.5 

Cardamon 5.7 

Sodium Erythorbate 2.5 

Sodium Nitrite (without fat mix) 0.71 

Sodium Nitrite (with fat mix) 0.41 

^10 lb meat block 
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were placed in a Maurer-Sohne smokehouse for thermal 

processing. The smokehouse schedule used for the products is 

shown in Table 10. Immediately after processing, the surface 

of each sausage was toweled dry and the sausage was reweighed. 

After cooling for 24 hours at 5 " C ,  the sausages were once 

again weighed, and samples were taken for chemical and textural 

analysis. The remaining product was vacuum packaged using a 

Multivac model AG800 dual chamber packaging machine and held at 

2 "C until sensory and color analysis were performed. 

Emulsion Capacity Measurement 

Emulsion capacity (EC) was measured using the method of 

Swift et al. (1961) with several modifications. As in the 

Swift method, oil, water and protein were initially blended 

followed by oil addition. As opposed to the Swift method, corn 

oil rather than melted lard was used for the fat source. 

(Improved fat source consistency was anticipated by using corn 

oil rather than lard.) The protein source used was caseinate 

or soy isolate rather than extracted muscle proteins. Swift et 

al. (1961) utilized 1% salt solution in every case. (The salt 

was considered essential for muscle protein extraction and 

function.) In this experiment, distilled, deionized water or 

when indicated, 0.1 M or 1.0 M solutions of chemical grade NaCl 

in distilled, deionized water were used. The container used 

for the slurry formation was a container designed by 

Tantikarnjathep (1980) for emulsion capacity measurement. 



Table 10. Smokehouse cycle used for sausage processing 

Time 
Core 

Cycle Temperature Moisture 1 Impulse Temperature 

15 minutes Reddening 54°C 

1 hour Hot Smoke I 60 °C 

Core Hot Air Cook 70°C 

Core Hot Air Cook 80°C 

10 minutes Cold Shower 

40 "C 

45 °C 

55 "C 

65 °C 

85 

85 

85 

50 "C 

69 °C 
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Ports into and out of the container were available for oil 

input and air displacement by the added oil. The container was 

attached to a Sorvall Omni-mixer, the speed of which was 

controlled using an electric rheostat. One hundred and fifty 

mg samples of isolated soy protein (Purina 620, GPC 902 or 973) 

or caseinate (DMV, EmHV or PHV) were suspended in 90 ml of 

distilled, deionized water, 0.1 M NaCl solution, 1.0 M NaCl 

solution or 30 ml of corn oil. (The medium in which the 

protein was dispersed will be denoted as water, 0.1 M NaCl, 1.0 

M NaCl or oil.) Oil-Red-0 dyed corn oil was homogenized into 

the protein dispersion using the Sorvall Omni-mixer at a rate 

of 33-36 ml per minute. Most emulsion capacity measurements 

were done with water and oil held at room temperature. For 

high temperature measurements, a 10-12°C temperature rise was 

achieved by using room temperature oil and 90°C water. 

Emulsion capacity endpoint was determined using the 

Oil-Red-0 dyed oil release method of Marshall et al. (1975). 

Red dyed corn oil was made by dissolving 0.3 g of Oil-Red-0 dye 

in one liter of corn oil. This solution was magnetically 

stirred for 15 hours, then filtered through Whatman Number 1 

filter paper using vacuum. All oil added during the emulsion 

capacity measurement included Oil-Red-0. Both an increase in 

color and a drop in viscosity occurred simultaneously at the 

endpoint. 
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Non-meat Proteins 

Two types of caseinates were used in this study. High 

viscosity potassium caseinate (PHV) and high viscosity sodium 

caseinate (EmHV) were supplied by De Melkindustrie Veghel Inc., 

Holland. Soy protein isolate was supplied by Grain Processing 

Corp. of Muscatine, lA (Pro-Fam 902, 973) and Ralston-Purina of 

St. Louis, MO (500E, 620). Purina 500E was used in half of 

this research due to the inability to maintain a supply of 520. 

(Ralston-Purina's claim of functional equivalence between these 

proteins was confirmed by preliminary studies at Iowa State 

University. The difference between the proteins was the 

addition of titanium dioxide in the 620. Titanium dioxide 

lightens the color of the protein and serves as a tracer 

substance for 620 when used in meat products.) 

Methods of Product Analysis 

Proximate composition 

Moisture content of all products was determined using the 

A.O.A.C. (1970) method with modification. The A.O.A.C. method 

uses 509.6 mm of Mercury vacuum with 95°C heat to remove the 

product's moisture. With caseinate stabilized fat mixture, 

this vacuum level resulted in the fat mixture expanding and 

creeping out of its container. By decreasing the vacuum to 

10.2 mm of mercury and increasing the time of heating to 18-24 

hours, constant dried sample weight was achieved. Fat content 

of the dried samples was determined using the petroleum ether 
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extraction method of A.O.A.C. (1970). 

Chemical analysis 

Rancidity in the fat mixtures and sausages was estimated 

using the thiobarbituric acid (TBA) method for malonaldehyde of 

Tarladgis et al. (1960). Results are reported as TBA number. 

pH values of fat mixtures or sausages were determined 

using a Corning model 125 pH meter. Twenty g of sausage or fat 

mixture was homogenized for 30 seconds in 180 ml of distilled, 

deionized water using a Brinkman polytron Kinematica GmBH. An 

Orion 91-02 combination electrode standardized to pH 4 and pH 7 

was lowered into the homogenate. The pH was read while the 

homogenate was continuously stirred. The pH of the emulsion 

capacity slurries was measured in a 50 ml aliquot of the slurry 

after emulsion breakdown. The method was similar to that used 

for sausages and fat mixtures, but no initial homogenation in 

water was necessary. 

Functional analysis 

Emulsion stability was determined by a hybrid method 

combining principles of Rongey (1965) and Townsend et al. 

(1968). Like the Rongey method, 30 g of fat mixture was 

stuffed into the top of a Wierbicki tube. Unlike the normal 

Rongey method, but like the Townsend method, incremental 

increases in waterbath temperature from 48.9°C to 80 "C were 

used to heat the fat mixture in the tubes. The samples were 

heated to an internal temperature of 68.8°C. The samples were 
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then removed from the waterbath and allowed to cool for 4-5 

minutes. The samples in the tubes were then centrifuged for 

10 min at 1000 RPM in a Chicago Surgical & Electrical Co. 

model 61 centrifuge. Moisture, fat and solids released from 

the fat mixtures were measured directly from the graduated 

lower section of the Wierbicki tube. Stability measurements 

were also performed on the raw sausage product batters. 

Product yields 

Yields were calculated as follows; 

Smokehouse Yield = Cooked product weight/Raw product 

weight x 100 

Final Product Yield = Cooked, cooled product weight/Raw 

product weight x 100 

Color analysis 

Sausage product color was estimated using a Hunter Lab 

Labscan Spectrocolorimeter (Hunter Associates Labcratcry, Inc., 

Reston, VA). The instrument was calibrated using a white 

standard plate (x = 1.018, Y = 1.019, Z = 1.012). Values for 

"L" (lightness), "a" (red-green) and "b" (blue-yellow) were 

measured using illuminant F (light from a cool white 

fluorescent source). A 50 mm port was used to allow maximum 

product surface exposure. All sausage products were sliced 

using a Hobart model 1712 slicer. Six slices were immediately 

vacuum packaged and stored in the dark until color was 

measured. The packaging material enabled color reflection off 
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of a smooth, flatter surface than would be presented on a cut 

surface. The average of the determinations for six sliced 

surfaces vas used for product color estimation. 

Structural analysis 

Extrusion Raw sausage and fat mixture samples were 

extruded using the method of Seman et al. (1980). Samples of 

warm fat mixture or raw sausage weighing 90 g were stuffed into 

40 gram capacity, rigid, polystyrene containers having a 

diameter of 38 mm. After cooling at 2°C for 15 hours, a 35 mm 

diameter plunger probe attached to a 250 kg load cell on an 

Instron Universal Testing Machine model 1120 was used to 

extrude the samples. A crosshead speed of 50 mm per minute and 

paper feed of 100 mm per minute were used to derive the 

extrusion curves. Results were reported as average kg of force 

necessary to extrude the sample. The independence of 

extrusion force to sample size (Bourne, 1974) eliminated the 

need to report the results on a per g basis. 

Compression Compression analysis of cooked sausage 

characteristics was performed using the double compression 

stroke method of Bourne (1968). This method utilized a curve 

derived from compressing a sample to 50% of its original height 

two consecutive times. From the curve, hardness (peak 

extrusion force), cohesiveness and elasticity were derived. 

Sixteen mm thick slices of each sausage product were sliced 

using a Hobart model 1712 slicer. The slices were compressed 
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to 8 mm thickness between a base plate and a 10.2 cm diameter 

circular plate. The circular plate was attached to a 250 kg 

load cell. Full scale load settings varied between product 

types. A crosshead speed of 10 mm/min. and a paper feed of 50 

mm/min. were used. All analyses were performed in triplicate. 

Gelation determination Gelation of soy and caseinate 

proteins was measured using the method of Kinsella (1979). 

Dispersions of one part of protein to ten parts of water were 

made using distilled, deionized water at different 

temperatures. The dispersions were mixed for 60 seconds using 

a Sorvall Cmni-mixer. Immediately after mixing, the 

dispersions were decanted into 29 mm by 113 mm round bottom, 

polycarbonate centrifuge tubes and placed in an ice water bath 

for 5 minutes. The tubes were then centrifuged for 1 minute at 

250X G in a Beckman model J21C Rotary Centrifuge. Tubes were 

then equilibrated at 4°C. Structural formation of the 

dispersions was measured in the tubes using a Brookfield HATD 

rotoviscometer. A T-bar spindle (size F) and a helipath stand 

were used to slowly lower the spindle through the dispersion. 

The rotation speed of the spindle was 2.5 RPM. (It should be 

noted that the samples exhibit a thixotropic flow behavior. 

This means that different results may be obtained by using 

viscometer speeds or a viscometer T-bar different from those 

used.) Results are means from nine analyses. 
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Microscopic analysis 

The sausage products and fat mixtures were frozen to 

-50 °C and cut into thin (16jjm) sections using a Tissue Tech II 

microtome. Sections were placed on 25 mm by 75 mm microscope 

slides. Fat mixture sections were anchored on microscope 

slides with a subbing layer of albumin previously applied. 

(The fat mixtures were too fragile to remain intact during 

staining without using the albumin.) Non-subbed and subbed 

slides were dried and stained as follows: 

1. Dry the slides under a lamp for 15 minutes. 

2. Place slides in a propanediol solution for 30 seconds. 

3. Stain the slides for protein, by placing the slides in 

Gill's hematoxylin solution for 30 seconds. 

4. Rinse slides in moving water for 2 minutes. 

5. Stain in Oil-Red-0 solution for 10 minutes. 

6. Rinse slides in water for 30 seconds. 

7. Dry slides for 30 minutes. 

The stained slides were examined suing a Bausch and Lomb 

Balplan microscope at 75 and 150 times magnification. 

Photographs were taken using a 35 mm camera attachment to the 

microscope and Ektachrome 400 speed slide film. 

The structure of emulsion capacity mixtures was evaluated 

by placing two drops of the appropriate disperison on a 

microscope slide. The dispersions were made using Oil-Red-0 

dyed corn oil and received no further staining. (Preliminary 
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studies demonstrated protein clumping in these dispersions when 

protein stains were attempted.) As a result, oil was the only-

fraction whose location was visually identified with water and 

protein location being inferred. 

Sensory analysis 

Ten days following production, sausage products were 

evaluated for sensory attributes. Analysis of the bologna and 

cotto salami was performed by an untrained consumer panel. 

Panelists were asked to evaluate the products using a seven 

point facial hedonic scale for flavor, texture and overall 

acceptability (Figure 4). 

After removal of the casing, the sausage products were 

sliced into 3 mm slices using a Hobart 1712 slicer. The slices 

were coded using random numbers and were refrigerated at 5°C 

until use. The samples were displayed at three specific 

stations each containing a specific fat source. All samples 

were displayed under red light during evaluation. 

Statistical analysis 

The Statistical Analysis Systems (Helwig and Council, 

1979) was used for analysis of variance for all experimental 

data. Differences between means, when indicated, were examined 

using the Least Significant Difference test. All experiments 

were designed using randomized complete blocks. Fat mixture 

and sauasage production runs were replicated in triplicate 

except for the 1/8/8 soy stabilized fat mixture production 
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Overall 
Sample Accepta-
Code Flavor Texture bility 

Like 
extremely 1 vj ] 

f r\ rC\ 

0 
Neutral 1^1 

@ 
Dislike / \ / \ 
extremely ( ) 

Comments: 

Figure 4. Visual seven point hedonic scale used to evaluate 
the finished sausage products 
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which was performed once. Emulsion capacity measurements were 

means of six replications. 
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RESULTS AND DISCUSSION 

Fat Mixture Production 

General characteristics 

In attempting to optimize fat mixture stability, several 

production factors were examined. Even with assorted 

production factors, several characteristic similarities were 

shared by most of the fat mixtures produced. All caseinate 

mixtures were semifluid, retaining a definite, but slow, 

ability to flow. All soy mixtures were structurally solid 

possessing a rough, somewhat grainy texture. 

