
Alias-free parameters in C using multibodies

by

Medhat Galal Assaad

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Major Professor: Gary T. Leavens

Iowa State University

�mes, Iowa

2001

11

Graduate College
Iowa State University

This is to certify that the Master 's thesis of

Medhat Galal Assaad

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

lll

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Problems caused from aliasing .

1.2 Literature review .

1.3 The ACL approach

1.3.1 The 'imports ' clause.

1.3.2 Multi-bodies

1.4 Hypothesis

1.4 .1 Specially written bodies

1.4.2 Alias-free arguments

1.4.3 Dynamic dispatch

1.4 .4 Static dispatch

1.5 Thesis organization . .

CHAPTER 2 EXPERIMENTAL DESIGN

2.1 Setup

2.2 Overview of GCC .

2.2.1 The C grammar file

2.2.2 Trees in GCC

2.2.3 Identifiers & Symbol lookup in C

2.2.4 Chains and lists .

2.2.5 Binding levels in C

2.2.6 The compilation process

2.2.7 Memory allocation in GCC

........ 1

1

3

6

7

7

7

8

8

9

9

9

....... 10

10

11

11

11

12

13

13

13

14

2.3 Code changes

2.3.l The ' imports' clause.

2.3.2 iviulti-bodies

2.3.3 The Dynamic Dispatch code

2.3.4 Static dispatch

CHAPTER 3 RESULTS . .

3 .1 Testing methodology

3.2 Test results

CHAPTER 4 DISCUSSION

lV

4.1 Decisions we made in our implementation

4.2 Pragmatic value of ACL

CHAPTER 5 CONCLUSION AND FUTURE WORK

APPENDIX SOURCE CODE

A.l Changes made to the grammar

A.2 The bindingJevel structure

A.3 The Identifier structure .

A.4 The acLfunction structure

A.5 Code to reuse acLfunction structures

A.6 The acLbody structure .

A.7 Name lookup functions .

A.8 Code to store and restore the globals from the imports clause

A.9 Code to start an ACL function

A.10 Code to finish an ACL function

A.11 Code used to start ACL bodies

A.12 Code to finish an ACL body .

A.13 The decision tree structure

A .14 The process_aliasJists function

A.15 Code to generate the dynamic dispatch

14

15

17

19

21

23

23

24

27

27

27

29

30

30

38

40

41

42

43

44

46

50

53

56

58

59

60

65

A.16 Other helper functions

BIBLIOGRAPHY

V

70

74

1

CHAPTER 1 INTRODUCTION

Two names are aliases if they point to the same storage cell in memory, which means

that this storage cell can be modified through more than one path; so if a variable x is not

modified in a code segment , still , the memory location associated with x can be modified if

another variable y that is an alias to x is modified in the same code segment. The presence

of aliases adds to the complexity of a program, making it more difficult to reason about and

verify. Moreover , the presence of aliases limits the amount of optimization that can be done by

a compiler, unless it does high-quality alias analysis [11, p. 293), which is usually very costly.

This thesis discusses some of the different approaches that have been used to deal with

aliasing problems, and it studies the effectiveness of the ACL approach [10]. The ACL approach

limits aliasing based on dispatch to different bodies of the same function according to the

aliasing pattern at the call site. In this paper we use the same approach and apply it to the C

programming language, and then measure the performance of the resulting code.

The rest of this introduction is organized as follows. Section 1.1 discusses problems caused

from aliasing. Section 1.2 gives an overview of some of the approaches that are used to deal

with aliasing problems, and shows the reasons why we found that ACL has something new to

offer. Section 1.3 shows the ACL approach. Finally we give an outline of the rest of the thesis.

1. 1 Problems caused from aliasing

Aliasing can occur for many reasons: one of which is passing pointers. Many approaches

(which will be discussed later) have been suggested for dealing with aliasing. In this paper , we

apply the ACL approach to the C programming language, to measure the performance that

can be achieved by eliminating aliasing between procedure arguments, and between arguments

2

and global variables, which enables the compiler to do more aggressive optimization.

Aliasing from parameters can happen in two ways. First , the same pointer can be passed

into two parameters, in this case, this same location will have two different names, aliases,

inside the called procedure. The other way is when a pointer to a global is passed as one

of the arguments. If this global is used inside the called procedure, then again , it will have

two names inside that procedure. These pointers can result from the use of call-by-reference ,

indirect storage models, OL as in C , from explicit constructs in the language.

Aliases can cause, in general, two kinds of problems. The first problem is that in the

presence of aliases, it is much harder to reason about the correctness of the code. For example,

in Figure 1.1 , the get_sum() procedure is supposed to calculate the sum of the elements of

array a , and return this sum in the location pointed to by the parameter sum. While this code

may look like it will always return the required result , in the presence of aliasing, this may

not always be true. It may return an incorrect result if *sum is itself one of the locations in

the array a; for example if invoked with get_sum (b, 10, &b [3]). In C , *sum refers to the

memory location pointed to by sum, while &x returns the address of x.

void get_sum (int a[], int num, int *sum){
int i;

}

*sum=O;
for (i=O; i < num; i++)

*sum+= a[i];

Figure 1.1 An example of correctness problems caused by aliases

The second kind of problem that may be caused by aliases may not affect the correctness

of code but will limit the ability of the compiler to achieve good optimization. In the code

given in Figure 1.2, while the equality check between c and *a may seem to be always true and

redundant , it cannot be removed by an optimizing compiler, since *a and g may be aliases, and

maybe_modify _g () may potentially alter the value of g. Thus the redundancy of the check is

3

not provable unless the compiler can figure out the aliasing relationship between the argument

to foo () and all the globals that are used in maybe_modif y _g (). With separate compilation ,

or if foo () is a function in a library, the compiler will have no way to analyze all the locations

from which foo () is called. Moreover, if foo () is called, say, 1000 times , in only one of

which *a and g are aliases , the compiler will not be able to eliminate this seemingly redundant

check to insure the correctness of this one case, thus missing an opportunity to increase code

efficiency.

int g = 5;

void foo (int *a){
int c;

}

C = *a;
maybe_modify_g ();
if (c == *a){

I* do something here *I
}

Figure 1.2 An example of optimization problems caused by aliases

1.2 Literature review

Other research has tried different approaches to solving aliasing problems. These ap-

proaches usually follow one of two patterns, either restricting the aliasing possible, or giv-

ing some hint to the compiler about the aliasing that pattern that will occur at run time.

Euclid [14] and RESOLVE [4, 12, 15 , 6] restrict the possible aliasing patterns. Some other

compilers [16 , 7, 8] and the latest C standard [9] use hints to instruct the compiler about

aliasing, so that this information can be used for optimization. We discuss these below.

The main goals behind the design of Euclid was to help in program verification. Thus they

had to deal with problems that are caused from aliasing. Euclid has pointer variables, and

passing by-reference, which both can cause aliasing between parameters. Pointers in Euclid are

4

iadexes into collections of objects. Collections are explicitly declared variables that are similar

the implicit arrays accessed by pointers in other languages, like C [14]. Thus eliminating

aliasing in Euclid is all about eliminating aliasing between for arrays. But Euclid prohibits

any aliasing between the actual parameters passed to a function by generating checks in the

code that will signal run-time errors if any overlap is detected between the arguments.

In general, to ensure that there is no aliasing between the actual parameters, the developer

will have to add alias analysis code at the call site. Figure 1.3 shows such code for a function ,

p , that takes three reference parameters, when called with a [i] , a [j] , and a [k] as the actual

parameters. In that code p_abc , p_ab , p_ac , and p_bc are different versions of p that handle

different aliasing patterns but achieve the same postconditions. The problem of this approach

is that to ensure correctness , the programmer must add these checks at each call site. This is

what ACL automates .

if (i == j && j == k) {

call p_abc(a[i])
} else if (i == j) {

call p_ab(a[i], a[k])
} else if (i == k) {

call p_ac(a[i], a [j J)
} else if (j == k) {

call p_bc(a[i], a [j J)
} else {

call p(a[i], a [j] , a[k])
}

Figure 1.3 Hand-coded alias analysis at the call-site [10]

RESOLVE on the other hand is concerned with code reuse and modularity. It uses swap-

ping [12, p. 26] for data movement. Swapping means that assignments in RESOLVE are

bidirectional , i.e. when x is assigned to y the value of x as copied to y and the value of y

is copied to x. This swapping is also used when passing arguments to functions. By using

this swapping operation , it is guaranteed that there is only one copy of each pointer during

execution, thus there will be no aliasing. But this also means that the parameters that can

5

be passed to a function are restricted, so for example, ; repeated arguments to calls , use of

global variables as arguments to calls , aliased pointers and array references ... are outlawed or

simply cannot arise" [3, p. 50]. Thus RESOLVE suffers from the same problems as Euclid.

Some compilers, like IBM's XL compiler [16 , 8, 7], use special hints given by the developer

to decide the aliasing pattern between parameters. The XL compiler for example, uses a

pragma that indicates which parameters are guaranteed not to be aliases in a piece of code.

This pragma can be used at the function definition site to instruct the compiler about the

possible aliasing patterns at call sites. This pragma is used for optimization, but it does not

pose any restrictions on the parameters used at call sites. But , even if, unlike Euclid , no run-

time errors will be generated if these pragmas do not hold at each call site, the behavior of the

code at these calls is undefined. Thus to ensure correctness the programmer will have to use

code like that in Figure 1.3, and so encounters the same problems as the Euclid programmes.

In the C standard, a new type qualifier , :restrict' [9 , Section 6.7.3.l], can be used with

pointers to instruct the compiler about the aliasing patterns that that pointer can be involved

in. Figure 1.4 shows an example using restrict. In that example the compiler will assume

that at each invocation of f , x and y will not be aliases, and it may do optimization based on

that assumption. But the developer must insure that none of the call sites breaks t 11<' assumed

pattern, otherwise the behavior is undefined. So, as with IBM 's XL compiler, the extra checks

are needed at each call site.

In summary, all of these approaches, either explicitly or implicitly, limit the options avail-

void f(int * restrict x, int* restrict y, int size)
{

}

int i;

for (i=0; i<size; i++)
x[i] = y[i];

Figure 1.4 The use of the restrict type qualifier in C

6

able for the developer at the call site. And , they may necessitate adding extra code at each

call site to ensure correctness of the resulting code. Hence all could benefit from the ACL idea.

1.3 The ACL approach

Alias Controlling Language, or ACL for short, takes a language design approach to elim-

inating aliasing [10, p. 4]. In this approach , a separate body is provided for each aliasing

pattern that can occur between the parameters and between the parameters and the globals ,

thus each procedure may have multiple bodies, each of which is guaranteed not to have any

aliasing between the parameters. At the call site, a call will be dispatched (statically if possible,

or otherwise dynamically) to the body that matches the aliasing pattern among the arguments ,

if that body does not exist an error will occur. Thus, ACL follows a Euclid-style solution, but

it moves the burden of alias analysis from the call site to the function-definition site.

Figure 1.5 shows a procedure written in C / ACL, i.e. C with ACL extensions. In this

code we notice two things that give ACL its distinct flavor. First , a procedure must specify

explicitly all the globals it uses with an imports() clause. Then, the :, I alias (x, a) " starts

the second body for swap_wi th_a () , this body, which in this case does nothing, will be used

when swap_wi th_a () is called with an alias to the global variable a. In C / ACL only the first

variable in the alias list that can be used inside the corresponding body. So, in that example,

only x can be used in the second body.

int a = 1;

void swap_with_a (int *x) imports (a){
int tmp = *x;
*X = a;
a= tmp;

} I alias (x, a){
I* do nothing *I

}

Figure 1.5 C / ACL code with multiple bodies

7

1.3.1 The 'imports' clause

The imports clause is used to declare all the globals that are used in the function: which can

be used to check that all the possible bodies are implemented , or give warnings for unimple-

mented ones. To make the transition to ACL easier and to maintain backwards compatibility

with C, the imports clause acts like a flag for ACL functions. So, even if a function does not

use any globals , it must have an imports clause - an empty one in this case - to be treated as

an ACL-function. A function that does not have an imports clause is treated as a normal C

function , and is not allowed to have multiple bodies.

Globals listed in the imports clause can be listed as identifiers: in which case they will

have the same type inside the function as outside: or, they can be given a more restrictive

type - in terms of constness - which can be used by the compiler when optimizing that body.

Figure 1.6 shows an example in which size is a global integer , inside the function array_sum

it will be treated as a constant.

1.3.2 Multi-bodies

Each ACL function can have more than one body implementing it. Inside the first body

all the parameters and imported globals can be used. Subsequent bodies are started with an

alias list which has the following syntax: ' I alias (alias_list ; alias_hst ; ...) ' where each

alias_list is a comma-separated list of identifiers. An alias_list can include any parameter that

has a pointer type or any of the imported globals. The semantics is that inside that body,

all the stated identifiers in each alias_list will be aliases to each other. Inside that body: only

identifiers from the parameters and imported globals that are not included in alias lists and

the first identifier in each alias_list can be used. For example, Figure 1.5 shows a function with

two bodies.

