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ABSTRACT

First, we demonstrate the construction of Fourier bases for fractal approximations via a

construction analogous to the Fast Fourier Transformation. Then, we construct several full

Fourier bases for the skewed Sierpinski gasket and related fractals.
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CHAPTER 1. OVERVIEW

1.1 Introduction

We begin our investigations with the fractal S, the invariant set of the iterated function

system ψ0(x, y) = 1
3(x, y), ψ1(x, y) = 1

3(x + 2, y), ψ2(x, y) = 1
3(x, y + 2). By Hutchinson’s

theorem, there exists an invariant measure ν3 supported on the invariant set S.

The set S takes the form of a skewed Sierpinski gasket; it is the set of points (x, y) ∈ R2 for

which x, y, and x+ y are all in the standard middle-thirds Cantor set. This was the reason for

the choice of fractal; while it has been shown that the middle-thirds Cantor set does not have

an orthonormal Fourier basis, the question of whether it has a Fourier frame is still open, and

we hope that investigations on related sets such as S will lead to such a frame. It is a difficult

open question, but also one that has a close connection to undergraduate analysis topics via

the Cantor set.

For S, we first choose a dual iterated function system ρ0(x, y) = 3(x, y), ρ1(x, y) = 3(x, y)+

(1, 2), ρ2(x, y) = 3(x, y) + (2, 1). This iterated function system generates the frequencies Rn of

an orthogonal basis of exponentials on finite approximations Sn of S.

We proved that the matrix Mn, where (Mn)j,k = exp (2πiRj · Sk) with (Rj)
n−1
j=0 and (Sk)

n−1
k=0

orderings of Rn and Sn respectively, is a block matrix in the form of Diţǎ’s construction

for generating large Hadamard matrices. In particular, it is an orthogonal basis matrix of

exponentials for Sn.

The blocks of Mn can be expressed in terms of M1, Mn−1 and diagonal matrices. The rows

and columns of M−1
n can be permuted into a block matrix of the same form. These block form

allow a Fast Fourier Transform-type algorithm to quickly transform a function on Sn, written as

a column vector ~v, into its representation in terms of the orthogonal basis of exponentials that



2

are the rows of Mn. The block form reduces the matrix computation complexity to O(N logN),

as in the case of the classical Fast Fourier Transformation.

This construction extends to a Fractal Fast Fourier Transformation in the general case of

finite approximations of a fractal generated by an iterated function system of affine transforma-

tions on Rd. With certain restrictions on the choice of affine transformations for the fractal and

signal approximations, the construction generalizes fully with the same reduction in complexity.

After this success, I returned to S, aiming to demonstrate that the infinite set R generated

by {ρj} was the frequency set for a Fourier basis on L2(ν3) of the form {er(x) = e2πir·x|r ∈ R}.

I determined that the exponentials were orthogonal; however, the completeness failed. In fact,

I could show that the set R was not a complete Fourier basis.

As it turned out there was a simple fix: following the work of Dorin Ervin Dutkay and Palle

E. T. Jorgensen in (7), we took two of the “bad points” and added them into the set R. Our

original set of frequencies was the simple application of {ρj} to the origin; to construct a set of

Fourier frequencies, it was enough to apply them to two more points: in this case (−1,−1/2)

and (−1/2,−1). In that way we constructed our first full Fourier basis for S.

Once we had that construction, I was able to quickly construct two more Fourier bases for

S, based on different choices of dual iterated function systems for {ψj}. The most interesting

such basis was the one constructed using ρ0 = 3(x, y), ρ1 = 3(x, y) + (2, 1) and ρ2(x, y) =

3(x, y) + (4, 2). The vectors (2, 1) and (4, 2) are linearly dependent, and in fact, the Fourier

basis generated by these vectors has the form {e(u,u/2)(x)|u ∈ Z}.

We then extended our results to fractals related to S by rotations and reflections. It turns

out that S shares some of its spectra with its with its reflection across the line y = x, suggesting

possible future work on the union of these two fractals. The question also remains of how many

possible Fourier bases there are for S; so far, there have been the three we constructed with

our Hadamard duals, as well as one constructed by Dutkay and Jorgensen in (9).
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CHAPTER 2. REVIEW OF LITERATURE

2.1 The Fast Fourier Transform

The standard Fast Fourier Transform is a method of reducing the complexity of the Discrete

Fourier Transform on 2N equally-spaced data points on [0, 1). A function f on this discrete

space can be viewed as a vector of length 2N , and the Discrete Fourier Transform multiplies

this vector by the change of basis matrix:

FN = (e
−2πi jk

2N )jk, 0 ≤ j, k < 2N .

In general, multiplying a vector of length 2N by a 2N × 2N matrix requires O(22N ) operations.

The Fast Fourier Transform was developed first by Gauss in 1805 and then generalized by

Cooley and Tukey in 1965, in order to reduce the complexity of this multiplication by permuting

the Discrete Fourier Transform matrix into blocks and making use of symmetries in the complex

matrix entries (3), (16).

In particular, the Fast Fourier Transform permutes the columns of FN by the permutation:

σ(k) =


2k 0 ≤ k < 2N−1,

2k + 1 2N−1 ≤ k < 2N .

This gives FN the block form:

FNP =

 FN−1 DFN−1

FN−1 −DFN−1

 (2.1)

where D is the 2N−1 × 2N−1 diagonal matrix with kth diagonal entry e2πik/2N (21).
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Multiplying our vector f by this block form is significantly easier than multiplying by the

full matrix FN . And since FN−1 can be permuted in the same manner, and so forth down to

F1, the overall computational complexity is reduced down to O(N · 2N ).

2.1.1 Diţǎ’s construction

A block matrix form strikingly similar to that of the Fast Fourier Transform shows up in

the work of P. Diţǎ, who studies complex Hadamard matrices. (4; 22). A complex Hadamard

matrix is an N × N matrix H, all of whose entries have norm one, and with the property

that H∗H = NIN . The Discrete Fourier Transform and Fast Fourier Transform Matrices are

examples of Hadamard Matrices.

Diţǎ developed a way of constructing large Hadamard matrices from smaller ones that is,

in a sense, the reverse of the Fast Fourier Transform. In particular, if A is a K ×K Hadamard

matrix, B is an M ×M Hadamard matrix, and E1, . . . , EK−1 are M ×M unitary diagonal

matrices, then the KM ×KM block matrix H is a Hadamard matrix:

H =



a00B a01E1B . . . a0(K−1)EK−1B

a10B a11E1B . . . a1(K−1)EK−1B

...
...

. . .
...

a(K−1)0B a(K−1)1E1B . . . a(K−1)(K−1)EK−1B


. (2.2)

To show that H is Hadamard, first notice that, for C = A∗,

H∗ =



c00B
∗ c01B

∗ . . . c0(K−1)B
∗

c10B
∗E∗1 c11B

∗E∗1 . . . c1(K−1)B
∗E∗1

...
...

. . .
...

c(K−1)0B
∗E∗K−1 c1(K−1)B

∗E∗K−1 . . . c(K−1)(K−1)B
∗E∗K−1


. (2.3)

Proposition 2.1.1. H∗H = (KM)IKM .

Proof. Let G be the block matrix in Equation (2.3), and let E0 = IM . Note that the product

of H and G will have a block form. Multiplying the j-th row of H with the `-th column of G,
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we obtain that the j, ` block of HG is:

K−1∑
k=0

(ajkEkB)(ck`B
∗E∗k) =

K−1∑
k=0

ajkck`(M)IM .

Since
∑K−1

k=0 ajkck` = Kδj,`, we obtain HG = (KM)IKM .

Let ~v be a vector of length KM . Consider H~v where H is the block matrix as in Equation

(2.2). We divide the vector ~v into K vectors of length M as follows:

~v =



~v0

~v1

...

~vK−1


.

Then the matrix multiplication H~v can be reduced in complexity, since

H~v =



∑K−1
j=0 a0jEjB~v0∑K−1
j=0 a1jEjB~v1

...∑K−1
j=0 a(K−1)jEjB~vK−1


.

Let OM be the number of operations required to multiply a vector ~w of length M by the

matrix B. The total number of operations required for each component of H~v is OM +M(K−

1) + MK multiplications and M(K − 1) additions. The total number of operations for H~v is

then KOM + 3MK2 − 2MK. We have just established the following proposition.

Proposition 2.1.2. The product H~v requires at most KOM + 3MK2 − 2MK operations.

Since OM = O(M2), we obtain that the computational complexity of H is O(M2K+MK2),

whereas for a generic KM ×KM matrix, the computational complexity is O(K2M2). Thus,

the block form of H reduces the computational complexity of the matrix multiplication.

Notice that the Fast Fourier Transform matrix is an example of Diţǎ’s construction, with

B = FN−1, E1 = D, and

A =

 1 1

1 −1


which is also the two-by-two Discrete Fourier Transform Matrix F2.
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2.2 Hutchinson’s fractal measures

In 1981, John E. Hutchinson defined the general framework for the type of fractal we discuss

here, that is, the compact invariant set of a set of contraction maps on Rn.

Definition 2.2.1. (18) For any metric space X with distance function d, F : X → X is a

contraction if

sup
x6=y

d(F (x), F (y))

d(x, y)
< 1

Definition 2.2.2. (18) The compact set K ⊂ Rn is invariant if there exists a finite set S =

{S1, . . . , SN} of contraction maps on Rn such that K =
⋃N
i=1 SiK.

In the context of this thesis, we will discuss contraction maps of the form S(x) = Ax + b,

with A an n× n matrix with ||A|| < 1 and b a vector in Rn. Hutchinson’s results apply to any

finite set of contraction maps.

Theorem 2.2.3. (18) If S = {S1, . . . , SN} is a finite set of contraction maps on a complete

metric space X, then there exists a unique, closed, bounded set K such that K =
⋃N
i=1 SiK.

Also, K is compact and the closure of the set of fixed points of finite compositions Si1 ◦ · · · ◦Sip

of members of S. (18)

In addition to a unique closed bounded set, the set S determines a set of unique Borel

regular probability measures:

Theorem 2.2.4. (18) Let S as above and ρ1, . . . , ρN ∈ (0, 1) with
∑N

i=1 ρi = 1. Then there

exists a unique Borel regular measure µ with µ(X) = 1 such that for any measurable set A,

µ(A) =
∑N

i=1 ρiµ(S−1
i (A)).

Consequently, for any continuous function f on X,∫
fdµ =

N∑
i=1

(
ρi

∫
f(Si(x)) dµ(x)

)
. (2.4)

In particular, this applies when ρ1 = · · · = ρN = 1/N , which is the usual fractal measure

considered in this context.
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2.2.1 In which µ4 is spectral but µ3 is not

Later on, Jorgensen and Pedersen in (19) looked at the case where the contraction maps

are of the form

Sjx = R−1x+ bj , x ∈ RN , (2.5)

where R is a real matrix with eigenvalues ξi all satisfying |ξi| > 1.

In particular, they discuss the case of µ4, which is the unique probability measure of compact

support on R such that:∫
fdµ4 =

1

2

(∫
f
(x

4

)
dµ4 +

∫
f

(
x

4
+

1

2

)
dµ4

)
.

In this case the compact support of µ4 is the Cantor-4 set, the Cantor set obtained by dividing

I = [0, 1] into four equal subintervals and retaining only the first and third; then repeating the

process with each remaining interval.

Similarly, there is also µ3, the unique probability measure of compact support on R such

that: ∫
fdµ3 =

1

2

(∫
f
(x

3

)
dµ3 +

∫
f

(
x

3
+

2

3

)
dµ3

)
,

which is supported on the standard middle thirds Cantor set.

Each of these fractal measures has a Fourier transform:

µ̂(t) =

∫
ei2πt·xdµ(x) (2.6)

for any t ∈ Rd.

Because of Equation 2.4, we can write:

µ̂(t) = χB(t)µ̂(R∗−1t) (2.7)

where

χB(t) =
1

N

∑
b∈B

ei2πb·t. (2.8)

By applying Equation 2.7 repeatedly, Jorgensen and Pedersen obtained:

µ̂4(t) =

∞∏
n=0

1

2

(
1 + ei

πt
4n

)
= eiπ

2t
3

∞∏
n=0

cos

(
πt

2 · 4n

)
, (2.9)



8

and

µ̂3(t) =

∞∏
n=0

1

2

(
1 + ei

4πt
3n

)
= eiπt

∞∏
n=0

cos

(
2πt

3n

)
. (2.10)

Jorgensen and Pedersen would show that µ4 has a Fourier basis, that is, there is at least one

set of frequencies P ⊂ R for which {e2πix·λ : λ ∈ P} is an orthonormal basis for L2(µ4).

The space L2(µ3), however, can have no such Fourier basis, since there can be no more than

two orthogonal exponential functions in L2(µ3).

Theorem 2.2.5. (19) Any set of µ3 orthogonal exponentials contains at most two elements.

Proof. From Equation 2.10, the set of t ∈ R with µ̂(t) = 0 is:

Z(µ3) =

{
3n

4
(1 + 2Z) : n = 1, 2, 3, . . .

}
(2.11)

For three exponentials, eγ1 , eγ2 , eγ3 to be mutually orthogonal in L2(µ), we must have

µ̂3(γi − γj) = 0 for every pair i, j = 1, 2, 3, i 6= j. That is, γi − γj ∈ Z(µ3).

Let λ1 = γ1 − γ2, λ2 = γ2 − γ3, λ0 = γ1 − γ3, and let zj ∈ Z be such that:

λj =
3nj

4
(1 + 2zj) .

Since λ1 + λ2 = λ0, we have that:

3n1 (1 + 2z1) + 3n2 (1 + 2z2) = 3n0 (1 + 2z0) .

However, the left-hand side of the equation must be even, while the right-hand side must be

odd, so we have a contradiction.

2.2.2 Hadamard duality

Definition 2.2.6. (7)

A set of vectors B = {b0, . . . , bn−1} ⊂ Rd and a set of vectors L = {l0, . . . , ln−1} ⊂ Rd are

called a Hadamard pair if the matrix:

H :=
(
e2πibj ·lk

)
0≤j,k≤n−1

(2.12)

is Hadamard, that is, 1√
n
H is unitary.
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Notation 1. Let eλ(x) := e2πiλ·x

Definition 2.2.7. (7) Fix some d ∈ N. (B,L,R) is a system in Hadamard duality if:

• B and L are subsets of Rd such that #B = #L =: N ,

• R is a fixed d× d invertible matrix over R with all eigenvalues λ satisfying |λ| > 1,

• the sets (R−1B,L) form a Hadamard pair.

Then let:

• τb(x) = R−1(b+ x), x ∈ Rd;

• XB be the unique compact subset of Rd (see Definition 2.2.2) such that

XB =
⋃
b∈B

τb(XB);

• µB the measure guaranteed in Theorem 2.2.4, with ρ1 = · · · = ρN = 1/N .

• τl(x) := (RT )−1(l + x), x ∈ Rd.

• XL be the unique compact subset of Rd such that XL =
⋃
l∈L τl(XL).

In this context, Jorgensen and Pedersen proved an important theorem:

Theorem 2.2.8. (19) For B,L,R as in Definition 2.2.7, with RB ⊂ Zd, 0 ∈ B, and (B,L,R)

in Hadamard duality, let

hX(t) :=
∑
λ∈E
|µ̂B(t− λ)|2 , t ∈ Rd, λ ∈ E = {l0 +R∗l1 + · · · : li ∈ L, finite sums} (2.13)

Then {eλ : λ ∈ E} is an orthonormal basis for L2(µB) if and only if hX ≡ 1 on Rd.

Later, Dutkay and Jorgensen extended this in the following construction.

Definition 2.2.9. (7) For B,N as in Definition 2.2.7, let:

WB(x) =
1

N2

∣∣∣∣∣∑
b∈B

e2πib·x

∣∣∣∣∣
2
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Lemma 2.2.10. For B,L,N, τl as in Definition 2.2.7,∑
l∈L

WB(τlx) = 1, x ∈ Rd

Proof.

∑
l∈L

WB(τlx) =
∑
l∈L

1

N2

∣∣∣∣∣∑
b∈B

e2πib·τlx

∣∣∣∣∣
2

(2.14)

=
1

N2

∑
l∈L

(∑
b∈B

e2πib·(RT )−1(l+x)

)(∑
b′∈B

e−2πib′·(RT )−1(l+x)

)
(2.15)

=
1

N2

∑
l∈L

∑
b∈B

∑
b′∈B

e2πib·(RT )−1(l+x)e−2πib′·(RT )−1(l+x) (2.16)

=
1

N2

∑
l∈L

∑
b∈B

∑
b′∈B

e2πiR−1b·(l+x)e−2πiR−1b′·(l+x) (2.17)

=
1

N2

∑
l∈L

∑
b∈B

∑
b′∈B

e2πiR−1b·le2πiR−1b·xe−2πiR−1b′·le−2πiR−1b′·x (2.18)

=
1

N2

∑
b∈B

∑
b′∈B

∑
l∈L

e2πiR−1b·le2πiR−1b·xe−2πiR−1b′·le−2πiR−1b′·x (2.19)

=
1

N2

∑
b∈B

∑
b′∈B

e2πiR−1b·xe−2πiR−1b′·x
∑
l∈L

e2πiR−1b·le−2πiR−1b′·l (2.20)

(2.21)

The inner sum is the row sum of HH∗, for H as in Equation 2.12, therefore it is equal to

N for b = b′ and 0 otherwise. So:

∑
l∈L

WB(τlx) =
1

N2

∑
b∈B

e2πiR−1b·xe−2πiR−1b·xN (2.22)

=
1

N2

∑
b∈B

N =
1

N2
N2 = 1 (2.23)

Definition 2.2.11. (7) A point x ∈ XL is a cycle if for some l1, . . . , lk ∈ L, not necessarily

distinct or in any particular order, τl1 ◦ τl2 ◦ · · · ◦ τlk(x) = x.

If in addition WB(x) = 1, x is called a WB-cycle.

Definition 2.2.12 (Transversality of the zeros (7)). A function W on X satisfies the transver-

sality of the zeros condition if:
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(a) If x ∈ X is not a cycle, then there exists kx ≥ 0 such that, for k ≥ kx, {τl1 ◦τl2 ◦· · ·◦τlk(x) :

l1, . . . ln = k ∈ L} does not contain any zeros of W ;

(b) If {x0, x1, . . . , xp} are on a cycle with x1 = τl(x0) for some l ∈ L, then for every y = τl′(x0),

y 6= x1 is either not on a cycle or W (y) = 0.

Theorem 2.2.13. (7)

Suppose that:

• {R−1B,L} form a Hadamard pair, #B = #L =: N ,

• Rnb · l ∈ Z, for b ∈ B, l ∈ L, n ≥ 0,

• 0 ∈ B, 0 ∈ L.

• WB satisfies the transversality of the zeros condition.

Let Λ ⊂ Rd be the smallest set that contains −C for every WB-cycle C, and such that

RTΛ + L ⊂ Λ. Then

{e2πiλ·x|λ ∈ Λ}

is an orthonormal basis for L2(µB).
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CHAPTER 3. A FAST FOURIER TRANSFORM ON SN

3.1 A Fast Fourier Transform on SN

We consider an iterated function system generated by contractions {ψ0, ψ1, . . . , ψK−1} on

Rd of the following form:

ψj(x) = A(x+~bj)

where A is a d× d invertible matrix with ‖A‖ < 1. We require A−1 to have integer entries, the

vectors ~bj ∈ Zd, and without loss of generality we suppose ~b0 = ~0. We then choose a second

iterated function system generated by {ρ0, ρ1, . . . , ρK−1} of the form

ρj(x) = Bx+ ~cj

where B = (AT )−1, with ~cj ∈ Zd, and ~c0 = ~0. We require the matrix

M1 = (e−2πi~cj ·A~bk)j,k (3.1)

be invertible (or Hadamard). Note that depending on A and {~b0,~b1, . . . ,~bK−1}, there may not

be any choice {~c0,~c1, . . . ,~cK−1} so that M1 is invertible. However, for many IFS’s there is a

choice:

Proposition 3.1.1. If the set {~b0,~b1, . . . ,~bK−1} is such that for every pair (j 6= k), A~bj−A~bk /∈

Zd, then there exists {~c0,~c1, . . . ,~cK−1} such that the matrix M1 is invertible.

Proof. The mappings φ1 : ~x 7→ e2πi~x·A~bj and φ2 : ~x 7→ e2πi~x·A~bk are characters on G =

Zd/BZd. Since A~bj − A~bk /∈ Zd, the characters are distinct. Thus, by Schur orthogonality,∑
x∈G φ1(x)φ2(x) = 0. Therefore, the matrix M = (e−2πi~xk·A~bj )j,k, where {~xk} is any enumer-

ation of G, has orthogonal columns. Thus, there is a choice of a square submatrix of M which

is invertible.
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Even under the hypotheses of Proposition 3.1.1 there is not always a choice of ~c’s so that

M1 is Hadamard; this is the case for the middle-third Cantor set, which is the attractor set for

the IFS generated by ψ0(x) = x
3 , ψ1(x) = x+2

3 (and is a reflection of the fact that µ3 is not

spectral).

Notation 2. We define our notation for compositions of the IFS’s using two distinct orderings.

Let N ∈ N. For j ∈ {0, 1, . . . ,KN−1}, write j = j0+j1K+· · ·+jN−1K
N−1 with j0, . . . , jN−1 ∈

{0, 1, . . .K − 1}. We define

Ψj,N := ψj0 ◦ ψj1 ◦ · · · ◦ ψjN−1

Rj,N := ρj0 ◦ ρj1 ◦ · · · ◦ ρjN−1 .

These give rise to enumerations of SN and TN as follows:

SN = {Ψj,N (0) : j = 0, 1, . . .KN − 1}

TN = {Rj,N (0) : j = 0, 1, . . .KN − 1}.

We call these the “obverse” orderings of SN and TN .

Likewise, we define

Ψ̃j,N := ψjN−1 ◦ ψjN−2 ◦ · · · ◦ ψj0

R̃j,N := ρjN−1 ◦ ρjN−2 ◦ · · · ◦ ρj0

which also enumerate SN and TN . We call these the “reverse” orderings.

Remark Note that for N = 1, Ψj,1 = Ψ̃j,1 and Rj,1 = R̃j,1.

We define the matrices MN and M̃N as follows:

[MN ]jk = e−2πiRj,N (0)·Ψk,N (0)

and

[M̃N ]jk = e−2πiR̃j,N (0)·Ψ̃k,N (0).

Both of these are the matrix representations of the exponential functions with frequencies given

by TN on the data points given by SN . The matrix MN corresponds to the obverse ordering on
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both TN and SN , whereas the matrix M̃N corresponds to the reverse ordering on both. Since

these matrices arise from different orderings of the same sets, there exist permutation matrices

P and Q such that

QM̃NP = MN . (3.2)

Indeed, define for j ∈ {0, . . . ,KN − 1} a conjugate as follows: if j = j0 + j1K + · · · +

jN−1K
N−1, let j̃ = jN−1 + jN−2K + · · ·+ j0K

N−1. Note then that ˜̃j = j, and

Ψ̃k,N = Ψk̃,N R̃k,N = Rk̃,N . (3.3)

Now, define a KN ×KN permutation matrix P by [P ]mn = 1 if n = m̃, and 0 otherwise.

Lemma 3.1.2. For P defined above,

PM̃NP = MN .

Proof. We calculate

[PM̃NP ]mn =
∑
k

[P ]mk
∑
`

[M̃N ]k`[P ]`n

= [P ]mm̃[M̃N ]m̃ñ[P ]ñn

= e−2πiR̃m̃,N (0)·Ψ̃ñ,N (0)

= e−2πiRm,N (0)·Ψn,N (0) = [MN ]mn

by virtue of Equation (3.3).

Proposition 3.1.3. For scale N = 1,

M1 = M̃1 =



1 1 . . . 1

1 exp(2πi~c1 ·A~b1) . . . exp(2πi~c1 ·A~bK−1)

...
...

...
...

...

1 exp(2πi~cK−1 ·A~b1) . . . exp(2πi~cK−1 ·A~bK−1)


.

Proof. The proof follows from Remark 3.1.

Lemma 3.1.4. For N ∈ N, 0 ≤ j < KN , and ~x, ~y ∈ Rd,
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1. Ψj,N (~x+ ~y) = Ψj,N (~x) +AN~y

2. Ψ̃j,N (~x+ ~y) = Ψ̃j,N (~x) +AN~y

3. Rj,N (~x+ ~y) = Rj,N (~x) +BN~y

4. R̃j,N (~x+ ~y) = R̃j,N (~x) +BN~y.

Proof. 1. We prove by induction on N . Base case, n = 1, we have j = 0, 1, . . .K − 1 and

Ψn,j = Ψ̃n,j = ψj .

j = 0:

ψ0 (~x+ ~y) = A (~x+ ~y) = A(~x) +A(~y) = ψ0(~x) +A~y

j = 1, . . .K − 1:

ψj (~x+ ~y) = A (~x+ ~y + bj) = A(~x) +A(~y) +Abj = ψ0(~x) +A~y

Assume the equality in Item 1. holds for N − 1. For j = j0 + j1K + · · ·+ jN−1K
N−1, let

` = j − jN−1K
N−1. We have:

Ψj,N (~x+ ~y) = Ψ`,N−1(ψjN−1(~x+ ~y))

= Ψ`,N−1(ψjN−1(~x) +A~y)

= Ψ`,N−1(ψjN−1(~x)) +AN−1A~y

= Ψj,N (~x) +AN~y

2. Proof is the same as for 1.

3. Base case: For N = 1, Rj,1 = ρj . ρ0(~x + ~y) = B~x + B~y, and for j = 1, . . . ,K − 1,

ρj(~x+ ~y) = B(~x+ ~y) + ~cj = ρj(~x) +B~6.