The proximate composition of the fat mixtures proved to be 

remarkably consistent. The moisture content of both fat 

mixture types ranged from 47-53% of the product, while the fat 

content of the mixtures ranged from 37-42% of the product. 

Despite the treatment used, the pH of the final mixture 

varied little within each protein type. Caseinate fat mixtures 

had a pH of approximately 5.7 pH units while soy fat mixtures 

averaged 7.0 to 7.2. Fat mixtures stabilized with a given 

protein tended to vary in pH to a greater degree between 

replications than between treatments within a replication. Two 

factors may have caused this. Either the fat source 

contributed to pH differences or the pH meter drifted in 

calibration with time. The latter was unlikely because the pH 

meter was calibrated just prior to each set of measurements. 

No attempt was made to control the pH of the fat mixtures. 
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Rather, the resultant pH of the "as is" mixture was measured. 

The possible influence of pH on the functionality of the two 

types of protein must not be ignored. It was felt, however, 

that commercial production of fat mixtures would become 

impractical if careful regulation of pH was a necessity. 

Caseinate fat mixtures 

It was very apparent that production of a stable soy-based 

fat mixture was the key initial step to this research. It was 

also apparent, however, that production of a stabilized fat 

mixture with no standard or control to compare it to would 

yield less information. Since production of a fat mixture 

stabilied by using caseinate had already been accomplished 

(Hoogenkamp, 1976; Jongsma, 1982; Visser, 1983a), it seemed a 

fitting control for this experiment. Visser (1983b) described 

several production characteristics for the manufacture of a fat 

mixture using several types of caseinate including EmHV, high 

viscosity sodium caseinate, and PHV, high viscosity potassium 

caseinate. A ratio of protein to water to fat of 1/7/7 or 

1/8/8 was recommended. Use of 90°C water, a minimum chopping 

temperature of 45°C for mixtures containing pork fat, and a 

minimum chopping duration of five minutes was recommended when 

a high speed silent cutter is available. Since a low speed 

laboratory silent cutter and lower temperature water were used 

in this study, it was not possible to exactly duplicate 

Visser's procedures. As a result, a series of experiments was 
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performed to optimize the production methods for caseinate 

stabilized fat mixtures made using the low speed chopper. 

The effect of temperature and caseinate type on product 

characteristics is shown in Table 11. None of the chemical 

composition factors shown in Table 11 discriminated between 

either the temperatures used or the proteins tested. With the 

use of higher chopping temperatures it was anticipated that the 

onset of rancidity may be hastened in the fat mixture. At one 

day after production, no differences in TBA values between 

temperatures were seen. One week later, the higher 

temperatures not only did not exhibit increased TBA values, the 

values were actually lower than their counterparts manufactured 

at lower temperatures. Granting that the fat mixtures 

contained 156 ppm Na+-nitrite, TBA values indicated that no 

rancidity problem should exist if the fat mixture is used 

within a reasonable period of time. A comparison of the 

effects of temperature and protein type on the functional 

characteristics (stability and extrusion) of the fat mixtures 

is shown in Table 12. With EmHV, Townsend stability of the fat 

mixtures was not significantly different above 26.6°C. 

Potassium caseinate showed a maximum stability at 37.7°C and 

48.9°C with somewhat lower stability at 26.6°C and 60°C. 

Above 25.6°C no differences between the two caseinate fat 

mixtures was seen in Instron extrusion levels. 

Essentially, no difference existed between the two 



Table 11. Effect of caseinate type and chopping temperature on chemical 
characteristics of fat mixtures^ 

Chopping 
Protein Temperature 

( ° c) 
Moisture 

(%) 
Fatb 
(%) 

TBAb 
Day 1 

TBAb 
Day 7 pHb 

Sodium Caseinate 26.7 52.Od 36.8 0.033 0.191 6.70 

37.8 47.5b 39.6 0.036 0.246 6.69 

43.3 47.2b 41.9 0.045 0.200 6.73 

48.9 50.5C,d 39.1 0.023 0.086 6.74 

60.0 47.3b 42.1 0.044 0.068 6.72 

Potassium Caseinate 26.7 51.2d 39.2 0.013 0.142 6.67 

37.8 48.3b,c 40.8 0.050 0.240 6.74 

43.3 4g.8bc,d 39.8 0.013 0.065 6.74 

48.9 50.9C,d 39.1 0.039 0.088 6.66 

60.0 50.5C,d 39.4 0.046 0.135 6.80 

^n = 9 values per mean. 

b,c,df^eans within each column having different superscripts are 
significantly different (P<0.05). 



Table 12. Effect of chopping temperature and caseinate type 
on emulsion stability and Instron extrusion a 

Caseinate 
Type 

Sodium 
Caaeinate 

Chopping 
Temperature 

( °C) 

2 6 . 6  

37.8 

43.3 

48.9 

6 0 . 0  

Townsend Emulsion 
Stability 
(ml/30 g) 

1.5b 

O.lb 

O.Ob 

0.4b 

1.3b 

Instron 
Extrusion 

(kg) 

3.3b 

4 . 8 d , e  

5.7f 

4.3C,d 

5.ie 

Potassium 
Caseinate 

2 6 . 6  

37.8 

43.3 

48.9 

6 0 . 0  

^n 9 values per mean. 

0.5b 

O.lb 

O.Ob 

0.2b 

0 . 1  b  

4.1c 

4.8d,e 

5.ie 

4 . 7 d , e  

4.8d,e 

b'c / d, e, fjkjeans within each column having different superscripts 
are significantly different (P<0.05). 
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caseinates studied in stability, Instron extrusion, or any 

other characteristic measured (TEA, pH, proximate composition). 

As a result of these similarities, and since EmHV has a longer 

history of usage, EmHV vas selected for futher experimentation. 

This initial experiment was performed using the Townsend 

fat stabiltiy test commonly used for meat products. It quickly 

became apparent that this test would not be an adequate measure 

of stability for further experimentation. Caseinate stabilized 

fat mixtures could not be reliably decanted to measure moisture 

and oil losses. The mixtures would either completely flow out 

of the tube or they would not move in the tube. Although the 

flow properties of the mixture possessed interesting 

attributes, the erratic flow made consistent results 

impossible. In the original Townsend stability test (Townsend 

et al., 1968) raw meat emulsion stability was measured. During 

the heating process, meat fibers shrank away from the walls of 

ths tube forming a smaller core surrounded by expelled fluid. 

The moisture and fat which separated during cooking was able 

to be decanted directly into a centrifuge tube. In caseinate 

fat mixtures, shrinkage and core formation did not occur, and 

moisture and fat would not always decant from the mixture. 

By switching to the procedure utilizing a Wierbicki tube (large 

diameter glass tube attached to a small diameter glass tube 

with the tubes separated by a coarse fritted disk) an 

improvement in consistency was seen. The new method was not 
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ideal. The flow properties of the caseinate fat mixtures 

enabled some of the mixtures to flow past the fritted disk into 

the smaller tube. During the centrifugation step, however, the 

oil and water separated easily. 

Using the EmHV caseinate and the Rongey stability test, 

the temperature experiment was repeated. The results of this 

test (presented in Table 13) indicated that more residue was 

recovered using the Rongey stability measure. Although not 

significant at. the P<0.05 level, trends in the stability of the 

caseinate stabilized fat mixture indicated (like the Townsend 

test), that the lowest (26.5°C) and the highest (50®C) 

temperature mixes may be somewhat less stable than the other 

temperatures. The Instron extrusion values displayed much the 

same trend with temperature that stability measurements showed. 

The samples chopped at high and low temperatures had 

significantly lower Instron extrusion values than the samples 

made at the other three chopping temperatures. 

The parallel between stability and Instron extrusion level 

may be significant when attempting to determine the mode of fat 

stabilization by caseinate. If classical emulsification theory 

is used to explain caseinate stabilization then the concurrent 

increase in extrusion value may be difficult to explain. This 

is because the emulsion theory per se, with film formation 

around fat globules being responsible for product stability, 

does not require interaction between the protein coating the 



Table 13. Effect of temperature on the emulsion stability and 
Instron extrusion of sodium caseinate stabilized fat 
mixtures^ 

Chopping Emulsion Instron 
Temperature Stability Extrusion 

(  ° c )  (ml/30 g) ( k g )  

26.6 1.4 4.7b 

37.8 0.1 6.6C 

43.3 0.3 6 . 8 C  

48.9 0.5 6 . 7 c  

60.0 1.0 5.2b 

an = 9 values per mean. 

b/CMeans within each column having different superscripts are 
significantly different (P<0.05). 
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fat globules and the resultant viscosity increase. 

The effect of chopping duration at 43.3»C is shown in 

Table 14. No difference in Instron extrusion values resulted 

from variations in chopping times. Total losses during Rongey 

stability measurements indicated a minimum of ten minutes of 

chopping in the lab chopper was required for a stable mixture. 

Although mixtures chopped for ten minutes were not 

significantly different in stability when compared to 12.5 or 

15 minutes, stability tended to be slightly higher when a 12.5 

minute chopping period was used. Visser (1983a) indicated that 

five minutes or less chopping time was required when a 45°C 

chopping temperature was used. At a chopping temperature of 

50°C using the laboratory chopper (with 4 knives) at least 

twice the choping time was needed compared to a high speed 

chopper. Since the pork fat used in this research was 

preliquified, the chopping time must have been necessary to 

n C» 4" »" *1 Vsin 4 v»  ̂ f ̂ ***4 T t  ̂v x  v s — X X  j r  ^  X  X  w  X I  w  t  L f  1 X 1 ^  k /  w  X .  *  i X .  n  C x  O  

apparent that the addition of two extra blades was not 

effective in increasing the small chopper effectiveness to the 

level of a high speed chopper. 

The relationship between fat mixture textural formation 

and stability was not repeated in this experiment. Unlike the 

previous experiment, no increases in Instron extrusion values 

were seen in the more stable fat mixtures. 
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Table 14. Effect of chopping time on the emulsion stability 
and Instron extrusion of sodium caseinate 
stabilized fat mixtures^ 

Chopping Time 
(min) 

Emulsion Stability 
(ml/30 g) 

Instron Extrusion 
(kg) 

5.0 5.lC 4.3% 

7.5 5.1C 3.7% 

o
 
o
 

3.0b,c 4.8% 

12.5 1.1% 4.7% 

15.0 0.8% 4.8% 

^n = 9 values per mean. 

^'^Means within each column having different 
superscripts are significantly different (P< 0.05). 
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The experiments performed in attempting to determine the 

optimum production characteristics for the caseinate stabilized 

fat mixtures (as well as the soy isolate fat mixtures) were 

performed as a series of independent experiments with each one 

concentrating on a specific factor. As a result, the author 

acknowledges the possibility of undetected interactions (such 

as between chopping temperatures and chopping times). It must 

be remembered that the final fat mixture was tested for 

stability after manufacture, prior to use in a meat product. 

If acceptable stability was not evident, new fat mixtures 

would have been produced. 

From the results presented, it was determined that the 

optimal caseinate stabilized fat mixture was produced in the 

laboratory bowl chopper in the following manner. Eight parts 

of fat were first liquified in the chopper. One part of 

caseinate was added to the fat paste followed immediately by 8 

parts (less 100 gm) of 77°C water- After chopping the mixture 

for 11.0 minutes (maintaining 43.3°C using steam), 156 ppm of 

sodium nitrite (based on total mixture weight) dissolved in 

100 gm of hot water was added. After 12 minutes of chopping, 

1.5% sodium chloride was added. Chopping was concluded 12.5 

minutes after the protein was added to the fat. Compared to 

the production recommendations of Visser, the only major change 

was an increase in chopping time. 
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Soy isolate fat mixtures 

Unlike the caseinate stabilized fat mixture, fat mixtures 

stabilized using isolated soy protein have a very limited 

history. Only two studies have been reported in vhich an 

initial fat mixture stabilized using soy protein vas formed. 

Schmidt et al. (1982) compared 1/10/15 and 1/4/7 soy isolate 

to -water to fat ratios. Hand et al. (1983) produced relatively 

unstable {37.6% cook out) 1/4/4 soy stabilized fat mixtures. 

In order to be consistent, a preliminary experiment was 

performed comparing three soy isolates and EmHV using 1/8/8 

protein/water/fat ratios. The three proteins tested (GPC 902, 

GPC 973, and Ralston Purina 620) were recommended by the 

respective companies as soy isolates effective in fat 

emulsification. The stability results of this experiments are 

presented in Table 15. Only one replication of this experiment 

was performed because none of the soy products formed a stable 

fat mixture. It was interesting to note that the major 

component lost in the soy stabilized mixtures was fat, while 

only water was lost from the caseinate mixture. This was a 

trend which always occurred. Hand et al. (1983) found fat to 

be the primary component lost from soy stabilized mixtures, but 

they also found primarily fat lost from caseinate mixtures. 