1.4 Hypothesis

In order to measure the merits of ACL for optimization we set up an experiment in which

we can measure the speedup that can be gained from using it in a piece of code. This practical

8

int size= 5;

int array_sum (int a[]) imports (const int size){
int sum=O;

}

int i;

for (i=O; i<size; i++){
sum+= a[i];

}

return sum;

Figure 1.6 Globals with restricted types in the imports clause

experiment should also be helpful in uncovering the issues that may hamper the adoption of

ACL by developers.

Our main hypothesis is that by applying ACL to a program we can get n enhancement

in the run-time execution speed of the program. We hypothesize that this will occur for the

following reasons:

1.4.1 Specially written bodies

Since the developer can supply a separate body for each aliasing pattern: aml siI1cc the

developer knows the semantics of this function for each aliasing pattern, the developer can

write each body in an efficient way to make use of that pattern. An example is the second

body in Fig. 1.5 in which, knowing that x and a are aliases, we had only to give an empty

body. Our hypothesis is that each body is no less efficient than the original function.

1.4.2 Alias-free arguments

In a function that uses ACL features, the arguments to each body will be guaranteed

not to be aliased with other arguments or globals. Our hypothesis is that this extra piece of

information enables a compiler to do a better job when optimizing these bodies, thus generating

more efficient code for each of them: compared to a standard compiler.

9

1.4.3 Dynamic dispatch

\Ve hypothesize that the dynamic dispatch code that matches an aliasing pattern to the

corresponding body will be the only overhead from using ACL.

1.4.4 Static dispatch

Our final hypothesis is that static dispatch will be possible from the call site in many

cases. By using static dispatch, thus avoiding the overhead from dynamic dispatch , and with

optimization for the first two reasons: we hypothesize that the execution speedup from ACL

will outgrow its overhead.

1.5 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents our experiments. Chap-

ter 3 gives our experimental results, with our interpretation and conclusion. Chapter 4 discusses

the issues and the ideas that we had when carrying out this experiment. And finally, Chapter 5

summarizes our results and discusses some future work.

10

CHAPTER 2 EXPERIMENTAL DESIGN

2.1 Setup

For testing our hypothesis we apply ACL to an existing compiler and measure the perfor-

mance difference between compiling code with and without ACL features. For this result to

be meaningful the compiler that is to be changed had to had the following features:

• It had to be open source, so we can change it.

• It had to be doing aggressive optimization, and use aliasing information in doing these

optimizations so that our hypothesis can be effective.

• The compiled language haa to support either passing by reference or passing pointers

so that situations in which there is aliasing between the arguments and the globals may

occur.

• The com piled language should preferably be a widely used programming language so

that the practical benefits of ACL can be seen which may help in its adoption in real life

software projects.

For all these reasons , our choice was GCC (the GNU Compiler Collection). Our goal was

to apply ACL to the C front end of this compiler suite.

The development machine was an AMD-K2 380 MHz with 192MB of RAM: running RedHat

Linux 6.2: and the version of GCC modified was GCC 2.95.2 with Pentium specific optimiza-

tions.

11

2.2 Overview of GCC

Before presenting the changes that had to be made to GCC to support ACL, it is helpful to

have an overview of how GCC is structured. It has to be noted here: that code efficiency was

paramount in GCC, and this was sometimes at the expense of clarity, so globals, for example,

are used extensively and across files; this makes it, sometimes, hard to understand the internals

of GCC in a modular way, rather, one has to have a grasp of the whole picture.

The only concession GCC makes to understandability, and to achieve a level of information

hiding, most structures in GCC are accessed through accessor macros. Thus to change the way

a data structure is defined, one only has to change the definition of these macros - provided

that the data structures are not accessed directly.

2.2.1 The C grammar file

GCC uses bottom-up (LALR) parsing, and it generates its parser from a grammar file using

bison1 . Both C and ObjectiveC share the same input grammar file, GCC/gcc/c-parse.in2 , and

the C specific parts are surrounded by if c and end if c pairs , while the ObjectiveC specific

parts are surrounded by ifobj c and end ifobj c pairs. At the time when GCC itself is

compiled, that input grammar file is split into two files , one of which, GCC / gee/ c-parse.y, is

the one used to generate the C parser.

To avoid confusion in this paper, when we refer to the grammar we will use the generated

C grammar file , but it must be clear that a ll changes were actually made in the input file ,

and they were always surrounded by the if c and end if c pairs so that they don 't affect the

generated ObjectiveC grammar file.

2.2.2 Trees in GCC

GCC consists of many front ends and many back ends , so it can compile different source

languages3 , and target different platforms. Information is passed from front ends to back ends
1 Bison is a Yacc-like parser generator.
2 GCC is the root of the gee source tree.
3 As of version 2.95 .2 CCC can compile C , C++, Objective C, Fortran 77, Chill , and Java.

12

using two trees, one of which, called ''tree" is mainly used in the front end: and the other

called ;;rtx" and is mainly used in the back end.

The tree nodes , defined in CCC/gcc/tree.h: hold information about symbol table entries.

This information is somewhat common to all programming languages compiled by CCC, with

some room for language specific information. In the case of C , this language specific information

is defined in CCC/ gee/ c-tree.h.

A tree node is a pointer to a union of structures, each of which is a structure that represent

a different kind of entity; so for example there is a tree_decl structure that represents a dec-

laration (either variable, parameter, label, typedef or function declaration) , tree_identifier

which represents an identifier, tree_list which represents a list of other tree nodes , and

tree_type which represents types. All tree nodes share as their first element a tree_common

structure which holds data common to all of them, including a tag that differentiates between

different union members.

Access to different structure members is done through accessor macros defined with the

different tree structures. These macros , in addition to being used to access the structure

members, can be used to type check tree nodes (this can be done with special flags in the

makefiles.)

The rtx nodes, defined in CCC/gcc/ rtl.h , represent source code statements when converted

to a platform independent Register Transfer Language, which will be optimized and then

converted to platform specific assembly language by the back end.

2.2.3 Identifiers & Symbol lookup in C

During the lexical analysis phase, defined in CCC/gcc/c-lex.c, each identifier is returned

as a tree_identif ier node. Different identifiers sharing the same name will return the same

identifier node; i.e. , there exists only one tree_identif ier node for each unique name through-

out the compilation process. The macro IDENTIFIER_POINTER returns a pointer to the string

representing the name of an identifier.

For symbol lookup purposes, the C front end adds, among other things, two members to

the identifier node, which can be accessed with the macros IDENTIFIER_GLOBALVALUE and

13

IDENTIFIER_LOCALVALUE. The first points to a tree_decl corresponding to the global dec-

laration of that identifier (if any), and the second points to the local declarat ion visible in

t he current binding level. These two values help make symbol lookup - which is a frequent

operation when parsing - very efficient ; all that has to be done, is to use the identifier node

returned from the lexer and check one of these two values depending on the context.

Symbol lookup in the C front end is done through the two functions lookup_name (name)

and lookup_name_current_level (name) defined in GCC/gcc/c-decl.c: where the first does the

expected symbol lookup and the second only searches in the current binding level at the time

of lookup.

2.2.4 Chains and lists

Throughout the compilation process, lists are used extensively. Each tree node has a

chain member that can be used to chain that node to other nodes. To enable tree nodes

to share in more than one list , there is also a special tree structure called tree_list. These

tree_list nodes can be chained together to form a list, with each node pointing to two tree

elements. The contents of a tree_list node are accessed using the macros TRELPURPOSE and

TRELVALUE. The semantics of TRELPURPOSE and TRELVALUE depend on the location these

lists are used.

2.2.5 Binding levels in C

A binding level is associated with each segment of code that can have its own declarations.

The binding level is used to bind a name to its value in that code segment. In C , binding levels

can nest: with declarations in inner binding levels shadowing declarations with the same name

in outer binding levels. In GCC a binding level is represented by a binding_level structure

defined in GCC/gcc/c-decl.c, shown in appendix A.2 , with the current binding level pointed

to by the current_binding_level global variable.

2.2.6 The compilation process

Instead of building the syntax tree for the whole compilation unit - a preprocessed source

file - GCC compiles one function at time all the way to assembly language. During compilation,

14

CCC maintains symbol table information in tree nodes. Information related to global symbols

is persistent throughout the compilation of the compilation unit. When parsing the body of

a function , each statement is converted to rtx nodes, which represent the syntax tree of that

statement. At the end of the function , the syntax tree of the whole function is optimized and

converted into assembly language.

In the case of inlined functions, or when doing aggressive optimization , the optimized syntax

tree of the function is stored in its symbol table node to be used later.

2.2. 7 Memory allocation in GCC

To streamline memory allocation in GCC, special functions for memory allocation are used.

When memory is allocated for an object - a tree node or an rtx node - that object is put on

an ;object stack' . Depending on the type of the object, and the phase of compilation, different

objects will be put on different stacks, with each stack having its own life span. For example,

all identifiers will be on the permanent stack, and will persist from the point of their creation

up to the end of the compilation. Globals will also reside on the permanent stack, while local

variables and function parameters will be on the function stack which is flushed at the end of

each function. There is other stacks that are emptied at the end of an expression, these usually

hold the syntax tree generated when evaluating subexpressions. Object stacks themselves are

defined in GCC /libiberty / obstack.c, while the code that selects which type of object resides

on which stack, and when to free the objects on each stack is defined in GCC/gcc/tree.c.

2.3 Code changes

To support ACL functions , we had to first implement the code for the imports clause which

will make only imported globals visible inside the function, and we had to implement multi-

bodies with the code to select the body that matches the aliasing pattern for each call. We

added a structure called acLfunction to GCC/gcc/c-decl.c, shown in appendix A.4. This

structure has the main information needed to emit the code needed for the multiple bodies ;

it holds the decision tree that is used for the dynamic dispatch code, and a list of the globals

used in that function. The global variable current_acLfunction points to the current ACL

15

function being compiled, which is analogous to the current_function_decl global variable

used originally in GCC.

To increase code efficiency, these structures are reused when not needed: instead of allocat-

ing new structures each time. The code for reusing these structures was modeled after similar

code in the C front end, and is shown in appendix A.5.

2.3.1 The 'imports' clause

When implementing the imports clause , we had to implement two main pieces of function-

ality. The first was making only the imported globals available inside the function body, which

means name lookup must be modified. The second was allowing the type of a global to be

restricted inside that body. All globals had to return to their original types after the end of the

ACL function , and this must still work correctly with nested functions as they are supported

in GCC.

2.3.1.1 Supporting more restrictive types

Since each variable declaration - VAR_DECL - structure points to a type structure, all that

has to be done to support the more restrictive types was changing the pointer inside the

variable declaration to the new type before parsing the function , and changing it back to the

original type at the very end of that function . This was done with a chain of acLold_decl

structures stored in the current_acLfunction. When parsing the imports clause , the type

of the global is changed to the new type: and the original type is stored in an acLold_decl

structure. When parsing the body of the function , any of the globals that are declared in the

imports clause will have the type pointed to by its DECL structure~ which is the type declared

in the imports clause. At the end of the function , the chain of acLold_decl structures will

be traversed: and the type of each imported global will be changed to the one stored in the

acLold_decl structure: which is the type of that global before starting that ACL function .

Figure 2.1 shows a part of the acLold_decl chain: with one global variable which originally

had TYPE A: but was declared with TYPE B in the imports clause.

16

IDENTIFIER

ACL old Deel
Global Value

DECL

Old T ype VAR_DECL Local Value

Old ACL level ACL level

chain

ACL old Deel T ype

DECL
TYPE B

Old Type

Old ACL level

chain TYPE A

Figure 2.1 The globals after an imports clause

·when creating the acLold_decl chain, the chain elements are sorted in alphabetical order ,

using each globars name; this will be important when emitting the code for the multi-bodies,

as will be explained later.

2.3.1.2 Name lookup with imported globals

Since GCC supports nested functions , name lookup had to be changed to accommodate

ACL functions and imported globals. The main concern here was to keep name lookup as

efficient as it originally was. We added a variable acLlevel to the binding level structure,

which stores the nesting level of ACL functions. So, in a nested function chain, the acl level for

all bindings outside of ACL functions will be zero , and starting from the binding level for the

first ACL function will be one, and it will be incremented each time an ACL function is met in

17

that nesting chain. We also made each binding level point to its corresponding FUNCTION_DECL.

A variable acLlevel was also added to the IDENTIFIER structure as shown in appendix A.3.

Initially the acLlevel for all identifiers - and thus for their corresponding variable decla-

rations - is zero. An imported global will take the acLlevel of the binding level corresponding

to the function in which it is imported.

At name lookup time, first , the original lookup is done return a DECL: this DECL is checked

to make sure that either its acLlevel matches that of the current binding level - which

means it was imported in the inner-most ACL function - or , that from the point of lookup up

to the point in which that variable was defined (given by the macro DECLCONTEXT) we don 't

encounter an ACL function.

If one of the previous two conditions is met, the declaration from the original name lookup

is returned, otherwise NULL is returned which signals name lookup failure. Name lookup is

done through the function ' lookup_name ' defined in GCC/gcc/c-decl.c, with another function

:lookup_name_in_acLimports' used for name lookup when parsing the imports clause, which

goes one binding level up before doing regular name lookup, so that parameters from the

current function are not considered when doing name lookup for imported globals.