Let Rj′,N−1 = ρj1 ◦ · · · ◦ ρjN−1 be the composition of N − 1 ρk’s with the property that

ρj0 ◦Rj′,N−1 = Rj,N .
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Assume true for n < N . Then:

Rj,N (~x+ ~y) = ρj0 ◦ ρj1 ◦ · · · ◦ ρjN−1 (~x+ ~y)

= ρj0
(
Rj′,N−1 (~x+ ~y)

)
= ρj0

(
Rj′,N−1(~x) +BN−1~y

)
= ρj0(Rj′,N−1~x) +B(BN−1~y)

= Rj,N~x+BN~y

4. Proof is the same as for 3.

Lemma 3.1.5. For N ∈ N and 0 ≤ j < KN ,

1. Ψj,N (0) = AN~z for some ~z ∈ Zd,

2. Ψ̃j,N (0) = AN~z for some ~z ∈ Zd,

3. Rj,N (0) ∈ Zd,

4. R̃j,N (0) ∈ Zd.

Proof. 1. We prove by induction on N . Base case, N = 1, we have j = 0, 1, . . . ,K − 1 and

Ψj,N = Ψ̃j,N = ψj .

For j = 0, ψ0(~0) = A~0 = ~0, and for j = 1, . . . ,K − 1, ψj(~0) = A(~0 +~bj) = A~bj , so the

lemma is satisfied for ~z = ~bj , which is in Zd by definition.

Assume the equality in Item 1. holds for N − 1. For j = j0 + j1K + · · ·+ jN−1K
N−1, let

qj = j − jN−1K
N−1. We have:

Ψj,N (0) = ψjN−1

(
Ψqj ,N−1(0)

)
= A

(
AN−1~z +~bj

)
= AN (~z +A−(N−1)~bj)
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Since A−1 is an integer matrix, so is A−(N−1) and thus ~z + A−(N−1)~bj ∈ Zd. Item 2. is

analogous. For Item 3., note first that ρj(Zd) ⊂ Zd, so by induction, ρj0 ◦ · · · ◦ ρjN−1(0) ∈

Zd. Likewise for Item 4.

Lemma 3.1.6. Assume N ≥ 2, let ` be an integer between 0 and K−1, and suppose l ·KN−1 ≤

j < (l + 1)KN−1. Then,

1. Ψj,N (0) = Ψj−l·KN−1,N−1(0) +AN~bl,

2. Ψ̃j,N (0) = AΨ̃j−l·KN−1,N−1(0) +A~bl,

3. Rj,N (0) = Rj−l·KN−1,N−1(0) +BN−1~cl,

4. R̃j,N (0) = BR̃j−l·KN−1,N−1(0) + ~cl.

Proof. For l ·KN−1 ≤ j < (l + 1)KN−1, jN−1 = l, so we have:

Ψj,N (0) = ψj0 ◦ ψj1 ◦ · · · ◦ ψjN−2 ◦ ψl(0)

= ψj0 ◦ ψj1 ◦ · · · ◦ ψjN−2

(
A(0 +~bl)

)
= Ψj−l·KN−1,N−1(0 +A~bl).

Applying Lemma 3.1.4 Item i) to Ψj−l·KN−1,N−1:

Ψj−l·KN−1,N−1(0 +A~bl) = Ψj−l·KN−1,N−1(0) +AN−1A~bl.

The proof of Item iii) is similar to Item i) with one crucial distinction, so we include the proof

here. We have:

Rj,N (0) = ρj0 ◦ ρj1 ◦ · · · ◦ ρjN−2 ◦ ρl(0)

= ρj0 ◦ ρj1 ◦ · · · ◦ ρjN−2 (B0 + ~cl)

= Rj−l·KN−1,N−1(0 + ~cl).

Applying Lemma 3.1.4 Item iii) to Rj−l·KN−1,N−1:

Rj−l·KN−1,N−1(0 + ~cl) = Rj−l·KN−1,N−1(0) +BN−1~cl.
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For Item ii), we have

Ψ̃j,N (0) = ψ`(Ψ̃j−`·KN−1,N−1(0))

= AΨ̃j−`·KN−1,N−1(0) +A~b`.

The proof of Item iv) is analogous.

Note that in Item i), the extra term involves AN , whereas in Item iii) the extra term involves

BN−1. We are now in a position to prove our main theorem.

Theorem 3.1.7. The matrix MN representing the exponentials with frequencies given by TN

on the fractal approximation SN , when both are endowed with the obverse ordering, has the

form

MN =



m00MN−1 m01DN,1MN−1 . . . m0(K−1)DN,K−1MN−1

m10MN−1 m11DN,1MN−1 . . . m1(K−1)DN,K−1MN−1

...
...

...
...

...

m(K−1)0MN−1 m(K−1)1DN,1MN−1 . . . m(K−1)(K−1)DN,K−1MN−1


. (3.4)

Here, DN,m are diagonal matrices with [DN,m]pp = e−2πiRp,N−1(0)·AN~bm, and mjk = [M1]jk.

Proof. Let us first subdivide MN into blocks B`m of size KN−1 ×KN−1, so that

MN =


B00 . . . B0(K−1)

...
. . .

...

B(K−1)0 . . . B(K−1)(K−1)

 .

Fix 0 ≤ j, k < KN and suppose `KN−1 ≤ j < (`+ 1)KN−1 and mKN−1 ≤ k < (m+ 1)KN−1

with 0 ≤ `,m < K. Let qj = j − `KN−1 and qk = k −mKN−1. Observe that

[MN ]jk = [B`m]qjqk . (3.5)

Using Lemma 3.1.6 Items ii) and iv), we calculate

Rj,N (0) ·Ψk,N (0) =
(
Rqj ,N−1(0) +BN−1~c`

)
·
(

Ψqk,N−1(0) +AN~bm

)
.

By Lemma 3.1.5 Item i), for some z ∈ Zd,

BN−1~c` ·Ψqk,N−1(0) = BN−1~c` ·AN−1z = ~c` · z ∈ Z.
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Note that

BN−1~c` ·AN~bm = ~c` ·A~bm.

Therefore, combining the above, we obtain

[MN ]jk = e−2πiRj,N (0)·Ψk,N (0)

= e
−2πiRqj ,N−1(0)·Ψqk,N−1(0)

e
−2πiRqj ,N−1(0)·AN~bme−2πi~c`·A~bm

= [MN−1]qjqke
−2πiRqj ,N−1(0)·AN~bm [M1]`m. (3.6)

Letting j vary between `KN−1 and (`+1)KN−1 and k vary between mKN−1 and (m+1)KN−1

corresponds to qj and qk varying between 0 and KN−1. Therefore, we obtain from Equations

(3.5) and (3.6) the matrix equation

B`m = [M1]`mDN,mMN−1

where [DN,m]pp = e−2πiRp,N−1(0)·AN~bm as claimed.

Corollary 3.1.8. The matrix MN is invertible. If M1 is Hadamard, then MN is also Hadamard.

Proof. If M1 is invertible, then by induction, MN is invertible via Proposition 2.1.1. If M1 is

Hadamard, then again by induction, MN is Hadamard by Diţǎ’s construction.

Theorem 3.1.9. The matrix M̃N representing the exponentials with frequencies given by TN

on the fractal approximation SN , when both are endowed with the reverse ordering, has the

form

M̃N =



m00M̃N−1 m01M̃N−1 . . . m0(K−1)M̃N−1

m10M̃N−1D̃N,1 m11M̃N−1D̃N,1 . . . m1(K−1)M̃N−1D̃N,1

...
...

...
...

...

m(K−1)0M̃N−1D̃N,K−1 m(K−1)1M̃N−1D̃N,K−1 . . . m(K−1)(K−1)M̃N−1D̃N,K−1


.

(3.7)

Here, D̃N,q is a diagonal matrix with [D̃N,`]pp = e−2πic`·A(Ψ̃p,N−1(0)), and mjk = [M1]jk.



20

Proof. The proof proceeds similarly to the proof Theorem 3.1.7. Let us first subdivide M̃N

into KN−1 ×KN−1 blocks B̃`m, so that

M̃N =


B̃00 . . . B̃0(K−1)

...
. . .

...

B̃(K−1)0 . . . B̃(K−1)(K−1)

 .

Fix 0 ≤ j, k < KN and suppose `KN−1 ≤ j < (`+ 1)KN−1 and mKN−1 ≤ k < (m+ 1)KN−1

with 0 ≤ `,m < K. Let qj = j − `KN−1 and qk = k −mKN−1. Observe that

[M̃N ]jk = [B̃`m]qjqk . (3.8)

We calculate using Lemma 3.1.6 items ii) and iv):

R̃j,N (0) · Ψ̃k,N (0) = (BR̃qj ,N−1(0) + ~c`) · (AΨ̃qk,N−1(0) +A~bm)

= R̃qj ,N−1(0) · Ψ̃qk,N−1(0) + ~c` ·AΨ̃qk,N−1(0)

+ R̃qj ,N−1(0) ·~bm + ~c` ·A~bm.

By Lemma 3.1.5 Item iv), R̃qj ,N−1(0) ·~bm ∈ Z. Thus,

[B̃`m]qjqk = [MN−1]qjqke
−2πi~c`·AΨ̃qk,N−1(0)[M1]`m

and as in the proof of Theorem 3.1.7, we have

B̃`m = [M1]`mM̃N−1D̃N,`.

3.1.1 Computational Complexity of Theorems 3.1.7 and 3.1.9

As a consequence of Proposition 2.1.2, the matrix MN can be multiplied by a vector of

dimension KN in at most KPN−1 + 3KN+1 − 2KN operations, where PN−1 is the number of

operations required by the matrix multiplication for MN−1. Since MN−1 has the same block

form as MN , PN−1 can be determined by PN−2, etc. The proof of the following proposition

is a standard induction argument, which we omit. Note that this says that the computational

complexity for MN is comparable to that for the FFT (recognizing the difference in the number

of generators for the respective IFS’s).
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Proposition 3.1.10. The number of operations to calculate the matrix multiplication MN~v is

PN = KN−1P1 + 3(N − 1)KN+1 − 2(N − 1)KN . Consequently, PN = O(N ·KN ).

The significance of Theorem 3.1.9 concerns the inverse of MN . If P is the permutation ma-

trix as in Lemma 3.1.2, then M−1
N = PM̃−1

N P . By Proposition 2.1.1, M̃−1
N has the form of Diţǎ’s

construction, and so the computational complexity of M̃−1
N is the same as MN . Thus, modulo

multiplication by the permutation matrices P , the computational complexity of multiplication

by M−1
N is the same as that for MN .

3.1.2 The Diagonal Matrices

The matrices MN and M̃N have the form of Diţǎ’s construction as shown in Theorems 3.1.7

and 3.1.9. The block form of Diţǎ’s construction involves diagonal matrices, which in Equations

(3.4) and (3.7) are determined by the IFS’s used to generate the matrices MN and M̃N . As

such, the diagonal matrices satisfy certain recurrence relations.

Theorem 3.1.11. The diagonal matrices which appear in the block form of MN (Equation

(3.4)) satisfy the recurrence relation DN,m = DN−1,m ⊗ EN,m, where EN,m is the K × K

diagonal matrix with [EN,m]uu = e−2πicu·AN~bm. That is:

[DN,m]pp = [DN−1,m]p̂p̂ e
−2πi(cp0 ·A

N~bm)

where p̂ = (p− p0)/K.

Likewise, the diagonal matrices which appear in the block form of M̃N (Equation (3.7))

satisfy the recurrence relation D̃N,` = D̃N−1,`⊗ ẼN,`, where ẼN,` is the K×K diagonal matrix

with [ẼN,`]uu = e−2πi~c`·AN~bu. That is:

[D̃N,`]pp = [DN−1,`]p̂p̂ e
−2πi~c`·AN~bp0 .

Proof. As demonstrated in Theorem 3.1.7, for p = 0, 1, . . . ,KN−1, [DN,m]pp = e−2πiRp,N−1(0)·AN~bm .

Note that pN−1 = 0, and ρ0(0) = 0. We want to cancel one power of A in AN~bm, so we factor

out a B from Rp,N−1(0):

Rp,N−1(0) = ρp0 ◦ ρp1 ◦ · · · ◦ ρpN−2(0) = B
(
ρp1 ◦ · · · ◦ ρpN−2(0)

)
+ ~cp0 .
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Since p̂ = p1 + p2K + · · ·+ pN−2K
N−3, Rp,N−1(0) = BRp̂,N−2(0) + ~cp0 . Thus,

[DN,m]pp = e−2πiRp,N−1(0)·AN~bm

= e−2πi(BRp̂,N−2(0)·A(AN−1~bm))e−2πi(~cp0 ·A
N~bm)

= e−2πi(Rp̂,N−2(0)·(AN−1~bm))e−2πi(~cp0 ·A
N~bm)

= [DN−1,m]p̂p̂ e
−2πi(~cp0 ·A

N~bm).

Similarly, as demonstrated in Theorem 3.1.9, [D̃N,`]pp = e−2πi~c`·A(Ψ̃p,N−1(0)). We write:

Ψ̃p,N−1(0) = ψpN−2 ◦ ψpN−3 ◦ · · · ◦ ψp1 ◦ ψp0(0)

= ψpN−2 ◦ ψpN−3 ◦ · · · ◦ ψp1(0 +A~bp0)

= Ψ̃p̂,N−2(0 +A~bp0)

= Ψ̃p̂,N−2(0) +AN−1~bp0 .

where in the last equality we use Lemma 3.1.4 item ii). Therefore:

[D̃N,`]pp = e−2πic`·A(Ψ̃p,N−1(0))

= e−2πi~c`·A(Ψ̃p̂,N−2(0)+AN−1~bp0)

= e−2πi~c`·A(Ψ̃p̂,N−2(0)+AN~bp0)

= e−2πi~c`·A(Ψ̃p̂,N−2(0))e−2πi~c`·AN~bp0

= [D̃N−1,`]p̂p̂ e
−2πi~c`·AN~bp0 .
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CHAPTER 4. FOURIER BASES ON THE SKEWED SIERPINSKI

GASKET

4.1 The Invariant Set S

Now, instead of looking at fractal approximations as in Chapter 3, we construct an or-

thonormal basis of exponentials on L2(ν3), the unique Borel regular measure supported on the

complete closed bounded set S guaranteed by Hutchinson in (18).

Definition 4.1.1. Let S =
⋃2
j=0 ψj(S), with:

ψ0(x, y) =
1

3
(x, y) (4.1)

ψ1(x, y) =
1

3
(x+ 2, y) (4.2)

ψ2(x, y) =
1

3
(x, y + 2) (4.3)

By (18), there exists a unique Borel regular measure, which we call ν3, supported on S and

with the property that, for any continuous function f on S,∫
fd ν3 =

2∑
j=0

1

3

∫
f ◦ ψjd ν3 (4.4)

First, we examine the set S.

Proposition 4.1.2. Let A = {(x, y) ∈ [0, 1] × [0, 1] : (x, y) =
∑∞

j=1(xj , yj)3
−j , (xj , yj) ∈

{(0, 0), (0, 2), (2, 0)}}

Then A is the closed invariant set for (4.1), (4.2), (4.3), that is, A = S.

S = {(x, y) ∈ [0, 1]× [0, 1] : (x, y) =
∑∞

j=1(xj , yj)3
−j , (xj , yj) ∈ {(0, 0), (0, 2), (2, 0)}}.

Proof. First, we show that A = ψ0(A) ∪ ψ1(A) ∪ ψ2(A).

Claim 4.1.3. For all (x, y) ∈ A, ψ0(x, y) ∈ A.
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Proof. We know that ψ0(
∑∞

j=1(xj , yj)3
−j) =

∑∞
j=1(xj , yj)3

−j−1.

Let ψ0(x, y) := (x̃, ỹ) =
∑∞

j=1(xj , yj)3
−j . Show that (x̃, ỹ) ∈ A.

Check: for j = 1, x̃1 = ỹ1 = 0. For j ≥ 2, x̃j = x̃j+1 and ỹj = ỹj+1, so (x̃j , ỹj) ∈

{(0, 0), (0, 2), (2, 0)}.

Therefore, (x̃, ỹ) ∈ A.

Claim 4.1.4. For all (x, y) ∈ A, ψ1(x, y) ∈ A.

Proof. We know that ψ1(
∑∞

j=1(xj , yj)3
−j) = (2 · 3−1, 0 · 3−1) +

∑∞
j=1(xj , yj)3

−j−1.

Let ψ1(x, y) := (x̃, ỹ) =
∑∞

j=1(xj , yj)3
−j . Show that (x̃, ỹ) ∈ A.

Check: for j = 1, x̃1 = 2, ỹ1 = 0; for j ≥ 2, x̃j = x̃j+1 and ỹj = ỹj+1, so (x̃j , ỹj) ∈

{(0, 0), (0, 2), (2, 0)}.

Therefore, (x̃, ỹ) ∈ A.

Claim 4.1.5. For all (x, y) ∈ A, ψ2(x, y) ∈ A.

Proof. We know that ψ2(
∑∞

j=1 xj , yj)3
−j = (0 · 3−1, 2 · 3−1) +

∑∞
j=0(xj , yj)3

−j−1.

Check: for j = 1, x̃1 = 0, ỹ1 = 2; for j ≥ 2, x̃j = x̃j+1 and ỹj = ỹj+1, so (x̃j , ỹj) ∈

{(0, 0), (0, 2), (2, 0)}.

Therefore, (x̃, ỹ) ∈ A.

Now show that A ⊆ ψ0(A) ∪ ψ1(A) ∪ ψ2(A).

Again, let (x, y) =
∑∞

j=1(xj , yj)3
−j . Now let (x̂, ŷ) = (

∑∞
j=2 xj3

−j+1,
∑∞

j=2 yj3
−j+1). No-

tice that x̂j = xj+1, ŷj = yj+1, so (x̂, ŷ) ∈ A.

We will show that, for all (x, y) ∈ A, ψk(x̂, ŷ) = (x, y) for some k ∈ {0, 1, 2}.

There are three cases: (x1, y1) = (0, 0), (x1, y1) = (2, 0), and (x1, y1) = (0, 2).

Claim 4.1.6. When (x1, y1) = (0, 0), ψ0(x̂, ŷ) = (x, y).

Proof. ψ0(
∑∞

j=2(xj , yj)3
−j+1) =

∑∞
j=2(xj , yj)3

−j = (x, y), since x1 = y1 = 0.

Claim 4.1.7. When (x1, y1) = (2, 0), ψ1(x̂, ŷ) = (x, y).
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Proof. ψ1(
∑∞

j=2(xj , yj)3
−j+1) = (2 · 3−1, 0 · 3−1) +

∑∞
j=2(xj , yj)3

−j = (x, y), since x1 = 2 and

y1 = 0.

Claim 4.1.8. When (x1, y1) = (0, 2), ψ2(x̂, ŷ) = (x, y).

Proof. ψ2(
∑∞

j=2(xj , yj)3
−j+1) = (0, 2 · 3−1) + (

∑∞
j=2(xj , yj)3

−j = (x, y), since x1 = 0 and

y1 = 2.

Now, show that A is compact. It is obvious that A is bounded in R2, we need only show

that it is closed.

Let {(xk, yk)}∞k=1 ∈ A be a Cauchy sequence. Notice that by construction, xk =
∑∞

j=1 xkj3
−j ,

xj ∈ {0, 2} is contained in the Cantor-3 set C3, a well-know closed set. The same is true for

yk. Therefore, xk → x, with x ∈ C3, and yk → y, with y ∈ C3.

Therefore we have that (xk, yk) → (x, y), with (x, y) ∈ C3 × C3. We need to show that

(x, y) ∈ A, that is, that for (x, y) =
∑∞

j=1(xj , yj)3
−j , (xj , yj) 6= (2, 2) for any j.

Suppose that (xj , yj) = (2, 2) for some j ≥ 1. By assumption, (xkj , ykj ) 6= (2, 2) for any j.

Consider:

||(x, y)− (xk, yk)||2 = (x− xk)2 + (y − yk)2

=

 ∞∑
j=0

(xj − xkj )3
−j

2

+

 ∞∑
j=0

(yj − ykj )3
−j

2

If (xj , yj) = (2, 2), then for every k, we have (xj − xkj ) = 2 or (jj − ykj ) = 2, or both. So

for every k:

||(x, y)− (xk, yk)||2 ≥ (2)3−j

Therefore, (xk, yk) cannot converge to (x, y) and we have a contradiction. So (x, y) ∈ A and A

is closed, thus compact.

Therefore, since A is compact and A = ψ0(A)∪ ψ1(A)∪ ψ2(A), we must have that A = S.

Another characterization of S:
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Figure 4.1 A fifth iterative approximation of S starting at zero.

Proposition 4.1.9. S = {(x, y) ∈ R2 : (x, y) ∈ C3 × C3 and x + y ∈ C3} where C3 is the

standard middle-thirds Cantor-3 set mentioned earlier, the compact attractor set of τ0(x) = x/3,

τ1(x) = x/3 + 2/3.

Proof. Let A = {(x, y) ∈ R2|x ∈ C3, y ∈ C3, and x + y ∈ C3}. Again, it is sufficient to show

that A = ψ0(A) ∪ ψ1(A) ∪ ψ2(A).

First, we show that ψ0(A) ∪ ψ1(A) ∪ ψ2(A) ⊆ A.

Claim 4.1.10. ψj(x, y) ∈ C3 × C3 for j = 0, 1, 2 and (x, y) ∈ A.

Proof. Let (x, y) ∈ A

ψ0(x, y) = (x/3, y/3) = (τ0(x), τ0(y)).

ψ1(x, y) = (x/3 + 2/3, y/3) = (τ1(x), τ0(y)).

ψ2(x, y) = (x/3, y/3 + 2/3) = (τ0(x), τ1(y)).
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Since x ∈ C3 and y ∈ C3, ψj(x, y) ∈ C3 × C3 for j = 0, 1, 2.

Claim 4.1.11. Let ψj(x, y) = (x̃, ỹ), for j = 0, 1, 2, (x, y) ∈ A. We will show that x̃+ ỹ ∈ C3.

Proof. ψ0(x, y) = (x/3, y/3), x/3 + y/3 = 1/3(x+ y) = τ0(x+ y)/3 ∈ C3.

ψ1(x, y) = (x/3 + 2/3, y/3), x/3 + 2/3 + y/3 = (x+ y)/3 + 2/3 = τ1(x+ y) ∈ C3.

ψ2(x, y) = (x/3, y/3 + 2/3), x/3 + y/3 + 2/3 = (x+ y)/3 + 2/3τ1(x+ y) ∈ C3.

These two claims give us ψ0(A)∪ψ1(A)∪ψ2(A) ⊆ A. Now, we show A ⊆ ψ0(A)∪ψ1(A)∪

ψ2(A):

Let (x, y) ∈ A. There are three cases:

1. x ≤ 1/3 and y ≤ 1/3.

2. x ≥ 2/3 and y ≤ 1/3.

3. x ≤ 1/3 and y ≥ 2/3.

Since x, y ∈ C3, neither x nor y can be in (1/3, 2/3). Since x+ y ∈ C3, x and y can’t both be

greater than 2/3. So the three cases given cover all of A.

Claim 4.1.12 (Case 1). For (x, y) ∈ A, x ≤ 1/3, y ≤ 1/3, and (x+ y) ≤ 1/3, (x, y) ∈ ψ0(A).

Proof. Let (x̃, ỹ) = (3x, 3y). Since ψ0(3x, 3y) = (x, y), we will get (x, y) ∈ ψ0(A) if (3x, 3y) ∈ A.

For (3x, 3y) ∈ A we need to show three things:

• 3x ∈ C3: Since x ∈ C3, x = τ0(x̃) or x = τ1(x̃) for x̃ ∈ C3. Since x̃ ∈ C3 ⇒ x̃ ≥ 0,

τ1(x̃) = x̃/3 + 2/3 ≥ 2/3; since x ≤ 1/3 < 2/3, we cannot have τ1(x̃) = x. Therefore, we

must have τ0(x̃) = x; thus x̃ = 3x ∈ C3.

• 3y ∈ C3: Since y ∈ C3, y < 1/3, 3y < 1. And, τ0(ỹ) = 1
3(3y) = y. Thus, ỹ = 3y ∈ C3.

• 3x + 3y ∈ C3: We need to show that x + y ≤ 1/3. Suppose not. Since x ≤ 1/3, and

y ≤ 1/3, x + y ≤ 2/3. Since x + y ∈ C3, this means that x + y ≤ 1/3. Therefore,

3x+ 3y < 1. Then τ0(3x+ 3y) = x+ y ∈ C3 by assumption. Therefore, 3x+ 3y ∈ C3.
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Claim 4.1.13 (Case 2). For (x, y) ∈ A, x ≥ 2/3 and y ≤ 1/3, (x, y) ∈ ψ1(A).

Proof. Let (x̃, ỹ) = (3x− 2, 3y). Since ψ1(3x− 2, 3y) = 1
3(3x− 2 + 2, 3y) = (x, y), if (x̃, ỹ) ∈ A,

(x, y) ∈ ψ1(A).

For (3x− 2, 3y) ∈ A we need to show three things:

• 3x− 2 ∈ C3: Since x ∈ C3, x = τ0(x̃) or x = τ1(x̃) for x̃ ∈ C3. Since x ≥ 2/3 and x̃ ≤ 1,

we must have that x = τ1(x̃); thus x̃ = 3x− 2 ∈ C3.

• 3y ∈ C3: Since y ∈ C3, y < 1/3, 3y < 1. And, τ0(ỹ) = 1
3(3y) = y. Thus, ỹ = 3y ∈ C3.

• 3x− 2 + 3y ∈ C3: τ1(3x− 2 + 3y) = 1
3(3x− 2 + 3y)− 2/3 = x+ y ∈ C3 by assumption,

so x̃+ ỹ ∈ C3.

Claim 4.1.14 (Case 3). For (x, y) ∈ A, x ≤ 1/3 and y ≥ 2/3, (x, y) ∈ ψ2(A).

Proof. Take (x̃, ỹ) = (3x, 3y−2). Since ψ2(3x, 3y−2) = 1
3(3x, 3y−2+2) = (x, y), if (x̃, ỹ) ∈ A,

(x, y) ∈ ψ2(A). Show that (3x, 3y − 2) ∈ A:

For (3x, 3y − 2) ∈ A we need to show three things:

• 3x ∈ C3: Since x ∈ C3, x = τ0(x̃) or x = τ1(x̃) for x̃ ∈ C3. Since x̃ ∈ C3 ⇒ x̃ ≥ 0,

τ1(x̃) = x̃/3 + 2/3 ≥ 2/3; since x ≤ 1/3 < 2/3, we cannot have τ1(x̃) = x. Therefore, we

must have τ0(x̃) = x; thus x̃ = 3x ∈ C3.