Since it was obvious that the soy isolate would not 

stabilize fat at a 1/8/8 ratio, an experiment was begun to 

compare two ratios recommended by Grain Processing Corp., Inc. 
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Table 15. Stability of spy isolate stabilized 1/8/8 
fat mixtures^'® 

Roncrey Stability (ml/30 q) 
Water Oil Total 

Grain Processors 973 5.7 9.3 15.0 

Grain Processors 902 3.9 10.5 14.5 

Purina 520 3.6 10.4 14.0 

EmHV Caseinate 1.7 0.0 1.7 

&n = 3 values per mean. 

bOnly 1 replicate was performed. 
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The ratios were 1/5/5 and 1/4/4 protein/water/fat. The 

stability results are reported in Table 16. Once again higher 

fat than moisture loss was evident. These results indicated 

two things. First, the 1/4/4 protein to water to fat ratio 

outperformed the 1/5/5 ratio. Because maximum stability was 

considered a high priority goal, the 1/4/4 ratio was selected 

for further study. Second, when the losses over different 

ratios were compared, the GPC 973 protein outperformed the 

other two proteins. If, however, the 1/4/4 product was 

considered alone, the Purina 520 was slightly more stable. 

It is important to note that replication variability prevented 

any statistically sound method of choosing one protein over any 

other. Fat mixtures produced using Purina 620 were also found, 

by personal observation, to possess a more bland, less "beany" 

odor than fat mixtures produced using GPC 973. As a result of 

improved fat mixture aroma characteristics and slightly better, 

or at least not worse, stability ratings, Purina 520 was chosen 

for further experimentation. 

At this point, the protein to be used (Purina 620) and the 

protein to water to fat ratio to be used (1/4/4) were selected. 

Several other factors, however, still remained to be optimized. 

One such factor was the optimum chopping temperature. During 

the previously reported experiments, fat was first chopped, 

then protein was added followed immediately by hot water. 

There was no reason to assume that soy protein added to fat 
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Table 16 Effect of type 
vater/fat ratio 

of isolated 
on emulsion 

soy protein 
stability^ 

and protein/ 

Protein/ 
Water/Fat Emulsion Stability 

Protein Type Ratio ml Water ml Fat ml Total 

620 1/4/4 0.1 0.7 0.8% 

1/5/5 0.7 3.7 4.4C 

973 1/4/4 0.1 1.2 1.2b 

1/5/5 0.9 1.1 2. lb 

902 1/4/4 0.2 1.3 1.5b 

1/5/5 1.6 3.2 4.8'= 

= 9 observations per mean. 

Means vithin each column having different superscripts 
are significantly different (P < 0.05). 
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would make a more stable fat mixture than soy protein added to 

water followed by fat addition. An experiment was performed to 

examine chopping temperature and the medium (fat or water) to 

which the protein was added, followed 60 seconds later by 

addition of the remaining ingredient (water or fat). The 

results of this experiment are found in Table 17. Nothing 

unusual was seen in proximate moisture content or TEA numbers. 

The same could not be said, however, about Rongey emulsion 

stability. 

All products in which protein was added to fat,followed by 

60 seconds of chopping and then water addition, demonstrated 

poor product stability. This was unexpected because earlier 

mixtures had been stable when protein was added to fat followed 

immediately with water. Although the stability means were 

statistically different with different temperatures, no visible 

mixture diferences were evident. All mixtures resembled the 

product in Figure 5,- in that they vere creamy and smooth with 

no obvious external oil or fat puddles. 

When the soy isolate was added to water followed 60 

seconds later by ground fat, temperature sensitive results 

occurred. The effect of chopping temperature and soy protein 

addition to water is also shown in Table 17. Once again 

variation in moisture composition and TBA numbers are within 

acceptable limits. During production of these fat mixtures, 

differnces in stability were very obvious. At times, no stable 



Table 17. Effect of addition order and chopping temperature on soy 
stabilized fat mixture characteristics 

Addition 
Order 

Chopping 
Temperature 

( ° c )  
Moisture 

(%) 

TEA 
Day 7 

(TEA Number) 

Emulsion 
Stability 

(ml ) 

Instron 
Average 

(kg )  

Protein 
Added to 
Fat 

26.7 

37.8 

49.3b 

49.6^ 

0.168® 

0.213^'® 

5.90b'C 

6.03^'^ 

4.4^/6 

4.2® 

43.3 48.5b 0.302b 7.50b 9.8b 

48.9 47.2b 0.257C'd 7.00b'C 11 .  ob 

60.0 48.4b 0 .279b,c 6.17^'^ 9.6b 

Protein 
Added to 
Water 

26.7 

37.8 

48 .2b  

48.5b 

0.195® 

0.22]C'd 

6.63b'C 

4.53C 

5.2^'® 

6.9C'd 

43.3 51.9C 0.179® 4.70^ 9.4b,c 

48.9 49.6b 0.263b'C 1.80^ 11.4b 

60.0 47.4b 0.225C'd 1.93d 11.4b 

^n = 9 observations per mean. 

b'^'d'S^Ieans within 
significantly different 

each column 
(P< 0.05). 

having different superscripts are 
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Figure 5. Physical appearance of a formed soy stabilized fat 
mixture 
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structure was formed. Figure 6 shows what an unstable, 

unformed product looks like. This mixture should not be 

confused with the formed but unstable product described 

earlier, made by adding protein to chopped fat followed in 60 

seconds with hot water. Although the stability results are 

similar in both cases, there was an obvious structural 

difference. Figure 5 presented the appearance of a 

protein added to water fat mixture which is stable. The 

smoother texture, uniform color and a lack of exposed oil make 

differences between a formed and an unformed mixture 

unmistakable. During the experiment, three replications of 

each of the five treatments (protein added to water) were made 

When a chopping temperature of 26.6°C was used, none of the 

mixtures were stable. At chopping temperatures of 37.8°C and 

43.3°C, one of three fat mixtures were formed, and at 60°C all 

three formed. As seen in Table 17, Rongey stability 

differences bewteen formed and non-formed products were very 

obvious. It is interesting that the unformed mixtures made 

with protein added to water exhibited essentially the same 

stability as the protein added to fat mixtures. The stable 

mixtures produced using higher chopping temperatures were 

approaching the complete stability characteristics desired in 

soy stabilized fat mixture. 

In both protein added to fat and protein added to water 

mixtures, increases in Instron extrusion value generally 
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Figure 6. Physical appearance of an unstable soy stabilized 
fat mixture (Note the presence of free lipid and 
the coarse granular structure) 
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occurred with increases in chopping temperature (Table 17). 

In the literature, an increase in physical texture of a soy 

dispersion would be attributed to gelation of the soy isolate 

(Catsimpoolas and Meyer, 1971a; Catsimpoolas and Meyer, 1971b; 

Yasumatsu et al., 1972). Two factors in this experiment make 

a gelation mechanism of stabilization questionable. First, 

the presence of lipid introduces the possibility of some 

potential structural formation resulting from smulsification. 

Second, temperatures needed to permit soy gelation are usually 

much higher than the chopping temperatures used in this study. 

Previously, it was noted that increases in Instron 

extrusion force often paralleled increased product stability. 

In this experiment, when protein was added to water the trend 

appears to continue (Table 17). When protein was added to fat, 

however, no improvement in stability occurred with increased 

Instron extrusion. This would indicate that although increased 

 ̂̂  vk VA V-, w O J. Cc jL V o ill C*. j w V C O uCLiM* X a. X u f 

solid support for this premise is lacking. 

The experiment just reported, while informative, was a 

step backward from the goal of product stability. Previously, 

with immediate addition of hot water to protein and fat, good 

stability characteristics resulted. In this experiment, a 50 

second delay before water was added to soy stabilized fat 

mixtures resulted in poor stability. Even worse, a 60 second 

delay before fat was added to the protein-water mixture 
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resulted in either a very stable mixture or a mixture which 

would not form. As a result, another experiment was performed 

using only two chopping temperatures, 43.3°C and 48.9°C, but 

studying the delayed water or fat addition and immediate water 

addition. The Rongey stability and Instron extrusion results 

of this experiment are presented in Table 18. The mixture 

exhibiting the greatest stability was made by chopping the fat 

to a paste followed by protein addition and immediately 

following with the addition of hot water. As well as forming 

the most stable structure, the mixture also required the 

greatest Instron force for extrusion. Closer examination of 

the results from the third replication of this experiment 

showed what was perhaps the greatest revelation of this 

experiment. 

During production of the protein added to water fat 

mixtures at 48.9°C, an unstable mixture containing free oil 

typical of some seen previously was produced. After sampling, 

water was added to the mixture in small increments. After an 

undetermined amount of additional water had been added, a 

completely stable mixture was suddenly formed. The Rongey 

stability values for the treatments in this replication are 

shown in Table 19. The desired fat mixture appeared to be 

possible by increasing water content somewhat. Samples of 

each fat mixture were thin sectioned, stained and examined 

under the light microscope. Figures 7 and 8 present the 



Table 18. Effect of addition order and chopping temperature on 
soy stabilized fat mixture characteristics^ 

Chopping Emulsion Instron 
Addition Temperature Stability Average 
Order (°c) (ml) (kg) 

Addition of protein 43.3 2.77b 13.83C 
to water followed in 

3.73b 60 seconds with fat 48.9 3.73b 14.92C 

Addition of protein 43.3 7.60C 10.09b 
to fat followed in 
60 seconds with water 48.9 C

O
 

C
O
 0
 

10.97b 

Addition of protein 43.3 4.40b 10.82b 
to fat followed 
immediately by water 48.9 4.57b 9.47b 

^n = 9 values per moan. 

b'^Means within each column having different superscripts are 
significantly different (P<0.05) 
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Table 19. Effect of addition order and chopping temperature on 
emulsion stability of soy stabilized fat mixtures^ 

Chopping Emulsion Stability 
Addition Temperature Water Oil Total 
Order (°C) (ml) (ml) (ml) 

Addition of protein 43.3 o
 
o
 

3.8 3.8 = 
to fat followed 
immediately by water 48.9 0.0 5.6 5.6 = 

Addition of protein 43.3 0.0 7.8 7.8^ 
to fat followed in 
60 seconds with water 48.9 0.0 7.7 7.7^ 

Addition of protein to 43.3 0.0 0.4 0.4b 
water followed in 60 
seconds with fat 48.9 0.0 4.2 4.2 = 

Addition of protein 48.9 0.0 0.0 O.Ob 
to water using 
additional water 

&n = 9 observations per mean. 

^'"'dMeans within each column having different superscripts 
are significantly different (P< 0.05). 
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Figure 7. Light micrograph of a stained soy stabilized fat 
mixture when the protein and water were mixed prior 
to fat addition (Note the fine, filamentous 
protein structure (p) (100 X)) 
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Figure 8. Light micrograph of a stained soy stabilized fat 
"turs "w^hsn the protein and fat "were inxxeu prxor 

water addition (Note the dark clumps of unevenly 
distributed soy protein (100 X)) 
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stained sections. The product with added water (Figure 7) 

appeared to demonstrate an improved protein-water matrix 

resulting in retention of fat in a finer gel structure. When 

soy protein was added to fat followed 60 seconds later by hot 

water (Figure 8), a much different structure was noted. Large 

lipid stained areas were apparent with poorly distributed 

protein matrices being clearly visible. 

At this point, it was apparent that increased water 

content in the fat mixture may be desirable. Information 

concerning the minimum additional water necessary to produce a 

stable soy-based fat mixture was required. It was important, 

in order to maintain a high fat content in the fat mixture, 

that the least additional water required be added. As the fat 

content of the mixture decreases, more and more of the mixture 

would be required to reach the final product target fat 

content. The final sausage product would, as a result, acquire 

sensory traits closer to the fat mixture. 

The final experiment measured the characteristics of fat 

mixtures produced using soy protein to water to fat ratios 

varying from a 1/4/4 control to a 1/4.5/4, 1/5/4, and 1/5/4. 

The proximate composition together with the Rongey stability 

and Instron extrusion force values are presented in Table 20. 

The 1/4/4 fat mixture exhibited results comparable to previous 

experiments. Increased water addition resulted in predictable 

changes in proximate composition (Table 20). As little as a 
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Table 20 .  Effect of 
stabilized 

protein/water/fat ratio on soy 
fat mixture characteristics^ 

Protein/ 
Water/Fat 
Ratio 

Moisture 
Content 
(%) 

Fat 
Content 
(%) 

Emulsion 
Stability 

(ml released) 

Instron 
Average 

(kg )  

1 /4 /4  45 .7^  41 .6^  2 .97^  12 .9^ '^  

1 /4 .5 /4  47 .4^  40 .9^  0 .03^  16 .4^  

1 /5 /4  50 .9^  38 .5^  

u
 CO o
 
o
 11 .0^  

1 /5 .5 /4  52 .7® 36 .9^  0 .03^  S.SC'* 

1 /6 /4  54 .4^  35 .4® 0 .00^  5.8^ 

= 9 observations per mean. 

b,c,d,e,f^2ang within each column having different 
superscripts are significantly different (P< 0.05). 
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0.5 part increase in water content resulted in the formation of 

a completely stable fat mixture. No stability advantage in any 

further water addition was seen. The Instron extrusion values 

showed a peak in stiffness at a 1/4.5/4 ratio. The extrusion 

values then declined steadily with further increases in water 

content. 

As a result of the previous experimentation, the optimum 

production characteristics of a soy stabilized fat mixture were 

determined. One part of Ralston-Purina 620 protein was 

combined with 4.5 parts water and 4 parts pork backfat. The 

water at 90°C was mixed with the protein for 50 seconds after 

which time ground fat was added. After chopping for 8.5 

minutes 100 g water within which the nitrite was dissolved was 

added. Chopping was continued until ten minutes had elapsed 

since protein addition. Steam was continuously applied to the 

outside of the bowl to maintain 48.9°C temperature of the 

mixture. 