2.3.2 Multi-bodies

For a multi-body C/ ACL function , each body will be translated into a regular C function

at compilation time, and another function will be generated for the dynamic dispatch. So, for

example, the resulting assembly code for a 3-body ACL function will be 4 assembly functions ,

one corresponding to each body and one containing the dynamic dispatch code which matches

the aliasing pattern between the arguments and the globals.

2.3.2.1 Body naming

Since each single ACL function will map to multiple assembly functions , a consistent naming

scheme must be used to name these assembly functions. As an example, let us consider the

function 'int f oo (int *x, int *Y, int *Z) imports (m, 1) ' , and let us suppose that

this function has three bodies, with the two additional bodies have alias lists 'alias (x, y) '

18

&nd :alias (y, z, 1; x, rn) ' . When compiled, this function will be translated into four

functions. The one doing the dynamic dispatch will be called 'foo' as it is the entry point to

that function. The first body, in which there is no aliasing between the parameters and the

imported globals , will be called _foo$acl where the name f oo is prefixed by an under-bar and

$acl is appended to it. For the second body, where the first parameter is aliased to the second

parameteL the name will be ' _foo$acLab' where the _ab part specifies the alias list with lower-

case characters corresponding to parameters , where 'a ' corresponds to the first parameter, 'b '

corresponds to the second and so on. The name of the third body will be '_foo$acLaB_bcA',

where _bcA corresponds to the first alias list , and _aB corresponds to the second one. In such

lists upper-case characters correspond to imported globals, where 'A' corresponds to the first

imported global when sorted alphabetically, and 'B' corresponds to the second one and so on.

To insure unique names , the parts corresponding to alias lists are sorted alphabetically, i.e.

a body with an alias list :alias (x, rn; y, z, 1)' will generate the same name as the one

given above for the alias list alias (y, z, 1; x, rn). The code for crafting these names is

in the function 'process_alias_lists ' , shown in appendix A.14, in GCC / gee/ c-decl.c. That

function uses the function 'acLgeLid_syrnbol ', shown in appendix A.16 , which returns the

character corresponding to an identifier.

2.3.2.2 Generating functions from bodies

When parsing an ACL function , each body will be translated into a function. For each

body, an acLbody structure, shown in appendix A.6 , will be created. When processing the

alias list of each body, the function generated from that body will be given a name as described

above. At the same time, all the identifiers that are not first in an alias_list will be rendered

invisible inside that function. Parameters will be removed from the list used when creating

that function. And , globals will be restored to their original state, including their original

acLlevel , which will make them invisible inside that function. At the end of the body, the

state of these globals will be set to their state just after the imports clause , thus making them

visible to subsequent bodies. Hiding these variables is done by the function acLrernove_id

shown in appendix A.16. And, restoring the globals is done by the function acLf inish_body

19

shown in appendix A.12.

When generating these functions , we had to instruct the compiler that there is no aliasing

between the arguments and the globals. This way the compiler can use this piece of infor-

mation to perform some optimizations which otherwise would not be possible. We use the

' f lag_argument_noalias ' flag, originally in GCC, for that purpose. We set that flag before

optimizing ACL bodies, and restore it to its original value afterwards.

2.3.3 The Dynamic Dispatch code

2.3.3.1 Creating the decision tree

At the same time as the alias lists of each body are processed, the part of the decision tree

leading to that body is created. The branch of the tree corresponding to the first body, in

which there is no aliasing, will contain comparisons between pairs of each of the parameters

that have a pointer type and the imported globals. As an example, after starting the first

body of a function bar with a prototype 'void bar (int *x, int *Y, int *z) imports (m) '

the decision tree will look like the one at the top left corner of Figure 2.2 (the arrow pointing

to the right is the 'not alias ' path). In that figure: as well as in the code for the decision tree ,

each variable is represented by the character used for it in the function name.

For each subsequent body, a branch will be constructed. The branches for the bodies need

not contain all the comparisons, since by knowing at some point that two variables arf' aliases

we only need to compare one of them to the other variables. Continuing on the previous

example , if the second body has the alias list ' I alias (x, y, z) ' then the first comparison

between a and b must follow the 'alias' arrow (to the left). After that comparison we do not

need to compare b to anything else. This will be done in the code by setting the ' ignore'

flag in the decision tree node structure for all nodes containing b for that body. By ignoring

these redundant checks we increase the efficiency of the code generated from that decision tree.

Figure 2.2 shows the tree after starting that body, as well as after starting two other bodies

with alias lists ' I alias (y, m)' and ' I alias (x, z; y, m) ' respectively.

20

ab ab

/~
a C a C a C

/
aA aA aA

b C _b a r$acLabc b C

bA bA

cA CA

..cbar$acl _bar$acl

ab ab

/~ /~
a C a C a c a c

/ /
aA aA aA aA aA

_ba r$acLa bc b C _bar$acLabc 6 A b C

/
_bar$acL ac_bA bA

_bar$acLbA c A _bar$acLbA c A

_bar$acl _ba r$acl

Figure 2.2 Stages in building an example decision tree

2.3.3.2 Converting the decision tree into code

After converting all the bodies into functions, the dynamic dispatch code is generated from

the decision tree. At each node of the tree: the two variables in that node will be compared.

In the case of parameters, the variable itself will be compared for equality as it is a pointer.

In the case of global variables, the address of that global variable will be compared.

To increase the run-time efficiency of the generated code, the checks from all the connected

nodes with only one arrow going out of them will be grouped into one condition as shown

in Figure 2.3. Thus the decision tree from the previous example will be converted to code

similar to that in Figure 2.4. In this code, nodes with both 'alias ' and 'not-alias ' arrows will

21

Figure 2.3 Comparisons grouped in the decision tree

be translated into an if ... else statement. Nodes with only one arrow will be translated to

if statements without an else part, which can fall through to the error reporting code.

2.3.4 Static dispatch

Originally, we planned to do the static dispatch at the· call site. We had to analyze the

arguments at each call site and, based on the aliasing pattern, call the appropriate body.

But when we profiled one of the benchmarks with only the dynamic dispatch code, and with

aggressive optimization: we found that GCC inlines the call to the ACL body from the dynamic

dispatch code in the original call site. Given that what GCC was doing was enough for the

purposes of our experimenL we relied on GCC to do the static dispatch instead of implementing

it ourselves.

if (X ! = y){
if (X ! = Z){

if (X != &m && y != Z){

if (y != &m){
if (z ! = &m){

_bar$acl (x, y, z);
return;

}
} else {

}
}

_bar$acl_bA (x, y, z);
return;

} else {

}

_bar$acl_ac_bA (x, y);
return;

} else {
_bar$acl_abc (x);
return;

}

I* Signal error or abort *I

22

Figure 2.4 Code generated from the decision tree

23

CHAPTER 3 RESULTS

To test our compiler we used benchmarks from the SPEC CPU2000 benchmark suite. We

chose to use that suite because it will ensure that we are thoroughly testing the compiler with

real programs and big input data sets. · Moreover, by changing real programs, this can unearth

situations in which using ACL is easy and straight forward, and other situations in which it

will not give the desired improvement.

When running the SPEC benchmarks, by default each benchmark is run three times. At

the end of these runs, the median of the three results is reported as the result of the benchmark.

The reported result is the ratio between a reference time for the benchmark and the measured

time . This means that faster executions yield higher results.

It has to be noted here that originally the SPEC suite is designed to compare machines

or optimization techniques. This means that initially, it is not intended for the source of the

benchmarks to be changed. In our case, we are not using it to compare our machine to other

machines, but rather to compare the effect of using ACL in the code. So, it should be clear

that the results we are getting can not serve for comparison with other machines.

3 .1 Testing methodology

For each of the benchmarks that we used in our testing, we first profiled the unmodified

source. Using the profile data, we located the candidate functions to be converted to ACL.

These functions had to be taking a large amount of the execution time, and of course, they

had to be passing pointers or using globals.

After converting the chosen functions to C / ACL, we ran the benchmark suite twice , the

first time using the original source code, and then using the modified source code. In both

cases we used the same optimization flags.

24

To see the maximum effect that we can get from using ACL, we used the most aggressive

optimization possible in CCC. Finally, we tested one of the benchmarks with less aggressive

optimization to measure the effect of ACL when static dispatch is not used.

To ensure consistency in the results, all tests were run from the console with no other users

logged in, and most unnecessary daemons were stopped.

3.2 Test results

We ran the test on six benchmarks: parser, me(gee, vortex , gap, and twolf. Parser is an

English language parser, it takes as input a sequence of sentences and returns as output the

analysis of the input sentences. MCF is a combinatorial optimization program, it generates

the timetable for a single-depot vehicle schedule. CCC is an earlier version 1 of gee, it includes

only the C compiler which takes as input preprocessed C files and generates as output 88100

assembly code files. VORTEx is a single-user object-oriented database transaction benchmark.

Gap implements a language and library designed mostly for computing in groups (GAP is an

acronym for Groups, Algorithms and Programming). And the twolf placement and global

routing package is used in the process of creating the lithography artwork needed for the

production of microchips.

The compilation flags used for aggressive optimization where -03 , -f omit-frame-pointer

and -f strict-aliasing. The last flag instructs the compiler that a pointer will only point

to its declared type. This flag had to be used as otherwise CCC assumes that any pointer can

point to any memory location, and skips the alias analysis phase.

MCF, gee, gap 2 , and vortex had good candidate functions. By converting these functions

to ACL, we achieved improvement in the execution time as reported in Tables 3. L 3.2: 3.3,

and 3.4 respectively.

After profiling 'parser ' and ;twolf , we found that most of the candidate functions to be

converted to ACL where not consuming a lot of the execution time, or did not benefit from

the optimization. ACL did not help in that case , and the results were as shown in Table 3.5
1The benchmark was based on GCC version 2.7.2.2
2 When running gap , we ran it only once, instead of three times.

25

and Table 3.6 respectively.

To see the effect of disabling static dispatch , we benchmarked gee with only the -02 flag .

This in effect instructs the compiler to do less optimization than the previous tests: and without

doing alias analysis. In that run, the original code scored 26.3: while the ACL code scored 25.5,

a performance loss of 3%. This may indicate that even the overhead from dynamic dispatch

is acceptable, if ACL is used for other reasons besides optimization, such as better ability to

reason about the code.

Table 3.1 Results for mcf
Original With ACL

Run Ref. Time Run Time Ratio Run Time Ratio
1 1800 4086 44.1 4177 43.1
2 1800 4278 42.1 3930 45.8
3 1800 4255 42.3 3870 46.5

Reported 1800 4255 42.3 3930 45.8 8.3%

Table 3.2 Results for gee
Original With ACL

Run Ref. T ime Run Time Ratio Run Time Ratio
1 1100 4089 26.9 3746 29.4
2 1100 4106 26.8 3835 28.7
3 1100 3582 30.7 4027 27.3

Reported 1100 4089 26.9 3835 28.7 6.7%

Table 3.3 Results for gap
Original With ACL

Run Ref: Time Run Time Ratio Run Time Ratio
Reported 1100 12985 8.47 12719 8.65 2.1 %

26

Table 3.4 Results for vortex
Original With ACL

Run Ref. Time Run Time Ratio Run Time Ratio
1 1900 4171 45.5 3196 59.4
2 1900 3956 48.0 3218 59.0
3 1900 4206 45.2 3327 57.1

Reported 1900 4171 45.5 3218 59.0 29.6%

Table 3.5 Results for parser
Original With ACL

Run Ref. Time Run Time Ratio Run Time Ratio
1 1800 4016 44.8 4055 44.4
2 1800 3668 49.1 3832 47.0
3 1800 3648 49.3 4031 44.7

Reported 1800 3668 49.1 4031 44.7 -8.9%

Table 3.6 Results for twolf
Original With ACL

Run Ref. Time Run Time Ratio Run Time Ratio
1 3000 6240 48.1 6827 43.9
2 3000 6423 46.7 6620 45.3
3 3000 6171 48.6 6569 45.7

Reported 3000 6240 48.1 6620 45.3 -5.8%

27

CHAPTER 4 DISCUSSION

4.1 Decisions we made in our implementation

The paper on which this experiment was based [10) had special treatment for arrays. It

counted an argument to be an alias to the array if it is an alias to one of its members. But since

in C arrays are essentially pointers, we did not have the same behavior in our implementation.

Our notion of aliasing is when two pointers are pointing to the same memory cell, i.e. a pointer

will be an alias to an array only if the pointer points to the first element of the array.

When implementing the code that handles the alias list , we had to decide what should be

allowed to be aliases , and what should not. One question was whether or not different types

could be aliases or not. For example, should we allow a pointer to an integer to be an alias to a

pointer to a char? And whether or not pointers with different type qualifiers should be allowed

to be aliases. For example, should we allow a pointer to an integer to be an alias to a constant

pointer to an integer? In keeping with the spirit of C , which puts all the power in the hands

of the developer , we allowed both situations, giving only warnings when they occur. But it

should be noted that these should handled with extreme care, are they can lead to unexpected

results when used with aggressive optimization, as the compiler assumes that a pointer will

only point to its type, and a constant will actually be constant.

4.2 Pragmatic value of ACL

Beside measuring the performance improvement that we can gain from using ACL, we were

interested in finding out whether it will be easy to adopt ACL. And if it can expand beyond

the theory into the practical world. There is two main hurdles that we thought could face

someone embracing ACL.