• 3y − 2 ∈ C3: Since y ∈ C3, y = τ0(ỹ) or y = τ1(ỹ) for ỹ ∈ C3. Since y ≥ 2/3 and ỹ ≤ 1,

we must have that y = τ1(ỹ) = 1
3(3y − 2) + 2/3 = y; thus ỹ = 3y − 2 ∈ C3.

• 3x+ 3y− 2 ∈ C3: Since x ≥ 2/3 and y ≤ 1/3, 0 < 3x+ 3y− 2 < 1, and τ1(3x− 2 + 3y) =

1
3(3x− 2 + 3y)− 2/3 = x+ y ∈ C3 by assumption, so x̃+ ỹ ∈ C3.

Now, we show that A is compact. A is obviously bounded, so we need only show it is closed.
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Let {(xj , yj)}∞k=1 ∈ A be a Cauchy sequence. Since xk ∈ C3, yk ∈ C3, xk → x ∈ C3

and yk → y ∈ C3, we have that {xk, yk} → (x, y) ∈ C3 → C3. Moreover, by continuity,

xk + yk → x+ y, and since xk + yk ∈ C3 for all k, x+ y ∈ C3 and (x, y) ∈ A.

Therefore, A is compact, and A = S.

4.2 Our orthonormal basis

This section will use Theorem 2.2.13 to show that {et,t/2 | t ∈ Z} is an orthonormal basis

for L2(ν3).

Following Dutkay and Jorgensen (9), we begin with a dual iterated function system of the

form R(x, y) + L, for R = 3I3 and L = {(0, 0), (2, 1), (4, 2)}.

Check first that (R,B,L) are in Hadamard duality (Definition 2.2.7), that is, that the

matrix M1 =
(
e2πil·R−1b

)
l∈L,b∈B

is Hadamard:

Claim 4.2.1. M∗1M1 = 3I3.

Proof. We calculate:

M1 =


1 1 1

1 e2πi(1/3) e2πi(2/3)

1 e2πi(2/3) e2πi(4/3)

 (4.5)

Proof is by basic matrix multiplication.

Recall the Definition 2.2.7. For the fractal S, B = {(0, 0), (2, 0), (0, 2)}, therefore:

WB(x, y) = 1
9

∣∣1 + e4πix + e4πiy
∣∣2 = 1

9 (3 + 2 cos (4πx) + 2 cos (4πy) + 2 cos (4π (x− y)))

.

WB(x, y) = 1 if and only if e4πix = e4πiy = 1, that is, when (x, y) ∈ Z/2× Z/2.

WB(x, y) = 0 if and only if 1 + e4πix + e4πiy = 0; that is, when e4πix + e4πiy = −1; or when

(x, y) ∈ (1/3 + Z/2, 1/6 + Z/2) ∪ (1/6 + Z/2, 1/3 + Z/2).

Proposition 4.2.2. X = XL = {(2t, t) : t ∈ [0, 1]}, that is, the straight line between (0, 0),

and (2, 1).
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Proof. Let:

`0(x, y) = (x/3, y/3) = τ(0,0)(x, y) (4.6)

`1(x, y) = (x/3 + 2/3, y/3 + 1/3) = τ(2,1)(x, y) (4.7)

`2(x, y) = (x/3 + 4/3, y/3 + 2/3) = τ(1,2)(x, y) (4.8)

so that XL is invariant under {`0, `1, `2}.

It is clear that T = {(2t, t) : t ∈ [0, 1]} is compact, so we need only show that T =

`0(T ) ∪ `1(T ) ∪ `2(T ).

Let (x, y) = (2t, t) for some t ∈ [0, 1]. Then:

`0(2t, t) = (2t/3, t/3) = (2s, s) with s = t/3 ∈ [0, 1/3] ⊂ [0, 1].

`1(2t, t) = (2t/3 + 2/3, t/3 + 1/3) = (2s, s) with s = t/3 + 1/3; since t ∈ [0, 1], t/3 ∈ [0, 1/3

so t/3 ∈ [1/3, 2/3] ⊂ [0, 1].

`2(2t, t) = (2t/3 + 4/3, t/3 + 2/3) = (2s, s) with s = t/3 + 2/3; since t ∈ [0, 1], t/3 ∈ [0, 1/3

so t/3 ∈ [2/3, 1] ⊂ [0, 1].

Now for (x, y) = (2t, t) find some (x̃, ỹ) = (2s, s), j ∈ {0, 1, 2} with `j(x̃, ỹ) = (x, y). Case

1: y = t ∈ [0, 1/3). Take s = 3t; then s ∈ [0, 1] and `0(2s, s) = `0(6t, 3t) = (2t, t) = (x, y).

Case 2: y = t ∈ [1/3, 2/3), so that 3t ∈ [1, 2). Take s = 3t − 1; then s ∈ [0, 1] and

`1(2s, s) = `1(6t− 2, 3t− 1) = (2t, t) = (x, y).

Case 3: y = t ∈ [2/3, 1], so that 3t ∈ [2, 3]. Take s = 3t− 2; then s ∈ [0, 1] and `2(2s, s) =

`1(6t− 4, 3t− 2) = (2t, t) = (x, y).

To find WB-cycles on XL, first we find which of the points in the lattice 1
2Z×

1
2Z are also

in XL.

By construction, each y ∈ [0, 1] has at most one x ∈ [0, 2] with (x, y) ∈ XL; so we really

only need to check three possibilities:

y = 0⇒ x = 2(0) = 0: (0, 0) ∈ XL.

y = 1/2⇒ x = 1(1/2) = 1: (1, 1/2) ∈ XL.

y = 1⇒ x = 2(1) = 2: (1, 1/2) ∈ XL.
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Figure 4.2 Plot of the fifth iteration of 1/3(x, y) + L.



32

So the only three points in 1
2Z×

1
2Z ∩XL are (0, 0), (1, 1/2), and (2, 1).

All of these are cycles, in fact, they are fixed points:

`0(0, 0) = (0, 0) (4.9)

`1(1/2, 1) =
1

3
(1/2, 1) + (1/3, 2/3) = (1/2, 1) (4.10)

`2(1, 1/2) =
1

3
(1, 1/2) + (2/3, 1/3) = (1, 1/2). (4.11)

Therefore, the WB-cycles are exactly (0, 0), (1, 1/2) and (1/2, 1).

Proposition 4.2.3. Let:

ρ0(x, y) = 3(x, y) (4.12)

ρ1(x, y) = 3(x, y) + (2, 1) (4.13)

ρ2(x, y) = 3(x, y) + (4, 2) (4.14)

so that {ρj(x, y)}j=0,1,2 = R(x, y) +B.

Let l1(x, y) = {ρ0(x, y), ρ1(x, y), ρ2(x, y)}, then for n ≥ 2,

ln(x, y) = {ρ0(s, t)|(s, t) ∈ ln−1(x, y)} ∪ {ρ1(s, t)|(s, t) ∈ ln−1(x, y)} ∪ {ρ2(s, t)|(s, t) ∈

ln−1(x, y)}. Then let L(x, y) =
⋃
n∈N ln(x, y).

We will show that: L(0, 0) ∪ L(−1/2,−1) ∪ L(−1,−1/2) = {(t, t/2)|t ∈ Z}.

The proof is in the form of three Claims.

Claim 4.2.4. L(0, 0) = {(2t, t)|t ∈ Z, t ≥ 0}.

Proof. (⊆): Let L′ = {(2t, t)|t ∈ Z, t ≥ 0}. We have: l1(0, 0) = {(0, 0), (2, 1), (4, 2)} ⊂ L′.

By construction, we need now only show that if (x, y) ∈ L′, each of ρ0(x, y), ρ1(x, y), ρ2(x, y)

is in L′:

• ρ0(2t, t) = 3(2t, t) = (6t, 3t); with t ≥ 0, 3t ≥ 0 and ρ0(2t, t) = (2(3t), 3t) ∈ L′.

• ρ1(2t, t) = 3(2t, t) + (2, 1) = (6t + 2, 3t + 1); with t ≥ 0, 3t + 1 ≥ 0 and ρ1(2t, t) =

(2(3t+ 1), 3t+ 1) ∈ L′.
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Figure 4.3 Plot of l3(0, 0) ∪ l3(−1,−1/2) ∪ l3(−2,−1).
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• ρ1(2t, t) = 3(2t, t) + (4, 2) = (6t + 4, 3t + 2); with t ≥ 0, 3t + 2 ≥ 0 and ρ2(2t, t) =

(2(3t+ 2), 3t+ 2) ∈ L′.

(⊇):

To show that each (2t, t) with t ≥ 0 is in L(0, 0), we write t =
∑N

j=0 tj3
j , tj ∈ {0, 1, 2}, then

induct on N :

Base case, N = 0, t = 0, 1, 2:

• t = 0: ρ0(0, 0) = (0, 0);

• t = 1: ρ1(0, 0) = (2, 1);

• t = 2: ρ2(0, 0) = (4, 2).

Induction step: Suppose (2t, t) ∈ L(0, 0) for all t =
∑n

j=0 tj3
j , tj ∈ {0, 1, 2}, n < N ; let

t =
∑N

j=0 tj3
j .

Case 1: t0 = 0. Then t/3 =
∑N−1

j=0 tj+13j ∈ Z, t/3 ≥ 0; so (2t/3, t/3) ∈ L(0, 0) by inductive

assumption; then (2t, t) = ρ0(2t/3, t/3) ∈ L(0, 0).

Case 2: t0 = 1. Then (t−1)/3 =
∑N−1

j=0 tj+13j ∈ Z, (t−1)/3 ≥ 0, so (2(t−1)/3, (t−1)/3) ∈ L(0, 0)

by inductive assumption; therefore (2t, t) = ρ1((2(t− 1)/3, (t− 1)/3) ∈ L(0, 0).

Case 3: t0 = 2. Then (t−2)/3 =
∑N−1

j=0 tj+13j ∈ Z, (t−2)/3 ≥ 0, so (2(t−2)/3, (t−2)/3) ∈ L(0, 0)

by inductive assumption; therefore (2t, t) = ρ1((2(t− 2)/3, (t− 2)/3) ∈ L(0, 0).

Claim 4.2.5. L(−2,−1) = {(2t, t)|t ∈ Z, t ≤ −1}.

Proof. (⊆):

Let L′ = {(2t, t)|t ∈ Z, t ≤ −1}. We have: l1(−2,−1) = {(−6,−3), (−4,−2), (−2, 1)} ⊂ L′.

By construction, we need now only show that if (x, y) ∈ L′, each of ρ0(x, y), ρ1(x, y), ρ2(x, y)

is in L′:
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• ρ0(2t, t) = 3(2t, t) = (6t, 3t); with t ≤ −1, 3t ≤ −1 and ρ0(2t, t) = (2(3t), 3t) ∈ L′.

• ρ1(2t, t) = 3(2t, t) + (2, 1) = (6t + 2, 3t + 1); with t ≤ −1, 3t + 1 ≤ −1 and ρ1(2t, t) =

(2(3t+ 1), 3t+ 1) ∈ L′.

• ρ1(2t, t) = 3(2t, t) + (4, 2) = (6t + 4, 3t + 2); with t ≤ −1, 3t + 2 ≤ −1 and ρ2(2t, t) =

(2(3t+ 2), 3t+ 2) ∈ L′.

(⊇):

To show that each (2t, t) with t ≤ −1 is in L(−2,−1), we write t = −
∑N

j=0 tj3
j , tj ∈

{0, 1, 2}, then induct on N .

Base case, N = 0, t = −1,−2 (note that t = 0 is not in the set):

• t = −1: ρ2(−2,−1) = (−2,−1);

• t = −2: ρ1(−2,−1) = (−4,−2).

Induction step: Suppose (2t, t) ∈ L(−2,−1) for all t = −
∑n

j=0 tj3
j , tj ∈ {0, 1, 2}, n < N ,

t ≤ −1; let t = −
∑N

j=0 tj3
j . Further, suppose that t ≤ −3, since we already know (−2,−1)

and (−4,−2) ∈ L(−2,−1).

Case 1: t0 = 0. Then t/3 = −
∑N−1

j=0 tj+13j , and since t ≤ −3, t/3 ≤ −1. So we have that

(2t/3, t/3) ∈ L(−2,−1) by inductive assumption, therefore (2t, t) = ρ0(2t/3, t/3) ∈

L(−2,−1).

Case 2: t0 = 1. Then (t − 1)/3 =
∑N−1

j=0 tj+13j , and since t ≤ −3, (t − 1)/3 ≤ −1. So we

have that (2(t− 1)/3, (t− 1)/3) ∈ L(−2,−1) by inductive assumption, therefore (2t, t) =

ρ1(2t/3, t/3) ∈ L(−2,−1).

Case 3: t0 = 2. Then (t − 2)/3 =
∑N−1

j=0 tj+13j , and since t ≤ −3, (t − 2)/3 ≤ −1. So we

have that (2(t− 2)/3, (t− 2)/3) ∈ L(−2,−1) by inductive assumption, therefore (2t, t) =

ρ2(2t/3, t/3) ∈ L(−2,−1).
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Claim 4.2.6. L(−1,−1/2) = {(2t, t)|t ∈ Z/2, t /∈ Z}.

Proof. (⊆):

Let L′ = {(2t, t)|t ∈ Z/2, t /∈ Z}. We have: l1(−2,−1) = {(−3,−3/2), (−1,−1/2), (1, 1/2)} ⊂

L′.

By construction, we need now only show that if (x, y) ∈ L′, each of ρ0(x, y), ρ1(x, y), ρ2(x, y)

is in L′:

• ρ0(2t, t) = 3(2t, t) = (6t, 3t); with t ∈ Z/2, t /∈ Z, 3t will also be in Z2\Z, so ρ0(2t, t) ∈ L′.

• ρ1(2t, t) = 3(2t, t) + (2, 1) = (6t + 2, 3t + 1); with t ∈ Z/2, t /∈ Z, 3t + 1 will also be in

Z2 \ Z, so ρ1(2t, t) ∈ L′.

• ρ1(2t, t) = 3(2t, t) + (4, 2) = (6t + 4, 3t + 2); with t ∈ Z/2, t /∈ Z, 3t + 2 will also be in

Z2 \ Z, so ρ2(2t, t) ∈ L′.

(⊇):

One way of expressing the set {t ∈ Z/2, t /∈ Z} is as the set {t | t + 1/2 ∈ Z}. For our

induction argument, we write the integer t + 1/2 in balanced ternary: t + 1/2 =
∑N

j=0 tj3
j ,

tj ∈ {0, 1,−1}. With this expression, we can induct on N and conveniently cover all of our set

L′.

Base case, N = 0, t = −1/2, 1/2,−3/2:

• t = −1/2: ρ1(−1/2,−1) = (−1/2, 1);

• t = 1/2: ρ2(−1/2,−1) = (1, 1/2);

• t = −3/2: ρ0(−1/2,−1) = (−3,−3/2).

Induction step: Suppose (2t, t) ∈ L(−1,−1/2) for all t + 1/2 =
∑n

j=0 tj3
j , tj ∈ {0, 1,−1},

n < N ; let t+ 1/2 =
∑N

j=0 tj3
j .

Case 1: t0 = −1. Then t+ 1/2 =
∑N

j=0 tj3
j = −1 +

∑N
j=1 tj3

j , or t+ 3/2 =
∑N

j=1 tj3
j .

Therefore, t/3 + 1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, (2t/3, t/3) ∈

L(−1,−1/2).

Thus (2t, t) = ρ0(2t/3, t/3) ∈ L(−1,−1/2).
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Case 2: t0 = 0. Then t+ 1/2 =
∑N

j=0 tj3
j =

∑N
j=1 tj3

j , or (t− 1) + 3/2 =
∑N

j=1 tj3
j .

Therefore, (t − 1)/3 + 1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, (2(t −

1)/3, (t− 1)/3) ∈ L(−1,−1/2).

Thus (2t, t) = ρ1(2(t− 1)/3, (t− 1)/3) ∈ L(−1,−1/2).

Case 3: t0 = 1. Then t+ 1/2 =
∑N

j=0 tj3
j = 1 +

∑N
j=1 tj3

j , or (t− 2) + 3/2 =
∑N

j=1 tj3
j .

Therefore, (t − 2)/3 + 1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, (2(t −

2)/3, (t− 2)/3) ∈ L(−1,−1/2).

Thus (2t, t) = ρ2(2(t− 2)/3, (t− 2)/3) ∈ L(−1,−1/2).

Proof of Proposition 4.2.3. Putting together Claims 4.2.4, 4.2.5, 4.2.6, we get that L(0, 0) ∪

L(−1/2,−1) ∪ L(−1,−1/2) = {(t, t/2)|t ∈ Z}.

Claim 4.2.7. Let Λ ⊂ R2 be the smallest set that contains −C for all WB-cycles C, and such

that SΛ + L ⊂ Λ. Then Λ = {(t, t/2)|t ∈ Z}.

Proof. Recall that S = RT = 3I, and that L = {(0, 0), (2, 1), (4, 2)}.

Let L0 = {(t, t/2)|t ∈ Z}.

By Claims 4.2.4, 4.2.5, 4.2.6, we know that L(0, 0) ∪ L(−2,−1) ∪ L(−1,−1/2) = L0.

For Λ to contain −C for all WB cycles C, and also contain SΛ +L it must contain at least

these three sets, so we have L0 ⊆ Λ.

For L0 = Λ, we need only show that it itself has the necessary properties; we know it contains

−C for allWB cycles C, so we need only show SL0+L ⊆ L0, that is, {ρ0(t, t/2), ρ1(t, t/2), ρ2(t, t/2)} ⊆

L0 for all (t, t/2) ∈ L0.

Let (t, t/2) with t ∈ Z.

ρ0(t, t/2) = (3t, 3t/2); if t ∈ Z, 3t ∈ Z, so ρ0(t, t/2) ∈ L0.

ρ1(t, t/2) = (3t+ 2, 3t/2 + 1) = (3t+ 2, (3t+ 2)/2); if t ∈ Z, 3t+ 2 ∈ Z, so ρ1(t, t/2) ∈ L0.

ρ1(t, t/2) = (3t+ 4, 3t/2 + 3) = (3t+ 4, (3t+ 4)/2); if t ∈ Z, 3t+ 4 ∈ Z, so ρ3(t, t/2) ∈ L0.
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Therefore, by Theorem 2.2.13, if the transversality of the zeros condition is satisfied,

{e2πi(t,t/2)·(x,y) | t ∈ Z} = {e2πitxeπity | t ∈ Z}

is an orthonormal basis for L2(ν3).

4.2.1 The Transversality of the Zeros Condition

Recall the transversality of the zeros condition from Definition 2.2.12. The function WX on

XL satisfies the transversality of the zeros condition if:

(a) If x ∈ XL is not a cycle, then there exists kx ≥ 0 such that, for k ≥ kx, {τl1 ◦ τl2 ◦ · · · ◦ τlkx :

l1, . . . ln ∈ L} does not contain any zeros of W ;

(b) If {x0, x1, . . . , xp} are on a cycle with x1 = τl(x0) for some l ∈ L, then for every y = τl′(x0),

y 6= x1 is either not on a cycle or W (y) = 0.

For the current case, B = {(0, 0), (2, 0), (0, 2)}, so

WB(x, y) =
1

9

∣∣1 + e4πix + e4πiy
∣∣2 (4.15)

=
1

9
(3 + 2 cos (4πx) + 2 cos (4πy) + 2 cos (4π (x− y))) (4.16)

Therefore, WB(x, y) = 1 if and only if e4πix = e4πiy = 1, that is, when (x, y) ∈ Z/2 × Z/2.

Furthermore, WB(x, y) = 0 if and only if 1 + e4πix+ e4πiy = 0; that is, when e4πix+ e4πiy = −1;

or when (x, y) ∈ (1/3 + Z/2, 1/6 + Z/2) ∪ (1/6 + Z/2, 1/3 + Z/2).

We show our set XL satisfies Condition (b) first.

Recall from Proposition 4.2.2 that X = XL = {(2t, t) : t ∈ [0, 1]}.

Lemma 4.2.8. (2t, t) ∈ XL is on a cycle if and only if t = k/(3n − 1) for some integer k,

n ∈ N.

Proof. By definition, (2t, t) is on a cycle if and only if (2t, t) = rn(2t, t) for some n ∈ N , where

r is the common right inverse of `1, `2, `3:

r(2t, t) = (2s, s) with s = 3t mod 1.
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However, there is overlap where t = 1/3 and t = 2/3; (2/3, 1/3) = `0(2, 1) = `1(0, 0);

(4/3, 2/3) = `2(0, 0) = `1(2, 1), so r is not a well-defined function at those points: (2/3, 1/3)

and (2/3, 4/3):

“r”(2/3, 1/3) = “r”(4/3, 2/3) = {(0, 0), (2, 1)}.

Claim 4.2.9. Neither (0,0) nor (2,1) is on a cycle with (4/3, 2/3); similarly neither (0,0) nor

(2,1) is on a cycle with (2/3, 1/3).

Proof. Compute: r(0, 0) = (0, 0), and r(2, 1) = (2, 1), so neither will go back to (4/3, 1/3) or

to (2/3, 1/3).

Notice that both (2/3, 1/3) and (4/3, 2/3) have a factor of 3 in their denominators; thus

they will be identified as non-cycles in the calculations below. Meanwhile, 0 = 0/(3n − 1) and

1 = (3n − 1)/(3n − 1) so (0, 0) and (2, 1) fit the criteria for being cycles.

Aside from those two points, (2t, t) = rn(2t, t) if and only if t = 3nt mod 1, or t− 3nt = 1

mod 1, or t(1− 3n) = k ∈ Z: in other words, t = k/(1− 3n), for some k ∈ Z.

Lemma 4.2.10. If t =
q

3(3n − 1)
for some integer q, 3 - q, and n ∈ N then t 6= k

3l − 1
for any

integer k, l ∈ N.

Proof.

q

3(3n − 1)
=

k

3l − 1
⇐⇒ q(3l − 1) = 3k(3n − 1)

Since 3 divides the right side, it must divide the left; however, we assumed 3 - q and certainly

3 - 3l − 1; and 3 is prime.

Proof of Condition (b). Let x0 = (2t, t) be on a cycle of length n; then t = k/(3n− 1) for some

integer k. It is sufficient to show that exactly one of `0(x0), `1(x0), `2(x0) is on a cycle.

There are three cases for the integer k: k = 3m for some integer m, k = 3m + 1 for some

integer m, or k = 3m+ 2 for some integer m.

Case 1:
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If k = 3m,

`0(x0) =`0

(
2(3m)

3n − 1
,

3m

3n − 1

)
=

(
2(3m)

3(3n − 1)
,

3m

3(3n − 1)

)
=

(
2(m)

3n − 1
,

m

3n − 1

)
which is on an n-cycle.

However,

`1(x0) = `1

(
2(3m)

3n − 1
,

3m

3n − 1

)
=

(
2(3m) + 2

3(3n − 1)
,

3m+ 1

3(3n − 1)

)
=

(
2(3m+ 1)

3(3n − 1)
,

3m+ 1

3(3n − 1)

)
which cannot be on any cycle;

and:

`2(x0) = `2

(
2(3m)

3n − 1
,

3m

3n − 1

)
=

(
2(3m) + 4

3(3n − 1)
,

3m+ 2

3(3n − 1)

)
=

(
2(3m+ 2)

3(3n − 1)
,

3m+ 2

3(3n − 1)

)
which cannot be on any cycle.

Case 2:

If k = 3m+ 1,

`0(x0) =`0

(
2(3m+ 1)

3n − 1
,
3m+ 1

3n − 1

)
=

(
2(3m+ 2)

3(3n − 1)
,

3m+ 1

3(3n − 1)

)
=

(
2(3m+ 1)

3(3n − 1)
,

3m+ 1

3(3n − 1)

)
which cannot be on any cycle;

and:

`1(x0) = `1

(
2(3m+ 1)

3n − 1
,
3m+ 1

3n − 1

)
=

(
2(3m+ 1) + 2

3(3n − 1)
,
3m+ 1 + 1

3(3n − 1)

)
=

(
2(3m+ 2)

3(3n − 1)
,

3m+ 2

3(3n − 1)

)
which cannot be on any cycle.
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However:

`2(x0) = `2

(
2(3m+ 1)

3n − 1
,
3m+ 1

3n − 1

)
=

(
2(3m+ 1) + 4

3(3n − 1)
,
3m+ 1 + 2

3(3n − 1)

)
=

(
3(2m+ 2)

3(3n − 1)
,

3m+ 3

3(3n − 1)

)
=

(
2(m+ 1)

3n − 1
,
m+ 1

3n − 1

)

which is on an n-cycle.

Case 3:

If k = 3m+ 2,

`0(x0) =`0

(
2(3m+ 2)

3n − 1
,
3m+ 2

3n − 1

)
=

(
2(3m+ 2)

3(3n − 1)
,

3m+ 2

3(3n − 1)

)
=

(
2(3m+ 2)

3(3n − 1)
,

3m+ 2

3(3n − 1)

)
which cannot be on any cycle.

However:

`1(x0) = `1

(
2(3m+ 2)

3n − 1
,
3m+ 2

3n − 1

)
=

(
2(3m+ 2) + 2

3(3n − 1)
,
3m+ 2 + 1

3(3n − 1)

)
=

(
3(2m+ 2)

3(3n − 1)
,

3m+ 3

3(3n − 1)

)
=

(
2(m+ 1)

3n − 1
,
m+ 1

3n − 1

)

which is on an n-cycle.

But:

`2(x0) = `2

(
2(3m+ 2)

3n − 1
,
3m+ 1

3n − 1

)
=

(
2(3m+ 2) + 4

3(3n − 1)
,
3m+ 2 + 2

3(3n − 1)

)
=

(
2(3m+ 4)

3(3n − 1)
,

3m+ 4

3(3n − 1)

)
=

(
2(3(m+ 1) + 1

3(3n − 1)
,
3(m+ 1) + 1

3(3n − 1

)
which cannot be on any cycle.

This concludes the proof of Condition (b).
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Proof of Condition (a). We notice that there are only finitely many (x, y) that are both zeros

of WB and contained in XL.

In particular: {(1/3, 1/6), (4/3, 2/3), (10/6, 5/6)}.

We know from Lemma 4.2.8 that none of these points are on cycles; we show also that there

is no n with rn(1/3, 1/6) = (4/3, 2/3), rn(1/3, 1/6) = (10/6, 5/6), rn(4/3, 2/3) = (1/3, 1/6),

rn(4/3, 2/3) = (10/6, 5/6), rn(10/6, 5/6) = (1/3, 1/6) or rn(10/6, 5/6) = (4/3, 2/3).