Comparison of Caseinate and Soy Fat Mixtures 

From the research performed, it was apparent that soy 

stabilized and caseinate stabilized fat mixtures possessed at 

least one stability feature in common. Both proteins were 

capable of trapping fat, in some manner, so that mild heating 

of the mixture did not result in fat or moisture release. 

Beyond this, however, more differences than similarities 

existed between the fat mixtures. By examining the 
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differences between the mixtures, an attempt was made to 

describe the mechanism of fat stabilization in both mixtures. 

The structures proposed are speculations fitting the data 

presented. No study of the fine structure of these fat 

mixtures was performed to confirm or deny proposed structures. 

Stabilization of fat in systems such as the two described 

in this report may occur in one of three ways: through 

gelation which traps the fat in a three dimensional matrix, 

through emulsification of the fat particles, or through the 

trapping of the fat particles in a non-organized viscous 

matrix. Soy protein has long been noted for its propensity to 

gel when exposed to water and heat (Circle et al., 1964; 

Catsimpoolas and Meyer, 1970). Caseinate is generally 

reported not to gel in the presence of only water and heat 

(Hermansson, 1975; Terrell et al., 1982). In this experiment, 

it was questionable whether or not the water used was hot 

enough to promote soy gelation. In order to examine the 

possibility of soy or caseinate gelation under the conditions 

of this experiment, slurries of protein and water of the 

various temperatures used in this research for fat mixtures 

production were made. These slurries were measured and 

gelation determined using the method of Catsimpoolas and Meyer, 

(1970). 

Density measurements were performed in this experiment to 

ensure against overestimation of structural formation due to 
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excessive compaction during the centrifuging step. Likewise, a 

major decrease in density would result in lower viscosity 

measurements due to the inability of the centrifugation step to 

remove air incorporated during protein slurry formation. In 

neither protein slurry were changes in density believed to 

materially affect the viscosity results. 

In the case of soy protein isolate slurries (Table 21), a 

direct increase in viscosity occurred as the temperature of 

water used increased. Between 60°C and 70°C the greatest 

increase in viscosity occurred. During fat mixture production, 

the initial 60 second chopping of water and protein (when a 

protein added to water mixture was produced) was identical to 

conditions which promoted gelation in this study. Although a 

fat mixture contains other factors (i.e., fat and nitrite) it 

is safe to assume that the method used for final soy stabilized 

fat mixture production also possesses the conditions necessary 

to initiate gelation of the soy protein isolate. 

The results of the caseinate slurry formation (Table 22) 

are equally clear, but completely opposite to those using soy 

isolate. As the temperature of the water used to produce the 

slurry increased, the viscosity of that slurry decreased. It 

is possible that another feature of the caseinate stabilized 

fat mixture formation may promote some protein to protein 

interaction (especially the 1.5% NaCl added); however, the 

increased water temperature did not appear to promote 
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Table 21. Effect of water temperature on the viscosity and 
density of isolated soy protein and water 
solutions^ 

Temperature 
(°C) 

Viscosity 
(106 CPS) 

Density 
(g/mi) 

10 1.3^ 0.92% 

20 1.2% 0.97%'C 

30 1.5%'= 0.97%'" 

40 1.6='* 0.99= 

50 1.9^'® 0.95%'= 

60 2.1® 0.96%'= 

70 2.6^ 0.98%'= 

80 2.9^ 0.98%'= 

^n = 9 observations per mean. 

b , c , d , e , f w i t h i n  e a c h  c o l u m n  h a v i n g  d i f f e r e n t  
superscripts are significantly different (P< 0.05). 
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Table 22. Effect 
density 

of water temperature on 
of caseinate solutions' 

the viscosity and 
a 

Temperature 
(°C) 

Viscosity 
(10® CPS) 

Density 
( g/i"i ) 

10 4.3^'^ i.oe^'C 

20 5.1^ 1.07b 

30 5.1^ 1.08^ 

40 4.ob'C 1.07b 

50 4.4^'= i.oeb'C 

50 3.4b 0.95^'^ 

70 2.9b 0.92^ 

80 4.3^'^ l _ Q i b , c ,d 

= 9 observations per mean. 

within each column having different 
superscripts are significantly different (P< 0.05). 
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gelation. It is interesting to note that although no increase 

in viscosity occurred, caseinate slurries were consistently 

much more viscous than soy protein slurries. No reason for 

this increased viscosity was determined. 

By reexamining results presented in Table 21, Instron 

extrusion values tended to support the role of some gel 

structure formation in soy stabilized fat mixtures. When soy 

isolate was first added to water followed by fat, consistent 

increases in the force required to extrude the sample occurred 

with increases in the water temperature. The caseinate 

temperature results (Table 13) described an increase in 

extrusion force from 25.6°C to 45.4°C followed by essentially 

no change to 54.4°C and a decrease in extrusion force required 

to extrude a fat mixture prepared at 60.0°C. 

In the results examined to this point, Rongey stability 

measurements presented no discernible stability changes 

attributable to temperature effects in caseinate fat mixtures. 

Soy mixtures which were exposed to greater temperatures, 

however, tended to also possess higher Rongey stability in 

samples where protein was added to water. The same result did 

not occur when protein was first added to fat. 

It is possible that the type of fluid released from the 

fat mixture may give information concerning possible stability 

mechanisms. In caseinate stabilized fat mixtures, only water 

was recovered. This intuitively indicated that in our 
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experiment/ caseinate was intimately associated with the lipid 

present, perhaps to a greater extent than it associated with 

water. The structure of caseinate described by Morr (1981), 

Ono et al. (1974b), Ribadeau-Dumas et al. (1972) and Mercier et 

al. (1973) certainly suggests that caseinate has a potential 

for lipid interaction. Protein to protein interaction, 

probably in a random fashion (coagulation), initiated by the 

ionic imbalance caused by the addition of 1.5% salt near the 

end of the chopping cycle probably traps the water not already 

inherent to the emulsion structure. 

In soy stabilized fat mixtures, 99% or more of the fluid 

released during the Rongey stability test was lipid material. 

With soy stabilized fat mixtures, a lack of protein disperison 

together with low stability was found in fat mixtures in which 

the protein was first dispersed in lipid. In addition, oil was 

preferentially released from less stable mixtures. It was also 

apparent that additional water tended to improve the stability 

of the soy fat mixture. Water temperatures used appear to be 

high enough to promote protein gelation and mixtures with soy 

added to water which exhibit increased gelation potential also 

exhibit increased product stability. When all these factors 

are considered, the following mechanism of soy stabilized fat 

mixture formation can be hypothesized. Hot water and soy 

combine to begin the gelation process. The hot water denatures 

the soy protein promoting increased functionality. The hot 
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vater denatures the soy protein promoting increased 

functionality. The water added is required to hydrate the 

protein and as a result is tightly bound. In fact, additional 

water (at least 4.5 parts) is required to hydrate sufficient 

protein to be assured of stabilizing four parts of lipid. 

As the unheated, ground fat is added, it is reduced in particle 

size and chopped into the soy-water progel matrix. The fat 

initiates cooling of the progel matrix and gel formation 

begins. 

Protein Stabilization: Gelation or Emulsification 

One of the major problems in studying protein interactions 

with lipid and water is the inability to differentiate between 

the possible stabilization methods, specifically gelation and 

emulsification. This is especially true in meat products. It 

is the opinion of the author that such a differentiation may 

never be possible. The reasons for this opinion are quite 

simple. Of the three mechanisms involved in emulsion 

stabilization, only two involve a protein stabilizer. These 

two mechanisms are decreasing interfacial tension and film 

formation (Wolf and Cowan, 1975; Schut, 1976; Morr, 1981). 

Of the two, film formation is believed to be the most important 

mechanism of emulsion stabilization (Tachibana and Inokuchi, 

1953; Tachibana et al., 1957; Pearson and Alexander, 1968). 

If this is indeed true, then the three dimensional protein to 

protein interactions which form the film layer are primarily 
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responsible for the stabilization of an emulsion. Since a 

three dimensional protein to protein interaction is also called 

a gel, gelation forming the fat particle's film layer becomes 

the key to protein stabilized emulsification. In addition, 

those treatments used to break protein to protein bonds to 

test for gelation would disrupt both a gel and an emulsion film 

layer. If gelation stabilizes the protein film layer, then an 

emulsion stabilized by protein is actually a gel. 

Emulsion Capacity (EC) of Soy Isolate and Caseinate 

The original emulsion capacity (EC) measurement, although 

meant to permit a simplified measure of the functionality of 

salt-soluble muscle protein, contained a number of specific 

conditions (Swift et al., 1951). These conditions included the 

use of melted lard as a fat source, salt (used to extract 

salt-soluble protein), blender speed, speed of oil addition and 

end-point determination. Many of these factors, as mentioned 

in the literature review, have received various modifications 

by several authors. Other factors, including the use of salt, 

have remained essentially unchanged. One goal of this research 

was to examine the impact on EC of certain factors found to 

have significant impact on fat mixture production. 

Effect of protein type 

Just as the initial factor examined during the fat mixture 

production was a comparison of several protein types, this was 

the first factor examined using EC. The EC of several proteins 
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is seen in Table 23. In a no salt system, the isolated soy 

proteins outperformed the caseinate proteins. Ralston Purina 

620 soy isolate performed slightly better than the other two 

soy isolates. Of the two caseinates, EmHV, sodium caseinate 

had a greater EC than PHV, potassium caseinate. These results 

appear to functionally justify the selection of both 520 as the 

isolated soy representative and EmHV as the caseinate 

representative for further study. 

Effect of salt 

Caseinate EC Experiments were performed using 

distilled, deionized water, and distilled, deionized water 

containing either 0.1 M or 1.0 M NaCl. The effect of NaCl on 

the EC of caseinate and soy isolate is seen in Table 24. 

With the addition of NaCl at a 0.1 M level, an increase in the 

EC of caseinate of 6 ml/100 mg of protein was seen. Two 

reasons for this improvement are possible. First of all, the 

ionic strength of the solution could promote unfolding of the 

caseinate leading to exposure of interior hydrophobic groups. 

The change in ionic strength of the solution could also alter 

the type and amount of protein to protein interaction which 

takes place, improving the film forming ability of the protein. 

When 1.0 M NaCl solutions were used, a special condition 

arose. Whether or not an actual decrease in EC occurred 

depended upon the interpretation of endpoint. Most EC 

experiments have declared an endpoint when a sudden decrease in 
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Table 23. Effect of protein type on emulsion capacity 
and pH of emulsion capacity solutions^ 

Emulsion Capacity 
Protein (ml/100 mg protein) pH 

Isolated Soy Protein 50.8® 7,27^ 
(520, Purina) 

Isolated Soy Protein 47.8^ 7.30^ 
(902, GPC) 

ilated Soy : 
(973, GPC) 

:ium Casein; 
(EMHV, DMV) 

assium Casi 
(PHV, DMV) 

Isolated Soy Protein 47.4° 7.34^ 

Sodium Caseinate 44.7^ 6.77^ 

Potassium Caseinate 37.2^ 5.91^ 

^n = 18 observations per mean. 

b,c,d,e^^2ng within each column having different 
superscripts are significantly different (P< 0.05). 
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Table 24. Effect of protein type and salt level on emulsion 
capacity^ 

NaCl (M) 
Treatment 0.0 0.1 1.0 

Isolated Soy Protein 56.Cf 36.8 = 33.7b 

Sodium Caseinate 52. EP 58.5^ 42.3d 

^ n = 18 observations per mean. 

b,c,d,e,f having different superscripts are 
significantly different (P < 0.05). 
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viscosity occurred in the solution (Swift et al., 1961), when 

stained oil was released from the EC solution (Marshall et al., 

1975), or when a drop in conductivity of the solution occurred 

(Webb et al., 1970). The actual definition of EC is scftnewhat 

different, however. EC is defined as the maximum amount of oil 

which can be emulsified by a given amount of protein (Kinsella, 

1976). The 1.0 M NaCl and caseinate solution lost the ability 

to emulsify additional oil at a lower oil content than the 

distilled water or 0.1 M NaCl and caseinate solution. It did 

not, however, exhibit the drop in viscosity, loss of emulsion 

matrix, or loss of electrical conductivity seen in other cases. 

Although the inability of the protein to emulsify further oil 

was apparent, it was probable that with the system being used, 

no actual endpoint could have been reached. The large increase 

in viscosity when 1.0 M NaCl was used indicated that an 

increase in protein to protein interaction occured due to the 

presence of salt- This increased protein to protein 

interaction may also indicate the possible mechanism for the 

improved EC which resulted with a 0.1 M NaCl solution. 

Soy isolate EC NaCl had a much more dramatic effect on 

soy isolate EC than on caseinate EC (Table 24). When 0.1 M 

NaCl solution was used the EC dropped 35% compared to EC in 

distilled water alone. A slight additional drop in EC was 

seen using 1.0 M NaCl solution. NaCl has been demonstrated to 

have a negative effect on the functionality of soy isolate 
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(Hermansson and Akesson, 1975). This negative impact is 

believed to be the result of two effects of NaCl on the soy 

protein. The first effect is the maintenance of the native 

structure of the soy protein (Hermansson, 1972). Because of 

this inhibition of denaturation of soy protein, internal 

hydrophobically active areas and binding sites remain 

unexposed, limiting the protein's functional ability. NaCl 

also functions to prevent the renaturation of the protein 

previously denatured, decreasing the gel forming potential 

(Wolf, 1970). 