Firstly, by having to write new bodies to a function may mean that the semantics of the

28

Lmction must be understood. This can be a big deterrent from ACL to other optimization

techniques that do not require human intervention. But from our experience in applying ACL

to the benchmarks, we found that this is not true. In most cases, the additional bodies will be

very simple. Even when the bodies can not be deduced easily from the original function, one

can copy the same function to all the bodies, and substitute the head of each alias list for that

list members.

Secondly, there is the problem of choosing which functions to convert. We found that by

profiling the program with a representative input data, and finding the bottlenecks, candidate

functions can be easily found in many programs. But we found that it is sometimes cumbersome

to convert functions with more than three or four parameters, as the number of required bodies

grows exponentially with the number of parameters.

29

CHAPTER 5 CONCLUSION AND FUTURE WORK

In this paper, we investigated the efficiency of code generated by GCC when actual param-

eters to a procedure are guaranteed not to have any aliasing between each other and between

them and global variables. Unlike some of the other approaches for dealing with aliases , pa-

rameters in each body are guaranteed to be alias-free. In the same time, our approach does

not limit the aliasing pattern at the call site, thus giving extra freedom to the developer.

Our experiment showed that it is fairly easy to convert regular C functions into ACL-style

functions. This can be achieved in some cases , even without understanding the semantics of

the converted function.

By choosing suitable functions to convert, improvement in the performance can be achieved.

This improvement is attributed mainly to the ability of the compiler to optimize the function

knowing that it has alias-free parameters. The overhead from dynamic dispatch can be mini-

mized by using static dispatch whenever possible. When the improvement from optimization

outgrows the dynamic dispatch overhead, a net gain in code efficiency is achieved.

There are some directions in which this experiment can be extended. We are planning

to study the effect of varying the number of functions converted to ACL. We will also make

some experiments to find the functions and optimizations that benefit most from ACL. This

can broaden the criteria upon which functions are chosen to be converted to ACL. We are also

planning to study the effect of converting the C library to ACL on the overall code performance.

In this thesis we were mainly interested in code optimization. But having alias free param-

eters can also be useful in program verification. It would be interesting to study the effect of

our work in making verification easier. It would also be interesting to see if some tools can

do the conversion to ACL automatically. Finally, the same experiment can be applied to an

object oriented language to study its applicability in more complex situations.

30

APPENDIX SOURCE CODE

This appendix contains source code that is relevant to the discussion in the paper. These

code segments are represented in diff-style ; i.e. , whenever a source line is deleted from the code

it will be preceded by a ' - ' sign, and whenever a line is added it will be preceded by a ;+ ' sign.

This code is first copied verbatim from the GCC source code, it is then formatted using the

indent program so that it fits the page width, and finally the diff signs are added manually.

In some cases, when only few lines are added to very large functions , only the parts around

the added lines a re shown. Whenever code from a function is not shown: a comment saying

;;code removed'' will be put in its place.

A.I Changes made to the grammar

From GCC/gcc/c-parse.y

fndef:
typed_declspecs setspecs declarator

+ acl_irnports
{ if (! start_function (current_declspecs, $3,

prefix_attributes, NULL_TREE, 0))
YYERR0R1;

reinit_parse_for_function (); }
old_style_parrn_decls

+ cornpstrnt_start

+
+
+
+
+
+
+

{

}

store_parrn_decls ();
if ($4){

acl_start_function();
acl_save_globals(TREE_CHAIN($4));
if(!acl_start_first_body(O))

YYERR0R1;
reinit_parse_for_function();

}

31

compstmt_or_error
+ acl_compstmt_or_error

{
+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ compstmt_count=
+ acl_finish_function(0,compstmt_count);

}

finish_function (0);
current_declspecs = TREE_VALUE (declspec_stack);
prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary($2);

typed_declspecs setspecs declarator error
{ current_declspecs = TREE_VALUE (declspec_stack);

prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary ($2); }

declmods setspecs notype_declarator
+ acl_imports,

{ if (! start_function (current_declspecs, $3,
prefix_attributes, NULL_TREE, 0))

YYERR0R1;
reinit_parse_for_function (); }

old_style_parm_decls
+ compstmt_start

{
store_parm_decls ();

+ if($4){
+ acl_start_function();
+ acl_save_globals(TREE_CHAIN($4));
+ if(!acl_start_first_body(0))
+ YYERR0R1;
+ reinit_parse_for_function();
+ }

}
compstmt_or_error

+ acl_compstmt_or_error
{

+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ compstmt_count=
+ acl_finish_function(0,compstmt_count);

finish_function (0);
current_declspecs = TREE_VALUE (declspec_stack);
prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary($2);

32

}
declmods setspecs notype_declarator error

{ current_declspecs = TREE_VALUE (declspec_stack);
prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary ($2); }

setspecs notype_declarator
+ acl_imports

{ if (! start_function (NULL_TREE, $2,
prefix_attributes, NULL_TREE, 0))

YYERR0R1;
reinit_parse_for_function (); }

old_style_parm_decls
+ compstmt_start

{
store_parm_decls ();

+ if($3){
+ acl_start_function();
+ acl_save_globals(TREE_CHAIN($3));
+ if(!acl_start_first_body(0))
+ YYERR0R1;
+ reinit_parse_for_function();
+ }

}
compstmt_or_error

+ acl_compstmt_or_error
{

+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ compstmt_count=acl_finish_function(0,compstmt_count);

}

finish_function (0);
current_declspecs = TREE_VALUE (declspec_stack);
prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary($1);

setspecs notype_declarator error

initdcl:

{ current_declspecs = TREE_VALUE (declspec_stack);
prefix_attributes = TREE_PURP0SE (declspec_stack);
declspec_stack = TREE_CHAIN (declspec_stack);
resume_momentary ($1); }

declarator maybeasm maybe_attribute '='
+ declarator acl_imports maybeasm maybe_attribute '='

{ $<ttype>$ = start_decl ($1, current_declspecs, 1,

+

+

+
+
+

+
+
+

init
{

}

33

$3, prefix_attributes);
start init ($<ttype>$, $2, global_bindings_p ()); }

$4, prefix_attributes);
start_init ($<ttype>$, $3, global_bindings_p ()); }

finish ini t ();
finish decl ($<ttype>5, $6, $2);
finish_decl ($<ttype>6, $7, $3);
if ($2) {

}

DECL_ACL_GLOBS($<ttype>6)=TREE_CHAIN($2);
DECL_ACL_FLAG($<ttype>6)=1;

$$ = $<ttype>6;

declarator maybeasm maybe_attribute
+ declarator acl_imports maybeasm maybe_attribute

{treed= start_decl ($1, current_declspecs, 0,
$3, prefix_attributes);

finish decl (d, NULL_TREE, $2);
+ $4, prefix_attributes);
+ finish_decl (d, NULL_TREE, $3);
+ if($2){
+ DECL_ACL_GLOBS(d)=TREE_CHAIN($2);
+ DECL_ACL_FLAG(d)=1;
+ }

+ $$ = d;

+

+

+

+

+

}

notype_initdcl:
notype_declarator maybeasm maybe_attribute '='
notype_declarator acl_imports maybeasm maybe_attribute

{ $<ttype>$ = start_decl ($1, current_declspecs, 1,
$3, prefix_attributes);

init
{

start init ($<ttype>$, $2, global_bindings_p ()); }
$4, prefix_attributes);

start_init ($<ttype>$, $3, global_bindings_p ()); }

f inish_ini t ();
decl_attributes ($<ttype>5, $3, prefix_attributes);
finish_decl ($<ttype>5, $6, $2);
decl_attributes ($<ttype>6, $4, prefix_attributes);
finish_decl ($<ttype>6, $7, $3);

'='

+
+
+
+
+

}

34

if($2){
DECL_ACL_GLOBS($<ttype>6)=TREE_CHAIN($2);
DECL_ACL_FLAG($<ttype>6)=1;

}
$$ = $<ttype>6;

notype_declarator maybeasm maybe_attribute
+ notype_declarator acl_imports maybeasm maybe_attribute

+
+
+
+

+
+
+

{

}

treed= start_decl ($1, current_declspecs, 0,
$3, prefix_attributes);

finish decl (d, NULL_TREE, $2);
$4, prefix_attributes);

finish_decl (d, NULL_TREE, $3);
if($2){

}

DECL_ACL_GLOBS(d)=TREE_CHAIN($2);
DECL_ACL_FLAG(d)=1;

$$ = d;

nested function:
declarator

+ acl_imports
{ push_c_function_context ();

if (! start_function (current_declspecs, $1,
prefix_attributes, NULL_TREE, 1))

{

}

pop_c_function_context ();
YYERROR1;

reinit_parse_for_function (); }
old_style_parm_decls

+ compstmt_start
{

store_parm_decls ();
+ if($2){
+ acl_start_function();
+ acl_save_globals(TREE_CHAIN($2));
+ if(!acl_start_first_body(1))
+ YYERROR1;
+ reinit_parse_for_function();
+ }

}

I* This used to use compstmt_or_error.

35

That caused a bug with input 'f(g) int g {}',
where the use of YYERROR1 above caused an error
which then was handled by compstmt_or_error .
There followed a repeated execution of that same rule,
which called YYERROR1 again, and so on. *I

compstmt
+ acl_compstmt

{
+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ compstmt_count=
+ acl_finish_function(1,compstmt_count);

finish_function (1);
pop_c_function_context ();

+ acl_last_function_decl=current_function_decl ;
}

notype_nested_function:
notype_declarator

+ acl_imports
{ push_c_function_context ();

if (! start_function (current_declspecs, $1,
prefix_attributes, NULL_TREE , 1))

{

}

pop_c_function_context ();
YYERROR1;

reinit_parse_for_function (); }
old_style_parm_decls

+ compstmt_start

+
+
+
+
+
+
+

I* This
That
where
which
There
which

{

}

store_parm_decls ();
if($2){

}

acl_start_function();
acl_save_globals(TREE_CHAIN($2));
if(!acl_start_first_body(1))

YYERROR1;
reinit_parse_for_function();

used to use compstmt_or_error.
caused a bug with input 'f(g) int g {}' '
the use of YYERROR1 above caused an error
then was handled by compstmt_or_error.
followed a repeated execution of that same
called YYERROR1 again, and so on. *I

rule,

36

compstmt
+ acl_compstmt

{
+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ compstmt_count=
+ acl_finish_function(1,compstmt_count);

+
}

finish_function (1);
pop_c_function_context ();
acl_last_function_decl=current_function_decl;

I* This is the body of a function definition.
It causes syntax errors to ignore to the next openbrace.*/

- compstmt_or_error:
+ acl_compstmt_or_error:

compstmt
+ compstmt_rest

{
+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ acl_finish_body();

}
error compstmt

+ {
+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ acl_finish_body();
+ }

+ acl_compstmt_or_error 'I' acl_alias_compstmt
+ { acl_finish_body(); }

+ acl_compstmt:
+ compstmt_rest
+ {

+ if(DECL_ACL_FLAG(acl_last_function_decl))
+ acl_finish_body();
+ }

+ acl_compstmt 'I' acl_alias_compstmt
+ { acl_finish_body();}
+

compstmt_start: '{' { compstmt_count++; }

compstmt:

37

+ compstmt_start compstmt_rest
+ { $$ = $2; }
+
+

+ compstmt_rest:
compstmt_start '}'

+ '}'
{$$=convert (void_type_node, integer_zero_node); }

compstmt_start pushlevel maybe_label_decls decls xstmts '}'
+ pushlevel maybe_label_decls decls xstmts '}'

{ emit_line_note (input_filename, lineno);
expand_end_bindings (getdecls (), 1, O);
$$ = poplevel (1, 1, 0);
if (yychar == CONSTANT I I yychar == STRING)

pop_momentary_nofree ();
else

pop_momentary (); }
compstmt_start pushlevel maybe_label_decls error'}'

+ pushlevel maybe_label_decls error'}'
{ emit_line_note (input_filename, lineno);

expand_end_bindings (getdecls (), kept_level_p (), 0);
$$ = poplevel (kept_level_p (), 0, 0);
if (yychar == CONSTANT I I yychar == STRING)

pop_momentary_nofree ();
else

pop_momentary (); }
compstmt_start pushlevel maybe_label_decls stmts '}'

+ pushlevel maybe_label_decls stmts '}'
{ emit_line_note (input_filename, lineno);

expand_end_bindings (getdecls (), kept_level_p (), 0);
$$ = poplevel (kept_level_p (), 0, O);
if (yychar == CONSTANT I I yychar == STRING)

pop_momentary_nofree ();
else

pop_momentary (); }

+ acl_imports:
+ I* empty *I
+ {

+ $$ = NULL_TREE;
+ }
+ IMPORTS'(' acl_ids_or_parms_list ')'
+ {
+ $$ = chainon (build_tree_list (NULL_TREE,
+ NULL_TREE), $3);

+
+

+

}

+ acl_ids_or_parms_list:
+ I* empty *I
+ { $$ = NULL_TREE }
+ acl_ids_or_parms
+ { $$ = $1 ; }
+