Now suppose for (x, y) ∈ X, (x, y) not in a cycle, r−n(x, y) contains rn(1/3, 1/6) for some

n, that is, (1/3, 1/6) = `jn . . . `j1(x, y) with j1, . . . , jn ∈ {0, 1, 2}. Claim: there is no m > n

with (x, y) ∈ r−m(x, y), that is, we cannot have (1/3, 1/6) = `km . . . `kn . . . `k1(x, y).

Suppose we do. Then:

`jn . . . `j1(x, y) = `km . . . `kn . . . `k1(x, y).

Apply rm to both sides:

rm`jn . . . `j1(x, y) = rm`km . . . `kn . . . `k1(x, y).

And applying the left inverses: rm−n(x, y) = (x, y). This contradicts the assumption that

(x, y) is not on a cycle.

Therefore, there is at most one n ∈ N with (1/3, 1/6) ∈ r−n(x, y). Similarly, we can show

that there is at most one n′ ∈ N with (2/3, 4/3) ∈ r−n′(x, y), and at most one n′′ ∈ N with

(10/6, 5/6) ∈ r−n′′ . Therefore, we can take n(x,y) = max{n, n′, n′′} and Condition (a) holds.

Therefore, the transversality of the zeros condition is satisfied, and

{e2πi(t,t/2)·(x,y) | t ∈ Z} = {e2πitxeπity | t ∈ Z}

is an orthonormal basis for L2(ν3).

4.3 A different proof

Now we construct a direct proof that E = {et,t/2 | t ∈ Z} is an orthonormal basis for L2(ν3)

using Theorem 2.2.8. The argument in this section follows the outlines of a theorem by Dutkay,

Picioroaga, and Song in (10):
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Theorem 4.3.1. Let H be a Hilbert space and (Si)
N−1
i=0 be a representation of the Cuntz algebra

On. Let E be an orthonormal set in H and f : X → H a norm continuous function on a

topological space X with the following properties:

(i) E =
⋃N−1
i=0 SiE

(ii) span{f(t) : t ∈ X} = H and ||f(t)|| = 1, for all t ∈ X.

(iii) There exists functions mi : X → C, gi : X → X, i = 0, . . . , N − 1 such that:

S∗i f(t) = mi(t)f(gi(t)), t ∈ X (4.17)

(iv) There exists c0 ∈ X such that f(c0) ∈ span(E).

(v) The only continuous functions h : X → C with h ≥ 0, h(c) = 1 for all c ∈ {x ∈ X :

f(x) ∈ span(H)} and:

h(t) =
N−1∑
i=0

|mi(t)|2h(gi(t)), t ∈ X (4.18)

are the constant functions.

Then E is an orthonormal basis for H.

In this context, H = L2(ν3), X = R2, and f(s, t) = es,t(x, y) = e2πi(s,t)·(x,y).

We will first construct a representation of O3 with E =
⋃2
i=0 SiE to show that E is an or-

thonormal set. Then, we will construct mi and gi and show that hX(s, t) :=
∑

λ∈E |ν̂3((s, t)− λ)|2

from Theorem 2.2.8 satisfies the conditions in (v). Then, through a continuity argument slightly

simpler than in (v), we we show that hX(s, t) ≡ 1 for all t ∈ R2, and thus that E is an or-

thonormal basis for L2(ν3) by Theorem 2.2.8.

4.3.1 The Cuntz algebra representation

Definition 4.3.2. Let: m0(x, y) = 1√
3

m1(x, y) = 1√
3
e2πi(x,y)·(2,1)

m2(x, y) = 1√
3
e2πi(x,y)·(4,2)
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Lemma 4.3.3. The matrix M(x, y) = (mj(ψk(x, y)))0≤j,k≤2 is unitary.

Proof.

M(x, y) :=


1√
3

1√
3

1√
3

1√
3
e2πi( 1

3
(x,y))·(2,1) 1√

3
e2πi( 1

3
(x,y)+(2/3,0))·(2,1) 1√

3
e2πi( 1

3
(x,y)+(0,2/3))·(2,1)

1√
3
e2πi( 1

3
(x,y))·(4,2) 1√

3
e2πi( 1

3
(x,y)+(2/3,0))·(4,2) 1√

3
e2πi( 1

3
(x,y)+(0,2/3))·(4,2)



=


1 0 0

0 e2πi( 1
3

(x,y))·(2,1) 0

0 0 e2πi( 1
3

(x,y))·(4,2)




1√
3

1√
3

1√
3

1√
3

1√
3
e2πi(2/3,0)·(2,1) 1√

3
e2πi(0,2/3)·(2,1)

1√
3

1√
3
e2πi(2/3,0)(4,2) 1√

3
e2πi(0,2/3)(4,2)



=


1 0 0

0 e2πi( 2
3
x+ 1

3
y)) 0

0 0 e2πi( 4
3
x+ 2

3
y))




1√
3

1√
3

1√
3

1√
3

1√
3
e2πi(1/3) 1√

3
e2πi(2/3)

1√
3

1√
3
e2πi(2/3) 1√

3
e2πi(1/3)


Call the diagonal matrix D1; the other matrix is 1√

3
M1, where M1 is same as in 4.5.

Notice D1 is unitary for every x, y:

D1D
∗
1 =


1 0 0

0 e2πi( 2
3
x+ 1

3
y)) 0

0 0 e2πi( 4
3
x+ 2

3
y))




1 0 0

0 e−2πi( 2
3
x+ 1

3
y)) 0

0 0 e−2πi( 4
3
x+ 2

3
y))

 = I3

Meanwhile M1 is also unitary, so M(x, y) is unitary for all (x, y).

Definition 4.3.4. Let R(x, y) = 3(x, y) mod 1 so that R · ψj = I, j = 0, 1, 2.

Then we can define:

Sj : L2(ν3)→ L2(ν3) (4.19)

[Sjf ](x, y) =
√

3mj(x, y)f(R(x, y)). (4.20)

Specifically:

S0(x, y) = f(3x, 3y mod 1)

S1(x, y) = e2πi(2x+y)f(3(x, y) mod 1)

S2(x, y) = e2πi(4x+2y)f(3(x, y) mod 1)
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Claim 4.3.5. For j = 0, 1, 2, Sj is an isometry in L2(ν3).

Proof.

||Sjf ||2 =

∫
S
|
√

3mj(x, y)f(R(x, y))|2d(ν3) (4.21)

=
1

3

2∑
k=0

∫
S

3|mj(ψk(x, y))f(R(ψk(x, y)))|2d(ν3) (4.22)

=

∫
S

(
2∑

k=0

|mj(ψk(x, y)|2
)
|f(x, y)|d(ν3) (4.23)

(4.24)

The
∑2

k=0 |mj(ψk(x, y))|2 is the square of the Euclidean norm of the jth row of the matrix

M; therefore, it is equal to 1.

So we have: ||Sjf ||2 = ||f ||2, thus, Sj is an isometry.

Lemma 4.3.6. The adjoint to Sj, S
∗
j , is given by:

[S∗j f ](x, y) =
1√
3

2∑
k=0

mj(ψk(x, y))f(ψk(x, y)) (4.25)

Proof. Calculate:

〈Sjf, g〉 =

∫
S

√
3mj(x, y)f(R(x, y))g(x, y)dν3 (4.26)

=
1

3

2∑
k=0

∫
S

√
3mj(ψk(x, y))f(R(ψk(x, y)))g(ψk(x, y))dν3 (4.27)

=

∫
S
f(x, y)

(√
3

3

2∑
k=0

mj(ψk(x, y))g(ψk(x, y))

)
dν3 (4.28)

=

∫
S
f(x, y)

(
1√
3

2∑
k=0

mj(ψk(x, y))g(ψk(x, y))

)
dν3 (4.29)

=
〈
f, S∗j g

〉
(4.30)

Theorem 4.3.7. {S0, S1, S2} is a representation of the Cuntz algebra O3.
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Proof. Condition 1: S∗jSk = δjkI:

[S∗jSkf ](x, y) =
1√
3

2∑
l=0

mj(ψl(x, y))[Skf ](ψl(x, y)) (4.31)

=
1√
3

2∑
l=0

mj(ψl(x, y))
√

3mk(ψl(x, y))f(R(ψl(x, y))) (4.32)

=

(
2∑
l=0

mj(ψl(x, y))mk(ψl(x, y))

)
f(x, y) (4.33)

This sum is the scalar product of the kth row with jth row of matrix M, which is unitary. So

the sum is δjkI.

Condition 2:
∑2

k=0 SkS
∗
kf = f , for all f ∈ L2(ν3):

Let f, g ∈ L2(ν3). Calculate:〈
2∑

k=0

SkS
∗
kf, g

〉
=

2∑
k=0

〈S∗kf, S∗kg〉

=

2∑
k=0

∫
S

1√
3

2∑
`=0

mk(ψ`(x, y))f(ψ`(x, y))

 1√
3

2∑
n=0

mk(ψn(x, y))g(ψn(x, y))

 dν3

=

2∑
l=0

2∑
n=0

1

3

∫
S

(
2∑

k=0

mk(ψ`(x, y))mk(ψn(x, y))

)
f(ψ`(x, y))g(ψn(x, y))dν3

=
2∑
l=0

2∑
n=0

1

3

∫
S
δlnf(ψ`(x, y))g(ψn(x, y))dν3

=

2∑
n=0

1

3

∫
S
f(ψn(x, y))g(ψn(x, y))dν3

=

∫
S
f(x, y)g(x, y)dν3

= 〈f, g〉

Lemma 4.3.8. E =
⋃2
j=0 SjE, where the union is disjoint.
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Proof.

[S0et,t/2](x, y) =
√

3

(
1√
3
m0(x, y)

)
et,t/2(3x, 3y)

= e2πit(3x)e2πi t
2

(3y)

= e2πi(3t)xe2πi 3t
2

(y)

= e(3t, 3t
2

)(x, y)

Therefore, for any t ∈ Z, with t = 3s for some s ∈ Z, e(t,t/2) ∈ S0E .

[S1et,t/2](x, y) =
√

3

(
1√
3
m1(x, y)

)
et,t/2(3x, 3y)

=
√

3

(
1√
3
e2πi(2x+y)

)(
e2πi(3t)xe2πi 3t

2
y
)

= e2πi[2t+2]xe2πi[ 3t2 +1]y

= e(3t+2, 3t
2

+1)(x, y)

Therefore, for any t ∈ Z, with t = 3s+ 2 for some s ∈ Z, e(t,t/2) ∈ S1E .

[S2et,t/2](x, y) =
√

3

(
1√
3
m2(x, y)

)
et,t/2(3x, 3y)

=
√

3

(
1√
3
e2πi(4x+2y)

)(
e2πi(3t)xe2πi 3t

2
y
)

= e2πi[3t+4]xe2πi[ 3t
2

+2]y

= e(3t+4, 3t
2

+2)(x, y)

Therefore, for any t ∈ Z, with t = 3s+ 1 = 3(s− 1) + 4 for some s ∈ Z, e(t,t/2) ∈ S2E .

Since each t ∈ Z is in exactly one coset mod 3, we have that E = ∪2
j=0SjE , where the union

is disjoint.

Theorem 4.3.9. S∗j e(s,t) = mj(s, t)egj(s,t), where:
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g0(s, t) = (
s

3
,
t

3
)

m0(s, t) =
1

3

(
1 + e2πi 2s

3 + e2πi 2t
3

)
g1(s, t) = (

s− 2

3
,
t− 1

3
)

m1(s, t) =
1

3

(
1 + e−2πi 4

3 e2πi 2s
3 + e−2πi 2

3 e2πi 2t
3

)
g2(s, t) = (

s− 4

3
,
t− 2

3
)

m2(s, t) =
1

3

(
1 + e−2πi 8

3 e2πi 2s
3 + e−2πi 4

3 e2πi 2t
3

)
Proof. Calculate:

[S∗0es,t)](x, y) =
1√
3

2∑
k=0

m0(ψk(x, y))es,t(ψk(x, y))

=
1√
3

(
1√
3
es,t

(x
3
,
y

3

)
+

1√
3
es,t

(
x+ 2

3
,
y

3

)
+

1√
3
es,t

(
x

3
,
y + 2

3

))
=

1

3

(
e2πi( sx

3
+ ty

3
) + e2πi( sx+2s

3
+ ty

3
) + e2πi( sx

3
+ ty+2t

3
)
)

=
1

3

(
e2πi sx

3 e2πi ty
3 + e2πi sx

3 e2πi 2s
3 e2πi ty

3 + e2πi sx
3 e2πi ty

3 e2πi 2t
3

)
=

1

3
e2πi sx

3 e2πi ty
3

(
1 + e2πi 2s

3 + e2πi 2t
3

)
=

1

3
e2πi(x,y)·( s

3
, t
3

)
(

1 + e2πi 2s
3 + e2πi 2t

3

)
=

1

3
e s

3
, t
3
(x, y)

(
1 + e2πi 2s

3 + e2πi 2t
3

)

so g0(s, t) = ( s3 ,
t
3) and m0(s, t) = 1

3

(
1 + e2πi 2s

3 + e2πi 2t
3

)
.
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[S∗1es,t)](x, y) =
1√
3

2∑
k=0

m1(ψk(x, y))es,t(ψk(x, y))

=
1√
3

2∑
k=0

1√
3
e−2πiψk(x,y)·(2,1)es,t(ψk(x, y))

=
1

3

(
e−2πi(x3 ,

y
3 )·(2,1)es,t

(x
3
,
y

3

)
+ e−2πi(x+2

3
, y
3 )·(2,1)es,t

(
x+ 2

3
,
y

3

)
+e−2πi(x3 ,

y+2
3 )·(2,1)es,t

(
x

3
,
y + 2

3

))
=

1

3

(
e−2πi( 2x

3
+ y

3 )e2πi( sx
3

+ ty
3

) + e−2πi( 2x+4
3

+ y
3 )e2πi( sx+2s

3
+ ty

3
) + e−2πi( 2x

3
+ y+2

3 )e2πi( sx
3

+ ty+2t
3

)
)

=
1

3

(
e−2πi 2x

3 e−2πi y
3 e2πi sx

3 e2πi ty
3 + e−2πi 2x

3 e−2πi 4
3 e−2πi y

3 e2πi sx
3 e2πi 2s

3 e2πi ty
3

+e−2πi 2x
3 e−2πi y

3 e−2πi 2
3 e2πi sx

3 e2πi ty
3 e2πi 2t

3

)
=

1

3
e−2πi 2x

3 e−2πi y
3 e2πi sx

3 e2πi ty
3

(
1 + e−2πi 4

3 e2πi 2s
3 + e−2πi 2

3 e2πi 2t
3

)
=

1

3
e2πi(− 2x

3
− y

3
+ sx

3
+ ty

3
)
(

1 + e−2πi 4
3 e2πi 2s

3 + e−2πi 2
3 e2πi 2t

3

)
=

1

3
e2πi(x,y)·( s−2

3
, t−1

3
)
(

1 + e−2πi 4
3 e2πi 2s

3 + e−2πi 2
3 e2πi 2t

3

)
=

1

3
e s−2

3
, t−1

3
(x, y)

(
1 + e−2πi 4

3 e2πi 2s
3 + e−2πi 2

3 e2πi 2t
3

)

so g1(s, t) = ( s−2
3 , t−1

3 ), m1(s, t) = 1
3

(
1 + e−2πi 4

3 e2πi 2s
3 + e−2πi 2

3 e2πi 2t
3

)
.
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[S∗2es,t)](x, y) =
1√
3

2∑
k=0

m2(ψk(x, y))es,t(ψk(x, y))

=
1√
3

2∑
k=0

1√
3
e−2πiψk(x,y)·(4,2)es,t(ψk(x, y))

=
1

3

(
e−2πi(x3 ,

y
3 )·(4,2)es,t

(x
3
,
y

3

)
+ e−2πi(x+2

3
, y
3 )·(4,2)es,t

(
x+ 2

3
,
y

3

)
+e−2πi(x3 ,

y+2
3 )·(4,2)es,t

(
x

3
,
y + 2

3

))
=

1

3

(
e−2πi( 4x

3
+ 2y

3 )e2πi( sx
3

+ ty
3

) + e−2πi( 4x+8
3

+ 2y
3 )e2πi( sx+2s

3
+ ty

3
) + e−2πi( 4x

3
+ 2y+4

3 )e2πi( sx
3

+ ty+2t
3

)
)

=
1

3

(
e−2πi 4x

3 e−2πi 2y
3 e2πi sx

3 e2πi ty
3 + e−2πi 4x

3 e−2πi 8
3 e−2πi 2y

3 e2πi sx
3 e2πi 2s

3 e2πi ty
3

+e−2πi 4x
3 e−2πi 2y

3 e−2πi 4
3 e2πi sx

3 e2πi ty
3 e2πi 2t

3

)
=

1

3
e−2πi 4x

3 e−2πi 2y
3 e2πi sx

3 e2πi ty
3

(
1 + e−2πi 8

3 e2πi 2s
3 + e−2πi 4

3 e2πi 2t
3

)
=

1

3
e2πi(− 4x

3
− 2y

3
+ sx

3
+ ty

3
)
(

1 + e−2πi 8
3 e2πi 2s

3 + e−2πi 4
3 e2πi 2t

3

)
=

1

3
e2πi(x,y)·( s−4

3
, t−2

3
)
(

1 + e−2πi 8
3 e2πi 2s

3 + e−2πi 4
3 e2πi 2t

3

)
=

1

3
e s−4

3
, t−2

3
(x, y)

(
1 + e−2πi 8

3 e2πi 2s
3 + e−2πi 4

3 e2πi 2t
3

)

so g2(s, t) = ( s−4
3 , t−2

3 ), m2(s, t) = 1
3

(
1 + e−2πi 8

3 e2πi 2s
3 + e−2πi 4

3 e2πi 2t
3

)
.

Lemma 4.3.10.
∑2

j=0 |mj(s, t)| = 1.

Proof.

|m0(s, t)|2 =

∣∣∣∣13 (1 + e2πi 2s
3 + e2πi 2t

3

)∣∣∣∣2
=

1

9

(
1 + e2πi 2s

3 + e2πi 2t
3

)(
1 + e−2πi 2s

3 + e−2πi 2t
3

)
=

1

9

(
1 + e−2πi 2s

3 + e−2πi 2t
3 + e2πi 2s

3 + 1 + e2πi( 2s
3
− 2t

3 ) + e2πi 2t
3 + e2πi( 2t

3
− 2s

3 ) + 1
)

=
1

9

(
3 + 2 cos

(
4π
s

3

)
+ 2 cos

(
4π
t

3

)
+ 2 cos

(
4π

3
(s− t)

))
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|m1(s, t)|2 =

∣∣∣∣13 (1 + e−2πi 4
3 e2πi 2s

3 + e−2πi 2
3 e2πi 2t

3

)∣∣∣∣2
=

1

9

(
1 + e−2πi 4

3 e2πi 2s
3 + e−2πi 2

3 e2πi 2t
3

)(
1 + e2πi 4

3 e−2πi 2s
3 + e2πi 2

3 e−2πi 2t
3

)
=

1

9

(
1 + e2πi 4

3 e−2πi 2s
3 + e2πi 2

3 e−2πi 2t
3 + e−2πi 4

3 e2πi 2s
3 + 1 + e2πi(− 2

3
+ 2s

3
− 2t

3 )

+e−2πi 2
3 e2πi 2t

3 + e2πi( 2
3

+ 2t
3
− 2s

3 ) + 1
)

=
1

9

(
3 + 2 cos

(
4π

3
(2− s)

)
+ 2 cos

(
4π

3
(1− t)

)
+ 2 cos

(
4π

3
(−1 + s− t)

))

|m2(s, t)|2 =
1

3

∣∣∣(1 + e−2πi 8
3 e2πi 2s

3 + e−2πi 4
3 e2πi 2t

3

)∣∣∣2
=

1

9

(
1 + e−2πi 8

3 e2πi 2s
3 + e−2πi 4

3 e2πi 2t
3

)(
1 + e2πi 8

3 e−2πi 2s
3 + e2πi 4

3 e−2πi 2t
3

)
=

1

9

(
1 + e2πi 8

3 e−2πi 2s
3 + e2πi 4

3 e−2πi 2t
3 + e−2πi 8

3 e2πi 2s
3 + 1 + e−2πi 8

3 e2πi 2s
3 e2πi 4

3 e−2πi 2t
3

+e−2πi 4
3 e2πi 2t

3 + e−2πi 4
3 e2πi 2t

3 e2πi 8
3 e−2πi 2s

3 + 1
)

=
1

9

(
3 + 2 cos

(
4π

3
(4− s)

)
+ 2 cos

(
4π

3
(2− t)

)
+ 2 cos

(
4π

3
(−2 + s− t)

))
Therefore:

2∑
j=0

|mj |2 =
1

9

(
3 + 2 cos

(
4π
s

3

)
+ 2 cos

(
4π
t

3

)
+ 2 cos

(
4π

3
(s− t)

)

+3 + 2 cos

(
4π

3
(2− s)

)
+ 2 cos

(
4π

3
(1− t)

)
+ 2 cos

(
4π

3
(−1 + s− t)

)
+3 + 2 cos

(
4π

3
(4− s)

)
+ 2 cos

(
4π

3
(2− t)

)
+ 2 cos

(
4π

3
(−2 + s− t)

))
= 1 +

2

9

(
cos
(

4π
s

3

)
+ cos

(
4π

3
(2− s)

)
+ cos

(
4π

3
(4− s)

))
+

2

9

(
cos

(
4π
t

3

)
+ cos

(
4π

3
(1− t)

)
+ cos

(
4π

3
(2− t)

))
+

2

9

(
cos

(
4π

3
(s− t)

)
+ cos

(
4π

3
(−1 + s− t)

)
+ cos

(
4π

3
(−2 + s− t)

))
= 1
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The last line is because:

cos

(
4π

3
s

)
+ cos

(
4π

3
s− 8π

3

)
+ cos

(
4π

3
s− 16π

3

)
= Re

(
e

4π
3
si + e

4π
3
si− 8π

3
i + e

4π
3
si− 16π

3
i
)

= Re
(
e

4π
3
si
(

1 + e−
8π
3
i + e−

16π
3
i
))

= Re
(
e

4π
3
si
(

1 + e−
2π
3
i + e−

4π
3
i
))

= Re(0) = 0

4.3.2 The function hX

Recall from Theorem 2.2.8 that:

hX(t) :=
∑
λ∈E
|µ̂B(t− λ)|2 , t ∈ Rd, λ ∈ E .

For E = {eu,u/2|u ∈ Z}, and ν3 as in Definition 4.1.1,

hX(s, t) =
∑

(u,u/2)∈Z

|ν̂3(s− u, t− u/2)|2. (4.34)

Theorem 4.3.11. For E = {eu,u/2|u ∈ Z} and ν3 as in Definition 4.1.1, hX(s, t) =
∑

u∈Z |
〈
es,t, eu,u/2

〉
|2.

Proof. We compute:

〈
es,t, eu,u/2

〉
=

∫
e2πi(sx+ty)e−2πi(ux+uy/2) dν3(x, y)

=

∫
e2πi(sx+ty−ux−uy/2) dν3(x, y)

=

∫
e2πi((s−u)x+(t−u/2))y dν3(x, y)

=

∫
e−2πi((u−s)x+(u/2−t)y) dν3(x, y)

= ν̂3(u− s, u/2− t)

Therefore, |
〈
es,t, eu,u/2

〉
|2 = |ν̂3(s− u, t− u/2)|2 and

hX(s, t) =
∑
λ∈E
|
〈
es,t, eu,u/2

〉
|2 =

∑
(u,u/2)∈Z

|ν̂3(s− u, t− u/2)|2. (4.35)
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Lemma 4.3.12.

hX(s, t) =

2∑
j=0

|mj(s, t)|2hX(gj(s, t)) (4.36)

Proof. Recall Lemma 4.3.8:

E = {eu,u/2|u ∈ Z} =

2⋃
j=0

Sj(E)

where the union is disjoint.

As a consequence:

hX(s, t) =
∑
u∈Z
|
〈
es,t, eu,u/2

〉
|2 (4.37)

=

2∑
j=0

∑
u∈Z
|
〈
es,t, Sjeu,u/2

〉
|2 (4.38)

=
2∑
j=0

∑
u∈Z
|
〈
S∗j es,t, eu,u/2

〉
|2 (4.39)

=

2∑
j=0

∑
u∈Z
|
〈
mj(s, t)egj(s,t), eu,u/2

〉
|2 (4.40)

=
2∑
j=0

|mj(s, t)|2
∑
u∈Z
|
〈
egj(s,t), eu,u/2

〉
|2 (4.41)

=

2∑
j=0

|mj(s, t)|2hX(gj(s, t)) (4.42)

Line (4.40) follows from (4.39) by Theorem 4.3.9.

Theorem 4.3.13. ν̂3(s, t) =
∏∞
j=1

1
3

(
1 + e−2πi(2s/3j) + e−2πi(2t/3j)

)
.
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Proof. We use equation (2.4).