The original EC test incorporated the use of 1.0 M NaCl to 

extract the salt-soluble proteins of muscle tissue. When 

conductivity is used as a method of endpoint determination, a 

solution including an electrolyte, such as 1.0 M NaCl, is 

required to conduct electricity. As seen in this study, the 

effect of all components in the system must be assessed. Had 

salt been retained in this study, soy EC functionality would 

have been significantly underestimated. 

Removal of the NaCl from the remainder of the EC 

experiments was expected to underestimate the EC of caseinate. 

It should be remembered, however, that the goal of this portion 

of the study was to compare EC functionality with protein 

functionality in fat mixture formation. During fat mixture 

matrix formation, NaCl was not required for either type of 

stabilized fat mixture. (NaCl was added just prior to the end 
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of chopping in caseinate stabilized fat mixtures after the fat 

mixture matrix had been developed. The increase in viscosity 

seen after NaCl was added was necessary to ensure caseinate fat 

mixture stability.) In general, EC conditions should be used 

which reasonably simulate conditions which are expected in the 

actual product. If the protein is not designated for an actual 

product, however, an obligation exists to measure the EC of the 

protein under optimum conditions for that protein. 

Effect of temperature on EC 

The effect of temperature on EC is shown in Table 25. 

Since both proteins react to EC temperature increases in 

approximately the same manner, a discussion of the temperature 

trend does not need to be broken down by protein type. An 

experiment was performed using water at room temperature (22° 

C) or at 90°C. The room temperature water resulted in final EC 

temperatures of 31® C while the 90°C water resulted in final EC 

temperatures of 43°C. (The 43°C temperature was essentially 

the optimum chopping temperature during fat mixture production 

for caseinate and a minimum stable temperature for soy 

stabilized fat mixture production.) In every case, the EC 

measurements made using hot water were lower than the 

corresponding measurements made using the cooler water. 

Other studies have indicated much the same temperature 

effect on EC. Swift et al. (1951) in the original EC 

measurement and Carpenter and Saffle (1964), both using meat 
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Table 25. Effect of protein type and temperature on 
emulsion capacity^ 

Temperature 
Protein Type 25° C 43°C 

Isolated Soy Protein 44. 2= 40.2^ 

Sodium Caseinate 56. 2^ 46.3= 

^n = 18 observations per mean. 

Means having different superscripts are 
significantly different (P<0.05). 
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protein, found a significant decrease in EC with increasing EC 

solution temperature. 

Effect of addition medium on EC 

One other factor felt to have a potential effect on EC was 

the medium in which the protein was initially distributed. 

Most previous experimentation using muscle protein began with 

a ready-made water or salt-water solution in which the protein 

was dissolved (Carpenter and Saffle, 1964). This experiment 

did not require any specific solution in which to solubilize or 

extract the protein. In order to compare the initial 

dispersion effect, the protein of choice was dispersed by 

blending 150 mg of protein in 90 ml of either distilled, 

deionized water or 30 ml of corn oil. After 30 seconds 

of blending, either 90 ml of deionized water or 30 ml of corn 

oil (the opposite of the fluid first used) were added and EC 

measurement was begun. The effect of distributing the protein 

first in oil or first in water prior to blending is seen in 

Table 26. 

This experiment was performed twice. The first experiment 

included the factors protein type, salt in the water, and 

temperature, as well as addition order. The dispersion 

medium actually had very little effect if the 1.0 M salt level 

is ignored. (The treatment combination of caseinate added to 

oil with 22°C, 1.0 M NaCl solution caused an assortment of 

significant interactions.) In the second experiment. 
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Table 26. Effect of addition 
emulsion capacity^ 

medium and salt level on 

NaCl (M) 
Order of Addition o

 
o
 1—1 o

 1. 0 

Dissolved in oil 54.3® 47.5^ 35. 4b 

Dissolved in water 54.6® 47.gd 40. 7C 

= 18 observations per mean. 

bfCfd/e^eang having different superscripts are 
significantly different (P <0.05). 
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dispersion medium was studied together with protein type as 

the only additional treatment. The results of this experiment 

(seen in Table 27) indicated a slight but significant 

difference in EC due to the dispersion medium with soy 

isolate, but no difference with caseinate. 

Temperature and NaCl interaction 

One specific combination of treatments (22°C water, 

protein addition to oil, caseinate protein, 1.0 M NaCl) 

resulted in a low EC estimate. The low EC measurement 

resulted in significant interaction effects being seen for 

several variables. The endpoint did not actually occur in 

this treatment; instead, a large increase in viscosity of the 

EC slurry was visually observed. This viscosity increase 

inhibited further oil addition to the slurry and resulted in 

EC termination. The increase in viscosity can be assumed to 

result from an increase in protein to protein interaction. 

The simple addition of lipid to a protein-water solution has 

been shown to increase the viscosity of solutions; however, 

the protein fraction of the EC test is more likely to be 

effected by the observed combined ionic and temperature effect. 

EC slurry pH 

It should be noted that several factors resulted in 

significant differences in end product pH in the endpoint 

protein/water/fat slurries. In all cases, protein type had a 

significant effect on pH with caseinate dispersions displaying 
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Table 27. Effect of protein type and 
emulsion capacity^ 

addition order on 

Addition to Water Addition to Oil 

Isolated Soy Protein 32.7^ 34.5c 

Sodium Caseinate 40.0^ 40.24 

= 18 observations per mean. 
b, c, d 

Means having different superscripts are 
significantly different (P< 0.05). 
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lower pH values than soy dispersions (Table 28). The level of 

NaCl in the protein dispersion also played a significant role 

in end product pH. Increases in NaCl concentration resulted 

in consistently lower pH values (Table 28). This reflects the 

replacement of H+ ions on the protein by Na+ ions from the salt 

resulting in an increased H+ level in the solution. 

Comparison of EC and Fat Mixture Production 

Commonly, EC measurement or another simplified or "model" 

system is used to estimate the functionality of a specific 

protein as related to the protein's use in a food. In this 

study, fat mixture stabilization was directly compared to EC. 

Fat mixture production offers the advantage of comparing 

proteins in proportions similar to those which would occur in a 

food product, but without complicating factors such as other 

proteins etc. which would normally be present in a food. As a 

result, a fat mixture is nearly as simple a system as EC. By 

comparing the protein functionality as measured by EC and by 

fat mixture production, insights may be gained as to the 

relationship of the two types of methods. Table 29 displays 

the comparison of several factors which play a role in both EC 

and fat mixture production. 

Several contradictions concerning the functional 

performance of the two proteins examined in EC and fat mixture 

production were apparent. The abilities of caseinate and soy 

isolate to stabilize fat in fat mixtures were clearly 
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Table 28. Effect of protein type and salt concentration 
on the pH of the emulsion capacity slurry^ 

NaCl (M) 
0 . 0  0 . 1  1 . 0  

Isolated Soy Protein 7.23^ 6.67^ 5.32® 

Sodium Caseinate 5.82^ 6.59^ 6.15^ 

% = 9 values per mean. 

^'C'd/^eans having different superscripts are 
significantly different (P<0.05). 



Table 29. Comparison of several factors involved in emulsion capacity and fat 
mixture production 

Factor Emulsion Capacity 

Protein Type Soy isolate had an equal or greater 
EC than sodium caseinate when no 
salt was present. 

Salt Content Low (0.1 M NaCl) levels of salt 
increased EC of caseinate. Soy 
isolate EC was decreased with any 
salt addition. 

Temperature Increased temperatures resulted in 
decreased EC. 

Addition With the exception of cold caseinate 
Medium EC when 1.0 M NaCl was used, little 

difference was seen in EC when the 
protein was first distributed in 
either oil or water. 

Fat Mixture Production 

Caseinates and soy isolates 
produced stable mixtures. Soy 
isolates, however, required 
twice as much to provide the 
stable mixture. 

NaCl was not used during fat 
mixture matrix formation. 
NaCl was required to ensure 
stability to the caseinate fat 
mixture, but was detrimental 
to a soy fat mixture. 

Temperature had little effect 
on caseinate fat mixture 
stability. Soy stabilized fat 
mixtures absolutely required 
mixture temperatures over 
43.3*C develop fat mixture 
stability. 

Soy Isolate possessed poor 
stability when mixed in fat, 
was difficult to form when 
dispersed in water. 
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different. Caseinate stabilized fat mixtures were easily 

formed at a protein to water to fat ratio of 1/8/8. Soy 

isolate, on the other hand, was difficult to stabilize at 

1/4/4 or 1/5/5 ratios and impossible to stabilize at the 1/8/8 

ratio characteristic of caseinate. EC, on the other hand, 

indicated that soy isolate was more effective than caseinate 

in emulsifying oil. 

The effect of temperature on EC and fat mixture production 

was very different. The EC of both proteins was decreased by 

increases in temperature. With caseinate stabilized fat 

mixtures, temperature actually displayed little effect on 

stability. At the lowest and highest temperatures used, some 

slight reduction in stability was noted (Table 13). 

Temperature had a large effect on soy isolate stabilized fat 

mixtures (Table 17). Temperatures of at least 43.3°C 

were critical to forming any fat mixture possessing reasonable 

stability. 

The medium (oil or water) in which the protein was 

initially dispersed affected soy stabilzed fat mixture 

production more than EC measurement. When soy isolate was 

dispersed in fat 60 seconds prior to water addition, it was 

impossible to produce a stable fat mixture. When first 

dissolved in water, a stable mixture could be attained if other 

factors, especially temperature, were optimized. (Caseinate 

dispersion in water for fat mixture production was not 
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investigated.) The EC did not appear to be influenced by 

addition medium with either protein. 

Salt was one factor which did not produce great 

differences between EC and fat mixtures measurements. In both 

EC measurement and fat mixture production, NaCl improved the 

functional properties of sodium caseinate. Only a modest 

improvement in EC of caseinate was seen with NaCl addition; 

however, preliminary experiments indicated that NaCl was 

critical for caseinate fat mixture stability. An interesting 

comparison can be made between NaCl incorporated into caseinate 

stabilized fat mixtures and the EC treatment using 1.0 M NaCl 

and 22°C water. Thirty seconds prior to the end of the fat 

mixture chopping cycle, 1.5% NaCl was added to the caseinate 

stabilized fat mixture. An immediate, visually observed 

increase in the viscosity of the fat mixture was noted. An 

increase in the viscosity of the EC slurry was also observed 

when 1.0 M NaCl solution at 22°C was used for the EC test 

treatment. NaCl has been demonstrated to increase the 

viscosity of a solution of caseinate in water (El-Negoumy, 

1978), perhaps because of intermolecular crosslinking of 

phosphoserine and alanine promoted by NaCl. Morr (1979a) 

attributed the fat stabilizing properties of high viscosity 

caseinate to its ability to prevent aggregation of fat 

droplets simply because of the solution's viscosity. In the 

case of caseinate EC measurement, the viscosity of the slurry 
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is increased (with salt addition) to a point where the mixing 

action of the Omni-mixer is no longer sufficient to continue 

mixing the slurry. 

In EC, NaCl was detrimental to soy protein functionality. 

Although the effect of NaCl was not tested in soy fat mixture 

production in this study, historically, the presence of salt 

has proven detrimental to soy isolate functionality (Wolf, 

1970; Hermansson, 1972; Hermansson and Akesson, 1975). 

It was apparent in this study that EC measurement was 

not effective in estimating the functionality of the proteins 

studied in relation to fat stabilization in fat mixtures. 

Assuming that EC measures the amount of oil the proteins 

emulsify, explanations for the reported differences in 

functionality can be formulated. The most obvious explanation 

is that emulsification was not the primary fat stabilizing 

mechanism in this particular experiment. In discussing soy 

isolate fat mixture stabilization, circumstantial evidence 

seemed to indicate that gelation, "fat trapping", may exert 

more influence in stabilizing fat than emulsification. In 

addition, the salt-induced stability of caseinate stabilized 

fat mixtures suggests that emulsification may not be the 

mechanism of caseinate fat mixture stabilization. 

If, on the other hand, it is not assumed that EC measures 

the individual protein's ability to emulsify fat, then a closer 

examination of the EC method is required to determine what EC 
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is measuring. By producing slurries representing intermediate 

forms of the EC measurement and examining them under the light 

microscope, an attempt vas made to determine the events which 

take place during EC measurement. 

In Figures 9 and 10, caseinate and soy EC slurries at 

1/5/5 protein to water to fat ratios are shown. Under the 

rather low magnification used in this experiment, no 

structural details were apparent. The same was essentially 

true with caseinate and soy EC slurries at 1/10/10 ratios 

(Figure 11 and 12). At a ratio of 1/25/25 caseinate EC 

slurries (Figure 13) and 1/50/50 soy EC slurries (Figure 14) 

some distinct structures were becoming apparent. 