+
+ acl_ids_or_parms:
+ parm

38

+ { $$ = build_tree_list (NULL_TREE, $1); }
+ IDENTIFIER
+
+

+
+

+
+

{ $$ = build_tree_list (NULL_TREE,
acl_ids_or_parms , , parm '

{ $$ = chainon ($1, build_tree_list
acl_ids_or_parms , , IDENTIFIER '

{ $$ = chainon ($1, build_tree_list

+
+ acl_alias_compstmt:
+ ALIAS'(' acl_alias_lists ')'
+ {

$1); }

(NULL_TREE,

(NULL_TREE,

+

+
+
+

if(!DECL_ACL_FLAG(acl_last_function_decl))
fatal("ACL - ACL functions must"

"have an 'imports' clause");

+ if(!acl_start_body($3))
+ YYERROR1;
+ reinit_parse_for_function();
+ }

+ compstmt
+ { }
+

+

+ acl alias lists:
+ identifiers
+ { $$ = build_tree_list (NULL_TREE, $1); }
+ acl_alias_lists ';' identifiers

$3)); }

$3)); }

+ { $$ = chainon ($1, build_tree_list (NULL_TREE, $3)); }
+

A.2 The binding_level structure

From GCC/gcc/c-decl. c

39

struct binding_level {

I* A chain of DECL nodes for all variables, constants,
functions, and typedef types. These are in the
reverse of the order supplied. *I

tree names;

+ I* ACL - the FUNCTION_DECL, if any, associated with this
+ level. I added this here, to connect a binding_level
+ created for a function definition with its
+ FUNCTION_DECL. The only other way I found to link a
+ binding level to its FUNCTION_DECL was to follow
+ c_function_chain, defined in this file, and
+ outer_function_chain defined in function.c, but I
+ found that to be very cumbersome. *I
+ tree function_decl;
+
+ I* ACL - acl nesting level. For nested functions, this
+ will tell how deep we are in the nesting of acl-style
+ functions. This is used mainly to implement the
+ acl-aware lookup_name() efficiently *I
+ unsigned int acl_level;

I* A list of structure, union and enum definitions, for
looking up tag names. It is a chain of TREE_LIST
nodes, each of whose TREE_PURPOSE is a name, or
NULL_TREE; and whose TREE_VALUE is a RECORD_TYPE,
UNION_TYPE, or ENUMERAL_TYPE node. *I

tree tags;

I* For each level, a list of shadowed outer-level local
definitions to be restored when this level is popped.
Each link is a TREE_LIST whose TREE_PURPOSE is an
identifier and whose TREE_VALUE is its old definition
(a kind of ... _DECL node). *I

tree shadowed;

I* For each level (except not the global one), a chain of
BLOCK nodes for all the levels that were entered and
exited one level down. *I

tree blocks;

I* The BLOCK node for this level, if one has been
preallocated. If 0, the BLOCK is allocated (if needed)
when the level is popped. *I

tree this_block;

} ;

40

I* The binding level which this one is contained in
(inherits from). *I

struct binding_level *level_chain;

I* Nonzero for the level that holds the parameters of a
function. *I

char parm_flag;

I* Nonzero if this level "doesn't exist" for tags . *I
char tag_transparent;

I* Nonzero if sublevels of this level "don't exist" for
tags. This is set in the parm level of a function
definition while reading the function body, so that
the outermost block of the function body will be
tag-transparent . *I

char subblocks_tag_transparent ;

I* Nonzero means make a BLOCK for this level regardless
of all else. *I

char keep;

I* Nonzero means make a BLOCK if this level has any
subblocks. *I

char keep_if_subblocks;

I* Number of decls in 'names ' that have incomplete
structure or union types . *I

int n_incomplete;

I* A list of decls giving
of parms, not including
parmlist . This is so we
order for assign_parms .

tree parm_order;

the (reversed) specified order
any forward-decls in the
can put the parms in proper
*I

A.3 The Identifier structure

From GCC/gcc/c-tree .h

struct lang_identifier {
struct tree identifier ignore;

+ unsigned int acl_level;
tree global_value, local_value, label_value,

41

implicit_decl;
tree error_locus, limbo_value;

};

+ I* ACL - This represents the last acl_level that imported
+ this identifier *I
+ #define IDENTIFIER_ACL_LEVEL(NODE) \
+ (((struct lang_identifier *)(NODE))->acl_level)

A.4 The acLfunction structure

From GCC / gee/ e-deel.e

+ struct acl_function {
+

+ I*
+ * This is the FUNCTION DECL with the name used in the
+ * source file
+ *I
+ tree decl;
+
+ I* these are the parameters passed to start_function() *I
+ tree declarator;
+ tree parmlist;
+ tree declspecs;
+ tree prefix_attributes;
+ tree attributes;
+ int nested;
+

+ I*
+ * This is a pointer to the function name that must be
+ * changed for each body
+ *I
+ tree *identifier_p;
+
+ I* acl globals imported in this function. *I
+ struct acl_old_decl *globs;
+

+ I* this holds the decision tree for the function *I
+ struct acl_decision_tree *dtree;
+

+ I* This points to the first body in the function. *I
+ struct acl_body *first;
+
+ I* This points to the last body in the function. *I
+ struct acl_body *last;

42

+
+ I* This is used to chain ACL functions together *I
+ struct acl_function *chain;
+ };

A.5 Code to reuse acLfunction structures

From GCC/gcc/c-decl. c

+ static const struct acl_function clear_acl_function =
+ { NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0, NULL,
+ NULL, NULL, NULL
+ };
+

+ static struct acl_function *free_acl_function;
+ static struct acl_function *current_acl_function;
+

+ static struct acl_function *
+ make_acl_function ()
+ {

+ return (struct acl_function *)
+ xmalloc (sizeof (struct acl_function));
+ }
+

+ I*
+ * ACL - this should be called when we discover that we
+ * are in an acl-style function, it will make the list
+ * that will be used to track the bodies making this
+ * function
+ *I
+ static void
+ new_acl_function ()
+ {

+ struct acl_function *p;
+

+ if (free_acl_function) {
+ p = free_acl_function;
+ free_acl_function = p->chain;
+ } else {
+ p = make_acl_function ();
+ }

+ *P = clear_acl_function;
+ p->chain = current_acl_function;;
+ current_acl_function = p;
+ }

+

43

+ I*
+ * ACL - after finishing an acl-style function, this
+ * should be called to remove its list from the chain, and
+ * return to the outer list (if we were in a nested acl
+ * function)
+ *I
+ static void
+ pop_acl_function ()
+ {

+ struct acl_body *P, *t;
+ struct acl_function *f;
+
+ I* first free the acl_body structs ... *I
+ p = current_acl_function->first;
+ while (p) {
+ t = p->next;
+ p->next = free_acl_body;
+ free_acl_body = p;
+ p = t;
+ }

+
+ I* ... and then free the acl_function struct *I
+ f = current_acl_function;
+ current_acl_function = f->chain;
+ f->chain = free_acl_function;
+ free_acl_function = f;
+ }

A.6 The acLbody structure

From GCC/gc:c/c-decl.c

+ I* ACL - this structure is used to keep track of the
+ multiple bodies that form one acl-style function. *I
+ struct acl_body {
+

+ I* This points to the FUNCTION_DECL that implements this
+ body *I
+ tree fndecl;
+

+ I* This is the name of the function implementing that
+ body *I
+ tree name;
+
+ I* The parameters of the function implementing that body *I
+ tree parmlist;

44

+

+ I* acl imported globals NOT used in this body. *I
+ struct acl_old_decl *globs;
+
+ I* This will chain to other acl bodies in the same
+ function *I
+ struct acl_body *next;
+ };

A.7 Name lookup functions

From GCC/gcc/c-decl. c

+ I* ACL - this goes up one binding level before calling
+ lookup_name because we see the imports list after
+ starting the function, but we want to make the lookup in
+ the context containing the function not the function
+ itself *I
+ tree
+ lookup_name_in_acl_imports (tree name)
+ {

+ struct binding_level *cl;
+
+ tree t ;
+
+ cl= current_binding_level;
+ if (cl->level_chain)
+ current_binding_level = cl->level_chain;
+ t = lookup_name (name);
+ current_binding_level cl;
+ return t;
+ }

I* Look up NAME in the current binding level and its
superiors in the namespace of variables, functions and
typedefs . Return a ... _DECL node of some kind
representing its definition, or return O if it is
undefined. *I

+ I* ACL - made lookup_name acl-aware *I
tree
lookup_name (name)
tree name;

{
register tree val;

45

+ register tree val, t = NULL_TREE;
+ struct binding_level *chain;
+ unsigned int acl_level;

if (current_binding_level != global_binding_level
&&IDENTIFIER_LOCAL_VALUE (name))

val IDENTIFIER_LOCAL VALUE (name);

else
val= IDENTIFIER_GLOBAL_VALUE (name);

+ acl_level = IDENTIFIER_ACL_LEVEL (name);
+
+ I* ACL - if there is an acl-style function in the chain
+ we need to make sure that either it imports this name
+ or the name was declared after that function *I
+ if (val && current_binding_level->acl_level
+ && current_binding_level->acl_level != acl_level
+ && (TREE_CODE (val)== VAR_DECL
+ I I TREE_CODE (val)== PARM_DECL)) {
+ for (chain= current_binding_level; chain
+ &&(chain->acl_level ==
+ current_binding_level->acl_level);
+ chain= chain->level_chain) {
+ if (chain->
+ function decl && (chain->function_decl
+ DECL_CONTEXT (val))) {
+ t = val;
+ break;
+ }
+ }
+ } else
+ t = val;

return val;
+ return t;

}

I* Similar to 'lookup_name' but look only at current
binding level. *I

tree
lookup_name_current_level (name)
tree name;

{
register tree t;

46

if (current_binding_level == global_binding_level)
return IDENTIFIER_GLOBAL_VALUE (name);

if (IDENTIFIER_LOCAL_VALUE (name)== 0)
return O;

for (t = current_binding_level->names; t;
t = TREE_CHAIN (t))

}

if (DECL_NAME (t) == name)
break;

return t;

A.8 Code to store and restore the globals from the imports clause

From GCC/gcc/ c-decl. c

+ I* ACL - Before Going out of an acl-style function, this
+ will restore the original types of the used globals *I
+ void
+ acl_restore_globals ()
+ {
+ struct acl_old_decl *globs current_acl_function->globs;
+ register struct acl_old_decl *t, *p;
+
+ t = globs;
+ while (t) {
+ p = t->chain;
+ TREE_TYPE (t->decl) = t->old_type;
+ IDENTIFIER_ACL_LEVEL (DECL_NAME (t->decl))
+ t->old_level;
+ t->chain = free_acl_old_decl;
+ free_acl_old_decl = t;
+ t = p;
+ }
+ }
+
+ I* ACL - This will traverse a list of globals and save each
+ one of them. *I
+ void
+ acl_save_globals (tree globs)
+ {
+ int flag;
+
+ current_acl_function->init_globs = globs;
+ while (globs) {
+ if (TREE_CODE (TREE_VALUE (globs))== IDENTIFIER_NODE)

+
+
+
+

flag O;

else
flag= 1;

47

+
+

acl_save_global (TREE_VALUE (globs), flag);
globs= TREE_CHAIN (globs);

+
+ }
+
+ I*
+
+

}

ACL - This will save the original type of an imported
global, and replace it with the type declared in the
imports clause *I

+ void
+ acl_save_global (tree parm, int flag)
+ {
+ tree decl, glob;
+ struct acl_old_decl *acl, *tmp;
+
+ I* If there was a type declared in the imports clause we
+ need to process it, otherwise the global will keep its
+ original type inside the function *I
+ if (flag) {
+ decl =
+ grokdeclarator (TREE_VALUE (TREE_PURPOSE (parm)),
+ TREE_PURPOSE (TREE_PURPOSE (parm)),
+ NORMAL, 0);
+ decl_attributes (decl, TREE_VALUE (TREE_VALUE (parm)),
+ TREE_PURPOSE (TREE_VALUE (parm)));
+ glob= lookup_name_in_acl_imports (DECL_NAME (decl));
+
+ I* ACL - check that the new type is compatible to and
+ more restricitve than the original type *I
+ if ((TREE_READONLY (glob) && !TREE_READONLY (decl))
+ I I !acl_comptypes (TREE_TYPE (glob),
+ TREE_TYPE (decl)))
+ fatal ("ACL - the type given to '%s' in the imports"
+ "clause is not compatible with its previous type",
+ IDENTIFIER_POINTER (DECL_NAME (decl)));
+ } else {
+ decl glob= lookup_name_in_acl_imports (parm);
+ }
+ if (!glob)
+ fatal ("ACL - '%s' used in 'imports' clause while not"
+ "global for current binding level" ,
+ IDENTIFIER_POINTER (DECL_NAME (decl)));
+