ν̂3(s, t) =

∫
e−2πi(sx+ty) dν3(x, y)

=
1

3

(∫
e−2πi(s(x/3)+t(y/3)) dν3(x, y) +

∫
e−2πi(s(x+2)/3+ty/3) ν3(x, y) +

∫
e−2πi(sx/3+t(y+2/3)) ν3(x, y)

)
=

1

3

(∫
e−2πi((s/3)x+(t/3)y) dν3(x, y) +

∫
e−2πi((s/3)x+(t/3)y)e−2πi2s/3 ν3(x, y)+∫

e−2πi((s/3)x+(t/3)y)e−2πi2t/3 ν3(x, y)

)
=

1

3

(
ν̂3

(
s

3
,
t

3

)
+ ν̂3

(
s

3
,
t

3

)
e−2πi(2s/3) + ν̂3

(
s

3
,
t

3

)
e−2πi(2t/3)

)
=

1

3

(
1 + e−2πi(2s/3) + e−2πi(2t/3)

)
ν̂3

(
s

3
,
t

3

)
By induction:

ν̂3(s/3n, t/3n) =

∫
e−2πi(s/3nx+t/3ny) dν3(x, y)

=
1

3

(∫
e−2πi(s/3n(x/3)+t/3n(y/3)) dν3(x, y) +

∫
e−2πi(s/3n(x+2)/3+t/3ny/3) ν3(x, y)

+

∫
e−2πi(s/3nx/3+t/3n(y+2/3)) ν3(x, y)

)
=

1

3

(∫
e−2πi((s/3n+1)x+(t/3n+1)y) dν3(x, y) +

∫
e−2πi((s/3n+1)x+(t/3n+1)y)e−2πi2s/3n+1

ν3(x, y)+∫
e−2πi((s/3n+1)x+(t/3n+1)y)e−2πi2t/3n+1

ν3(x, y)

)
=

1

3

(
ν̂3

(
s

3n+1
,

t

3n+1

)
+ ν̂3

(
s

3n+1
,

t

3n+1

)
e−2πi(2s/3n+1) + ν̂3

(
s

3n+1
,

t

3n+1

)
e−2πi(2t/3n+1)

)
=

1

3

(
1 + e−2πi(2s/3n+1) + e−2πi(2t/3n+1)

)
ν̂3

(
s

3n+1
,

t

3n+1

)
It remains to show that the product

∏∞
j=1

1
3

(
1 + e−2πi(2s/3j) + e−2πi(2t/3j)

)
converges for

all (s, t) ∈ R2.

The product
∞∏
j=1

1

3

(
1 + e−2πi(2s/3j) + e−2πi(2t/3j)

)
converges if

∞∑
j=1

∣∣∣∣13 (1 + e−2πi(2s/3j) + e−2πi(2t/3j)
)
− 1

∣∣∣∣ <∞,
by Corollary 8.1.8 in (14).
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We compute:∣∣∣∣13(1+e−2πi(2s/3j) + e−2πi(2t/3j))− 1

∣∣∣∣ =

∣∣∣∣13 +
1

3
e−2πi(2s/3j) +

1

3
e−2πi(2t/3j) − 1

∣∣∣∣
=

∣∣∣∣∣e−2πi(2s/3j) − 1

3
+
e−2πi(2t/3j) − 1

3

∣∣∣∣∣
≤ 1

3

∣∣∣e−2πi(2s/3j) − 1
∣∣∣+

1

3

∣∣∣e−2πi(2t/3j) − 1
∣∣∣

=
1

3

∣∣cos
(
2π(2s/3j)

)
− 1 + i sin

(
2π(2s/3j)

)∣∣+
1

3

∣∣cos
(
2π(2t/3j)

)
− 1 + i sin

(
2π(2t/3j)

)∣∣
≤ 1

3

∣∣cos
(
2π(2s/3j)

)
− 1
∣∣+

1

3

∣∣sin (2π(2s/3j)
)∣∣+

1

3

∣∣cos
(
2π(2t/3j)

)
− 1
∣∣+

1

3

∣∣sin (2π(2t/3j)
)∣∣

Now let f(x) = cos(4π(x)), so that cos
(
2π(2s/3j)

)
− 1 = f(s/3j)− f(0/3j). By the Mean

Value Theorem, |f(s/3j) − f(0/3j)| = |f ′(xs)(s/3j − 0/3j)|, for some xs ∈ (0, s/3j). Since

f ′(x) = −4π sin(4πx), |f ′(x)| ≤ 4π, and therefore, |f(s/3j) − f(0/3j)| ≤ |4π(s/3j − 0/3j)| =

4π|s|
3j

.

By the exact same argument,
∣∣cos

(
2π(2t/3j)

)
− 1
∣∣ ≤ 4π|t|

3j
.

We proceed similarly for the sines. Let g(x) = sin(4π(x)), so that sin
(
2π(2s/3j)

)
=

g(s/3j)− g(0/3j). By the Mean Value Theorem, |g(s/3j)− g(0/3j)| = |g′(xs)(s/3j − 0/3j)|, for

some xs ∈ (0, s/3j). Since g′(x) = 4π cos(4πx), |g′(x)| ≤ 4π, and therefore, |g(s/3j)−g(0/3j)| ≤

|4π(s/3j − 0/3j)| = 4π|s|
3j

. By the exact same argument,
∣∣sin (2π(2t/3j)

)
− 1
∣∣ ≤ 4π|t|

3j
.

Therefore:

∞∑
j=1

∣∣∣∣13 (1 + e−2πi(2s/3j) + e−2πi(2t/3j)
)
− 1

∣∣∣∣
≤
∞∑
j=1

(
1

3

∣∣cos
(
2π(2s/3j)

)
− 1
∣∣+

1

3

∣∣sin (2π(2s/3j)
)∣∣+

1

3

∣∣cos
(
2π(2t/3j)

)
− 1
∣∣+

1

3

∣∣sin (2π(2t/3j)
)∣∣)

≤
∞∑
j=1

(
1

3

4π|s|
3j

+
1

3

4π|s|
3j

+
1

3

4π|t|
3j

+
1

3

4π|t|
3j

)
<∞

Claim 4.3.14. hX(s, t) 6= 0 for (s, t) = (−1
2 ,−1).

Proof. It is sufficient to show ν̂3(u− (−1
2), u/2− (−1)) 6= 0 for at least one u ∈ Z.
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Let u = 1:

ν̂3

(
1−

(
−1

2

)
, 1/2− (−1)

)
= ν̂3

(
3

2
,
3

2

)
=
∞∏
j=1

1

3

(
1 + e−2πi(3/3j) + e−2πi(3/3j)

)
=
∞∏
j=1

1

3

(
1 + 2e−2πi(3/3j)

)

This cannot have any term equal to zero because of the factor of 2. Therefore, ν̂3(1 −

(−1
2), 1/2− (−1)) 6= 0 and hX(−1

2 ,−1) 6= 0.

Claim 4.3.15. The only values (s, t) ∈ R2 with m0(s, t) = 0 are(
1 +

3k

2
,
1

2
+

3`

2

)
or

(
1

2
+

3k

2
, 1 +

3`

2

)
for k, ` ∈ Z.

Proof. Recall m0(s, t) = 1
3

(
1 + e2πi 2s

3 + e2πi 2t
3

)
.

Suppose m0(s, t) = 0 for some (s, t). Then 1 + e2πi 2s
3 + e2πi 2t

3 = 0.

We rewrite this equation in rectangular coordinates. Let e2πi 2s
3 = x + iy, e2πi 2t

3 = u + iv

for x, y, u, v ∈ R. Then we have

x2 + y2 = u2 + v2 = 1 (4.43)

and

1 + x+ iy + u+ iv = 0. (4.44)

Rewrite (4.44) as the two real equations:

1 + x+ u = 0 (4.45)

y + v = 0. (4.46)
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Use (4.45) and (4.46) to rewrite x and y in terms of u and v, then substitute into (4.43) to get:

(−u− 1)2 + (−v)2 = 1 or u2 + 2u+ 1 + v2 = 1 Using (4.43) to write v2 = 1− u2 we get:

u2 + 2u+ 1 + 1− u2 = 1 ⇐⇒ 2u+ 2 = 1 ⇐⇒ u = −1

2
. (4.47)

Then

v2 = 1− u2 = 1− 1

4
⇐⇒ v = ±

√
3

2
(4.48)

y = −v = ∓
√

3

2
(4.49)

x = −u− 1 = −(−1/2)− 1 = −1/2. (4.50)

Therefore we have:

x+ iy = −1

2
+ i

√
3

2
and u+ iv = −1

2
− i
√

3

2
(4.51)

x+ iy = −1

2
− i
√

3

2
and u+ iv = −1

2
+ i

√
3

2
. (4.52)

Translating back into polar form, we have either:

e2πi 2s
3 = e2πi/3+k2πi and e2πi 2t

3 = e4πi/3+`2πi, for some k, l ∈ Z, (4.53)

which gives 4πis/3 = 2πi/3+k2πi or s = 1/2+3/2k and 4πit/3 = 4πi/3+`2πi or t = 1+3/2`;

or

e2πi 2s
3 = e4πi/3+k2πi and e2πi 2t

3 = e2πi/3+k2πi, (4.54)

which gives 4πis/3 = 4πi/3 + k2πi and 4πit/3 = 2πi/3 + `2πi or: s = 1 + 3/2k and or

t = 1/2 + 3/2`.

4.3.3 Argument by rectangles

We will show that hX(s, t) ≡ 1 by first proving the result on rectangles of the form: Ra,b =

[−a, a]× [−b, 0]. By extending our results to bigger and bigger rectangles, we show the result

holds true for all of {(s, t) ∈ R2 : t ≤ 0}.
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Lemma 4.3.16. For any a ≥ 2, b ≥ 1, and for all j = 0, 1, 2:

gj(Ra,b) ⊆ Ra/3+4/3,b/3+2/3 ⊆ Ra,b. (4.55)

Proof. Case 0: g0(Ra,b) = [−a/3, a/3]× [−b/3, 0] = Ra/3,b/3.

Case 1: g1(Ra,b) = [−a/3− 2/3, a/3− 2/3]× [−b/3− 1/3,−1/3] = Ra/3+2/3,b/3+1/3.

Case 2: g2(Ra,b) = [−a/3− 4/3, a/3− 4/3]× [−b/3− 2/3,−2/3] = Ra/3+4/3,b/3+2/3.

For a ≥ 2, b ≥ 1, Ra/3+4/3,b/3+2/3 ⊆ Ra,b: a/3 + 4/3 ≤ a ⇐⇒ a + 4 ≤ 3a ⇐⇒ 4 ≤

2a ⇐⇒ 2 ≤ a; b/3 + 2/3 ≤ b ⇐⇒ b+ 2 ≤ 3b ⇐⇒ 2 ≤ 2b ⇐⇒ 1 ≤ b.

Lemma 4.3.17. hX ≡ 1 on R = R9/4,3/2, where Ra,b = [−a, a]× [−b, 0] for some a ≥ 2, b ≥ 1.

We know that hX is continuous, 0 ≤ hX(s, t) ≤ 1 for all (s, t) ∈ R2, hX(c, d) = 1 for all

(c, d) such that e2πi(cx+dy) ∈ spanE , and:

hX(s, t) =
2∑
i=0

|mi(s, t)|2hX(gi(s, t)). (4.56)

Let β = min{hX(s, t) : (s, t) ∈ R. Then h1 = hX − β also satisfies (4.56), h1 is continuous

and for some (s0, t0) ∈ R, h1(s0, t0) = 0, while h1(s, t) ≥ 0 for all (s, t) ∈ R.

Claim 4.3.18. h1(2b, b) 6= 0 for b = 0,−1/2,−1, unless hX ≡ 1 on R.

Proof. Since hX(2b, b) = 1 for b = 0,−1/2,−1, h1(2b, b) = hX(2b, b) − β = 0 iff β = 1. But

0 ≤ hX(s, t) ≤ 1 for all (s, t) ∈ R2, and β is defined as the minimum value of hX on R. If the

minimum value is also the maximum value, hX(s, t) ≡ 1 on all of R.

Now take (s0, t0) ∈ R with h1(s0, t0) = 0.

Then: h1(s0, t0) =
∑2

j=0 |mj(s0, t0)|2h1(gj(s0, t0)) = 0.

Since |mj(s0, t0)|2 ≥ 0 and h1(gj(s0, t0)) ≥ 0, h1(s0, t0) = 0 if and only if |mj(s0, t0)|2h1(gj(s0, t0)) =

0 for j = 0, j = 1, and j = 2.

In particular, we must have |m0(s0, t0)|2h1(g0(s0, t0)) = 0.

If |m0(s0, t0)| = 0, we have from Claim 4.3.15 that:

(s0, t0) = (1 + 3k
2 ,

1
2 + 3`

2 ) or (s0, t0) = (1
2 + 3k

2 , 1 + 3`
2 ), for k, ` ∈ Z.
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The only possibilities that give (s0, t0) ∈ R are (−2,−1), (−1/2,−1), (1,−1), (−1,−1/2), (1/2,−1/2),

(2,−1/2)

From Claim 4.3.18, h1(−1,−1/2) 6= 0 and h1(−2,−1) 6= 0 (or we’re done).

Claim 4.3.19. If h1(s0, t0) = 0 for any (s0, t0) ∈ {(−1/2,−1), (1/2,−1/2), (2,−1/2), (1,−1)},

then h1(s, t) = 0 for some other point (s, t) ∈ R with m0(s, t) 6= 0. Therefore, h1(s, t) = 0 for

some (s, t) with m0(s, t) 6= 0.

Proof. By cases.

m2(−1/2,−1) = 1 6= 0. Since m2(−1/2,−1) 6= 0, we can say h1(g2(−1/2,−1)) = 0.

g2(−1/2,−1) = (−3/2,−1); so if h1(−1/2,−1) = 0, so does h1(−3/2,−1), and m0(−3/2,−1) 6=

0.

m1(1/2,−1/2) = 1, therefore, if h1(1/2,−1/2) = 0, then h1(g1(1/2,−1/2)) = 0. g1(1/2,−1/2) =

(−1/2,−1/2), and m0(−1/2,−1/2) 6= 0.

m1(2,−1/2) = 1, therefore, if h1(2,−1/2) = 0, then h1(g1(2,−1/2)) = 0. g1(2,−1/2) =

(−2/3,−5/6), and m0(−2/3,−5/6) 6= 0.

m2(1,−1) = 1, therefore, if h1(1,−1) = 0, then h1(g2(1,−1)) = 0. g2(1,−1) = (−1, 1), and

m0(−1, 1) 6= 0.

Proof of 4.3.17. Now let (s0, t0) ∈ R with h1(s0, t0) = 0, and m0(s, t) 6= 0.

Consider g0(s0, t0) =
(
s0
3 ,

t0
3

)
. Since (s0, t0) ∈ R, g0(s0, t0) ∈ R3/4,1/2.

Let (s1, t1) = g0(s0, t0). Since (s1, t1) ∈ R3/4,1/2, then either m0(s1, t1) 6= 0 or (s1, t1) =

(1/2,−1/2). If h1(1/2,−1/2) = 0, then h1(−1/2,−1/2) = 0, as above; (−1/2,−1/2) ∈ R3/4,1/2

as well, so let (s1, t1) = (−1/2,−1/2) instead. So we again have h1(s1, t1) = 0 and m0(s1, t1) 6=

0; therefore h1(g0(s1, t1)) = 0.

Let (s2, t2) = g0(s1, t1). Since (s1, t1) ∈ R3/4,1/2, (s2, t2) ∈ R1/4,1/6. Since (s2, t2) ∈

R1/4,1/6, we have to have m0(s2, t2) 6= 0; there are no zeros of m0 inside R1/4,1/6. Therefore,

h1(g0(s2, t2)) = 0.

Repeat the argument above to construct (sn, tn) = g0(sn−1, tn−1) for all n ∈ N. Beyond

n = 1, we cannot have m0(sn, tn) = 0, so we always have h1(sn, tn) = 0 ⇒ h1(g0(sn, tn)) = 0.
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h1(sn, tn) = 0 and (sn, tn) ∈ [−2/3n, 0]× [0,−1/3n].

Therefore, {(sn, tn)}∞n=0 with (sn, tn) ∈ [−32−n/4, 32−n/4]× [−31−n/2, 31−n/2] is a sequence

that converges to (0, 0) with h1(sn, tn) = 0 for all n. But h1 is continuous, therefore, h1(0, 0) = 0

and, by Claim 4.3.18, hX(s, t) ≡ 1 on R.

4.3.4 Aside: a note on the zeros of m0

Claim 4.3.20. For k, ` ∈ Z, m1(s, t) = 1 for (s, t) =
(

1
2 + 3k

2 , 1 + 3`
2

)
and m2(s, t) = 1 for

(s, t) =
(
1 + 3k

2 ,
1
2 + 3`

2

)
.

Proof. m1(s, t) = 1
3

(
1 + e−2πi(4−2s)/3 + e−2πi(2−2t)/3

)
= 1 iff e−2πi(4−2s)/3 = 1 and e−2πi(2−2t)/3 =

1 iff 4−2s
3 ∈ Z and 2−2t

3 ∈ Z. Let 4−2s
3 = k ∈ Z and 2−2t

3 = ` ∈ Z, then s = 2− 3k
2 and t = 1− 3`

2 .

With a slightly different choices of integers k, `, s = 1
2 + 3k

2 and t = 1− 3`
2 , as above.

m2(s, t) = 1
3

(
1 + e−2πi(8−2s)/3 + e−2πi(4−2t)/3

)
= 1 iff e−2πi(8−2s)/3 = 1 and e−2πi(4−2t)/3 = 1

iff 8−2s
3 ∈ Z and 4−2t

3 ∈ Z. Let 8−2s
3 = k ∈ Z and 4−2t

3 = ` ∈ Z, then s = 1− 3k
2 and t = 1

2 −
3`
2 .

With a slightly different choices of integers k, `, s = 1 + 3k
2 and t = 1

2 + 3`
2 , as above.

Corollary 4.3.21. All zeros (s, t) of m0 have either m1(s, t) = 0 and m2(s, t) = 1 or vice versa.

4.3.5 Bigger rectangles

Claim 4.3.22. If hX ≡ 1 on Ra,b, for a ≥ 2, b ≥ 1, then hX ≡ 1 on R3a−4,3b−2.

Proof. As noted above, for a ≥ 2, b ≥ 1, j ∈ {0, 1, 2}, gj(Ra,b) ⊆ Ra/3+4/3,b/3+2/3 ⊆ Ra,b.

Inverting these relationships, we get that gj(R3a−4,3b−2) ⊆ Ra,b for a ≥ 2, b ≥ 1.

Let (s, t) ∈ R3a−4,3b−2. Then hX(s, t) =
∑2

j=0 |mj(s, t)|2hX(gj(s, t)), and gj(s, t) ∈ Ra,b.

Then by assumption, hX(gj(s, t)) = 1 for all j, and hX(s, t) =
∑2

j=0 |mj(s, t)|2 = 1.

Corollary 4.3.23. Since hX ≡ 1 on R9/4,3/2, hX ≡ 1 on {(s, t) : t ≤ 0}.

Proof. For a > 2 and a > 1, R3a−4,3b−2 ) Ra,b. Moreover, f(a) = 3a−4, limn→∞ f
n(9/4) =∞,

and for g(b) = 3b − 3, limn→∞ g
n(3/2) = ∞. Therefore, by applying Claim 4.3.22 repeatedly

to R9/4,3/2, hX ≡ 1 on R∞,∞ = {(s, t) : t ≤ 0}.
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Claim 4.3.24. hX(s, t) = hX(−s,−t).

Proof.

hX(s, t) =
∑
u∈Z

∣∣〈es,t, eu,u/2〉∣∣2
=
∑
u∈Z

∣∣∣∣∫ e2πi(sx+ty)e−2πi(ux+uy/2) dν3

∣∣∣∣2
=
∑
u∈Z

∣∣∣∣∫ e2πi(sx+ty)−(ux+uy/2) dν3

∣∣∣∣2
=
∑
u∈Z

∣∣∣∣∫ e2πi(−(sx+ty)+(ux+uy/2)) dν3

∣∣∣∣2
=
∑
u∈Z

∣∣∣∣∫ e2πi(−sx−ty)e−2πi(−ux−uy/2)) dν3

∣∣∣∣2
=
∑
u∈Z

∣∣∣〈e−s,−t, e−u,−u/2〉∣∣∣2
=
∑
u∈Z

∣∣〈e−s,−t, e−u,−u/2〉∣∣2 let v = −u

=
∑
v∈Z

∣∣〈e−s,−t, ev,v/2〉∣∣2
= hX(−s,−t)

Corollary 4.3.25. hX(s, t) = 1 for all (s, t) ∈ R2.

Corollary 4.3.26. E = {et,t/2 | t ∈ Z} is an orthonormal basis for L2(ν3).

4.4 A Second Spectrum

We construct a second spectrum for S by choosing a different set of vectors L.

For the fractal S = XB, B = {(0, 0), (2, 0), (0, 2)}, and additionally

WB(x, y) =
1

9

∣∣1 + e4πix + e4πiy
∣∣2 (4.57)

=
1

9
(3 + 2 cos (4πx) + 2 cos (4πy) + 2 cos (4π (x− y))) . (4.58)
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Therefore, WB(x, y) = 1 if and only if e4πix = e4πiy = 1, that is, when (x, y) ∈ Z/2× Z/2.

These computations are independent of the choice of L.

Now, we let L = {(0, 0), (1, 2), (2, 1)}.

Note that the matrix M1 =
(
e2πiR−1b·l

)
b∈B,l∈L

is Hadamard:

M1 =


1 1 1

1 e2πi(2/3) e2πi(4/3)

1 e2πi(2/3) e2πi(2/3)

 . (4.59)

Proposition 4.4.1. For L = {(0, 0), (1, 2), (2, 1)}, and XL as in Definition 2.2.7, XL =

{
∑∞

j=1(xj , yj)3
−j | xj , yj ∈ {0, 1, 2} and xj + yj ≡ 0 mod 3 ∀j ∈ N}.

Proof. Let:

λ0(x, y) =
1

3
(x, y)

λ1(x, y) =
1

3
(x, y) + (1/3, 2/3)

λ2(x, y) =
1

3
(x, y) + (2/3, 1/3)

so that λ0 = τ(0,0), λ1 = τ(1,2), and λ1 = τ(2,1) in the notation of Definition 2.2.7.

Let A = {
∑∞

j=1(xj , yj)3
−j | xj , yj ∈ {0, 1, 2} and xj + yj ≡ 0 mod 3 ∀j ∈ N}. We need to

show that that A is invariant under λ0, λ1, and λ2, and that A is compact.

Show first that λj(A) ⊆ A for all j.

Claim 4.4.2. λ0(A) ⊆ A.

Proof. Let λ0(x, y) := (x̃, ỹ). Then λ0

(∑∞
j=1(xj , yj)3

−j
)

:=
∑∞

j=1(x̃j , ỹj)3
−j =

∑∞
j=1(xj , yj)3

−j−1.

Note that for j = 1, x̃1 = ỹ1 = 0, so x̃1 + ỹ1 = 0 mod 3; and for j ≥ 2, x̃j = xj+1 and

ỹj = yj+1; therefore x̃j + ỹj = 0 mod 3.

Therefore, λ1(x, y) ∈ A.

Claim 4.4.3. λ1(A) ⊆ A.

Proof. Let λ1(x, y) := (x̃, ỹ). Then λ1

(∑∞
j=1(xj , yj)

)
:=

∑∞
j=1(x̃j , ỹj)3

−j = (1, 2)3−1 +∑∞
j=1(xj , yj)3

−j−1.
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Note that for j = 1, x̃1 = 1, ỹ1 = 2, so x̃1 + ỹ1 = 0 mod 3; and for j ≥ 2, x̃j = xj+1 and

ỹj = yj+1; therefore x̃j + ỹj = 0 mod 3.

Claim 4.4.4. λ2(A) ⊆ A.

Proof. Let λ2(x, y) := (x̃, ỹ). Then λ2 (
∑

(xj , yj)) :=
∑∞

j=1(x̃j , ỹj)3
−j = (2, 1)3−1+

∑∞
j=1(xj , yj)3

−j−1.

Note that for j = 1, x̃1 = 2, ỹ1 = 1, so x̃1 + ỹ1 = 0 mod 3; for j ≥ 2, x̃j = xj+1 and

ỹj = yj+1, so x̃j + ỹj = 0 mod 3.

Now we show that A ⊆ λ0(A) ∪ λ1(A) ∪ λ2(A).

Again, let (x, y) =
∑∞

j=1(xj , yj)3
−j .

Let (x̂, ŷ) =
∑∞

j=2(xj , yj)3
−j+1. Notice that x̂j = x−j−1, ŷj = y−j−1, so (x̂, ŷ) ∈ A.

Claim 4.4.5. λk(x̂, ŷ) = (x, y) for some k ∈ {0, 1, 2}.

Proof. Case 1: x1 = 0. Then, since x1 + y1 = 0 mod 3, we must have y1 = 0 as well.

We claim that λ0(x̂, ŷ) = (x, y):

λ0

(∑∞
j=2(xj , yj)3

−j+1
)

=
∑∞

j=2(xj , yj)3
−j = (x, y), since x1 = y1 = 0.

Case 2: x1 = 1. Then, since x1 + y1 = 0 mod 3, we must have y1 = 2.

We claim that λ1(x̂, ŷ) = (x, y):

λ1

(∑∞
j=2(xj , yj)3

−j+1
)

= (1, 2)3−1 +
∑∞

j=2(xj , yj)3
−j = (x, y), since x1 = 1 and y1 = 2.

Case 3: x1 = 2. Then, since x1 + y1 = 0 mod 3, we must have y1 = 1.

We claim that λ2(x̂, ŷ) = (x, y):

λ2

(∑∞
j=2(xj , yj)3

−j+1
)

= (2, 1)3−1 +
∑∞

j=2(xj , yj)3
−j = (x, y), since x1 = 2 and y1 = 1.

By double containment, A =
⋃2
j=0 λj(A). Therefore, A = XL if A is compact.

Claim 4.4.6. A = {
∑∞

j=1(xj , yj)3
−j | xj , yj ∈ {0, 1, 2}, xj + yj = 0 mod 3} is compact.

Proof. Clearly, A is bounded because A ⊂ [0, 1]× [0, 1]. We need only show that A is closed.

Let An = {
∑∞

j=1(xj , yj)3
−j | xj , yj ∈ {0, 1, 2}, xn + yn = 0 mod 3}.

Since there are only three possibilities for (xn, yn), An is the union of three subsets: An,0 =

{(x, y) | xn = yn = 0}, A1,1 = {(x, y) | xn = 1, yn = 2}, An,2 = {(x, y) | xn = 2, yn = 1}.
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Let f : R2 → R2, f(x, y) = 1
3n (x, y). Since f is continuous and f([0, 1]× [0, 1]) = An,0, then

An,0 is closed.

Let g : R2 → R2, g(x, y) = (x, y) + (1/3n, 2/3n). Since g is continuous and f(An,0) = An,1,

then An,1 is closed.

Let h : R2 → R2, h(x, y) = (x, y) + (2/3n, 1/3n). Since h is continuous and h(An,0) = An,2,

then An,2 is closed.

Then since An = An,0 ∪ An,1 ∪ An,2, An is itself closed.

Since this holds for all n, A =
⋂∞
n=1An is closed.