At a ratio of 1/50/50 the caseinate EC slurry was shown 

to develop several sizes of cells (Figure 15). An EC cell, in 

this report/ is a discrete packet of lipid and water bordered 

by a protein film. Ratios of 1/100/100 in caseinate EC 

slurries (Figure 16) produced a more defined structure as well 

as an increase in the number and size of cells. Individual 

droplets of stained lipid were seen at this ratio. In the EC 

slurry seen at a caseinate ratio of 1/150/150 (Figure 17), the 

presence of several very large cells with fewer small 

segregated cells were apparent. At a ratio of 1/200/200 

caseinate, EC breakdown had occurred. In general, with 

caseinate EC slurries, as fat and water levels were increased, 

larger and larger cells were formed. At the EC breakdown 
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Figure 9. Light micrograph of a 1/5/5 caseinate to water to 
fat slurry (The only obvious structural details 
apparent are air bubbles (a) trapped in the viscous 
solution (100 X)) 
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Figure 10. Light micrograph of a 1/5/5 soy isolate to water 
to fat slurry (No distinct structures are 
visible (100 X)) 
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Figure 11. Light micrograph of a 1/10/10 caseinate to water 
to fat slurry (100 X) 
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igure 12. Light micrograph of a 1/10/10 soy isolate to vat 
to fat slurry (100 X) 
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Light micrograph of a 1/25/25 caseinate to water 
to fat slîirry (Note the iTieâxuîu (m) aiiu siriaH (s) 
cells which are becoming apparent (100 X)) 
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Figure 14. Light micrograph of a 1/50/50 soy isolate to 
water to fat slurry (Although definite cell 
structure is visible, a uniform size of cells is 
apparent (100 X)) 
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Figure 15. Light micrograph of a 1/50/50 caseinate to water 
to fat slurry (100 X) 



143 

Figure 16. Light micrograph of a. 1/100/100 caseinate to water 
to fat slurry (Note the very large cell structure 
visible in the lower left corner (100 X)) 
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Figure 17. Light micrograph of a 1/150/150 caseinate to water 
to fat slurry (Extremexy large cells (c) are 
formed. This slurry is becoming unstable (100 X)) 



145 

point, the cells in which the lipid and water were dispersed 

broke, releasing their contents (oil and water) to the 

surrounding matrix. 

At EC slurry ratios of 1/100/100 and 1/150/150 (Figure 18, 

19) soy isolate slurries began to form cells, but did not 

develop the larger cells seen at 1/150/150 levels in caseinate 

slurries. At an EC slurry ratio of 1/200/200 (Figure 20) size 

discrimination between the cells had begun to become obvious 

and relatively large cells had formed. 

At a ratio of 1/300/300, the soy stabilized EC slurry 

provided a clear cut picture of the structure apparent just 

prior to EC endpoint (Figure 21). In this picture, the 

individual moisture filled cells are present complete with 

Oil-Red-0 stained lipid droplets. The center of the picture 

consists of already collapsed cells with contents released to 

the exterior. The point at which EC breakdown occurred was 

characterized by breakage of the cell walls and release of 

the contained oil droplets and water. In the case of both 

isolated soy protein and caseinate EC measurements, EC 

breakdown resulted in the formation of three distinct layers. 

The layers were a lipid top layer, a protein layer and a 

predominantly water lower layer. 

Figure 22 is a schematic depicting the events which lead 

to EC breakdown. In step 1, oil, protein and water combine to 

form an indistinct mass (under low power magnification). The 
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Figure 18. Light micrograph of a 1/100/100 soy isolate to 
water to fat slurry (100 X) 
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:±_ 

Figure 19. Light micrograph of a 1/150/150 soy isolate to 
water to fat slurry (100 X) 
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Figure 20. Light micrograph of a 1/200/200 soy isolate to 
water to fat slurry (Note the formation of 
definite cell structure (100 X)) 
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Figure 21. Light micrograph of a 1/300/300 soy isolate to 
vater to fat slurry (Note the presence of distinct 
fat droplets present in water filled cells (a) and 
released to the exterior (b) (100 X)) 
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structural development within this mass was undetermined. 

Enough protein may be present to coat each fat globule forming 

a classical emulsion (Becher, 1965). When additional oil was 

added (step 2), distinct droplet or cell structure began to 

develop. With increasing oil addition, cell sizes begin to 

differentiate, forming assorted small, medium and large cells 

(step 3). This step represented the beginning of 

déstabilisation which occurred as large fat droplets were 

formed. In step 4 after still more fat addition, very large, 

unstable cells are present. Internal lipid droplets began to 

be differentiated from the surrounding aqueous medium inside 

the cell. As EC breakdown was approached in step 5, the lipid 

droplets were easily identified dispersed within the aqueous 

environment. At EC breakdown, the cell contents (water and 

lipid) were released as cell protein walls were broken. By 

staining portions of each of the three distinct layers formed 

at the EC endpoint using Gill's hematoxylin, the middle layer 

was found to contain the only appreciable amounts of protein-

The classical explanation of EC breakdown is that 

insufficient protein is present to coat all the fat added. 

The fat is then released to the external environment. This 

release decreases the solution conductivity, concentrates 

Oil-Red-0 in the exterior or results in some other EC endpoint 

event. 
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The term "emulsion" capacity is critical because it 

implies that the protein is located at the individual 

water/lipid interfacial surfaces. In this experiment, it 

vas not possible to determine whether or not individual 

lipid droplets were protein coated. Two facts were able to 

be determined, however. First, lipid droplets were contained 

in an aqueous environment inside a larger cell structure. 

Second, EC breakdown was not determined by individual lipid 

droplets being released, but rather by the release of lipid 

droplets and water contained within enlarged cells. One 

point should be perfectly clear. If the description of the 

events resulting in EC breakdown is accepted, protein 

association at the lipid/water interface becomes of secondary 

importance in the context of emulsion capacity measurement. 

At best, this study indicates that "emulsion capacity" is a 

misnomer; at worst, it means emulsion capacity is worthless as 

an indication of protein to lipid interaction. 

To determine what EC measurement does measure, the factors 

presented earlier must be re-examined. Studies of assorted 

protein types indicated that soy isolate possessed an EC equal 

to if not greater than that of caseinate. It was obvious 

during fat mixture production that the fat binding character­

istics of the two proteins were not equivalent. It was also 

indicated that the soy stabilized fat mixture was stabilized by 

protein to protein gel interactions whereas the caseinate 

mixture was stabilized by protein to protein and protein to 
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lipid interactions. If it is true that the protein to lipid 

interaction is not important at the EC endpoint, the ability of 

the protein to form protein to protein interactions would 

ultimately determine the EC of the product. 

NaCl was not used in the soy stabilized fat mixtures 

studied. NaCl was found to be, however, very detrimental to EC 

measurement. NaCl reportedly inhibits both the initial soy 

protein unfolding or denaturation and protein to protein 

interaction or renaturation required for optimum functionality 

(Hermansson, 1979). If this report was accurate and NaCl 

indeed inhibits protein to protein interaction, a drop in soy 

EC (as was seen) would have to occur when NaCl was added. 

Likewise, since NaCl increases caseinate protein to protein 

interaction, caseinate functionality would be enhanced by NaCl. 

Temperature affected the EC of both proteins by decreasing 

the EC as temperature increased. The decreases in EC are 

contradictory to the lack of change seen in the caseinate fat 

mixture and the improved stability of heated soy mixtures with 

increased temperature. In the soy fat mixtures, the heat 

present appeared to be sufficiently high to induce gelation of 

the soy protein. If the concept of individual protein film 

coated cells containing both water and lipid is accepted, a 

hypothesis concerning the action of heat upon the system can be 

proposed. It was calculated that in a closed system, if water 
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at 4 PSI (atmospheric pressure) and 31° C was heated to 43° C, an 

increase of 1400 PSI would occur (Morin, private communication, 

1986). The EC test, however, is neither a static nor a closed 

system. It is a system in which individual water and lipid 

cells are constantly changing. Protein coated cells are 

formed, and the film layers combine and reform larger cells 

as more lipid is added. With increases in temperature, 

however, a more rapid enlargement is promoted because each 

specific amount of fluid exerts greater pressure on the protein 

film layers. As a result, the ability of the proteins in the 

film layer to interact is probably not decreased due to the 

addition of heat. Rather, the heat increases fluid pressure 

in the system which "uses up" the protein film or causes it 

to expand to its maximum at relatively lower quantities of 

added oil. 

The medium (water or lipid) in which the protein was 

initially dispersed had essentially no effect on EC. As 

described earlier, in caseinate EC measurements at 1.0 M NaCl 

concentrations, a physical situation unlike EC breakdown 

occurred. Aside from this unusual phenomenon, however, no 

major difference was noted. Neither traditional EC 

explanations or the alternate EC mode of action explained in 

this discussion would indicate that either medium of 

dispersion should improve the protein's EC. 
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EC micrographs published by other authors appear to agree 

with the breakdown of protein coated water and lipid cells seen 

in this study (Smith et al., 1973; Tantikarnjathep, 1980; 

Eegenstein and Regenstein, 1984). It is unknown why this mode 

of breakdown has not previously been suggested. In this study, 

EC was inconsistent in estimating the effectiveness of a 

protein for stabilizing lipid. At times protein emulsification 

effectiveness has been accurately measured using EC (Carpenter 

and Saffle, 1964; Webb et al., 1970), at other times not 

(Mattil, 1971; Puski, 1976). The reason for this inconsistency 

is because EC measurement appears to measure a functional 

property of protein, but not necessarily the ability to 

interact between a water and lipid surface. Rather EC appears 

to estimate the ability of a protein to remain self-associated 

with increased expansion. A more appropriate term defined by 

the EC measurement may be protein elasticity. 

In this discussion, soy isolate and caseinate fat 

stabilizing ability could not be predicted using EC 

measurement. The lack of consistency has been a common 

complaint concerning model systems in general. Unfortunately, 

complex food system production includes the addition of several 

confounding factors which influence the effect of the protein. 

The use of individual proteins to produce fat mixtures may 

provide a solution to the problem. By producing fat mixtures, 

the functionality of a protein can be examined in a system in 
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which relatively few interfering ingredients are present. In 

addition, the protein to water to fat composition of the fat 

mixture more closely simulates an actual food system than does 

the composition of an EC slurry or other model system. 

Sausage Production Incorporating Fat Mixtures 

Two types or classes of sausage products were produced 

using either soy stabilized fat mixture, caseinate stabilized 

fat mixture or 50% fat pork trimmings as the fat source. The 

two classes of sausages, coarse ground cotto salami and emul­

sified bologna were chosen in order to compare the effect of 

fat mixtures on varying textural and sensory characteristics. 

Fat mixture characteristics 

Prior to the manufacture of the sausages, the fat mixtures 

were produced according to the optimal production scheme 

determined in the first portion of this research. Table 30 

displays the average characteristics of the two fat mixtures 

used in this study. Significant differences were not seen in 

either moisture or fat content between the two fat mixtures; 

however, two of the fat mixture characteristics were 

significantly different. First, the soy stabilized fat mixture 

demonstrated much more resistance to flow when compared to 

caseinate stabilized fat mixtures. This was earlier assumed to 

be the result of increased protein structural (gel) formation 

in the soy stabilized fat mixture. Second, as seen previously, 

the caseinate stabilized fat mixtures exhibited a slightly 



Table 30. Effect of protein type on fat mixture characteristics^ 

Instron Emulsion 
Moisture Fat Average Stability^ 

Protein {%) {%) (kg) (ml) pH 

Sodium Caseinate 50.3^ 40.1^ 4.8^ 0.78 6.66^ 

Isolated Soy Protein 4 9 .7^ 38.3^  13.8^ 0.03 6.73^ 

®n = 9 values per mean. 

^Emulsion stability was significantly different (P<0.06). 

^'^Means within each column having different superscripts are 
significantly different (P<0.05). 
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lower pH than soy stabilized fat mixture. Soy stabilized fat 

mixture was not significantly more stable than the caseinate 

mixture at P<0.05; it was different at the P<0.06 level, 

however. In Eongey stability measures of the three soy 

stabilized fat mixtures produced, 0.1 ml of lipid of a possible 

40 ml was released. The caseinate fat mixture was somewhat 

less stable than previously seen. Even so, a fat mixture with 

an average fluid release of less than 1.0 ml/30 gm is 

essentially stable. 

Raw product characteristics 

The proximate composition of the raw and cooked product is 

seen in Table 31. The raw fat content of these products did 

not display any differences which were statistically 

significant. Bologna products possessed greater moisture 

content than their cotto salami counterparts. This was 

attributed to the addition of 3% water in the bologna formula. 

Products made incorporating stabilized fat mixtures displayed 

higher moisture contents compared to the products made using 

50% fat pork trim. This resulted from the use of fat mixtures 

which had a slightly higher moisture content than expected. 

After smokehouse processing, the products reached the 

desired target of approximately 25% fat. It appeared as though 

somewhat lower moisture losses occurred during thermal 

processing in the cotto salami which was produced using soy fat 

mixture. This was evident from the increase of only 1% in 
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Table 31. Effect of fat mixture addition on the raw and 
cooked compositignal characteristics of bologna 
and cotto salami 

Product^ 

Rav 
Moisture 
Content 
(%) 

Rav 
Fat 

Content 
(%) 

Cooked 
Moisture 
Content 
(%) 

Cooked 
Fat 

Content 
(%) 

Control Bologna 59.4^'® 23.6  56.7^'® 25.4^ 

Caseinate Bologna 61.6^ 24.6 58.4^ 26.7^ 

Soy Bologna 60.8^'^ 23.0 57.8^'^ 25.1^' 

Control Cotto Salami 56.4^ 23.6 53.8^ 25.4^' 

Caseinate Cotto Salami 59.6^ 23.0 55.3® 26.0^' 

Soy Cotto Salami 57.9® 22.9 55.8® 23.9^  

^n = 9 observations per mean. 