48

+ I* ACL - check that we did not import the same variable
+ before *I
+ for (tmp = current_acl_function->globs; tmp;
+ tmp = tmp->chain) {
+ if (glob== ACL_GL0BAL_DECL (tmp->decl)) {
+ fatal ("ACL - '%s' is imported more than once",
+ IDENTIFIER_P0INTER (DECL_NAME (glob)));
+ }
+ }
+ acl = new_acl_old_decl ();
+ acl->old_type = TREE_TYPE (glob);
+ acl->decl = glob;
+ acl->old_level = IDENTIFIER_ACL_LEVEL (DECL_NAME (glob));
+ TREE_TYPE (glob)= TREE_TYPE (decl);
+ IDENTIFIER_ACL_LEVEL (DECL_NAME (glob))
+ current_binding_level->acl_level;
+ tmp = current_acl_function->globs;
+
+ I* Insert this to the globs list in the acl_function
+ struct, when we insert a global in this list, we
+ insert it in its alphabetical order to ensure unique
+ names for the generated functions independent of the
+ order in which the globals are given in the imports
+ clause *I
+ if (! tmp
+ I I strcmp (IDENTIFIER_P0INTER
+ (DECL_NAME (tmp->decl)),
+ IDENTIFIER_P0INTER (DECL_NAME
+ (acl->decl))) > 0) {
+
+

+

acl->chain = tmp;
current_acl_function->globs

} else {
+ while (tmp->chain

acl;

+ && strcmp (IDENTIFIER_P0INTER
+ (DECL_NAME (tmp->decl)),
+ IDENTIFIER_P0INTER (DECL_NAME
+ (acl->decl))) < 0)
+ tmp = tmp->chain;
+ acl->chain tmp->chain;
+ tmp->chain = acl;
+ }

+ }

From GCC/gcc/c-typecheck.c

I* Return 1 if TYPE1 and TYPE2 are compatible types for
assignment or various other operations. Return 2 if

int

49

they are compatible but a warning may be needed if you
use them together. *I

comptypes (type1, type2)
tree type1, type2;

{
+ return actual_comptypes (type1, type2, 0);
+ }
+
+ int
+ acl_comptypes (type1, type2)
+ tree type1, type2;
+

+ {

+ return actual_comptypes (type1, type2, 1);
+ }

+
+ int
+ actual_comptypes (type1, type2, acl_flag)
+ tree type1, type2 ;
+ char acl_flag;
+
+ {

register tree t1 = type1;
register tree t2 = type2;
int attrval, val;

I* Suppress errors caused by previously reported errors.
*I

if Ct1 == t2 I I ! t1 11 ! t2
I I TREE CODE (t1) ERROR_MARK
I I TREE_CODE (t2) == ERROR_MARK)

return 1;

I* Treat an enurn type as the integer type of the same
width and signedness . *I

if (TREE_CODE (t1) == ENUMERAL_TYPE)
t1 =

type_for_size (TYPE_PRECISION (t1),
TREE_UNSIGNED (t1));

if (TREE_CODE (t2) == ENUMERAL_TYPE)
t2 =

type_for_size (TYPE_PRECISION (t2),
TREE_UNSIGNED (t2));

if (t1 == t2)

50

return 1;

I* Different classes of types can't be compatible. *I
if (TREE_CODE (t1) != TREE_CODE (t2))

return O;

I* Qualifiers must match. *I
+ I* ACL - this is modified to work with acl-style imports,
+ mainly it counts the TYPE_QUALS of t1 to be matching
+ those of t2 if ti's only miss a const *I

if ((TYPE_QUALS (t1) != TYPE_QUALS (t2))
+ && (!acl_flag
+ I I ((TYPE_QUALS (t1) I TYPE_QUAL_CONST) !=
+ TYPE_QUALS (t2)))

}

)

return O;

I* Allow for two different type nodes which have
essentially the same definition. Note that we already
checked for equality of the type qualifiers (just
above). *I

if (TYPE_MAIN_VARIANT (t1) TYPE MAIN VARIANT (t2))
return 1;

*
* code removed
*

return attrval 2 && val 1 ? 2 val;

A.9 Code to start an ACL function

From GCC/gcc/c-decl. c

int
start_function (declspecs, declarator, prefix_attributes,

attributes, nested)

{

tree declarator, declspecs, prefix_attributes,
attributes;

int nested;

tree decl1, old_decl;

tree restype;
tree tmp, *prev;
int old_immediate_size_expand

51

immediate_size_expand;

+ I* ACL - store parameters to be found by
+ acl_start_function if needed *I
+ last_function_decl.declarator =
+ declarator? copy_list (declarator) : NULL_TREE;
+ last_function_decl.declspecs =
+ declspecs? copy_list (declspecs) : NULL_TREE;
+ last_function_decl.prefix_attributes =
+ prefix_attributes? copy_list (prefix_attributes)
+ NULL_TREE;
+
+

last_function decl.attributes =
attributes? copy_list (attributes) NULL_TREE;

+ last_function_decl.nested = nested;

+

+

+

*
* code removed
*

I* Make the init_value nonzero so pushdecl knows this is
not tentative. error_mark_node is replaced below (in
poplevel) with the BLOCK. *I

DECL_INITIAL (decl1) = error_mark_node;

I* ACL - by default, it is a normal c-style function (not
acl) *I

DECL ACL FLAG (decl1) O· '

I* If this definition isn't a prototype and we had a
prototype declaration before, copy the arg type info
from that prototype. But not if what we had before was
a builtin function. *I

old_decl = lookup_name_current_level (DECL_NAME (decl1));
if (old_decl != 0 && TREE_CODE (TREE_TYPE (old_decl)) ==

FUNCTION_TYPE && !DECL_BUILT_IN (old_decl)
&& (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (decl1)))

TYPE_MAIN_VARIANT (TREE_TYPE
(TREE_TYPE (old_decl))))

&& TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0) {

+ I* ACL store the globs from the prototype into the decl *I

52

+ DECL_ACL_GLOBS (decl1) = DECL_ACL_GLOBS (old_decl);

}

*

TREE_TYPE (decl1) = TREE_TYPE (old_decl);
current_function_prototype_file

DECL_SOURCE_FILE (old_decl); -
current_function_prototype_line

DECL_SOURCE_LINE (old_decl);

* code removed
*

current function decl pushdecl (decl1);

+ I* ACL *I
+ acl_last_function decl = current_function_decl;

pushlevel (O);
declare_parm_level (1);
current_binding_level->subblocks_tag_transparent

+ I* ACL - here we store the FUNCTION DECL in the
+ binding_level. *I
+ current_binding_level->function_decl
+ current_function_decl;

rnake_function_rtl (current_function_decl);

*
* code removed
*

return 1;
}

+ I* ACL - initializes an acl-style function . When we find
+ that we are starting an acl-style function this will be
+ called from c-parse . in, and it will set the appropriate
+ flags. *I
+ void
+ acl_start function()
+ {

+ DECL ACL FLAG (current_function_decl) 1· l

53

+ current_binding_level->acl_level++;
+ new_acl_function ();
+ current_acl_function->decl = current_function_decl;
+ current_acl_function->declarator =
+ last_function_decl.declarator;
+ current_acl_function->identifier_p
+ last_function_decl.identifier_p;
+

+ I* note: current_acl_function->parmlist should be stored
+ after store_parm_decls() is called from c-parse . in *I
+ current_acl_function->declspecs =
+ last_function_decl . declspecs;
+ current_acl_function->prefix_attributes
+ last_function_decl.prefix_attributes;
+ current_acl_function->attributes =
+ last_function_decl.attributes;
+ current_acl_function->nested = last_function_decl.nested;
+ }

A.10 Code to finish an ACL function

From GCC/gcc/ c-decl. c

I* Finish up a function declaration and compile that
function all the way to assembler language output. The
free the storage for the function definition .

This is called after parsing the body of the function
definition .

NESTED is nonzero if the function being finished is
nested in another . *I

void
finish function (int nested)
{

+ actual_finish function (nested, 1);
+ }

+
+ void
+ actual finish_function (nested, free)
+ int nested, free;
+ {

register tree fndecl = current_function_decl;

I* TREE_READONLY (fndecl) = 1; This caused &foo to be of

54

type ptr-to-const-function which then got a warning
when stored in a ptr-to-function variable . *I

poplevel (1, 0, 1);
BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;

I* Must mark the RESULT_DECL as being in this function. *I

DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;

*
* code removed
*

+ if (DECL_ACL_FLAG (fndecl))
+
+
+

flag_argument_noalias
else

flag_argument_noalias

2;

acl_org_flag_argument_noalias;

I* Run the optimizers and output the assembler code for
this function. *I

rest_of_compilation (fndecl);

+ flag_argument_noalias = acl_org_flag_argument_noalias;

current_function_returns_null I= can_reach_end;

*
* code removed
*

+ I* ACL - free the nodes only if we are not in the middle
+ of an ACL function *I
+ if (free) {

I* Free all the tree nodes making up this function .

Switch back to allocating nodes permanently until we
start another function . *I

if (!nested)
permanent_allocation (1);

if (DECL_SAVED_INSNS (fndecl) 0 && !nested) {

}
}

*

55

I* Stop pointing to the local nodes about to be
freed.

*I

But DECL INITIAL must remain nonzero so we know
this was an actual function definition .

For a nested function, this is done in
pop_c_function_context .

If rest_of_compilation set this to 0, leave it 0.

if (DECL_INITIAL (fndecl) != 0)
DECL INITIAL (fndecl) error_mark_node;

DECL_ARGUMENTS (fndecl) = 0;

* code removed
*

if (!nested) {

}
}

I* Let the error reporting routines know that we're
outside a function. For a nested function, this
value is used in pop_c_function_context and then
reset via pop_function_context. *I

current_function_decl = NULL;

+ I* ACL - finilazies an acl-style function. At the end of a
+ multi-body acl-style function this will create the
+ calling stub and possibly warn over missing bodies . *I
+ int
+ acl_finish function (int nested, int compstmt_count)
+ {
+ struct acl_body *body= current_acl_function->first;
+
+ tree fndecl = current_acl_function->decl;
+

+ compstmt_count = acl_make_stub (compstmt_count);
+ acl_restore_globals ();
+ while (body) {

+
+
+ }

DECL_ACL_FLAG (body->fndecl)
body= body->next;

56

O· '

+ DECL_ACL_FLAG (current_function_decl) = 1;
+ DECL_ACL_GLOBS (current_function_decl) =
+ current_acl_function->init_globs;
+ reclaim_acl_decision_tree (current_acl_function->dtree);
+
+ I* copied form finish_function() *I
+ if (DECL_SAVED_INSNS (fndecl) == 0 && !nested) {
+
+ I* Stop pointing to the local nodes about to be freed.
+ But DECL_INITIAL must remain nonzero so we know this
+ was an actual function definition . For a nested
+ function, this is done in pop_c_function_context. If
+ rest_of_compilation set this to 0, leave it 0 . *I
+ if (DECL_INITIAL (fndecl) != 0)
+
+

DECL INITIAL (fndecl)
DECL ARGUMENTS (fndecl)

error_mark_node;
O;

+ }
+ pop_acl_function ();
+ return compstmt_count;
+ }

A .11 Code used to start ACL bodies

From GCC/gcc/ c-decl. c

+ static void
+ new_acl_body ()
+ {

+ struct acl_body *p;
+

+ if (free_acl_body) {
+ p = free_acl_body;
+ free_acl_body = p->next;
+ } else {
+ p = make_acl_body ();
+ }
+

+ *P = clear_acl_body;
+ p->parmlist = copy_list (current_acl_function->parmlist);
+

+ if (current_acl_function->first)
+

+
current_acl_function->last->next

else
p;

57

+ current_acl_function->first = p;
+

+ current_acl_function->last = p;
+ }
+

+ I* ACL - this should be called to start the first body in
+ an acl-style function. note: this must be called after
+ store_parm_decls() that's why it is not integrated with
+ acl_start_function() *I
+ int
+ acl_start_first_body (int nested)
+ {

+ tree fndecl = current_function_decl;
+
+ current_acl_function->parmlist = DECL_ARGUMENTS (fndecl);
+
+ I* interrupt the current function processing to start a
+ new function for this body *I
+ poplevel (1, 0, 1);
+

+ I* return to the outer context *I
+ current_function_decl = DECL_CONTEXT (fndecl);
+
+ I* remove the definition that was added to the symbol
+ table *I
+ if (current_binding_level == global_binding_level)
+ IDENTIFIER_GLOBAL_VALUE (DECL_NAME (fndecl)) =
+ NULL_TREE;
+ else
+

+

IDENTIFIER_LOCAL_VALUE (DECL_NAME (fndecl))

+ return acl_start_body (NULL_TREE);
+ }
+

NULL_TREE;

+ I* ACL - this should be called at the start of subsequent
+ bodies of an acl-style function *I
+ int
+ acl_start_body (tree alias_lists)
+ {

+ int ret, i = O;
+

+ tree fn_name, *body;
+ tree call_exp;
+

+ new_acl_body ();
+

58

+ I* This will construct the name of this function, and
+ build the decision tree. *I
+ process_alias_lists (alias_lists);
+

+ I* if this is not the first body, otherwise
+ push_c_function_context will be called from c-parse.in
+ *I
+ if (alias_lists && current_acl_function->nested)
+ push_c_function_context () ;
+ call_exp = current_acl_function->declarator ;
+

+ I* In case this function returns pointers, find the level
+ of indirection *I
+ while (TREE_CODE (call_exp) == INDIRECT_REF) {
+ i++;
+ call_exp TREE OPERAND (call_exp, O);
+ }