To find WB-cycles on XL, first we find which of the points in the lattice 1
2Z×

1
2Z are also

in XL. We check the possible points. We note that (x, y) ∈ XL if and only if (y, x) ∈ XL, so

we need only check:

(0, 0) = (0.03, 0.03) ∈ XL.

(0, 1/2) = (0.03, 0.13) /∈ XL, therefore also (1/2, 0) /∈ XL.

(0, 1) = (0.03, 0.23) /∈ XL, therefore also (1, 0) /∈ XL.

(1/2, 1/2) = (0.13, 0.13) /∈ XL.

(1/2, 1) = (0.13, 0.23) ∈ XL, therefore also (1, 1/2) ∈ XL.

(1, 1) = (0.23, 0.23) /∈ XL.

So the only three points in
(

1
2Z×

1
2Z
)
∩XL are (0, 0), (1, 1/2), (1/2, 1).

All of these are cycles, in fact, they are fixed points:

λ0(0, 0) = (0, 0) (4.60)

λ1(1/2, 1) =
1

3
(1/2, 1) + (1/3, 2/3) = (1/2, 1) (4.61)

λ2(1, 1/2) =
1

3
(1, 1/2) + (2/3, 1/3) = (1, 1/2). (4.62)

Therefore, the WB-cycles are exactly (0, 0), (1, 1/2) and (1/2, 1).

Therefore, by Theorem 2.2.13, we construct the frequencies for an orthonormal basis by

applying ρj(x, y) = 3(x, y) + lj , lj ∈ L, to (0, 0), (−1,−1/2) and (−1/2,−1).
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Figure 4.4 Plot of r5(0, 0) ∪ r5(−1/2,−1) ∪ r5(−1,−1/2).

4.4.1 Frequencies

Let:

ρ0(x, y) = 3(x, y) (4.63)

ρ1(x, y) = 3(x, y) + (1, 2) (4.64)

ρ2(x, y) = 3(x, y) + (2, 1). (4.65)

Let r1(s, t) = {ρ0(s, t), ρ1(s, t), ρ2(s, t)}, then for n ≥ 2, rn(s, t) = ρ0(rn−1(s, t))∪ρ1(rn−1(s, t))∪

ρ2(rn−1(s, t)).

Then let R(s, t) =
⋃
n∈N rn(s, t).

Theorem 4.4.7. For x ∈ N, define dj(x) = lj where x =
∑n

j=0 lj3
j, lj = 0, 1, 2 for all j.

Then for any (x, y) ∈ Z2, x, y > 0, (x, y) ∈ R(0, 0), if and only if dj(x) + dj(y) ≡ 0 mod 3 for

j = 0, . . . , n .
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Proof. “⇒”

Let (x, y) ∈ R(0, 0).

Claim 4.4.8. dj(x) + dj(y) ≡ 0 mod 3.

Proof. By induction. Base case: in r1(0, 0), (x, y) = (1, 2) or (x, y) = (2, 1). d0(1) = 1,

dj(1) = 0 for j > 0. d0(2) = 2, dj(2) = 0 for j > 0. For j = 0, 1 + 2 ≡ 0 mod 3, and for j > 0,

0 + 0 ≡ 0 mod 3. So the base case holds.

Inductive step: Let (x, y) ∈ rn(0, 0). Then (x, y) = ρi(x
′, y′) for some i = 0, 1, 2 and

(x′, y′) ∈ rn−1(0, 0).

Case 1: (x, y) = ρ0(x′, y′) = 3(x′, y′). By the inductive hypothesis, dj(x
′)+dj(y

′) = 0 for all

j. Since (x, y) = 3(x′, y′), for j > 0, dj(x) = dj−1(x′), dj(y) = dj−1(y′), and d0(x) = d0(y) = 0.

In either case, dj(x) + dj(y) ≡ 0 mod 3.

Case 1: (x, y) = ρ1(x′, y′) = 3(x′, y′)+(1, 2). By the inductive hypothesis, dj(x
′)+dj(y

′) = 0

for all j. Since (x, y) = 3(x′, y′) + (1, 2), for j > 0, dj(x) = dj−1(x′), dj(y) = dj−1(y′), and for

j = 0, d0(x) = 1 and d0(y) = 2. In either case, dj(x) + dj(y) ≡ 0 mod 3.

Case 3: (x, y) = ρ1(x′, y′) = 3(x′, y′)+(2, 1). By the inductive hypothesis, dj(x
′)+dj(y

′) = 0

for all j. Since (x, y) = 3(x′, y′) + (1, 2), for j > 0, dj(x) = dj−1(x′), dj(y) = dj−1(y′), and for

j = 0, d0(x) = 2 and d0(y) = 1. In either case, dj(x) + dj(y) ≡ 0 mod 3.

“⇐”

Let (x, y) ∈ Z2 and dj(x) + dj(y) ≡ 0 mod 3 for j = 0, . . . , n.

Claim 4.4.9. 3n ≤ x, y < 3n+1 for some n ∈ Z, n ≥ 0; or (x, y) = (0, 0).

Proof. We can write x =
∑∞

j=0 dj(x)3j and y =
∑∞

j=0 dj(y)3j . There must be some n ≥ 0 for

which dj(x) = 0 for all j > n, that is, x =
∑n

j=0 dj(x)3j . By assumption, dj(x) + dj(y) = 0

mod 3, therefore, dj(x) = 0 requires that dj(y) = 0. So we can write y =
∑n

j=0 dj(y)3j as well.

Therefore, if x = 0 =
∑∞

j=0 03j , then y = 0 =
∑∞

j=0 03j , and (x, y) = (0, 0).

If x 6= 0, there is some k ≥ 0 where dn(k) 6= 0. Therefore, we can choose n = min{n ≥

0 | dj(x) = 0∀j > n}, and it then follows that 3n ≤ x, y ≤ 3n+1.

Claim 4.4.10. (0, 0) ∈ R(0, 0).
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Proof. ρ0(0, 0) = 3(0, 0) = (0, 0).

Claim 4.4.11. Let (x, y) 6= (0, 0) and (x, y) =
∑n

j=0(dj(x), dj(y))3j, with dj(x) + dj(y) = 0

mod 3. Then,

(x, y) = ρd0(x) ◦ ρd1(x) · · · ◦ ρdn−1(x) ◦ ρdn(x)(0, 0).

Proof. By induction.

Base case: for 30 ≤ x, y < 31 we have that dj(x) = 0 for j ≥ 1 and d0(x) = 1 or d0(x) = 2.

If d0(x) = 1, d0(y) = 2, so we want to show that (x, y) = ρ1(0, 0) = (1, 2); and in fact,

ρ1(0, 0) = (1, 2). If d0(x) = 2, then d0(y) = 1, so we want to show that (x, y) = ρ2(0, 0) = (2, 1);

and in fact, ρ2(0, 0) = (2, 1).

Inductive step: suppose 3n ≤ x, y < 3n+1. We want to show that (x, y) = ρ0 ◦ ρ1 · · · ◦

ρn−1 ◦ ρn(0, 0). Let x′ =
x− d0(x)

3
and y′ =

y − d0(y)

3
. By construction, x′, y′ are integers

with 3n−1 ≤ x′, y′ < 3n, and dj(x
′) = dj+1(x) for j = 0, . . . , n − 1, similarly dj(y

′) = dj+1(y)

for j = 0, . . . , n − 1. Then we have dj(x
′) + dj(y

′) = 0 mod 3 for j = 0, . . . , n − 1 so by the

inductive hypothesis, (x, y) = ρd0(x′) ◦ρd1(x′) · · · ◦ρdn−1(x′)(0, 0) = ρd1(x) ◦ρd2(x) · · · ◦ρdn(x)(0, 0).

So we need only show that (x, y) = ρd0(x)(x
′, y′).

Case 0: d0(x) = d0(y) = 0. Then (x′, y′) = (x3 ,
y
3 ) and ρ0(x′, y′) = 3(x3 ,

y
3 ) = (x, y).

Case 1: d0(x) = 1, d0(y) = 2. Then (x′, y′) = (x−1
3 , y−2

3 ) and ρ0(x′, y′) = 3(x−1
3 , y−2

3 ) +

(1, 2) = (x, y).

Case 2: d0(x) = 2, d0(y) = 1. Then (x′, y′) = (x−2
3 , y−1

3 ) and ρ0(x′, y′) = 3(x−1
3 , y−2

3 ) +

(2, 1) = (x, y).

Corollary 4.4.12. For any x ∈ Z, x ≥ 0, there is exactly one y ∈ Z, y ≥ 0, with (x, y) ∈

R(0, 0).

Theorem 4.4.13. A pair (x, y) ∈ Z2 is in R(−1,−1/2) if and only if (x, y) + 3n(−1,−1/2) ∈

R(0, 0) for some n ∈ N.

Similarly, a pair (x, y) ∈ R(−1/2,−1) if and only if (x, y) + 3n(−1/2,−1) ∈ R(0, 0) for

some n ∈ N.
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Proof. (⇒)

Write j = j0 +3j1 + · · ·+3N−1jN−1 with j1, . . . jn−1 all equal to 0, 1, or 2, jN−1 6= 0. Then:

Rj,N = ρj0 ◦ ρj1 ◦ . . . ρjN−1

Therefore, if (x, y) ∈ R(−1,−1/2), then (x, y) = Rj,N (−1,−1/2) for some j, n = N .

Lemma 4.4.14. For any x, y ∈ R2, Rj,N (x+ y) = Rj,N (x) + 3Ny

Proof. Prove by induction. Base case: For N = 1, Rj,1 = ρj .

• ρ0(x+ y) = 3x+ 3y.

• ρ1(x+ y) = 3(x+ y) + (1, 2) = ρ1(x) + 3y.

• ρ2(x+ y) = 3(x+ y) + (2, 1) = ρ2(x) + 3y.

Let Rj′,N−1 = ρj1 ◦ · · · ◦ ρjN−1 be the composition of N − 1 ρk’s with the property that

ρj0 ◦Rj′,N−1 = Rj,N .

Assume true for n < N . Then:

Rj,N (x+ y) = ρj0 ◦ ρj1 ◦ · · · ◦ ρjN−1 (x+ y)

= ρj0
(
Rj′,N−1 (x+ y)

)
= ρj0

(
Rj′,N−1(x) + 3N−1y

)
= ρj0(Rj′,N−1(x)) + 3(3N−1y)

= Rj,Nx+ 3Ny

Therefore, Rj,N ((0, 0) + (−1,−1/2)) = Rj,n(0, 0) + 3N (−1,−1/2). Similarly, Rj,n((0, 0) +

(−1/2,−1)) = Rj,N (0, 0) + 3N (−1/2,−1).

(⇐)

Suppose (x, y) + 3n(−1,−1/2) ∈ R(0, 0). Then there is some j,N with Rj,N (0, 0) =

(x, y) + 3N (−1,−1/2). Since (0, 0) = (−1,−1/2) − (−1,−1/2), Rj,N (−1,−1/2) = Rj(0, 0) −

3N (−1,−1/2) = (x, y). Again, the proof works exactly the same way for R(−1/2,−1).
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Theorem 4.4.15 (The Second spectrum). R(0, 0)∪R(−1,−1/2)∪R(−1/2,−1) is a spectrum

for S.

Proof. This follows from Theorem 2.2.13. As in Section 4.2, we have already checked that

{R−1B,L} form a Hadamard pair. By construction, 0 ∈ B, 0 ∈ L, and it is easy to see that

Rnb · l ∈ Z for all b ∈ B, l ∈ L, n ≥ 0.

By construction Λ = R(0, 0)∪R(−1,−1/2)∪R(−1/2,−1) is the smallest set that contains

−C for all WB-cycles C, and such that SΛ + L ∈ Λ, so it satisfies the hypotheses of Theorem

2.2.13.

By Proposition 4.4.1, XL = {
∑∞

j=1(xj , yj)3
−j | xj + yj ≡ 0 mod 3 ∀j ∈ N}.

Recall that WB(x, y) = 1
9

∣∣1 + e4πix + e4πiy
∣∣2, so that WB(x, y) = 0 if and only if 1+e4πix+

e4πiy = 0, that is, when (x, y) ∈ (1/3 + Z/2, 1/6 + Z/2) ∪ (1/6 + Z/2, 1/3 + Z/2).

To satisfy the Transversality of the Zeros condition (Definition 2.2.12), we need to show:

(a) If (x, y) ∈ XL is not a cycle, then there exists kx ≥ 0 such that, for k ≥ kx, {τl1◦τl2◦· · ·◦τlkx :

l1, . . . ln ∈ L} does not contain any zeros of W ;

(b) If {x0, x1, . . . , xp} are on a cycle with x1 = τl(x0) for some l ∈ L, then for every y = τl′(x0),

y 6= x1 is either not on a cycle or W (y) = 0.

Lemma 4.4.16. (x, y) ∈ XL is on a cycle if and only if x = k/(3n− 1) and y = l/(3n− 1) for

some integers k, l and n ∈ N.

Proof. By definition, (x, y) is on a cycle if and only if (x, y) = rn(x, y) for some n ∈ N , where

r = 3(x, y) mod 1 is the common right inverse of λ0, λ1, λ2.

Therefore, rn(x, y) = 3n(x, y) mod 1.

The situation is less complicated than for the previous spectrum because there are no

overlap points between the ranges of λ0, λ1, λ2, thus, each (x, y) has only one possible value for

r(x, y).

Therefore, for all (x, y) ∈ XL, (x, y) = rn(x, y) if and only if x = 3nx mod 1 and y = 3ny

mod 1, that is, 3nx− x = 0 mod 1, or x(3n − 1) = k ∈ Z: in other words, x = k/(3n − 1) for

some k ∈ Z, and similarly, y = l/(3n − 1) for some l ∈ Z.
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Consider the ternary expansion of k/(3n − 1):

k

3n − 1
=

k/3n

1− 3−n
=

∞∑
j=0

k

3n
(3−n)j =

∞∑
j=1

k3−nj

Therefore, the ternary expansion of k/(3n− 1) will repeat the ternary expansion of k in blocks

of length n.

For (x, y), x = k/(3n − 1) to be on a cycle, we need y = l/(3n − 1), for some l ∈ Z. This l

will be 3n − k mod 3. So there will be a (k/(3n − 1), l/(3n − 1)) ∈ XL for any 0 ≤ k ≤ 3n − 1.

Recall from Section 4.2.1 that WB(x, y) = 0 if and only if (x, y) ∈ (1/3 +Z/2, 1/6 +Z/2)∪

(1/6 + Z/2, 1/3 + Z/2).

Let (x, y) be on a cycle of length n. Then (x, y) = (k/(3n − 1), l/(3n − 1) for k, l as defined

above. As in Section 4.2.1, it is sufficient for (b) to show that exactly one of λ0(x, y), λ1(x, y),

λ2(x, y) is on a cycle. We will need the result from Lemma 4.2.10. There are three cases for

the integer k: k = 3m for some integer m; k = 3m+ 1 for some integer m; k = 3m+ 2 for some

integer m.

Case 1: If k = 3m, then l = 3p for some integer p, since l = 3n − k mod 3.

λ0(x, y) = λ0

(
3m

3n − 1
,

3p

3n − 1

)
=

(
3m

3(3n − 1)
,

3p

3(3n − 1)

)
=

(
m

3n − 1
,

p

3n − 1

)
which is on an n-cycle. However:

λ1(x, y) = λ1

(
3m

3n − 1
,

3p

3n − 1

)
=

(
3m

3(3n − 1)
+

1

3
,

3p

3(3n − 1)
+

2

3

)
=

(
3m+ 3n − 1

3(3n − 1)
,
3p+ 2(3n)− 2

3(3n − 1)

)
Since 3m + 3n − 1 and 3l + 2(3n) − 2 are not divisible by 3, by Lemma 4.2.10, λ1(x, y) is not

on any cycle. And:

λ2(x, y) = λ2

(
3m

3n − 1
,

3p

3n − 1

)
=

(
3m

3(3n − 1)
+

2

3
,

3p

3(3n − 1)
+

1

3

)
=

(
m+ 2(3n)− 2

3(3n − 1)
,
p+ 3n − 1

3(3n − 1)

)
Since 3m+ 2(3n)− 1 and 3p+ 3n − 1 are not divisible by 3, by Lemma 4.2.10, λ1(x, y) is not

on any cycle.
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Case 2: If k = 3m+ 1, then l = 3p+ 2 for some integer p, since l = 3n − k mod 3.

λ0(x, y) = λ0

(
3m+ 1

3n − 1
,

3p+ 2

3n − 1

)
=

(
3m+ 1

3(3n − 1)
,

3p+ 2

3(3n − 1)

)
Since 3m+ 1 and 3p+ 2 are not divisible by 3, by Lemma 4.2.10, λ0(x, y) is not on any cycle.

λ1(x, y) = λ1

(
3m+ 1

3n − 1
,

3p+ 2

3n − 1

)
=

(
3m+ 1

3(3n − 1)
+

1

3
,

3p+ 2

3(3n − 1)
+

2

3

)
=

(
3m+ 1 + 3n − 1

3(3n − 1)
,
3p+ 2 + 2(3n)− 2

3(3n − 1)

)
=

(
3m+ 3n

3(3n − 1)
,
3p+ 2(3n)

3(3n − 1)

)
=

(
m+ 3n−1

(3n − 1)
,
p+ 2(3n−1)

(3n − 1)

)
Which is on a cycle.

λ2(x, y) = λ2

(
3m+ 1

3n − 1
,

3p+ 2

3n − 1

)
=

(
3m+ 1

3(3n − 1)
+

2

3
,

3p+ 2

3(3n − 1)
+

1

3

)
=

(
3m+ 1 + 2(3n)− 2

3(3n − 1)
,
3p+ 2 + 3n − 1

3(3n − 1)

)
=

(
3m+ 2(3n) + 1

3(3n − 1)
,
3p+ 2(3n)− 1

3(3n − 1)

)
Since 3m+ 2(3n) + 1 and 3p+ 3n − 1 are not divisible by 3, by Lemma 4.2.10, λ2(x, y) is not

on any cycle.

Case 3: If k = 3m+ 2, then l = 3p+ 1 for some integer p, since l = 3n − k mod 3. Then:

λ0(x, y) = λ0

(
3m+ 2

3n − 1
,

3p+ 1

3n − 1

)
=

(
3m+ 2

3(3n − 1)
,

3p+ 1

3(3n − 1)

)
=

(
3m+ 2

3(3n − 1)
,

3p+ 1

3(3n − 1)

)
Since 3m+ 1 and 3p+ 2 are not divisible by 3, by Lemma 4.2.10, λ0(x, y) is not on any cycle.

λ1(x, y) = λ1

(
3m+ 2

3n − 1
,

3p+ 1

3n − 1

)
=

(
3m+ 2

3(3n − 1)
+

1

3
,

3p+ 1

3(3n − 1)
+

2

3

)
=

(
3m+ 2 + 1(3n)− 1

3(3n − 1)
,
3p+ 1 + 2(3n)− 2

3(3n − 1)

)
=

(
3m+ 2(3n)− 1

3(3n − 1)
,
3p+ 2(3n) + 1

3(3n − 1)

)
Proof of Condition (a). We notice that there are only finitely many (x, y) that are both zeros

of WB and contained in XL.
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Zeros of WB contained in [0, 1]× [0, 1]:

(1/3, 1/6), (5/6, 1/6), (1/3, 2/3), (5/6, 2/3), (1/6, 1/3), (2/3, 1/3), (1/6, 5/6), (2/3, 5/6).

Zeros of WB contained in XL: (1/3, 1/6), (1/3, 2/3), (5/6, 2/3), (1/6, 1/3), (2/3, 1/3),

(2/3, 5/6).

We know from Lemma 4.2.8 that none of these points are on cycles.

Now suppose for (x, y) ∈ X, (x, y) not in a cycle, r−n(x, y) contains rn(1/3, 1/6) for some

n, that is, (1/3, 1/6) = `jn . . . `j1(x, y) with j1, . . . , jn ∈ {0, 1, 2}. Claim: there is no m > n

with (x, y) ∈ r−m(x, y), that is, we cannot have (1/3, 1/6) = `km . . . `kn . . . `k1(x, y).

Suppose we do. Then:

`jn . . . `j1(x, y) = `km . . . `kn . . . `k1(x, y).

Apply rm to both sides:

rm`jn . . . `j1(x, y) = rm`km . . . `kn . . . `k1(x, y).

And applying the left inverses: rm−n(x, y) = (x, y). This contradicts the assumption that

(x, y) is not on a cycle.

Therefore, there is at most one n ∈ N with (1/3, 1/6) ∈ r−n(x, y). The proof for the

other six points is identical. Therefore, we can take n(x,y) = max{n, n′, n′′} and Condition (a)

holds.

4.5 A Third Spectrum

Now we choose L = {(0, 0), (2, 4), (4, 2)}, and let:

z0(x, y) =
1

3
(x, y) (4.66)

z1(x, y) =
1

3
((x, y) + (2/3, 4/3)) (4.67)

z2(x, y) =
1

3
((x, y) + (4/3, 2/3))} (4.68)

so that XL is the invariant set of z0,z1,z2.

Claim 4.5.1. (x, y) is in the attractor set of {z0,z1,z2} if and only if (x/2, y/2) is in the

attractor set of {λ0, λ1, λ2}.
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Figure 4.5 Plot of the fifth iteration of {z0,z1,z2}.
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Proof. We know by Proposition 4.4.1,

L = {(x, y) =
∑∞

j=1(xj , yj)3
−j ∈ [0, 1]× [0, 1] | xj + yj ≡ 0 mod 3 ∀j ∈ N} is the attractor

set of {λ0, λ1, λ2}.

Let 2L = {(x, y)|(x/2, y/2) ∈ L}.

Let (x, y) ∈ 2L.

Claim 4.5.2. z0(x, y) ∈ 2L.

Proof. By definition, z0(x, y) = (x/3, y/3). Then z0(x, y)/2 = (x/6, y/6) = λ0(x/2, y/2).

Claim 4.5.3. z1(x, y) ∈ 2L.

Proof. By definition, z1(x, y) = (x/3 + 2/3, y/3 + 4/3). Then z1(x, y)/2 = (x/6 + 1/3, y/6 +

2/3) = λ1(x/2, y/2).

Claim 4.5.4. z2(x, y) ∈ 2L.

Proof. z2(x, y) = (x/3 + 2/3, y/3 + 4/3). Then z2(x, y)/2 = (x/6 + 2/3, y/6 + 1/3) =

λ2(x/2, y/2).

Now we show that if (x, y) ∈ 2L, there exists (x̃, ỹ) ∈ 2L, j ∈ {0, 1, 2} with zj(x̃, ỹ) = (x, y).

Consider (x/2, y/2). Since (x/2, y/2) ∈ L, we have (x̂, ŷ) with λj(x̂, ŷ) = (x/2, y/2) for

some j ∈ {0, 1, 2}.

Case 1: j = 0. Then (x̂/3, ŷ/3) = (x/2, y/2), therefore, (2x̂/3, 2ŷ/3) = (x, y), and (x̃, ỹ) =

(2x̂, 2ŷ).

Case 2: j = 1. Then (x̂/3+1/3, ŷ/3+2/3) = (x/2, y/2), therefore, (2x̂/3+2/3, 2ŷ/3+4/3) =

(x, y), and (x̃, ỹ) = (2x̂, 2ŷ).

Case 3: j = 2. Then (x̂/3+2/3, ŷ/3+1/3) = (x/2, y/2), therefore, (2x̂/3+4/3, 2ŷ/3+2/3) =

(x, y), and (x̃, ỹ) = (2x̂, 2ŷ).

Claim 4.5.5. 2L is compact.

Proof. We showed in Proposition 4.4.1 that L is compact, specifically, that it was closed and

bounded in R2. Since L was contained in [0, 1]× [0, 1], 2L ⊂ [0, 2]× [0, 2] and thus is bounded.
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Since L is closed, 2L the image of L under the continuous map f(x, y) = 2(x, y), is also closed.

Therefore, 2L is compact.

Now that we know what our invariant set is, we locate WB cycles. First, we consider

2L ∩ (Z/2× Z/2, that is, the set of points in 2L where WB(x, y) = 1.

We show in Section 4.4 that L ∩ Z/2 × Z/2 = {(0, 0), (1, 1/2), (1/2, 1)}. So we know

automatically that (0, 0), (2, 1) and (1, 2) are in 2L.

However, the set 2L ∩ Z/2× Z/2 corresponds to L ∩ Z/4× Z/4.

So we need additionally to check:

(0, 1/4) = (0.03, 0.023) /∈ L, therefore also (1/4, 0) /∈ L.

(0, 3/4) = (0.03, 0.203) /∈ L, therefore also (3/4, 0) /∈ L.

(1/4, 1/4) = (0.023, 0.023) /∈ L.

(1/4, 1/2) = (0.023, 0.13) /∈ L.

(1/4, 3/4) = (0.023, 0.203) /∈ L, therefore also (3/4, 1/4) /∈ L.

(1/4, 1) = (0.023, 0.23) /∈ L, therefore also (1, 1/4) /∈ L.

(1/2, 3/4) = (0.13, 0.203) /∈ L, therefore also (1/2, 3/4) /∈ L.

(3/4, 3/4) = (0.203, 0.203) /∈ L.

(3/4, 1) = (0.203, 0.23) /∈ L, therefore (1, 3/4) /∈ L.

Therefore, 2L ∩ (Z/2× Z/2) = 2(L ∩ Z/4× Z/4) = {(0, 0), (2, 1), (1, 2)}.

All of these turn out to be on cycles, in fact, they are fixed points:

• z0(0, 0) = 1
3(0, 0) = (0, 0).

• z2(2, 1) = 1
3((2, 1) + (4, 2)) = 1

3(6, 3) = (2, 1).

• z1(1, 2) = 1
3((1, 2) + (2, 4)) = 1

3(3, 6) = (1, 2).

Therefore, the WB-cycles are exactly (0, 0), (2, 1), and (1, 2).

Therefore, by Theorem 2.2.13, we construct the frequencies for an orthonormal basis by

applying {3(x, y), 3(x, y) + (2, 4), 3(x, y) + (4, 2)} to (0, 0), (−2,−1), adn (−1,−2).
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Figure 4.6 Plot of s5(0, 0).

4.5.1 Frequencies

Let

γ0(x, y) = 3(x, y) (4.69)

γ1(x, y) = 3(x, y) + (2, 4) (4.70)

γ2(x, y) = 3(x, y) + (4, 2) (4.71)

.