^Control denotes the addition of no fat mixture. 
Caseinate or soy denotes the use of caseinate or soy isolate 
stabilized fat mixtures, respectively. 

C'd'®'f'gleans within each column having different 
superscripts are significantly different (P< 0.05). 
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relative fat content of the soy cotto salami compared to 1.8 to 

3.0% increases in the other products. In addition, the cooked 

moisture content declined only 2.1% from the raw product in soy 

cotto salami/ compared to 2.8 to 3.7 seen in the remaining 

products. 

Comparing the yield immediately following cooking, (SKYD) 

and the final product yield after cooking and cooling (SSYD) 

(Table 32), the cotto salami produced using soy stabilized fat 

mixture demonstrated significantly greater yields when compared 

to the remaining products. Products utilizing caseinate 

stabilized fat mixtures tended to possess lower cooking yields 

compared to the other products. These results will be 

discussed together with the emulsion stability results. 

Sausage batter stability 

The Rongey stability of the raw meat batters is shown in 

Table 33. A very interesting feature concerning the raw 

product stability was that a large portion of the total loss in 

every product was moisture relative to fat or solids. In one 

case, fat loss was also high. This case occurred in the 

product in which the fat was not finely chopped. By examining 

Figure 23, a thin section sample of the control cotto salami, 

and Figure 24, a thin section sample of soy stabilized cotto 

salami, an insight into the stability phenomenon can be gained. 

The fat globules formed by grinding and mixing are very large. 

In contrast, in soy stabilized cotto salami, the fat was evenly 
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Table 32. Effect of fat mixture addition on smokehouse 
yield after smoking (SKYD) and 18 hours of 
cooling (SSYD)^ 

Product^ SKYD SSYD 
(%) (%) 

Control Bologna 92.5 d 90.8^^'® 

Caseinate Bologna 91.5 c 89.5C 

Soy Bologna 92.6 d 91.0® 

Control Cotto Salami 92.7 d 91.4® 

Caseinate Cotto Salami 92.4 d 90.4^ 

Soy Cotto Salami 93.9 e 92.4^ 

^n = 3 observations per mean. 

Control denotes the addition of no fat mixture. 
Caseinate or soy denotes the use of caseinate or soy 
stabilized fat mixtures, respectively. 

c,d,e,%0ans within each column having different 
superscripts are significantly different (P<0.05). 



Table 33. Effect of fat mixture addition on the Rongey stability 
and extrusion values of raw product batters^ 

Emulsion Stability (ml/30 (?) Extrusion 
Product^ Moisture Fat Solids Total (kg) 

Control Bolognei 3.8^ O.ic 0.2C 4.1® 2.6^ 

Caseinate Bologna 6.of O.OC 0.2C 6.2^ 4.0^'® 

Soy Bologna 3.1C O.ic O.ic 3.3® 4.0d'G 

Control Cotto Salami 5.3® 5.2^ O.ic 10.7b 3.5^ 

Caseinate Cotto Salami 6.99 o.gd 0.2C 8.0C 3.4^ 

Soy Cotto Salami 4.0d 1.6® 0.1^ 5.7^ 4.3® 

&n = 9 observations per mean. 

'^Control denotes the addition of no fat mixture. Caseinate 
or soy denotes the use of caseinate or soy isolate stabilized fat 
mixtures, respectively. 

c, d, e, f^ejjns within each column having different superscripts 
are significantly different (P< 0.05). 
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Figure 23. Light micrograph of the control cotto salami 
(Note the large fat particle ^ ̂  i n -t-.hp 
upper right corner (150X)) 
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Figure 24. Light micrograph of cotto salami made using soy 
stabilized fat mixture as the fat source (Pockets 
of fat mixture (f) and water (w) are trapped 
within the protein matrix (p) (150 X)) 
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distributed in a fine protein matrix. In all products using 

fat mixtures, the fat remained extremely stable during the 

Rongey stability heat treatment. 

Another interesting feature of the Rongey evaluation vas 

the amount of moisture lost from the product. In both the 

cotto salami and bologna, the products with caseinate 

stabilized fat mixture added had greater moisture losses than 

the regular or the soy fat mixture products. This observation 

indicated that the incorporation of the caseinate stabilized 

fat mixture diluted or destabilized the meat matrix resulting 

in an overall decrease in the water binding ability of the 

product. The lower yields in the product using caseinate 

stabilized fat mixtures (Table 32) probably resulted from 

increased moisture loss. 

Table 34 presents the effect of product type and the fat 

source used on objective texture analysis. Two main features 

regarding peak hardness were apparent. First of all, bologna 

resulted, regardless of fat source, in greater peak hardness 

than its cotto salami counterpart. Secondly, the products 

which incorporated fat mixtures resulted in considerably lower 

hardness values during compression. 

The measure of cohesiveness indicated that no difference 

in cohesiveness existed between the different fat sources when 

chopped into a bologna product. Cotto salami, on the other 

hand, demonstrated less cohesiveness in the two products which 
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Table 34. Effect of fat source and product type on 
objective sensory estimates^ 

Product*) Hardness Cohesiveness Elasticity 

Bologna 63.5^ 44.yf 8.8® 

Caseinate Bologna 33.2* 47.3^ 8.6® 

Soy Bologna 45.4® 45.of 8.9® 

Cotto Salami 

0) o
 

in 

32.0® 8. id 

Caseinate Cotto Salami 20.3c 20.7= 7.4C 

Soy Cotto Salami 29.ic,d 24.-2 8. id 

&n = 9 observations per mean. 

^Control denotes the addition of no fat mixture. 
Caseinate or soy denotes the use of caseinate or soy 
isolate stabilized fat mixtures, respectively. 

^'d'B'fj^eans vithin each column having different 
superscripts are significantly different (P<0.05). 
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included fat mixtures• Of the products with added fat 

mixtures/ caseinate stabilized cotto salami was less cohesive 

than soy stabilized cotto salami. All cotto salami products 

exhibited much lower cohesiveness than the bologna products. 

The hardness and cohesiveness values indicated that the 

chopping of the trim for a bologna type product together with 

salt-soluble protein extraction results in a large increase in 

internal structure formation. 

A relatively small difference in product elasticity was 

seen betwen any of the products. Cotto salami with caseinate 

fat mixture displayed somewhat less elasticity than the 

remaining cotto salami products. All the cotto salami samples 

were lower in elasticity than the bologna samples. No 

differences in elasticity between bologna samples were noted. 

Obiective color analysis 

Two main effects were seen in the results of Hunter Lab 

lightness evaluation (Table 35). In all cases, the bologna 

product was determined to be relatively lighter than the cotto 

salami product- In addition, product using a stabilized fat 

mixture as the fat source was significantly lighter than the 

products incorporating all meat trim. Neither fat mixture 

resulted in a product significantly lighter than the products 

made using the other fat mixture. 

Hunter redness or A values were not significantly 

different when the two products were compared (Table 35). 
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Table 35. Effect of fat mixture addition on the Hunter Lab 
color evaluation of bologna and cotto salami^ 

Product^ Hunter L Hunter a Hunter b 

Control Bologna 58. ,5® 8. ,7® 8. ,8d 

Caseinate Bologna 62. .2f 6. ,4c 9. .9e 

Soy Bologna 61. .3e,f 7. .2d 9, .7e 

Control Cotto Salami 45. .5c 8. .76 6, .6C 

Caseinate Cotto Salami 54, .4d 7, .4d 8, .9d 

Soy Cotto Salami 54, .Od 7, .2d 8. .9d 

&n = 9 observations per mean. 

^Control denotes the addition of no fat mixture. 
Caseinate or soy denotes the use of caseinate or soy 
isolate stabilized fat mixtures, respectively. 

C/dfe^gang within each column having different 
superscripts are significantly different (P<0.05). 
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Once again, however, fat mixtures in products resulted in 

significantly lower Hunter a values than products which 

incorporated only meat trim. Products incorporating fat 

mixtures were consistently less red than products made without 

fat mixtures. 

Hunter B values followed similar trends as the Hunter L 

values. Both products produced using either fat mixture 

exhibited a greater relative yellowness than the two products 

made using all meat trim. In addition, bologna products were 

significantly more yellow than their cotto salami counterparts. 

The results of the sensory evaluation of sausages made 

with or without fat mixtures are shown in Table 36. A seven 

point hedonic scale was used in each case. Both products made 

with all beef trim were rated high in flavor, texture and 

overall quality. The products incorporating soy stabilized fat 

mixture were rated poor in all features. The bologna products 

incorporating scy stabilized fat mixture were rated very low 

in flavor though somewhat better in texture. The poor flavor 

overshadowed the texture for a low overall rating. Cotto 

salami produced using soy stabilized fat mixture was not rated 

as low in flavor as bologna. The textural assessment of soy 

stabilized cotto salami was similar to soy stabilized bologna. 

Bologna produced using caseinate stabilized fat mixture 

received a higher rating than soy stabilized bologna. The 

sensory texture measurement results were interesting because 
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Table 36. Effect of fat mixture addition on the 
sensory evaluation of bologna and cotto 
salami^ 

Product^ Flavor Texture Overall 

Control Bologna 4.89 4.79 4.7e 

Caseinate Bologna 4.2^ 4.1^ 4.0^ 

Soy Bologna 2.7* 3.2® 

u
 0

0 (M 

Control Cotto Salami 5.19 5.09 

0) 0
 

in 

Caseinate Cotto Salami 3.4® 2.3d 2.8= 

Soy Cotto Salami 3.2® 3.1® 3.1 = 

a 
n = 34 observations per mean. 

Product rated using a 7 point hedonic scale (1 = 
worst, 7 = best). 

c 
Control denotes the addition of no fat mixture. 

Caseinate or soy denotes the use of caseinate or soy 
stabilized fat mixtures, respectively. 

d/S/f'g^lgans within each column having different 
superscripts are significantly different (P< 0.05). 
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objective measurement of the texture indicated that 

incorporation of the soy stabilized fat mixture produced a 

harder and more cohesive bologna than caseinate stabilized fat 

mixture. It is the author's opinion that the soy flavor 

apparent in the soy stabilized bologna instilled a greater 

dislike of the product which translated into poorer texture 

and overall ratings from the untrained panel. Caseinate 

stabilized cotto salami was rated poor for flavor and very 

poor for texture. 

Fat Mixture Interaction with Meat Protein 

The use of stabilized fat mixtures in a sausage product is 

a relatively new procedure. Addition of non-meat proteins in 

sausages has, as reviewed earlier, existed for some time. 

Addition of non-meat protein and fat in an already stabilized 

form, however, results in a situation not directly comparable 

to the addition of non-meat proteins alone. Of the three 

articles discussing fat mixtures, only Zayas (1985) 

incorporated stabilized fat mixtures using non-meat proteins 

into comminuted meat products. 

When the decision was made to use protein stabilized fat 

mixtures in meat products for this study, it was arbitrarily 

decided to replace more than 30% of the fat with fat mixture. 

(DMV recommends adding only 30% of the fat as fat mixture.) 

There were several reasons for this. First, the process 

of making the stabilized fat mixture is, although simple, still 
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a process which requires a considerable amount of time and 

labor. The purpose of this process is defeated if the use of 

additional fat trim prevents the advantages described earlier 

such as total compositional control. Secondly, the goal was to 

develop a product exhibiting a maximum stability level. It was 

felt that by stabilizing as much fat in the product as 

possible, the most stable product would be produced. Thirdly, 

incorporation of a significant quantity of stabilized fat 

mixture into the product was expected to most effectively test 

the use of a fat mixture in a sausage product. 

Products used in this study enabled the examination of 

several factors in sausage manufacture. Bologna permitted the 

study of fat mixtures in an "emulsified" meat product at a much 

higher level than seen in previous fat mixture studies (Zayas, 

1985). The use of bologna also permitted the study of fat 

mixtures in a relatively spice free or bland product. (One 

primary concern about the use of soy protein in meat products 

is the presence of "beany" or green flavors.) It was important 

to ascertain the influence of the soy flavor on the usefulness 

of soy stabilized fat mixtures. Cotto salami provided a 

product considerably different than bologna in which to test 

the use of fat mixtures. Cotto salami is a ground product with 

a coarser internal structure and contains a higher level of 

spices than bologna. 
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These two products did not by any means represent every 

type of meat product. Most noticeably missing were the 

fermented, dried and semi-dried products. The products used, 

however, did provide an estimation of the effect of fat mixture 

use in two widely different products. 

Product stability 

Since the primary purpose of using stabilized fat mixture 

is to improve product stability, this is the logical place to 

begin the discussion. Zayas (1985) indicated a 6-7% increase 

in product yield in product with stabilized fat mixture added 

compared to control product. Although not apparent in 

smokehouse yield, the Rongey stability measure of the raw 

sausage batters did indicate improved fat stability in 

products, especially cotto salami which incorporated fat 

mixtures. This increased fat stability is due to the 

characteristics of the protein which stabilize the fat. 