+ call_exp
+ build_nt (CALL_EXPR, current_acl·_function->last->name,
+ acl_make_parmlist (current_acl_function->
+ last->parmlist));
+

+ I* Now make the constructed function return pointers too *I
+ while (i > 0) {
+ i--;
+ call_exp
+ make_pointer_declarator (NULL_TREE, call_exp);
+ }
+

+ I* Create the function *I
+ if (!start_function
+ (current_acl_function->declspecs, call_exp,
+ current_acl_function->prefix_attributes,
+ current_acl_function->attributes,
+ current_acl_function->nested))
+

+

+

return O;
store_parm_decls ();
DECL_ACL_FLAG (current_function_decl)

+ current acl function->last->fndecl
+ current_function_decl;
+ return 1;
+ }

A.12 Code to finish an ACL body

From GCC/gcc/c-decl.c

59

+ I* AGL - this should be called at the end of each body of
+ an acl-style function *I
+ void
+ acl_finish_body ()
+ {

+ struct acl_old_decl *t1, *t2;
+
+ t2 = current_acl_function->last->globs;
+ actual_finish_function (current_acl_function->nested, 0);
+ if (current_acl_function->nested)
+ pop_c_function_context ();
+
+ I* restore the imported globals to their state before
+ entering this body i.e. this is the status just after
+ the 'imports' clause *I
+ while (t2) {
+ t1 = t2;
+ t2 = t2->chain;
+ TREE_TYPE (t1->decl) = t1->old_type;
+ IDENTIFIER AGL LEVEL (DEGL_NAME (t1->decl))
+ t1->old_level;
+ t1->chain = free_acl_old_decl;
+ free_acl_old_decl = t1;
+ }
+ }

A.13 The decision tree structure

From GCC/gcc/c-decl.c

+ I* AGL - this structure is used to build the decision tree
+ used in constructing the dynamic dyspatch code *I
+ struct acl_decision_tree {
+

+ I* the character representing the first var compared *I
+ char v1;
+

+ I* the character representing the second var compared *I
+ char v2;
+

+ I* a link to the parent of this node *I
+ struct acl_decision_tree *up;
+

+ I* a link to the struct when the vars are equal (aliases)
+ *I
+ struct acl_decision_tree *eq;

60

+
+ I* a link to the struct when they are not equal *I
+ struct acl_decision_tree *ne;
+

+ I* a flag that this node is not needed in the decision of
+ that body *I
+ struct acl_body *ignore;
+
+ I* the body to call when we reach this point *I
+ struct acl_body *body;
+ struct acl_decision_tree *chain;
+ };

A.14 The process_alias_lists function

From GCC /gcc/ c-decl. c

+ I* ACL - this takes a list of lists of the aliases, and
+ constructs a canonical name for the corresponding body.
+ each list is sorted alphabeticaly (parameters first then
+ globals) and then the list are sorted alphabeticaly
+ start by an array of 52 chars all zero, these correspond
+ to the params (0->25) and globals (26->51) each alias
+ list will be represented by a linked list in this array
+ and the linked list will be sorted, and each list will be
+ terminated by -1 after processing all the lists, the
+ array will be scanned to generate the function name
+ (which will be canonical), this is mainly because each
+ var can appear only once in all the alias lists for a
+ body *I
+ void
+ process_alias_lists (tree al)
+ {

+ tree t1, t2;
+ char h, C' e, t· '
+ char *id, *p;
+ static char 1 V [52]
+ { 0, 0, 0, 0, 0, 0' 0, 0,
+ 0, 0, 0, 0, 0, 0' 0, 0,
+ 0, 0, 0, 0' 0' 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ int len, i;

0, 0,
0, 0,
0, 0,
0, 0'

+ struct acl _decision_tree **dtree
+ ¤t_acl_function->dtree;
+ struct acl - decision_tree *d;
+ struct acl - old_decl *t3, *t4;

0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, O};

61

+ struct acl_decision_tree *dt_head, *dt_ref, **dt_cur,
+ *dt_up;
+ id= xmalloc (90);
+ p = IDENTIFIER_POINTER (DECL_NAME
+ (current_acl_function->decl));
+ len = strlen (p);
+ id[O] = '_';
+ memcpy (id+ 1, p, len);
+ p =id+ len + 1;
+
+
+

'$';
'a';
'C';

+ *p++ , l';
+ for (t1 = al; t1; t1 = TREE_CHAIN (t1)) {
+ t2 = TREE_VALUE (t1);
+ h = c = acl_get_id_symbol (TREE_VALUE (t2));
+ if (lv[c])
+ fatal (11 ACL - 'o/~s' used twice in alias . list 11

,

+ IDENTIFIER_POINTER (TREE_VALUE (t2)));
+ lv[c] = -1;
+ for (t2 = TREE_CHAIN (t2); t1 ; t2 = TREE_CHAIN (t2)) {
+ c = acl_get_id_symbol (TREE_VALUE (t2));
+ if (lv[c])
+ fatal (11 ACL - '%s' used twice in alias list 11

,

+ IDENTIFIER_POINTER (TREE_VALUE (t2)));
+ if (c < h) {
+ fatal
+ ("ACL - alais list not written in the required order");
+
+ I* use the code below instead of the error if
+ the order in the list is not important this
+ may cause problems with static dispatch
+ lv[c]=h; h=c; *I
+ } else {
+
+

t = h;
W hi 1 e (1 V [t] ! = -1 && 1 V [1 V [t]] < C)

+ t = lv[t];
+ lv[c] lv[t];
+ lv[t] c;
+ }
+ acl remove_id (TREE_VALUE (t2));
+ }
+ }
+
+ I* if al==NULL this means that we are in the first
+ body, so build the main branch of the decision

62

+ tree, in which there is no aliases at all *I
+ if (!al) {
+ t1 = current_acl_function->parmlist;
+ dt_up = NULL;
+ while (t1) {
+ if (!POINTER_TYPE_P (TREE_TYPE (t1))) {
+ t1 = TREE_CHAIN (t1);
+ continue; I* don't include non-pointer parms *I
+ }
+ h = acl_get_id_symbol (DECL_NAME (t1));
+ t2 = TREE_CHAIN (t1);
+ while (t2) {
+ if (!POINTER_TYPE_P (TREE_TYPE (t2))) {
+ t2 = TREE_CHAIN (t2);
+
+
+
+
+
+
+
+
+
+
+
+ }

continue; I* don't include non-pointer parms *I
}
c = acl_get_id_symbol (DECL_NAME (t2));
d = new_acl_decision_tree ();
d->v1
d->v2
d->up
dt_up

h + 'a';
C + 'a';
dt_up;
d· '

*dtree = d;
dtree = &d->ne;
t2 = TREE_CHAIN (t2);

+ t4 = current_acl_function->globs;
+ while (t4) {
+ c = acl_get_id_symbol (DECL_NAME (t4->decl));
+ d = new_acl_decision_tree ();
+ d->v1 h + 'a';
+
+
+
+
+
+
+
+
+ }

}
t1

d->v2
d->up
dt_up

c - 26 + 'A';
dt_up;
d· '

*dtree = d;
dtree = &d->ne;
t4 = t4->chain;

TREE_CHAIN (t1);

+ t3 current_acl_function->globs;
+ while (t3) {
+ h = acl_get_id_symbol (DECL_NAME (t3->decl));
+ t4 = t3->chain;
+ while (t4) {
+ c = acl_get_id_symbol (DECL_NAME (t4->decl));

63

+

+
d = new_acl_decision_tree ();
d->v1 h - 26 + 'A';

+ d->v2 c - 26 + 'A';
+ d->up dt_up;
+ dt_up d;
+ *dtree = d;
+ dtree = &d->ne;
+ t4 = t4->chain;
+ }
+ t3 = t3->chain;
+ }
+ d = new_acl_decision_tree ();
+ *dtree = d;
+ d->up = dt_up;
+ dt_cur &d;
+ } else {
+ dt_ref = dt_head = current_acl_function->dtree;
+ dt_up = NULL;
+ dt_cur = &dt_head;
+ for (i = O; i < 52; i++) {
+ if (lv[i]) {
+
+
+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

*p++ = ' - ';
*p++ = h = i < 26? i + 'a'
while (dt_head->v1 != h) {

i - 26 + 'A';

if (dt_head->ignore !=
current_acl_function->last) {

if (!*dt_cur) {
*dt_cur = new_acl_decision_tree ();
(*dt_cur)->v1 dt_head->v1;
(*dt_cur)->v2
(*dt_cur)->up

dt_head->v2;
dt_up;

}
dt_up = *dt_cur;
dt_cur = &(*dt_cur)->ne;

}
dt_head = dt_head->ne;

}
e = t = lv[i];
lv[i] = O;
while (t != -1) {

*p++ = C = t < 26? t + 'a'
t = lv[t];
lv[e] = O;
e = t;

t - 26 + 'A';

I* build the decision tree part *I

+
+
+
+

+
+

+
+
+
+
+

+
+
+
+

+
+
+
+
+
+

64

while (dt_head->v2 != c) {
if (dt_head->ignore !=

current_acl_function->last) {

}

if (!*dt_cur) {

}

*dt_cur = new_acl_decision_tree ();
(*dt_cur)->v1 dt_head->v1;
(*dt_cur)->v2 dt_head->v2;
(*dt_cur)->up dt_up;

dt_up = *dt_cur;
dt_cur = &(*dt_cur)->ne;

dt_head = dt_head->ne;
}
if (dt_head->ignore !=

current_acl_function->last) {
if (! *dt_cur) {

*dt_cur = new_acl_decision_tree ();
(*dt_cur)->v1 dt_head->v1;
(*dt_cur)->v2 dt_head->v2;
(*dt_cur)->up dt_up;

+ }

+ dt_up = *dt_cur;
+ dt_cur = &(*dt_cur)->eq;
+ }

+ dt_head = dt_head->ne;
+ dt_ref = dt_head;
+ while (dt_ref) {
+ if (dt_ref->v1 == c I I dt_ref->v2 == c)
+ dt_ref->ignore = current_acl_function->last;
+ dt_ref = dt_ref->ne;
+ }
+ }
+ }

+ }

+
+ I* build the final part of this branch *I
+ while (dt_head->ne) {
+ if (dt_head->ignore != current_acl_function->last) {
+ if (!*dt_cur) {
+
+
+

+
+
+

*dt_cur = new_acl_decision_tree ();
(*dt_cur)->v1 =
(*dt_cur)->v2
(*dt_cur)->up =

}
dt_up *dt_cur;

dt_head->v1;
dt_head->v2;
dt_up;

65

+ dt_cur = &(*dt _cur)->ne;
+ }
+ dt_head = dt_head->ne;
+ }
+ d = new_acl decision_tree ();
+ *dt_cur = d;
+ d->up = dt_up;
+ }
+ *P = O;
+ current_acl_function->last->name = get_identifier (id);
+ free (id);
+ d->body = current_acl_function- >last;
+ }

A.15 Code to generate the dynamic dispatch

From GCC/gcc/c-decl. c

+ I* ACL - This will traverse the decision tree and generate
+ the code that corresponds that tree to call the matching
+ body *I
+ int
+ acl_gen_decision_code (struct acl_decision_tree *dt,
+ int compstmt_count)
+ {
+ tree exp= NULL, exp1, exp2, exp3;
+ tree fndecl;
+ tree parms, args = NULL;
+ int comp;
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I* We reached a leaf in the tree, so we must generate a
call *I

if (!dt->eq && !dt->ne) {
fndecl = dt->body->fndecl;
assemble_external (fndecl);
TREE_USED (fndecl);
for (parms = dt->body->parmlist; parms;

parms = TREE_CHAIN (parms)) {
if (! args)

args =
build_tree list (NULL_TREE,

IDENTIFIER LOCAL_VALUE
(DECL_NAME (parms))) ;

+ else
+ args

66

+ chainon (args,
+ build tree_list (NULL_TREE,
+ IDENTIFIER_L0CAL_VALUE
+ (DECL_NAME (parms))));
+ }

+ exp build function call (fndecl, args);
+
+ I* If the function returns void, we need to create a
+ compund statement which will first call the body
+ then return null *I
+ if (TREE_TYPE (DECL_RESULT (fndecl)) == void_type_node) {
+ compstmt_count++;
+
+ I* from c-parse.in [pushlevel:] *I
+ emit_line_note (input_filename, lineno);
+ pushlevel (0);
+ clear_last_expr ();
+ push_momentary ();
+ expand_start_bindings (0);
+

+ I* from c-parse.in [nonnull_exprlist : expr_no_commas]
+ *I
+ exp= build_tree_list (NULL_TREE, exp);
+

+ I* from c-parse . in [expr: nonull_exprlist] *I
+ exp= build_compound_expr (exp);
+

+ I* from c-parse.in [stmt: expr ';'] which corresponds
+ to the function call *I
+ emit_line_note (input_filename, lineno);
+ iterator_expand (exp);
+ clear_momentary ();
+

+ I* this is the return; *I
+ emit_line_note (input_filename, lineno);
+ c_expand_return (NULL_TREE);
+

+ I* from c-parse . in [compstmt] *I
+ emit_line_note (input_filename, lineno);
+ expand_end_bindings (getdecls (), kept_level_p (), 0);
+ poplevel (kept_level_p (), 0, 0);
+ pop_momentary ();
+ } else {
+ emit_line_note (input_filename, lineno);
+ c_expand_return (exp);
+ }