Let s1(x, y) = {γ0(x, y), γ1(x, y), γ2(x, y)}, then for n ≥ 2, let sn(x, y) = {γ0(sn−1(x, y)),

γ1(sn−1(x, y)), γ2(sn−1(x, y))}, with all operations applied componentwise to the pairs in the

set. Then let S(x, y) =
⋃
n∈N sn(x, y).

Following the argument in Claim 4.5.1, we argue:
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Figure 4.7 Plot of s5(−1,−2).
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Figure 4.8 Plot of s5(−2,−1).
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Claim 4.5.6. (x, y) ∈ S(s, t) iff (x/2, y/2) ∈ R(s, t).

Proof. We know by Proposition 4.4.7 that (x, y) =
∑n

j=1(xj , yj)3
j ∈ R(0, 0) if and only if

xj + yj ≡ 0 mod 3, and (x, y) ∈ R(s, t) if and only if (x, y) + 3n(−1,−1/2) ∈ R(s, t).

Let 2R(s, t) = {(x, y)|(x/2, y/2) ∈ R(s, t)}.

Let (x, y) ∈ 2R(s, t).

Claim 4.5.7. γ0(x, y) ∈ 2R(s, t).

Proof. By definition, γ0(x, y) = (3x, 3y). Then γ0(x, y)/2 = (3x/2, 3y/2) = ρ0(x/2, y/2).

Claim 4.5.8. γ1(x, y) ∈ 2R(s, t).

Proof. By definition, γ1(x, y) = (3x + 2, 3y + 4). Then γ1(x, y)/2 = (3x/2 + 1, 3y/2 + 2) =

ρ(x/2, y/2).

Claim 4.5.9. γ2(x, y) ∈ 2R(s, t).

Proof. γ2(x, y) = (3x+ 2, 3y + 4). Then z2(x, y)/2 = (3x/2 + 2, 3y/2 + 1) = ρ2(x/2, y/2).

Now we show that if (x, y) ∈ 2R(s, t), there exists (x̃, ỹ) ∈ 2R(s, t), j ∈ {0, 1, 2} with

γj(x̃, ỹ) = (x, y).

Consider (x/2, y/2). Since (x/2, y/2) ∈ R(s, t), we have (x̂, ŷ) with ρj(x̂, ŷ) = (x/2, y/2)

for some j ∈ {0, 1, 2}.

Case 1: j = 0. Then (3x̂, 3ŷ) = (x/2, y/2), therefore, (2x̂/3, 2ŷ/3) = (x, y), and (x̃, ỹ) =

(2x̂, 2ŷ).

Case 2: j = 1. Then (3x̂ + 1, 3ŷ + 2) = (x/2, y/2), therefore, (6x̂ + 2, 6ŷ/3 + 4) = (x, y),

and (x̃, ỹ) = (2x̂, 2ŷ).

Case 3: j = 2. Then (3x̂+ 2, 3ŷ + 1) = (x/2, y/2), therefore, (6x̂+ 4, 6ŷ + 2) = (x, y), and

(x̃, ỹ) = (2x̂, 2ŷ).

Theorem 4.5.10 (The third spectrum). S(0, 0)∪S(−2,−1)∪S(−1,−2) is a spectrum for S.
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Proof. This follows from Theorem 2.2.13. We check first that {R−1B,L} form a Hadamard

pair:

M1 =
(
e2πiR−1b·l

)
b∈B,l∈L

=


1 1 1

1 e2πi(4/3) e2πi(8/3)

1 e2πi(8/3) e2πi(4/3)

 =


1 1 1

1 e2πi(1/3) e2πi(2/3)

1 e2πi(2/3) e2πi(1/3)

 ,

which is Hadamard.

By construction, 0 ∈ B, 0 ∈ L, and it is easy to see that Rnb · l ∈ Z for all b ∈ B, l ∈ L,

n ≥ 0.

By construction Λ = S(0, 0) ∪ S(−2,−1) ∪ S(−1,−2) is the smallest set that contains −C

for all WB-cycles C, and such that SΛ+L ∈ Λ, so it satisfies the hypotheses of Theorem 2.2.13

as long as the Transversality of the Zeros condition is fulfilled.

To satisfy the Transversality of the Zeros condition (Definition 2.2.12), we need to show:

(a) If (x, y) ∈ XL is not a cycle, then there exists kx ≥ 0 such that, for k ≥ kx, {τl1◦τl2◦· · ·◦τlkx :

l1, . . . ln ∈ L} does not contain any zeros of W ;

(b) If {x0, x1, . . . , xp} are on a cycle with x1 = τl(x0) for some l ∈ L, then for every y = τl′(x0),

y 6= x1 is either not on a cycle or W (y) = 0.

In this case, XL = 2L, where L is the XL for the second spectrum in Section 4.4.

Lemma 4.5.11. (x, y) ∈ XL is on a cycle if and only if x = k/(3n− 1) and y = l/(3n− 1) for

some integers 0 ≤ k, l ≤ 3n and n ∈ N.

Since XL = 2L, it shares the property that there are no overlap points between the ranges

of z0,z1,z2, hence each (x, y) has only one possible value for r(x, y).

Therefore by the same computation as in Lemma 4.4.16, for all (x, y) ∈ XL, (x, y) = rn(x, y)

if and only if x = k/(3n − 1) for some k ∈ Z, k ≤ 3n, and similarly y = l/(3n − 1) for some

l ∈ Z, l ≤ 3n.

Consider: (
k

3n − 1
,

l

3n − 1

)
∈ XL ⇐⇒

(
k

2(3n − 1)
,

l

2(3n − 1)

)
∈ L
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We leave aside the question of which such (x, y) are actually contained in XL. It suffices

for condition (b) to show that for such an (x, y), at most one of λ0(x, y), λ1(x, y), λ2(x, y) is

on a cycle.

Proof of condition (b). Let (x, y) be on a cycle, that is, (x, y) = (k/(3n − 1), l/(3n − 1) for

integers 0 ≤ k, l ≤ 3n.

There are three options for k: k = 3m, k = 3m+ 1, and k = 3m+ 2 for some integer m.

Case 1: k = 3m.

z0

(
3m

3n − 1
,

l

3n − 1

)
=

(
3m

3(3n − 1)
,

l

3(3n − 1)

)
=

(
m

3n − 1
,

l

3(3n − 1)
.

)
This may be on a cycle, if l = 3p for some integer p.

z1

(
3m

3n − 1
,

l

3n − 1

)
=

(
3m+ 2(3n − 1)

3(3n − 1)
,
l + 4(3n − 1)

3(3n − 1)

)
=

(
3m+ 2(3n)− 2

3(3n − 1)
,
l + 4(3n)− 4

3(3n − 1)

)
.

By Lemma 4.2.10, this cannot be on a cycle.

z2

(
3m

3n − 1
,

l

3n − 1

)
=

(
3m+ 4(3n − 1)

3(3n − 1)
,
l + 2(3n − 1)

3(3n − 1)

)
=

(
3m+ 4(3n)− 4

3(3n − 1)
,
l + 2(3n)− 2)

3(3n − 1)

)
.

By Lemma 4.2.10, this cannot be on a cycle.

Case 2: k = 3m+ 1.

z0

(
3m+ 1

3n − 1
,

l

3n − 1

)
=

(
3m+ 1

3(3n − 1)
,

l

3(3n − 1)

)
=

(
3m+ 1

3(3n − 1)
,

l

3(3n − 1)
.

)
By Lemma 4.2.10, this cannot be on a cycle.

z1

(
3m+ 1

3n − 1
,

l

3n − 1

)
=

(
3m+ 1 + 2(3n − 1)

3(3n − 1)
,
l + 4(3n − 1)

3(3n − 1)

)
=

(
3m+ 2(3n)− 1

3(3n − 1)
,
l + 4(3n)− 4

3(3n − 1)

)
.

By Lemma 4.2.10, this cannot be on a cycle.

z2

(
3m+ 1

3n − 1
,

l

3n − 1

)
=

(
3m+ 1 + 4(3n − 1)

3(3n − 1)
,
l + 2(3n − 1)

3(3n − 1)

)
=

(
3m+ 4(3n)− 3

3(3n − 1)
,
l + 2(3n)− 2)

3(3n − 1)

)
.

This may be on a cycle, if l = 3p+ 2 for some integer p.

Case 3: k = 3m+ 2.

z0

(
3m+ 2

3n − 1
,

l

3n − 1

)
=

(
3m+ 2

3(3n − 1)
,

l

3(3n − 1)

)
=

(
3m+ 2

3(3n − 1)
,

l

3(3n − 1)
.

)
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By Lemma 4.2.10, this cannot be on a cycle.

z1

(
3m+ 2

3n − 1
,

l

3n − 1

)
=

(
3m+ 2 + 2(3n − 1)

3(3n − 1)
,
l + 4(3n − 1)

3(3n − 1)

)
=

(
m+ 2(3n)

3n − 1
,
l + 4(3n)− 4

3(3n − 1)

)
.

This may be on a cycle, if l = 3p+ 1 for some integer p.

z2

(
3m+ 1

3n − 1
,

l

3n − 1

)
=

(
3m+ 2 + 4(3n − 1)

3(3n − 1)
,
l + 2(3n − 1)

3(3n − 1)

)
=

(
3m+ 4(3n)− 2

3(3n − 1)
,
l + 2(3n)− 2)

3(3n − 1)

)
.

By Lemma 4.2.10, this cannot be on a cycle.

Proof of condition (a). We notice there are only finitely many (x, y) that are both zeros of WB

and contained in XL.

Zeros of WB contained in [0, 2]× [0, 2]:

(1/3, 1/6), (1/6, 1/3), (5/6, 1/6), (1/6, 5/6), (4/3, 1/6), (1/6, 4/6), (11/6, 1/6), (1/6, 11/6),

(1/3, 2/3), (2/3, 1/3), (5/6, 2/3), (2/3, 5/6), (4/3, 2/3), (2/3, 4/3), (11/6, 2/3), (2/3, 11/6),

(1/3, 7/6), (7/6, 1/3), (5/6, 7/6), (7/6, 5/6), (4/3, 7/6), (7/6, 4/3), (11/6, 7/6), (7/6, 11/6),

(1/3, 5/3), (5/3, 1/3), (5/6, 5/3), (5/3, 5/6), (11/6, 5/3), (5/3, 11/6).

Without explicitly listing them, we observe that the number of zeros of WB in XL is finite,

and also that none of them are cycles, by Lemma 4.2.10.

The remainder of the proof is identical to the case for Theorem 4.4.15.
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CHAPTER 5. RELATED FRACTALS AND SPECTRA

We extend our results by applying affine transformations to S and considering spectra for

the resulting fractals.

Let F : R2 → R2, B(x) = Ax+ b, with A a 2 by 2 invertible matrix and b ∈ R2. Let S ∈ R2

a fractal as in Definition 2.2.2, with the measure ν given by Theorem 2.2.4, and let Λ be a

spectrum for L2(ν).

Let G : R2 → R2, G(x) = (AT )−1(x− b) so that G−1(x) = ATx+ b.

Proposition 5.0.1. G(Λ) is a spectrum for L2(ν̃), the fractal measure supported on F (S), with

ν̃(C) = ν(G(C)) for A ⊂ F (S), and for any continuous f : F (S)→ C,
∫
fdν̃ =

∫
f ◦ Fdν.

Proof. We use Theorem 2.2.8. We want to show that
∑

λ∈Λ |ν̂(t− λ)|2 =
∑

λ′∈G(Λ) |̂̃ν(t− λ′)|2.

First, we compute:

̂̃ν(t) =

∫
F (S)

e−2πix·t dν̃(x) (5.1)

=

∫
S
e−2πi(Ax+b)·(t)dν(x) (5.2)

=

∫
S
e−2πi(Ax·t+b·t)dν(x) (5.3)

= e−2πi(b·t)
∫
S
e−2πi(Ax·t)dν(x) (5.4)

= e−2πi(b·t)
∫
S
e−2πi(x·AT t))dν(x) (5.5)

= e−2πi(b·t)ν̂(AT t) (5.6)

Then, for λ′ ∈ G(Λ), ̂̃ν(t − λ′) = e−2πi(b·(t−λ′))ν̂(AT (t − λ′). Since λ′ ∈ G(Λ), G−1(λ′) =
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Aλ′ + b ∈ Λ. Therefore:

∑
λ′∈G(Λ)

|̂̃ν(t− λ′)|2 =
∑

λ′∈G(Λ)

∣∣∣e−2πi(b·(t−λ′)ν̂(AT (t− λ′))
∣∣∣2 (5.7)

=
∑

λ′∈G(Λ)

∣∣ν̂(AT t−ATλ′)
∣∣2 (5.8)

=
∑

λ′∈G(Λ)

∣∣ν̂(AT t+ b− b−ATλ′)
∣∣2 (5.9)

=
∑

λ′∈G(Λ)

∣∣ν̂(G−1(t)−G−1(λ′))
∣∣2 (5.10)

=
∑
λ∈Λ

∣∣ν̂(G−1(t)− λ)
∣∣2 (5.11)

=
∑
λ∈Λ

|ν̂(s− λ)|2 (5.12)

The last few lines use the fact that G is a bijection from R2 to R2.

Therefore, since
∑

λ∈Λ |ν̂(t−λ)|2 ≡ 1 by Theorem 2.2.8,
∑

λ′∈G(Λ) |̂̃ν(t−λ′)|2 = 1 and G(Λ)

is a spectrum for F (S).

Lemma 5.0.2. If S ⊂ R2 is the unique compact set invariant under the iterated function

system {ψ0, ψ1, ψ2}, and F is as in Proposition 5.0.1, then F (S) is the unique compact set

invariant under the iterated function system {Fψ0F
−1, Fψ1F

−1, Fψ2F
−1}.

Proof. First, we show that F (S) ⊆
⋃2
j=0 FψjF

−1(F (S)).

Let x ∈ F (S). Then x = F (y) for some y ∈ S. Since y ∈ S, y ∈ ψj(S) for some j ∈ {0, 1, 2},

or y = ψj(ỹ) for some ỹ ∈ S. Let x̃ ∈ F (S) with F (ỹ) = ỹ. Then FψjF
−1(x̃) = Fψj(ỹ) =

F (y) = x, so x ∈ FψjF−1(F (S)), and F (S) ⊆
⋃2
j=0 FψjF

−1(F (S)).

Now, show that
⋃2
j=0 FψjF

−1(F (S)) ⊆ F (S).

Let x ∈ FψjF
−1(F (S)) for some j, that is, x = FψjF

−1(x̃) for some x̃ ∈ F (S). Write

x̃ = F ỹ for some ỹ ∈ S. Then x = FψjF
−1(F ỹ) = Fψj(ỹ). Since ỹ ∈ S, ψj(ỹ) = y for some

y ∈ S. Then x = Fy for some y ∈ S, therefore, x ∈ F (S), and
⋃2
j=0 FψjF

−1(F (S)) ⊆ F (S).
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Figure 5.1 A fifth iterative approximation of F (S) starting at zero.

5.1 The “Upper Left” fractal

Now, let:

F (x, y) =

 1 0

0 −1


x
y

+

0

1

 ,

and S the fractal from Definition 4.1.1.

Geometrically, F (x, y) flips R2 across the line x = 1/2.

F (x, y) satisfies the conditions for Proposition 5.0.1, with

G(x, y) =

 1 0

0 −1


−1

x
y

−
0

1


 = F (x, y).

By Proposition 5.0.1 and the work done on S in Chapter 4, we already know three spectra

for F (S), derived from the three spectra in Chapter 4.
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We find another spectrum by working directly.

Claim 5.1.1. F (S) is the invariant set generated by the iterated function system {1
3(x, y)+B},

for B = {(0, 0), (0, 2), (2, 2)}.

Proof. Use Lemma 5.0.2. By Definition 4.1.1, S is invariant under the iterated function system

{ψ0(x, y) = 1
3(x, y), ψ1(x, y) = 1

3(x+ 2, y), ψ2(x, y) = 1
3(x, y + 2)}.

Claim 5.1.2. 1
3((x, y) + (0, 2)) = Fψ0F

−1(x, y).

Proof.

Fψ0F
−1(x, y) = Fψ0(x,−y + 1)

= F (
1

3
(x,−y + 1))

= F (
x

3
,−y

3
+

1

3
))

= (
x

3
,
y

3
− 1

3
+ 1)

= (
x

3
,
y

3
+

2

3
)

=
1

3
((x, y) + (0, 2))

Claim 5.1.3. 1
3((x, y) + (2, 2)) = Fψ1F

−1(x, y).

Proof.

Fψ1F
−1(x, y) = Fψ1(x,−y + 1)

= F (
1

3
(x+ 2,−y + 1))

= F (
x

3
+

2

3
,−y

3
+

1

3
))

= (
x

3
+

2

3
,
y

3
− 1

3
+ 1)

= (
x

3
+

2

3
,
y

3
+

2

3
)

=
1

3
((x, y) + (2, 2))
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Claim 5.1.4. 1
3((x, y) + (0, 0)) = Fψ2F

−1(x, y).

Proof.

Fψ2F
−1(x, y) = Fψ2(x,−y + 1)

= F (
1

3
(x,−y + 1 + 2))

= F (
x

3
,−y

3
+

3

3
))

= (
x

3
,
y

3
− 3

3
+ 1)

= (
x

3
,
y

3
)

=
1

3
((x, y) + (0, 0))

Since S is compact and F is continuous, F(S) is compact, thus it is the unique invariant

set generated by this iterated function system.

Proposition 5.1.5. F (S) = {(x, y)|x ∈ C3, y ∈ C3, y−x ∈ C3}, where C3 is the middle-thirds

Cantor set discussed in Proposition 4.1.9.

Proof. Let (x, y) ∈ S. We know by Proposition 4.1.9 that x ∈ C3, y ∈ C3 and x+ y ∈ C3.

Let F (x, y) = (s, t) = (x, 1 − y). We want to show that s ∈ C3, t ∈ C3 and t − s ∈ C3.

We have that s = x ∈ C3 by assumption. t = 1− y ∈ C3 because the Cantor set is symmetric

across the point 1/2 and y ∈ C3. t − s = (1 − y) − x = 1 − (y + x) ∈ C3 because x + y ∈ C3

and the Cantor set is symmetric across the point 1/2.

Next, we construct a basis for F (S) using the method of Theorem 2.2.13.

First we compute:

WB(x, y) =
1

N2

∣∣∣∣∣∑
b∈B

e2πib·(x,y)

∣∣∣∣∣
2

=
1

9

∣∣∣1 + e4πiy + e4πi(x+y)
∣∣∣2 . (5.13)
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WB(x, y) = 1 if and only if e4πix = e4πi(x+y) = 1, that is, when y ∈ Z/2 and x + y ∈ Z/2;

that is, for (x, y) ∈ Z/2× Z/2.

We choose a set L to generate our orthonormal basis. Let L = {(0, 0), (1, 1), (2, 2)}.

We verify that:

M1 =


1 1 1

1 e2πi(2/3) e2πi(4/3)

1 e2πi(4/3) e2πi(8/3)

 =


1 1 1

1 e2πi(2/3) e2πi(1/3)

1 e2πi(1/3) e2πi(2/3)


is Hadamard.

Proposition 5.1.6. XL, the invariant set of {1
3(x, y), 1

3(x + 1, y + 1) + 1
3(x + 2, y + 2)}, is

{(t, t) : t ∈ [0, 1]}.

Proof. Let A = {(t, t) : t ∈ [0, 1]}. Clearly, A is compact.

Claim 5.1.7. For (t, t) ∈ A, 1
3(t, t) ∈ A.

Proof. 1
3(t, t) = (t/3, t/3). Let s = t/3. For t ∈ [0, 1], s ∈ [0, 1/3] ⊂ [0, 1]. Then 1

3(t, t) =

(s, s) ∈ A.

Claim 5.1.8. For (t, t) ∈ A, 1
3((t, t) + (1, 1)) ∈ A.

Proof. 1
3((t, t)+(1, 1)) = (t/3+1/3, t/3+1/3). Let s = t/3+1/3. For t ∈ [0, 1], s ∈ [1/3, 2/3] ⊂

[0, 1]. Then 1
3((t, t) + (1, 1)) = (s, s) ∈ A.

Claim 5.1.9. For (t, t) ∈ A, 1
3((t, t) + (2, 2)) ∈ A.

Proof. 1
3((t, t) + (2, 2)) = (t/3 + 2/3, t/3 + 2/3). Let s = t/3 + 2/3. For t ∈ [0, 1], s ∈ [2/3, 1] ⊂

[0, 1]. Then 1
3((t, t) + (2, 2)) = (s, s) ∈ A.

Claim 5.1.10. For (t, t) ∈ A, there is some (s, s) ∈ A with 1
3((s, s)) = (t, t) or 1

3((s, s) +

(1, 1)) = (t, t) or 1
3((s, s) + (2, 2)) = (t, t)

Proof. There are three cases: 0 ≤ t < 1/3, 1/3 ≤ t < 2/3, and 2/3 ≤ t ≤ 1.

Case 1:



89

Let (s, s) = (3t, 3t). Since 0 ≤ t ≤ 1/3, we have 0 ≤ s ≤ 1, so (s, s) ∈ A, and 1/3(s, s) =

(t, t).

Case 2:

Let (s, s) = (3t− 1, 3t− 1). Since 1/3 ≤ t < 2/3, 0 ≤ s < 1, so (s, s) ∈ A, and 1/3((s, s) +

(1, 1)) = (t, t).

Case 3:

Let (s, s) = (3t − 2, 3t − 2). Since 2/3 ≤ t ≤ 1, 0 ≤ s < 1, so (s, s) ∈ A, and 1/3((s, s) +

(2, 2)) = (t, t).

To find WB-cycles, we look at the values in Z/2 × Z/2 which are also in XL, namely,

{(0, 0), (1/2, 1, 2), (1, 1)}.

Then we check if these are on cycles. In fact, they are all fixed points:

• 1
3(0, 0) = (0, 0).

• 1
3((1/2, 1/2) + (1, 1)) = 1

3(3/2, 3/2) = (1/2, 1/2).

• 1
3((1, 1) + (2, 2)) = 1

3(3, 3) = (1, 1).

So our WB-cycles are {(0, 0), (1/2, 1/2), (1, 1)}.

Therefore, to get our spectrum, we apply {3(x, y), 3(x, y) + (1, 1), 3(x, y) + (2, 2)} to

{(0, 0), (−1/2,−1/2), (−1,−1)}.

Definition 5.1.11. Let r1(x, y) = {3(x, y), 3(x, y) + (1, 1), 3(x, y) + (2, 2)}, then for n ≥ 2,

let rn(x, y) = {3(sn−1(x, y)), 3(sn−1(x, y) + (1, 1)), 3(sn−1(x, y)) + (2, 2)}, with all operations

applied componentwise to the pairs in the set. Then let R(x, y) =
⋃
n∈N rn(x, y).

Theorem 5.1.12. R(0, 0) ∪R(−1,−1)R(−1/2,−1/2) = {(t, t) : t ∈ Z/2}.

Proof. We show this in three Propositions:

Proposition 5.1.13. R(0, 0) = {(t, t) : t ∈ Z, t ≥ 0}.
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Proof. Let A = {(t, t) : t ∈ Z, t ≥ 0}.

We show first that R(0, 0) ⊆ A.

First, we notice that (0, 0) ∈ A. It is sufficient then to show the following three claims:

Claim 5.1.14. If (t, t) ∈ A, then 3(t, t) ∈ A.

Proof. 3(t, t) = (3t, 3t). If t ∈ Z, t ≥ 0, 3t ∈ Z, 3t ≥ 0.

Claim 5.1.15. If (t, t) ∈ A, then 3(t, t) + (1, 1) ∈ A.

Proof. 3(t, t) + (1, 1) = (3t+ 1, 3t+ 1). If t ∈ Z, t ≥ 0, 3t+ 1 ∈ Z, 3t+ 1 ≥ 0.

Claim 5.1.16. If (t, t) ∈ A, then 3(t, t) + (2, 2) ∈ A.

Proof. 3(t, t) + (2, 2) = (3t+ 2, 3t+ 2). If t ∈ Z, t ≥ 0, 3t+ 2 ∈ Z, 3t+ 2 ≥ 0.

We then show that R(0, 0) ⊇ A.

Proof by induction. Base case:

(0, 0) = 3(0, 0) ∈ R(0, 0).

Now we (t, t) ∈ A and suppose that (s, s) ∈ R(0, 0) for all 0 ≤ s ≤ t. There are three cases

for t: t = 3m for some m ∈ Z, m ≥ 0, t = 3m+ 1, t = 3m+ 2.

Case 1: t = 3m. Notice that 3(m,m) = (t, t), and since by inductive assumption, (m,m) ∈

R(0, 0), (t, t) ∈ R(0, 0).

Case 2: t = 3m+1. Notice that 3(m,m)+(1, 1) = (t, t), and since by inductive assumption,

(m,m) ∈ R(0, 0), (t, t) ∈ R(0, 0).

Case 3: t = 3m+2. Notice that 3(m,m)+(2, 2) = (t, t), and since by inductive assumption,

(m,m) ∈ R(0, 0), (t, t) ∈ R(0, 0).

Therefore, by induction, R(0, 0) = A.

Proposition 5.1.17. R(−1,−1) = {(t, t) : t ∈ Z, t ≤ −1}.

Proof. Let B = {(t, t) : t ∈ Z, t ≤ −1}. We show first that R(−1,−1) ⊆ B.

We note that R(−1,−1) ∈ B. It is sufficient then to show the following three claims:

Claim 5.1.18. If (t, t) ∈ B then 3(t, t) ∈ B.
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Proof. 3(t, t) = (3t, 3t). If t ∈ Z, t ≤ −1, 3t ∈ Z, 3t ≤ −1.

Claim 5.1.19. If (t, t) ∈ B, then 3(t, t) + (1, 1) ∈ B.

Proof. 3(t, t) + (1, 1) = (3t+ 1, 3t+ 1). If t ∈ Z, t ≤ −1, 3t+ 1 ∈ Z, 3t+ 1 ≤ −1.

Claim 5.1.20. If (t, t) ∈ B, then 3(t, t) + (2, 2) ∈ B.

Proof. 3(t, t) + (2, 2) = (3t+ 2, 3t+ 2). If t ∈ Z, t ≤ −1, 3t+ 2 ∈ Z, 3t+ 2 ≤ 0.