With meat products, it has been felt recently that although 

initially meat emulsions may stabilize fat prior to cooking, 

meat protein gelation maintains fat stability. Saffle (1953) 

commented on this: 

"In uncooked emulsion, the fat micelles were surrounded 

with protein...two important changes were noted for the 

thermally processed emulsion: First, the membrane 

surrounding the fat micelles has been disrupted, 

resulting in a number of definite pores or openings. 
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Secondly, the continuous phase of the emulsion has 

been severely altered by thermal processing. The 

matrix appeared highly disrupted, with the protein 

being coagulated into dense irregular zones.... This 

leads to pure speculation that when the membrane was 

broken the matrix was too viscous or had 'set up' to 

the point that the fat was 'trapped' and could not 

come to the surface." 

Carroll and Lee (1981) and Lee et al. (1981) also comment on 

fat being found in finished product in irregularly shaped 

pockets with stability determined largely by the protein 

matrix. As stated previously in the review, meat gelation 

begins at 33-36"C (Schweid and Toledo, 1981). At this 

temperature, the fat in the emulsion is still expanding. This 

results in the rupture of the emulsion film during thermal 

processing (Smith et al., 1973). The caseinate and soy 

proteins used in this study do not react to thermal processing 

in the same manner as meat proteins. As a result, whether fat 

is trapped in a soy isolate gel or caseinate emulsion, fat 

expansion during thermal processing is not restricted to a 

specific rigid size as is seen with meat proteins. If the 

cells containing the fat remain flexible and do not rupture, 

the fat should remain trapped, and as such, stabilized in the 

matrix. 
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The light micrographs of the bologna produced using no fat 

mixture and caseinate stabilized fat mixture are compared in 

Figures 25 and 26, respectively. It is seen that the control 

product exhibits a more coarse protein texture with 

interspersed fat particles, while the caseinate stabilized 

product exhibits a much finer protein network with few definite 

fat pockets. 

The situation with regular cotto salami was somewhat 

different. No emulsion was formed in the ground product. In 

cotto salami made using 50% fat pork trim, large fat globules 

were apparent as seen in Figure 23. These globules were weakly 

stabilized in the coarse matrix and appeared to express fat out 

of the product during thermal processing. The cotto salami 

incorporating soy stabilized fat mixtures (Figure 24) or 

caseinate stabilized fat mixtures (Figure 27) appeared to have 

distinct pockets of fat mixture which varied in size, but were 

much smaller than the control product's fat particles. It musb 

be remembered that each of the fat mixture pockets seen in 

products made with stabilized fat mixtures was independently 

stable. 

If protein to lipid interaction less important than 

protein to protein interaction for product stability, an 

explanation concerning the stability can be developed. In the 

products other than cotto salami made with 50% fat pork 

trimmings, a fine network of protein was seen. This protein 
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Figure 25. Light micrograph of bologna produced using 50% fat 
pork triminings as the fat source (Large and small 
fat globules (f) are distributed in a protein 
matrix (150 X)) 
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Figure 26. Light micrograph of bologna produced using 
cassinats stabilized fat fixture as the fat 
source (Distinct fat particles are difficult 
locate (150 X)) 
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Figure 27. Light micrograph of cotto salami produced using 
caseinate stabilized fat mixture as the fat 
source (Fat mixture (f) is entrapped within the 
meat mixture (150 X)) 
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formed a very effective inhibitor to fat migration during 

cooking. The finer, more complex the matrix that was formed, 

the more difficult it was for fat migration to occur. Fat 

would tend to become distributed throughout the matrix rather 

than in discrete particles. This distribution appeared to 

occur in fat mixtures. In products which have fat mixtures 

included, it was evident that the fat particles, especially in 

cotto salami, consisted of small masses of intact fat mixture 

rather than fat globules. 

Unfortunatelythe sausages with fat mixture added did not 

display a major improvement in product yields compared to the 

control sausages. It is quite possible that the heat 

processing levels used in this study were too low to initiate 

excessive losses from the regular product. It is also possible 

that the incorporation of so much fat mixture decreased the 

effective stabilizing qualities of the meat protein. 

Regardless, in this type of product processed in the method 

described in this paper, no benefit in final product yield was 

realized as a result of stabilized fat mixture addition. 

Product texture 

Product made using fat mixtures displayed a below average 

level of textural acceptability. Fat mixtures were more 

acceptable when added to the emulsion product than when 

incorporated in the ground product. Once again Zayas (1985) 

provides the only previous study of the textural properties of 
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meat products with fat mixtures added. Zayas concluded that 

cooked sausage products which contained fat mixtures stabilized 

by caseinate exhibited lower compression and elasticity than 

control products. 

In most cases where non-meat protein has been added to a 

meat system, the resultant texture exhibited lower hardness, 

elasticity or cohesiveness values than all-meat products. 

Caldironi and Ockerman (1982) found sensory textural ratings 

lowered in 8 of 9 treatments in which combinations of plasma 

and globin proteins were added to bologna. Likewise Terrell et 

al. (1982) found textural decreases with blood proteins in 

frankfurters. Using sodium caseinate. Comer and Dempster 

(1981) found decreases in Ottawa texture measurement of 20 to 

40% in wieners. Smith et al. (1973), Lauck (1975) and Sofos 

and Allen (1977) described emulsion products in which soy 

isolate addition decreased the textural parameters. Smith et 

al. (1973) did see an increase in textural preference when soy 

isolate with a high nitrogen solubility was used. 

Both raw sausage batters containing soy stabilized fat 

mixture required a greater amount of force to extrude than 

sausages made using caseinate fat mixture or control product. 

In cooked product, however, both products, with stabilized fat 

added, required less force to compress than the control product 

In general, products containing soy stabilized fat mixtures 

required more force to compress than products containing 

caseinate stabilized fat. 
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Two mechanisms can be suggested to explain the effect of 

fat mixture addition on product texture. The first mechanism 

deals with the alteration of meat protein matrix through the 

integral incorporation of non-meat proteins within the meat 

matrix. This mechanism, in essence, dilutes the meat protein 

matrix. Since the soy or caseinate proteins are not subject to 

the formation of a rigid structure during heat processing, as 

meat proteins are, the sausage structure will tend to be softer. 

As a result, the product would exhibit a decline in textural 

characteristics as fat mixture is added at greater levels. 

A second mechanism of effects of fat mixture incorporation 

is that the fat mixture is distributed relatively intact in the 

final sausage product. Chopping or grinding finished fat 

mixtures was expected to decrease the stability of the 

stabilized fat mixture. This did not occur. As a result, 

there is no reason to assume that the individual pockets of fat 

Ttiixture are broken down to any great extent. Therefore, 

discrete pockets of fat mixture may become embedded in the 

protein structure of the sausage. If this was the case, the 

texture of the final product should not be greatly different 

than the control meat product. 

Neither mechanism mentioned is adequate to describe both 

the fat stabilization and the effects on textural 

characteristics of the sausage products. The most likely 

structure of the sausages containing fat mixtures is a 
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combination of the previous two mechanisms. The fat mixture 

remains intact while the protein stabilizing the fat mixture 

interacts with the meat protein present. The meat protein 

matrix is, as a result, diluted and also connected to a certain 

extent with non-meat proteins. Thee non-meat proteins are not 

as susceptible to heat treatment as are meat proteins, and 

during heating, the meat proteins coagulate, but the non-meat 

proteins do not, resulting in a sausage in which stiffening 

meat proteins interact with non-stiffening non-meat protein 

matrix. This mechanism not only results in a lessening of the 

overall texture development, but also may explain the decreased 

water stability when caseinate stabilized fat mixture was used. 

Product appearance 

Use of fat mixture resulted in a lighter, less red product 

color. Both fat mixtures possess a very white or light color. 

Substitution of fat mixture for 50% fat pork trim means that 

approximately 1/3 of the lean tissue has been removed from the 

product. Since 50% fat pork trim rather than beef trim was 

replaced, somewhat less than 1/3 of the total myoglobin content 

was removed. This decrease in myoglobin content explains the 

less dark, less red color seen in products incorporating 

stabilized fat mixture as the fat source. 

Vîhen fat mixtures were added to products, no particle 

definition of the fat was apparent. This was because the fat 

mixture did not retain a given particle definition in the 
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sausage; rather, the fat mixture blended into the meat matrix. 

This was not a problem in bologna because none of the emulsion 

products exhibited particle identity. The cotto salami 

product, however, should have displayed clear fat particles 

distributed throughout the lean. Instead, lean particles could 

be seen in a lighter background. This was very unappealing 

from a sensory standpoint and presented a major drawback to the 

use of fat mixture in sausage products. 
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CONCLUSIONS 

Several conclusions can be drawn from the research 

presented in this paper. The most important finding is that 

isolated soy protein could be combined with fat and water to 

produce a stable fat mixture. This mixture was at least as 

stable as caseinate stabilized fat mixture. The conditions 

used to produce the stable soy stabilized fat mixture are as 

follows : 

1. Four and one-half parts of 90°C water (less 100 gm) 

and one part of Purina 500E (or 520T) isolated soy 

protein were chopped together for 60 sec under 

continuous steam heating. 

2. Four parts of fat chunks were added to the soy-

water mixture and chopped under steam for a total of 

10 min. (A minimum chopping temperature of 48.9'C was 

required.) 

3. At 8.5 minutes into the chopping cycle, the 100 gm of 

the remaining water, in which sodium nitrite was 

dissolved, was added. 

It is important to note that opposed to the conditions for 

producing caseinate stabilized fat mixtures, very specific 

water content and minimum chopping temperatures were required 

to produce the soy stabilized fat mixtures. Soy isolate was 

able to stabilize only 50% of the fat (per unit weight of 

protein) that caseinate stabilized. 
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When compared to measuring protein functionality using 

fat mixtures, the model system emulsion capacity measurement 

was not particularly effective in measuring protein 

functionality. Temperature, protein type and addition medium 

all produced a different effect on apparent protein 

functionality in the emulsion capacity measurement than in 

fat mixture production. Further investigation suggested that 

emulsion capacity measurement is probably not directly related 

to the protein's ability to emulsify oil. Rather, emulsifying 

capacity measures a functional property involved with protein 

to protein interaction. Where this interaction is important to 

fat stabilization, emulsion capacity may mimic fat mixture 

results. 

Fat mixtures closely approximate the simple formulations 

seen in model system analysis, but also closely approximate fat 

and water levels commonly found in food products. This feature 

for the estimation of protein functionality in food systems. 

It was very evident that in 25% fat products a fat mixture 

could not effectively be substituted entirely for 50% fat pork 

trim. The primary problems associated with excessive fat 

mixture usage were related to texture. In bologna products, an 

increase in softness resulted from the use of fat mixtures. In 

cot to salami, the decrease in texture resulting from addition 

of fat mixture was very detrimental to product texture. Any 



185 

products with fat mixtures added were objectively lighter, less 

red and more yellow than control products. No improvements in 

smokehouse yield were seen in products with fat mixtures added. 

Rongey stability measurement of raw meat batters, however, 

indicated a potential fat stability improvement in products 

containing stabilized fat mixtures, but this was not apparent 

during smokehouse cooking of manufactured product. 



187 

SUGGESTIONS FOR FUTURE RESEARCH 

Several aspects of this research deserve further 

examination. Most importantly, attempts to produce fat 

mixtures using other protein sources such as blood proteins, 

novel plant proteins and single cell proteins should be 

undertaken. This would determine if the process of fat mixture 

production is a viable method of estimating protein 

functionality in a simulated food system. Fat mixture 

production using other proteins may also provide an indication 

of the mechanism of fat stabilization in food products. 

It would be extremely valuable to develop a method which 

distinguishes between protein to protein interactions and 

what appears to be protein to lipid interactions. The author 

feels, however, that protein to lipid interactions in food 

systems may actually be protein to protein interactions. 

Results of this research suggest that two specific 

features of model systems require further study. First, the 

emulsion capacity test should be studied to determine what the 

test is actually measuring. The emulsion capacity test may 

well provide a valuable estimate of protein functionality 

unrelated to emulsification. What functional property is 

being measured and how the estimate can be used still remain 

to be determined. Second, other proteins should be tested to 

determine if the endpoint of EC is universally due to the 

disruption of large cells of fat and water as seen in this 
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experiment. 

Further reserach is necessary to optimize the use of 

stabilized fat mixtures in sausage products. It was apparent 

that the fat mixtures produced in this research have their 

limitations for use in sausage products. In both products, the 

flavor and textural changes caused by fat mixture addition were 

undesirable. In bologna, simply reducing the amount of fat 

mixture added may result in acceptable texture. In bland 

products, it may be necessary to develop soy stabilized fat 

mixtures using soy isolates with even less "soy" flavor than 

Purina 500E (or 620T). 

For use in ground products, a method is needed to produce 

a stabilized fat mixture which exhibits an independent particle 

structure. One possible method to accomplish this would be to 

hard freeze then mechanically disrupt the fat mixture. This 

fat mixture could then be substituted for ground fat in a 

coarse product.- such as cot to salami.- with minimal change in 

texture. 

Since product stability is not a problem for most U.S. 

sausage makers (due to the low thermal processing temperatures 

generally used), it is critical to the future use of fat 

mixtures that a need for fat mixtures in products be 

established. The most promising use for fat mixtures is in the 

production of low fat sausages. Research is needed, however, 

to optimize fat mixture usage levels in products. 
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