67

+ } else if (dt->eq && dt->ne) {
+ exp1 = acl_get_symbol_id (dt->v1);
+ assemble_external (exp1);
+ TREE_USED (exp1);
+ if (dt->v1 < 'a') {
+ exp1 = build_unary_op (ADDR_EXPR, exp1, 0);
+ }

+ exp2 = acl_get_symbol_id (dt->v2);
+ assemble_external (exp2);
+ TREE_USED (exp2);
+ if (dt->v2 < 'a') {
+ exp2 = build_unary_op (ADDR_EXPR, exp2, 0);
+ }
+ exp= parser_build_binary_op (EQ_EXPR, exp1, exp2);
+
+ I* from c-parse.in [if_prefix:] *I
+ emit_line_note (input_filename, lineno);
+ c_expand_start_cond (truthvalue_conversion (exp), 0,
+ compstmt_count);
+ position_after_white_space ();
+ compstmt_count =
+ acl_gen_decision_code (dt->eq, compstmt_count);
+ c_expand_start_else ();
+ position_after_white_space ();
+ compstmt_count =
+ acl_gen_decision_code (dt->ne, compstmt_count);
+
+ I* from c-parse.in [stmt: simple_if ELSE] *I
+ c_expand_end_cond ();
+ } else {
+ expl = acl_get_symbol_id (dt->vl);
+ assemble_external (expl);
+ TREE_USED (expl);
+ if (dt->vl < 'a') {
+ expl = build_unary_op (ADDR_EXPR, exp1, 0);
+ }

+ exp2 = acl_get_symbol_id (dt->v2);
+ assemble_external (exp2);
+ TREE_USED (exp2);
+ if (dt->v2 < 'a') {
+ exp2 = build_unary_op (ADDR_EXPR, exp2, 0);
+ }
+ if (dt->ne) {
+ dt = dt->ne;
+ comp NE_EXPR;
+ } else {

68

+ dt = dt->eq;
+ comp= EQ_EXPR;
+ }

+ exp= parser_build_binary_op (comp, exp1, exp2);
+
+ I* Join all tree nodes with only one child into only
+ one if statement *I
+ while ((dt->eq && !dt->ne) I I (!dt->eq && dt->ne)) {
+ exp1 = acl_get_symbol_id (dt->v1);
+ assemble_external (exp1);
+ TREE_USED (exp1);
+ if (dt->v1 < 'a') {
+ exp1 = build_unary_op (ADDR_EXPR, exp1, O);
+ }

+ exp2 = acl_get_symbol_id (dt->v2);
+ assemble_external (exp2);
+ TREE_USED (exp2);
+ if (dt->v2 < 'a') {
+ exp2 = build_unary_op (ADDR_EXPR, exp2, O);
+ }
+ if (dt->ne) {
+

+
+
+
+

+

+

dt =
comp

} else
dt =
comp

}
exp3 =

+ exp=

dt->ne;
= NE_EXPR;
{
dt->eq ;
= EQ_EXPR ;

parser_build_binary_op (comp, exp1,

+ parser_build_binary_op (TRUTH_ANDIF_EXPR,

exp2);

+ truthvalue_conversion
+ (default_conversion
+ (exp)),
+ truthvalue_conversion
+ (default_conversion
+ (exp3)));
+ }

+

+ I* from c-parse.in [if_prefix:J *I
+ emit_line_note (input_filename, lineno);
+ c_expand_start_cond (truthvalue_conversion (exp), 0,
+ compstmt_count);
+ position_after_white_space ();
+ compstmt_count =
+ acl_gen_decision_code (dt, compstmt_count);
+

69

+ I* from c-parse . in [stmt: simple_if] *I
+ c_expand_end_cond ();
+ }
+ return compstmt_count;
+ }
+
+ I* ACL - This will generate the function that does the
+ dynamic dispatch *I
+ int
+ acl_make_stub (int compstmt_count)
+ {
+ inti= O;
+
+ tree call_exp;
+
+ if (current_acl_function->nested)
+ push_c_function_context ();
+ call_exp = current_acl_function->declarator;
+ while (TREE_CODE (call_exp) == INDIRECT_REF) {
+ i++;
+ call_exp TREE OPERAND (call_exp, O);
+ }
+ call_exp
+ build_nt (CALL_EXPR, TREE_OPERAND (call_exp, 0),
+ acl_make_parmlist (copy_list
+ (current_acl_function->
+ parmlist)));
+ while (i > 0) {
+ i--;
+ call_exp
+ make_pointer_declarator (NULL_TREE, call_exp);
+ }
+ start_function (current_acl_function->declspecs,
+ call_exp,
+ current_acl_function->
+ prefix_attributes,
+ current_acl_function->attributes,
+ current_acl_function->nested);
+ store_parm_decls ();
+ compstmt_count++;
+
+ I* from c-parse.in [pushlevel] *I
+ emit_line_note (input_filename, lineno);
+ pushlevel (O);
+ clear_last_expr ();
+ push_momentary ();

+ expand_start_bindings (0);
+ compstmt_count =

70

+ acl_gen_decision_code (current_acl_function->dtree,
+ compstmt_count);
+
+ I* This is the 'Abort' code *I
+ id= get_identifier (11 abort 11

);

+ fail= lookup_name (id);
+ if (!fail){
+ fail=implicitly_declare (id);
+ assemble_external (fail);
+ TREE_USED (fail)= 1;
+ }
+ call_exp=build_function_call (fail, NULL_TREE);
+ call_exp=build_tree_list(NULL_TREE,call_exp);
+ call_exp=build_compound_expr(call_exp);
+ emit_line_note (input_filename, lineno);
+ iterator_expand (call_exp);
+ clear_momentary ();
+
+ I* from c-parse.in [compstmt] *I
+ emit_line_note (input_filename, lineno);
+ expand_end_bindings (getdecls (), kept_level_p (), 0);
+ poplevel (kept_level_p (), 0, 0);
+ pop_momentary ();
+ return compstmt_count;
+ }

A.16 Other helper functions

From GCC/gcc/c-decl.c

+ I* start_function wants to have the parameters as a list
+ containting both the parameters and a list of their
+ types, we construct that list here *I
+ static tree
+ acl_make_parmlist (tree parms)
+ {

+ tree new_parms, p;
+

+ new_parms = build_tree_list (parms, NULL);
+ for (p = parms; p; p = TREE_CHAIN (p)) {
+ chainon (new_parms,
+ build_tree_list (NULL, TREE_TYPE (p)));
+ }
+ if (parms)

71

+ chainon (new_parms,
+ build_tree list (NULL, void_type_node));
+ return new_parms;
+ }

+

+ I* when starting an ACL body, given an ID ~his function
+ will make that ID invisible inside that body. If the
+ ID is that of a global, it will restore that global to
+ its state before entering the ACL function. If it is a
+ parameter, it will remove it from the parameter list
+ that will be given later to start_function. *I
+ void
+ acl_remove_id (tree id)
+ {

+ tree bparms = current_acl_function->last->parmlist;
+ struct acl_old_decl *fglobs = current_acl_function->globs;
+ struct acl_old_decl *bglobs =
+ current_acl_function->last->globs ;
+ struct acl_old_decl *acl;
+
+ tree prev = NULL;
+ char c = acl_get_id_symbol (id);
+
+ if (c < 26) { I* it is a parameter *I
+ while (bparms) {
+ if (DECL_NAME (bparms) id) {
+ if (prev)
+ TREE_CHAIN (prev) = TREE_CHAIN (bparms);
+

+ else
+ current_acl_function->last->parmlist
+ TREE_CHAIN (bparms);
+ break;
+ }
+
+

prev
bparms

bparms;
TREE CHAIN (bparms);

+ }

+ } else { I* it is a global *I
+ while (fglobs) {
+ if (DECL_NAME (fglobs->decl) id) {
+ acl = new_acl_old_decl ();
+ acl->old_type = TREE_TYPE (fglobs->decl);
+ acl->decl = fglobs->decl;
+ acl->old_level =
+ IDENTIFIER_ACL_LEVEL (DECL_NAME (fglobs->decl));
+ TREE_TYPE (fglobs->decl) = fglobs->old_type;

72

+
+

IDENTIFIER ACL LEVEL (DECL_NAME (fglobs->decl))
fglobs->old_level;

+
+
+
+
+
+
+
+ }
+ }
+

}

}

if (bglobs)
acl->chain = bglobs;

current_acl_function->last->globs acl;
break;

£globs= fglobs->chain;

+ I* Given a character, return the DECL corresponding to it. *I
+ tree
+ acl_get_symbol_id (char sym)
+ {
+ tree result= NULL;
+ tree parms;
+ struct acl_old_decl *globs;
+ char c;
+
+ if (sym < 'a') {
+ globs= current_acl_function->globs;
+ for (c = 'A'; c < sym && globs;
+ c++, globs= globs->chain)
+ if (globs)
+ result= globs->decl;
+ } else {
+ parms = current_acl_function->parmlist;
+ for (c = 'a'; c _< sym && parms ;
+ c++, parms = TREE_CHAIN (parms)) ;
+ if (parms)
+ result= IDENTIFIER_LOCAL_VALUE (DECL_NAME (parms));
+ }
+ return result;
+ }
+
+ I* Given an IDENTIFIER node return the character that
+ must be used for it in the function name and in the
+ decision tree nodes. *I
+ char
+ acl_get_id_symbol (tree id)
+ {
+ inti= -1, ret = -1;
+
+ tree parms = current_acl_function->parmlist;

73

+ struct acl old decl *globs current_acl_function->globs;
+
+ while (parms) {
+ i++;
+ if (DECL_NAME (parms) == id) {
+ if (!POINTER_TYPE_P (TREE_TYPE (parms)))
+ fatal
+ ("ACL - '%s' is not a pointer and cannot"
+ "be used in alias list",
+ IDENTIFIER_POINTER (id));
+ ret = i;
+ break;
+ }
+ parms = TREE_CHAIN (parms);
+ }
+ if (ret != -1)
+ return ret; I* a parameter *I
+ i = -1;
+ while (globs) {
+ i++;
+ if (DECL_NAME (globs->decl) id) {
+ ret = i;
+ break;
+ }
+ globs= globs->chain;
+ }
+ if (ret != -1)
+ return ret + 26; I* a global *I
+ fatal
+ ("ACL - '%s' not _available to be used in alias list",
+ IDENTIFIER_POINTER (id));
+ return -1;
+ }

74

BIBLIOGRAPHY

[1] Alfred V. Aho: Ravi Sethi, and Jeffrey D. Ullman. Compilers; Principles, Thechniques ,

and Tools. Addison-Wesley Publishing Company, 1986.

[2] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press,

1998.

[3] Paolo Bucci, Joseph E. Hollingsworth, Joan Krone, and Bruce W. Weide. Part III:

Implementing components in RESOLVE. A CM SI GS OFT Software Engineering Notes,

19(4):40- 51, Oct 1994.

[4] Stephen H. Edwards: Wayne D. Heym, Timothy J. Long, Murali Sitaraman: and Bruce W.

Weide. Part ii: Specifying components in RESOLVE. A CM SIGSOFT Software Engi-

neering Notes , 19(4):29- 39, Oct 1994.

[5] Free Software Foundation . Using and porting the gnu compiler collection, 2001.

http: //gcc.gnu.org/ onlinedocs/ gcc-2.95.2/ gee.html

[6] Douglas E. Harms. The Influence of Software Reuse on Programming Language Design.

PhD thesis , Dept . of Computer and Information Science: The Ohio State University:

Columbus , Ohio , 1990.

[7] IBM Corporation. AIX Version 3 for RS/6000: Optimization and Tuning Guide for

Fortran 1 C and C++. SC09-1705 .

[8] IBM Corporation. IBM C Set ++ for AIX/6000 User 's Guide Version 2. 1. SC09-1605.

[9] International Organization for Standardization. Programming Language - C. ISO /IEC

9899.

75

(10] Gary T. Leavens and Olga Antropova. ACL - Eliminating Parameter Aliasing with

Dynamic Dispatch. Technical Report 98-08a: Department of Computer Science: Iowa

State University, Ames, Iowa, 50011 , February 1999. Available by anonymous ftp from

ftp.cs.iastate.edu , and by e-mail from almanac@cs.iastate.edu.

[11) Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers , Inc., 1997.

[12) William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben. Part I:

The RESOLVE framework and discipline - a research synopsis. A CM SIGSOFT Software

Engineering Notes , 19(4):23-28, Oct 1994.

[13) E. S. Page and L. B. Wilson. Information Representation and Manipulation in a Com-

puter. Cambridge University Press , second edition, 1978.

[14] G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell , and R. L. London. Notes on

the design of Euclid. ACM SIGPLAN Notices: 12(3):11-18, March 1977.

[15) Murali Sitaraman and Bruce W . Weide. Special feature: Component-based software using

RESOLVE. ACM SIGSOFT Software Engineering Notes: 19(4):21-22, Oct 1994.

[16] Katherine E. Stewart. Using the XL compiler options to improve application performance,

1998. http: / /www.rs6000.ibm.com/resource/technology /options.html