We then show that R(−1,−1) ⊇ B.

Proof by induction. Base case:

(−1,−1) = 3(0, 0) + (2, 2) ∈ R(−1,−1).

Now we let (t, t) ∈ B and suppose that (s, s) ∈ R(−1,−1) for all −1 ≥ s ≥ t. There are

three cases for t: t = 3m for some m ∈ Z, m ≤ −1; t = 3m+ 1; or t = 3m+ 2.

Case 1: t = 3m. Notice that 3(m,m) = (t, t), and since by inductive assumption, (m,m) ∈

R(−1,−1), (t, t) ∈ R(−1,−1).

Case 2: t = 3m+1. Notice that 3(m,m)+(1, 1) = (t, t), and since by inductive assumption,

(m,m) ∈ R(−1,−1), (t, t) ∈ R(−1,−1).

Case 3: t = 3m+2. Notice that 3(m,m)+(2, 2) = (t, t), and since by inductive assumption,

(m,m) ∈ R(−1,−1), (t, t) ∈ R(−1,−1).

Therefore, by induction, R(−1,−1) = B.

Claim 5.1.21. R(−1/2,−1/2) = {(t, t) : t ∈ Z/2, t /∈ Z}.

Proof. Let C = {(t, t) : t ∈ Z/2, t /∈ Z}. We show first that R(−1/2,−1/2) ⊆ C. We note that

(−1/2,−1/2) ∈ C. It is sufficient then to show the following three claims:

Claim 5.1.22. If (t, t) ∈ C then 3(t, t) ∈ C.

Proof. 3(t, t) = (3t, 3t). If t ∈ Z/2, t /∈ Z, 3t ∈ Z/2, 3t /∈ Z.

Claim 5.1.23. If (t, t) ∈ C, then 3(t, t) + (1, 1) ∈ C.

Proof. 3(t, t) + (1, 1) = (3t+ 1, 3t+ 1). If t ∈ Z/2, t /∈ Z, 3t+ 1 ∈ Z/2, 3t+ 1 /∈ Z.
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Claim 5.1.24. If (t, t) ∈ C, then 3(t, t) + (2, 2) ∈ C.

Proof. 3(t, t) + (2, 2) = (3t+ 2, 3t+ 2). If t ∈ Z/2, t /∈ Z, then 3t+ 2 ∈ Z/2, 3t+ 2 /∈ Z.

We then show that R(−1/2,−1/2) ⊆ C.

One way of expressing the set {t ∈ Z/2, t /∈ Z} is as the set {t | t+ 1/2 ∈ Z}.

For our induction argument, we write the integer t + 1/2 in balanced ternary: t + 1/2 =∑N
j=0 tj3

j , tj ∈ {0, 1,−1}. With this expression, we can induct on N and conveniently cover

all of our C.

Base case, N = 0, t = −1/2, 1/2,−3/2:

• t = −1/2: 3(−1/2,−1/2) + (1, 1) = (−1/2,−1/2) ∈ R(−1/2,−1/2);

• t = 1/2: 3(−1/2,−1/2) + (2, 2) = (1/2, 1/2) ∈ R(−1/2,−1/2);

• t = −3/2: 3(−1/2,−1/2) = (−3/2,−3/2) ∈ R(−1/2,−1/2).

Induction step: Suppose (t, t) ∈ R(−1/2,−1/2) for all t+ 1/2 =
∑n

j=0 tj3
j , tj ∈ {0, 1,−1},

n < N ; let t+ 1/2 =
∑N

j=0 tj3
j .

Case 1: t0 = −1. Then t+ 1/2 =
∑N

j=0 tj3
j = −1 +

∑N
j=1 tj3

j , or t+ 3/2 =
∑N

j=1 tj3
j .

Therefore, t/3 + 1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, (t/3, t/3) ∈

R(−1/2,−1/2).

Thus (t, t) = 3(t/3, t/3) ∈ R(−1/2,−1/2).

Case 2: t0 = 0. Then t+ 1/2 =
∑N

j=0 tj3
j =

∑N
j=1 tj3

j , or (t− 1) + 3/2 =
∑N

j=1 tj3
j .

Therefore, (t−1)/3+1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, ((t−1)/3, (t−

1)/3) ∈ R(−1/2,−1/2).

Thus (t, t) = 3(2(t− 1)/3, (t− 1)/3) + (1, 1) ∈ R(−1/2,−1/2).

Case 3: t0 = 1. Then t+ 1/2 =
∑N

j=0 tj3
j = 1 +

∑N
j=1 tj3

j , or (t− 2) + 3/2 =
∑N

j=1 tj3
j .

Therefore, (t−2)/3+1/2 =
∑N−1

j=0 tj+13j , and by our induction assumption, ((t−2)/3, (t−

2)/3) ∈ R(−1/2,−1/2).

Thus (t, t) = 3(2(t− 2)/3, (t− 2)/3) + (2, 2) ∈ R(−1/2,−1/2).
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Theorem 5.1.25. {et,t : (t, t) : t ∈ Z/2} is an orthonormal basis for L2(µB).

By Proposition 5.1.6, XL = {(t, t) : t ∈ [0, 1]}.

To satisfy the Transversality of the Zeros condition (Definition 2.2.12), we need to show:

(a) If (x, y) ∈ XL is not a cycle, then there exists kx ≥ 0 such that, for k ≥ kx, {τl1◦τl2◦· · ·◦τlkx :

l1, . . . ln ∈ L} does not contain any zeros of W ;

(b) If {x0, x1, . . . , xp} are on a cycle with x1 = τl(x0) for some l ∈ L, then for every y = τl′(x0),

y 6= x1 is either not on a cycle or W (y) = 0.

We note from the computations in Proposition 5.1.6 that the common inverse of 1
3(t, t), 1

3((t, t)+

(1, 1)), and 1
3((t, t) + (2, 2)) is r(x, y) = 3(x, y) mod 1.

Therefore we have:

Lemma 5.1.26. A point (t, t) in XL is on a cycle if and only if t = 1
3n−1 for some n ∈ N, 0 ≤

l ≤ 3n + 1.

Proof. It follows directly from the condition rn(x, y) = 3n(x, y) mod 1 = (x, y) that t =

1/(3n − 1) for some n ∈ N, l ∈ Z, and since 0 ≤ t ≤ 1 we must have 0 ≤ l ≤ 3n + 1. See the

proof of Lemma 4.2.8 for details.

As in the case of Lemma 4.2.8 there are two points in XL that are in the image of two

different generating functions:

• (1/3, 1/3) = 1
3(1, 1) = 1

3((0, 0) + (1, 1); therefore ′′r”(1/3, 1/3) = {(0, 0), (1, 1)};

• (2/3, 2/3) = 1
3((1, 1) + (1, 1)) = 1

3((0, 0) + (2, 2); therefore ′′r”(1/3, 1/3) = {(0, 0), (1, 1)}.

Claim 5.1.27. Neither (0,0) nor (1,1) is on a cycle with (1/3, 1/3); similarly, neither (0,0)

nor (1,1) is on a cycle with (2/3, 2/3).

Proof. Compute: r(0, 0) = (0, 0), and r(1, 1) = (1, 1), so neither will go back to (1/3, 1/3) or

to (2/3, 2/3). Therefore, (1/3, 1/3) and (2/3, 2/3) cannot be on cycles. Since they also cannot

be written in the form (l/(3n − 1), 1/(3n − 1)) they match the general case.
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Proof of condition (b). Let (x, y) be on a cycle of length n. Then (x, y) = (k/(3n−1), k/(3n−1))

for 0 ≤ k ≤ 3n − 1. As in Section 4.2.1, it is sufficient to show that exactly one of 1
3(x, y),

1
3((x, y) + (1, 1)), 1

3((x, y) + (2, 2)) is on a cycle. We will need the result from Lemma 4.2.10.

There are three cases for the integer k: k = 3m for some integer m; k = 3m+1 for some integer

m; k = 3m+ 2 for some integer m. Case 1: k = 3m.

1

3
(x, y) =

1

3

(
3m

3n − 1
,

3m

3n − 1

)
=

(
3m

3(3n − 1)
,

3m

3(3n − 1)

)
=

(
m

3n − 1
,

m

3n − 1

)
which is on an n-cycle. However:

1

3
((x, y) + (1, 1)) =

1

3

(
3m

3n − 1
,

3p

3n − 1
+ (1, 1)

)
=

(
3m

3(3n − 1)
+

1

3
,

3m

3(3n − 1)
+

1

3

)
=

(
3m+ 3n − 1

3(3n − 1)
,
3m+ 3n − 1

3(3n − 1)

)
Since 3m+ 3n− 1 is not divisible by 3, by Lemma 4.2.10, 1

3 ((x, y) + (1, 1)) is not on any cycle.

And:

1

3
((x, y) + (2, 2)) =

1

3

(
3m

3n − 1
,

3p

3n − 1
+ (2, 2)

)
=

(
3m

3(3n − 1)
+

2

3
,

3m

3(3n − 1)
+

2

3

)
=

(
3m+ 2(3n)− 2

3(3n − 1)
,
3m+ 2(3n)− 2

3(3n − 1)

)
Since 3m + 2(3n) − 2 is not divisible by 3, by Lemma 4.2.10, 1

3 ((x, y) + (2, 2)) is not on any

cycle.

Case 2: k = 3m+ 1.

1

3
(x, y) =

1

3

(
3m+ 1

3n − 1
,
3m+ 1

3n − 1

)
=

(
3m+ 1

3(3n − 1)
,

3p+ 2

3(3n − 1)

)
Since 3m+ 1 is not divisible by 3, by Lemma 4.2.10, 1

3(x, y) is not on any cycle.

1

3
((x, y) + (1, 1)) =

1

3

(
3m+ 1

3n − 1
,
3m+ 1

3n − 1
+ (1, 1)

)
=

(
3m+ 1

3(3n − 1)
+

1

3
,

3m+ 1

3(3n − 1)
+

1

3

)
=

(
3m+ 1 + 3n − 1

3(3n − 1)
,
3m+ 1 + 3n − 1

3(3n − 1)

)
=

(
3m+ 3n

3(3n − 1)
,

3m+ 3n

3(3n − 1)

)
=

(
m+ 3n−1

(3n − 1)
,
m+ 3n−1

(3n − 1)

)
,
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which is on a cycle.

1

3
((x, y) + (2, 2)) =

1

3

(
3m+ 1

3n − 1
,
3m+ 1

3n − 1
+ (2, 2)

)
=

(
3m+ 1

3(3n − 1)
+

2

3
,

3m+ 1

3(3n − 1)
+

2

3

)
=

(
3m+ 1 + 2(3n)− 2

3(3n − 1)
,
3m+ 1 + 2(3n)− 2

3(3n − 1)

)
=

(
3m+ 2(3n) + 1

3(3n − 1)
,
3m+ 2(3n) + 1

3(3n − 1)

)
Since 3m + 2(3n) + 1 is not divisible by 3, by Lemma 4.2.10, 1

3 ((x, y) + (2, 2))is not on any

cycle.

Case 3: k = 3m+ 2.

1

3
(x, y) =

1

3

(
3m+ 2

3n − 1
,
3m+ 2

3n − 1

)
=

(
3m+ 1

3(3n − 1)
,

3p+ 2

3(3n − 1)

)
Since 3m+ 2 is not divisible by 3, by Lemma 4.2.10, 1

3(x, y) is not on any cycle.

1

3
((x, y) + (1, 1)) =

1

3

(
3m+ 2

3n − 1
,
3m+ 2

3n − 1
+ (1, 1)

)
=

(
3m+ 2

3(3n − 1)
+

1

3
,

3m+ 2

3(3n − 1)
+

1

3

)
=

(
3m+ 2 + 3n − 1

3(3n − 1)
,
3m+ 2 + 3n − 1

3(3n − 1)

)
=

(
3m+ 3n + 1

3(3n − 1)
,
3p+ 3n + 1

3(3n − 1)

)
Since 3m+ 3n + 1 is not divisible by 3, by Lemma 4.2.10, 1

3 ((x, y) + (1, 1)) is not on any cycle.

1

3
((x, y) + (2, 2)) =

1

3

(
3m+ 2

3n − 1
,
3m+ 2

3n − 1
+ (2, 2)

)
=

(
3m+ 2

3(3n − 1)
+

2

3
,

3m+ 2

3(3n − 1)
+

2

3

)
=

(
3m+ 2 + 2(3n)− 2

3(3n − 1)
,
3m+ 2 + 2(3n)− 2

3(3n − 1)

)
=

(
3m+ 2(3n)

3(3n − 1)
,
3m+ 2(3n)

3(3n − 1)

)
=

(
m+ 2(3n−1)

(3n − 1)
,
m+ 2(3n−1)

(3n − 1)

)
,

which is on a cycle.

Proof of condition (a). Recall that WB(x, y) = 1
9

∣∣1 + e4πix + e4πi(x+y
∣∣2, so that WB(x, y) = 0

if and only if 1 + e4πix + e4πi(x+y) = 0, that is, when x ∈ 1/3 + Z/2 and x + y ∈ 1/6 + Z/2,

that is, x ∈ 1/3 + Z/2 and y ∈ 1/6 + Z/2; or x ∈ 1/6 + Z/2 and x + y ∈ 1/3 + Z/2, that is,

x ∈ 1/6 + Z/2 and y ∈ 1/3 + Z/2.

We notice that there are no points (x, y) that are both zeros of WB and contained in XL.
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Zeros of WB contained in [0, 1]× [0, 1]:

(1/3, 1/6), (5/6, 1/6), (1/3, 2/3), (5/6, 2/3), (1/6, 1/3), (2/3, 1/3), (1/6, 5/6), (2/3, 5/6).

Zeros of WB contained in XL = {(t, t) : t ∈ [0, 1]}: none.

Therefore condition (a) is true trivially.

Since the transversality of the zeros condition is satisfied, we have that {et,t : (t, t) ∈ Z/2}

is an orthonormal basis for L2(µB).

5.2 The “Lower Right” fractal

Now, let:

F (x, y) =

 −1 0

0 1


x
y

+

1

0

 ,

and S the fractal from Definition 4.1.1.

Geometrically, F (x, y) flips R2 across the line y = 1/2.

F (x, y) satisfies the conditions for Proposition 5.0.1, with

G(x, y) =

 −1 0

0 1


−1

x
y

−
1

0


 = F (x, y).

Proposition 5.2.1. F (S) is the invariant set generated by the iterated function system {1
3(x, y)+

B}, for B = {(0, 0), (2, 0), (2, 2)}.

Proof. Use Lemma 5.0.2. By Definition 4.1.1, S is invariant under the iterated function system

{ψ0(x, y) = 1
3(x, y), ψ1(x, y) = 1

3(x+ 2, y), ψ2(x, y) = 1
3(x, y + 2)}.

Claim 5.2.2. 1
3((x, y) + (2, 0)) = Fψ0F

−1(x, y).
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Figure 5.2 A fifth iterative approximation of F (S) starting at zero.
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Proof.

Fψ0F
−1(x, y) = Fψ0(−x+ 1, y)

= F

(
1

3
(−x+ 1, y)

)
= F

(
−x

3
+

1

3
,
y

3

)
=

(
x

3
− 1

3
+ 1,

y

3

)
=

(
x

3
+

2

3
,
y

3

)
=

1

3
((x, y) + (2, 0))

Claim 5.2.3. 1
3((x, y) + (0, 0)) = Fψ1F

−1(x, y).

Proof.

Fψ1F
−1(x, y) = Fψ1(−x+ 1, y)

= F

(
1

3
(−x+ 1, y)

)
= F

(
−x

3
+

3

3
,
y

3

)
=
(x

3
− 1 + 1,

y

3

)
=
(x

3
,
y

3

)
=

1

3
((x, y) + (0, 0))

Claim 5.2.4. 1
3((x, y) + (2, 2)) = Fψ2F

−1(x, y).
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Proof.

Fψ2F
−1(x, y) = Fψ2(−x+ 1, y)

= F

(
1

3
(−x+ 1,−y + 2)

)
= F

(
−x

3
+

1

3
,
y

3
+

2

3

)
=

(
x

3
− 1

3
+ 1,

y

3
+

2

3

)
=

(
x

3
+

2

3
,
y

3
+

2

3

)
=

1

3
((x, y) + (2, 2))

Since S is compact and F is continuous, F(S) is compact, thus it is the unique compact

set invariant under this iterated function system.

Proposition 5.2.5. F (S) = {(x, y)|x ∈ C3, y ∈ C3, x− y ∈ C3}, where C3 is the middle-thirds

Cantor set discussed in Proposition 4.1.9.

Proof. Let (x, y) ∈ S. We know by Proposition 4.1.9 that x ∈ C3, y ∈ C3 and x+ y ∈ C3.

Let F (x, y) = (s, t) = (1 − x, y). We want to show that s ∈ C3, t ∈ C3 and s − t ∈ C3.

We have that s = x ∈ C3 by assumption. t = 1− y ∈ C3 because the Cantor set is symmetric

across the point 1/2 and y ∈ C3. s − t = (1 − x) − y = 1 − (x + y) ∈ C3 because x + y ∈ C3

and the Cantor set is symmetric across the point 1/2.

Theorem 5.2.6. {(t, t) : t ∈ Z/2} is a spectrum for L2(µB).

Proof. Let T be the fractal defined in Claim 5.3.1, F : R2 → R with F (x, y) = (y, x). Note

that

F (x, y) =

 0 1

1 0


x
y


satisfies the conditions for Proposition 5.0.1 with G(x, y) = F (x, y).
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Note also that F (T ) = F ({(x, y) : x ∈ C3, y ∈ C3, y − x ∈ C3}) = {(x, y) : x ∈ C3, y ∈

C3, y − x ∈ C3} = XB, for B = {(0, 0), (2, 0), (2, 2)}.

So by Proposition 5.0.1, Λ = {(t, t) : t ∈ Z/2}, which we proved in Proposition 5.1.25 is a

spectrum for T . Therefore, G(Λ) = {(t, t) : t ∈ Z/2} is a spectrum for F (T ).

5.3 The “Upper Right” fractal

Now, let:

F (x, y) =

 −1 0

0 −1


x
y

+

1

1

 (5.14)

and S the fractal from Definition 4.1.1.

Geometrically, F (x, y) flips R2 across the line y = 1/2− x.

Figure 5.3 A fifth iterative approximation of F (S) starting at zero.
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F (x, y) satisfies the conditions for Proposition 5.0.1, with

G(x, y) =

 −1 0

0 −1


−1

x
y

−
1

1


 = F (x, y). (5.15)

By Proposition 5.0.1 and the work done on S in Chapter 4, we already know three spectra

for F (S), derived from the three spectra in Chapter 4.

We find another spectrum by working directly.

Claim 5.3.1. F (S) is the invariant set generated by the iterated function system {1
3(x, y)+B},

for B = {(2, 2), (0, 2), (2, 0)}.

Proof. Use Lemma 5.0.2. By Definition 4.1.1, S is invariant under the iterated function system

{ψ0(x, y) = 1
3(x, y), ψ1(x, y) = 1

3(x+ 2, y), ψ2(x, y) = 1
3(x, y + 2)}.

Claim 5.3.2. 1
3((x, y) + (2, 2)) = Fψ0F

−1(x, y).

Proof.

Fψ0F
−1(x, y) = Fψ0(−x+,−y + 1)

= F (
1

3
(−x+ 1,−y + 1))

= F (−x
3

+
1

3
,−y

3
+

1

3
))

= (−x
3
− 1

3
+ 1,

y

3
− 1

3
+ 1)

= (
x

3
+

2

3
,
y

3
+

2

3
)

=
1

3
((x, y) + (2, 2))

Claim 5.3.3. 1
3((x, y) + (0, 2)) = Fψ1F

−1(x, y).
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Proof.

Fψ1F
−1(x, y) = Fψ1(−x+ 1,−y + 1)

= F (
1

3
(−x+ 3,−y + 1))

= F (−x
3

+ 1,−y
3

+
1

3
))

= (
x

3
− 1 + 1,

y

3
− 1

3
+ 1)

= (
x

3
,
y

3
+

2

3
)

=
1

3
((x, y) + (0, 2))

Claim 5.3.4. 1
3((x, y) + (2, 0)) = Fψ2F

−1(x, y).

Proof.

Fψ2F
−1(x, y) = Fψ2(−x+ 1,−y + 1)

= F (
1

3
(−x+ 1,−y + 1 + 2))

= F (−x
3

+
1

3
,−y

3
+

3

3
))

= (
x

3
− 1

3
+ 1,

y

3
− 3

3
+ 1)

= (
x

3
+

2

3
,
y

3
)

=
1

3
((x, y) + (2, 0))

Since S is compact and F is continuous, F(S) is compact, thus it is the unique invariant

set generated by this iterated function system.

Proposition 5.3.5. F (S) = {(x, y)|x ∈ C3, y ∈ C3, 1 − (x + y) ∈ C3}, where C3 is the

middle-thirds Cantor set discussed in Proposition 4.1.9.

Proof. Let (x, y) ∈ S. We know by Proposition 4.1.9 that x ∈ C3, y ∈ C3 and x+ y ∈ C3.
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Let F (x, y) = (s, t) = (1− x, 1− y). We want to show that s ∈ C3, t ∈ C3 and t− s ∈ C3.

We have that s = 1 − x ∈ C3 and t = 1 − y ∈ C3 because the Cantor set is symmetric across

the point 1/2 and x, y ∈ C3. 1 − (t − s) = 1 − (1 − y + 1 − x) = 1 − (x + y) ∈ C3 because

x+ y ∈ C3 and the Cantor set is symmetric across the point 1/2.

Next, we construct a basis for F (S) using the method of Theorem 2.2.13.

First we compute:

WB(x, y) =
1

N
|mB(x, y)|2 =

1

9

∣∣∣e4πi(x+y) + e4πix + e4πiy
∣∣∣2 (5.16)

Lemma 5.3.6. WB(x, y) = 1 if and only if (x, y) ∈ Z/2× Z/2.

Proof. WB(x, y) = 1 if and only if |e4πi(x+y) + e4πix + e4πiy|, that is, if all three terms have the

same argument, i.e.:

2x = 2y = 2x+2y mod 1, which implies that x = y = x+y mod 1/2 . The third condition

is redundant because: x = x+ y mod 1/2⇒ 0 = y mod 1/2

y = x+ y mod 1/2⇒ 0 = x mod 1/2

Therefore, it is sufficient to require that (x, y) ∈ Z/2× Z/2.

Next, we choose a set L to generate our orthonormal basis: let L = {(0, 0), (2, 1), (4, 2)}

We verify that:

M1 =


1 1 1

e2πi(4/3) e2πi(2/3) e2πi(6/3)

e2πi(8/3) e2πi(4/3) e2πi(12/3)

 =


1 1 1

e2πi(1/3) e2πi(2/3) 1

e2πi(2/3) e2πi(1/3) 1


is Hadamard. We already know from Proposition 4.2.2 thatXL, the invariant set of {1

3(x, y), 1
3(x+

2, y + 1) + 1
3(x+ 4, y + 2)} is {(2t, t) : t ∈ [0, 1]}.

From Lemma 4.2.8, we know that (2t, t) ∈ XL is on a cycle if t = 1
3n−1 for some n; we also

know thatWB(2t, t) = 1 if and only if t ∈ {0, 1/2, 1}. So ourWB-cycles are {(0, 0), (1, 1/2), (2, 1)},

the same as they were in Section 4.2.

Therefore, to get our spectrum, we apply {3(x, y), 3(x, y) + (2, 1), 3(x, y) + (4, 2) to

{(0, 0), (−1,−1/2), (−2,−1)}, and get the same result as in Proposition 4.2.3.
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Since the XL has not changed, the proof of the transversality of the zeros condition in

Section 4.2.1 also still holds.

Therefore:

Theorem 5.3.7. {(2t, t) : t ∈ Z/2} is a spectrum for L2(µB).

We note that this is not the spectrum for F (S) given by Proposition 5.0.1. That spectrum

would be {G((2t, t)) : t ∈ Z/2}, where G(x, y) is the function from (5.15):

Corollary 5.3.8. {(s, 2s− 1) : s ∈ Z/2} is a spectrum for L2(µB).

Proof. By Proposition 5.0.1, {G((2t, t)) : t ∈ Z/2} is a spectrum for L2(µB). We calculate:

G((2t, t) =

 −1 0

0 −1


−1

2t

t

−
1

1


 =

 −1 0

0 −1


−12t− 1

t− 1


= (1− 2t, 1− t), t ∈ Z/2

Rewritten in terms of s = 1− t, this becomes: {(s, 2s− 1) : s ∈ Z/2}

5.3.1 Another shared spectrum

After noticing that {(2t, t) : t ∈ Z/2} is a spectrum for both L2(S) and L2(F (S)), for F

as in (5.14), we naturally wondered whether they might share other spectra, in particular, the

spectrum R(0, 0) ∪R(−1,−1/2) ∪R(−1/2,−1) from Theorem 4.4.

Theorem 5.3.9. Λ = R(0, 0) ∪R(−1,−1/2) ∪R(−1/2,−1) is a spectrum for L2(F (S)).

Recall that the L which generates Λ is {(0, 0), (1, 2), (2, 1)} and check that (R−1B,L) is a

Hadamard pair for {(2, 2), (0, 2), (2, 0)}:

M1 =


1 1 1

e2πi(6/3) e2πi(4/3) e2πi(2/3)

e2πi(6/3) e2πi(2/3) e2πi(4/3)

 =


1 1 1

e2πi(1/3) e2πi(2/3) 1

e2πi(2/3) e2πi(1/3) 1


We have already computed WB(x, y) in (5.16), and verified that WB(x, y) = 1 if and only

if (x, y) ∈ Z/2,Z/2). Moreover, since the matrix A = 1
3I is the same for both S and F (S), and

the set L is the same, XL is the same for both.
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Therefore, the WB-cycles will be the same as in (4.60): {(0, 0), (1, 1/2), (1/2, 1)}; and WB

and XL will continue to satisfy the transversality of the zeros condition in Definition 2.2.12.

Therefore, by Theorem 2.2.13, Λ = R(0, 0)∪R(−1,−1/2)∪R(−1/2,−1) is a spectrum for

L2(F (S)).

It is our hope in the future to use these shared spectra to generate a spectrum for S ∪F (S).
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